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A B S T R A C T  

The main purpose of this thesis was to implement the real-time simulation model of 

the Bell Aircraft Corporation XV-15 aircraft to give a face to the mathematical model 

describing the flight mechanics of the tilt-rotor. The mathematical model has been 

developed thanks to several thesis works carried out at the Politecnico di Torino in 

collaboration with the ZHAW University located in Winterthur, Switzerland, and 

includes simplified mathematical models for the aerodynamics of the whole aircraft, 

rotors, and engine dynamics. 

The author's task was therefore to take the model in question and make it work 

with a graphic environment that reproduces the aircraft following the commands 

given by the pilot. The visualisation environment chosen is FlightGear, an open -

source and cross-platform software that is widely used in research for its 

characteristics. 

The simulator is therefore made up of a portable workstation running the 

simulation model, written in MATLAB/Simulink® language, and a hardware input 

consisting of a USB flight stick and a pedal board. The hardware then communicates 

with the Simulink software, which evaluates the status of the aircraft, including 

position and attitude, but also including the rotational speed of the rotors, the 

position of the moving surfaces and the status of the landing gears,  which are sent to 

the FlightGear environment, that reproduces an animated 3D version of the aircraft. 

The FlightGear simulation environment also has the task of reproducing a 

simplified view of the portion of planet Earth on which the aircraft is located, 

including aerial infrastructures but also vegetation and various obstacles. 

Fundamental work was then to synchronise the processor clock with that of the 

physical simulation to make the model truly real-time, thanks to the use of the 

Simulink® Desktop Real-Time™ library and special cares in the use of the software 

to speed up the simulation.
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Introduction 

1.1 Flight Simulators 

Flight simulators are devices that allows to reproduce a virtual environment, in 

which an aircraft is reproduced according to the mathematical equations that govern 

the dynamics of flight, the dynamics of on-board systems, but also meteorology and 

much more. 

Fig. 1.1 shows the main components of a flight simulator. The equations of 

motion are the most important part of all flight simulators. Their function is to 

determine the states of the simulator by taking all inputs, including pilot controls, 

winds, aerodynamic terms, and engine terms to calculate the variables that represent 

the state of the simulated aircraft, specifically forces, moments, attitude, altitude, 

direction, and speed. The equations of motion, in most flight simulators, are updated 

50 to 60 times per second. 

The aerodynamic model allows aerodynamic forces and moments to be 

calculated.  The aerodynamic data is provided as a large database obtained from a 

combination of flight tests, wind tunnel tests, and possibly computational fluid 

dynamics (CFD) analysis. It will also include a large amount of validation data to 

allow the simulator developer to compare the simulator's dynamics and performance 

to actual aircraft data. The aerodynamic model is the most critical element of a flight 

simulator: in fact, an error in modelling the aerodynamics of the aircraft can lead to 

a simulation that may fail in the qualification process or be unacceptable to pilots 

who have experience in this type of aircraft. 

Development of the engine requires a model of the engine dynamics that  will be 

used in any control system design activities. The engine manufacturer will undertake 

extensive testing in the development of the engine. The engine data is dependent on 

the state of the aircraft; implementation of the engine model requires access to 

variables calculated in the flight model. 
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Figure 1.1: Organization of a Flight Simulator [1] 

The inputs can provide discrete data (0 or 1) or analogue data. They must be 

sampled, converted to an appropriate value, and passed to the simulator module.  

When dealing with many inputs, there are multiple processors dedicated to the 

data acquisition function. In the case of analogue data, the data acquisition software 

is responsible for minimizing any delay in data acquisition, ensuring that the data 

resolution is as high as possible, and that any conditioning or filtering of the data 

signal is properly applied.  

An additional model is usually provided for ground handling to include the 

effects of the tires and undercarriage assembly, which are responsible for different 

dynamics than the aircraft in flight. In practice, there are additional state transitions, 

just before take-off and just after landing, where the aerodynamic contribution to 

motion is combined with the dynamics of the undercarriage assembly.  

Aircraft performance is, of course, affected by the atmosphere.  In fact, equations 

are implemented to calculate air pressure, air density, and air temperature. Wind 

influences both navigation and aircraft handling, for example, in crosswind or 
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turbulence landings. The wind model must be three-dimensional and time varying as 

it plays an important role in flight planning. The model must account for pressure 

fronts, altitude, and position. An alternative approach is to use wind data acquired 

from agencies that monitor global wind currents. 

The visual system provides a series of real-time image channels viewed from the 

position of the pilot's eye. A database is loaded into the memory of the visual system, 

which may contain fields, airfields, roads, lakes, coastlines, vehicles, buildings, trees, 

forests, vegetation, and aircraft.  Each object is reduced to coloured polygons (usually 

triangles), defined in the database coordinate system. As the aircraft manoeuvres, 

the position and orientation of the pilot's eye are computed in the equations of 

motion and the scene is rendered at each frame (typically 60 Hz). There is a delay 

between the acquisition of a new eye position and the pilot seeing the projected 

image. It is called visual latency and must be kept to a minimum but can extend to 

three or four frames. 

Noisy environments are present in aircraft, such as the cockpit or flight deck. In 

addition, other noises from the engine, subsystems, wake, actuators, or alarms are 

present.  Although sounds are provided in a simulator to increase fidelity, they are 

also important cues and should be consistent with the sounds heard in an aircraft. 

Some sounds, such as airspeed or engine revolutions per minute (RPM), vary with 

flight conditions, while other sounds provide a consistent tone. Usually, a separate 

sound system is provided that takes input from other modules. 

As the simulated aircraft is maneuvered, the pilot expects to feel the 

accelerations that would be experienced in real flight. The accelerations are 

calculated in the flight model and are passed to the motion system. For the standard 

motion platform that includes six linear hydraulic actuators, each actuator is moved 

to a new position to try to replicate the accelerations on the pilot's body. The motion 

system contains computers to derive the actuation equations to move the platform 

to the desired position, along with filters to optimize the platform trajectory and 

provide appropriate motion for the pilot's balance sensors. However, motion 

evaluation is a very important aspect of simulator qualification and is controlled for 

critical phases of flight, particularly take-off, landing, and engine failures. 

When an aircraft flies, the wake that passes over the control surfaces changes the 

primary flight controls: the elevator, aileron, and rudder control surfaces. To account 

for these effects, control loading is used, provided by attaching actuators to the flight 

controls in the simulator so that the actuator provides resistance to motion, typically 

varying with airspeed.  The control load is also an important part of simulator 

qualification. With both hydraulic and electrical control load systems, the trimming 

function is simply implemented as an offset of the null datum for the zero-load 

position. 

Civilian and military aircraft take advantage of electronic flight instruments, 

known as EFIS displays, based on computer graphics with 8 in. ruggedized monitors, 
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typically with the displays refreshing at least 20 times per second (20 Hz). The 

graphics hardware in the display has a very fast drawing speed to support the  frame 

rate and includes anti-aliasing algorithms to smooth out any jagged lines or edges as 

characters and lines are rendered. 

A significant part of flight training involves navigation training. Flight simulation 

offers two advantages: first, an in-flight navigation exercise consumes fuel, and 

second, navigation errors in training can be dangerous. Consequently, simulators 

provide varying degrees of navigation skills. 

The simulator should be checked regularly to ensure that it is operating within 

limits. In fact, for qualified simulators, the operator must keep records of all 

scheduled and unscheduled maintenance and repeat diagnostic tests to confirm that 

the simulator's characteristics have not changed significantly after any maintenance 

procedures. 

1.1.1 Purposes of Flight Simulators 

 

Figure 1.2: Main purposes of flight simulators 

Interest in the development and construction of modern flight simulators is driven 

by several purposes: 

• Pilot Training: modern flight simulators have become a fundamental part of 

pilot and cockpit crew training.  

• Research: flight simulators can also be used for research purposes, to produce 

the mathematical models or to validate them, providing an experimental 

result without preparing physical tests of the system. 

• Games: aviation has always aroused a lot of interest from pilots for 

recreational purposes, for this reason the market has always presented an 
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offer of video games that produce a millionaire turnover for the companies  

Tilt-Rotors concept of operations. 

• In the case of “In flight” simulators, a simulator is placed on a real aircraft to 

understand the operation of the control system. 

1.1.2 The importance of Flight Simulators 

 

Figure 1.3: Main Advantages of flight simulators 

• Simulators on an industrial level are useful as they ensure safety for training. 

In addition, they are essential for certifying aircraft and verifying the envelope 

diagram in a more realistic manner and prior to flight test, and thus verifying 

the feasibility of the manoeuvre. 

• Flying a simulator compared to a real aircraft is, of course, less expensive.  

• There are no problems in the operating ranges. It is possible also to explore 

unforeseen cases in order to understand, for example, the dynamics of an 

accident. 

• They are very important from an environmental point of view for flight tests 

to reduce the number of pilot flight hours. 

There are project and training simulators. The former does not operate in real time 

and are used for engineering. They use complex calculation tools based on very 

complex data and can take structure elasticities into account. A correlation is created 

between the simulation model and the engineering model to understand how to vary 

the mathematical simulation model and reapply it to the physical project. 

Interdisciplinary models are used that cannot be used for real-time simulators 

because the computers are too slow, even if the fidelity is very high. Thus, real -time 

simulator models are simpler parametric models derived from statistics that do not 

follow the real physical model, but faithfully reproduce the dynamics useful for 

training. 

Military training uses simulators at different levels, from flight familiarisation to 

combat. Simulators focus on military risks and tend to recreate conditions that are 
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not even easily reproducible during training. These trainers are based on a synthetic 

scenario in which there are also other infrastructures, military dynamics, even 

hostile ones (radar, enemies, etc.), and the pilot is trained in combat  and 

countermeasures for survival. In civil training, the full flight simulator is often used 

for airliners, but training for PPL is also done on the simulator, which has proved to 

be very valid. There are also maintenance training aircrafts that are even in VR. They 

allow to learn maintenance procedures consistently (not force actions) and to direct 

information giving warnings. In the environment there can also be a virtual 

instructor who may not be physically present. It is also useful for safety because 

there can be risks for the maintainer even during training. These environments 

remove the risk and allow the maintainer to become familiar with the procedures.  

1.1.3 Flight Simulator Standards 

Standards and normative references are also important for flight simulation. At the 

beginning of simulation development, standards were imposed by the manufacturers 

of flight simulators. The reproducibility of the simulators was low because there was 

no standard. Simulators were bought by companies in good faith thinking that the 

manufacturer could produce a sensible simulator. This made it difficult to think of 

using simulators for systematic training or skills validation, so flight experience was 

always required and in fact subjective considerations were made that lacked 

normative validation of the simulator.  

At the beginning of the 1970s, the possibility of standardisation bodies began to 

arise with manufacturers to standardise the methods for the design of training 

simulators, and companies immediately joined in through IATA because they 

understood the usefulness. A technical committee was set up to lay the foundations 

for the development of standards and they joined forces.  

In 1995, the ICAO, which is a third party with respect to certification and 

companies, produced a technical manual for flight simulators that is still used today. 

This manual led to the creation of working groups within FAA and EASA that 

implemented the ICAO guidelines. EASA calls it CS-FSTD (Flight Simulation Training 

Device) declined in Aircraft and Helicopters and contains all the simulation 

specifications that the designer must follow for certification. In Italy, ENAC follows 

these standards and enforces them.  

The simulator must be certified via software and hardware. The software must 

also be recognized by regulatory bodies to be certified for training; the hardware 

must be consistent with the requirements and the flight controls must be compatible 

with the aircraft to be simulated. Their combination must also be validated.  

In the civilian sector, no one certifies a simulator except for the training of 

pilots. The Full Flight Simulator is the best case and allows to train the pilot in 

accelerations. The motion system is not consistent with the dynamics in flight 
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because, if it were consistent with the angular excursions and linear accelerations, 

enormous excursions would be needed. What is admitted as feedback is the 

transitory part of the dynamics that the pilot perceives during the flight. FFS can also 

be used to maintain the license, such as EASA which requires minimum hours to 

maintain the rating. 

Flight Training Devices (FTD) and Flight Navigation Procedures Trainers 

(FNPT) differ in motion feedback since FFS has motion system. The commercial pilot 

can use the FTD and FNPT for some training, but the validation of the pilot rating is 

done only in the FFS. The FTDs have a cockpit equal to the real aircraft, but the visual 

system is simpler and allows the use of cheaper technological solutions. FNPT has an 

open cockpit and with simplified and reduced controls, not equal to the real aircraft. 

There is a lower category, called Basic Instrument Training Devices (BITD), 

which is used for instrumental training and to give the pilot the opportunity to 

familiarize himself with the instruments and the cockpit. 

