
Politecnico di Torino

Department of Mechanical and Aerospace Engineering

Master’s Degree Thesis in Aerospace Engineering

Integration of a Tilt-Rotor

Flight Simulation

Platform

Supervisors
Giorgio Guglieri
Federico Barra

Candidate
Federico Veronese

A.A. 2020-2021

To my mother, for the affection

To my father, for the passion

To Ambra, for the love

A mia madre, per l’affetto

A mio padre, per la passione

Ad Ambra, per l’amore

III

A B S T R A C T

The main purpose of this thesis was to implement the real-time simulation model of

the Bell Aircraft Corporation XV-15 aircraft to give a face to the mathematical model

describing the flight mechanics of the tilt-rotor. The mathematical model has been

developed thanks to several thesis works carried out at the Politecnico di Torino in

collaboration with the ZHAW University located in Winterthur, Switzerland, and

includes simplified mathematical models for the aerodynamics of the whole aircraft,

rotors, and engine dynamics.

The author's task was therefore to take the model in question and make it work

with a graphic environment that reproduces the aircraft following the commands

given by the pilot. The visualisation environment chosen is FlightGear, an open -

source and cross-platform software that is widely used in research for its

characteristics.

The simulator is therefore made up of a portable workstation running the

simulation model, written in MATLAB/Simulink® language, and a hardware input

consisting of a USB flight stick and a pedal board. The hardware then communicates

with the Simulink software, which evaluates the status of the aircraft, including

position and attitude, but also including the rotational speed of the rotors, the

position of the moving surfaces and the status of the landing gears, which are sent to

the FlightGear environment, that reproduces an animated 3D version of the aircraft.

The FlightGear simulation environment also has the task of reproducing a

simplified view of the portion of planet Earth on which the aircraft is located,

including aerial infrastructures but also vegetation and various obstacles.

Fundamental work was then to synchronise the processor clock with that of the

physical simulation to make the model truly real-time, thanks to the use of the

Simulink® Desktop Real-Time™ library and special cares in the use of the software

to speed up the simulation.

IV

C O N T E N T S

Abstract III

 Introduction 1

1.1 Flight Simulators 1

1.1.1 Purposes of Flight Simulators 4

1.1.2 The importance of Flight Simulators 5

1.1.3 Flight Simulator Standards 6

1.1.4 Real-Time simulation 7

1.2 Tilt-Rotors 8

1.2.1 Growing interest in Tilt-Rotors 9

1.2.2 Bell XV-3 10

1.2.3 Bell XV-15 11

1.3 Tilt-Rotors - Military and Civil developments 12

1.3.1 V-22 Osprey 12

1.3.2 Bell V-280 Valor 13

1.3.3 AgustaWestland AW609 14

1.4 Electric Tilt-Rotors 15

 Mathematical Model 16

2.1 Tilt-Rotor model 16

2.1.1 Inputs 17

2.1.2 Flight Control Computer – FCC 17

2.1.3 Actuators 17

2.1.4 Physics 18

2.1.5 Equations of Motion – EoM 20

2.1.6 Data Exchange 20

2.2 Reference systems 20

2.2.1 Geodesy and Coordinate Systems 22

2.2.2 Latitude and Longitude 24

2.2.3 Geocentric and Geodetic coordinates 25

V

2.2.4 North-East-Down reference system 26

2.2.5 Earth’s radii of curvature 26

2.2.6 Flat Earth to LLA reference transformation 27

2.3 Solving Differential Equations 28

2.3.1 Laplace Transform Properties 28

2.3.2 Laplace and steady-state 30

2.3.3 Z-transform 31

2.4 Communication Protocols 33

2.4.1 UDP – Universal Datagram Protocol 34

2.4.2 UDP Packet structure 35

 Simulation Environment and Architecture 36

3.1 FlightGear 37

3.1.1 Aircraft Reproduction 37

3.1.2 TerraSync & TerraMaster 39

3.1.3 How to launch FlightGear 40

3.1.4 Simulink Interface 41

3.2 Simulink 43

3.2.1 Simulink Acceleration 43

3.2.2 Real Time Simulation 45

3.2.3 SLDRT - Simulink® Desktop Real-Time™ 46

Real-Time Sync block 47

Input blocks 47

Packet Input and Packet Output blocks 49

3.2.4 Hardware Interface in Simulink 51

3.2.5 FlightGear Interface 53

3.3 Flight controls 54

3.3.1 Controls Normalization 55

3.4 Hardware 59

3.4.1 Computer 59

3.4.2 Flight Stick 60

3.4.3 Rudder Pedals 61

 Simulations and Results 62

4.1 Longitudinal Translation 63

VI

4.2 Hovering Near Ground 67

4.3 Take-Off + Conversion + Landing 72

 Conclusions 77

5.1 Achievements 77

5.2 Future developments 77

List of Figures 84

List of Tables 86

Bibliography 87

1

Introduction

1.1 Flight Simulators

Flight simulators are devices that allows to reproduce a virtual environment, in

which an aircraft is reproduced according to the mathematical equations that govern

the dynamics of flight, the dynamics of on-board systems, but also meteorology and

much more.

Fig. 1.1 shows the main components of a flight simulator. The equations of

motion are the most important part of all flight simulators. Their function is to

determine the states of the simulator by taking all inputs, including pilot controls,

winds, aerodynamic terms, and engine terms to calculate the variables that represent

the state of the simulated aircraft, specifically forces, moments, attitude, altitude,

direction, and speed. The equations of motion, in most flight simulators, are updated

50 to 60 times per second.

The aerodynamic model allows aerodynamic forces and moments to be

calculated. The aerodynamic data is provided as a large database obtained from a

combination of flight tests, wind tunnel tests, and possibly computational fluid

dynamics (CFD) analysis. It will also include a large amount of validation data to

allow the simulator developer to compare the simulator's dynamics and performance

to actual aircraft data. The aerodynamic model is the most critical element of a flight

simulator: in fact, an error in modelling the aerodynamics of the aircraft can lead to

a simulation that may fail in the qualification process or be unacceptable to pilots

who have experience in this type of aircraft.

Development of the engine requires a model of the engine dynamics that will be

used in any control system design activities. The engine manufacturer will undertake

extensive testing in the development of the engine. The engine data is dependent on

the state of the aircraft; implementation of the engine model requires access to

variables calculated in the flight model.

1.1 Flight Simulators

2

Figure 1.1: Organization of a Flight Simulator [1]

The inputs can provide discrete data (0 or 1) or analogue data. They must be

sampled, converted to an appropriate value, and passed to the simulator module.

When dealing with many inputs, there are multiple processors dedicated to the

data acquisition function. In the case of analogue data, the data acquisition software

is responsible for minimizing any delay in data acquisition, ensuring that the data

resolution is as high as possible, and that any conditioning or filtering of the data

signal is properly applied.

An additional model is usually provided for ground handling to include the

effects of the tires and undercarriage assembly, which are responsible for different

dynamics than the aircraft in flight. In practice, there are additional state transitions,

just before take-off and just after landing, where the aerodynamic contribution to

motion is combined with the dynamics of the undercarriage assembly.

Aircraft performance is, of course, affected by the atmosphere. In fact, equations

are implemented to calculate air pressure, air density, and air temperature. Wind

influences both navigation and aircraft handling, for example, in crosswind or

1.1 Flight Simulators

3

turbulence landings. The wind model must be three-dimensional and time varying as

it plays an important role in flight planning. The model must account for pressure

fronts, altitude, and position. An alternative approach is to use wind data acquired

from agencies that monitor global wind currents.

The visual system provides a series of real-time image channels viewed from the

position of the pilot's eye. A database is loaded into the memory of the visual system,

which may contain fields, airfields, roads, lakes, coastlines, vehicles, buildings, trees,

forests, vegetation, and aircraft. Each object is reduced to coloured polygons (usually

triangles), defined in the database coordinate system. As the aircraft manoeuvres,

the position and orientation of the pilot's eye are computed in the equations of

motion and the scene is rendered at each frame (typically 60 Hz). There is a delay

between the acquisition of a new eye position and the pilot seeing the projected

image. It is called visual latency and must be kept to a minimum but can extend to

three or four frames.

Noisy environments are present in aircraft, such as the cockpit or flight deck. In

addition, other noises from the engine, subsystems, wake, actuators, or alarms are

present. Although sounds are provided in a simulator to increase fidelity, they are

also important cues and should be consistent with the sounds heard in an aircraft.

Some sounds, such as airspeed or engine revolutions per minute (RPM), vary with

flight conditions, while other sounds provide a consistent tone. Usually, a separate

sound system is provided that takes input from other modules.

As the simulated aircraft is maneuvered, the pilot expects to feel the

accelerations that would be experienced in real flight. The accelerations are

calculated in the flight model and are passed to the motion system. For the standard

motion platform that includes six linear hydraulic actuators, each actuator is moved

to a new position to try to replicate the accelerations on the pilot's body. The motion

system contains computers to derive the actuation equations to move the platform

to the desired position, along with filters to optimize the platform trajectory and

provide appropriate motion for the pilot's balance sensors. However, motion

evaluation is a very important aspect of simulator qualification and is controlled for

critical phases of flight, particularly take-off, landing, and engine failures.

When an aircraft flies, the wake that passes over the control surfaces changes the

primary flight controls: the elevator, aileron, and rudder control surfaces. To account

for these effects, control loading is used, provided by attaching actuators to the flight

controls in the simulator so that the actuator provides resistance to motion, typically

varying with airspeed. The control load is also an important part of simulator

qualification. With both hydraulic and electrical control load systems, the trimming

function is simply implemented as an offset of the null datum for the zero-load

position.

Civilian and military aircraft take advantage of electronic flight instruments,

known as EFIS displays, based on computer graphics with 8 in. ruggedized monitors,

1.1 Flight Simulators

4

typically with the displays refreshing at least 20 times per second (20 Hz). The

graphics hardware in the display has a very fast drawing speed to support the frame

rate and includes anti-aliasing algorithms to smooth out any jagged lines or edges as

characters and lines are rendered.

A significant part of flight training involves navigation training. Flight simulation

offers two advantages: first, an in-flight navigation exercise consumes fuel, and

second, navigation errors in training can be dangerous. Consequently, simulators

provide varying degrees of navigation skills.

The simulator should be checked regularly to ensure that it is operating within

limits. In fact, for qualified simulators, the operator must keep records of all

scheduled and unscheduled maintenance and repeat diagnostic tests to confirm that

the simulator's characteristics have not changed significantly after any maintenance

procedures.

1.1.1 Purposes of Flight Simulators

Figure 1.2: Main purposes of flight simulators

Interest in the development and construction of modern flight simulators is driven

by several purposes:

• Pilot Training: modern flight simulators have become a fundamental part of

pilot and cockpit crew training.

• Research: flight simulators can also be used for research purposes, to produce

the mathematical models or to validate them, providing an experimental

result without preparing physical tests of the system.

• Games: aviation has always aroused a lot of interest from pilots for

recreational purposes, for this reason the market has always presented an

F
li

gh
t

si
m

u
la

to
rs

In flight

Flying qualities

Variable stability

On ground

On-line

Pilot and Crew
Training

Airlines

Military

IndustryResearch

Games

Off-line Research

1.1 Flight Simulators

5

offer of video games that produce a millionaire turnover for the companies

Tilt-Rotors concept of operations.

• In the case of “In flight” simulators, a simulator is placed on a real aircraft to

understand the operation of the control system.

1.1.2 The importance of Flight Simulators

Figure 1.3: Main Advantages of flight simulators

• Simulators on an industrial level are useful as they ensure safety for training.

In addition, they are essential for certifying aircraft and verifying the envelope

diagram in a more realistic manner and prior to flight test, and thus verifying

the feasibility of the manoeuvre.

• Flying a simulator compared to a real aircraft is, of course, less expensive.

• There are no problems in the operating ranges. It is possible also to explore

unforeseen cases in order to understand, for example, the dynamics of an

accident.

• They are very important from an environmental point of view for flight tests

to reduce the number of pilot flight hours.

There are project and training simulators. The former does not operate in real time

and are used for engineering. They use complex calculation tools based on very

complex data and can take structure elasticities into account. A correlation is created

between the simulation model and the engineering model to understand how to vary

the mathematical simulation model and reapply it to the physical project.

Interdisciplinary models are used that cannot be used for real-time simulators

because the computers are too slow, even if the fidelity is very high. Thus, real -time

simulator models are simpler parametric models derived from statistics that do not

follow the real physical model, but faithfully reproduce the dynamics useful for

training.

Military training uses simulators at different levels, from flight familiarisation to

combat. Simulators focus on military risks and tend to recreate conditions that are

1.1 Flight Simulators

6

not even easily reproducible during training. These trainers are based on a synthetic

scenario in which there are also other infrastructures, military dynamics, even

hostile ones (radar, enemies, etc.), and the pilot is trained in combat and

countermeasures for survival. In civil training, the full flight simulator is often used

for airliners, but training for PPL is also done on the simulator, which has proved to

be very valid. There are also maintenance training aircrafts that are even in VR. They

allow to learn maintenance procedures consistently (not force actions) and to direct

information giving warnings. In the environment there can also be a virtual

instructor who may not be physically present. It is also useful for safety because

there can be risks for the maintainer even during training. These environments

remove the risk and allow the maintainer to become familiar with the procedures.

1.1.3 Flight Simulator Standards

Standards and normative references are also important for flight simulation. At the

beginning of simulation development, standards were imposed by the manufacturers

of flight simulators. The reproducibility of the simulators was low because there was

no standard. Simulators were bought by companies in good faith thinking that the

manufacturer could produce a sensible simulator. This made it difficult to think of

using simulators for systematic training or skills validation, so flight experience was

always required and in fact subjective considerations were made that lacked

normative validation of the simulator.

At the beginning of the 1970s, the possibility of standardisation bodies began to

arise with manufacturers to standardise the methods for the design of training

simulators, and companies immediately joined in through IATA because they

understood the usefulness. A technical committee was set up to lay the foundations

for the development of standards and they joined forces.

In 1995, the ICAO, which is a third party with respect to certification and

companies, produced a technical manual for flight simulators that is still used today.

This manual led to the creation of working groups within FAA and EASA that

implemented the ICAO guidelines. EASA calls it CS-FSTD (Flight Simulation Training

Device) declined in Aircraft and Helicopters and contains all the simulation

specifications that the designer must follow for certification. In Italy, ENAC follows

these standards and enforces them.

