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Abstract

The macro topic treated in this thesis is the analysis of the feasibility and problems
related to the operation of autonomous and re-configurable satellite formations. The
main objective is to model and control with great precision the relative 6DoF dy-
namics of the followers with respect to a leader satellite in order to allow a correct
taking of the data required by the mission.

The differential accelerations to which the formation satellites are subjected (drift)
make it necessary to implement control techniques for their re-positioning. To en-
sure a long mission duration, the number of such correction maneuvers should be
minimized. In an autonomous formation perspective, such corrections are computed
by the spacecraft itself, which therefore need to be equipped with sufficient compu-
tational resources. In this paper the problems just presented are described in detail
and some techniques to mitigate their effects are described. In order to have results
more similar to reality, a high precision dynamic propagation model has been cre-
ated and validated with the NASA General Mission Analysis Tool (GMAT). This
model includes harmonics of the gravitational potential up to order 21, drag, solar
pressure and third-body perturbation (Moon and Sun).

After defining the external environment in which the satellites operate, the prob-
lem of maintaining the desired configuration of the system is addressed through
two different analyses: uncontrolled dynamics stability analysis and active forma-
tion control. The study of uncontrolled formation stability aims to derive the initial
conditions of the formation satellites that most closely minimize the relative drift
between followers and leader. This allows to reduce the number of maneuvers re-
quired to maintain the formation given a fixed interval of time. Despite the careful
choice of initial conditions, this drift, although minimal, will tend to alter the ini-
tial configuration until the formation is no longer operational. For these reasons,
two types of closed-loop active control have been implemented. The first type con-
sists of a proportional derivative controller. The quantities to be controlled and
their derivatives are measured so that a control command can be generated. This
methodology is simple to implement and requires limited computational resources.
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The second control methodology aims to minimize the amount of fuel used to per-
form the correction maneuver. The optimal control is presented in different variants,
in particular two strategies, centralized and decentralized, have been implemented
in the context of Sequential Convex Programming (SCP). Both types of control were
analyzed considering unmodeled external factors.

Finally, the possibility of total or partial reconfiguration of the formation is analyzed
through the description of the algorithm that allows to assign to each satellite of the
old configuration its place in the new one in such a way that the cost to perform
this maneuver is minimized.

Some test cases are discussed so that discussion and conclusions can be made re-
garding the limitations and issues associated with the methodologies implemented.



Sommario

Il macro argomento trattato in questa tesi é l’analisi di fattibilità e delle problem-
atiche legate alle operazione di formazioni di satelliti autonome e riconfigurabile.
L’obiettivo principale é quello di modellizzare e controllare con molta precisione la
dinamica 6DoF relativa dei sapcecrafts followers rispetto ad un satellite leader in
modo tale da permettere una corretta presa dei dati richiesti dalla misisone.

Le accelerazioni differenziali a cui sono sottoposti i satelliti della formazione (drift)
rendono necessaria l’implementazione di tencniche di controllo per il loro ripo-
siziomento. Per garantire una lunga durata della missione, il numero di tali manovre
di correzione dovrebbe essere minimizzato. In un’ottica di formazione autonoma, tali
correzioni sono calcolate dagli spacecrafts stessi che quindi devono essere dotati di
sufficienti risorse computazionali. In questo lavoro i problemi appena presentati sono
descritti nel dettaglio e alcune tecniche per poterne mitigare gli effetti sono descritte.
Per poter avere dei risultati più simili alla realtà, un modello di propagazione dinam-
ica ad alta precisione é stato creato e validato con il General Mission Analysis Tool
(GMAT) della NASA. Tale modello include armoniche del potenziale gravitazionale
fino ad ordine 21, resistenza aerodinamica, pressione solare, perturbazione del terzo
corpo (Luna e Sole).

Dopo aver definito l’ambiente esterno in cui i satelliti operano, il problema del
mantenimeto della configurazione desiderata del sistema viene affrontato attraverso
due analisi differenti: analisi di stabilità della dinamica incntrollata e controllo at-
tivo della formazione. Lo studio della stabilità della formazione incontrollata ha
l’obiettivo di derivare le condizioni iniziali dei satelliti della formazione che più min-
imizzano il drift relativo tra followers e leader. Questo permette di ridurre in numero
di manovre necessarie per mantenere la formazione dato un intervallo di tempo fis-
sato. Nonostate l’accurata scelta delle condizioni iniziali, tale drift, seppur minimo,
tenderà ad alterare la configurazione iniziale fino a quando la formazione non sarà
più operativa. Per tali motivi due tipologie di controllo attivo ad anello chiuso sono
state implementate. La prima tipologia consiste in un controllore proporzionale
derivativo. Le quantità da controllare e le loro derivate sono misurate in modo tale
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da poter generare un comando di controllo. Tale metodologia risulta semplice da
implementare e richiede limitate risorse computazionali. La seconda metodologia
di controllo ha invece lo scopo di minimizzare la quantità di carburante utilizzato
per effettuare la manovra di correzione. Il controllo ottimale viene presentato in
diverse varianti, in particolare due strategie, centralizzata e decentralizzata, sono
state implementate nel contesto della Sequential Convex Programming (SCP). En-
trambe le tipologie di cotrollo sono state analizzate considerando fattori esterni non
modellizzati.