Integrated Procedures Trainers (IPT) is an anomalous training simulator in 

which the flight dynamics disappear and the pilot flies with the instruments and does 

not receive visual or sensory perceptions. These tools are important to familiarize 

with the procedures connected to them and detached from the perceptions of 

piloting. This is to train pilots and gain confidence in air traffic management.  

1.1.4 Real-Time simulation  

In normal everyday life, everything seems to be continuous and instantaneous. 

Computation is a very different world in which a computer executes the instructions 

of a given program. Each of these instructions requires a finite number of machine 

cycles, and each of these cycles is synchronized to the speed of the processor. In other 

words, for a given computer, a small snippet of code may take several microseconds 

to execute. What the operating system does is discretize time, in very small-time 

steps, such that a seemingly instantaneous and continuous response is guaranteed.  

Exactly the same situation occurs in flight simulation, where the position of the 

stick is sampled, the elevator deflection is calculated, a new pitch attitude is 

calculated, and an image is displayed by the visual system with the new pitch 

attitude, allowing the pilot to correct the attitude of the aircraft. The important point 

is that the overall time for this calculation must be short enough so that it appears 

instantaneous to the pilot. In a modern simulator, these calculations must be 

completed within 1/50th of a second or 20 ms. 
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Figure 1.4: Real-Time frames [1] 

This concept is illustrated in Figure 1.4, which represents 10 frames of a simulation. 

The arrow for each frame shows the proportion of the frame used in the simulation 

calculation. If the frame time is small enough, say 1/50th of a second, and if the 

computation in each frame never exceeds the frame time, then the simulation is in 

real time. 

A real-time simulation requires a fast computer, but all calculations must be 

completed within the time limit, unlike a fast simulation where the only metric is 

overall time. The operating system must guarantee execution of the simulation task 

every frame and never introduce delays that cause the simulation task to exceed its 

frame limit. Ensuring real-time performance, especially for the worst conditions, is 

an essential part of system validation and acceptance testing. [1] 

1.2 Tilt-Rotors 

Since the beginning of aviation, due to technological and engineering limitations, 

aircraft were divided into those that and those that require movement itself to 

generate lift, and those which can maintain stationary flight, which at first were the 

lighter-than-air aircraft, and then helicopters, 

Both configurations have always been used simultaneously to exploit the most of 

their peculiarities. 

• Aircrafts: thanks to innovations in aircraft design, manufacture and 

operation, aircraft today can achieve ever higher cruise speeds, range, cruise 

altitude and payload capacity. However, at low speeds there are significant 

stability, control, and performance issues for fixed-wing aircraft.  The latter 

over time has been exploited for its improved top speed characteristic. For 

these reasons, given the commercial interest in developing fast aircraft that 

could cover great distances, the minimum speed has also been progressively 

increased. This has led to an increase in the space required for aircraft take-

off and landing and, therefore, a reduced ability of aircraft to integrate with 

civil transport in densely populated areas.  It follows that airports are located 

quite far from urban centres, thus reducing the time gain offered by air 
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transport compared to other means such as rail and road that are more easily 

integrated into the urban fabric. 

• Helicopters: helicopters have emerged as a solution particularly suitable for 

a wide variety of missions, both civil and military, thanks to their low- speed 

performance and their ability to take off and land vertically.  In fact, traditional 

airplanes are hardly able to complete missions such as: search and rescue, 

surveying large areas, supporting troops and police forces, point-to-point 

transportation in isolated sites or difficult environments, aerial work, and 

many others. However, helicopters suffer from severe limitations on their 

maximum speed, range, altitude, and achievable payload capacity. This, along 

with the fuel consumption and noise and vibration levels typical of these 

machines, negatively impacts their productivity.   

The aerospace industry has always tried to combine the two worlds to create a new 

type of aircraft that could travel at high speed with large payloads over long 

distances, arriving at successful hybrid configurations. 

 

Figure 1.5: XV-22 Osprey in different Flying Modes [2] 

• helicopter mode allows to generate lift with vertically oriented rotors and then 

perform Vertical Take-Off and Landing (VTOL) and hovering like a helicopter 

• airplane mode, on the other hand, allows to produce lift from the wing, using 

thrust to overcome drag. This is done by rotating the engine nacelles by means 

of actuators, which direct the rotors towards the bow of the aircraft.  

1.2.1 Growing interest in Tilt-Rotors 

In the category of V/STOL aircraft, which seek to minimize take-off distance while 

maintaining the typical characteristics of a fixed-wing aircraft, the most promising 

configuration that the industry is focusing on is tilt-rotor. 
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Its success is dictated by the ability to take off vertically as a traditional helicopter 

would, then rotate the propulsion system and perform an airplane mode conversion. 

This allows to cover great distances and therefore to have a great operative range 

while preserving the peculiar characteristics of the helicopter. 

 

Figure 1.6: Range Comparison Between Bell 525 and Boeing V-22 [3] 

Despite efforts, the tilt-rotor configuration does not come without problems that 

limit its performance. Right from the start, the biggest issue for this type of aircraft 

was in-flight stability and manoeuvrability, as well as the ability to perform flight 

mode conversion. In addition, the mechanical complexity of the tilt-rotor design 

greatly increases operational and maintenance costs, reducing its employability. 

1.2.2 Bell XV-3 

 

Figure 1.7: Bell XV-3 in hovering near ground 

In the 50s the concepts of tilt-rotor and tilt-wing were explored, leading to the birth 

of the U.S. Army and U.S. Air Force Convertiplane Program. The first prototype, 

developed by Bell Helicopter Company, was the XV-3 tilt-rotor which represented 

the first step in demonstrating the capabilities and potential of this type of 
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configuration. After several iterations, the final prototype featured a pair of rotors 

mounted on the wingtips that could rotate to perform the conversion from helicopter 

to airplane. The wingtips were of conventional design and allowed for stability both 

in hover and in straight flight. The controls in the cabin remain similar to those of a 

helicopter even if there are some convertiplane models with the throttle lever 

instead of the collective one. The controls are mixed independently during the 

conversion to switch transparently to the pilot from one flight mode to another.  

1.2.3 Bell XV-15  

In order to make the tilt-rotor configuration finally usable for military or commercial 

purposes, in the early 1970s, a joint program between the U.S. Army and NASA 

developed the XV-15 model produced by Bell Helicopter Textron. This represented a 

significant evolution with respect to the previous XV-3 thanks to a different shape in 

the nacelles, an innovative transmission with herringbone gears and above all a more 

powerful gas turbine propeller. In addition, a flight control system (SCAS) was 

integrated to solve the problems of manoeuvrability and stability.  

 

Figure 1.8: Bell XV-15 in hovering near ground 

To reduce the loss of performance in stationary flight caused by the downward force 

due to the rotor wake on the wing, the flaps can be lowered to three pre-sets 

deflection positions. At the same time, the ailerons can also be deflected downwa rd 

when the flaps are set, although the displacement is limited to two-thirds of the flap 

position. Such surfaces are called flaperons and are activated at high speed.  

One of the major issues lies in the mathematical modelling of the aerodynamics of 

the rotors and their interaction with the underlying wing. 

The development of a reliable model would require a lot of onerous experimental 

tests. Therefore, the model was developed based on the accessible evidence of the 
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XV-15 and taking advantage of the generic model for tilt-rotors described by 

Ferguson S. W. in “A Mathematical Model for Real Time Flight Simulation of a Generic 

Tilt-Rotor Aircraft” [4]. 

1.3 Tilt-Rotors - Military and Civil developments 

Nowadays, the characteristics of Tilt-Rotors have led to various solutions for 

commercial and military use. As always in the aviation industry, innovation starts in 

the military field, because a less proven configuration is associated with a higher risk 

in operations and often not socially tolerable except in the military field.  

For this reason, the Bell V-22 Osprey and Bell V-280 aircraft are currently 

operational for the military field, deriving from the legacy of experimental tests 

conducted on the XV-15. Also worth mentioning is the AgustaWestland AW609 

aircraft produced by the Italian company Leonardo S.p.A. for civil use.  

1.3.1 V-22 Osprey 

 

Figure 1.9: Bell V22 Osprey in airplane mode [3] 

The Bell V-22 Osprey (Figure 1.9) is a tiltrotor aircraft, manufactured by Boeing and 

Bell Helicopter Textron, and used by the US Army and Navy primarily for troop 

transport. In addition, as a multi-role aircraft, it can conduct air assault, special 

operations during night or in critical conditions, carrier onboard delivery, 

evacuation and recovery operations and VIP transport. Regardless of its purpose, the 

Tilt-Rotor is widely used due to its 860 nm range and 266 kts speed, which are 

superior to those of a conventional helicopter. 
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Figure 1.10: MV-22 and CH-46 Combat Radius Comparison [5] 

Figure 1.7 compares the flight radius of the MV-22 to that of legacy CH-46. The MV-

22 proved very advantageous for transporting people and cargo during missions in 

Iraq. Its advantages consisted of greater speed and range than legacy helicopters. In 

addition, due to its ability to fly at very high altitudes, it was possible to avoid small 

arms fire during missions.  “According to users and troop commanders of the MV-22, 

its speed and range 'cut the battlefield in half', expanding the coverage of the battlef ield 

with less resource use and allowing it to do two to three times as much as legacy 

helicopters could in the same flight time.”  [5] 

1.3.2 Bell V-280 Valor 

Bell V-280, shown in Fig. 1.8, is a Tilt-Rotor developed by Bell Helicopter Textron 

and Lockheed Martin.  

 

Figure 1.11: Bell V-280 in airplane mode (wiki) 
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Its name derives from the fact that it is designed for a cruising speed of 280 knots. In 

addition, it can reach a maximum speed of 300 knots, a range of 2,100 nautical miles, 

and an effective combat radius of 500-800 nmi. The maximum expected take-off 

weight is approximately 30,000 pounds (14,000 kg). Unlike the previous V-22 Osprey 

tiltrotor, the engines remain in place while the rotors and drive shafts tilt. A drive 

shaft runs across the straight wing, allowing both propeller rotors to be driven by a 

single engine in the event of engine loss. The V-280 will have retractable landing 

gear, a three-redundant fly-by-wire control system and a V-tail configuration. The 

aircraft's production costs, and weight are reduced by using a carbon-fibre 

reinforced polymer composite material for the wing construction.  The V-280 will 

have a crew of four and will be able to carry up to 14 troops. 

1.3.3 AgustaWestland AW609 

The AW609 is a Tilt-Rotor capable of making vertical landings, unlike conventional 

fixed-wing aircraft, allowing the type to serve locations such as heliports or very 

small airports, while possessing twice the speed and range of any available 

helicopter.   

 

Figure 1.12: AgustaWestland AW609 in airplane mode [6] 

The AW609 appears to be outwardly similar to the military-oriented V-22 Osprey; 

however, the two aircraft share few components. Unlike the V-22, the AW609 has a 

pressurised cabin with soundproofing to increase passenger comfort. Access to the 

cabin is via a two-piece, 89 cm wide clamshell door set into the centre of the fuselage 

under the wings. 

When flying in airplane mode, as can be seen in Fig. 1.9, most of the lift is 

produced by the AW609's wings, which are slightly angled forward. Both the wings 

and the main fuselage are made largely of composite materials. The wings are 34 ft 

long and are equipped with flaperon control surfaces, which are normally controlled 

automatically. In vertical flight, the flaperons drop to a 66-degree angle downwards 

to reduce the area of the wing affected by downwash from the thrusters. A rudderless 

vertical stabiliser is mounted at the rear of the fuselage to stabilise flight in airplane 



1.4 Electric Tilt-Rotors 

15 

mode. The AW609 has been designed to develop full transport/class 1 performance 

to operate safely even in single engine flight conditions. It is equipped with an anti -

icing system and must be certified to fly in known icing conditions. The avionics 

include a three-redundancy digital fly-by-wire flight control system, a head-up 

display system, and Full Authority Digital Engine Controls (FADEC).  

1.4 Electric Tilt-Rotors 

One of the challenges today is to reduce environmental pollution and to transfer 

goods, people, and information more quickly. Due to their operational flexibility, tilt-

rotors are certainly a good option. Therefore, the need to develop fully electrically 

powered aircraft has arisen. An increasing number of aerospace companies are 

investing time and resources in developing new fully electric tilt -wing and tilt-rotor 

concepts. The best-known tilt-rotor, developed by Airbus, is the A3 Vahana (Fig. 

1.10), an all-electric, self-piloted tilt-wing, the design of which began in 2016. In 

2018, thanks to flight tests, its major merits, such as quietness, time savings, 

autonomy, and absence of emissions, were evaluated. 