The simulator must be certified via software and hardware. The software must

also be recognized by regulatory bodies to be certified for training; the hardware

must be consistent with the requirements and the flight controls must be compatible

with the aircraft to be simulated. Their combination must also be validated.

In the civilian sector, no one certifies a simulator except for the training of

pilots. The Full Flight Simulator is the best case and allows to train the pilot in

accelerations. The motion system is not consistent with the dynamics in flight

1.1 Flight Simulators

7

because, if it were consistent with the angular excursions and linear accelerations,

enormous excursions would be needed. What is admitted as feedback is the

transitory part of the dynamics that the pilot perceives during the flight. FFS can also

be used to maintain the license, such as EASA which requires minimum hours to

maintain the rating.

Flight Training Devices (FTD) and Flight Navigation Procedures Trainers

(FNPT) differ in motion feedback since FFS has motion system. The commercial pilot

can use the FTD and FNPT for some training, but the validation of the pilot rating is

done only in the FFS. The FTDs have a cockpit equal to the real aircraft, but the visual

system is simpler and allows the use of cheaper technological solutions. FNPT has an

open cockpit and with simplified and reduced controls, not equal to the real aircraft.

There is a lower category, called Basic Instrument Training Devices (BITD),

which is used for instrumental training and to give the pilot the opportunity to

familiarize himself with the instruments and the cockpit.

Integrated Procedures Trainers (IPT) is an anomalous training simulator in

which the flight dynamics disappear and the pilot flies with the instruments and does

not receive visual or sensory perceptions. These tools are important to familiarize

with the procedures connected to them and detached from the perceptions of

piloting. This is to train pilots and gain confidence in air traffic management.

1.1.4 Real-Time simulation

In normal everyday life, everything seems to be continuous and instantaneous.

Computation is a very different world in which a computer executes the instructions

of a given program. Each of these instructions requires a finite number of machine

cycles, and each of these cycles is synchronized to the speed of the processor. In other

words, for a given computer, a small snippet of code may take several microseconds

to execute. What the operating system does is discretize time, in very small-time

steps, such that a seemingly instantaneous and continuous response is guaranteed.

Exactly the same situation occurs in flight simulation, where the position of the

stick is sampled, the elevator deflection is calculated, a new pitch attitude is

calculated, and an image is displayed by the visual system with the new pitch

attitude, allowing the pilot to correct the attitude of the aircraft. The important point

is that the overall time for this calculation must be short enough so that it appears

instantaneous to the pilot. In a modern simulator, these calculations must be

completed within 1/50th of a second or 20 ms.

1.2 Tilt-Rotors

8

Figure 1.4: Real-Time frames [1]

This concept is illustrated in Figure 1.4, which represents 10 frames of a simulation.

The arrow for each frame shows the proportion of the frame used in the simulation

calculation. If the frame time is small enough, say 1/50th of a second, and if the

computation in each frame never exceeds the frame time, then the simulation is in

real time.

A real-time simulation requires a fast computer, but all calculations must be

completed within the time limit, unlike a fast simulation where the only metric is

overall time. The operating system must guarantee execution of the simulation task

every frame and never introduce delays that cause the simulation task to exceed its

frame limit. Ensuring real-time performance, especially for the worst conditions, is

an essential part of system validation and acceptance testing. [1]

1.2 Tilt-Rotors

Since the beginning of aviation, due to technological and engineering limitations,

aircraft were divided into those that and those that require movement itself to

generate lift, and those which can maintain stationary flight, which at first were the

lighter-than-air aircraft, and then helicopters,

Both configurations have always been used simultaneously to exploit the most of

their peculiarities.

• Aircrafts: thanks to innovations in aircraft design, manufacture and

operation, aircraft today can achieve ever higher cruise speeds, range, cruise

altitude and payload capacity. However, at low speeds there are significant

stability, control, and performance issues for fixed-wing aircraft. The latter

over time has been exploited for its improved top speed characteristic. For

these reasons, given the commercial interest in developing fast aircraft that

could cover great distances, the minimum speed has also been progressively

increased. This has led to an increase in the space required for aircraft take-

off and landing and, therefore, a reduced ability of aircraft to integrate with

civil transport in densely populated areas. It follows that airports are located

quite far from urban centres, thus reducing the time gain offered by air

1.2 Tilt-Rotors

9

transport compared to other means such as rail and road that are more easily

integrated into the urban fabric.

• Helicopters: helicopters have emerged as a solution particularly suitable for

a wide variety of missions, both civil and military, thanks to their low- speed

performance and their ability to take off and land vertically. In fact, traditional

airplanes are hardly able to complete missions such as: search and rescue,

surveying large areas, supporting troops and police forces, point-to-point

transportation in isolated sites or difficult environments, aerial work, and

many others. However, helicopters suffer from severe limitations on their

maximum speed, range, altitude, and achievable payload capacity. This, along

with the fuel consumption and noise and vibration levels typical of these

machines, negatively impacts their productivity.

The aerospace industry has always tried to combine the two worlds to create a new

type of aircraft that could travel at high speed with large payloads over long

distances, arriving at successful hybrid configurations.

Figure 1.5: XV-22 Osprey in different Flying Modes [2]

• helicopter mode allows to generate lift with vertically oriented rotors and then

perform Vertical Take-Off and Landing (VTOL) and hovering like a helicopter

• airplane mode, on the other hand, allows to produce lift from the wing, using

thrust to overcome drag. This is done by rotating the engine nacelles by means

of actuators, which direct the rotors towards the bow of the aircraft.

1.2.1 Growing interest in Tilt-Rotors

In the category of V/STOL aircraft, which seek to minimize take-off distance while

maintaining the typical characteristics of a fixed-wing aircraft, the most promising

configuration that the industry is focusing on is tilt-rotor.

1.2 Tilt-Rotors

10

Its success is dictated by the ability to take off vertically as a traditional helicopter

would, then rotate the propulsion system and perform an airplane mode conversion.

This allows to cover great distances and therefore to have a great operative range

while preserving the peculiar characteristics of the helicopter.

Figure 1.6: Range Comparison Between Bell 525 and Boeing V-22 [3]

Despite efforts, the tilt-rotor configuration does not come without problems that

limit its performance. Right from the start, the biggest issue for this type of aircraft

was in-flight stability and manoeuvrability, as well as the ability to perform flight

mode conversion. In addition, the mechanical complexity of the tilt-rotor design

greatly increases operational and maintenance costs, reducing its employability.

1.2.2 Bell XV-3

Figure 1.7: Bell XV-3 in hovering near ground

In the 50s the concepts of tilt-rotor and tilt-wing were explored, leading to the birth

of the U.S. Army and U.S. Air Force Convertiplane Program. The first prototype,

developed by Bell Helicopter Company, was the XV-3 tilt-rotor which represented

the first step in demonstrating the capabilities and potential of this type of

1.2 Tilt-Rotors

11

configuration. After several iterations, the final prototype featured a pair of rotors

mounted on the wingtips that could rotate to perform the conversion from helicopter

to airplane. The wingtips were of conventional design and allowed for stability both

in hover and in straight flight. The controls in the cabin remain similar to those of a

helicopter even if there are some convertiplane models with the throttle lever

instead of the collective one. The controls are mixed independently during the

conversion to switch transparently to the pilot from one flight mode to another.

1.2.3 Bell XV-15

In order to make the tilt-rotor configuration finally usable for military or commercial

purposes, in the early 1970s, a joint program between the U.S. Army and NASA

developed the XV-15 model produced by Bell Helicopter Textron. This represented a

significant evolution with respect to the previous XV-3 thanks to a different shape in

the nacelles, an innovative transmission with herringbone gears and above all a more

powerful gas turbine propeller. In addition, a flight control system (SCAS) was

integrated to solve the problems of manoeuvrability and stability.

Figure 1.8: Bell XV-15 in hovering near ground

To reduce the loss of performance in stationary flight caused by the downward force

due to the rotor wake on the wing, the flaps can be lowered to three pre-sets

deflection positions. At the same time, the ailerons can also be deflected downwa rd

when the flaps are set, although the displacement is limited to two-thirds of the flap

position. Such surfaces are called flaperons and are activated at high speed.

One of the major issues lies in the mathematical modelling of the aerodynamics of

the rotors and their interaction with the underlying wing.

The development of a reliable model would require a lot of onerous experimental

tests. Therefore, the model was developed based on the accessible evidence of the

1.3 Tilt-Rotors - Military and Civil developments

12

XV-15 and taking advantage of the generic model for tilt-rotors described by

Ferguson S. W. in “A Mathematical Model for Real Time Flight Simulation of a Generic

Tilt-Rotor Aircraft” [4].

1.3 Tilt-Rotors - Military and Civil developments

Nowadays, the characteristics of Tilt-Rotors have led to various solutions for

commercial and military use. As always in the aviation industry, innovation starts in

the military field, because a less proven configuration is associated with a higher risk

in operations and often not socially tolerable except in the military field.

For this reason, the Bell V-22 Osprey and Bell V-280 aircraft are currently

operational for the military field, deriving from the legacy of experimental tests

conducted on the XV-15. Also worth mentioning is the AgustaWestland AW609

aircraft produced by the Italian company Leonardo S.p.A. for civil use.

1.3.1 V-22 Osprey

Figure 1.9: Bell V22 Osprey in airplane mode [3]

The Bell V-22 Osprey (Figure 1.9) is a tiltrotor aircraft, manufactured by Boeing and

Bell Helicopter Textron, and used by the US Army and Navy primarily for troop

transport. In addition, as a multi-role aircraft, it can conduct air assault, special

operations during night or in critical conditions, carrier onboard delivery,

evacuation and recovery operations and VIP transport. Regardless of its purpose, the

Tilt-Rotor is widely used due to its 860 nm range and 266 kts speed, which are

superior to those of a conventional helicopter.

1.3 Tilt-Rotors - Military and Civil developments

13

Figure 1.10: MV-22 and CH-46 Combat Radius Comparison [5]

Figure 1.7 compares the flight radius of the MV-22 to that of legacy CH-46. The MV-

22 proved very advantageous for transporting people and cargo during missions in

Iraq. Its advantages consisted of greater speed and range than legacy helicopters. In

addition, due to its ability to fly at very high altitudes, it was possible to avoid small

arms fire during missions. “According to users and troop commanders of the MV-22,

its speed and range 'cut the battlefield in half', expanding the coverage of the battlef ield

with less resource use and allowing it to do two to three times as much as legacy

helicopters could in the same flight time.” [5]

1.3.2 Bell V-280 Valor

Bell V-280, shown in Fig. 1.8, is a Tilt-Rotor developed by Bell Helicopter Textron

and Lockheed Martin.

Figure 1.11: Bell V-280 in airplane mode (wiki)

1.3 Tilt-Rotors - Military and Civil developments

14

Its name derives from the fact that it is designed for a cruising speed of 280 knots. In

addition, it can reach a maximum speed of 300 knots, a range of 2,100 nautical miles,

and an effective combat radius of 500-800 nmi. The maximum expected take-off

weight is approximately 30,000 pounds (14,000 kg). Unlike the previous V-22 Osprey

tiltrotor, the engines remain in place while the rotors and drive shafts tilt. A drive

shaft runs across the straight wing, allowing both propeller rotors to be driven by a

single engine in the event of engine loss. The V-280 will have retractable landing

gear, a three-redundant fly-by-wire control system and a V-tail configuration. The

aircraft's production costs, and weight are reduced by using a carbon-fibre

reinforced polymer composite material for the wing construction. The V-280 will

have a crew of four and will be able to carry up to 14 troops.

1.3.3 AgustaWestland AW609

The AW609 is a Tilt-Rotor capable of making vertical landings, unlike conventional

fixed-wing aircraft, allowing the type to serve locations such as heliports or very

small airports, while possessing twice the speed and range of any available

helicopter.

Figure 1.12: AgustaWestland AW609 in airplane mode [6]

The AW609 appears to be outwardly similar to the military-oriented V-22 Osprey;

however, the two aircraft share few components. Unlike the V-22, the AW609 has a

pressurised cabin with soundproofing to increase passenger comfort. Access to the

cabin is via a two-piece, 89 cm wide clamshell door set into the centre of the fuselage

under the wings.

When flying in airplane mode, as can be seen in Fig. 1.9, most of the lift is

produced by the AW609's wings, which are slightly angled forward. Both the wings

and the main fuselage are made largely of composite materials. The wings are 34 ft

long and are equipped with flaperon control surfaces, which are normally controlled

automatically. In vertical flight, the flaperons drop to a 66-degree angle downwards

to reduce the area of the wing affected by downwash from the thrusters. A rudderless

vertical stabiliser is mounted at the rear of the fuselage to stabilise flight in airplane

1.4 Electric Tilt-Rotors

15

mode. The AW609 has been designed to develop full transport/class 1 performance

to operate safely even in single engine flight conditions. It is equipped with an anti -

icing system and must be certified to fly in known icing conditions. The avionics

include a three-redundancy digital fly-by-wire flight control system, a head-up

display system, and Full Authority Digital Engine Controls (FADEC).

1.4 Electric Tilt-Rotors

One of the challenges today is to reduce environmental pollution and to transfer

goods, people, and information more quickly. Due to their operational flexibility, tilt-

rotors are certainly a good option. Therefore, the need to develop fully electrically

powered aircraft has arisen. An increasing number of aerospace companies are

investing time and resources in developing new fully electric tilt -wing and tilt-rotor

concepts. The best-known tilt-rotor, developed by Airbus, is the A3 Vahana (Fig.

1.10), an all-electric, self-piloted tilt-wing, the design of which began in 2016. In

2018, thanks to flight tests, its major merits, such as quietness, time savings,

autonomy, and absence of emissions, were evaluated.

Figure 1.13: A3 Vahana in airplane mode

16

Mathematical Model

The study and validation of the mathematical model have not been conducted by the

author and is not the main purpose of this thesis. Therefore, they are reproposed

from the work previously performed.

A mathematical background is however necessary to better understand the

dynamics that drives the motion of the aircraft and to continue the implementation

of the model on a real-time platform with hardware controls. The mathematical

model is thus based on the theory in [4], which describes how to generate a Generic

Model FOR Real-Time Tilt-Rotor Simulation (GTRS), even though it was initially

developed by NASA for the development of the XV-15.

2.1 Tilt-Rotor model

The mathematical model of the aircraft considers various elements that enable it to

adequately represent the mechanics of flight.

