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Abstract

Flight simulators for pilot training are constantly evolving, and their role in the training
process is becoming increasingly important. The synthetic environment is used during
the initial phases of training, in familiarisation with the aircraft, and then maintains
its importance in the subsequent phases, culminating in training for mission-critical and
safety-critical procedures. The simulation devices, although having different levels of
complexity, realism and fidelity compared to the real aircraft, are linked by a common set
of standards and requirements, coming from the designated National and Supranational
Authorities, which must be met to allow the certification of simulators. This suitability is
also demonstrated through objective tests that link the behaviour of the simulated aircraft
within the synthetic environment with the real aircraft performances, by comparing flight
manoeuvres accomplished in the simulator with the same manoeuvres recorded in flight.
This tests, named QTGs (Qualification Test Guide), are executed by a software model and
normally take a lot of time due to the difficulty in tuning the gain of the control system
embedded in the software.

Hence, the main goal of this project is to develop an automatic control system, to be
used during the validation tests of a helicopter flight simulator, which is able to faithfully
replicate the behaviour of the pilot and which is able to auto-tune, through an automatic
process, in order to reduce the time required for the definition and execution of the tests,
lowering the man-time currently required by the process and consequently reducing costs.

This goal was achieved starting from a state-of-the-art analysis to understand the to-
day environment in auto-tuning control system and to find the more suitable solution
for this project. Then, the next step consisted in studying the helicopter flight model, in
particular the MathPilot section that is the core part analysed during this work, to figure
out the context in which the model would be implemented. Consequently, the modelling
section began using a dedicated calculation environment. Hence, it followed a part of
analysis in which the correct performances of the model were verified. Finally, the project
ended with conclusions and some considerations on the whole project.

This work was developed in a model-based environment that runs together with the
helicopter simulation model in order to perfectly integrate itself in its loop.
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Chapter 1

Introduction

The use of flight simulators is constantly growing in the last few years, indeed simulation
plays a key role in all levels of aviation. It is adopted to limit and solve a wide range of
different and heterogeneous issues including training, operations, initial and continuing
airworthiness, the environment and innovation. According to the Furopean Union Aviation
Safety Agency - FASA, training is considered both an opportunity and a risk because the
amount of fatal accidents occurred during training flights corresponds to the 15-20% of the
total crashes, especially during helicopter training. Thanks to the exponential growth of
technologies and software application in the field of aviation, simulation is the answer to
reduce those risks and to improve safety in rotorcraft applications. In fact, it is possible to
identify the following benefits provided by the Flight Simulation Training Devices (FSTDs):

[1]

o Safety: thisis a core value throughout the aerospace world. The training environment
in simulators is designed and controlled to avoid actual safety risks for both the
trainees and instructors. This context allows a trainee to make mistakes and errors
in a safe condition, learning from them through a review of his performances after
the simulated flight, and repeat normal and emergency procedures, which could not
be suitable or without risks when performed in a helicopter.

o Emergency and Procedure Training: thanks to the FSTD’s flexibility a trainee
has also the opportunity to simulate and deal with complex and dangerous scenarios,
practicing specific emergency procedures. In fact, the FSTD with a sufficient fidelity
level can be used to train emergency procedures, different manoeuvres and flight
regimes like Degraded Visual Environment, Vortex Ring, Autorotation, etc. Moreover,
the National Transportation Safety Board - NTSB, investigating several helicopter
accidents, demonstrated that if pilots had acquired more knowledge and skills through
the use of certified simulators, they would certainly have been better able to handle
in-flight emergencies and avoid mistakes during manoeuvres.

o Experience of Realism: using flight simulators allows the trainee to experience
a realistic and effective training, including the startle management, the practice of
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diagnostic processes and troubleshooting procedures in a safe context where it is
possible to learn from own mistakes;

o Availability and Serviceability: another benefit provided by FSTD is certainly its
twenty-four hour availability throughout the week. Moreover, it is possible to avoid
problems such as delays due to traffic congestion, in flight conditions (Day/Night,
etc.) or icing conditions leading to a serviceability typically of 96-98%;

« Economic Benefits: it is a faster and more cost-effective solution, especially for
complex helicopter types in a multi-crew context. Nevertheless, the helicopter is
available to be used for revenue generating flights, while pilots are training on the
FSTD;

e Environmental Benefits: this benefit include lower emissions, a lower carbon
footprint, zero noise pollution and minimal impact on the local area particularly
during night time.

However, flight simulators have different levels of complexity, realism and fidelity with
respect to the real aircraft. They must satisfy a set of standards and requirements imposed
by the National and Supranational Authorities, which must be met to allow the certification
of simulators as suitable for use in training. This capability is also demonstrated through
objective tests that link the behaviour of the simulated aircraft with the real aircraft
performances, by comparing flight manoeuvres accomplished in the simulator with the
same recorded in flight. This tests, named QTGs (Qualification Test Guide), are executed
by a software model and normally take a lot of time due to the difficulty in tuning the
gain of the control system embedded in the software. The activity of tuning this controller
is carried out by experienced technicians and is usually time-consuming, in proportion
to the number of tests. In this context, this thesis project was carried out at the TXT
e-Solutions, that is a developer of simulator software, working especially with helicopters.

Thesis goal The main goal of this project is to develop an automatic control system, to
be used during the validation tests of a helicopter flight simulator, which is able to faithfully
replicate the behaviour of the pilot and which is able to auto-tune. This should be an
automatic process, in order to reduce the time required for the definition and execution of
tests, lowering the man-time currently required by the process and consequently reducing
costs. The requirements of this project are:

1. the structure of automatic control systems in use should be studied;

2. it is required to design control systems that can increase the efficiency of the testing
process, based on available literature. They can be developments of current models
or ex-novo redesigns of them;

3. the solutions studied must be implemented within the TXT simulation environment,
under real-time simulation constraints;

4. possible auto-regulation processes of the designed control systems should be defined;

2



Introduction

5. it is required to evaluate the performance of the developed controller and identify
improvement areas.



Chapter 2

Problem analysis

The first step taken in the thesis work development at TXT e-Solutions was to understand
how their flight simulator code works. As mentioned in the previous chapter, because the
project objective is to optimise and speed up the process of tuning the controllers’ gains
during tests, learning the functioning of the code was absolutely essential to understand
how to structure the analysis of the optimisation algorithms state-of-the-art, which will be
shown in the following section.

2.1 MathPilot analysis

The TXT simulation software is extremely complex and divided in several parts working in
different periods of the simulation. In particular, it was observed that the least optimised
code part is the so-called MathPilot section. This part is linked to the stabilization process
during the simulation before the starting of QTG tests. In fact, before such tests can be
carried out to verify the reliability of the simulator, the helicopter must be in a stable
condition. To do this, different loops are used, called MathPilot, which aim is to simulate
the action on commands that the pilot would perform to stabilise the helicopter. Since
the QTG tests are numerous and different (e.g. static, dynamic, etc.) then the code must
be also able to replicate various actions that the pilot will have to perform to stabilise
the aircraft; for this reason, there are twenty-six different MathPilot blocks within the
TXT code. These are implemented in the C++ language and are defined using special
classes. The inputs received by these blocks are the reference values that they must follow,
which can be for example an horizontal speed (MathPilot HcCAs), a pitch angle value
(MathPilot Pitch), an angular roll rate (MathPilot Roll Rate), etc., and also the limit
excursion values that the controlled variable can assume. Furthermore, what became
evident from the code analysis was that, despite the numerous and varied MathPilots that
have been implemented, in the end, their functioning can be summarized in the following
two architectures:

« a single loop architecture based on a single PID controller directly controlling the
value given by reference;
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e a double-loop architecture that receives as input a certain reference value on a
different variable than the one to be controlled at the end of the loop. This variable is
controlled with a first PID controller that returns a value as output that corresponds
to the input of a second PID controller. This second controller, on the other hand,
outputs the value controlled on the main variable in question.

What differentiates one MathPilot from another are the variables that can be controlled
(speed, angles, angular rates, torque, etc.) and the output commands that are actuated to
stabilize the aircraft (longitudinal cyclic, lateral cyclic, collective, pedal). Therefore, the
core part in all of these architectures is the PID controller that will be deeper explained in
the following section.

2.1.1 MathPilot HcCAS

To better understand how these blocks actually works, the MathPilot HcCas was chosen as
the reference one. In particular, its aim is to follow a horizontal speed given as reference
in terms of Calibrated Air Speed (CAS). This block receives a reference velocity profile as
input and provide the angle of the longitudinal cyclic as output through a double PID
architecture. As shown in Fig. 2.1, this loop is defined as a C++ class. The structure of
this block is therefore described below:

1. As can be seen from Fig. 2.1, the MathPilot HcCAS architecture begins with an
initialisation of the main parameters used:

CAS__reference: the Calibrated Air Speed value that must be followed. It is the
input of the first PID loop read from a file or given by the code itself;

o pitch_reference: the pitch value set as reference obtained as an output of the
outer loop and given as input to the inner loop;

o PITCH MIN: the minimum value of pitch angle to achieve the desired CAS;

o PITCH MAX: the maximum value of the pitch angle to achieve the desired
CAS;

e walue: it is the output of this MathPilot;

e pitch_reference__actual: this is the actual value of the helicopter pitch angle, it
is necessary for the successful implementation of the loop.

2. After the parameters initialization, the time series of the reference CAS is then
assessed, as this choice depends on the type of test to be carried out. As shown in
Fig. 2.1 it is possible to load a value from a file, keep the current value of the aircraft,
set a square wave reference, etc. Only the initial part of this calculation is shown in
Fig. 2.1, due to company constraints.
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double MathPilot::MathPilot HcCas(const double dt)
{

double value = 0.8; Parameter
double CAS_reference = 0.0; initialization
double pitch_reference = 0.0;

double pitch_reference_actual = 0.0;

double PITCH_MIN = -25; //Minimum Pitch to achieve desired CAS
double PITCH_MAX = 25; //Maximum Pitch to achieve desired CAS

if (1 == mathPilotH(Data.rolePlayInProgress)
{

PITCH_MIN = pidPar.speedPitchLimited_outerLoopMinLimitation;//mathPilotSetting.outerLoopMinLimitation; //Minimum Pitch to achieve desired CAS
PITCH_MAX = pidPar.speedPitchLimited_outerloopMaxLimitation;//mathPilotSetting.outerLoopMaxLimitation; //Maximum Pitch to achieve desired CAS

}
switch(mathType.mathPlt_HcCasType)

case attMathPltCtrlType_refFile:
if(casRefFromFlightTest != NULL 8 casRefFromFlightTest->samples != NULL & casRefFromFlightTest->samples->size() > @)

CAS_reference = casRefFromFlightTest->samples->front();

casRefFronFlightTest->samples->erase(casRefFronFlightTest->samples->begin()); Definition of the CAS
i reference value
else
{
status.mathPlt_hcCas = false;
}
break;

case attMathPltCtrlType squarelave:
CAS_reference = squareWave(currentVal.cas + refVal.mathPlt_casRefValue, 10, dt);
break;
case atthathPltCtrllype refValue:
CAS_reference = refVal.mathPlt_casRefValue;
break;

Figure 2.1: MathPilot HcCas extract - parameter initialization

3. Then the value of the reference CAS is compared with the value of the horizontal
speed that the helicopter has at the moment of the simulation launch within the
function PIDEnhanced, that will be better explained in the following chapter. This
is the outer loop PID controller, which aim is to feed the second PID, not controlling
directly the CAS, but the pitch angle. Its initialization is shown in Fig. 2.2. Therefore,
the output of this function is the pitch reference.

pitch_reference = PIDenhanced(-mathPilotHC(Data.mathPilln_cas,
-CAS_reference,
dt,
mathPilotGain.HC_CAS_Kp,
mathPilotGain.HC_CAS_Ti,
mathPilotGain.HC_CAS_Td,
mathPilotGain.HC_CAS_alpha,
gamma,
pidPar.pitch_u_n_1,
pidPar.pitch_ep_n_1,
pidPar.pitch_edf_n_2,
pidPar.pitch_edf_n_1,
PITCH_MIN,
PITCH_MAX,
1,
4,
0.025);

Figure 2.2: MathPilot HcCAS - PID outer loop

4. To obtain the command value in terms of longitudinal cyclic, a second PID controller
is adopted, which receives as input the value of the reference pitch obtained from the
previous block.
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value = PIDenhanced(mathPilotH(Data.mathPilIn_pitch,
pitch_reference,
dt,
mathPilotGain.HC_CAS_innerLoop_Kp,
mathPilotGain.HC_CAS_innerlLoop_Ti,
mathPilotGain.HC_CAS_innerlLoop_Td,
mathPilotGain.HC_CAS_innerLoop_alpha,
gamma,
pidPar.lon_u_n_1,
pidPar.lon_ep n_1,
pidPar.lon_edf_n_2,
pidPar.lon_edf n_1,
DCR_LONGITUDINAL _MIN,
DCR_LONGITUDINAL_MAX,
8,
e,
0.025);

Figure 2.3: MathPilot HcCAS - PID inner loop

So, as can be seen from this analysis, the key function of MathPilots is the PID controller,
which is simple in its operation, but complicated in defining the optimum gain parameters
for it to work properly.