 

Figure 1.13: A3 Vahana in airplane mode 
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Mathematical Model 

The study and validation of the mathematical model have not been conducted by the 

author and is not the main purpose of this thesis. Therefore, they are reproposed 

from the work previously performed. 

A mathematical background is however necessary to better understand the 

dynamics that drives the motion of the aircraft and to continue the implementation 

of the model on a real-time platform with hardware controls. The mathematical 

model is thus based on the theory in [4], which describes how to generate a Generic 

Model FOR Real-Time Tilt-Rotor Simulation (GTRS), even though it was initially 

developed by NASA for the development of the XV-15.  

2.1 Tilt-Rotor model 

The mathematical model of the aircraft considers various elements that enable it to 

adequately represent the mechanics of flight.  

 

Figure 2.1: XV15 Tilt-Rotor Model Structure 
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The model starts with the evaluation of command inputs and controls stabilization 

by an integrated SCAS system, and then moves on to flight dynamics which depends 

on the response of the actuators that move the controls. The physics then takes into 

account Aerodynamics, Rotor and Engine Thrust, Landing Gear, but also 

Environmental Conditions. Then the contributions of forces and moments are 

summed together to integrate the equations of motion over time and evaluate the 

evolution of the aircraft's instantaneous state. The last step is to communicate the 

state and thus the current conditions with the simulation environment for on-screen 

display. 

The simplified structure is shown in Figure 2.1, in which can be observed the 

main activities that the model carries out to get from the input to the animation of 

the aircraft. 

2.1.1 Inputs 

Flight commands are issued through USB peripherals, which then communicate axis 

positions and button presses with digital data (more information in Sect. 3.4). 

These commands are then normalised to interface with the flight commands of the 

XV-15, as the model bases its calculations on the movement of the controls in inches 

(more information in Sect. 3.3). 

2.1.2 Flight Control Computer – FCC 

The flight control computer consists of two main systems, the SCAS and the Collective 

Governor.   

• The SCAS system allows the roll, pitch, and yaw rates to be stopped once the 

flight controls are released and increases the stability of the system. The 

angular rates in the system are first filtered with a washout, which selects only 

those rates not imposed by the pilot, and then produces a command that 

stabilises the aircraft and adds to the pilot's commands. 

• The Collective Governor, on the other hand, is a system that adjusts the 

collective pitch to maintain a constant number of revolutions depending on 

the deflection angle of the nacelles. Compensation gain is either proportional  

or integral. 

2.1.3 Actuators 

The hydraulic or electric actuators are very complex systems that can introduce in 

the physics of the problem of the strong non-linearities to be taken into account 

often. For a simulator of this type these systems are modelled with very simple 
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transfer functions, because an accurate description of them is beyond the scope of 

the project and clashes with the need for real-time execution. 

• Hydraulic actuators for flight controls always represent a system that needs 

to be properly modelled in an aircraft, because they can induce non-negligible 

delays in the control loops of both the pilot and the stabilization systems. With 

this in mind, a first-order transfer function has been introduced to account for 

the delay.  

• Engines also have a dynamic, although the number of revolutions is almost 

always constant, however the dynamics introduces a delay in the response of 

the collective or throttle command. It is also modelled as a first-order system 

that does not introduce a lot of unnecessary numerical complexity.  

• The Nacelles Actuators have a certain actuation speed that is fundamental for 

the correct simulation of the tiltrotor. In a tiltrotor in fact the nacelles 

command becomes a primary command to move longitudinally and therefore 

a delay in its actuation is critical. It is modelled with a constant actuation 

speed.  

• The Swashplate is that device which allows to translate the pilot's inputs into 

cyclic or collective blade variations by means of a mechanic present on the 

rotor. Their implementation is provided in the helicopter flight mode and is 

essential for maintaining position in hover. This implementation is also 

modelled with a first-order transfer function. 

2.1.4 Physics 

The physical model of the aircraft consists of evaluating and calculating all the force 

and momentum contributions and adding them together to find the resultant to be 

integrated into the equations of motion. As shown in Figure 2.2, the major 

contributions are: 

• Gravity: must obviously be considered and is treated as a constant force that 

depends on the weight of the medium and rotated according to the Euler 

angles of the aircraft. 

• Engines: produce force and momentum because they are turboprops, so part 

of the thrust is produced by the exhaust. 

• Rotors: both rotors, according to the conditions of the swashplate, of aircraft 

movement and of the environment, produce a variable force and moment 

which is fundamental for maintaining position and attitude in helicopter 

mode. A complex mathematical model based on the blade element theory 

coupled with the Pitt-Peters theory for the computation of the inflow, allows 

to evaluate forces and moments. 
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• Aerodynamics: is a very complex part of the model that allows the evaluation 

of forces and moments due to 4 main effects: fuselage,  vertical stabilizer, 

horizontal stabilizer and wing pylons interaction with rotors inflow and air 

stream. 

• Landing gear: for the landing gear it is necessary to consider the effect of 

aerodynamic resistance that it produces in movement, but also the interaction 

with the ground. The landing gear also provides damping due to the relative 

compression with dissipation of the landing gear stem and the friction they 

produce with the ground. In addition, depending on the pressure of the brakes, 

the longitudinal resistant force on the ground varies. 

• Environment: based on the aircraft position and user modifiable parameters, 

the environment model calculates parameters such as air density, sound speed 

and wind that affect all the forces and moments described above.  

 

Figure 2.2: Mathematical Model complete Structure [7] 
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2.1.5 Equations of Motion – EoM 

The equations of motion are equations derived from the balance of forces and 

momentums to calculate linear and angular accelerations. Based on the increments 

of accelerations, the model integrates the velocities and thus the displacements or 

rotations that the aircraft performs over time. The rotations are evaluated with 

respect to the body reference of the aircraft (see Sect. 2.2), but then they must be 

transferred and rotated for the calculation of the variations of the Euler angles useful 

for the simulation. 

2.1.6 Data Exchange 

The last part of the Tilt-Rotor Model is the exchange of the calculated data with the 

simulation environment (more info at Par. 3.1.4 and Par. 3.2.5). Simulink in fact is 

only a software of physical simulation, and the visual representation of the numerical 

results can be executed with the integration of add-on for Simulink or from external 

software. The communication happens usually with protocols that concur the 

transmission between more applications in simple and standardized way (more info 

at Sect. 2.4). 

2.2 Reference systems 

From the model, instantaneous forces and moments are calculated by individually 

summing the total contributions of each subsystem that produces them.  It is critical 

to be able to report the calculated forces and moments in a single aircraft reference 

system. This is done by using different reference systems [8] that are more suitable 

depending on the subsystem and then transferring them to the aircraft reference. 

The main ones are: 

• To allow the evaluation of translational, rotational speeds and Euler’s angles 

a reference system for aircraft body must be defined as in Figure 2.3. 

 

Figure 2.3: Aircraft Body Reference System 
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• The choice of rotor model is very important since the wake of the rotors 

impacts the wing producing an important aerodynamic effect. The rotor model 

used was developed at ZHAW in the work described in [7] and uses the 

reference system shown in Figure 2.4. 

 

Figure 2.4: Rotor Axes System 

• To allow the calculation of moments, a reference system for geometric 

distances must be defined, as in Figure 2.5. 

 

Figure 2.5: Geometric Reference System 

• The reference system of the aerodynamic part to allow the use of the data 

present in [4].  
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2.2.1 Geodesy and Coordinate Systems 

Geodesy is a branch of mathematics that deals with the shape and area of the Earth.  

It’s necessary to use an accurate model of Earth’s shape, rotation, and gravity in 

order to simulate high-speed flight over large areas of Earth’s surface.  

Meridional cross sections of Earth are approximately elliptical, and the polar 

radius of Earth is about 21 km less than the equatorial radius, so the solid figure 

generated by rotating an appropriately scaled ellipse about its minor axis will 

provide a model of Earth’s shape. 

The mostly widely used model in the world is the WGS (World Geodetic System), 

that is a standard for cartography, geodesy, and satellite navigation including GPS. 

This model defines an Earth reference system centred in the Earth’s centre of mass 

(derived from satellite orbits), the x and y axes on the equator plane and the z axes 

pointing the north. The gravitation is defined with the Earth Gravitational Model 

(EGM), associated with the World Magnetic Model (WMM). 

 

Figure 2.6: The Geoid definitions  

The geoid (Figure 2.6) is defined as the equipotential surface of gravity field 

which coincides with the undisturbed mean sea level extending continuously below 

the land surface. The irregular shape of the Earth causes the mass distribution to be 

uneven, thus the Plumb-Bob define an angle, called deflection of local vertical, with 

normal to the spheroid. 

The geoide is approximated in the WGS model with a spherical harmonics series 

of multiple degrees depending on different version of the model (the last WGS 1984 

uses 2160 harmonics). 
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Figure 2.7: Oblate spheroidal model of the Earth 

The Earth shape is an oblate spheroid, thus an ellipsoid obtained by rotating an 

ellipse about one its principal axes, in this case the z axis (Figure 2.7). The spheroid 

equation is so defined as: 

 
𝑥2 + 𝑦2

𝑎2
+

𝑧2

𝑏2
= 1 (2.1) 

With 𝑎 the semimajor axis and 𝑏 the semiminor axes of the generating ellipse. Two 

other fundamental parameters to describe the Earth shape and its reference system 

are its flattening, f, which accounts the oblateness at the poles of the spheroid, and 

the eccentricity, e, which accounts the deviation of the generating ellipse from a 

circumference. 

The WGS-84 (stands for 1984) defines these values to generate the Earth 

Spheroid based on the least-squares best fit. a and f are defined from the model, 

instead b and e are derived: 

 

𝑎 = 6 378 137.0 𝑚 

𝑓 =
𝑎 − 𝑏

𝑎
= 1 −

𝑏

𝑎
=

1

298.257 223 563
 

𝑏 = 6 356 752 𝑚 

𝑒 =
(𝑎2 − 𝑏2)

1
2

𝑎
= 0.0818 191 908 426 

(2.2) 

To complete the WGS-84 reference frame are necessary two additional parameters 

related to the Earth: the Earth’s gravitational constant, 𝐺𝑀 𝑜𝑟 𝜇⊕ (mass times the 

universal gravitational constant), and the angular rotational speed, 𝜔𝐸: 

 

 

𝐺𝑀 = 3 986 004.418 ∙ 108 𝑚3/𝑠2 

𝜔𝐸 = 7.292 115 ∙ 10−5 𝑟𝑎𝑑/𝑠 

(2.3) 
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where the angular speed is also defined as sidereal rate of rotation, so the speed 

relative to the fixed stars.  

2.2.2 Latitude and Longitude 

The reference frames used typically are the Earth and an inertial frame centred in 

the Earth’s centre of mass, considered as a fixed point. Several polar and Cartesian 

coordinate systems could be defined in the frames, where the equatorial plane and 

the spin axis of the planet are used for reference. 

 

Figure 2.8: ECI and ECEF reference systems [9]  

The two main reference systems based on these frames and shown in Figure 2.8 are: 

• Earth-centred inertial (ECI), with the origin the Earth’s centre of mass, the z 

axis as the spin axis and the x axis parallel to the line linking the Sun and the 

Earth. 

• Earth-centred Earth-Fixed (ECEF), with the origin the Earth’s centre of mass, 

the z axis as the spin axis and the x axis passing through the Greenwich 

Meridian. 

To define the position of a point P on the spheroid, as shown in Figure 2.6, it’s 

necessary to define the Terrestrial longitude, ℓ, and the celestial longitude, λ, which 

differ from the reference system chosen. The relation between the two is: 

 𝜆 − 𝜆0 = 𝑙 − 𝑙0 + 𝜔𝐸𝑡 (2.4) 

with 𝜆0 and ℓ0 the values at 𝑡 = 0. Moreover the Latitude angles, Ψ, does not suffer 

from this difference, because the equatorial plane remains with a good 

approximation the same during time, and is positive in the Northern Hemisphere. 
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2.2.3 Geocentric and Geodetic coordinates 

 

Figure 2.9: Geodetic coordinates of a Point 

Looking at Figure 2.9, it’s clear that at a latitude different from 0, the angle between 

the normal to the spheroid with the equatorial plane is different from Latitude. For 

these two coordinates could be defined for the same point P: 

• Geocentric Coordinates, referenced to the ECI/ECEF system and defined by: 

 Geocentric latitude of P, Ψ 

 Geocentric radius of P, 𝑟 

• Geodetic Coordinates, referenced to the normal to the spheroid form point P, 

is used for maps and navigation: 

 Geodetic latitude, the angle of the normal with the equatorial plane, 𝜙 

 Geodetic height: the height above the spheroid, along the normal, ℎ 

The triangle composed by the line linking P and the Earth’s centre of mass and the 

normal to the spheroid surface relates the geocentric latitude and geodetic latitude 

with the formula: 

 𝜙 = Ψ + 𝐷 (2.5) 

With the small D angle that varies from 0 to 11.5 arc-min when the latitude is 45° 

and is called deviation from the normal. 
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2.2.4 North-East-Down reference system 

 

Figure 2.10: NED and ECEF reference system  

The local tangent plane system (LTP) is a geographical coordinate system based on 

the tangent plane defined by the local normal direction and the Earth’s spin axis. It 

is composed with three coordinates: the position on the North axis along the 

meridian; the position on the East axis, along the parallel; the vertical position, which 

is usually pointed towards down in the aerospace field, the same direction of the z 

body axis. 