Figure 2.1: XV15 Tilt-Rotor Model Structure

Inputs

Evaluation

Normalization

FCC

SCAS

•Controls
Filtering

•Controls
Stabilization

Governor

•RPM
stabilization

Actuators

Controls

Engines

Nacelles

Swashplate

Physics

Gravity

Jet Thrust

Rotors

Aerodynamics

Landing Gear

Environment

EoM

State
evaluation

Data
Exchange

2.1 Tilt-Rotor model

17

The model starts with the evaluation of command inputs and controls stabilization

by an integrated SCAS system, and then moves on to flight dynamics which depends

on the response of the actuators that move the controls. The physics then takes into

account Aerodynamics, Rotor and Engine Thrust, Landing Gear, but also

Environmental Conditions. Then the contributions of forces and moments are

summed together to integrate the equations of motion over time and evaluate the

evolution of the aircraft's instantaneous state. The last step is to communicate the

state and thus the current conditions with the simulation environment for on-screen

display.

The simplified structure is shown in Figure 2.1, in which can be observed the

main activities that the model carries out to get from the input to the animation of

the aircraft.

2.1.1 Inputs

Flight commands are issued through USB peripherals, which then communicate axis

positions and button presses with digital data (more information in Sect. 3.4).

These commands are then normalised to interface with the flight commands of the

XV-15, as the model bases its calculations on the movement of the controls in inches

(more information in Sect. 3.3).

2.1.2 Flight Control Computer – FCC

The flight control computer consists of two main systems, the SCAS and the Collective

Governor.

• The SCAS system allows the roll, pitch, and yaw rates to be stopped once the

flight controls are released and increases the stability of the system. The

angular rates in the system are first filtered with a washout, which selects only

those rates not imposed by the pilot, and then produces a command that

stabilises the aircraft and adds to the pilot's commands.

• The Collective Governor, on the other hand, is a system that adjusts the

collective pitch to maintain a constant number of revolutions depending on

the deflection angle of the nacelles. Compensation gain is either proportional

or integral.

2.1.3 Actuators

The hydraulic or electric actuators are very complex systems that can introduce in

the physics of the problem of the strong non-linearities to be taken into account

often. For a simulator of this type these systems are modelled with very simple

2.1 Tilt-Rotor model

18

transfer functions, because an accurate description of them is beyond the scope of

the project and clashes with the need for real-time execution.

• Hydraulic actuators for flight controls always represent a system that needs

to be properly modelled in an aircraft, because they can induce non-negligible

delays in the control loops of both the pilot and the stabilization systems. With

this in mind, a first-order transfer function has been introduced to account for

the delay.

• Engines also have a dynamic, although the number of revolutions is almost

always constant, however the dynamics introduces a delay in the response of

the collective or throttle command. It is also modelled as a first-order system

that does not introduce a lot of unnecessary numerical complexity.

• The Nacelles Actuators have a certain actuation speed that is fundamental for

the correct simulation of the tiltrotor. In a tiltrotor in fact the nacelles

command becomes a primary command to move longitudinally and therefore

a delay in its actuation is critical. It is modelled with a constant actuation

speed.

• The Swashplate is that device which allows to translate the pilot's inputs into

cyclic or collective blade variations by means of a mechanic present on the

rotor. Their implementation is provided in the helicopter flight mode and is

essential for maintaining position in hover. This implementation is also

modelled with a first-order transfer function.

2.1.4 Physics

The physical model of the aircraft consists of evaluating and calculating all the force

and momentum contributions and adding them together to find the resultant to be

integrated into the equations of motion. As shown in Figure 2.2, the major

contributions are:

• Gravity: must obviously be considered and is treated as a constant force that

depends on the weight of the medium and rotated according to the Euler

angles of the aircraft.

• Engines: produce force and momentum because they are turboprops, so part

of the thrust is produced by the exhaust.

• Rotors: both rotors, according to the conditions of the swashplate, of aircraft

movement and of the environment, produce a variable force and moment

which is fundamental for maintaining position and attitude in helicopter

mode. A complex mathematical model based on the blade element theory

coupled with the Pitt-Peters theory for the computation of the inflow, allows

to evaluate forces and moments.

2.1 Tilt-Rotor model

19

• Aerodynamics: is a very complex part of the model that allows the evaluation

of forces and moments due to 4 main effects: fuselage, vertical stabilizer,

horizontal stabilizer and wing pylons interaction with rotors inflow and air

stream.

• Landing gear: for the landing gear it is necessary to consider the effect of

aerodynamic resistance that it produces in movement, but also the interaction

with the ground. The landing gear also provides damping due to the relative

compression with dissipation of the landing gear stem and the friction they

produce with the ground. In addition, depending on the pressure of the brakes,

the longitudinal resistant force on the ground varies.

• Environment: based on the aircraft position and user modifiable parameters,

the environment model calculates parameters such as air density, sound speed

and wind that affect all the forces and moments described above.

Figure 2.2: Mathematical Model complete Structure [7]

2.2 Reference systems

20

2.1.5 Equations of Motion – EoM

The equations of motion are equations derived from the balance of forces and

momentums to calculate linear and angular accelerations. Based on the increments

of accelerations, the model integrates the velocities and thus the displacements or

rotations that the aircraft performs over time. The rotations are evaluated with

respect to the body reference of the aircraft (see Sect. 2.2), but then they must be

transferred and rotated for the calculation of the variations of the Euler angles useful

for the simulation.

2.1.6 Data Exchange

The last part of the Tilt-Rotor Model is the exchange of the calculated data with the

simulation environment (more info at Par. 3.1.4 and Par. 3.2.5). Simulink in fact is

only a software of physical simulation, and the visual representation of the numerical

results can be executed with the integration of add-on for Simulink or from external

software. The communication happens usually with protocols that concur the

transmission between more applications in simple and standardized way (more info

at Sect. 2.4).

2.2 Reference systems

From the model, instantaneous forces and moments are calculated by individually

summing the total contributions of each subsystem that produces them. It is critical

to be able to report the calculated forces and moments in a single aircraft reference

system. This is done by using different reference systems [8] that are more suitable

depending on the subsystem and then transferring them to the aircraft reference.

The main ones are:

• To allow the evaluation of translational, rotational speeds and Euler’s angles

a reference system for aircraft body must be defined as in Figure 2.3.

Figure 2.3: Aircraft Body Reference System

2.2 Reference systems

21

• The choice of rotor model is very important since the wake of the rotors

impacts the wing producing an important aerodynamic effect. The rotor model

used was developed at ZHAW in the work described in [7] and uses the

reference system shown in Figure 2.4.

Figure 2.4: Rotor Axes System

• To allow the calculation of moments, a reference system for geometric

distances must be defined, as in Figure 2.5.

Figure 2.5: Geometric Reference System

• The reference system of the aerodynamic part to allow the use of the data

present in [4].

2.2 Reference systems

22

2.2.1 Geodesy and Coordinate Systems

Geodesy is a branch of mathematics that deals with the shape and area of the Earth.

It’s necessary to use an accurate model of Earth’s shape, rotation, and gravity in

order to simulate high-speed flight over large areas of Earth’s surface.

Meridional cross sections of Earth are approximately elliptical, and the polar

radius of Earth is about 21 km less than the equatorial radius, so the solid figure

generated by rotating an appropriately scaled ellipse about its minor axis will

provide a model of Earth’s shape.

The mostly widely used model in the world is the WGS (World Geodetic System),

that is a standard for cartography, geodesy, and satellite navigation including GPS.

This model defines an Earth reference system centred in the Earth’s centre of mass

(derived from satellite orbits), the x and y axes on the equator plane and the z axes

pointing the north. The gravitation is defined with the Earth Gravitational Model

(EGM), associated with the World Magnetic Model (WMM).

Figure 2.6: The Geoid definitions

The geoid (Figure 2.6) is defined as the equipotential surface of gravity field

which coincides with the undisturbed mean sea level extending continuously below

the land surface. The irregular shape of the Earth causes the mass distribution to be

uneven, thus the Plumb-Bob define an angle, called deflection of local vertical, with

normal to the spheroid.

The geoide is approximated in the WGS model with a spherical harmonics series

of multiple degrees depending on different version of the model (the last WGS 1984

uses 2160 harmonics).

2.2 Reference systems

23

Figure 2.7: Oblate spheroidal model of the Earth

The Earth shape is an oblate spheroid, thus an ellipsoid obtained by rotating an

ellipse about one its principal axes, in this case the z axis (Figure 2.7). The spheroid

equation is so defined as:

𝑥2 + 𝑦2

𝑎2
+

𝑧2

𝑏2
= 1 (2.1)

With 𝑎 the semimajor axis and 𝑏 the semiminor axes of the generating ellipse. Two

other fundamental parameters to describe the Earth shape and its reference system

are its flattening, f, which accounts the oblateness at the poles of the spheroid, and

the eccentricity, e, which accounts the deviation of the generating ellipse from a

circumference.

The WGS-84 (stands for 1984) defines these values to generate the Earth

Spheroid based on the least-squares best fit. a and f are defined from the model,

instead b and e are derived:

𝑎 = 6 378 137.0 𝑚

𝑓 =
𝑎 − 𝑏

𝑎
= 1 −

𝑏

𝑎
=

1

298.257 223 563

𝑏 = 6 356 752 𝑚

𝑒 =
(𝑎2 − 𝑏2)

1
2

𝑎
= 0.0818 191 908 426

(2.2)

To complete the WGS-84 reference frame are necessary two additional parameters

related to the Earth: the Earth’s gravitational constant, 𝐺𝑀 𝑜𝑟 𝜇⊕ (mass times the

universal gravitational constant), and the angular rotational speed, 𝜔𝐸:

𝐺𝑀 = 3 986 004.418 ∙ 108 𝑚3/𝑠2

𝜔𝐸 = 7.292 115 ∙ 10−5 𝑟𝑎𝑑/𝑠

(2.3)

2.2 Reference systems

24

where the angular speed is also defined as sidereal rate of rotation, so the speed

relative to the fixed stars.

2.2.2 Latitude and Longitude

The reference frames used typically are the Earth and an inertial frame centred in

the Earth’s centre of mass, considered as a fixed point. Several polar and Cartesian

coordinate systems could be defined in the frames, where the equatorial plane and

the spin axis of the planet are used for reference.

Figure 2.8: ECI and ECEF reference systems [9]

The two main reference systems based on these frames and shown in Figure 2.8 are:

• Earth-centred inertial (ECI), with the origin the Earth’s centre of mass, the z

axis as the spin axis and the x axis parallel to the line linking the Sun and the

Earth.

• Earth-centred Earth-Fixed (ECEF), with the origin the Earth’s centre of mass,

the z axis as the spin axis and the x axis passing through the Greenwich

Meridian.

To define the position of a point P on the spheroid, as shown in Figure 2.6, it’s

necessary to define the Terrestrial longitude, ℓ, and the celestial longitude, λ, which

differ from the reference system chosen. The relation between the two is:

 𝜆 − 𝜆0 = 𝑙 − 𝑙0 + 𝜔𝐸𝑡 (2.4)

with 𝜆0 and ℓ0 the values at 𝑡 = 0. Moreover the Latitude angles, Ψ, does not suffer

from this difference, because the equatorial plane remains with a good

approximation the same during time, and is positive in the Northern Hemisphere.

2.2 Reference systems

25

2.2.3 Geocentric and Geodetic coordinates

Figure 2.9: Geodetic coordinates of a Point

Looking at Figure 2.9, it’s clear that at a latitude different from 0, the angle between

the normal to the spheroid with the equatorial plane is different from Latitude. For

these two coordinates could be defined for the same point P:

• Geocentric Coordinates, referenced to the ECI/ECEF system and defined by:

 Geocentric latitude of P, Ψ

 Geocentric radius of P, 𝑟

• Geodetic Coordinates, referenced to the normal to the spheroid form point P,

is used for maps and navigation:

 Geodetic latitude, the angle of the normal with the equatorial plane, 𝜙

 Geodetic height: the height above the spheroid, along the normal, ℎ

The triangle composed by the line linking P and the Earth’s centre of mass and the

normal to the spheroid surface relates the geocentric latitude and geodetic latitude

with the formula:

 𝜙 = Ψ + 𝐷 (2.5)

With the small D angle that varies from 0 to 11.5 arc-min when the latitude is 45°

and is called deviation from the normal.

2.2 Reference systems

26

2.2.4 North-East-Down reference system

Figure 2.10: NED and ECEF reference system

The local tangent plane system (LTP) is a geographical coordinate system based on

the tangent plane defined by the local normal direction and the Earth’s spin axis. It

is composed with three coordinates: the position on the North axis along the

meridian; the position on the East axis, along the parallel; the vertical position, which

is usually pointed towards down in the aerospace field, the same direction of the z

body axis.

2.2.5 Earth’s radii of curvature

The radius of curvature in differential geometry is, for a curve, equal to the radius of

the circular arc which best approximates the curve at that point, the osculating circle.

The concept can be extended to a surface in which the radius of curvature is the

radius of the osculating circle that best fits a normal section or a combination of

sections.

In the Earth’s spheroidal model, two radii of curvature should be defined to

estimate distances and speeds over the real Earth starting from a NED reference

system.

• Meridian radius of curvature, 𝑅𝑀 or M, is the radius of curvature in a meridian

plane that relates the increments in geodetic latitude starting from North-

South distances. It clearly depends on the shape of the spheroid, in terms of

axes length a and b, eccentricity e, and flattening f, and on the geodetic latitude

𝜙. Applying the differential geometry to the ellipse equation:

 𝑅𝑀 =
𝑎(1 − 𝑒2)

(1 − 𝑒2 𝑠𝑖𝑛2 𝜙)
3
2

,
𝑏2

𝑎
≤ 𝑀 ≤

𝑎2

𝑏
 (2.6)

2.2 Reference systems

27

The arc length travelled by an airplane could be evaluated integrating the

radius of curvature respect to angle, but the integral can not be found in a

closed form in this case. It’s much easier to use spherical triangles to

approximate the distances.