2.2 PID Controller

The PID controller is a control algorithm with a predefined structure consisting mainly
of three terms: proportional, integrative and derivative. Its analytical structure can be
represented by:

u(t) = K (e(t) + ; [ ety + Tdded(f)) (2.1)

which in Laplace’s domain corresponds to:

U_K(1+1+3Td>E (2.2)
1;
where u(t) is the command value (the output of the PID controller), e(t) correspond to the
error, T; the integral time constant, Ty the derivative time constant and K the proportional
gain. The equation 2.2 can be also written in the following expression, where the integral
K;, derivative K; and proportional K, gains are highlighted:

_ K, _
b - (Kp F de) E (2.3)

The PID controller goal is to provide an output command w(t) that is function of the
error e(t) between a given reference value 6,.¢ and the actual measure of the same signal 6.
This makes it possible to cancel out this error and thus allow the system to evolve exactly
as one would wish it to develop. To achieve this goal, PID controller exploits the three
different contribution already mentioned providing the following benefits:

e The proportional contribution links input and output through a proportionality
coefficient K, called proportional gain. This allows to provide a corrective action
to the error, the faster the greater the gain, lowering, however, the stability of the
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system. In fact, by increasing K, the system response becomes faster but more
unstable, characterised by higher overshoots and oscillatory phenomena in the initial
instants. In addition, if a purely proportional controller were used, it would be found
that it is characterised by a static error at steady state in the case of step input and
that, due to the instability phenomena that arise beyond a certain limit of K),, it is
not possible to control the system with the single action of this contribution. For
this reason, the integrative contribution was introduced.

o The integrative contribution indeed allows to cancel the steady error between
reference and measured value. It can be seen that the integrative contribution
increases when 0,y — ¢ > 0, while it decreases when the error is negative and it
becomes equal to zero when the positive and negative contributions are equal. This
is very important to take into account when modelling a PID controller as the above
phenomenon can cause problems with the operation of the controller related to the
wind-up phenomenon. Increasing the integrative contribution degrade the stability of
the system. Given the negative effect on the system of the increase in the proportional
and integrative contribution, a derivative effect is also introduced in this controller.

e The function of the derivative contribution is to increase the rapidity of the
controller’s response to possible error variances. In fact the derivative effect allows to
anticipate the corrective action of the PID and therefore providing a more immediate
and fast response. In fact, by definition, the derivative increases proportionally to
the speed of variation of its argument (in this case of e(t)); so, in the case of a step
input, the derivative action has the task of chasing the error and correcting it quickly.
In practice, the derivative term damps the oscillations around the reference value.
Finally, providine a filter to the derivative is essential in order to avoid possible
amplification of disturbances.

Set-Point

T Intamral )
Integral
_> t

Error_Value ImmzKi{ e(t)dv
- o v

Control

e~ = 2=
Derivative
—>
D —Kddz(tt)

D_term

term
New_Feedback_Value

Figure 2.4: PID Controller scheme

Comments The PID controller scheme represented in Fig. 2.4 is the most simple
structure that can be implemented in a control system. However, already in this example,

8
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it is possible to observe that in order to obtain a system response that is optimal and
conforms to requirements, it is necessary to find the correct combination of controller gain
values K, Kq and K;. This process is exactly the problem that was highlighted in the
Introduction section 1, which is time-consuming and therefore leads cost increases and
inefficiency in the validation process of the simulator code. This is even more difficult and
costly when using a more complex PID controller like the one implemented in the TXT
simulator, where more parameters must be tuned.

2.2.1 TXT PID controller

The PIDEnhanced function, introduced during the description of the MathPilot HcCAS,
follows the PID logic described in the previous section. Furthermore, in order to guarantee
a better response it is written in a more complex structure where more parameters are set.
Because of the key role that this element played in the development of the thesis project,
the PID algorithm currently implemented by TXT is now described. In particular, it is
written in C4++ language and it follows the algorithm shown below.

Firstly, error err, proportional error err, and derivative error erry are defined as fol-
lows:

errp(n) = B -ref(n) —y(n) (2.4)
err(n) =ref(n) —y(n) (2.5)
errg(n) = -ref(n) —y(n) (2.6)

where ref is reference value, y is measured value and 3, v are two parameters to be tuned.
It is also relevant to observe that this description is always referred to a discrete-time logic
in which n is the considered time instant.

Then, the filtered derivative error errg, (n) is defined, including another parameter called
a:

Ty=a- Ty (2.7)
errqg,(n —1) errd(n)?s
5 (n —
errq,(n) = Tf + 7 ! (2.8)
—+1 —+1
Ty Ty

where Ty is the sample time of the simulation, T} is the derivative time constant and 717 is
the filtered time constant defined in equation 2.7.

The next step corresponds to the definition of incremental command Au(n):
Au(n) = Kp |(errp(n) —errp(n — 1)) + Ee?"r(n) + La
T; Ts

9
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where T; is the integral time constant and K, is the proportional gain. It is possible to
observe that values referred to previous time instants are present in the equation 2.9. Their
modelling in a Simulink environment will be shown in the following chapters.

Before computing the absolute output u(n), the incremental output Au(n) is checked
through the anti wind-up filter to avoid disturbances amplifications. The filter is
implemented as follows:

{Au(n) = Umae — u(n — 1) if (Au(n) > tmaz — u(n — 1)) (2.10)

Au(n) = Upmin — u(n — 1) if (Au(n) < Umin — u(n — 1))

where U;q, and Uy, are the two physical limits that the command can be assume de-
pending on which kind of helicopter is considered.

Finally, the absolute output command wu(n) is computed through the following equa-
tion:

u(n) = u(n — 1) + Au(n) (2.11)

Comments It is clear that there are more parameters in this PID algorithm than in the
standard literature example. In fact, this allows to a more detailed control on the dynamic
of the controller, but this means more time spent in tuning to find the best combination
for these parameters. Therefore, the main goal of this project is now clear. This is finding
an auto-tuning method to implement in the TXT code that is able to calculate the best
combination of the PID parameters already mentioned:

aaﬁy% Kp7E7Td

Hence, a state-of-the-art analysis on the auto-tuning methods for controllers is now
addressed.

2.3 State-of-the-art analysis

Proportional Integral and Derivative controllers have been used in industrial control
applications for a long time and lots of industries nowadays still use this kind of controller,
despite it is a simple technology used for a long time. It is possible to find several different
types of techniques applied for PID tuning, of which one of the first was the Ziegler Nichols
technique. These tuning methods can be broadly classified as classical and computational
or optimization methods. [2]

2.3.1 Classical Techniques

Classical techniques are based on the concept to make particular assumptions about the
plant and the desired output, trying to obtain analytically, or graphically some peculiarities
of the process that is then used to decide the controller settings. The classical methods
are simple to implement and computationally very fast, and work well as a first iteration
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for the tuning process. Because of the assumptions made, the controller settings usually
do not return the desired results directly and further tuning is required. The most famous
methods are Ziegler-Nichols Method and Cohen-Coon Method.

Ziegler-Nichols Method The Ziegler-Nichols Method, proposed by John Ziegler and
Nathaniel Nichols in 1942 is nowadays the most famous tuning method adopted in industrial
applications. It is still a simple, fast and effective PID tuning method. This technique
includes two different methods to obtain PID gains: [3]

1. The first one is shown in Fig. 2.5 and assigns a step disturbance to the system, and

some specific variables are then measured on the step response: the delay 7, the

amplitude 7" and the process static gain y = %.

Ay

j [A u
T
Figure 2.5: Ziegler-Nichols method

Then it is possible to obtain the PID gains through the expressions shown in Th. 2.1.

K, T, Ty
P T
T
R
PID 1;)27T 2r b7

Table 2.1: Ziegler-Nichols PID gains expression

2. The system response to specific frequencies is the main feature of the second Zieglers-
Nichols method. In fact, the controller gain parameters can be obtained on the most
critical frequency points for stability, that can be found by increasing the proportional
gain of the controller, until the system becomes marginally stable. The gain is defined
as K, and T), is the time period. The PID parameter expressions are given in [3].
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These techniques are simple and fast but their response is not optimized because the
controller settings derived are rather aggressive and thus result in excessive overshoot and
oscillatory response. So, they are usually adopted as a first iteration in the PID gain
setting.

Cohen-Coon Method This method is similar to the Ziegler-Nichols technique. It is
based on a step disturbance assignment to the system and a consequent evaluation of the
variables 7, T and pu = %. In this case the PID gain expressions are shown in Tab. 2.2.

K, T; Ta
3T+1
p 3ut
PI 10.8T+1 307T+307
1615 Sorhtr ar
+37 +67 T
PID 1207 2T 3T4sr  TiT3or

Table 2.2: Cohen-Coon gains expression

Despite this method assesses a better model, the results of Cohen-Coon are not much
better compared to the Ziegler Nichols method.

2.3.2 Computational or Optimization Techniques

These methods are usually adopted for data analysis or cost functions optimization, but
they are also becoming increasingly important for PID tuning, using techniques like neural
networks, differential evolution and genetic algorithm. In particular, computational models
are used for auto tuning or self tuning of PID controllers. This means that computational
or optimization techniques set the PID parameters and describe the system dynamic by
using some computational models. Then they compare the outputs coming from the real
system and the model, to highlight if there are any process variations. In this case, the
desired response is achieved thanks to a reset of PID parameters, in fact the controller
is able to compensate these possible variations by automatically adapting its parameters.
There are two possible solutions to achieve these goal linked to the two types of process
dynamic variations: unpredictable and predictable. The most commonly used approach to
deal with predictable variations is the gain scheduling. In this method, different controller
parameters are found and scheduled for different operating conditions thanks to an auto-
tuning process. There are several algorithms found in literature, that are adopted to
implement computational and optimization techniques.

Genetic Algorithm The Genetic Algorithm is a specific algorithm that investigates
the search space in a similar way to nature’s evolution. These methods are commonly
adopted to provide high-quality solutions to optimization and search problems by relying
on biologically inspired operators such as mutation, crossover and selection. They leverage
on probabilistic rules to search the most suitable solution for a given problem, using a cost
function to analyze its fitness. The genetic algorithms follow the flowchart presented in
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Fig. 2.6. [4]

| Tnitialize Population |

v
| Measure fitness |<7

| Selection |

v

| Mutation |

¥
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I Not optimum

2 .
solutions
| Optimum solutions |

Figure 2.6: Genetic Algorithm flowchart

Nowadays it is possible to find lots of different application of GA in PID auto-tuning
processes. However, it is a complex algorithm to be implemented in TXT code, due to
its difficult integration and its high computational cost for a such structured program as
TXT code.

Artificial Neural Networks The Artificail Neural Networks (ANN), also named Neural
Networks (NNs), are computing systems inspired by the biological neural networks that
constitute animal brains. This biological neural network is represented by interconnected
group of processes information and artificial neurons, using a connectionist approach to
computation. They are adaptive systems that change their structure based on external or
internal information that flows through the network during the learning phase. A possible
application in control theory is shown in Fig. 2.7. [5]

w(i)

> (E >
PID ]
optimization u(i)

wik) L

Neural Ym! (J )
Model

L0

J=k k+1,...N-1

Figure 2.7: ANN controller flowchart
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These methods have a great potential, but these are still scarcely used in control systems
today because of some inherent drawbacks such as the number of layers and the numbers
of neurons per layer that are often hard to be determined.

Fuzzy Logic Fuzzy Logic Control (FLC) is one of the possible interfaces between artificial
intelligence and control engineering. This fuzzy logic can be applied on PID controller
allowing to vary its parameters according to the change of the signals error. The core part
of this auto-tuning method is the fuzzy rule that must be adopted and depends on the
kind of plant to be controlled and practical experience. In particular, it is difficult to apply
this technique to an integral rule, leading to a not optimal solution in PID applications.
The scheme of a fuzzy-tuned PID controller is shown in Fig. 2.8. [6]

Referenge Fuzzy K,. K. Kq
Inference
=p  d/dt |
Qutput
»| PID controller » Plant T;P
7

Figure 2.8: Fuzzy PID scheme

2.4 Comments

It can be seen that both the classical techniques and the computational and optimisation
methods analysed so far have important limitations for the main objective of this thesis
project. In fact, the writing of a code that follows these control logic is in one case not
optimal, as for the classical techniques, while in the other it would be too complex and
difficult to integrate into the company model. For this reason, it was decided to analyse
whether a software was available on the market today which, if appropriately used, could
be adapted to the problem of TXT.