2.2.5 Earth’s radii of curvature 

The radius of curvature in differential geometry is, for a curve, equal to the radius of 

the circular arc which best approximates the curve at that point, the osculating circle. 

The concept can be extended to a surface in which the radius of curvature is the 

radius of the osculating circle that best fits a normal section or a combination of 

sections. 

In the Earth’s spheroidal model, two radii of curvature should be defined to 

estimate distances and speeds over the real Earth starting from a NED reference 

system. 

• Meridian radius of curvature, 𝑅𝑀 or M, is the radius of curvature in a meridian 

plane that relates the increments in geodetic latitude starting from North-

South distances. It clearly depends on the shape of the spheroid, in terms of 

axes length a and b, eccentricity e, and flattening f, and on the geodetic latitude 

𝜙. Applying the differential geometry to the ellipse equation: 

 𝑅𝑀 =
𝑎(1 − 𝑒2)

(1 − 𝑒2 𝑠𝑖𝑛2 𝜙)
3
2

,
𝑏2

𝑎
≤ 𝑀 ≤

𝑎2

𝑏
  (2.6) 

 

 

 

     

    

  

    

    

    

 

 



2.2 Reference systems 

27 

The arc length travelled by an airplane could be evaluated integrating the 

radius of curvature respect to angle, but the integral can not be found in a 

closed form in this case. It’s much easier to use spherical triangles to 

approximate the distances. 

The Meridian radius remains useful to evaluate the velocity component 

directed to North, 𝑣𝑛 at a geodetic height h, starting from the geodetic latitude 

rate, �̇�: 

 𝑣𝑛 = (𝑀 + ℎ) �̇� (2.7) 

• Prime vertical radius of curvature, 𝑅𝑁 or N, is the radius of curvature in a 

perpendicular plane to the meridian plane and containing the prime vertical, 

that relates the increments in longitude starting from East-West distances 

along a parallel. It depends on the shape of the spheroid, in terms of axis length 

a, but not b, eccentricity e, and on the geodetic latitude 𝜙, which determines 

the dimension of the parallel. Applying the differential geometry to the ellipse 

equation: 

 𝑅𝑁 =
𝑎

(1 − 𝑒2 sin2 𝜙)
1
2

, 𝑎 ≤ 𝑁 ≤
𝑎2

𝑏
 (2.8) 

As for the meridian radius of curvature, also the prime vertical radius of 

curvature is useful to evaluate the East component of the velocity, while the 

arc of parallel travelled should be integrated with osculating spherical 

triangle: 

 𝑣𝐸 = (𝑁 + ℎ) cos(𝜙) ℓ̇ (2.9) 

2.2.6 Flat Earth to LLA reference transformation 

Having defined the reference systems, it is clear that the displacements of the aircraft 

are evaluated in a flat Earth reference system. The equations, therefore, work by 

understanding the aircraft as being in flat space, but a simulation environment needs 

longitude, latitude, and altitude data to place the aircraft model in the Earth 

environment. 

The position is defined from the equation of motion in terms of the position vector 

𝒑 = [𝑥, 𝑦, ℎ]𝑇 . First, a rotation from the flat Earth reference system to the NED system 

must be followed with the following rotation matrix: 

 [
𝑁
𝐸
𝐷

] = [
cos(𝛹) − sin(𝛹) 0
sin(𝛹) cos(𝛹) 0

0 0 −1

] [
𝑥
𝑦
ℎ

]

𝐹𝑙𝑎𝑡

 (2.10) 
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where Ψ is the angle in degrees clockwise between the x-axis and north axes of the 

NED system. 

Small changes in the North and East positions could be used to approximate small 

changes in longitude and latitude as follows: 

 
𝑑𝜙 = atan (

1

𝑅𝑀
) 𝑑𝑁 

𝑑ℓ = atan (
1

𝑅𝑁 cos(𝜙)
) 𝑑𝐸 

(2.11) 

The output latitude and longitude are simply evaluated as the initial value summed 

to the small changes: 

 
𝜙 = 𝜙0 + 𝑑𝜙 
ℓ = ℓ0 + 𝑑ℓ 

(2.12) 

The altitude is directly related to the Down distance where only the sign has to be 

changed: 

 ℎ = −𝐷 = 𝑝𝑧 (2.13) 

2.3 Solving Differential Equations 

The Laplace transform is an integral transform that converts a function of real time 

𝑡 ≥ 0, to a function of a complex variable 𝑠 = 𝜎 + 𝑗𝜔: 

 ℒ{𝑓}(𝑠) = 𝐹(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
+∞

0

 (2.14) 

The transform exists if the 𝑓 function is locally integrable on the interval [0, +∞). 

Laplace transform finds many applications in engineering and science because it 

provides a convenient aid in the analysis and resolution of ordinary differential 

equations (ODE) with constant coefficients as Eq. (2.15). 

 𝑎1𝑥(𝑡) + 𝑎2𝑥′(𝑡) + 𝑎3𝑥′′(𝑡) + ⋯ + 𝑎𝑛𝑥(𝑛)(𝑡) = ℎ(𝑡) (2.15) 

2.3.1 Laplace Transform Properties 

The Laplace transform has important properties that allow it to solve differential 

equations: 

1. Linearity, which leads to the superposition of effects: 
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ℒ[𝐶 ∙ 𝑓(𝑡)] = 𝐶 ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡

∞

0

= 𝐶 ∙ 𝐹(𝑠) 

 ℒ[𝑓1(𝑡) + 𝑓2(𝑡)] = ℒ[𝑓1(𝑡)] + ℒ[𝑓2(𝑡)] 

(2.16) 

2. Transform of integral: 

 ℒ {∫ 𝑓(𝑡)𝑑𝑡
∞

0

} =
1

𝑠
ℒ{𝑓(𝑡)} (2.17) 

3. Transform of derivatives, which is fundamental to resolve ODEs: 

 ℒ{𝑓′(𝑡)} = 𝑠𝐹(𝑠) − 𝑓(𝑡 = 0) (2.18) 

These two properties can be used to transform an ordinary differential 

equation as follows (with initial conditions equal to 0): 

 
ℒ {𝑎

𝑑2𝑥

𝑑𝑡2
+ 𝑏

𝑑𝑥

𝑑𝑡
+ 𝑐𝑥} = ℒ{ℎ(𝑡)} 

𝑠2 𝑎 𝑥(𝑠) + 𝑏 𝑠 𝑥(𝑠) + 𝑐 𝑥(𝑠) = ℎ(𝑠) 

(2.19) 

At this point the differential equation can be resolved as an algebraic equation: 

 𝑥(𝑠) =
ℎ(𝑠)

𝑎𝑠2 + 𝑏𝑠 + 𝑐
 (2.20) 

𝑥(𝑠)/ℎ(𝑠) is also called the transfer function of the system examined. 

 

Figure 2.11: Relationship between the time domain and the frequency domain 

To return to the time domain from the Laplace domain (Figure 2.11), the 

inverse Laplace transform operation can be applied: 

 𝑓(𝑡) = ℒ−1{𝐹(𝑠)}(𝑡) =
1

2𝜋𝑖
lim

𝑇→∞
∫ 𝑒𝑠𝑡𝐹(𝑠)𝑑𝑠

𝛾+𝑖𝑇

𝛾−𝑖𝑇

 (2.21) 
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where the integration is often difficult to achieve. If the ODE has constant 

coefficients, the complex function 𝐹(𝑠) is a rational function 𝑁(𝑠)/𝐷(𝑠), where 

𝑁(𝑠) and 𝐷(𝑠) are polynomials, and the function 𝐹(𝑠) can be written as the 

sum of rational functions, called partial functions, as visible in Eq. (2.22). 

 𝐹(𝑠) =
𝑁(𝑠)

𝐷(𝑠)
=

∏ (𝑠 − 𝑧𝑖)
𝑛
𝑘=1

∏ (𝑠 − 𝑝𝑖)
𝑛
𝑘=1

 (2.22) 

Where 𝑧𝑖  and 𝑝𝑖  are the roots respectively of 𝑁(𝑠)  and 𝐷(𝑠) . If the 𝐹(𝑠) 

function is descriptable as above, the Heaviside expansion formula could be 

used to return to the time domain. Supposing that 𝑁(𝑠) has degree less than 

that of 𝐷(𝑠), 𝑄(𝑠) has n distinct roots 𝑝𝑘, 𝑘 = 1,2,3, … , 𝑛, then: 

ℒ−1 {
𝑁(𝑠)

𝐷(𝑠)
} = 𝑓(𝑡) = ∑ [

𝑁(𝑠)

𝐷(𝑠)
𝑠(𝑝𝑖)]

𝑠=𝑝𝑖

𝑒𝑝𝑖𝑡

𝑛

𝑘−1

  

4. Initial value theorem 

 lim
𝑡→0

𝑓(𝑡) = lim
𝑠→∞

𝑠𝐹(𝑠) (2.23) 

5. Final value theorem 

 lim
𝑡→∞

𝑓(𝑡) = lim
𝑠→0

𝑠𝐹(𝑠) (2.24) 

2.3.2 Laplace and steady-state 

The Laplace transform also provides information on the steady-state condition of a 

system. The steady state of a system given by 𝑓(𝑠) is defined by 𝑠𝑓(𝑠) when 𝑠 tends 

to zero. If the system is described with an ODE or a set of ODE differential equations 

with constant coefficients, if all the roots of D(s), the poles, are negative, the system 

is stable and the final value is a constant, as in the example that follows: 

 𝑓(𝑡) = 1 − 𝑒−𝑝𝑡, 𝑓(𝑡) = 1 𝑎𝑠 𝑡 → ∞ (2.25) 

In other words, from the analysis of the final value of transfer function, an insight of 

the steady state system can be studied, without passing from the inverse transform. 

Each physic system could be modelled as a steady-state system, meaning that the 

coefficients of the ODE equations are constant, and it’s called a Linear Time Invariant 

(LTI) system. 

This approach is valid and can be applied by linearizing the model of the physical 

system around an equilibrium point. In any chosen point the derivates coefficients 

could be treat as constant and the Laplace theory remains valid.  
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The state vector, 𝒙 ∈ ℝ𝑛 , is the instantaneous state of the system, while the 

command vector, 𝒖 ∈ ℝ𝑚, provides inputs to the system (in an airplane model could 

be the pilot commands). The output to be analysed is the vector 𝒚 ∈ ℝ𝑙 . 

To study the evolution of the system in the time domain, the derivates of the 

vector 𝒙 can be find through a set of matrices as follows: 

 {

�̇�(𝑡) = 𝐴𝒙(𝑡) + 𝐵𝒖(𝑡)

𝒚(𝑡) = 𝐶𝒙(𝑡) + 𝐷𝒖(𝑡)

𝒙(0) = 0

,
𝐴 ∈ 𝑅𝑛 𝑥 𝑛 𝐵 ∈ ℝ𝑛 𝑥 𝑚

𝐶 ∈ ℝ𝑙 𝑥 𝑛 𝐷 ∈ ℝ𝑙 𝑥 𝑚  (2.26) 

Where D is typical the null matrix for a mechanical system. Applying the Laplace 

transform to the Equations (2.26: 

 

𝑠 ∙ 𝒙(𝑠) = 𝐴𝒙(𝑠) + 𝐵𝒖(𝑠) 

𝒙(𝑠) ∙ [𝑠 − 𝐴] = 𝐵𝒖(𝑠) 

𝒙(𝑠) = [𝑠 − 𝐴]−1𝐵𝒖(𝑠) 

(2.27) 

The output 𝒚 is then: 

 
𝒚(𝑠) = 𝐶[𝑠 − 𝐴]−1𝐵𝒖(𝑠) + 𝐷𝒖(𝑠) 

𝒚(𝑠) = {𝐶[𝑠 − 𝐴]−1𝐵 + 𝐷}𝒖(𝑠) 
(2.28) 

The equations system is so resolvable with a bunch of matrix operations to find the 

state vector derivates that can be integrated for small step in time. So, starting from 

a state, 𝑥𝑘, the next state, 𝑥𝑘+1, can be evaluated from the derivates, �̇�𝑘, if they are 

multiplicated for a small step of time 𝑑𝑡 using different methods (Euler, Heun, Runge-

Kutta, etc.). The simplest but still useful one is the explicit Euler method described 

in the following equation: 

 𝑥𝑘+1 = 𝑥𝑘 + �̇�𝑘 ∙ 𝑑𝑡 (2.29) 

2.3.3 Z-transform 

When dealing with linear systems, Laplace theory can be applied because the domain 

of variation of a real system is considered continuous. For digital systems, such as 

that of a simulator that reproduces a physical system. A digital system, such as that 

of a computer that implements simulators, works in steps in a discrete time domain. 