The Meridian radius remains useful to evaluate the velocity component

directed to North, 𝑣𝑛 at a geodetic height h, starting from the geodetic latitude

rate, �̇�:

 𝑣𝑛 = (𝑀 + ℎ) �̇� (2.7)

• Prime vertical radius of curvature, 𝑅𝑁 or N, is the radius of curvature in a

perpendicular plane to the meridian plane and containing the prime vertical,

that relates the increments in longitude starting from East-West distances

along a parallel. It depends on the shape of the spheroid, in terms of axis length

a, but not b, eccentricity e, and on the geodetic latitude 𝜙, which determines

the dimension of the parallel. Applying the differential geometry to the ellipse

equation:

 𝑅𝑁 =
𝑎

(1 − 𝑒2 sin2 𝜙)
1
2

, 𝑎 ≤ 𝑁 ≤
𝑎2

𝑏
 (2.8)

As for the meridian radius of curvature, also the prime vertical radius of

curvature is useful to evaluate the East component of the velocity, while the

arc of parallel travelled should be integrated with osculating spherical

triangle:

 𝑣𝐸 = (𝑁 + ℎ) cos(𝜙) ℓ̇ (2.9)

2.2.6 Flat Earth to LLA reference transformation

Having defined the reference systems, it is clear that the displacements of the aircraft

are evaluated in a flat Earth reference system. The equations, therefore, work by

understanding the aircraft as being in flat space, but a simulation environment needs

longitude, latitude, and altitude data to place the aircraft model in the Earth

environment.

The position is defined from the equation of motion in terms of the position vector

𝒑 = [𝑥, 𝑦, ℎ]𝑇 . First, a rotation from the flat Earth reference system to the NED system

must be followed with the following rotation matrix:

 [
𝑁
𝐸
𝐷

] = [
cos(𝛹) − sin(𝛹) 0
sin(𝛹) cos(𝛹) 0

0 0 −1

] [
𝑥
𝑦
ℎ

]

𝐹𝑙𝑎𝑡

 (2.10)

2.3 Solving Differential Equations

28

where Ψ is the angle in degrees clockwise between the x-axis and north axes of the

NED system.

Small changes in the North and East positions could be used to approximate small

changes in longitude and latitude as follows:

𝑑𝜙 = atan (

1

𝑅𝑀
) 𝑑𝑁

𝑑ℓ = atan (
1

𝑅𝑁 cos(𝜙)
) 𝑑𝐸

(2.11)

The output latitude and longitude are simply evaluated as the initial value summed

to the small changes:

𝜙 = 𝜙0 + 𝑑𝜙
ℓ = ℓ0 + 𝑑ℓ

(2.12)

The altitude is directly related to the Down distance where only the sign has to be

changed:

 ℎ = −𝐷 = 𝑝𝑧 (2.13)

2.3 Solving Differential Equations

The Laplace transform is an integral transform that converts a function of real time

𝑡 ≥ 0, to a function of a complex variable 𝑠 = 𝜎 + 𝑗𝜔:

 ℒ{𝑓}(𝑠) = 𝐹(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
+∞

0

 (2.14)

The transform exists if the 𝑓 function is locally integrable on the interval [0, +∞).

Laplace transform finds many applications in engineering and science because it

provides a convenient aid in the analysis and resolution of ordinary differential

equations (ODE) with constant coefficients as Eq. (2.15).

 𝑎1𝑥(𝑡) + 𝑎2𝑥′(𝑡) + 𝑎3𝑥′′(𝑡) + ⋯ + 𝑎𝑛𝑥(𝑛)(𝑡) = ℎ(𝑡) (2.15)

2.3.1 Laplace Transform Properties

The Laplace transform has important properties that allow it to solve differential

equations:

1. Linearity, which leads to the superposition of effects:

2.3 Solving Differential Equations

29

ℒ[𝐶 ∙ 𝑓(𝑡)] = 𝐶 ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡

∞

0

= 𝐶 ∙ 𝐹(𝑠)

 ℒ[𝑓1(𝑡) + 𝑓2(𝑡)] = ℒ[𝑓1(𝑡)] + ℒ[𝑓2(𝑡)]

(2.16)

2. Transform of integral:

 ℒ {∫ 𝑓(𝑡)𝑑𝑡
∞

0

} =
1

𝑠
ℒ{𝑓(𝑡)} (2.17)

3. Transform of derivatives, which is fundamental to resolve ODEs:

 ℒ{𝑓′(𝑡)} = 𝑠𝐹(𝑠) − 𝑓(𝑡 = 0) (2.18)

These two properties can be used to transform an ordinary differential

equation as follows (with initial conditions equal to 0):

ℒ {𝑎

𝑑2𝑥

𝑑𝑡2
+ 𝑏

𝑑𝑥

𝑑𝑡
+ 𝑐𝑥} = ℒ{ℎ(𝑡)}

𝑠2 𝑎 𝑥(𝑠) + 𝑏 𝑠 𝑥(𝑠) + 𝑐 𝑥(𝑠) = ℎ(𝑠)

(2.19)

At this point the differential equation can be resolved as an algebraic equation:

 𝑥(𝑠) =
ℎ(𝑠)

𝑎𝑠2 + 𝑏𝑠 + 𝑐
 (2.20)

𝑥(𝑠)/ℎ(𝑠) is also called the transfer function of the system examined.

Figure 2.11: Relationship between the time domain and the frequency domain

To return to the time domain from the Laplace domain (Figure 2.11), the

inverse Laplace transform operation can be applied:

 𝑓(𝑡) = ℒ−1{𝐹(𝑠)}(𝑡) =
1

2𝜋𝑖
lim

𝑇→∞
∫ 𝑒𝑠𝑡𝐹(𝑠)𝑑𝑠

𝛾+𝑖𝑇

𝛾−𝑖𝑇

 (2.21)

2.3 Solving Differential Equations

30

where the integration is often difficult to achieve. If the ODE has constant

coefficients, the complex function 𝐹(𝑠) is a rational function 𝑁(𝑠)/𝐷(𝑠), where

𝑁(𝑠) and 𝐷(𝑠) are polynomials, and the function 𝐹(𝑠) can be written as the

sum of rational functions, called partial functions, as visible in Eq. (2.22).

 𝐹(𝑠) =
𝑁(𝑠)

𝐷(𝑠)
=

∏ (𝑠 − 𝑧𝑖)
𝑛
𝑘=1

∏ (𝑠 − 𝑝𝑖)
𝑛
𝑘=1

 (2.22)

Where 𝑧𝑖 and 𝑝𝑖 are the roots respectively of 𝑁(𝑠) and 𝐷(𝑠) . If the 𝐹(𝑠)

function is descriptable as above, the Heaviside expansion formula could be

used to return to the time domain. Supposing that 𝑁(𝑠) has degree less than

that of 𝐷(𝑠), 𝑄(𝑠) has n distinct roots 𝑝𝑘, 𝑘 = 1,2,3, … , 𝑛, then:

ℒ−1 {
𝑁(𝑠)

𝐷(𝑠)
} = 𝑓(𝑡) = ∑ [

𝑁(𝑠)

𝐷(𝑠)
𝑠(𝑝𝑖)]

𝑠=𝑝𝑖

𝑒𝑝𝑖𝑡

𝑛

𝑘−1

4. Initial value theorem

 lim
𝑡→0

𝑓(𝑡) = lim
𝑠→∞

𝑠𝐹(𝑠) (2.23)

5. Final value theorem

 lim
𝑡→∞

𝑓(𝑡) = lim
𝑠→0

𝑠𝐹(𝑠) (2.24)

2.3.2 Laplace and steady-state

The Laplace transform also provides information on the steady-state condition of a

system. The steady state of a system given by 𝑓(𝑠) is defined by 𝑠𝑓(𝑠) when 𝑠 tends

to zero. If the system is described with an ODE or a set of ODE differential equations

with constant coefficients, if all the roots of D(s), the poles, are negative, the system

is stable and the final value is a constant, as in the example that follows:

 𝑓(𝑡) = 1 − 𝑒−𝑝𝑡, 𝑓(𝑡) = 1 𝑎𝑠 𝑡 → ∞ (2.25)

In other words, from the analysis of the final value of transfer function, an insight of

the steady state system can be studied, without passing from the inverse transform.

Each physic system could be modelled as a steady-state system, meaning that the

coefficients of the ODE equations are constant, and it’s called a Linear Time Invariant

(LTI) system.

This approach is valid and can be applied by linearizing the model of the physical

system around an equilibrium point. In any chosen point the derivates coefficients

could be treat as constant and the Laplace theory remains valid.

2.3 Solving Differential Equations

31

The state vector, 𝒙 ∈ ℝ𝑛 , is the instantaneous state of the system, while the

command vector, 𝒖 ∈ ℝ𝑚, provides inputs to the system (in an airplane model could

be the pilot commands). The output to be analysed is the vector 𝒚 ∈ ℝ𝑙 .

To study the evolution of the system in the time domain, the derivates of the

vector 𝒙 can be find through a set of matrices as follows:

 {

�̇�(𝑡) = 𝐴𝒙(𝑡) + 𝐵𝒖(𝑡)

𝒚(𝑡) = 𝐶𝒙(𝑡) + 𝐷𝒖(𝑡)

𝒙(0) = 0

,
𝐴 ∈ 𝑅𝑛 𝑥 𝑛 𝐵 ∈ ℝ𝑛 𝑥 𝑚

𝐶 ∈ ℝ𝑙 𝑥 𝑛 𝐷 ∈ ℝ𝑙 𝑥 𝑚 (2.26)

Where D is typical the null matrix for a mechanical system. Applying the Laplace

transform to the Equations (2.26:

𝑠 ∙ 𝒙(𝑠) = 𝐴𝒙(𝑠) + 𝐵𝒖(𝑠)

𝒙(𝑠) ∙ [𝑠 − 𝐴] = 𝐵𝒖(𝑠)

𝒙(𝑠) = [𝑠 − 𝐴]−1𝐵𝒖(𝑠)

(2.27)

The output 𝒚 is then:

𝒚(𝑠) = 𝐶[𝑠 − 𝐴]−1𝐵𝒖(𝑠) + 𝐷𝒖(𝑠)

𝒚(𝑠) = {𝐶[𝑠 − 𝐴]−1𝐵 + 𝐷}𝒖(𝑠)
(2.28)

The equations system is so resolvable with a bunch of matrix operations to find the

state vector derivates that can be integrated for small step in time. So, starting from

a state, 𝑥𝑘, the next state, 𝑥𝑘+1, can be evaluated from the derivates, �̇�𝑘, if they are

multiplicated for a small step of time 𝑑𝑡 using different methods (Euler, Heun, Runge-

Kutta, etc.). The simplest but still useful one is the explicit Euler method described

in the following equation:

 𝑥𝑘+1 = 𝑥𝑘 + �̇�𝑘 ∙ 𝑑𝑡 (2.29)

2.3.3 Z-transform

When dealing with linear systems, Laplace theory can be applied because the domain

of variation of a real system is considered continuous. For digital systems, such as

that of a simulator that reproduces a physical system. A digital system, such as that

of a computer that implements simulators, works in steps in a discrete time domain.

The frequency with which the digital system executes instructions is called the

sample rate. This type of implementation can lead in a real-time system to aliasing

and latency phenomena that can lead to instability and numerical problems.

Aliasing is an effect that causes different signals to become indistinguishable

when sampled. It could generate distortion, visual artifacts or, in general, numerical

instabilities.

2.3 Solving Differential Equations

32

The Laplace transform is no longer adequate to describe digital systems, so to

analyse systems governed by continuous laws but described by digital systems that

apply sampling to the relations, the z-transform is used.

Figure 2.12: A continuous function f(t) and its sampling f(k) [10]

The z-transform is the mathematical tool for the analysis of linear discrete systems.

It plays the same role for discrete time systems that the Laplace transform does for

continuous time systems and is defined as follows:

 𝑍{𝑓(𝑘)} = 𝐹(𝑧) = ∑ 𝑓(𝑘)𝑧−𝑘
∞

𝑘=0
 (2.30)

where 𝑓(𝑘) the sampled function of f(t), as shown in Figure 2.12, and 𝑘 = 0,1,2, …

refers to the discrete sample times 𝑡0, 𝑡1, 𝑡2, …. The Laplace transform of derivates

(Eq. (2.18)) property is similar with the z-transform:

 𝑍{𝑓(𝑘 − 1)} = 𝑧−1𝐹(𝑧) (2.31)

Figure 2.13: Tustin method – trapezoidal integration [10]

As described in [1] and [10], an alternative approach to digitization is the Tustin’s

method, that treats the problem as one of numerical integration. Supposing to have

an input function f(s) and an output function y(s) in the Laplace domain that:

𝑦(𝑠)

𝑓(𝑠)
=

1

𝑠
 (2.32)

where 1/𝑠 is an integration as shown in Eq. (2.17). Hence:

2.4 Communication Protocols

33

 𝑦(𝑘𝑇) = ∫ 𝑓(𝑡)𝑑𝑡
𝑘𝑇−𝑇

0

+ ∫ 𝑓(𝑡)𝑑𝑡
𝑘𝑇

𝑘𝑇−𝑇

 (2.33)

where T is the sample time period of the digital system. The integral could be

rewritten as:

 𝑦(𝑘𝑇) = 𝑦(𝑘𝑇 − 𝑇) + 𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑓(𝑡) 𝑜𝑣𝑒𝑟 𝑙𝑎𝑠𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑇 (2.34)

At each step the trapezoidal integration can be used, as shown in Figure 2.13, to

approximate the f(t) with a straight line between two samples divided by a sample

period T. Rewriting 𝑦(𝑘𝑇) as 𝑦(𝑘) and 𝑦(𝑘𝑇 − 𝑇) as 𝑦(𝑘 − 1) , the Equation (2.34)

converts to:

 𝑦(𝑘) = 𝑦(𝑘 − 1) +
𝑇

2
[𝑓(𝑘 − 1) + 𝑓(𝑘)] (2.35)

 applying the z-transform:

𝑦(𝑧)

𝑓(𝑧)
=

𝑇

2
(

1 + 𝑧−1

1 − 𝑧−1
) =

1

2
𝑇

(
1 − 𝑧−1

1 + 𝑧−1)
 (2.36)

it means that the Laplace variable 𝑠 can be transferred to the zeta domain as:

 𝑠 =
2

𝑇
(

1 − 𝑧−1

1 + 𝑧−1
) (2.37)

With this method all the transfer function in the Laplace domain can be easily

transformed to transfer functions in zeta domain.

This formulation also requires initial conditions for 𝑦𝑘 at the time 𝑡 = 0 , but the

methodo does not requires a numerical integration method, because it’s already

based on the past values of the variable 𝑦, but a special care has to be spent on the

choice of the sampling interval T, to avoid aliasing phenomena.

2.4 Communication Protocols

Figure 2.14: Simulator architectures nodes

As shown in Figure 2.14 a typical flight simulator architecture contains one or more

logical units performing different operations that contribute to the simulation.

2.4 Communication Protocols

34

Information must thus be exchanged from one to several points in the architecture

which form the so-called nodes of the communication network.

To guarantee deterministic transfers in a network in real time, all nodes must

respect a protocol, that is, the set of rules to which all nodes in the network adhere.