Infine, la possibilità di riconfigurazione totale o parziale della formazione viene anal-
izzata attraverso la descrizione dell’algoritmo che permette di assegnare ad ogni
satellite della vecchia configurazione il suo posto in quella nuova in modo tale che il
costo per effettuare tale manovra sia minimizzato.

Alcuni test cases vengono discussi in modo tale da poter effettuare delle conclusioni
critiche riguardanti i limiti e le problematiche legate alle metodologie implementate.
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7.18 ẑBF field drift correction Optimal controller CL-SCP . . . . . . . . . 120
7.19 Quaternion errors history drift correction Optimal controller CL-SCP 121
7.20 Angular velocity errors history drift correction Optimal controller CL-

SCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.21 Actuation Torques drift correction Optimal controller CL-SCP . . . . 122
7.22 Trajectories partial re-configuration Optimal controller de-centralized

SCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.23 Actuation Forces partial re-configuration Optimal controller de-centralized

SCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.24 Trajectories drift correction non-optimal places assignation . . . . . . 128

XIV



A.1 GMAT comparison, Gravtiy Potential (up to grade 4 order 4) . . . . 138
A.2 GMAT comparison, Drag (HarrisP riestervsJacchia) . . . . . . . . . 139
A.3 GMAT comparison, Solar Pressure . . . . . . . . . . . . . . . . . . . 140
A.4 GMAT comparison, Third-body (Moon) . . . . . . . . . . . . . . . . 141
A.5 GMAT comparison, Third-body (Sun) . . . . . . . . . . . . . . . . . 142

D.1 Trajectories 80 satellites Optimal controller de-centralized SCP . . . . 148
D.2 Position errors history drift correction 80 satellites Optimal controller

de-centralized SCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
D.3 Velocity errors history drift correction 80 satellites Optimal controller

de-centralized SCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
D.4 Actuation Forces drift correction 80 satellites Optimal controller de-

centralized SCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150



List of Tables

5.1 Initial Orbital Parameter of the Leader spacecraft . . . . . . . . . . . 55
5.2 IC parameters for simulation. . . . . . . . . . . . . . . . . . . . . . . 56
5.3 CTP parameters for simulation. . . . . . . . . . . . . . . . . . . . . . 58
5.4 CP parameters for simulation. . . . . . . . . . . . . . . . . . . . . . . 60
5.5 Helix parameters for simulation. . . . . . . . . . . . . . . . . . . . . . 62

7.1 Initial Orbital Parameters of the Leader spacecraft, control simulations100
7.2 Initial inertial properties and dimensions . . . . . . . . . . . . . . . . 101
7.3 Actuators properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.4 Helix final parameters for drift corrction simulation. . . . . . . . . . . 102
7.5 PD gains definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.6 SCP simulation paramters . . . . . . . . . . . . . . . . . . . . . . . . 111
7.7 Computational times comparison . . . . . . . . . . . . . . . . . . . . 116
7.8 Final position errors drift corrections simulations . . . . . . . . . . . 124
7.9 Fuel consumption summary drift corrections simulations . . . . . . . 124
7.10 y physical meaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.11 Fuel consumption partial re-configuration . . . . . . . . . . . . . . . . 128

D.1 SCP simulation paramters . . . . . . . . . . . . . . . . . . . . . . . . 147
D.2 Helix final parameters for drift correction 80 satellites simulation. . . 148
D.3 Fuel consumption summary drift corrections 80 satellites simulations 151



Chapter 1

Introduction

The purpose of this chapter is to introduce the concept of spacecraft formation flying
giving a definition of it and to explain why there is an extensive research effort on this
type of system, underlying its potentialities and the problems related to its operation.
A brief overview of the concepts that are related to formation flying will be presented
in order to have in mind what are the actors involved and the parameters of interest
in the study of formations. In addition some possible applications of formation flying
and representative missions effectuated by NASA and ESA will be reported in order
to give an idea of the state of the art of this technology. Finally, last section outlines
the general organization of this work, anticipating what are the main topics treated
in the next chapters.