The frequency with which the digital system executes instructions is called the 

sample rate. This type of implementation can lead in a real-time system to aliasing 

and latency phenomena that can lead to instability and numerical problems.  

Aliasing is an effect that causes different signals to become indistinguishable 

when sampled. It could generate distortion, visual artifacts or, in general, numerical 

instabilities.  
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The Laplace transform is no longer adequate to describe digital systems, so to 

analyse systems governed by continuous laws but described by digital systems that 

apply sampling to the relations, the z-transform is used. 

 

Figure 2.12: A continuous function f(t) and its sampling f(k) [10] 

The z-transform is the mathematical tool for the analysis of linear discrete systems. 

It plays the same role for discrete time systems that the Laplace transform does for 

continuous time systems and is defined as follows: 

 𝑍{𝑓(𝑘)} = 𝐹(𝑧) = ∑ 𝑓(𝑘)𝑧−𝑘
∞

𝑘=0
 (2.30) 

where 𝑓(𝑘) the sampled function of f(t), as shown in Figure 2.12, and 𝑘 = 0,1,2, … 

refers to the discrete sample times 𝑡0, 𝑡1, 𝑡2, …. The Laplace transform of derivates 

(Eq. (2.18)) property is similar with the z-transform: 

 𝑍{𝑓(𝑘 − 1)} = 𝑧−1𝐹(𝑧) (2.31) 

 

Figure 2.13: Tustin method – trapezoidal integration [10] 

As described in [1] and [10], an alternative approach to digitization is the Tustin’s 

method, that treats the problem as one of numerical integration.  Supposing to have 

an input function f(s) and an output function y(s) in the Laplace domain that: 

 
𝑦(𝑠)

𝑓(𝑠)
=

1

𝑠
 (2.32) 

where 1/𝑠 is an integration as shown in Eq. (2.17). Hence: 
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 𝑦(𝑘𝑇) = ∫ 𝑓(𝑡)𝑑𝑡
𝑘𝑇−𝑇

0

+ ∫ 𝑓(𝑡)𝑑𝑡
𝑘𝑇

𝑘𝑇−𝑇

 (2.33) 

where T is the sample time period of the digital system. The integral could be 

rewritten as: 

 𝑦(𝑘𝑇) = 𝑦(𝑘𝑇 − 𝑇) + 𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑓(𝑡) 𝑜𝑣𝑒𝑟 𝑙𝑎𝑠𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑇 (2.34) 

At each step the trapezoidal integration can be used, as shown in Figure 2.13, to 

approximate the f(t) with a straight line between two samples divided by a sample 

period T. Rewriting 𝑦(𝑘𝑇)  as 𝑦(𝑘)  and 𝑦(𝑘𝑇 − 𝑇)  as 𝑦(𝑘 − 1) , the Equation (2.34) 

converts to: 

 𝑦(𝑘) = 𝑦(𝑘 − 1) +
𝑇

2
[𝑓(𝑘 − 1) + 𝑓(𝑘)] (2.35) 

 applying the z-transform: 

 
𝑦(𝑧)

𝑓(𝑧)
=

𝑇

2
(

1 + 𝑧−1

1 − 𝑧−1
) =

1

2
𝑇

(
1 − 𝑧−1

1 + 𝑧−1)
 (2.36) 

it means that the Laplace variable 𝑠 can be transferred to the zeta domain as: 

 𝑠 =
2

𝑇
(

1 − 𝑧−1

1 + 𝑧−1
) (2.37) 

With this method all the transfer function in the Laplace domain can be easily 

transformed to transfer functions in zeta domain. 

This formulation also requires initial conditions for 𝑦𝑘  at the time 𝑡 = 0 , but the 

methodo does not requires a numerical integration method, because it’s already 

based on the past values of the variable 𝑦, but a special care has to be spent on the 

choice of the sampling interval T, to avoid aliasing phenomena. 

2.4 Communication Protocols 

 

Figure 2.14: Simulator architectures nodes 

As shown in Figure 2.14 a typical flight simulator architecture contains one or more 

logical units performing different operations that contribute to the simulation. 
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Information must thus be exchanged from one to several points in the architecture 

which form the so-called nodes of the communication network. 

To guarantee deterministic transfers in a network in real time, all nodes must 

respect a protocol, that is, the set of rules to which all nodes in the network adhere.  

If the protocol is followed, it transmits only one node at a time, avoiding collisions 

and ensuring that the delays incurred in the transfer depend only on the 

characteristics of the bus. 

2.4.1 UDP – Universal Datagram Protocol  

UDP provides a simple method of node addressing based on the Internet Protocol 

(IP) address. Each node in the network is assigned a unique IP address of the form 

a.b.c.d where a, b, c and d denote a value in the range 0-255.  

For a dedicated real-time system, the use of IP addresses is important. Nodes on 

the network are likely to be addressed in some logical way in the simulator 

algorithms. It is necessary to map between the IP addresses assigned to the network 

nodes and the logical addresses used in the simulation. However, if the designer of 

the simulator can allocate the IP addresses, they can be assigned numerical values 

corresponding to the logical addresses. Most operating systems allow static 

allocation of node IP addresses. A node can inspect the IP address of an incoming 

packet and effectively route the packet to the appropriate software that requests the 

specific packet. Of course, this convention assumes a dedicated network, specific to 

a real-time application. 

UDP is a connectionless Transport protocol, meaning that no connection has to 

be established between the sending and the receiving segment. The data packets in 

the UDP protocol are processed and sent to the network as soon as any application 

request it This approach does not include an error checking and correction and 

avoids any communication congestion. On the other hand, e.g. Transmission Control 

Protocol (TCP) protocol needs a direct link between the source and destination hosts, 

and the packet are resent until the source host has been acknowledged by the 

destination of the receipt of the segment, without taking into account the time 

needed for the operation. 

For there reasons, the UDP connection is preferable in time-sensitive 

applications, where the data packets dropping is better than the delay generated by 

the protocol transmission. 

So in real-time application UDP transfers are often used for several advantages: 

• Speed: The bandwidth overhead (excess time spent in computation, memory, 

networking etc.) is reduced compared to a connection-oriented protocol such 

as TCP 
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• Implementation: The interface between application software and operating 

systems are often standardized and the implementation is straightforward 

2.4.2 UDP Packet structure 

The UDP packet structure is composed by 2 main parts: the header and the data 

section. The header consists of 4 fields with a size of 2 bytes each (16 bits).  The 

checksum and the source fields are optional. 

 

Figure 2.15: UDP Packet structure 

• Source port number identifies the sender’s port number in an IP format 

(a.b.c.d) 

• Destination port number identifies the receiver’s port number and is always 

required for the transfer. 

• Length specifies the size in bytes of the UDP header and UDP data, whereas 

the minimum size is 8 bytes or 64 bits (just the size of the header if no data 

are sent), and the maximum size is 8 bytes + 65.527 bytes, almost 64 kB. 

• Checksum is a field that may be used for error-checking of the header and data 
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Simulation Environment 

and Architecture 

The main purpose of the work is presented in the remaining chapters, in which an 

attempt is made to link the previously described mathematical model, which 

represents the flight dynamics, including the dynamics of actuators and engines, the 

stabilization logic of the SCAS system, with the actual simulation environment.  This 

allows, first of all, to visualize the dynamics in a simple and intuitive way, but also to 

verify the response, thanks to the commands given by the pilot with the connected 

hardware. 

 

Figure 3.1: Software architecture 

As it is predictable the software part remains the most delicate for a simulator with 

a didactic and research purpose. All the model of simulation is based on a code made 

on blocks and produced with the language Simulink® and MATLAB®, that simplify 

the writing and reading, guaranteeing at the same time the optimal performances  in 

execution. 

Simulink is only a numerical calculator on which, therefore, the data of attitude and 

position of the aircraft are evaluated, also in answer to the supplied commands. In 
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order to realize the simulator in a complete form, it is necessary to have additional 

software that is able to visualize on screen this information in a virtual environment 

that reproduces the aircraft object and the surrounding terrain, according to the 

instantaneous position in the globe. 

3.1 FlightGear 

The software identified as the flight environment is FlightGear, a full-featured, open-

source and cross-platform flight simulator, designed also for research purposes like 

this one [11]. 

The simulator allows to reproduce the terrestrial environment including terrain, 

airports, cities, vegetation, all over the globe and to reproduce the aircraft in 3D with 

its attitude and position provided by Simulink, but also to reproduce sounds and 

movements of moving parts and engines. 

3.1.1 Aircraft Reproduction 

 

Figure 3.2: FlightGear running screenshot 

To display a realistic aircraft with the appropriate animations and sounds, has been 

chosen to start with an aircraft already available in the official FlightGear database. 

The aircraft in question is the Boeing V-22 Osprey, which was provided under the 

GNU GPL licence by Mr. Baranger E. 

The necessary modifications were then applied to disable the flight mechanics 

that used the open-source physical simulator JSBSim, in order to use the physical 

model based on Simulink. 
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Various changes were also made to the animations, sound and to make it compatible 

with the new communication protocol between Simulink and FlightGear. The result 

is an aircraft very similar to the XV-15 with the same flight controls and dynamics. 

 

Figure 3.3: Aircraft Instrumentation 

In order to be aware of the condition of the aircraft and to check the flight status, a 

Primary Flight Display (Figure 3.3) has been added, with the following instruments: 

• Artificial Horizon • RPM gauge 

• Compass • Nacelles Position Gauge 

• Altimeter • Flaps Position Indicator 

• Vertical Speed Indicator • Gear Position Indicator 

• CAS Speed Indicator •  

 

Figure 3.4: Nacelles angle gauge texture 
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Each instrument on board must be designed with a CAD software that can then export 

the 3D model in ".ac" format. The most suitable free software is Blender, an open-

source program that allows editing of 3D files. Subsequently it must be set up a 

texture (Figure 3.4) in “.rgb” format to the model and to connect a property (a 

variable) of the simulator with the animation of rotation or translation of the 3D 

object, like visible in the code in Figure 3.5. 

 
1 <PropertyList> 
2  
3     <path>NAC.ac</path> 
4      
5     <animation> 
6         <type>material</type> 
7         <object-name>NACneedle</object-name> 
8         <object-name>NACface</object-name> 
9         <emission> 
10             <red>1</red> 
11             <green>1</green> 
12             <blue>1</blue> 
13         </emission> 
14     </animation> 
15      
16     <animation> 
17         <type>rotate</type> 
18         <object-name>NACneedle</object-name> 
19         <property>/surface-positions/tilt</property> 
20         <interpolation> 
21             <entry><ind>-5</ind><dep>-25</dep></entry> 
22             <entry><ind>0</ind><dep>0</dep></entry> 
23             <entry><ind>5</ind><dep>24.25</dep></entry> 
24             <entry><ind>20</ind><dep>48.5</dep></entry> 
25             <entry><ind>50</ind><dep>72.75</dep></entry> 
26             <entry><ind>75</ind><dep>97</dep></entry> 
27             <entry><ind>90</ind><dep>121.25</dep></entry> 
28         </interpolation> 
29         <axis> 
30             <x>-1.0</x> 
31         </axis> 
32     </animation> 
33  
34 </PropertyList> 

 

Figure 3.5: Nacelles gauge XML code 

3.1.2 TerraSync & TerraMaster 

TerraSync is a utility within FlightGear that allows automatic downloading of flight 

scenarios during simulation based on the instantaneous position of the aircraft. It 

uses an internet connection to update or obtain the environment from the FlightGear 

Scenery Database or portions of the globe can be installed in advance thanks to 

TerraMaster. The Figure 3.6 shows a graphical interface written in Java that allows 

to select and download any geographic area with some simple clicks. 
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Figure 3.6: TerraMaster interface 

3.1.3 How to launch FlightGear 

To launch FlightGear it is necessary to generate a Windows script that adds the 

appropriate arguments to the executable. The file to generate has .bat extension 

(Figure 3.7) and has the main purpose of setting the correct data transmission 

protocol, choose the aircraft model and disable the flight dynamics inside the 

simulator. 