What was found after a deep analysis is that the Matlab-Simulink programming software
presents itself as a very advantageous development environment. In fact, its flexibility, the
possibility of interaction between Matlab and Simulink, together with the availability of
using special control toolboxes included in the software, influenced the decision of trying
whether it was possible to find a solution to the problem highlighted by TXT by exploiting
this environment.

In particular, it was decided to understand how to use and adapt, to the TXT problem,
the Control System Toolbox linked to Matlab and the Control Design Toolbox integrated in
Stmulink. Through an appropriate modelling of the system in question, these applications
allow to exploit some optimisation algorithms based on Hinf norm, that have already been
implemented in these toolboxes, to obtain the best tuning of PID controllers.
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Once the problem to be addressed was understood, the state of the art was analysed and
the reference software to be used was chosen, it was then possible to start modelling and
searching for possible solutions to the thesis problem.
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Chapter 3

Helicopter model used

Before proceeding with the modelling of the system on Matlab and Simulink, it is necessary
to focus on the chosen helicopter and reference system. In fact, it is important to note
that the definition of the reference system according to the type of helicopter is absolutely
fundamental, since a sign change in the reference system or a different kind of aircraft can
influence the convergence of its model.

3.1 Non linear model

It was found that the flight models of the helicopters used by TXT all refer to a single
source, namely the one presented in the reference [7]. The equations of translational
and rotational motion of the helicopter are written considering the helicopter as a rigid
body, referred to an axes system fixed at the centre of the aircraft (assumed to be fixed).
The three reference axes x,y, z are shown in Fig. 3.1.

p(x' y1 Z) (r’N)

w)¥’

Figure 3.1: Helicopter fuselage reference axes system
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Helicopter model used

Where u, v, w measured in m/s are the velocity components, p, ¢, r measured in rad/s
are the angular rates that are time-varying under the action of applied forces X,Y, Z
measured in N and moments L, M, N measured in Nm.

Starting from this reference system, the orientation of the body axes relative to the Earth
is defined through the Euler angles following a standard rotation sequence used in flight
dynamics 321. This allows to completely define the attitude of the helicopter thanks to
the yaw 1, pitch 8 and roll ¢, measured in rad, as can be seen in Fig. 3.2.

(@) (b) (c)

Figure 3.2: Attitude angles definition: (a) yaw, (b) pitch, (c¢) roll

In rotor dynamics analysis, there are mainly three reference axes systems used in
literature: the hub system, the no-feathering system and the tip-path plane system. In Fig.
3.3 are shown these reference plane where the hub plane is set horizontal for convenience.

top _
. ﬁ*|C 'd18 hp
LI ho
4 ]
6'181':'5\ 105\ P
nfp nfp
(@) (b)

Figure 3.3: Rotor dynamics reference plane: (a) longitudinal plane, (b) lateral plane
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In Fig. 3.3, the angles 615, 01¢, B1s and B1¢ are drawn. The first two angles correspond
to the longitudinal and lateral cyclic pitch (subscript w denotes hub/wind axes) measured
in rad, while f1¢ and (1¢ are the rotor blade longitudinal and lateral flapping angles
(subscript w denotes hub/wind axes), written in multi-blade coordinates and measured in
rad.

A better representation of the considered aircraft dynamic model is shown in Fig. 3.4. In
particular, this figure depicts a trim condition in hover. .

W

Figure 3.4: Representation of trim in hover: (a) longitudinal (view from port); (b) yaw
(view from above); (c) roll (view from front)
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3.2 Linear model

The aircraft model described by [7] and consequently the one adopted by TXT are therefore
based on the reference systems seen previously with regard to rigid body dynamics and
rotor dynamics. These are described by non-linear equations which are essentially based
on a 6 DoF model of which the main variables are contained in the states vector «:

T = [uavuw7¢797w7pa Q7T] (31)

whose meaning has already been introduced in the previous section.

As far as the command vector w is concerned, it is composed by four components: main
rotor collective g, longitudinal cyclic 6;g, lateral cyclic 61 and tail rotor collective Gyr.

u = {007 9157 0107 HUT] (32)

However, it is possible to linearise this non-linear model by considering the helicopter
around a specific equilibrium point. This allows to obtain a simplified description of the
flight model of the aircraft, but accurate when considering the dynamics of the helicopter
around its equilibrium point. Following, in fact, the linearization process presented in [7],
it is possible to obtain the linearized equations of motion for the full 6 DoFs, describing
perturbed motion about a general trim condition, that can then be written as:

& = Ax + Bu (3.3)

where A and B are respectively the state matriz and the command matriz. The coefficients
of these matrices contain the linearized aerodynamic forces and moment, perturbational
inertial, and gravitational and kinematic effects linearized about the trim condition. In fact,
these matrices vary not only depending on the aircraft, but also on the specific equilibrium
condition in which the helicopter is at the moment of linearization. Moreover, the elements
of  and w in 3.3 correspond to the perturbation A of the states and commands from the
initial trim condition.

3.3 Choice of the model

Therefore, it is clear that to describe the behaviour of the aircraft, two models are available:
a linear model, that describe the aircraft dynamics within an equilibrium point, and a
non-linear model, that fully describes the behaviour of the helicopter. Since the aim of this
thesis is to design a system that can automatically obtain the gains to be included in the
PID controllers that are used in TXT’s MathPilot, it is evident that the linear model is
more flexible and easy to use to pursue this aim in a Matlab-Simulink environment. Thus,
a linear model allows analyses to be carried out quickly and rapidly, providing greater
flexibility than a non-linear model. However, it has the main problem of the calculation of
matrices A and B, which could make the implementation of the linear model impossible
in specific conditions.
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Furthermore, thanks to a private algorithm, TXT is able to calculate such matrices
from each non-linear helicopter flight model. This allowed to start the development of the
thesis project using a linearized approach to the problem.

3.3.1 Description of the linearized flight model

To begin the modelling that will be presented in the next chapter, it was decided to start
by using the linearized matrices that are present in literature at reference [7]. They are
related to the Westland Lynxz ME7, a utility /battlefield helicopter in the 4.5-ton category
of the British Army Air Corps shown in Fig. 3.5.
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Figure 3.5: Westland Lynx Mk7
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The A and B matrices of this aircraft were obtained for several flight conditions
corresponding to different flight regimes ranging from initial 0 kts to final 120 kts, with a
sampling step of 20 kts. A states vector & composed by 8 components has been considered,
as the heading is neglected, structured as follows:

T = [u,w,q,0,0,p,¢,r] (3.4)
while the commands vector u is the same defined in equation 3.2.

It was decided to adopt as reference matrices those related to the flight condition of
V =40 kts. The states matrix A and the command matrix B are shown below:

[—0.0146  0.0347 —0.5681 —9.7934 —0.0083 —0.1321 0.0000  0.0000
—0.1186 —0.6156 20.6855 —0.5779 —0.0180 —0.2022 0.3519  0.0000
0.0319  0.0212 —-2.1033 0.0000  0.0277 0.4210  0.0000  0.0000
0.0000  0.0000  0.9994  0.0000  0.0000 0.0000  0.0000  0.0359
0.0070  0.0184 —0.1303 0.0205 —0.0915 0.5342  9.7869 —20.3077
—0.0255 0.3040 —2.1361 0.0000 —0.1949 -10.7839 0.0000 —0.1441
0.0000  0.0000 —0.0021  0.0000  0.0000 1.0000  0.0000  0.0590
|—0.0325 0.0314 —0.2522 0.0000  0.0316  —1.8857 0.0000 —0.68597

[ 4.8686 —8.5123 2.0305 0.0000
—95.5241 —12.7586 0.0003 0.0000
7.2883 27.0667 —5.7827 0.0000
0.0000 0.0000 0.0000 0.0000
1.1239 —1.8435  —9.3132 3.3289

27.3295 —30.1532 —153.4552 —0.6662
0.0000 0.0000 0.0000 0.0000

| 15.9423  —5.8252  —27.2699 —8.9726 |

Thanks to the definition of the helicopter reference linearized model, it is now possible
to describe the process followed to obtain a system that can auto-tune the PID controllers
of TXT’s MathPilots.
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Chapter 4
Modelling phase

The first step in modelling process was to reproduce in Matlab-Simulink environment the
MathPilot HcCAS already described in chapter 2.1.1.

4.1 MathPilot HcCAS

As the key function of the MathPilot HcCAS was the PID controller highlighted in chapter
2.2.1, it was decided to start trying to implement this block following the diagram shown

in Fig. 4.1.
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Figure 4.1: PIDEnhanced Simulink implementation - first version

In this first implementation of the PIDEnhanced block, it can be seen that the core
functionality of this model is contained in the Simulink’s Matlab function block that is fully
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reported in appendix A.1. Since the MathPilot code contained values referring to different
instants of time (in particular, there were values related to n,n — 1,n — 2) it was essential
to take into account this feature. As shown in code in appendix A.1, this goal was achieved
exploiting the Matlab function named persistent. In fact, it is possible to declare a variable
as persistent and this remains local to the specific function in which it is declared, yet its
values are retained in memory between calls to the function. Moreover, it can be noticed
that in Fig. 4.1 the parameters of the PID controller (T3, Ty, K, &, 3,7, Umaz s Umin) are
initialized through the Simulink constant and gain blocks and than given to the Matlab
Sfunction.

4.1.1 First model

It was then possible to move forward by inserting this PID controller model into the
MathPilot loop. This has been done by creating a special Simulink subsystem which
can be parameterised appropriately by interacting with an interface mask. As shown in
Fig. 4.2 a reference input was given to the loop through a step command in terms of
horizontal velocity V,, measured in m/s. This is the input of the outer loop PID controller
which, depending on the error between the reference and the measured value, outputs a
command that corresponds to the input of the inner loop PID controller. This command
is a pitch reference that is compared with the pitch state coming from the linear model of
the helicopter. The units of measurement are made consistent by setting everything in
rad. The output of the inner loop PID controller is the effective command related to the
longitudinal cyclic 15. The linearised model of the aircraft is described using a Simulink
block called State-Space, in which the state and command matrices (A, B) are inserted.
Opening this block, it can be seen that two matrices are also required: matrix C' (output
matrix) and matrix D (equal to the null matrix for physical systems).

MathPilot HcCAS

[theta0 thetats theta‘c,theta0T]

E= AxtBu
u v
y=Cx+Du [ (0w g \heta’,v"/p'\phi. 7} .

PID Controller OL

Figure 4.2: Simulink modelling of HcCAS loop

Matrix C allows the user to select which states are to be provided as system outputs.
In this specific case, due to the intention of observing all the states of the aircraft, but
also the necessity of feedback only the horizontal velocity u and the pitch angle 6, the
output of the State-Space block is a vector of eight components, then selected thanks to
the Simulink Selector block.
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4.1.2 Second model

Before running the simulation, it was obviously necessary to carry out a tuning process
of the PID controller parameters which was still done manually using a trial-and-error
method. In fact, in this initial phase of the project, the intention was to validate the
MathPilot model and the PID controller, and only at a later stage to introduce the Control
System Toolboz for the auto-tuning process. After several attempts, it was observed that,
due to the fact that this MathPilot allowed only one command to be controlled, while the
aircraft dynamics was influenced by the eight state variables introduced in the previous
chapter, the tuning of the controller was complex. It was therefore decided to introduce two
additional controllers that allowed the lateral cyclic ;¢ and the collective 8y commands
to be controlled simultaneously, as shown in Fig. 4.3.

| " i e

HCCAS_OL

Figure 4.3: Simulink modelling of HcCAS loop - second version

The following four controllers were then considered:

« PID HcCAS Outer Loop: it receives the reference and the measured values in
terms of horizontal velocity and output the pitch reference for the following PID
controller;

« PID HcCAS Inner Loop: it receives the reference and the measured values in
terms of pitch angle and output the longitudinal cyclic command 6, ¢;

o PID Roll it receives the reference and the measured values in terms of roll angle
(the reference roll is set equal to zero ¢,y = 0 rad) and output the lateral cyclic
command #;¢;

o PID Vertical Speed it receives the reference and the measured values in terms
of vertical speed (the reference vertical speed is set equal to zero w = 0 m/s) and
output the collective command 6.

The controller’s gains were therefore as follows:
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ﬂ v Umin Umax

o
PID HcCAS Outer Loop 4 1 1 1 05 2 25° -25°
PID HcCAS InnerLoop 2 05 008 1 09 01 1rad -1rad
1
1

PID Roll 0.05 10 20 1 0 1rad -1rad
PID VS 1.2 0.8 1 1 1.2 1rad -1rad

Table 4.1: MathPilot HcCAS - PID controllers gain

Running the simulation for a time period of tg;,, = 30 s, considering a sample time
of dt = 1/120 = 0.008 s and giving a step reference signal of Au = 1 m/s the following
results were obtained in Fig. 4.4:

Step response
Lynx V =40 kts

PID Controller
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Figure 4.4: Step response - MathPilot HcCAS

It can be observed that all the states that are controlled through the three PIDs, after
a short transient period of about ¢ = 10 s, tend to follow the references. This means that
the controllers are working in a correct way. However, it can be seen that the lateral speed
v tends to oscillate significantly in the transient and stabilise at a non-zero value. This
is due to the lack of active control of the PID on this axis, this is acted by the tail rotor
collective Ggr.