If the protocol is followed, it transmits only one node at a time, avoiding collisions

and ensuring that the delays incurred in the transfer depend only on the

characteristics of the bus.

2.4.1 UDP – Universal Datagram Protocol

UDP provides a simple method of node addressing based on the Internet Protocol

(IP) address. Each node in the network is assigned a unique IP address of the form

a.b.c.d where a, b, c and d denote a value in the range 0-255.

For a dedicated real-time system, the use of IP addresses is important. Nodes on

the network are likely to be addressed in some logical way in the simulator

algorithms. It is necessary to map between the IP addresses assigned to the network

nodes and the logical addresses used in the simulation. However, if the designer of

the simulator can allocate the IP addresses, they can be assigned numerical values

corresponding to the logical addresses. Most operating systems allow static

allocation of node IP addresses. A node can inspect the IP address of an incoming

packet and effectively route the packet to the appropriate software that requests the

specific packet. Of course, this convention assumes a dedicated network, specific to

a real-time application.

UDP is a connectionless Transport protocol, meaning that no connection has to

be established between the sending and the receiving segment. The data packets in

the UDP protocol are processed and sent to the network as soon as any application

request it This approach does not include an error checking and correction and

avoids any communication congestion. On the other hand, e.g. Transmission Control

Protocol (TCP) protocol needs a direct link between the source and destination hosts,

and the packet are resent until the source host has been acknowledged by the

destination of the receipt of the segment, without taking into account the time

needed for the operation.

For there reasons, the UDP connection is preferable in time-sensitive

applications, where the data packets dropping is better than the delay generated by

the protocol transmission.

So in real-time application UDP transfers are often used for several advantages:

• Speed: The bandwidth overhead (excess time spent in computation, memory,

networking etc.) is reduced compared to a connection-oriented protocol such

as TCP

2.4 Communication Protocols

35

• Implementation: The interface between application software and operating

systems are often standardized and the implementation is straightforward

2.4.2 UDP Packet structure

The UDP packet structure is composed by 2 main parts: the header and the data

section. The header consists of 4 fields with a size of 2 bytes each (16 bits). The

checksum and the source fields are optional.

Figure 2.15: UDP Packet structure

• Source port number identifies the sender’s port number in an IP format

(a.b.c.d)

• Destination port number identifies the receiver’s port number and is always

required for the transfer.

• Length specifies the size in bytes of the UDP header and UDP data, whereas

the minimum size is 8 bytes or 64 bits (just the size of the header if no data

are sent), and the maximum size is 8 bytes + 65.527 bytes, almost 64 kB.

• Checksum is a field that may be used for error-checking of the header and data

36

Simulation Environment

and Architecture

The main purpose of the work is presented in the remaining chapters, in which an

attempt is made to link the previously described mathematical model, which

represents the flight dynamics, including the dynamics of actuators and engines, the

stabilization logic of the SCAS system, with the actual simulation environment. This

allows, first of all, to visualize the dynamics in a simple and intuitive way, but also to

verify the response, thanks to the commands given by the pilot with the connected

hardware.

Figure 3.1: Software architecture

As it is predictable the software part remains the most delicate for a simulator with

a didactic and research purpose. All the model of simulation is based on a code made

on blocks and produced with the language Simulink® and MATLAB®, that simplify

the writing and reading, guaranteeing at the same time the optimal performances in

execution.

Simulink is only a numerical calculator on which, therefore, the data of attitude and

position of the aircraft are evaluated, also in answer to the supplied commands. In

3.1 FlightGear

37

order to realize the simulator in a complete form, it is necessary to have additional

software that is able to visualize on screen this information in a virtual environment

that reproduces the aircraft object and the surrounding terrain, according to the

instantaneous position in the globe.

3.1 FlightGear

The software identified as the flight environment is FlightGear, a full-featured, open-

source and cross-platform flight simulator, designed also for research purposes like

this one [11].

The simulator allows to reproduce the terrestrial environment including terrain,

airports, cities, vegetation, all over the globe and to reproduce the aircraft in 3D with

its attitude and position provided by Simulink, but also to reproduce sounds and

movements of moving parts and engines.

3.1.1 Aircraft Reproduction

Figure 3.2: FlightGear running screenshot

To display a realistic aircraft with the appropriate animations and sounds, has been

chosen to start with an aircraft already available in the official FlightGear database.

The aircraft in question is the Boeing V-22 Osprey, which was provided under the

GNU GPL licence by Mr. Baranger E.

The necessary modifications were then applied to disable the flight mechanics

that used the open-source physical simulator JSBSim, in order to use the physical

model based on Simulink.

3.1 FlightGear

38

Various changes were also made to the animations, sound and to make it compatible

with the new communication protocol between Simulink and FlightGear. The result

is an aircraft very similar to the XV-15 with the same flight controls and dynamics.

Figure 3.3: Aircraft Instrumentation

In order to be aware of the condition of the aircraft and to check the flight status, a

Primary Flight Display (Figure 3.3) has been added, with the following instruments:

• Artificial Horizon • RPM gauge

• Compass • Nacelles Position Gauge

• Altimeter • Flaps Position Indicator

• Vertical Speed Indicator • Gear Position Indicator

• CAS Speed Indicator •

Figure 3.4: Nacelles angle gauge texture

3.1 FlightGear

39

Each instrument on board must be designed with a CAD software that can then export

the 3D model in ".ac" format. The most suitable free software is Blender, an open-

source program that allows editing of 3D files. Subsequently it must be set up a

texture (Figure 3.4) in “.rgb” format to the model and to connect a property (a

variable) of the simulator with the animation of rotation or translation of the 3D

object, like visible in the code in Figure 3.5.

1 <PropertyList>
2
3 <path>NAC.ac</path>
4
5 <animation>
6 <type>material</type>
7 <object-name>NACneedle</object-name>
8 <object-name>NACface</object-name>
9 <emission>
10 <red>1</red>
11 <green>1</green>
12 <blue>1</blue>
13 </emission>
14 </animation>
15
16 <animation>
17 <type>rotate</type>
18 <object-name>NACneedle</object-name>
19 <property>/surface-positions/tilt</property>
20 <interpolation>
21 <entry><ind>-5</ind><dep>-25</dep></entry>
22 <entry><ind>0</ind><dep>0</dep></entry>
23 <entry><ind>5</ind><dep>24.25</dep></entry>
24 <entry><ind>20</ind><dep>48.5</dep></entry>
25 <entry><ind>50</ind><dep>72.75</dep></entry>
26 <entry><ind>75</ind><dep>97</dep></entry>
27 <entry><ind>90</ind><dep>121.25</dep></entry>
28 </interpolation>
29 <axis>
30 <x>-1.0</x>
31 </axis>
32 </animation>
33
34 </PropertyList>

Figure 3.5: Nacelles gauge XML code

3.1.2 TerraSync & TerraMaster

TerraSync is a utility within FlightGear that allows automatic downloading of flight

scenarios during simulation based on the instantaneous position of the aircraft. It

uses an internet connection to update or obtain the environment from the FlightGear

Scenery Database or portions of the globe can be installed in advance thanks to

TerraMaster. The Figure 3.6 shows a graphical interface written in Java that allows

to select and download any geographic area with some simple clicks.

3.1 FlightGear

40

Figure 3.6: TerraMaster interface

3.1.3 How to launch FlightGear

To launch FlightGear it is necessary to generate a Windows script that adds the

appropriate arguments to the executable. The file to generate has .bat extension

(Figure 3.7) and has the main purpose of setting the correct data transmission

protocol, choose the aircraft model and disable the flight dynamics inside the

simulator.

Arguments are passed via a double dash followed by variable to set, and the most

important ones in order are:

• aircraft: allows to set the displayed aircraft.

• fdm: allows to modify the flight dynamics.

• generic: allows to set a generic transmission protocol complete with update

frequency, IP address, port, and protocol type. The protocol described below

in Par. 3.1.4 is set here.

3.1 FlightGear

41

The other topics allow to intuitively select the runway, activate TerraSync and much

more.

C:
cd C:\Program Files\FlightGear

SET FG_ROOT=C:\Program Files\FlightGear\data
.\\bin\fgfs --aircraft=vmx22 ^
--fdm = null ^
--generic = socket,in,100,127.0.0.1,1509,udp,SimulinkProtocolBinUDP ^
--generic = socket,out,25,127.0.0.2,1510,udp,SimulinkProtocolBinUDP ^
--fog-fastest ^
--disable-clouds ^
--disable-ai-traffic ^
--start-date-lat = 2004:06:01:09:00:00 ^
--airport = LIMF ^
--runway = 18 ^
--in-air ^
--heading=180 ^
--prop:position/altitude-ft=980 ^
--prop:sim/current-view/view-number-raw=2 ^
--offset-distance = 0 ^
--offset-azimuth = 0 ^
--enable-terrasync
--enable-fullscreen

--disable-sound
--enable-clock-freeze

Figure 3.7: FlightGear Launcher Script

3.1.4 Simulink Interface

The interface with Simulink permits to produce a TCP/UDP protocol for the exchange

of information regarding the position, attitude of the aircraft and all those necessary

to the simulation environment. This can be done by creating an .xml file in the

FlightGear\data\Protocol folder, indicating the position and type of data within the

exchanged packet.

As shown in Figure 3.8, the file is divided into input and output data, where first

is defined if the data is sent in binary or text (ASCII) form, and the endianness of the

data. Then chunks are inserted for each variable within the packet with its type and

the variable within FlightGear that it will command.

The <factor> word allows the input variable to be multiplied by a fixed factor

useful for converting the units of measure if necessary.

The input portion includes information about geographical position (longitude,

latitude, and altitude), attitude, surface positions, engines RPM and landing gear. The

3.1 FlightGear

42

output portion, instead, returns to Simulink only the altitude information of the

underlying terrain with respect to sea level, as shown in Figure A.2.

1 <?xml version="1.0"?>
2 <PropertyList>
3 <generic>

4 <input>

5 <binary_mode>true</binary_mode>
6 <!-- byte_order>host</byte_order --> <!-- host is default -->

7 <!-- Position -->
8 <chunk>
9 <name>Longitude</name>
10 <node>/position/longitude-deg</node>
11 <type>double</type>
12 </chunk>

13 <chunk>
14 <name>Latitude</name>
15 <node>/position/latitude-deg</node>
16 <type>double</type>
17 </chunk>

18 <chunk>
19 <name>Altitude</name>
20 <node>/position/altitude-ft</node>
21 <factor>3.280839895</factor> <!-- converts from meters to fts -->
22 <type>double</type>
23 </chunk>

Figure 3.8: FlightGear UDP Protocol (1)

3.2 Simulink

43

3.2 Simulink

Figure 3.9: Overall Simulink Model

Simulink is the software that allows to write and to modify the code and to compile

it, in order to execute the simulation model. It is introduced like an extension of

MATLAB that, in a graphical way, concurs to connect the several blocks to execute

the wished calculations. The mathematical model so produced is executed in a fast

and intuitive way, without problems of allocation of memory or syntax. Several

libraries are available for download that simplify the integration of different

functions with the flight simulator.

The mathematical model consists of a simple block that can be treated as a

system that receives inputs and produces outputs. In this work, the key is to interpret

its operation and add the correct systems and libraries to connect the hardware and

the flight environment to Simulink.

Next to the mathematical model there are the Pilot Interface block, which

connect the hardware and therefore the commands given by the pilot to the

mathematical model, and the FlightGear Interface block, which takes the output data

from the model and sends it to FlightGear for display.

An export block also saves all the data output from the model in the workspace

to graph the results and perform diagnostic actions.

In addition, through the functions present in Simulink, it is necessary to ensure

that the simulation is performed in real time, i.e., code is needed to synchronize the

simulation time with the processor clock time.

3.2.1 Simulink Acceleration

Acceleration is an operating mode of Simulink that allows to speed up the execution

of the model by changing the way the code is compiled and replacing the interpreted

code in the simulation.

3.2 Simulink

44

There are 3 modes available:

• Normal mode is the basic mode in which Simulink controls the solver and

model methods used during the simulation, and all run in a process (Figure

3.10)

Figure 3.10: Normal Mode processes scheme

• Acceleration mode uses Just-in-Time (JIT) acceleration to generate an

execution engine in memory instead of generating C code or MEX files.

Methods in this mode are separate from Simulink and are part of the

acceleration target code. Simulink generates an in-memory execution engine

only for the top-level model and not for referenced models. Consequently, a C

compiler is not required during simulation (Figure 3.11).

Figure 3.11: Accelerator Mode processes scheme

• “Rapid accelerator mode creates a Rapid Accelerator standalone executable

from your model. This executable includes the solver and model methods, but

it resides outside of MATLAB and Simulink. It uses external mode to

communicate with Simulink”. This mode is designed with the aim of

outsourcing calculation processes to external machines specialised in real -

time calculation and certified by MathWorks. (Figure 3.12)

3.2 Simulink

45

Figure 3.12: Rapid Accelerator Mode processes scheme

3.2.2 Real Time Simulation

The first step to make the simulation executable in real time is to synchronize the

physical simulation time with the real time measured by the processor clock. This

can be done in different ways through various libraries available within Simulink.

Figure 3.13: CS-FSTD Specifications for Flight Simulator Training Devices [12]

The assurance that the simulation can be defined as "Real Time" and therefore is

performed at a realistic speed and with low latency is necessary for the correct

interpretation of the flight dynamics by the pilot and for the accuracy of the

simulation. The maximum latency with respect to current time is, in addition, defined

by the CS-FSTD(A) standard which states: "Latency: the visual system, flight deck

instruments and initial motion system response shall respond to abrupt pitch, roll and

yaw inputs from the pilot’s position within 150 ms of the time, but not before the time,

when the airplane would respond under the same conditions."

3.2 Simulink

46

Figure 3.14: Simulation Pace Block from Aerospace Toolbox [13]

The simplest approach may be to use the Simulation Pace block found within the

"Aerospace Blockset" library, shown in Figure 3.14.

The Simulation Pace block lets to run model simulation at a slower pace so that

connected animations views can be comfortably seen and understood to observe the

system behaviour. Visualizing simulations at a slower rate makes it easier to

understand underlying system design, identify design issues and demonstrate near

real-time behaviour. The results can be viewed, and the system inspected while the

simulation is in progress.

However, the blocking is not able to ensure a real synchronization with the

processor clock, but simply slows down the simulation. The most correct method is

to use the library "Simulink® Desktop Real-Time™" (SLDRT).