Arguments are passed via a double dash followed by variable to set, and the most 

important ones in order are: 

• aircraft: allows to set the displayed aircraft. 

• fdm: allows to modify the flight dynamics. 

• generic: allows to set a generic transmission protocol complete with update 

frequency, IP address, port, and protocol type. The protocol described below 

in Par. 3.1.4 is set here. 
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The other topics allow to intuitively select the runway, activate TerraSync and much 

more. 

 
C: 
cd C:\Program Files\FlightGear 
 
SET FG_ROOT=C:\Program Files\FlightGear\data  
.\\bin\fgfs --aircraft=vmx22 ^ 
--fdm = null ^ 
--generic = socket,in,100,127.0.0.1,1509,udp,SimulinkProtocolBinUDP ^ 
--generic = socket,out,25,127.0.0.2,1510,udp,SimulinkProtocolBinUDP ^ 
--fog-fastest ^ 
--disable-clouds ^ 
--disable-ai-traffic ^ 
--start-date-lat = 2004:06:01:09:00:00 ^ 
--airport = LIMF ^ 
--runway = 18 ^ 
--in-air ^ 
--heading=180 ^ 
--prop:position/altitude-ft=980 ^ 
--prop:sim/current-view/view-number-raw=2 ^ 
--offset-distance = 0 ^ 
--offset-azimuth = 0 ^ 
--enable-terrasync  
--enable-fullscreen  
 
 
--disable-sound  
--enable-clock-freeze  
 

 

Figure 3.7: FlightGear Launcher Script 

3.1.4 Simulink Interface 

The interface with Simulink permits to produce a TCP/UDP protocol for the exchange 

of information regarding the position, attitude of the aircraft and all those necessary 

to the simulation environment. This can be done by creating an .xml file in the 

FlightGear\data\Protocol folder, indicating the position and type of data within the 

exchanged packet. 

As shown in Figure 3.8, the file is divided into input and output data, where first 

is defined if the data is sent in binary or text (ASCII) form, and the endianness of the 

data. Then chunks are inserted for each variable within the packet with its type and 

the variable within FlightGear that it will command. 

The <factor> word allows the input variable to be multiplied by a fixed factor 

useful for converting the units of measure if necessary.  

The input portion includes information about geographical position (longitude, 

latitude, and altitude), attitude, surface positions, engines RPM and landing gear. The 
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output portion, instead, returns to Simulink only the altitude information of the 

underlying terrain with respect to sea level, as shown in Figure A.2. 

 

 
1 <?xml version="1.0"?> 
2 <PropertyList> 
3 <generic> 

 
4 <input> 

 
5 <binary_mode>true</binary_mode> 
6 <!-- byte_order>host</byte_order --> <!-- host is default --> 

 
7 <!-- Position --> 
8 <chunk> 
9 <name>Longitude</name> 
10 <node>/position/longitude-deg</node> 
11 <type>double</type> 
12 </chunk> 

 
13 <chunk> 
14 <name>Latitude</name> 
15 <node>/position/latitude-deg</node> 
16 <type>double</type> 
17 </chunk> 

 
18 <chunk> 
19 <name>Altitude</name> 
20 <node>/position/altitude-ft</node> 
21 <factor>3.280839895</factor> <!-- converts from meters to fts --> 
22 <type>double</type> 
23 </chunk> 
  

Figure 3.8: FlightGear UDP Protocol (1) 
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3.2 Simulink 

 

Figure 3.9: Overall Simulink Model 

Simulink is the software that allows to write and to modify the code and to compile 

it, in order to execute the simulation model. It is introduced like an extension of 

MATLAB that, in a graphical way, concurs to connect the several blocks to execute 

the wished calculations. The mathematical model so produced is executed in a fast 

and intuitive way, without problems of allocation of memory or syntax. Several 

libraries are available for download that simplify the integration of different 

functions with the flight simulator.  

The mathematical model consists of a simple block that can be treated as a 

system that receives inputs and produces outputs. In this work, the key is to interpret 

its operation and add the correct systems and libraries to connect the hardware and 

the flight environment to Simulink.  

Next to the mathematical model there are the Pilot Interface block, which 

connect the hardware and therefore the commands given by the pilot to the 

mathematical model, and the FlightGear Interface block, which takes the output data 

from the model and sends it to FlightGear for display.  

An export block also saves all the data output from the model in the workspace 

to graph the results and perform diagnostic actions. 

In addition, through the functions present in Simulink, it is necessary to ensure 

that the simulation is performed in real time, i.e., code is needed to synchronize the 

simulation time with the processor clock time.  

3.2.1 Simulink Acceleration 

Acceleration is an operating mode of Simulink that allows to speed up the execution 

of the model by changing the way the code is compiled and replacing the interpreted 

code in the simulation.  



3.2 Simulink 

44 

There are 3 modes available: 

• Normal mode is the basic mode in which Simulink controls the solver and 

model methods used during the simulation, and all run in a process  (Figure 

3.10) 

 

Figure 3.10: Normal Mode processes scheme 

• Acceleration mode uses Just-in-Time (JIT) acceleration to generate an 

execution engine in memory instead of generating C code or MEX files. 

Methods in this mode are separate from Simulink and are part of the 

acceleration target code. Simulink generates an in-memory execution engine 

only for the top-level model and not for referenced models. Consequently, a C 

compiler is not required during simulation (Figure 3.11). 

 

Figure 3.11: Accelerator Mode processes scheme 

• “Rapid accelerator mode creates a Rapid Accelerator standalone executable 

from your model. This executable includes the solver and model methods, but 

it resides outside of MATLAB and Simulink. It uses external mode to 

communicate with Simulink”. This mode is designed with the aim of 

outsourcing calculation processes to external machines specialised in real -

time calculation and certified by MathWorks. (Figure 3.12) 
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Figure 3.12: Rapid Accelerator Mode processes scheme 

3.2.2 Real Time Simulation 

The first step to make the simulation executable in real time is to synchronize the 

physical simulation time with the real time measured by the processor clock.  This 

can be done in different ways through various libraries available within Simulink. 

 

Figure 3.13: CS-FSTD Specifications for Flight Simulator Training Devices [12]  

The assurance that the simulation can be defined as "Real Time" and therefore is 

performed at a realistic speed and with low latency is necessary for the correct 

interpretation of the flight dynamics by the pilot and for the accuracy of the 

simulation. The maximum latency with respect to current time is, in addition, defined 

by the CS-FSTD(A) standard which states: "Latency: the visual system, flight deck 

instruments and initial motion system response shall respond to abrupt pitch, roll and 

yaw inputs from the pilot’s position within 150 ms of the time, but not before the time, 

when the airplane would respond under the same conditions." 
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Figure 3.14: Simulation Pace Block from Aerospace Toolbox [13] 

The simplest approach may be to use the Simulation Pace block found within the 

"Aerospace Blockset" library, shown in Figure 3.14. 

The Simulation Pace block lets to run model simulation at a slower pace so that 

connected animations views can be comfortably seen and understood to observe the 

system behaviour. Visualizing simulations at a slower rate makes it easier to 

understand underlying system design, identify design issues and demonstrate near 

real-time behaviour. The results can be viewed, and the system inspected while the 

simulation is in progress. 

However, the blocking is not able to ensure a real synchronization with the 

processor clock, but simply slows down the simulation. The most correct method is 

to use the library "Simulink® Desktop Real-Time™" (SLDRT). 

3.2.3 SLDRT - Simulink® Desktop Real-Time™ 

Simulink® Desktop Real-Time™ provides a real-time kernel for running on the 

computer and a set of blocks that can connect I/O devices to generate simulations 

with hardware inputs.  

The first step is to install the Real-Time kernel that interfaces the library with 

the operating system. The kernel assigns the highest priority to the execution of the 

Simulink model, allowing it to run at the desired sample rate without interference.  

The kernel can be simply installed in the MATLAB Command Window using the 

command "sldrtkernel -install". Usage is transparent to the user and the kernel will 

run automatically if library blocks are present.  

 

Figure 3.15: Real-Time Sync Block and its Parameters 
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Real-Time Sync block 

The real-time sync block (Figure 3.15) allows to synchronize the real-time kernel 

clock with every time the block requires it. The time step to adjust the sync check is 

the sample rate, which is set to the minimum value of the model, i.e. every 0.0025 s, 

an update rate of 400 Hz. 

An important data point to consider for library blocks are Missed Ticks. Missed 

Ticks are defined as the instants of time that the model lags with respect to the clock 

time calculated by the real-time kernel. The information is useful to monitor the 

latency of the model and report it on graphs. The actual latency time in seconds is 

calculated by multiplying the Missed Ticks in the block output with the block sample 

rate. 

Input blocks 

 

Figure 3.16: Analog/Digital/Other Input blocks form SLDRT library 

To guarantee the priority in the reading of the inputs coming from the input 

hardware, the SLDRT library foresees various blocks of input and output (Figure 

3.16) that let to synchronize the reading with a sample rate of choice. This allows to 

improve the speed of answer to the commands of the simulator, guaranteeing a true 

real-time simulation. The blocks used are 3: 

• Analog Input: to read the input values for the proportional axes of the joystick 

and therefore for the roll, yaw, and pitch commands. 

• Digital Input: to read the input values of the digital commands, i.e. the buttons 

that allow to change the function of brake, flaps, landing gear and SCAS. 

• Other Input: to read the input values of the secondary controls, in this case the 

POV hat of the joystick, to move the nacelles and adjust the aircraft trim.  

For all the blocks in question it was necessary to set the update sample rate, equal to 

that of the model execution. For the Analog Input block, it is also possible to select 

the signal output mode from the 4 available: 

• Volts: returns the analogue voltage value 
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• Normalized bipolar: returns a value between -1 and +1 depending on the 

voltage 

• Normalized unipolar: returns a value between 0 and +1 depending on the 

voltage 

• Raw: returns a value between 0 and 2n-1, depending on the resolution in bits 

of the joystick  

The most useful way and the one that best interfaces with the mathematical model is 

the normalized bipolar, which allows the joystick to be used in the simulator without 

any modifications, also with a view to modularity and subsequent changes to the 

simulator regarding the hardware (Figure 3.17). 

 

Figure 3.17: Analog Input Block parameters 



3.2 Simulink 

49 

Packet Input and Packet Output blocks 

 

Figure 3.18: Packet data interface blocks from SLDRT library 

Input and output packet blocks of the SLDRT library (Figure 3.18) allow to set up a 

packet and data transfer between two nodes in a network.  

 

Figure 3.19: Packet Output and Packet Input blocks Parameters 

Through the block settings, as shown in Figure 3.19, it is possible to choose between 

different communication protocols, including Serial, TCP, UDP, CAN. As explained in 



3.2 Simulink 

50 

Par. 2.4.1, the communication protocol chosen is the UDP protocol, which is best 

suited to a real-time application such as this. 

The blocks, according to the settings provided in the mask, prepare the packet in 

terms of header and data set, and send it to the specified destination port at the set 

sample rate.  

 The size of the packet and the sequence of data to be sent via the block, their 

type, and endianness must be defined in accordance with the FlightGear software 

protocol described in Par 3.1.4. 

 

Figure 3.20: ThrustMaster USB Joystick Simulink Interface 
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3.2.4 Hardware Interface in Simulink 

In the first iteration of the simulator, to set up the simulation model and its interface 

with FlightGear, it was decided to use an inexpensive stick (ThrustMaster USB 

Joystick) for the first few starts. This made it possible to immediately generate the 

programming logic useful for managing the signals to be sent to the mathematical 

model (Figure 3.20). 

First of all, it was decided to insert a lookup table for the roll and pitch 

commands, introducing a dead band in the central position, to reduce unintentional 

commands and simplify hovering in helicopter mode. 

In addition, a control logic was introduced for the buttons, which alternates the 

ON/OFF status of the signal with each press. This is done thanks to a series of blocks 

as shown in Figure 3.22, which allow to vary the signals according to the current 

state and the previous instant of time of the model. Simulink is a non-sequential 

language and can therefore lead to algebraic loops, i.e. structures for which the 

priority of calculation execution is important but undefined [14]. 

 

Figure 3.21: “buttons to controls” function detail 

To break the loop, it was decided to introduce a delay equal to one unit of time for 

the feedback signal, obtained with integrators (1/z), as shown in Figure 3.21: 
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Figure 3.22: Algebraic Loop example in Simulink 

The MATLAB function “buttonsToControls” built into Simulink then uses this 

information to toggle the output value and finally send it to the simulation model.  