Moreover, the following results, shown in Fig. 4.5, were obtained from the commands:
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Step response - commands
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Figure 4.5: Step response commands - MathPilot HcCAS

As expected, indeed, it can also be seen from this plot that only three commands are
operated, while the tail rotor remains at zero as no control has been placed on this axis.

Comments It is now clear what the significance of the MathPilots used by TXT is. It
can be seen that what is being operated are the pilot commands. These models, indeed,
represent the action that the pilot would virtually perform on the controls to stabilise the
aircraft when a horizontal speed step of Au =1 m/s is required. In addition, it can be
seen that the Simulink model implemented, and in particular the PID controller taken
from the TXT code, allow the aircraft to be stabilised and thus validate their performance.

4.1.3 Third model

The next step wanted to fully stabilise the aircraft on all axes by inserting an additional
PID controller. In addition to the four controllers shown in Fig. 4.3, the following one was
inserted in the loop:

o PID Lateral Speed it receives the reference and the measured values in terms of
lateral speed (the reference lateral speed is set equal to zero v = 0 m/s) and output
the tail rotor collective command Oyr.

It allowed to asses the feedback loop shown in Fig. 4.6.
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Figure 4.6: Simulink modelling of HcCAS loop - third version

The gains in Tab. 4.2 were adopted in this model, obtained through a trial and error
process. Compared to the previous case, only the lateral speed PID controller has been
added.

Kp Tz Td a 6 Y Umin  Umax

PID HcCAS Outer Loop 4 1 1 1 05 2 25°  -25°
PID HcCAS InnerLoop 2 0.5 008 1 09 01 1 -1
PID Roll 005 10 20 1 1 0 20°  -20°

PID VS 1.2 038 1 11 1.2 200 -20°

PID LS 1.2 0.8 1 1 1 1.2 20° -20°

Table 4.2: MathPilot HcCAS fully controlled - PID controllers gain

It was then possible to run the simulation with a time period of ¢ = 30 s and a sample
time of dt = 1/120 s. The results displayed in Fig. 4.7 and 4.8 were obtained.

Comments It is very important to note that when analysing a linearised system, what is
plotted are the perturbations of states and commands values with respect to a very precise
equilibrium condition. In this specific case, as pointed out in the previous chapter, the
Lynx helicopter is considered in a flight condition with a horizontal velocity of v = 40 kts,
and then this velocity is increased in the simulation of Au = 1m/s = 1.9kts . This triggers
the aircraft’s free dynamic modes, which must be balanced by the pilot’s action on the
controls. TXT’s MathPilot loop (and in particular the PID controllers contained within
it) replicates this action. In Fig. 4.7 and 4.8, it can be observed that all states, after a
transient period, reach the reference value. In particular, the horizontal velocity u reaches
the step input, while all the other states, including the lateral velocity v, tend to stabilise
and become zero.
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Step response
Lynx V = 40 kts
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Figure 4.7: Step response - MathPilot HcCAS third version
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Figure 4.8: Step response commands - MathPilot HcCAS third version

Once the MathPilots and PID controllers had been validated, it was possible to analyse
the functioning of Matlab’s Control System Toolbz and Simulink’s Control Design App to
understand how to insert them into the model just obtained.
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4.2 PID autotuning design

The state-of-the-art analysis of current technologies used in the PID auto-tuning process
showed that the Matlab-Simulink environment offers possible solutions for this project. In
particular, two specific toolboxes were used in the developing of the autotuning system:

« the Control System Toolbox, described in [8] provides algorithms and apps for sys-
tematically analyzing, designing, and tuning linear control systems. This toolbox
automatically tunes both SISO and MIMO compensators, including PID controllers.
It allows to tune gain-scheduled controllers and specify multiple tuning objectives,
such as reference tracking, disturbance rejection, and stability margins, validating the
model design by verifying rise time, overshoot, settling time, gain and phase margins,
and other requirements;

o Simulink Control Design allow to design and analyze control systems modeled in
Simulink. It is possible to automatically tune arbitrary SISO and MIMO control
architectures, including PID controllers. The key functionality of this toolbox is that
PID autotuning can be deployed to embedded software for automatically computing
PID gains in real time. In fact, the user can find operating points and compute exact
linearizations of Simulink models at various operating conditions. [9]

In particular, the interaction between Matlab and Simulink environments is made possible
by these two applications. The key functions used in the development of TXT’s PID
controller autotuning model are the following ones:

1. slTuner creates an interface, named st for tuning the control system blocks of a specific
Simulink model. The interface adds the linear analysis points marked in the model as
analysis points of st. In particular, slTuner provides an interface between a Simulink
model and the tuning commands systune in Matlab code and allow the user to specify
the control architecture, designate and parameterize blocks to be tuned, tune the
control system, validate design by computing (linearized) open-loop and closed-loop
responses and write tuned values back to the model. Because tuning commands such
as systune operate on linear models, the slTuner interface automatically computes
and stores a linearization of the Simulink model. [10]

2. systune tunes fixed-structure control systems subject to both soft and hard design
goals. This function can tune multiple fixed-order, fixed-structure control elements
distributed over one or more feedback loops. This optimisation function receives as
input the linearised model st obtained by slTuner and, depending on certain tuning
goals chosen by the user, calculates the gains of the selected blocks that best meet
the optimiser’s requirements. [11]

However, when analysing the working process of these functions, it can be seen that not
all Simulink blocks can be parameterised and therefore provided as input to the optimiser.
In fact, only the following blocks are compatible with the systune function: [12]

o tunable Gain block;
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e tunable PID Controller block;
e tunable Transfer Function block;
e tunable State-Space Model block.

Therefore, it is clear that the PID controller model shown in Fig. 4.1 could not be used,
as it was incompatible with the functions just described. In fact, it was necessary to
reformulate this model so that it could be used by the systune function.

4.2.1 MathPilot HcCAS - autotuning

Before proceeding with this reformulation of the controller, it was decided to understand
how to use these functions appropriately in a more simplified context. In fact, it was
planned to test the functioning of the autotuning process by replacing the PID subsystems
within the MathPilot HcCAS loop with the default Simulink tunable PID Controller blocks
as shown in Fig. 4.9. These controllers have a simpler structure than the algorithm
implemented by TXT in PIDEnhanced. In fact, they are characterised by the following
expression:

s

1
=K, + K-+ Kj——
Y p"’ S+ de-S+1

(4.1)

It is defined in frequency domain and it contains four parameters: the proportional gain
P, the integrative gain I, the derivative gain D and the filter parameter V.

Figure 4.9: MathPilot HcCAS - PID controller autotuning method

It can be seen that in this model, subsystems have been placed downstream of the
PID controllers. In fact, in this case, the output of the PID controller is not directly the
tilt angle of the swash plate but the percentage value of the command. In fact, unlike
the previous case in which the main aim was to validate the operation of the MathPilot
implemented in Simulink, in this case the goal is to proceed by refining the model. In
particular, the percentage value of the command is multiplied by the difference between
the maximum value that this command can assume and its neutral value. These values
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are reported in appendix A.2.Therefore, by using the code in appendix A.3 and running
the program, it was possible to verify the correct functioning of the autotuning algorithm
described above. In particular, the following goals were imposed on the optimiser:

o TuningGoal.Step Tracking to specify a target step response from specified inputs to
specified outputs of the control system. The following reference model was set to
constraint the linearized system to match its dynamics: [13]

ReferenceModel = (4.2)

s+1
Moreover, the constraint is satisfied when the relative difference between the tuned
and target responses falls within a tolerance of 0.2.

o TuningGoal. Margins creates a tuning goal that specifies the minimum gain and phase
margins at the specified location in the control system. They were set as in appendix
A.3, based on literature values. [14]

o TuningGoal. Poles to constrain the closed-loop dynamics of a control system within a
region defined by the user. This goal was set based on literature values presented in
appendix A.3.

Finally, it can also be seen that upper (Maximum) and lower (Minimum) limits have been
imposed on the parameters of the Simulink PID blocks. This forces the optimiser to search
for gains optimal values within a space that is actually compatible with TXT MathPilots.
These limit values have been deduced by assessing the values that TXT currently includes
in its controllers. It was then possible to run the simulation with a time period of t = 30 s
and a sample time of dt = 1/120 s. The results obtained are shown in Fig. 4.10 and 4.11.
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Figure 4.10: Step response - MathPilot HcCAS autotuning
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Step response - commands
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Figure 4.11: Commands step response - MathPilot HcCAS autotuning

The gains calculated by the optimiser are therefore as follows:

K, K; Ky Ty
PID HcCAS Outer Loop 4.72 0.142  6e-11  0.108
PID HcCAS InnerLoop 5 9.75 2 0.0143
PID Roll 0.61  0.0208 0.106 0.0178
PID VS 0.0857 0.0382 0.0944 0.0872
PID LS 1.28 0.775 0996 0.0157

Table 4.3: PID controllers gains - Autotuning

Comments As shown in the previous plots, in this case the optimiser allowed all states
to be adequately controlled. In fact, the solutions tend towards the reference values
provided as input to the controllers. Fig. 4.12 shows the three responses obtained with
the three models presented so far for comparison. It can be seen that the linear speed
response in the case of autotuning is slower than in the previous cases, but with a very
low percentage error of less than 1%. Obviously, the response of the first two manually
tuned models is coincident as far as the horizontal speed u is concerned, the only difference
indeed is related to the lateral speed v control. A variation of v does not particularly affect
the horizontal velocity u as shown in the Lynx’s state matrices.
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PID comparison - step response
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Figure 4.12: Step respons - models comparison

Once the functioning of the optimiser had been validated, the PID controller using the
TXT algorithm was remodelled so that it could be exploited by the systune function.

4.2.2 Remodelling of PIDEnhanced for autotuning process

Since the systune function only accepts specific types of Simulink blocks, it is necessary
to understand how to appropriately model the PIDEnhanced algorithm presented above.
The blocks that provide the most flexibility in modelling correspond to the tunable Gain.
Analysing the algorithm presented in section 2.2.1, it can be seen that the proportional,
integrative and derivative contributions are easily linked to the gain blocks through the
following equations:

Gain, = K, (4.3)
. T
Gaing = T (4.4)
1y
ing = ~4 4.
Gaing Ts (4.5)

However, a problem occurs with regard to the contribution of the filter. In fact, within
the definition of the filtered derivative error erry, it is included the filter time constant
Ty = o - Ty, that is also included in the equation 2.9 to obtain Au(n). This does not allow
to close the system and leads to the necessity of finding another solution. Hence, it was
therefore decided to elaborate on the expression of errq, as follows:

errqg,(n —1 67“7’d(”)L
if( ) + — Ty + errg(n) — errg(n) (4.6)
¥ ¥
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1
errq,(n) = errg(n) + T lerra, (n — 1) + errq (4.7)
Ty

in order to obtain an expression in which it is possible to isolate the contribution of T,

increasing the system by one degree of freedom. In fact, the following gain was considered
for the Simulink model:

1
Gaing =
+1

SIS

(4.8)
Therefore, it was possible to create the Simulink model in Fig. 4.13 in which the parameters
to be tuned K, T;,Ty, Ty are contained in the four gains just highlighted.

vvvvvvv

Figure 4.13: Remodelled PID controller

The derivative filter is presented in Fig. 4.14.

err_d_f

GainTunable_filter

err_d_f 1

err_d_n

Figure 4.14: Remodelled PID controller - filter detail

block as shown in Fig. 4.15.

The wind-up filter has been modelled according to Simulink logic using the Switch
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Figure 4.15: Remodelled PID controller - anti wind-upfilter detail

Comments [t can be seen that the structure used is very different from the one presented
at the beginning of this chapter, even though it implements the same algorithm. In fact,
in this case it was not possible to use the Simulink’s Matlab function. The discrete-time
logic and the consequent need to store the simulation values at different time instants
(n,n—1,n—2) led to the use of Simulink’s delay blocks. In fact, this allows to delay input
signals by a specified number of samples time. Thus it can be seen the presence of the
four gains presented above which, if properly parameterised, can be provided as input to
the systune optimisation function.