3.2.3 SLDRT - Simulink® Desktop Real-Time™

Simulink® Desktop Real-Time™ provides a real-time kernel for running on the

computer and a set of blocks that can connect I/O devices to generate simulations

with hardware inputs.

The first step is to install the Real-Time kernel that interfaces the library with

the operating system. The kernel assigns the highest priority to the execution of the

Simulink model, allowing it to run at the desired sample rate without interference.

The kernel can be simply installed in the MATLAB Command Window using the

command "sldrtkernel -install". Usage is transparent to the user and the kernel will

run automatically if library blocks are present.

Figure 3.15: Real-Time Sync Block and its Parameters

3.2 Simulink

47

Real-Time Sync block

The real-time sync block (Figure 3.15) allows to synchronize the real-time kernel

clock with every time the block requires it. The time step to adjust the sync check is

the sample rate, which is set to the minimum value of the model, i.e. every 0.0025 s,

an update rate of 400 Hz.

An important data point to consider for library blocks are Missed Ticks. Missed

Ticks are defined as the instants of time that the model lags with respect to the clock

time calculated by the real-time kernel. The information is useful to monitor the

latency of the model and report it on graphs. The actual latency time in seconds is

calculated by multiplying the Missed Ticks in the block output with the block sample

rate.

Input blocks

Figure 3.16: Analog/Digital/Other Input blocks form SLDRT library

To guarantee the priority in the reading of the inputs coming from the input

hardware, the SLDRT library foresees various blocks of input and output (Figure

3.16) that let to synchronize the reading with a sample rate of choice. This allows to

improve the speed of answer to the commands of the simulator, guaranteeing a true

real-time simulation. The blocks used are 3:

• Analog Input: to read the input values for the proportional axes of the joystick

and therefore for the roll, yaw, and pitch commands.

• Digital Input: to read the input values of the digital commands, i.e. the buttons

that allow to change the function of brake, flaps, landing gear and SCAS.

• Other Input: to read the input values of the secondary controls, in this case the

POV hat of the joystick, to move the nacelles and adjust the aircraft trim.

For all the blocks in question it was necessary to set the update sample rate, equal to

that of the model execution. For the Analog Input block, it is also possible to select

the signal output mode from the 4 available:

• Volts: returns the analogue voltage value

3.2 Simulink

48

• Normalized bipolar: returns a value between -1 and +1 depending on the

voltage

• Normalized unipolar: returns a value between 0 and +1 depending on the

voltage

• Raw: returns a value between 0 and 2n-1, depending on the resolution in bits

of the joystick

The most useful way and the one that best interfaces with the mathematical model is

the normalized bipolar, which allows the joystick to be used in the simulator without

any modifications, also with a view to modularity and subsequent changes to the

simulator regarding the hardware (Figure 3.17).

Figure 3.17: Analog Input Block parameters

3.2 Simulink

49

Packet Input and Packet Output blocks

Figure 3.18: Packet data interface blocks from SLDRT library

Input and output packet blocks of the SLDRT library (Figure 3.18) allow to set up a

packet and data transfer between two nodes in a network.

Figure 3.19: Packet Output and Packet Input blocks Parameters

Through the block settings, as shown in Figure 3.19, it is possible to choose between

different communication protocols, including Serial, TCP, UDP, CAN. As explained in

3.2 Simulink

50

Par. 2.4.1, the communication protocol chosen is the UDP protocol, which is best

suited to a real-time application such as this.

The blocks, according to the settings provided in the mask, prepare the packet in

terms of header and data set, and send it to the specified destination port at the set

sample rate.

 The size of the packet and the sequence of data to be sent via the block, their

type, and endianness must be defined in accordance with the FlightGear software

protocol described in Par 3.1.4.

Figure 3.20: ThrustMaster USB Joystick Simulink Interface

3.2 Simulink

51

3.2.4 Hardware Interface in Simulink

In the first iteration of the simulator, to set up the simulation model and its interface

with FlightGear, it was decided to use an inexpensive stick (ThrustMaster USB

Joystick) for the first few starts. This made it possible to immediately generate the

programming logic useful for managing the signals to be sent to the mathematical

model (Figure 3.20).

First of all, it was decided to insert a lookup table for the roll and pitch

commands, introducing a dead band in the central position, to reduce unintentional

commands and simplify hovering in helicopter mode.

In addition, a control logic was introduced for the buttons, which alternates the

ON/OFF status of the signal with each press. This is done thanks to a series of blocks

as shown in Figure 3.22, which allow to vary the signals according to the current

state and the previous instant of time of the model. Simulink is a non-sequential

language and can therefore lead to algebraic loops, i.e. structures for which the

priority of calculation execution is important but undefined [14].

Figure 3.21: “buttons to controls” function detail

To break the loop, it was decided to introduce a delay equal to one unit of time for

the feedback signal, obtained with integrators (1/z), as shown in Figure 3.21:

3.2 Simulink

52

Figure 3.22: Algebraic Loop example in Simulink

The MATLAB function “buttonsToControls” built into Simulink then uses this

information to toggle the output value and finally send it to the simulation model.

(For the code see Appendix A - Figure A.3)

Figure 3.23: “POV to controls” function detail

A similar procedure was carried out for the POV hat, on which the control of the

nacelles and, in the first iteration, the rudder were mapped in the absence of a

specific axis for this command. The logic is similar to that for the buttons, but since

they are momentary commands, it is not necessary to feedback the signal output

from the MATLAB function (Figure 3.23).

1 function [PEDAL, NAC] = POVctrl(POV)

2 PEDAL = 0;

3 if POV == 90 %POV dx

4 PEDAL = 1;

5 elseif POV == 270 %POV sx

6 PEDAL = -1;

7 end

8 NAC = 0;

9 if POV == 180 %POV down

10 NAC = 1;
11 elseif POV == 0 %POV up
12 NAC = -1;
13 end

14 end

Figure 3.24: “POVctrl” MATLAB code

3.2 Simulink

53

3.2.5 FlightGear Interface

The interface with FlightGear within Simulink, as introduced in chapter 3.1 consists

of two parts of code, one for receiving and one for sending data, as shown in Figure

3.25.

Figure 3.25: Flight Gear Interface in Simulink

The signals generated by the Simulink code are sent from the packet exchange blocks

according to the set transmission protocol. The order in which the data are sent, and

their size must be the same as set in the protocol used in FlightGear, as shown in

Paragraph Simulink Interface 3.1.4.

To reproduce the correct position of the aircraft, FlightGear requires positions

in terms of longitude, latitude, and altitude in relation to sea level. However, the

mathematical model is independent of the geographical position and is designed as

an offline simulator. For this reason, the output values for the position are

displacements on the x, y, and z axes integral to the ground (insert custom fig.), which

define the displacement from the starting point of the simulation.

Figure 3.26: State Evaluation block detail

3.3 Flight controls

54

Therefore, it is necessary to calculate the latitude and longitude by changing from a

Flat Earth reference system to one based on the 3D geographical position, as shown

in Figure 3.26.

Figure 3.27: Flat Earth to LLA block from Aerospace Toolbox [15]

In the Simulink library "Aerospace Blockset" there is a block (Figure 3.27) that

performs the operation of transforming the position coordinates from a flat model to

the geographical position of the aircraft. As input, it receives the x, y and z signals as

a vector and a possible offset altitude and returns the coordinates in LLA (Latitude,

Longitude, Altitude) form that can be used directly by FlightGear (See Par 2.2.6 for

further information).

On the other hand, for the reception side, the only useful data for the simulation

coming from FlightGear is the altitude of the ground below. The simulation

environment knows this data from the position in terms of instantaneous latitude

and longitude, from which it derives the altitude of the terrain thanks to the database

that is constantly updated live with the TerraSync utility.

The information is then sent back to the mathematical model, which uses it to

translate the altitude with respect to the terrain and thus correctly calculate the

environmental data and represent the correct interaction of the landing gear with

the terrain.

3.3 Flight controls

The flight controls foreseen by the mathematical model are the standard ones of an

airplane, with rudder, aileron, and balancer controls, which are however mixed in a

transparent way to the pilot according to the flight mode. Moreover, there are the

classical flaps, brakes, and landing gear, but also the more particular collective and

nacelle position control commands.

The controls are specialized within the model for the XV-15 aircraft, with the

respective stroke values to be given in inches. In Table 3.1 can be read the values for

the main input controls, while in

Table 3.2 for secondary input controls.

3.3 Flight controls

55

Table 3.1: Main Controls Ranges

Direction
Longitudinal

[in]
Lateral

[in]
Pedal

[in]
Collective

Brake
(L, R)

- -4.8 -4.8 -2.5 0 0

+ +4.8 +4.8 +2.5 10 1

Table 3.2: Secondary Controls Ranges

Control Range Values

Flap 4 positions (equispaced 0÷1)

Parking Brake ON/OFF (Bool [0/1])

Landing Gear ON/OFF (Bool [0/1])

SCAS Switch ON/OFF (Bool [0/1])

3.3.1 Controls Normalization

Figure 3.28: Pilot Interface Block

To simplify the implementation of the simulator, to allow future upgrades or to

change the control peripherals, a block was added to the Simulink code to normalize

the command input values. Moreover, the normal peripherals return through the

Simulink blocks variable signals from -1 to 1 for the control axes, simplifying the

implementation. This normalization is carried out inside the block "Pilot Interface"

(visible in Figure 3.28) that contains all the code to produce the signals of input for

the mathematical model of simulation (Figure 3.29).

3.3 Flight controls

56

Figure 3.29: Normalization block - “IP XV-15 [norm]” detail

3.3 Flight controls

57

A separate discussion should be made for the throttle and engine nacelle posit ion

controls:

• For the throttle, the model must be provided with the RPM value required

from the governor. In the XV-15 aircraft this command is transparent to the

pilot and mixed with the position of the nacelles. The value therefore remains

fixed for each position angle and varies from a value of 589 RPM when the

rotors are vertical, up to 517 RPM in horizontal position (Figure 3.30).

Figure 3.30: NAC to RPM logic

• For the nacelles, the simulation model receives as input only a command to

move up or down. Given the hardware configuration of the simulator, it was

chosen, in the normalization block, to include a logic that allows the stroke to

be divided into steps, an easier method to not be forced to hold the buttons

down (Figure 3.31). The steps size can then be modified within the code at will

(15° for each step is the value chosen by the author).

With the same logic expressed in the function “buttonsToControls” (Par.

3.2.4), the actual value requested to the actuators to move the nacelles is fed

back to the MATLAB function “nac_IP2req”, to compare the pilot input to the

actual position (NAC input number 2 in Figure 3.31). At the last the error

signal is read by the function “nac_DIFF2act” to produce a movement input for

nacelles actuators (UP or DOWN) (full code functions respectively in Figure

A.5 and Figure A.6)

3.3 Flight controls

58

Figure 3.31: NAC control logic – “Stick Switches” block detail

3.4 Hardware

59

Figure 3.32: Simulink Primary Flight Display (PFD) Block detail

In the Pilot Interface Block there is also a block that integrates a simple Primary

Flight Display useful for displaying basic flight data, for command diagnostics and

aircraft response (Figure 3.32).

3.4 Hardware

The hardware is composed from a laptop on which it runs the simulation software

and the graphical environment at the same time. Given the modest computational

complexity of the model and the graphical environment, it has been chosen to use a

portable workstation, more than sufficient to run everything respecting the

requirements of latency provided by legislation for the input from hardware and the

updating frequency of the model and the graphical environment.

In addition to the laptop there are peripherals for the pilot to control the flight

commands. They consist of 2 commercial hardware components: the flight stick and

the rudder pedals.

3.4.1 Computer

As shown in Figure 3.33, the device on which run MATLAB and the simulation

environment is a Dell Precision 7550 laptop. This device is a workstation with

excellent computing power that provides the right performance to run the simulator.

3.4 Hardware

60

Figure 3.33: Dell® Precision 7550

3.4.2 Flight Stick

The flight stick is a ThrustMaster® product that consists of a lever that controls the

lateral and the longitudinal axes, and also has a longitudinal rotation axis that could

be used for rudder control, which however is delegated to the pedals. There are 15

buttons set as in the Figure 3.34 to set the positions of the undercarriage, flaps,

longitudinal trims, position of the nacelles. At the bottom is located the collective

lever, which allows to set the pitch of the blades, because the throttle is automatically

managed by the governor that sets the speed of the engine based on the position of

nacelles.

The main axes output is visible in Figure 3.35, in which can be seen that the

signals values follow the bipolar normalized logic explained in Par. 3.2.4.

Figure 3.34: ThrustMaster® T-16000

3.4 Hardware

61

Figure 3.35: Analog Input values demo

3.4.3 Rudder Pedals

Figure 3.36: CH Products Pro Pedals

The pedals allow precise control of the yaw command, which consists of a rudder

command or a differential cyclic command for the two rotors in helicopter mode. In

addition, individual pedals can be pressed to generate a separate brake command

located on the left and right landing gear.

62

Simulations and Results

In order to validate the quality of the simulation and demonstrate the real

truthfulness of the adjective real-time, many tests were carried out by the author, in

which the latency in terms of execution of the activities carried out by the blocks of

the SLDRT library was mainly evaluated.

The investigations were carried out by graphing and evaluating the results for

the values of "Missed Ticks" (1 Tick = 1 sample rate [s]) of the blocks sending and

receiving data with FlightGear and reading the hardware data. To retrieve the latency

information in terms of seconds, it was necessary to multiply the number of Missed

Ticks of each block by the sample rate set in the Simulink mask of that particular

block.

The next paragraphs then show graphs for the instantaneous latencies during the

simulation (latency over time) and the frequency of occurrence of the latency values.

In order for each test:

• Attitude in time

• 3D trajectory in time

• Latency [ms] + Occurrences from Sync Block

• Latency [ms] + Occurrences from UDP Receiving Block

• Latency [ms] + Occurrences from UDP Sending Block

4.1 Longitudinal Translation

63

4.1 Longitudinal Translation

Figure 4.1: Longitudinal Translation Test – Position in time

Figure 4.2: Longitudinal Translation Test – Attitude in time

From Figure 4.2 and Figure 4.1 it is possible to observe the manoeuvres and

trajectories carried out in the longitudinal translation test. The test consists of a

stationary take-off with the nacelles in a vertical position, which are then rotated to

perform a longitudinal translation, first forwards and then backwards. Once the

aircraft is stopped, a landing is performed with the nacelles upright near the starting

point.

In the figures below there are the results of the latencies and provided by the

Simulink blocks.