(For the code see Appendix A - Figure A.3) 

 

Figure 3.23: “POV to controls” function detail 

A similar procedure was carried out for the POV hat, on which the control of the 

nacelles and, in the first iteration, the rudder were mapped in the absence of a 

specific axis for this command. The logic is similar to that for the buttons, but since 

they are momentary commands, it is not necessary to feedback the signal output 

from the MATLAB function (Figure 3.23). 

 
1 function [PEDAL, NAC] = POVctrl(POV) 

 

2 PEDAL = 0; 

3 if POV == 90 %POV dx 

4 PEDAL = 1; 

5 elseif POV == 270 %POV sx 

6 PEDAL = -1; 

7 end 

 

8 NAC = 0; 

9 if POV == 180 %POV down 

10 NAC = 1; 
11 elseif POV == 0 %POV up 
12 NAC = -1; 
13 end 

 

14 end 
  

Figure 3.24: “POVctrl” MATLAB code 
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3.2.5 FlightGear Interface 

The interface with FlightGear within Simulink, as introduced in chapter 3.1 consists 

of two parts of code, one for receiving and one for sending data, as shown in Figure 

3.25. 

 

Figure 3.25: Flight Gear Interface in Simulink 

The signals generated by the Simulink code are sent from the packet exchange blocks 

according to the set transmission protocol. The order in which the data are sent, and 

their size must be the same as set in the protocol used in FlightGear, as shown in 

Paragraph Simulink Interface 3.1.4. 

To reproduce the correct position of the aircraft, FlightGear requires positions 

in terms of longitude, latitude, and altitude in relation to sea level. However, the 

mathematical model is independent of the geographical position and is designed as 

an offline simulator. For this reason, the output values for the position are 

displacements on the x, y, and z axes integral to the ground (insert custom fig.), which 

define the displacement from the starting point of the simulation.  

 

Figure 3.26: State Evaluation block detail 
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Therefore, it is necessary to calculate the latitude and longitude by changing from a 

Flat Earth reference system to one based on the 3D geographical position, as shown 

in Figure 3.26. 

 

Figure 3.27: Flat Earth to LLA block from Aerospace Toolbox [15] 

In the Simulink library "Aerospace Blockset" there is a block (Figure 3.27) that 

performs the operation of transforming the position coordinates from a flat model to 

the geographical position of the aircraft. As input, it receives the x, y and z signals as 

a vector and a possible offset altitude and returns the coordinates in LLA (Latitude, 

Longitude, Altitude) form that can be used directly by FlightGear (See Par 2.2.6 for 

further information). 

On the other hand, for the reception side, the only useful data for the simulation 

coming from FlightGear is the altitude of the ground below. The simulation 

environment knows this data from the position in terms of instantaneous latitude 

and longitude, from which it derives the altitude of the terrain thanks to the database 

that is constantly updated live with the TerraSync utility. 

The information is then sent back to the mathematical model, which uses it to 

translate the altitude with respect to the terrain and thus correctly calculate the 

environmental data and represent the correct interaction of the landing gear with 

the terrain. 

3.3 Flight controls 

The flight controls foreseen by the mathematical model are the standard ones of an 

airplane, with rudder, aileron, and balancer controls, which are however mixed in a 

transparent way to the pilot according to the flight mode. Moreover, there are the 

classical flaps, brakes, and landing gear, but also the more particular collective and 

nacelle position control commands. 

The controls are specialized within the model for the XV-15 aircraft, with the 

respective stroke values to be given in inches. In Table 3.1 can be read the values for 

the main input controls, while in  

Table 3.2 for secondary input controls. 
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Table 3.1: Main Controls Ranges 

Direction 
Longitudinal 

[in] 
Lateral 

[in] 
Pedal 

[in] 
Collective 

Brake 
(L, R) 

- -4.8 -4.8 -2.5 0 0 

+ +4.8 +4.8 +2.5 10 1 

 

Table 3.2: Secondary Controls Ranges 

Control Range Values 

Flap 4 positions (equispaced 0÷1) 

Parking Brake ON/OFF (Bool [0/1]) 

Landing Gear ON/OFF (Bool [0/1]) 

SCAS Switch ON/OFF (Bool [0/1]) 

3.3.1 Controls Normalization 

 

Figure 3.28: Pilot Interface Block 

To simplify the implementation of the simulator, to allow future upgrades or to 

change the control peripherals, a block was added to the Simulink code to normalize 

the command input values.  Moreover, the normal peripherals return through the 

Simulink blocks variable signals from -1 to 1 for the control axes, simplifying the 

implementation. This normalization is carried out inside the block "Pilot Interface" 

(visible in Figure 3.28) that contains all the code to produce the signals of input for 

the mathematical model of simulation (Figure 3.29).  
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Figure 3.29: Normalization block - “IP XV-15 [norm]” detail 



3.3 Flight controls 

57 

A separate discussion should be made for the throttle and engine nacelle posit ion 

controls: 

• For the throttle, the model must be provided with the RPM value required 

from the governor. In the XV-15 aircraft this command is transparent to the 

pilot and mixed with the position of the nacelles. The value therefore remains 

fixed for each position angle and varies from a value of 589 RPM when the 

rotors are vertical, up to 517 RPM in horizontal position (Figure 3.30). 

 

Figure 3.30: NAC to RPM logic 

• For the nacelles, the simulation model receives as input only a command to 

move up or down. Given the hardware configuration of the simulator, it was 

chosen, in the normalization block, to include a logic that allows the stroke to 

be divided into steps, an easier method to not be forced to hold the buttons 

down (Figure 3.31). The steps size can then be modified within the code at will 

(15° for each step is the value chosen by the author). 

With the same logic expressed in the function “buttonsToControls” (Par. 

3.2.4), the actual value requested to the actuators to move the nacelles is fed 

back to the MATLAB function “nac_IP2req”, to compare the pilot input to the 

actual position (NAC input number 2 in Figure 3.31). At the last the error 

signal is read by the function “nac_DIFF2act” to produce a movement input for 

nacelles actuators (UP or DOWN) (full code functions respectively in Figure 

A.5 and Figure A.6) 
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Figure 3.31: NAC control logic – “Stick Switches” block detail 
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Figure 3.32: Simulink Primary Flight Display (PFD) Block detail 

In the Pilot Interface Block there is also a block that integrates a simple Primary 

Flight Display useful for displaying basic flight data, for command diagnostics and 

aircraft response (Figure 3.32). 

3.4 Hardware 

The hardware is composed from a laptop on which it runs the simulation software 

and the graphical environment at the same time. Given the modest computational 

complexity of the model and the graphical environment, it has been chosen to use a 

portable workstation, more than sufficient to run everything respecting the 

requirements of latency provided by legislation for the input from hardware and the 

updating frequency of the model and the graphical environment. 

In addition to the laptop there are peripherals for the pilot to control the flight 

commands. They consist of 2 commercial hardware components: the flight stick and 

the rudder pedals. 

3.4.1 Computer 

As shown in Figure 3.33, the device on which run MATLAB and the simulation 

environment is a Dell Precision 7550 laptop. This device is a workstation with 

excellent computing power that provides the right performance to run the simulator. 
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Figure 3.33: Dell® Precision 7550 

3.4.2 Flight Stick 

The flight stick is a ThrustMaster® product that consists of a lever that controls the 

lateral and the longitudinal axes, and also has a longitudinal rotation axis that could 

be used for rudder control, which however is delegated to the pedals. There are 15 

buttons set as in the Figure 3.34 to set the positions of the undercarriage, flaps, 

longitudinal trims, position of the nacelles. At the bottom is located the collective 

lever, which allows to set the pitch of the blades, because the throttle is automatically 

managed by the governor that sets the speed of the engine based on the position of 

nacelles. 

The main axes output is visible in Figure 3.35, in which can be seen that the 

signals values follow the bipolar normalized logic explained in Par. 3.2.4. 

 

Figure 3.34: ThrustMaster® T-16000 
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Figure 3.35: Analog Input values demo 

3.4.3 Rudder Pedals 

 

Figure 3.36: CH Products Pro Pedals 

The pedals allow precise control of the yaw command, which consists of a rudder 

command or a differential cyclic command for the two rotors in helicopter mode. In 

addition, individual pedals can be pressed to generate a separate brake command 

located on the left and right landing gear. 
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Simulations and Results 

In order to validate the quality of the simulation and demonstrate the real 

truthfulness of the adjective real-time, many tests were carried out by the author, in 

which the latency in terms of execution of the activities carried out by the blocks of 

the SLDRT library was mainly evaluated.  

The investigations were carried out by graphing and evaluating the results for 

the values of "Missed Ticks" (1 Tick = 1 sample rate [s]) of  the blocks sending and 

receiving data with FlightGear and reading the hardware data. To retrieve the latency 

information in terms of seconds, it was necessary to multiply the number of Missed 

Ticks of each block by the sample rate set in the Simulink mask of that particular 

block. 

The next paragraphs then show graphs for the instantaneous latencies during the 

simulation (latency over time) and the frequency of occurrence of the latency values.  

In order for each test: 

• Attitude in time 

• 3D trajectory in time 

• Latency [ms] + Occurrences from Sync Block 

• Latency [ms] + Occurrences from UDP Receiving Block 

• Latency [ms] + Occurrences from UDP Sending Block 
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4.1 Longitudinal Translation 

 

Figure 4.1: Longitudinal Translation Test – Position in time 

 

Figure 4.2: Longitudinal Translation Test – Attitude in time 

From Figure 4.2 and Figure 4.1 it is possible to observe the manoeuvres and 

trajectories carried out in the longitudinal translation test. The test consists of a 

stationary take-off with the nacelles in a vertical position, which are then rotated to 

perform a longitudinal translation, first forwards and then backwards. Once the 

aircraft is stopped, a landing is performed with the nacelles upright near the starting 

point. 

In the figures below there are the results of the latencies and provided by the 

Simulink blocks. 
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Figure 4.3: Longitudinal Translation Test – SYNC Block Latency 

 

Figure 4.4: Longitudinal Translation Test – SYNC Block Occurrence 
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Figure 4.5: Longitudinal Translation Test – UDP rec Latency 

 

Figure 4.6: Longitudinal Translation Test – UDP rec Occurrence 
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Figure 4.7: Longitudinal Translation Test – UDP send Latency 

 

Figure 4.8: Longitudinal Translation Test – UDP send Occurrence 
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From Figure 4.3 and Figure 4.4 on the latencies of the SYNC block, it can be seen 

that in the first few seconds of simulation there are small delays due to the start of 

the simulation. After the simulation has settled down, it remains stable with some 

sporadic ticks (here equal to 2.5 ms) in the synchronization of the model with the 

processor clock.  

From Figure 4.5 and Figure 4.6 could be appreciated the delay that the UDP 

reception block presents when it is called to read the only input information, the 

altitude of the terrain. As can be seen from the simulation, this process does not 

involve any delay, and Simulink always manages to perform the operation in the 

expected sampling period.  

Finally, in Figure 4.7 and Figure 4.8 there are small delays at the beginning of the 

simulation, as already indicated for the SYNC block. Once the simulation is started, 

the delay is not zero, but 10 ms. This value corresponds to the delay induced by the 

sampling rate of 100 Hz set for the UDP send block, since the operation is performed 

at the end of the sampling period. 

4.2 Hovering Near Ground 

 

Figure 4.9: Hovering Test – Position in time  

From Figure 4.8 and Figure 4.9 it is possible to observe the manoeuvres and 

trajectories carried out in the hovering near ground test. 

The test consists of a take-off with the positions of the nacelles vertical, which 

remain so throughout the flight. The combined use of the cyclic and collective 

commands allows the position to be maintained from a few metres above the ground. 
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In this test, ground effects are more evident and complicate the computational cost, 

making the test interesting in terms of real-time maintenance. 

 

Figure 4.10: Hovering Test – Attitude in time  

In the figures below there are the results of the latencies and provided by the 

Simulink blocks. 

 

Figure 4.11: Hovering Test – SYNC Block Latency 
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Figure 4.12: Hovering Test – SYNC Block Occurrence 

 

Figure 4.13: Hovering Test – UDP rec Block Latency 
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Figure 4.14: Hovering Test – UDP rec Block Occurrence 

 

Figure 4.15: Hovering Test – UDP send Block Latency 
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Figure 4.16: Hovering Test – UDP send Block Occurrence 

The considerations for the above figures remain the same as those made in Sect. 4.1. 

This test was carried out to verify the maintenance of the simulation in real-time also 

for situations in which the computational cost of the mathematical model can be 

higher. This is because the rotors are close to the ground and the inflow evaluation 

is more complex.  

However the difficulty of added calculation does not seem to induce of the delays 

much different from the previous test, index of the fact that the simulation model has 

got an adequate computational cost to a modern portable. 