4.2.3 PIDEnhanced autotuning system validation

The next step involved verifying if this model allowed the optimiser to properly tune the
gains from which the parameters to be inserted into the TXT code can be derived. In fact,
the model shown in Fig. 4.16 was built.

xxxxxxxxxx

Figure 4.16: Autotuning model - Lynx
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This model consists of six PID controllers placed on the four commands:

a double PID to control the horizontal velocity and the pitch angle (named in Fig.
4.16 PID1 and PID2) through the longitudinal cyclic #;g;

« a single PID to control the vertical speed (named PID3) through the collective 6y;

« a double loop PID to control the lateral velocity and the roll angle (PID4 and PID5)
thorough the lateral cyclic 01¢;

a single PID to control the roll rate (PID6) through the tail rotor collective dyr.

In appendix A.4 is reported the code written to interact with this model. It is based on the
already mentioned functions. What is important to note is the choice of how to define the
maximum and minimum limits that have been imposed on the gain parameters on which
the optimiser acts. In fact, by analysing the TXT codes, it was found that the gains that
are usually assigned to MathPilots loop never exceed the limits shown in the Tab. 4.4.

max min

T, 0.001 20
Ty 05 0
K, 1 0
o 1 0

Table 4.4: TXT gain edges

These values were introduced in the equations 4.3, 4.4, 4.5 and 4.8 to obtain the
maximum and minimum blocks parameters to assign to the systune function. Moreover,
the tuning goals for all the six PID controllers were set as Transient. This Matlab’s
TuningGoal constraints the transient response from specified inputs to specified outputs
following a reference system described by the equation: [15]

1

RefSystem = —————
efSystem = G T

(4.9)

Hence it was possible to run this model through the code shown in appendix A.4. A
reference value of Au = 1 m/s was imposed on the horizontal velocity and a zero reference
value to the other states. A sampling time of dt = 1/120 s and a simulation time of
t = 30 s were adopted. It was possible to obtain the results shown in Fig. 4.17 and 4.18.
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Figure 4.18: Commands step response - Lynx autotuning model

In particular, the gains obtained from the autotuning process are shown in Tab. 4.5.
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K P Tl Td Tf (0%

PID1 0.0716 3.5731 8e-4 9e-4  1.1098
PID2 0.4713 20 0.1409 0.3727 2.6453
PID3 0.0150 0.3028 0.0825 0.0032 0.0384
PID4 0.0479 2.7166  8e-4 0.076  91.49
PID5 0.117 0.2604  8e-2 0.5 6

PID6 5 0.2136  0.499 0.1744 0.3489

Table 4.5: Lynx autotuning model - gain obtained

Comments In this case it can be observed that the auto-tuning process allowed to
obtain a response that satisfies the imposed requirements. The horizontal velocity tends
to its reference value, while all the other states tend to cancel the initial perturbation.
Moreover, the response of the horizontal speed is very fast; this reaches a steady-state error
of less than 1% after 10 seconds. On the other hand, the range of the controls is extremely
small, allowing adequate control of the aircraft without ever reaching limit values. The
tuning process based on the Lynx linearised matrices is therefore considered validated and
it was possible to proceed with the application of this model to the specific case of TXT.

4.2.4 TXT helicopter analysis

Having validated the functioning of the PID controllers model with the auto-tuning process,
it was then possible to focus on the company’s real cases. In particular, a medium-weight
twin engine helicopter was chosen as reference. This analysis was essential to validate the
quality of the work carried out. In fact, the main purpose was to calculate through the
linearised model in Simulink the gains of the PID controllers of TXT to then subsequently
insert these numbers in the non-linear model of the reference helicopters and compare the
responses obtained. If the responses were comparable and the aircraft stabilised in both
cases then this implied that the auto-tuning process was correct.

TXT helicopter matrices

Due to company constraints, it is not possible to show the precise matrix values for
the aircraft taken as reference in TXT, but plots of the percentage differences from the
Lynx matrix values are shown. As the linearised matrices also depend on the equilibrium
condition of the aircraft at the time of linearisation, it is essential to report this condition
in Tab. 4.6.
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Value Unit of measure

Airspeed 70.2 [kts]
Ground Speed 82 [kts]
Pitch Angle 2.6 [deg]
Bank angle -1.6 [deg]
Heading 343.2 [deg]
Pitch Rate 0.2 [deg/s]
Roll Rate -0.5 [deg/s]
Yaw Rate 0.3 [deg/s]
Longitudinal Cyclic Pos. 61.1 (%)
Lateral Cyclic Pos 73.9 (%)
Pedals Pos. 59 (%]
Collective Pos. 38 (%]

Table 4.6: Trim conditions - TXT helicopter

The percentage differences between the linearised matrix of the Lynx at 40 kts and
that of the TXT helicopter are therefore shown in Fig. 4.19 and 4.20.

Relative percentage error - Matrix A
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Figure 4.19: A relative percentage difference - TXT helicopter and Lynx
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Relative percentage error - Matrix B

><1(())\ ’OO

Figure 4.20: B relative percentage difference - TXT helicopter and Lynx

There are some values that are very different between the two helicopter models due to
the fact that different types of aircraft imply dynamic characteristics that can varying.

TXT helicopter model

Having the linearised matrices of the aircraft, it was possible to build the control loop of
the aircraft using the model shown in Fig. 4.21. In this case, only the feedback loops that
control the aircraft’s attitude (pitch 6, roll ¢ and yaw 1) and vertical speed w have been
implemented. The code shown in A.5 was written to run the autotuning process of this
model. In particular, a sample time of dt = 1/60 s was considered, while the tuning goals
for all the four PID controllers were set as Transient with a reference system exploited by
the equation:

1

RefSystem = —————
efSystem = G T

(4.10)
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Figure 4.21: TXT helicopter model

Considering a perturbation step input on the pitch angle of A8 = 1deg, it was possible
to obtain the results in Fig. 4.22, 4.23 and 4.24. The gains are shown in Tab. 4.7:

K p Tz Td Tf «

MathPilot Pitch 0.8143 2.3455 0.5 0.002  0.004
MathPilot VS 0.01 0.3491 0.0032 0.1457 46.05
MathPilot Roll  0.587 1.8141 0.0017 0.0019 1.11
MathPilot Yaw 0.33 1.4 0.5 0.0169 0.0338

Table 4.7: TXT helicopter - gains autotuned
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Step Response - states
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Figure 4.22: States step response - TXT helicopter model
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Figure 4.23: Commands step response - TXT helicopter model
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Figure 4.24: u step response - TXT helicopter model

In this case, linearised matrices relating to a real case of TXT were used. It can be
seen that the system is controlled and stabilised. The response is relatively slow, as shown
in Fig. 4.24, but the difference between the reference and measured values are less than
10% after 20 seconds of the simulation. Moreover, the commands all tend towards an
equilibrium condition and their change from the initial value is always very small. This
characteristic made it possible to validate the correct functioning of the PID controllers
and their auto-tuning process. The final step was certainly to put the gains shown in Tab.
4.7 on the TXT nonlinear model and check if these gains also allowed the nonlinear model
to stabilise the aircraft around this equilibrium point.

Comments One of the main goals of this thesis work was to reduce the man-time
normally spent on PID controllers tuning. In fact, nowadays, the minimum time required
to test the PID gains corresponds to the duration of a QTG test, thus 3/5 minutes. This
is a typical situation when the helicopter model is known and used. However, changing the
aircraft model these tuning periods can reach time intervals of hours and days. Thanks to
the linearized model implementation on Matlab-Simulink, this time is considerably reduced
running the autotuning simulations just described. In fact, the time measured for running
the optimizator algorithm obtaining the results shown in the previous figures corresponds to
Tsim = 50.238 s. This time differences highlight the importance of considering autotuning
processes in control system modelling. Furthermore, it is important to notice that the man-
time is not neglected, but it is decreased thanks to the use of optimization algorithms. In
fact, the two drawbacks of this model are related to the necessity of finding the best tuning
goals to fed the optimizer and the availability of the linearized model of the helicopter in
order to obtain the matrices A, B, C and D. Further considerations on the benefits and
drawbacks of the thesis work are addressed in the last chapter.
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Chapter 5

Verification process

To validate the gains obtained with the linear model, it was decided to use a special QTG
test of the helicopter simulator in question. In fact, the main aim was not to reproduce a
QTG test, but to simulate with the non-linear flight model the same test carried out in
the previous chapter with the linear model. However, the MathPilot loops were included
within the operating logic of the QTG tests, thus making it essential to start a simulator
test in order to verify the functioning of the gains obtained with the autotuning process.
The following procedure was then followed:

o a specific QTG test was chosen. In particular, a test where the initial conditions
were the same of the matrices introduced in the previous chapter;

« the matrices A, B, C and D were obtained in trim condition (these were the same
matrices of the previous chapter);

o the gains obtained in Tab. 4.7 were inserted in the PID controllers of TXT code;

o a pitch perturbation of Af = 1 deg was introduced into the code, while the reference
value of the other states has been left unchanged;

o the simulation was launched.

TXT’s simulation software allowed to obtain an output file to assess the evolution of the
aircraft’s states during the flight simulation. Since this software was born from the need to
certify the simulator through special tests in which the virtual response of the aircraft is
compared with the actual flight data of the same, these flight data were usually reported
on the output plot of these simulation. Therefore, all subsequent graphs will show a blue
line (relating to the flight data) which should be neglected, and a green line representing
the actual response of the non-linear flight model to the test performed. This was because
TXT’s code configuration requirements made it necessary to rely on the operating logic of
a QTG test, even though a certification test was not carried out. Therefore, the following
results were obtained.
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Simulation results - States
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Figure 5.3: Yaw Angle
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Figure 5.6: Indicated Airspeed
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Figure 5.8: Roll Angle

These results should be compared with those shown in Fig. 4.22. It can be seen that
in general all states tend towards a boundary value and no divergence is found. In all
the plots shown in this process, the states and commands values are given in absolute
terms. In fact, in the previous linearised treatment, the perturbation values A with respect
to their initial condition were always considered. Therefore, in this case it is assumed
stable a condition in which states tends to return to theirs initial value or to the input
reference. In particular, it can be observed that the pitch angle in Fig. 5.1 tends to the
value § = 3.6 deg that is equal the sum between the pitch initial values § = 2.6 deg
(observed in Tab. 4.6) and the A# = 1 deg given by the test. The other states, such
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as the roll angle ¢, the roll angle rate p and the vertical speed w tend to their initial
value after a transient period. Fig. 5.6 shows a decreasing trend for IAS. This is consitent
with Fig. 5.1, where commanded pitch angle is higer than real aircraft, thus forcing the
simulated flight model to slow down. Moreover, these trends are the same of the linearized
output obtained in Fig. 4.22. Obviously, there are differences in terms of transients as the
linearised model does not accurately capture all the dynamic characteristics of the non
linear system. However, the trends obtained from linear and non-linear analysis are the
same as well as the orders of magnitude of the transients. It is then possible to observe
the commands output

Simulation results - Commands
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Figure 5.12: Control Position Roll

Also considering the commands output, it is observed that the trends obtained from the
non-linear model are consistent with those found in the previous chapter. In fact, the
perturbation of the lateral cyclic is approximately zero both in Fig. 5.11 and Fig. 4.23.
Other commands (pedal, longitudinal cyclic and collective) show a trend that is similar
on what was obtained with the linear model. It should be noted that this analysis was
carried out knowing that in this case the absolute values of the commands were reported,
whereas in the linearised case what was plotted were their perturbations. It could be
seen that the adoption of gains obtained with the linearised model through the explained
autotuning process led to the PID controllers tuning in such a way that the helicopter was
adequately stabilized. Moreover, both the trend and the values obtained in the two cases
are comparable.
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Chapter 6

Conclusions

The main goal that was provided by the TXT company at the beginning of this thesis
was to develop an automatic control system, to be used during the validation tests of a
helicopter flight simulator, which is able to faithfully replicate the behaviour of the pilot
and which is able to auto-tune. The principal aim of the company was related to reduce
time required for the definition and execution of certification tests, lowering the man-time
currently required by the process and consequently reducing costs. The expected results
could in fact be summarised as follows:

1. the structure of automatic control systems in use should be studied;

2. it is required to design control systems that can increase the efficiency of the testing
process, based on available literature. They can be developments of current models
or ex-novo redesigns of them;

3. the solutions studied must be implemented within the TXT simulation environment,
under real-time simulation constraints;

4. possible auto-regulation processes of the designed control systems should be defined;

5. it is required to evaluate the performance of the developed controller and identify
improvement areas.

Analyzing the path followed during the thesis development it can be seen that the starting
phase of the project was dedicated to a deep understanding on the problem proposed. In
fact, a considerable amount of time was spent studying the code of TXT and then the
current state of the art in PID control techniques, as shown in chapter 2 according to the
first goal just mentioned. Since the requirement imposed by the company was to develop
a model that could be implemented in TXT’s operating logic and that could increase
the efficiency of the simulator’s certification processes, it was considered more efficient
to rely on algorithms already on the market and to understand how to adapt them to
the specific case of this thesis. Designing an auto-tuning algorithm from scratch would
have required a much longer development period and carried a greater risk of unsuitability
for TXT code due to its complexity. In fact, knowing that the company adopts Matlab
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- Simulink to develop its simulators, the decision to study the auto-tuning algorithms
already implemented in this software was a consequence. This choice allowed to respect
the second and third requirements just mentioned.