4.1 Longitudinal Translation

64

Figure 4.3: Longitudinal Translation Test – SYNC Block Latency

Figure 4.4: Longitudinal Translation Test – SYNC Block Occurrence

4.1 Longitudinal Translation

65

Figure 4.5: Longitudinal Translation Test – UDP rec Latency

Figure 4.6: Longitudinal Translation Test – UDP rec Occurrence

4.1 Longitudinal Translation

66

Figure 4.7: Longitudinal Translation Test – UDP send Latency

Figure 4.8: Longitudinal Translation Test – UDP send Occurrence

4.2 Hovering Near Ground

67

From Figure 4.3 and Figure 4.4 on the latencies of the SYNC block, it can be seen

that in the first few seconds of simulation there are small delays due to the start of

the simulation. After the simulation has settled down, it remains stable with some

sporadic ticks (here equal to 2.5 ms) in the synchronization of the model with the

processor clock.

From Figure 4.5 and Figure 4.6 could be appreciated the delay that the UDP

reception block presents when it is called to read the only input information, the

altitude of the terrain. As can be seen from the simulation, this process does not

involve any delay, and Simulink always manages to perform the operation in the

expected sampling period.

Finally, in Figure 4.7 and Figure 4.8 there are small delays at the beginning of the

simulation, as already indicated for the SYNC block. Once the simulation is started,

the delay is not zero, but 10 ms. This value corresponds to the delay induced by the

sampling rate of 100 Hz set for the UDP send block, since the operation is performed

at the end of the sampling period.

4.2 Hovering Near Ground

Figure 4.9: Hovering Test – Position in time

From Figure 4.8 and Figure 4.9 it is possible to observe the manoeuvres and

trajectories carried out in the hovering near ground test.

The test consists of a take-off with the positions of the nacelles vertical, which

remain so throughout the flight. The combined use of the cyclic and collective

commands allows the position to be maintained from a few metres above the ground.

4.2 Hovering Near Ground

68

In this test, ground effects are more evident and complicate the computational cost,

making the test interesting in terms of real-time maintenance.

Figure 4.10: Hovering Test – Attitude in time

In the figures below there are the results of the latencies and provided by the

Simulink blocks.

Figure 4.11: Hovering Test – SYNC Block Latency

4.2 Hovering Near Ground

69

Figure 4.12: Hovering Test – SYNC Block Occurrence

Figure 4.13: Hovering Test – UDP rec Block Latency

4.2 Hovering Near Ground

70

Figure 4.14: Hovering Test – UDP rec Block Occurrence

Figure 4.15: Hovering Test – UDP send Block Latency

4.2 Hovering Near Ground

71

Figure 4.16: Hovering Test – UDP send Block Occurrence

The considerations for the above figures remain the same as those made in Sect. 4.1.

This test was carried out to verify the maintenance of the simulation in real-time also

for situations in which the computational cost of the mathematical model can be

higher. This is because the rotors are close to the ground and the inflow evaluation

is more complex.

However the difficulty of added calculation does not seem to induce of the delays

much different from the previous test, index of the fact that the simulation model has

got an adequate computational cost to a modern portable.

Again for the send and receive blocks (Figure 4.13 and Figure 4.15), delays are

concentrated only at the beginning of the simulation, when Simulink has to start the

communication via UDP protocol and FlightGear requires more resources to start the

animation of the aircraft.

After the brief initial transient, however restricted in a few seconds, the

simulation proceeds without delays, if not sporadic peaks as visible in Figure 4.11,

which can be traced to a higher computational cost due to the fast manoeuvres that

are performed during the landing phase.

4.3 Take-Off + Conversion + Landing

72

4.3 Take-Off + Conversion + Landing

Figure 4.17: Conversion Test – Position in time

Figure 4.18: Conversion Test – Attitude in time

Figure 4.17 and Figure 4.18 show the trajectory and thus the overall flight performed

during the test. This consists of a vertical take-off followed by a conversion to

airplane mode by progressively turning the nacelles forward. After a turn to the right

the aircraft returns close to the initial position to land in helicopter mode.

In the figures below can be seen the results of the latencies and provided by the

Simulink blocks.

4.3 Take-Off + Conversion + Landing

73

Figure 4.19: Conversion Test – SYNC Block Latency

Figure 4.20: Conversion Test – SYNC Block Occurrence

4.3 Take-Off + Conversion + Landing

74

Figure 4.21: Conversion Test – UDP rec Block Latency

Figure 4.22: Conversion Test – UDP rec Block Occurrence

4.3 Take-Off + Conversion + Landing

75

Figure 4.23: Conversion Test – UDP send Block Latency

Figure 4.24: Conversion Test – UDP send Block Occurrence

4.3 Take-Off + Conversion + Landing

76

From Fig. 4.19 and 4.20 it is possible to observe how, after a delay due to the start of

the simulation, the average delay is null with sporadic peaks of 2.5 ms, equal to the

integration step. These peaks present during the simulation can have different

triggering factors, such as system processes that run in the background and require

higher priority resources than the real-time kernel, or the loading of the scenario

within FlightGear by means of the TerraSync utility. The utility in fact updates the

terrain database dynamically during the simulation, requiring system resources to

download data via the network and save them in memory. Constant access to the

computer's hard disk would explain the more distributed delays in the latter test

where, being a larger flight, a larger portion of the simulation environment is

exploited and may require intensive use of TerraSync.

From Fig. 4.21 and 4.22 can be seen that the delay is constantly null, a sign that

Simulink is able to read the information coming from FlightGear without problems.

Finally, Fig. 4.22 and 4.23 show that the delay in sending the information packet

to FlightGear is constantly 10 ms, i.e. at the end of the sampling period set in the

block.

77

Conclusions

5.1 Achievements

The purpose of this thesis work was to implement the mathematical model of

simulation, previously produced on Simulink, in an graphical environment of

simulation that consent the interaction with the system.

First of all the first obstacle has been to understand the operation of the

mathematical model in its entirety, identifying the main logical connections and the

assumptions and simplifications introduced in the models.

Once the Simulink model was studied, the attention moved to the understanding

of FlightGear software with regard to the XML and Nasal programming languages

that allow its operation and the transmission protocols that consent to interface with

the external simulation models. In addition, the use of open-source software has

allowed the learning and understanding of the methodologies of 3D reproduction of

a graphic environment, the use of textures applied to three-dimensional models and

the operation of a database for the reproduction of the terrain.

Being a real-time simulator, the main goal was to keep the latency of the

simulation low. This has been possible thanks to the Simulink libraries correctly set

up, that have allowed to maintain the maximum values of latency within those

required by the normative for a certified simulator (see chapter 4).

The completeness of the Simulink libraries combined with the versatility of the

FlightGear simulation environment has made this possible, not without difficulties

related to the implementation of the 3D model of the aircraft, its animations, and

interfaces between the two software including transmission protocols.

In conclusion the result is more than satisfactory and fulfills the main purpose of

having a flight simulator of a tiltrotor ready to use fore the aerospace deprtment of

Politecnico di Torino, for didactic and research purposes.

The writing of the thesis in a difficult moment like the global COVID19 pandemic

has limited the author's possibilities, but in spite of everything a very important

result has been achieved from a didactic point of view.

78

5.2 Future developments

This work provides a basis for further improvements that can be made to the

simulation model, as it allows the Simulink code to be tested with in-the-loop pilot

tests. In fact, performing tests with the pilot allows for standardized maneuvers and

tests to be made, that empirically assess the validity and accuracy of the simulation,

as well as the handling qualities and operation of the systems.

Several improvements could also be made in FlightGear, such as the actual

reproduction of the XV-15 aircraft with a 3D model designed ad hoc, the addition of

a realistic instrumentation that reproduces the one actually on board the XV15, but

also the simulation of the internal systems of the aircraft.

As far as hardware is concerned, it would be necessary to integrate a lever

collective control, if the aim was to better represent the XV15 aircraft operation, but

if the simulation model remains generic for any type of tiltrotor, even a throttle

collective control is correct for the simulator.

79

A S O F T WA R E C O D E

24 <!-- Attitude -->
25 <chunk>
26 <name>Roll</name>
27 <node>/orientation/roll-deg</node>
28 <factor>57.29577951</factor> <!-- converts from radians to deg -->
29 <type>double</type>
30 </chunk>

31 <chunk>
32 <name>Pitch</name>
33 <node>/orientation/pitch-deg</node>
34 <factor>57.29577951</factor> <!-- converts from radians to deg -->
35 <type>double</type>
36 </chunk>

37 <chunk>
38 <name>Yaw</name>
39 <node>/orientation/true-heading-deg</node>
40 <factor>57.29577951</factor> <!-- converts from radians to deg -->
41 <type>double</type>
42 </chunk>

43 <!-- Surface positions -->
44 <chunk>
45 <name>elevator-pos-norm</name>
46 <node>/surface-positions/elevator-pos-norm</node>
47 <type>double</type>
48 </chunk>

49 <chunk>
50 <name>Flap Pos [norm -1/1]</name>
51 <node>surface-positions/flap-pos-norm</node>
52 <type>double</type>
53 </chunk>

54 <chunk>
55 <name>right-aileron-pos-norm</name>
56 <node>surface-positions/right-aileron-pos-norm</node>
57 <type>double</type>
58 </chunk>

59 <chunk>
60 <name>left-aileron-pos-norm</name>
61 <node>surface-positions/left-aileron-pos-norm</node>
62 <type>double</type>
63 </chunk>

64 <chunk>
65 <name>rudder-pos-norm</name>
66 <node>/surface-positions/rudder-pos-norm</node>
67 <type>double</type>
68 </chunk>

69 <chunk>
70 <name>Tilt</name>
71 <node>/surface-positions/tilt</node>
72 <type>double</type>
73 </chunk>

Figure A.1: FlightGear UDP Protocol (2)

80

69 <!-- Engines -->
70 <chunk>
71 <name>RPM</name>
72 <node>/engines/engine[0]/rpm</node>
73 <type>double</type>
74 </chunk>

75 <!-- Landing Gear -->
76 <chunk>
77 <name>Gear Position</name>
78 <node>gear/gear[0]/position-norm</node>
79 <type>double</type>
80 </chunk>

81 <chunk>
82 <name>Gear compression front</name>
83 <node>gear/gear[0]/compression-norm</node>
84 <type>double</type>
85 </chunk>

86 <chunk>
87 <name>Gear compression left</name>
88 <node>gear/gear[1]/compression-norm</node>
89 <type>double</type>
90 </chunk>

91 <chunk>
92 <name>Gear compression right</name>
93 <node>gear/gear[2]/compression-norm</node>
94 <type>double</type>
95 </chunk>

96 <!-- Blade for sound -->
97 <!-- chunk>
98 <name>Blade flapping</name>
99 <node>/rotor/flapping</node>
100 <type>double</type>
101 </chunk -->

102 </input>

103 <output>

104 <binary_mode>true</binary_mode>
105 <!-- byte_order>host</byte_order --> <!-- host is default -->

106 <chunk>
107 <name>Ground elevation [m]</name>
108 <node>/position/ground-elev-m</node>
109 <type>double</type>
110 </chunk>

111 </output>

112 </generic>
113 </PropertyList>

Figure A.2: FlightGear UDP Protocol (3)

81

1 function [brake, flaps, lndGear, scasON] =

buttonsToControls(buttons, brakeState, flapsState,

lndState, scasState)

2 % Buttons

3 % buttons(1) - grilletto

4 % buttons(2) - zebrato

5 % buttons(3) - dorsale

6 % buttons(4) - bottone destro

7 % Blocks input until the button is released

8 persistent toggleFLAPS

9 if isempty(toggleFLAPS)

10 toggleFLAPS = 0;
11 end

12 persistent toggleGEAR
13 if isempty(toggleGEAR)
14 toggleGEAR = 0;
15 end

16 persistent toggleSCAS
17 if isempty(toggleSCAS)
18 toggleSCAS = 0;
19 end

20 %Use this if brake is ON/OFF
21 % brake = brakeState;
22 % if(buttons(1) == 1 && toggleBRAKE == 0)
23 % if brakeState == 1
24 % brake = 0;
25 % elseif brakeState == 0
26 % brake = 1;
27 % end
28 % toggleBRAKE = 1;
29 % end

30 %Use this if brake has to kept pressed
31 if(buttons(1) == 1)
32 brake = 1;
33 else
34 brake = 0;
35 end

Figure A.3: “buttonsToControls” MATLAB code (1)

82

36 flaps = flapsState;
37 if(buttons(4) == 1 && toggleFLAPS == 0)
38 flaps = flapsState + 0.2;
39 toggleFLAPS = 1;
40 end
41 if flaps > 1
42 flaps = 0;
43 end

44 lndGear = lndState;
45 if (buttons(2) == 1 && toggleGEAR == 0)
46 if lndState == 1

i. lndGear = 0;

47 elseif lndState == 0
i. lndGear = 1;

48 end
49 toggleGEAR = 1;
50 end

51 scasON = scasState;
52 if (buttons(3) == 1 && toggleSCAS == 0)
53 if scasState == 1

i. scasON = 0;

54 elseif scasState == 0
i. scasON = 1;

55 end
56 toggleSCAS = 1;
57 end

58 if buttons(4) == 0
59 toggleFLAPS = 0;
60 end
61 if buttons(2) == 0
62 toggleGEAR = 0;
63 end
64 if buttons(3) == 0
65 toggleSCAS = 0;
66 end

67 end

Figure A.4: “buttonsToControls” MATLAB code (2)

83

1 function NAC_req = nac_IP2req(NAC_IP, NAC_fb)

2 persistent toggle

3 if isempty(toggle)

4 toggle = 0;

5 end

6 NAC_req = NAC_fb;

7 if (NAC_IP == 1 && toggle==0) %NAC_IP up

8 NAC_req = NAC_fb + Par.FlightGear.NACstepLength; % +15;

9 toggle = 1;

10 elseif (NAC_IP == -1 && toggle==0 && NAC_fb == 95) %NAC_IP down

from 95

11 NAC_req = NAC_fb - 5;

12 toggle = 1;

13 elseif (NAC_IP == -1 && toggle==0) %NAC_IP down

14 NAC_req = NAC_fb - Par.FlightGear.NACstepLength; % -15;

15 toggle = 1;

16 end

17 if (NAC_IP ~= 1 && NAC_IP ~= -1)

18 toggle = 0;

19 end

20 if NAC_req < 0

21 NAC_req = 0;

22 elseif NAC_req > 95

23 NAC_req = 95;

24 end

25 end

Figure A.5: NAC input angle request function

1 function [CHUP, CHDN] = nac_DIFF2act(NAC_diff)