1.1 What is Spacecraft Formation Flying?

There are different opinions regarding the definition of Spacecraft Formation Flying.
It is often confused with the more common definition of Constellation. In fact, the
concept of formation flying is slightly different from it, and is a subclass of the
broader category that goes by the name of Distributed Space Systems. Following the
definitions given by NASA’s Goddard Space Flight Center (GSFC) it is possible to
distinguish:

• Distributed Space Systems
An end-to-end system including two or more space vehicles and a cooperative
infrastructure for science measurement, data acquisition, processing, analysis
and distribution.

• Constellation
A collection of space vehicles that constitutes the space element of a distributed



CHAPTER 1 INTRODUCTION

space system.

• Space Formation Flying
The tracking or maintenance of a desired relative separation, orientation or
position between or among spacecraft.

It is then possible to conclude that the concept of space formation flying implies
characteristics belonging to the class of Distributed Space Systems and expands the
concept of Constellation referring rather to all the methodologies used to ensure
that the system maintain or change the relative position and attitude between the
spacecrafts that compose the formation. After these definitions, it is clear how For-
mation Flying operations are strictly related to those of the Guidance, Navigation,
and Control (GN&C) system.
It is also important to define some of the aspects characterizing such a system which
will be used extensively in the next sections. NASA GSFC also defines:

• Virtual Platform
A spatially distributed network of individual vehicles collaborating as a single
functional unit, and exhibiting a common system-wide capability to accomplish
a shared objective.

The definition subtends what is better explained in Section 1.4, i.e. it is that one of
the main reasons for which the formations are used is their ability to achieve tasks
through collaboration between the individual elements that a monolithic spacecraft
can not achieve. No further details are given about the last two terms since their
meaning will be more evident and clarified in the next sections.

1.2 Features and Properties of Formation Flying

This section aims at outlining what the main features of the Formation Flying are
and what the main differences with respect to a single spacecraft approach exist.
Some general aspects that can be referred to any Formation Flying are presented in
the following list, even if the case of formation flying in Low Earth Orbit (LEO) will
be treated with more attention in this work.

• Orbit Tracking
As an ensamble of single spacecrafts, it results possible to adopt a classical
approach by considering the dynamics of the single spacecraft and imposing
that its trajectory follows a target trajectory calculate by the preliminary study
of the desired relative dynamics. This approach does not take into account
the essential necessities of formation where rather the objective is to directly
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impose the relative dynamics and act directly on it. The latter is in line with
the fact that the formation will achieve its assigned goals if the relative position
and attitude are correct, not being interested in the absolute position of the
single spacecraft. From this new Orbit Tracking method it follows the relative
dynamics description through a chief/deputy approach.

• Chief/Deputy Approach
In order to describe the relative motion, it is necessary to identify an object
against which to describe this dynamics. This object is called the chief (or
leader) spacecraft. The chief can be a real spacecraft belonging to the forma-
tion or a virtual one. The chief is also place at the origin of a non-inertial
reference frame wrt all the dynamics is described. The other spacecrafts of the
formation will be named as deputies (or followers) and their motion will be
described wrt the chief non-inertial reference frame. This approach will allow
to control directly the relative dynamics.

• Autonomous Property
Because a great number of Formation Flying applications foresees a close-
proximity motion between spacecrafts, such a system is often endowed with
autonomous management of the relative dynamics. The higher the number
of elements in the formation, the greater the need to make it autonomous as
the potential risk of collision increases. We can also state that the greater the
number of satellites in the formation, the greater the computational cost of
recalculating the dynamics of an autonomous formation. This last aspect is
closely related to the concept of formation architecture.

• Architecture
Another crucial aspect when dealing with Formation Flying is the Architec-
ture of the system. According to the requirements of the mission in term
of precision of the relative dynamics control, different design of the on-board
systems such as inter-satellite communication system, metrology system, data
handling system etc... can be envisaged. Two main categories of Architecture
are present. The first is the so-called centralized Architecture, which foresees
the chief spacecraft as the spacecraft deputed to perform the great major-
ity of calculations, limiting the inter-satellite communications at the cost of
a higher computational load. The second is the de-centralized Architecture
which foresees distributed computational resources among the spacecrafts of
the Formation but requiring an high performance inter-satellite communica-
tion system.

Having in mind these main features of Formation Flying, it is now possible to show
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the potentiality and problems related to such a system.

1.3 Potentialities and Problems

It often happens that as the complexity of a system increases, there is greater dif-
ficulty in its management. This statement also applies in the case of Formation
Flying. Both these aspects are a consequence of the main characteristic of the for-
mation, that is the presence of a multiplicity of spacecrafts that collaborate to reach
a common objective. It is evident that this multiplicity is the basis of the following
advantages:

• Reconfiguration Capacity
Such a system is very flexible and allows to the possibility of re-configuring the
formation. There is nothing to prevent the system from being able to change
the relative position between individual spacecrafts so that a configuration can
be obtained that is more suitable for obtaining a certain type of data rather
than another. It is not only possible to change the shape of the Formation,
but also the variation of its size can prove very useful in a multiple-objectives
mission. This aspect is particularly useful in many applications as will be
highlighted in the following section.