In fact, thanks to the Matlab and Simulink toolboxes, it was possible to obtain a MathPilot
model that can auto-tune and autonomously calculate the PID controller gains according
to the type of aircraft and references that are imposed from outside, as shown in chapter
4. However, the biggest drawback of this solution is surely the fact that it only works with
a linearised helicopter model. In fact, this solution implies the need for linearised aircraft
matrices in a specific flight condition. In the TXT situation, thanks to the availability of a
private algorithm for obtaining matrices A and B, this constraint has been overcome and
the solution proposed with Matlab could be considered viable.

The main challenge of this project was definitely to validate at the end of the thesis
the gains obtained with Matlab on the non-linear model currently implemented in the
company’s simulator. As shown in chapter 5, by inserting this gains obtained with the
linearised model within a QTG test of the TXT simulator, it was possible to replicate
the same test run on Matlab. This allowed to compare the two responses and to conclude
that both linear and non-linear models stabilize the helicopter. In addition, the trend
followed by states and commands is essentially the same in the two simulations. The
fact that same trends were obtained was considered by TXT as a satisfactory evidence to
demonstrate the validity and operation of the MathPilots’ linearised model. This satisfies
the last requirements previously mentioned.

This thesis work allowed the company to have a model tailored on their needs that
can be used before the certification tests in order to obtain the optimized gains to insert
into the PID controllers. This is provided by an autotuning process developed in Matlab
that can reduce the man-time required. Moreover, it is not only the amount of hours spent
in the tuning process that is reduced, but also the experience of people carrying out this
work: these algorithms are easier to understand.

To sum up, thanks to this work TXT e-Solutions has a tool to reduce its costs in two ways:
¢ decreasing the man-time hours spent in tuning;

o allowing a less experienced person to deal with tuning.

Future developments The main area for future developments is related to the optimisa-
tion of the best goals to set to the systune function. Several different types of TuningGoals
were shown during the project, which were tested with a trial and error method. However,
the link between these targets and aircraft flight conditions needs to be investigated to
further reduce the time required for certification tests. Moreover, it is necessary to test
the Matlab-Simulink algorithm with more different kinds of helicopter in order to improve
the model and try to make this model as flexible and versatile as possible. Finally, an
improvement in the code and modelling of the system would also be profitable.
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Appendix A

Matlab Codes

A.1 PIDEnhanced first version - Matlab function

function [u_n, delta_u_n_out] = fcn(alpha, err_der, Ti, Kp, err_prop,
Ts, err, Td, u_max, u_min)

persistent CI
% CI = {’err_prop_1’,%err_der f 1’ ’err_der f 2’ ,’u n 1’};

7 if isempty (CI)

8 ClI = [0, O, 0, O];

9 end

0

1 if (Td > 0.0)

3 Tf = alpha x Td;

1

5 err_der f =CI(2) / (Ts / Tf + 1) + err_der = (Ts / Tf) / (Ts
/ Tf 4+ 1);

6 else

7 err_der_f = err_der;

8 end

)

0 if (Ti > 0.0)

21 delta u n = Kp * ((err_prop — CI(1)) + ((Ts / Ti) % err) + ((Td

/ Ts) = (err_der_f — 2 % CI(2) 4+ CI(3))));
,; else
| delta_u_n = Kp * ((err_prop — CI(1)) + ((Td / Ts) % (err_der_ f —

2 % CI(2) + CI(3))));
end

27 if(delta_u n > (u_max — CI(4)))

8 delta_u_n = u_max — CI(4);
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elseif(delta_ u n < (u_min — CI(4)))
delta_u_n = u_min — CI(4);

end

u_n = CI(4)+ delta_u_n;
CI(1) = err_ prop;

CI(3) = CI(2);

CI(2) = err_der_f;

CI(4) = u_n;

Res = CI;

delta_u_n_out = delta_u_n;
return

A.2 Commands Limits

% Longitudina cyclic

Pitch_ min = deg2rad(—11);

Pitch max = deg2rad (13);

Pitch_neutral = (Pitch_max+Pitch_min) /2;

5/% Lateral cyclic

Roll _min = deg2rad(—6.5);

Roll_max = deg2rad (6.5) ;

Roll neutral = (Roll_max+Roll min) /2;
% Collective tail rotor

Yaw_min = deg2rad(—8);

Yaw_max = deg2rad (24);

Yaw_neutral = (Yaw_maxt+Yaw_min) /2;

% Collective

Coll_min = deg2rad (0.45)

5| Coll_max = deg2rad (14.45);

A.3 Autotuning code - HcCAs with PID Controller
Simulink’s blocks

%% PID Controller — autotuning
mdl = "HcCAS_ controller’;
open_system ( "HcCAS_controller.slx ") ;

st0 = slTuner (mdl,{ 'G1’,’G2",°G3", G4, G5 });
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"Ref_{\phi}_{AT}’

"\phi_ {AT}’,’w {AT}’

addPoint (st0 ,{ "Comandi_AT’, ’Stati_AT’});

v AT},

% Setting auto—tuning requirements and objectives

'G17) ;
’G2

I

7G47 ;

);
37)5
)
")

I

¢| addPoint (st0 ,{ "Ref {AT}’,
"Ref {pitch} {AT}’});

7| addPoint (st0 ,{ 'u {AT}

9

10

11

12| G1 = getBlockParam (stO ,

13| G2 = getBlockParam (st0 ,

11| G3 = getBlockParam (st0

15/ G4 = getBlockParam (st0 ,

16| G5 = getBlockParam (stO0 ,

17

15| G1.Kp. Minimum = 0;

10| G1.Kp.Maximum = 5;

20 G2.Kp. Minimum = 0;

21| G2.Kp.Maximum = 5;

22| G3.Kp. Minimum = 0;

23] G3.Kp. Maximum = 5;

24| G4.Kp. Minimum = 0;

25| G4.Kp. Maximum = 5;

26| G5.Kp. Minimum = 0;

27| G5 . Kp. Maximum = 5;

29| G1.Ki.Minimum = 0;

30| G1. Ki.Maximum = 10;

31| G2. Ki.Minimum = 0;

32| G2. Ki.Maximum = 10;

33| G3. Ki.Minimum = 0;

31| G3. Ki.Maximum = 10;

35| G4. Ki.Minimum = 0;

36| G4. Ki.Maximum = 10;

37| G5. Ki.Minimum = 0;

33| G5. Ki.Maximum = 10;

39

10| G1.Kd. Minimum = 0;

11| G1.Kd. Maximum = 2;

12| G2.Kd. Minimum = 0;

131 G2.Kd. Maximum = 2;

11| G3.Kd. Minimum = 0;

15| G3.Kd. Maximum = 2;

16| G4.Kd. Minimum = 0;

17| G4.Kd . Maximum = 2;

15| G5.Kd. Minimum = 0;

19| G5.Kd.Maximum = 5;

50

51| G1. Tf. Minimum = dt;

2| % G1.Tf.Maximum = 5;

53| G2. Tf. Minimum = dt;

54| % G2. Tf.Maximum = 5;

55| G3. Tf. Minimum = dt;

56| % G3.Tf.Maximum = 5;

57| G4. Tf. Minimum = dt;

56

, 'Ref_{w}_{AT}’, Ref_{v}_{AT}’,

"\theta_ {AT}’});
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% G4.Tf.Maximum = 5;
G5. Tf.Minimum = dt;
% G5.Tf.Maximum = 5;

setBlockParam (st0, 'G1’ ,G1)

setBlockParam (st0, G2’ ,G2) ;
setBlockParam (st0, 'G3’ ,G3) ;
setBlockParam (st0, G4’ ,G4) ;
setBlockParam (st0, "G5’ ,G5)

% Less than 20% mismatch with reference model 1/(s+1)

TrackReq = TuningGoal. StepTracking ({ "Ref {AT}’, Ref {\phi} {AT}’, Ref {w}
_{AT}’ ,’Ref_{v}_{AT}’},{ uw_{AT} >, ’\phi_{AT}’,’w_{AT}’,’v_{AT} },1);

TrackReq.RelGap = 0.2;

% % Gain and phase margins at plant inputs and outputs
MarginReql = TuningGoal.Margins(’Comandi AT’ ,5,40);
MarginReq2 = TuningGoal.Margins( ’Stati_ AT’ ,5,40);

i|% % Limit on fast dynamics

MaxFrequency = 25;
PoleReq = TuningGoal.Poles (0,0,MaxFrequency) ;

AllReqs = [TrackReq, MarginReql , MarginReq2 ,PoleReq];

% Processing — Autotuning e PID gain rewriting
opt = systuneOptions(’RandomStart’,30);
rng (0) ;

[st,fSoft ,~,info] = systune(st0,AllReqs,opt);

;| showTunable (st )

A.4 PIDEnhanced autotuning code

%% Simulation Data e input of linearised model matrices
dt = 1/120;

run (’Input\Lynx V40.m’)

run ( ’Valori__max_ min_ comandi.m’)

;| %% Simulink MathPilot model with PID Controllers

7|% PID1

Til = 2;

Kpl = 0.3 ;
Tdl = 0.15;
Ts = dt;
alphal = 0.2;
betal = 1;
gammal = 0;

Tfl = Tdlxalphal;
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7 ‘%)PIDQ
18| Ti2 =
19| Kp2 =
20| Td2 = 0.2;

alpha2 = 0.2;
beta2 = 1;
gamma2 = 0;

Tf2 = Td2xalpha?2;

I

I

o
® N =
o o=
NN W ot

NN N NN
o A W

6|% Maximum and minimum gain values
27| Gainlmax = 1/(Ts/(1%0.5) + 1);
% 1/(Ts/Tf+1)

28| Gainlmin = 0;

20| Gain2max = 0.5/Ts;
% Td/Ts

30| Gain2min = 0;

31| Gain3max = 5;
% Kp

32| Gain3min = 0.01;

33| Gaindmax = Ts/0.01;
% Ts/Ti

31| Gaindmin = Ts/20;

Gainl, Gain2,Gain3 , Gain4] = calcolo_gain (Kpl,Til,Tdl,alphal ,Ts);
Gainb , Gain6 , Gain7 , Gain8] = calcolo__gain (Kp2,Ti2,Td2,alpha2 ,Ts);
Gain9, Gainl0, Gainll,Gainl2] = calcolo_gain (Kpl,Til,Tdl,alphal Ts);
Gainl3,Gainl4 ,Gainl5,Gainl6] = calcolo_gain (Kp2,Ti2,Td2,alpha2 ,Ts)
Gainl7,Gainl8,Gainl9,Gain20] = calcolo__gain (Kp2,Ti2,Td2,alpha2 ,Ts)
Gain21 ,Gain22 ,Gain23 ,Gain24] = calcolo_gain (Kp2,Ti2,Td2,alpha2 ,Ts)

)
)

)

%

13ymdl = ’Lynx_ prove_ qtg_doppioloop ’;
open_system ( 'Lynx_ prove_qtg_doppioloop’);

'S

16| options = slTunerOptions(’RateConversionMethod’, prewarp’, PreWarpFreq’
,10)

47/ $t0 = slTuner (mdl,{ 'Lynx_prove_qtg_doppioloop/PID1/Filtrol /GainTunablel’
"Lynx__prove_qtg_doppioloop/PID1/GainTunable2’ "’

Lynx_prove_qtg doppioloop/PID1/GainTunable3’,’

Lynx_ prove_qtg_doppioloop/PID1/GainTunable4’ |...

18 "Lynx__prove_ qtg__doppioloop/PID2/Filtro2/GainTunable5’  ’

Lynx_ prove_qtg_doppioloop/PID2/GainTunable6’,’

Lynx_ prove_qtg_doppioloop/PID2/GainTunable7’ |
Lynx_prove_qtg_doppioloop/PID2/GainTunable8’ ...

19 "Lynx__prove_ qtg__doppioloop/PID3/Filtro3/GainTunable9’ ’
Lynx_ prove_qtg_doppioloop/PID3/GainTunablel0’ "’
Lynx_prove_qtg doppioloop/PID3/GainTunablell’,
Lynx_ prove_qtg_doppioloop/PID3/GainTunablel2’ ,...

50 "Lynx_ prove_ qtg__doppioloop/PID4/Filtro4 /GainTunablel3’ ’
Lynx_prove_qtg doppioloop/PID4/GainTunableld’ ~’

Lynx_ prove_qtg_doppioloop/PID4/GainTunablel5’,’

Lynx_ prove_qtg_doppioloop/PID4/GainTunablel6’ ,...