2 res = 0.1;

3 if NAC_diff < -res

4 CHUP = 1;

5 CHDN = 0;

6 elseif NAC_diff > res

7 CHUP = 0;

8 CHDN = 1;

9 else

10 CHUP = 0;
11 CHDN = 0;
12 end

Figure A.6: NAC difference to actuators signal function

84

L I S T O F F I G U R E S

Figure 1.1: Organization of a Flight Simulator [1] 2

Figure 1.2: Main purposes of flight simulators 4

Figure 1.3: Main Advantages of flight simulators 5

Figure 1.4: Real-Time frames [1] 8

Figure 1.5: XV-22 Osprey in different Flying Modes [2] 9

Figure 1.6: Range Comparison Between Bell 525 and Boeing V-22 [3] 10

Figure 1.7: Bell XV-3 in hovering near ground 10

Figure 1.8: Bell XV-15 in hovering near ground 11

Figure 1.9: Bell V22 Osprey in airplane mode [3] 12

Figure 1.10: MV-22 and CH-46 Combat Radius Comparison [5] 13

Figure 1.11: Bell V-280 in airplane mode (wiki) 13

Figure 1.12: AgustaWestland AW609 in airplane mode [6] 14

Figure 1.13: A3 Vahana in airplane mode 15

Figure 2.1: XV15 Tilt-Rotor Model Structure 16

Figure 2.2: Mathematical Model complete Structure [7] 19

Figure 2.3: Aircraft Body Reference System 20

Figure 2.4: Rotor Axes System 21

Figure 2.5: Geometric Reference System 21

Figure 2.6: The Geoid definitions 22

Figure 2.7: Oblate spheroidal model of the Earth 23

Figure 2.8: ECI and ECEF reference systems [9] 24

Figure 2.9: Geodetic coordinates of a Point 25

Figure 2.10: NED and ECEF reference system 26

Figure 2.11: Relationship between the time domain and the frequency domain 29

Figure 2.12: A continuous function f(t) and its sampling f(k) [10] 32

Figure 2.13: Tustin method – trapezoidal integration [10] 32

Figure 2.14: Simulator architectures nodes 33

Figure 2.15: UDP Packet structure 35

Figure 3.1: Software architecture 36

Figure 3.2: FlightGear running screenshot 37

Figure 3.3: Aircraft Instrumentation 38

Figure 3.4: Nacelles angle gauge texture 38

Figure 3.5: Nacelles gauge XML code 39

Figure 3.6: TerraMaster interface 40

Figure 3.7: FlightGear Launcher Script 41

85

Figure 3.8: FlightGear UDP Protocol (1) 42

Figure 3.9: Overall Simulink Model 43

Figure 3.10: Normal Mode processes scheme 44

Figure 3.11: Accelerator Mode processes scheme 44

Figure 3.12: Rapid Accelerator Mode processes scheme 45

Figure 3.13: CS-FSTD Specifications for Flight Simulator Training Devices [12] 45

Figure 3.14: Simulation Pace Block from Aerospace Toolbox [13] 46

Figure 3.15: Real-Time Sync Block and its Parameters 46

Figure 3.16: Analog/Digital/Other Input blocks form SLDRT library 47

Figure 3.17: Analog Input Block parameters 48

Figure 3.18: Packet data interface blocks from SLDRT library 49

Figure 3.19: Packet Output and Packet Input blocks Parameters 49

Figure 3.20: ThrustMaster USB Joystick Simulink Interface 50

Figure 3.21: “buttons to controls” function detail 51

Figure 3.22: Algebraic Loop example in Simulink 52

Figure 3.23: “POV to controls” function detail 52

Figure 3.24: “POVctrl” MATLAB code 52

Figure 3.25: Flight Gear Interface in Simulink 53

Figure 3.26: State Evaluation block detail 53

Figure 3.27: Flat Earth to LLA block from Aerospace Toolbox [15] 54

Figure 3.28: Pilot Interface Block 55

Figure 3.29: Normalization block - “IP XV-15 [norm]” detail 56

Figure 3.30: NAC to RPM logic 57

Figure 3.31: NAC control logic – “Stick Switches” block detail 58

Figure 3.32: Simulink Primary Flight Display (PFD) Block detail 59

Figure 3.33: Dell® Precision 7550 60

Figure 3.34: Thrustmaster® T-16000 60

Figure 3.35: Analog Input values demo 61

Figure 3.36: CH Products Pro Pedals 61

Figure 4.1: Longitudinal Translation Test – Position in time 63

Figure 4.2: Longitudinal Translation Test – Attitude in time 63

Figure 4.3: Longitudinal Translation Test – SYNC Block Latency 64

Figure 4.4: Longitudinal Translation Test – SYNC Block Occurrence 64

Figure 4.5: Longitudinal Translation Test – UDP rec Latency 65

Figure 4.6: Longitudinal Translation Test – UDP rec Occurrence 65

Figure 4.7: Longitudinal Translation Test – UDP send Latency 66

Figure 4.8: Longitudinal Translation Test – UDP send Occurrence 66

Figure 4.9: Hovering Test – Position in time 67

Figure 4.10: Hovering Test – Attitude in time 68

Figure 4.11: Hovering Test – SYNC Block Latency 68

Figure 4.12: Hovering Test – SYNC Block Occurrence 69

86

Figure 4.13: Hovering Test – UDP rec Block Latency 69

Figure 4.14: Hovering Test – UDP rec Block Occurrence 70

Figure 4.15: Hovering Test – UDP send Block Latency 70

Figure 4.16: Hovering Test – UDP send Block Occurrence 71

Figure 4.17: Conversion Test – Position in time 72

Figure 4.18: Conversion Test – Attitude in time 72

Figure 4.19: Conversion Test – SYNC Block Latency 73

Figure 4.20: Conversion Test – SYNC Block Occurrence 73

Figure 4.21: Conversion Test – UDP rec Block Latency 74

Figure 4.22: Conversion Test – UDP rec Block Occurrence 74

Figure 4.23: Conversion Test – UDP send Block Latency 75

Figure 4.24: Conversion Test – UDP send Block Occurrence 75

Figure A.1: FlightGear UDP Protocol (2) 79

Figure A.2: FlightGear UDP Protocol (3) 80

Figure A.3: “buttonsToControls” MATLAB code (1) 81

Figure A.4: “buttonsToControls” MATLAB code (2) 82

Figure A.5: NAC input angle request function 83

Figure A.6: NAC difference to actuators signal function 83

L I S T O F T A B L E S

Table 3.1: Main Controls Ranges 55

Table 3.2: Secondary Controls Ranges 55

87

B I B L I O G R A P H Y

[1] D. Allerton, Principles of Flight Simulation, John Wiley & Sons, 2009.

[2] D. Harris Franklin, Introduction to Autogyros, Helicopters, and Other V/STOL,

NASA, 2015.

[3] Bell Textron Inc., [Online]. Available: https://www.bellflight.com/. [Accessed 9

September 2021].

[4] S. W. Ferguson, A Mathematical Model for Real Time Flight Simulation of a Generic

Tilt-Rotor Aircraft, 1988.

[5] GAO, «Assessments Needed to Address V-22 Aircraft Operational and Cost

Concerns to Define Future Investments,» Report to Congressional Requesters, 2009.

[6] Leonardo S.p.A., “Leonardo Products,” [Online]. Available:

https://www.leonardocompany.com/it/products/aw609. [Accessed 11

September 2021].

[7] A. Abà, MA Thesis, Implementation of a comprehensive real-time simulation model of

a tilt-rotor aircraft.

[8] F. Lleshi, Master Degree Thesis, Validation of a XV-15 Tilt Rotor Aerodynamic

Database.

[9] M. S. Grewal, L. R. Weill and A. Andrews, “Global Positioning Systems, Inertial

Navigation, and Integration,” II ed., Wiley-Interscience, 2007.

[10] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic

Systems, VII ed., Pearson, 2014.

[11] “Flight Gear Info,” [Online]. Available: https://www.flightgear.org/. [Accessed 26

August 2021].

[12] EASA, Certification Specifications for Airplane Flight Simulation Training Devices, CS-

FSTD(A).

[13] “MathWorks Help Center, Aerospace Blockset,” [Online]. Available:

https://it.mathworks.com/help/aeroblks/simulationpace.html?searchHighlight=

simulation%20pace&s_tid=srchtitle. [Accessed 27 August 2021].

[14] “MathWorks Help Center, Algebraic Loops,” [Online]. Available:

https://it.mathworks.com/help/simulink/ug/algebraic-loops.html. [Accessed 06

09 2021].

[15] “MathWorks Help Center, Flat Earth to LLA,” [Online]. Available:

https://it.mathworks.com/help/aeroblks/flatearthtolla.html. [Accessed 6

September 2021].

[16] MathWorks, Simulink® Desktop Real-Time™ User's Guide 2021a.

88

[17] “MathWorks Help Center, How Acceleration Modes Work,” [Online]. Available:

https://it.mathworks.com/help/simulink/ug/how-the-acceleration-modes-

work.html. [Accessed 6 September 2021].

[18] MathWorks, Simulink® Desktop Real-Time™ Reference 2021a.

[19] NASA, XV-15 Manual, Moffet Field, California, 1975.

[20] D. M. Maisel, J. D. Giulianetti and C. D. Dugan, The History of the XV-15 Tilt Rotor

Research Aircraft, National Aeronautics and Space Administration, 2000.

[21] S. Godio, MA Thesis, Multi-purpose rotor model for a real-time flight simulator, 2019.

[22] F. Barra, MA Thesis, Development of a tilt-rotor model for real-time flight simulation,

2018.

[23] M. R. Spiegel, Schaum's Outline of Laplace Transforms, McGraw-Hill, 1965.

[24] B. L. Stevens and F. L. Lewis, Aircraft Control and Simulation, Hoboken, New Jersey:

Jhon Wiley & Sons, 2003.

[25] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, VII ed.,

Pearson, 2017.

[26] G. Seeber, Satellite Geodesy, II ed., New York: Walter de Gruyter, 2003.

89

A C K N O W L E D G M E N T S

Il percorso per il conseguimento della laurea è stato lungo faticoso, fatto di grandi

soddisfazioni, ma anche grandi difficoltà. La distanza, lo studio, le responsabilità

personali sono stati scogli da superare per la mia crescita professionale ma

soprattutto per la mia crescita umana.

Sarebbe stato impossibile portarla a termine senza il supporto della mia famiglia,

dei miei genitori e fratelli, degli amici tutti, che in questi anni sono diventati la mia

famiglia e il mio punto di riferimento.

Un sentito ringraziamento va alla mia fidanzata Ambra, che mi ha trovato alla

deriva nel mare della vita e mi ha insegnato a guardarmi intorno per capire che non

ero solo. Mi ha sempre dato l'affetto di cui avevo bisogno, nonostante le mie paure,

le mie preoccupazioni, ma anche la forza e la determinazione per non fermarmi mai.

Ringrazio il professor Giorgio Guglieri, per la possibilità di aver approfondito un

argomento come la simulazione del volo che spero possa diventare il mio lavoro. Un

ringraziamento va anche al dottor Federico Barra, per la disponibilità e l'aiuto nella

stesura di questa tesi.

The path to graduation was long and tiring, made of great satisfaction, but also great

difficulties. The distance, the study, the personal responsibilities have been obstacles

to overcome for my professional growth but especially for my human growth.

It would have been impossible to complete it without the support of my family,

my parents, and brothers, and all my friends, who over the years have become my

family and my point of reference.

A heartfelt thanks goes to my fiancée Ambra, who found me adrift in the sea of

life and taught me to look around me to understand that I was not alone. She always

gave me the affection I needed, despite my fears, my worries, but also strength and

determination to never stop.

I would like to thank Professor Giorgio Guglieri, for the opportunity to have

deepened a topic such as flight simulation that I hope will become my job. Thanks

also to Dr. Federico Barra, for his kindness and help in writing this thesis.

	1 Introduction
	1.1 Flight Simulators
	1.1.1 Purposes of Flight Simulators
	1.1.2 The importance of Flight Simulators
	1.1.3 Flight Simulator Standards
	1.1.4 Real-Time simulation

	1.2 Tilt-Rotors
	1.2.1 Growing interest in Tilt-Rotors
	1.2.2 Bell XV-3
	1.2.3 Bell XV-15

	1.3 Tilt-Rotors - Military and Civil developments
	1.3.1 V-22 Osprey
	1.3.2 Bell V-280 Valor
	1.3.3 AgustaWestland AW609

	1.4 Electric Tilt-Rotors

	2 Mathematical Model
	2.1 Tilt-Rotor model
	2.1.1 Inputs
	2.1.2 Flight Control Computer – FCC
	2.1.3 Actuators
	2.1.4 Physics
	2.1.5 Equations of Motion – EoM
	2.1.6 Data Exchange

	2.2 Reference systems
	2.2.1 Geodesy and Coordinate Systems
	2.2.2 Latitude and Longitude
	2.2.3 Geocentric and Geodetic coordinates
	2.2.4 North-East-Down reference system
	2.2.5 Earth’s radii of curvature
	2.2.6 Flat Earth to LLA reference transformation

	2.3 Solving Differential Equations
	2.3.1 Laplace Transform Properties
	2.3.2 Laplace and steady-state
	2.3.3 Z-transform

	2.4 Communication Protocols
	2.4.1 UDP – Universal Datagram Protocol
	2.4.2 UDP Packet structure

	3 Simulation Environment and Architecture
	3.1 FlightGear
	3.1.1 Aircraft Reproduction
	3.1.2 TerraSync & TerraMaster
	3.1.3 How to launch FlightGear
	3.1.4 Simulink Interface

	3.2 Simulink
	3.2.1 Simulink Acceleration
	3.2.2 Real Time Simulation
	3.2.3 SLDRT - Simulink® Desktop Real-Time™
	Real-Time Sync block
	Input blocks
	Packet Input and Packet Output blocks
	3.2.4 Hardware Interface in Simulink
	3.2.5 FlightGear Interface

	3.3 Flight controls
	3.3.1 Controls Normalization

	3.4 Hardware
	3.4.1 Computer
	3.4.2 Flight Stick
	3.4.3 Rudder Pedals

	4 Simulations and Results
	4.1 Longitudinal Translation
	4.2 Hovering Near Ground
	4.3 Take-Off + Conversion + Landing

	5 Conclusions
	5.1 Achievements
	5.2 Future developments