Again for the send and receive blocks (Figure 4.13 and Figure 4.15), delays are 

concentrated only at the beginning of the simulation, when Simulink has to start the 

communication via UDP protocol and FlightGear requires more resources to start the 

animation of the aircraft. 

After the brief initial transient, however restricted in a few seconds, the 

simulation proceeds without delays, if not sporadic peaks as visible in Figure 4.11, 

which can be traced to a higher computational cost due to the fast manoeuvres that 

are performed during the landing phase. 
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4.3 Take-Off + Conversion + Landing 

 

Figure 4.17: Conversion Test – Position in time 

 

Figure 4.18: Conversion Test – Attitude in time  

Figure 4.17 and Figure 4.18 show the trajectory and thus the overall flight performed 

during the test. This consists of a vertical take-off followed by a conversion to 

airplane mode by progressively turning the nacelles forward. After a turn to the right 

the aircraft returns close to the initial position to land in helicopter mode.  

In the figures below can be seen the results of the latencies and provided by the 

Simulink blocks. 
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Figure 4.19: Conversion Test – SYNC Block Latency 

 

Figure 4.20: Conversion Test – SYNC Block Occurrence 
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Figure 4.21: Conversion Test – UDP rec Block Latency 

 

Figure 4.22: Conversion Test – UDP rec Block Occurrence 
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Figure 4.23: Conversion Test – UDP send Block Latency 

 

Figure 4.24: Conversion Test – UDP send Block Occurrence 
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From Fig. 4.19 and 4.20 it is possible to observe how, after a delay due to the start of 

the simulation, the average delay is null with sporadic peaks of 2.5 ms, equal to the 

integration step. These peaks present during the simulation can have different 

triggering factors, such as system processes that run in the background and require 

higher priority resources than the real-time kernel, or the loading of the scenario 

within FlightGear by means of the TerraSync utility. The utility in fact updates the 

terrain database dynamically during the simulation, requiring system resources to 

download data via the network and save them in memory. Constant access to the 

computer's hard disk would explain the more distributed delays in the latter test 

where, being a larger flight, a larger portion of the simulation environment is 

exploited and may require intensive use of TerraSync. 

From Fig. 4.21 and 4.22 can be seen that the delay is constantly null, a sign that 

Simulink is able to read the information coming from FlightGear without problems.  

Finally, Fig. 4.22 and 4.23 show that the delay in sending the information packet 

to FlightGear is constantly 10 ms, i.e. at the end of the sampling period set in the 

block. 
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Conclusions 

5.1 Achievements 

The purpose of this thesis work was to implement the mathematical model of 

simulation, previously produced on Simulink, in an graphical environment of 

simulation that consent the interaction with the system.  

First of all the first obstacle has been to understand the operation of the 

mathematical model in its entirety, identifying the main logical connections and the 

assumptions and simplifications introduced in the models.  

Once the Simulink model was studied, the attention moved to the understanding 

of FlightGear software with regard to the XML and Nasal programming languages 

that allow its operation and the transmission protocols that consent to interface with 

the external simulation models. In addition, the use of open-source software has 

allowed the learning and understanding of the methodologies of 3D reproduction of 

a graphic environment, the use of textures applied to three-dimensional models and 

the operation of a database for the reproduction of the terrain.  

Being a real-time simulator, the main goal was to keep the latency of the 

simulation low. This has been possible thanks to the Simulink libraries correctly set 

up, that have allowed to maintain the maximum values of latency within those 

required by the normative for a certified simulator (see chapter 4).  

The completeness of the Simulink libraries combined with the versatility of the 

FlightGear simulation environment has made this possible, not without difficulties 

related to the implementation of the 3D model of the aircraft, its animations, and 

interfaces between the two software including transmission protocols.  

In conclusion the result is more than satisfactory and fulfills the main purpose of 

having a flight simulator of a tiltrotor ready to use fore the aerospace deprtment of 

Politecnico di Torino, for didactic and research purposes. 

The writing of the thesis in a difficult moment like the global COVID19 pandemic 

has limited the author's possibilities, but in spite of everything a very important 

result has been achieved from a didactic point of view. 
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5.2 Future developments 

This work provides a basis for further improvements that can be made to the 

simulation model, as it allows the Simulink code to be tested with in-the-loop pilot 

tests. In fact, performing tests with the pilot allows for standardized maneuvers and 

tests to be made, that empirically assess the validity and accuracy of the simulation, 

as well as the handling qualities and operation of the systems.  

Several improvements could also be made in FlightGear, such as the actual 

reproduction of the XV-15 aircraft with a 3D model designed ad hoc, the addition of 

a realistic instrumentation that reproduces the one actually on board the XV15, but 

also the simulation of the internal systems of the aircraft.  

As far as hardware is concerned, it would be necessary to integrate a lever 

collective control, if the aim was to better represent the XV15 aircraft operation, but 

if the simulation model remains generic for any type of tiltrotor, even a throttle 

collective control is correct for the simulator. 
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A  S O F T WA R E  C O D E  

24 <!-- Attitude --> 
25 <chunk> 
26 <name>Roll</name> 
27 <node>/orientation/roll-deg</node> 
28 <factor>57.29577951</factor> <!-- converts from radians to deg --> 
29 <type>double</type> 
30 </chunk> 

 
31 <chunk> 
32 <name>Pitch</name> 
33 <node>/orientation/pitch-deg</node> 
34 <factor>57.29577951</factor> <!-- converts from radians to deg --> 
35 <type>double</type> 
36 </chunk> 

 
37 <chunk> 
38 <name>Yaw</name> 
39 <node>/orientation/true-heading-deg</node> 
40 <factor>57.29577951</factor> <!-- converts from radians to deg --> 
41 <type>double</type> 
42 </chunk> 

 
43 <!-- Surface positions --> 
44 <chunk> 
45 <name>elevator-pos-norm</name> 
46 <node>/surface-positions/elevator-pos-norm</node> 
47 <type>double</type> 
48 </chunk> 

 
49 <chunk> 
50 <name>Flap Pos [norm -1/1]</name> 
51 <node>surface-positions/flap-pos-norm</node> 
52 <type>double</type> 
53 </chunk> 

 
54 <chunk> 
55 <name>right-aileron-pos-norm</name> 
56 <node>surface-positions/right-aileron-pos-norm</node> 
57 <type>double</type> 
58 </chunk> 

 
59 <chunk> 
60 <name>left-aileron-pos-norm</name> 
61 <node>surface-positions/left-aileron-pos-norm</node> 
62 <type>double</type> 
63 </chunk> 

 
64 <chunk> 
65 <name>rudder-pos-norm</name> 
66 <node>/surface-positions/rudder-pos-norm</node> 
67 <type>double</type> 
68 </chunk> 

 
69 <chunk> 
70 <name>Tilt</name> 
71 <node>/surface-positions/tilt</node> 
72 <type>double</type> 
73 </chunk>  

Figure A.1: FlightGear UDP Protocol (2) 
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69 <!-- Engines --> 
70 <chunk> 
71 <name>RPM</name> 
72 <node>/engines/engine[0]/rpm</node> 
73 <type>double</type> 
74 </chunk> 

 
75 <!-- Landing Gear --> 
76 <chunk> 
77 <name>Gear Position</name> 
78 <node>gear/gear[0]/position-norm</node> 
79 <type>double</type> 
80 </chunk>  

 
81 <chunk> 
82 <name>Gear compression front</name> 
83 <node>gear/gear[0]/compression-norm</node> 
84 <type>double</type> 
85 </chunk>  

 
86 <chunk> 
87 <name>Gear compression left</name> 
88 <node>gear/gear[1]/compression-norm</node> 
89 <type>double</type> 
90 </chunk>  

 
91 <chunk> 
92 <name>Gear compression right</name> 
93 <node>gear/gear[2]/compression-norm</node> 
94 <type>double</type> 
95 </chunk>  

 
96 <!-- Blade for sound --> 
97 <!-- chunk> 
98 <name>Blade flapping</name> 
99 <node>/rotor/flapping</node> 
100 <type>double</type> 
101 </chunk --> 

 
102 </input>    

 
 

103 <output> 
 

104 <binary_mode>true</binary_mode> 
105 <!-- byte_order>host</byte_order --> <!-- host is default --> 

 
106 <chunk> 
107 <name>Ground elevation [m]</name> 
108 <node>/position/ground-elev-m</node> 
109 <type>double</type> 
110 </chunk> 

 
111 </output> 

 
112 </generic> 
113 </PropertyList> 

  

Figure A.2: FlightGear UDP Protocol (3) 
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1 function [brake, flaps, lndGear, scasON] = 

buttonsToControls(buttons, brakeState, flapsState, 

lndState, scasState) 

2 % Buttons 

3 % buttons(1) - grilletto 

4 % buttons(2) - zebrato 

5 % buttons(3) - dorsale 

6 % buttons(4) - bottone destro 

 

7 % Blocks input until the button is released 

8 persistent toggleFLAPS 

9 if isempty(toggleFLAPS) 

10 toggleFLAPS = 0; 
11 end 

 

12 persistent toggleGEAR 
13 if isempty(toggleGEAR) 
14 toggleGEAR = 0; 
15 end 

 

16 persistent toggleSCAS 
17 if isempty(toggleSCAS) 
18 toggleSCAS = 0; 
19 end 

 

20 %Use this if brake is ON/OFF 
21 % brake = brakeState; 
22 % if(buttons(1) == 1 && toggleBRAKE == 0) 
23 %     if brakeState == 1 
24 %         brake = 0; 
25 %     elseif brakeState == 0 
26 %         brake = 1; 
27 %     end 
28 %     toggleBRAKE = 1; 
29 % end 

 

30 %Use this if brake has to kept pressed 
31 if(buttons(1) == 1) 
32 brake = 1; 
33 else 
34 brake = 0; 
35 end  

Figure A.3: “buttonsToControls” MATLAB code (1) 
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36 flaps = flapsState; 
37 if(buttons(4) == 1 && toggleFLAPS == 0) 
38 flaps = flapsState + 0.2; 
39 toggleFLAPS = 1; 
40 end 
41 if flaps > 1 
42 flaps = 0; 
43 end 

 

44 lndGear = lndState; 
45 if (buttons(2) == 1 && toggleGEAR == 0) 
46 if lndState == 1 

i. lndGear = 0; 

47 elseif lndState == 0 
i. lndGear = 1; 

48 end 
49 toggleGEAR = 1; 
50 end 

 

51 scasON = scasState; 
52 if (buttons(3) == 1 && toggleSCAS == 0) 
53 if scasState == 1 

i. scasON = 0; 

54 elseif scasState == 0 
i. scasON = 1; 

55 end 
56 toggleSCAS = 1; 
57 end 

 

58 if buttons(4) == 0 
59 toggleFLAPS = 0;  
60 end 
61 if buttons(2) == 0 
62 toggleGEAR = 0;  
63 end 
64 if buttons(3) == 0 
65 toggleSCAS = 0;  
66 end 

 

67 end 

  

Figure A.4: “buttonsToControls” MATLAB code (2) 
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1 function NAC_req = nac_IP2req(NAC_IP, NAC_fb) 

 

2 persistent toggle 

3 if isempty(toggle) 

4 toggle = 0; 

5 end 

 

6 NAC_req = NAC_fb; 

7 if (NAC_IP == 1 && toggle==0) %NAC_IP up 

8 NAC_req = NAC_fb + Par.FlightGear.NACstepLength; % +15; 

9 toggle = 1; 

10 elseif (NAC_IP == -1 && toggle==0 && NAC_fb == 95) %NAC_IP down 

from 95 

11 NAC_req = NAC_fb - 5; 

12 toggle = 1; 

13 elseif (NAC_IP == -1 && toggle==0) %NAC_IP down 

14 NAC_req = NAC_fb - Par.FlightGear.NACstepLength; % -15; 

15 toggle = 1; 

16 end 

 

17 if (NAC_IP ~= 1 && NAC_IP ~= -1) 

18 toggle = 0; 

19 end 

 

20 if NAC_req < 0 

21 NAC_req = 0; 

22 elseif NAC_req > 95 

23 NAC_req = 95; 

24 end 

 

25 end 

  

Figure A.5: NAC input angle request function 

 
1 function [CHUP, CHDN] = nac_DIFF2act(NAC_diff) 

 

2 res = 0.1; 

3 if NAC_diff < -res 

4 CHUP = 1; 

5 CHDN = 0; 

6 elseif NAC_diff > res 

7 CHUP = 0; 

8 CHDN = 1; 

9 else 

10 CHUP = 0; 
11 CHDN = 0; 
12 end 

 

 

Figure A.6: NAC difference to actuators signal function 
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