)

’
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51 "Lynx__prove__qtg__doppioloop/PID5/Filtro5/GainTunablel7’,’
Lynx prove qtg doppioloop/PID5/GainTunablel8’
Lynx_ prove_qtg_doppioloop/PID5/GainTunablel9’ |’
Lynx_ prove_qtg_doppioloop/PID5/GainTunable20’ ,...

52 "Lynx_prove_qtg doppioloop/PID6/Filtro6/GainTunable21’,’
Lynx_ prove_qtg_doppioloop/PID6/GainTunable22’ |’
Lynx_ prove_qtg_doppioloop/PID6/GainTunable23’ )’
Lynx_ prove qtg doppioloop/PID6/GainTunable24’} options);

53] addPoint (st0 ,{ 'reference’,’pitch_ref’ "Vz_ref’,’Vy_ref’,’r_ref’, 'phi_ref’
1)

51| addPoint (st0 ,{ 'Vx’, "theta’,’Vz’,’Vy’ ,’r’ 'phi’});

55| addPoint (st0 ,{ *Comandi’, *Output ’ }) ;

56

571 Gainl_t = getBlockParam (st0, ' GainTunablel’);

s:| Gain2 t = getBlockParam (st0 , ’GainTunable2 ) ;

50| Gain3_t = getBlockParam (st0,’GainTunable3’);

60| Gaind_t = getBlockParam (st0,’ GainTunabled’);

61| Gain5_t = getBlockParam (st0 ,’GainTunable5’);

62| Gain6_t = getBlockParam (st0, GainTunable6’);

63| Gain7_t = getBlockParam (st0, ' GainTunable7’);

61| Gain8 t = getBlockParam (st0 ,’GainTunable8’);

65| Gain9_t = getBlockParam (st0,’ GainTunable9’)

66| Gainl0_t = getBlockParam (st0,’  GainTunablel0’);

67| Gainll t = getBlockParam (st0,’ GainTunablell’);

6s| Gainl2_t = getBlockParam (st0, ’GainTunablel2’);

o] Gainl3_t = getBlockParam (st0,’GainTunablel3’);

70| Gainl4 _t = getBlockParam (st0,’ GainTunablel4’);

71| Gainl5_t = getBlockParam (st0, ’GainTunablel5’);

72| Gainl6_t = getBlockParam (st0,’GainTunablel6’);

73| Gainl7_t = getBlockParam (st0, ’GainTunablel7 ) ;

71| Gainl8_t = getBlockParam (st0, ’GainTunablel8’);

75| Gainl9_t = getBlockParam (st0, ’GainTunablel9’);

76| Gain20_t = getBlockParam (st0, ’GainTunable20’);

771 Gain21_t = getBlockParam (st0, ’GainTunable21’);

72| Gain22_t = getBlockParam (st0,’GainTunable22’);

79| Gain23 t = getBlockParam (st0, ’GainTunable237);

so| Gain24_t = getBlockParam (st0, ’GainTunable24 ) ;

81

s2| Gainl__t. Gain.Maximum = Gainlmax;

s3] Gainl__t . Gain . Minimum = Gainlmin;

s1| Gainb_ t . Gain.Maximum = Gainlmax;

35/ Gainb__t. Gain.Minimum = Gainlmin;

56| Gain9_t . Gain . Maximum = Gainlmax;

57| Gain9_ t . Gain . Minimum = Gainlmin;

ss| Gainl3_t.Gain.Maximum = Gainlmax;

so| Gainl3__t.Gain.Minimum = Gainlmin;

90| Gainl7_t.Gain.Maximum = Gainlmax;

91| Gainl7_t . Gain.Minimum = Gainlmin;

92| Gain21_t.Gain.Maximum = Gainlmax;

93| Gain21_t.Gain.Minimum = Gainlmin;

94

95| Gain2_ t . Gain . Maximum = Gain2max;

96| Gain2_ t . Gain . Minimum = Gain2min;

Matlab Codes
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97| Gain6__t . Gain . Maximum = Gain2max;

os| Gain6_ t . Gain . Minimum = Gain2min;

99| Gainl0_t.Gain.Maximum = Gain2max;

10| Gainl0__t. Gain.Minimum = Gain2min;

01| Gainl4_ t.Gain . Maximum = Gain2max;

02| Gainl4_ t . Gain.Minimum = Gain2min;

03| Gainl8__t. Gain.Maximum = Gain2max;

1041 Gainl8_ t.Gain . Minimum = Gain2min;

05| Gain22__t . Gain . Maximum = Gain2max;

06| Gain22__t. Gain.Minimum = Gain2min;

107

08| Gain3__t. Gain . Maximum = Gain3max;

09| Gain3_t . Gain . Minimum = Gain3min;

110| Gain7_t . Gain . Maximum = Gain3max;

11| Gain7_t . Gain . Minimum = Gain3min;

12| Gainll_t. Gain.Maximum = Gain3max;

113 Gainll_t. Gain . Minimum = Gain3min;

14| Gainl5_t. Gain . Maximum = Gain3max;

115 Gainl5__t. Gain . Minimum = Gain3min;

16| Gainl19_ t . Gain . Maximum = Gain3max ;

17| Gainl9__t. Gain . Minimum = Gain3min;

11| Gain23_t . Gain . Maximum = Gain3max ;

119 Gain23_t . Gain . Minimum = Gain3min;

120

21| Gain4__t . Gain . Maximum = Gain4max;

122| Gaind_ t.Gain.Minimum = Gain4min;

23| Gain8__t . Gain . Maximum = Gain4max;

24| Gain8__t . Gain . Minimum = Gain4min;

25| Gainl2_ t.Gain . Maximum = Gaindmax;

26| Gainl2_t. Gain . Minimum = Gain4min;

27| Gainl6__t . Gain . Maximum = Gaindmax ;

25| Gainl6_ t.Gain . Minimum = Gain4min ;

120 Gain20__t . Gain . Maximum = Gain4dmax;

130| Gain20_t . Gain . Minimum = Gain4min;

131] Gain24_ t.Gain . Maximum = Gain4dmax;

32| Gain24__t . Gain . Minimum = Gain4min;

133

134| setBlockParam (st0 , ’GainTunablel ’ ,Gainl_t);
135| setBlockParam (st0 , ’GainTunable2’ ,Gain2_t);
136] setBlockParam (st0 , ’GainTunable3 ’ ,Gain3_t);
137| setBlockParam (st0 , ’GainTunable4 ’ ,Gaind_t) ;
135] setBlockParam (st0 , ’GainTunable5’ ,Gainb_t);
10| setBlockParam (st0 , ’GainTunable6’ ,Gain6_t) ;
110 setBlockParam (st0 , *GainTunable7’ ,Gain7_t) ;
111] setBlockParam (st0 , ’GainTunable8 ' ,Gain8_t) ;
112 setBlockParam (st0 , ’GainTunable9 ’ ,Gain9_t);
113 setBlockParam (st0 , *GainTunablel0’ ,Gainl0_t);
114 setBlockParam (st0 , *GainTunablell’  Gainll_t);
115| setBlockParam (st0, *GainTunablel2’ ,Gainl2 t);
116 setBlockParam (st0 , *GainTunablel3’  Gainl3_t);
17| setBlockParam (st0 , *GainTunablel4’  Gainl4_t);
11| setBlockParam (st0 , *GainTunablel5’ ,Gainl5 t);
19| setBlockParam (st0 , *GainTunablel6’ ,Gainl6_t) ;
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1
172|% TrackReq2 = TuningGoal. Transient ({'phi_ ref’} ,{ phi’} refsys);
173|% TrackReq2.RelGap = 0.2;
174
175| TrackReq2 = TuningGoal. Transient ({’r ref’},{’'r’},refsys);
76| TrackReq2 . RelGap = 0.2;
177
17s| TrackReq3 = TuningGoal. Transient ({ ’Vy ref’},{ 'Vy’},refsys);
i7o| TrackReq3 . RelGap = 0.2;
180
181
152|% Gain and phase margins at plant inputs and outputs
153 MarginReql = TuningGoal.Margins ( ’Comandi’ ,5,40) ;
151 MarginReq2 = TuningGoal. Margins (’Output’ ,5,40) ;
185 %‘,
186|% Limit on fast dynamics
157 MaxFrequency = 25;
15| PoleReq = TuningGoal. Poles (0,0, MaxFrequency) ;
189
10| AllReqs = [MarginReql , MarginReq2, PoleReq];
191
02| [st, fSoft ,~,info] = systune(st0, AllReqs ,[TrackReq, TrackReql, TrackReq2,
TrackReq3],opt);
193] showTunable (st)
194
195| writeBlockValue (st);
196
07| Gainl__tnd = getBlockValue (st ,  GainTunablel’);
105 Gain2_tnd = getBlockValue (st ,’ GainTunable2’);
190] Gain3_tnd = getBlockValue(st, GainTunable3’);
200] Gain4d__tnd = getBlockValue (st ,  GainTunabled ) ;
201| Gainb__tnd = getBlockValue (st , GainTunable5’);

Matlab Codes

setBlockParam (st0, GainTunablel7’  Gainl7_t);
setBlockParam (st0, GainTunablel8’ ,Gainl8_ t);
setBlockParam (st0 , ’GainTunablel9’  Gainl9_t);
setBlockParam (st0, ’GainTunable20’ ,Gain20_t);
setBlockParam (st0, ’ GainTunable21’,Gain21_ t);
setBlockParam (st0, ’GainTunable22’ Gain22_t);
setBlockParam (st0, ’GainTunable23’  Gain23_t);
setBlockParam (st0, ’GainTunable24’ Gain24_t);

controlSystemTuner (st0) ;

opt = systuneOptions(’RandomStart’,30);
rng (0) ;

% Less than 20% mismatch with reference model 1/(s+1)

refsys = tf(1,[1 1 1]);

TrackReq = TuningGoal. Transient ({ 'reference’},{ 'Vx’},refsys);
TrackReq.RelGap 0.2;

TrackReql = TuningGoal. Transient ({ ’Vz ref’},{'Vz’},refsys);
TrackReql.RelGap = 0.2;
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Gain6_tnd = getBlockValue (st , GainTunable6’);
Gain7_tnd = getBlockValue (st , GainTunable7’);
Gain8 tnd = getBlockValue(st, GainTunable8’);

5| Gain9__tnd getBlockValue (st , GainTunable9 ) ;

Tuning_value.
Gain4_ tnd

Gain8  tnd

PID1 = gain_tuned (Gainl_tnd.D, Gain2_tnd.D, Gain3_tnd.D,
.D,Ts);
Tuning_value.PID2 = gain_ tuned (Gain5_tnd.D, Gain6_tnd.D, Gain7_tnd.D,
.D,Ts);
Tuning_value.PID3 = gain_tuned (Gain9_tnd.D, Gainl0_tnd.D, Gainll_tnd.D,

Gainl2_tnd.D,Ts);

5| Tuning_ value .PID4 = gain_ tuned (Gainl3_tnd.D, Gainl4_tnd.D, Gainl5_tnd.D,

Gainl6_tnd.D,Ts);

Tuning_value.PID5 = gain_ tuned (Gainl7_tnd.D,Gainl8_tnd.D, Gainl9_tnd.D,

Gain20_tnd.D, Ts) ;

7| Tuning__ value.PID6 = gain_tuned (Gain21_tnd.D, Gain22_tnd.D, Gain23_tnd.D,

Gain24_tnd.D,Ts);

%% Plot
Result  PID

sim ('Lynx_ prove_ qtg_doppioloop.slx’

Gainl0_tnd = getBlockValue (st ,’ GainTunablel0’
| Gainll_ tnd = getBlockValue(st,’GainTunablell”’
;| Gainl2__tnd = getBlockValue (st , GainTunablel2’

Gainl3_tnd = getBlockValue (st ,’ GainTunablel3’

Gainl4 tnd = getBlockValue (st , GainTunablel4’

Gainl5_tnd = getBlockValue (st ,  GainTunablel5’

Gainl6_tnd = getBlockValue (st ,’GainTunablel6

Gainl7 tnd = getBlockValue (st , GainTunablel7’

Gainl8_tnd = getBlockValue (st , GainTunablel8”’

Gainl9_ tnd = getBlockValue (st ,’ GainTunablel9’

Gain20_ tnd = getBlockValue (st , GainTunable20’
7| Gain21__tnd = getBlockValue (st , GainTunable21’

Gain22_tnd = getBlockValue(st,’ GainTunable22’

Gain23_ tnd = getBlockValue (st , GainTunable23’

Gain24_tnd = getBlockValue (st ,  GainTunable24’

A.5 TXT Helicopter model

s W N

o

~

%% Simulation

Ts = 1/60;

data and input

PID = txtImport(’Input.txt’)
t

stateSpace =

% run (’Valori_max_min_comandi.m’) ;

txtImportScrip

input modello

%% Truncated

system

stability
ss_PID = truncated(stateSpace ,[1:4,7:11],[1,4,7,10],[1:4,7:11]);

("H145_GW_2990_IAS_73_PA_8605.tab’);

analysis
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12| Gol_PID = tf(ss_PID);
13| Gol__zpk_PID = zpk(Gol_PID);
14| lambda_PID = eig (Gol_zpk_PID);

6| if isstable (Gol zpk PID)

17 disp (’Truncated system is stable’)
15 else

19 disp (’Truncated system is unstable’)
ol end

o figure

3| pzmap (Gol_zpk_PID (4 ,1))

i rlocus (Gol_zpk PID(4,1))

5| grid on

¢| saveas (gcf, "Results /Root__Locus__truncated__openloop.png’)

s| %% Model

9% Reorganization of the H145 matrices in accordance with
30/% the Lynx matrices

31| stateSpace__ord = matrix__analysis (ss_PID
,[3,4,1,2,9,5,7,6,8],[4,1,2,3],[3,4,1,2,9,5,7,6,8]);

33l mdl = "Param_ model ’;
31| open__system (mdl) ;

36| count = 1;

ss|u_max_OL = 20/57.3;

s39lu_min_ OL = —20/57.3;
o|u_max = 1;

1t|lu_min = —1;
w|u_max_IL = 1;
slu_min_IL = —1;

6| Gain__filter_ OL = 0;

17| Gain__derivative_ OL = 0;
15| Gain__proportional OL = 0;
v| Gain__integrative_ OL = 0;
50| Gain__filter _IL = 0;

51| Gain__derivative_IL = 0;
52| Gain__proportional IL = 0;
53] Gain__integrative IL = 0;
54 Gain__filter = 0;

55| Gain__derivative = 0;
56| Gain__proportional = 0;
571 Gain__integrative = 0;
58

50| gamma = 0;

60| beta = 1;

62|% Mi definisco i valori massimi e minimi che possono assumere i diversi
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63|% gain
64
65| Gainlmax = 1;
% Kp
66| Gainlmin = 0.01;
67| Gain2max = Ts/0.01;
% Ts/Ti
6s| Gain2min = Ts/20;
60| Gain3max = 0.5/Ts;
% Td/Ts
70| Gain3min = 0.1;
71| Gaindmax = 1/(Ts/(1%0.5) + 1);
% 1/(Ts/Tf+1)
72| Gaindmin = 0.1;
73
71| for i =1 : length (PID)
76 if PID(i).Type = 2
78 TuningBlocks (count: count+7) = [strcat (mdl,’/’ ,PID(i).Name, ’/
PID_OL/Filter_ OL/GainTunable_ filter_ OL ") ...
79 strcat (mdl, '/’ ,PID(i).Name, ' /PID OL/
GainTunable_derivative_ OL’) ,...
80 strcat (mdl,’/’ ,PID(i).Name,’/PID_OL/’,’
GainTunable_ proportional OL’) ,...
81 strcat (mdl,’/’ ,PID(i).Name,’/PID OL/’,~’
GainTunable_integrative_ OL ") ...
82 strcat (mdl, '/’ ,PID(i).Name, '/PID IL/Filter IL/
GainTunable_ filter IL’") ,...
83 strcat (mdl, ’/’ ,PID(i).Name, ’/PID_IL/
GainTunable__derivative IL7) ,...
84 strcat (mdl,’/’ ,PID(i).Name, ’/PID IL/’,’
GainTunable_proportional _IL ") ...
85 strcat (mdl, '/’ ,PID(i).Name, '/PID IL/’,’
GainTunable integrative IL’)];
86
87 count = count + 8;
89 n_ gain(i) = 8;
90
91 elseif PID(i).Type = 1
92
93 TuningBlocks (count: count+3) = [strcat (mdl,’/’ ,PID(i).Name, ’/
Filter /GainTunable filter’) ...
94 strcat (mdl, ’/’ ,PID(1i).Name, ’/GainTunable_derivative’) ,...
95 strcat (mdl, '/’ ,PID(i).Name, ’'/GainTunable proportional’) ,...
96 strcat (mdl, '/’ ,PID(i).Name, '/GainTunable integrative’)];
97
98 count = count + 4;
99
100 n_gain(i) = 4;
101
102 end
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end
tot__TuningBlocks = sum(n__gain);

options = slTunerOptions(’RateConversionMethod’, prewarp’,’PreWarpFreq’
,10)5

st0 = slTuner (mdl, TuningBlocks , options);

addPoint (st0 ,{ "theta_ref’ ,’Vz_ref’ 'phi_ref’, 'psi_ref’});

addPoint (st0 ,{ "theta’,’Vz’  ’phi’, 'psi’});

addPoint (st0 ,{ 'Commands’,’ States’});

count2 = 1;
for i = 1l:length (PID)
for j =1 : n_gain(i)
if PID(i).Type = 2
[Gain_f OL, Gain_d_OL, Gain_p_ OL, Gain_i_OL] =
gain_computation (PID(i).Kp OL, PID(i).Ti OL, PID(i).Td OL, PID(i).
alpha_ OL, Ts);
[Gain_f_ IL, Gain_d_IL, Gain_p_IL, Gain_i_IL] =
gain computation (PID(i).Kp IL, PID(i).Ti IL, PID(i).Td IL, PID(i).
alpha_IL, Ts);

Gain_t = getBlockParam (st0 , TuningBlocks{count2});

if ~isempty(strfind (TuningBlocks{count2}, proportional_OL "))

Gain_t.Gain. Value = Gain_p_OL;
Gain_t.Gain.Maximum = Gainlmax;
Gain_t.Gain.Minimum = Gainlmin;

elseif ~isempty(strfind (TuningBlocks{count2}, integrative_OL

Gain_t.Gain. Value = Gain_i_OL;
Gain_t.Gain.Maximum = Gain2max ;
Gain_ t.Gain.Minimum = Gain2min;

elseif ~isempty(strfind (TuningBlocks{count2},’ derivative_ OL’

))
Gain_t.Gain. Value = Gain_d_OL;
Gain_ t.Gain.Maximum = Gain3max;
Gain_t.Gain . Minimum = Gain3min;

elseif ~isempty(strfind (TuningBlocks{count2}, filter OL’))

Gain_t.Gain. Value = Gain_f OL;
Gain_ t.Gain.Maximum = Gaindmax ;
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Gain_t. Gain . Minimum = Gain4min;

elseif ~isempty(strfind (TuningBlocks{count2},’
proportional IL 7))

Gain_t.Gain. Value = Gain_p_IL;
Gain_t.Gain.Maximum = Gainlmax;
Gain_t.Gain.Minimum = Gainlmin;
elseif ~isempty(strfind (TuningBlocks{count2}, integrative_ IL
Gain_t.Gain. Value = Gain_i_IL;
Gain_t.Gain.Maximum = Gain2max;
Gain_ t.Gain.Minimum = Gain2min;
elseif ~isempty(strfind (TuningBlocks{count2}, derivative IL’
Gain_t.Gain. Value = Gain_d_IL;
Gain_t.Gain.Maximum = Gain3max;
Gain_ t.Gain.Minimum = Gain3min;
elseif ~isempty(strfind (TuningBlocks{count2},’ filter_IL "))
Gain_t.Gain. Value = Gain_f IL;
Gain_t.Gain.Maximum = Gain4dmax ;
Gain_ t.Gain.Minimum = Gain4min;
end

elseif PID(i).Type = 1

[Gain_f,Gain_d,Gain_p,Gain_i] = gain_computation (PID(i) .Kp,
PID(i).Ti, PID(i).Td, PID(i).alpha, Ts);

Gain_t = getBlockParam (st0 , TuningBlocks{count2});

if ~isempty(strfind (TuningBlocks{count2},’ proportional’))
Gain_t.Gain. Value = Gain_p;
Gain_ t.Gain.Maximum = Gainlmax;
Gain_t.Gain.Minimum = Gainlmin;

elseif ~isempty(strfind (TuningBlocks{count2}, integrative’))
Gain_t.Gain. Value = Gain_i;
Gain_t.Gain.Maximum = Gain2max;
Gain_ t.Gain.Minimum = Gain2min;

elseif ~isempty(strfind (TuningBlocks{count2}, derivative’))

Gain_t.Gain. Value = Gain_d;
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198 Gain_t. Gain.Maximum = Gain3max;

199 Gain_ t.Gain.Minimum = Gain3min;

200

201 elseif ~isempty(strfind (TuningBlocks{count2},’ filter ))
202

203 Gain_t.Gain. Value = Gain_f;

204 Gain_t.Gain.Maximum = Gain4dmax;

205 Gain_ t.Gain.Minimum = Gain4min;

206

207 end

208

209 else

210

211 disp(’Error in MathPilot definition , define right parameters

in the settings file’)

213 end
214
215 setBlockParam (st0 , TuningBlocks{count2},Gain_t);
216
217 count2 = count2 + 1;
218
219 end
220
221 end
222
223/ % controlSystemTuner (st0)
1

225| opt = systuneOptions (’RandomStart’ ;15);
226/ ITNg (0) )

228|% Less than 20% mismatch with reference model 1/(s+1)
2ol refsys = tf(1,[1 1 1]);
230| TrackReq = TuningGoal. Transient ({ "theta_ref’},{ theta’},refsys);
231| TrackReq.RelGap = 0.2;

233| TrackReql = TuningGoal. Transient ({ 'Vz_ref’},{’Vz’} refsys);
231| TrackReql . RelGap = 0.2;

236| TrackReq2 = TuningGoal. Transient ({ 'phi_ref’} ,{ phi’},refsys);
237| TrackReq2 . RelGap = 0.2;

230| TrackReq3 = TuningGoal. Transient ({ "psi_ref’},{ psi’},refsys);
210 TrackReq3 . RelGap = 0.2;

243|% Gain and phase margins at plant inputs and outputs
224| MarginReql = TuningGoal. Margins ( ’Commands’ ,5,40) ;

215| MarginReq2 = TuningGoal. Margins(’States’,5,40) ;

246| %

247|% Limit on fast dynamics

215| MaxFrequency = 25;

210| PoleReq = TuningGoal. Poles (0,0, MaxFrequency) ;
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AllReqs = [MarginReql,MarginReq2,PoleReq];

[st,fSoft ,~,info] = systune(st0,[] ,[TrackReq, TrackReql, TrackReq2,
TrackReq3] ,opt);

showTunable (st)

writeBlockValue (st);

9|%% Tuning values definition

count = 1;

for i 1:4:tot__TuningBlocks

Gainl_tnd = getBlockValue (st , TuningBlocks{i});
Gain2 tnd = getBlockValue (st , TuningBlocks{i+1});
Gain3_tnd = getBlockValue (st , TuningBlocks{i+2});
Gain4_ tnd getBlockValue (st , TuningBlocks{i+3});

Tuning_value(count) = gain_tuned(Gainl_tnd.D,Gain2_tnd.D, Gain3_tnd.D,
Gaind_tnd.D,Ts) ;

if Tuning_value(count).alpha_tuned < le—3
Tuning value(count).alpha tuned = le—3;
%elseif Tuning value(count).alpha_tuned > 10
%Tuning_value(count).alpha_tuned = 10;
end
count = count + 1;
end
%% Results plot
Result_ PID = sim (’Param model.slx’,300);
[r_PID,c_PID_at] = size (Result_PID. States.signals.values);
figure
hold on
for i = 1l:c_PID at
subplot (5,2,1)
plot (Result_PID.tout ,Result_PID.States.signals.values(:,i), Linewidth
’,1.5)
xlabel (7time [s]7)
ylabel ([stateSpace_ord.StateName{i},’ [’ ,stateSpace_ord.StateUnit{i},

D
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grid on
end
subplot (5,2 ,4)
hold on
plot (Result_PID.Reference , ’Linewidth’ 1)
hold off
grid on

i| sgtitle (’Step Response — states’)
‘| saveas (gcf, ’Results/States.png’)

figure

hold on

plot (Result_PID. tout ,Result_PID.States.signals.values (:,4), Linewidth’
,1.5)

plot (Result_ PID. Reference , ’Linewidth ’ 1)

hold off

title (’Step response’,’PID Controller’)

ylabel (’theta [rad]’)

xlabel (7time [s]7)

grid on

set (geca, ’FontSize’ ,14)

saveas (gcf, "Results/Step_response.png’)

figure

for i = 1:4
subplot (2,2,1)
plot (Result_PID. tout , Result_ PID.Commands. signals . values (:,1),’
Linewidth’,1.5)
xlabel (’time [s]7)
ylabel ([stateSpace_ord.InputName{i},’ [’ ,6stateSpace_ord.InputUnit{i},
D

grid on

;| end

grid on
sgtitle (’Step response — commands’)
saveas (gcf , "Results /Commands. png )
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