• Fault-Tolerant System
The greater the number of satellites that make up the formation, the more
robust the system itself is against possible faults. In fact, in the event that a
satellite is no longer active due to damage to their systems or other, it could
be replaced by another satellite in the formation. Clearly this aspect also
depends on the number of satellites present, which in turn affects the cost of
the mission. The crucial consequence is that in any case the mission can be
completed even with a decrease in performance.

• Low-cost System
Many applications of Formation Flying foresee the use of low-cost spacecrafts.
This is an aspect of great relevance, in fact, space companies are always con-
cerned with the cost of mission. So, the possibility of accomplishing tasks
that a monolithic spacecraft can not achieve, united to the fault-tolerance as-
pect, makes this kind of system very attractive. Swarms take this concept to
the extreme. One branch of research focuses on studying the control of thou-
sands or even tens of thousands of inexpensive little robots that make up a
"cloud." Such a system would present a very high fault-tolerance, making the
replacement of a robot almost insignificant [32].
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• Light-Weight System
Considering that Formation usually involves a relatively great number of units,
the satellites composing the formation are usually small in size. This implies
the system to be light-weight and results in a particular simplicity of space
management inside the launcher. It is also evident how this aspect brings with
it the concept of low-cost system just described.

As mentioned at the beginning of the section, the positive aspects are usually ac-
companied by the negative ones. It is always a matter of a trade-off that is most
driven by mission requirements.
With this premise, it is also possible to present some possible disadvantages of a
Formation Flying system compared to a single spacecraft so that we can better un-
derstand in which direction current research efforts are oriented and in which cases
and to what extent it is possible to mitigate these problems. The most evident
difficulties related to such a system are presented in the following list:

• Computationally Expensive System
A system consisting of a large number of satellites involves knowing the tra-
jectories of each one. If to this aspect we add a requirement on the accuracy
of the propagation of these orbits (since often, as mentioned above, Formation
Flying presents close-proximity dynamics) it is clear that the system must be
equipped with a high performance data handling system. This aspect is often
not compatible with the dimensions usually employed for such a system. For
these reasons a great effort of research towards high performance algorithms
has been developed in recent years. Different solutions are applied depending
on the architecture implemented.

• Stability of the Formation
Stability of the Formation refers to the self-maintaining of the relative positions
when the system is not subject to control. All the perturbations to which
the space environment is subject act on the system. These perturbations
depend on the position and speed vectors of each spacecraft, which, being a
priori different, give rise to differential accelerations that lead to a drift of the
configuration. This concept is closely related to that of initial conditions which
must be chosen in such a way as to minimize drift over time.

• Fuel Consumption
Another crucial aspect is fuel consumption. As mentioned earlier, relative drift
involves a "break" in the initial formation configuration. In order to bring the
system back to correct operation, it is necessary to carry out a check. In order
to ensure a longer mission duration, and especially in case of satellites with

5



CHAPTER 1 INTRODUCTION

limited range, it is necessary to provide re-positioning algorithms that tend to
minimize fuel waste.

• Control and Task Assignment Complexity
Formation Control is a complex task. In order to perform good data taking,
the relative position must be controlled with high-precision. It is clear how this
becomes more complex as the number of satellites in the formation increases.
Moreover, the control methodology varies depending on the strategy adopted,
i.e. on-board calculation control or ground-based control. Without going into
detail, it is possible to imagine how these types of choices can give rise to a
large number of cases and related design solutions.
Task Assignment problem is more related to reconfiguration capacity aspect.
In case of reconfiguration of the system, an algorithm of Task Assignment
which gives the single spacecraft the place it must occupy within the formation,
must be provided. Such an algorithm must assign places in such a way as to
avoid crossings between spacecrafts as much as possible and collisions. Further
complications arise if a Task Assignment that includes cases where one or more
satellites are no longer active (partial reconfiguration) is considered. These two
aspect are correlated with the computational efficiency of the system and with
fuel management, which are often limited for small satellites.

The majority of the problems presented can be mitigate adopting several solutions
which depend on the particularities of the analysed system. In the following Chap-
ters some of these solutions will be presented and analysed in detail in order to
understand to what extent these problems can be solved. Ultimately, it is possible
to state that the positive aspects justify the increment in complexity, so making
Formation Flying a very promising system. The next section presents some possible
applications of Formation Flyng systems.

1.4 Possible Applications and Formation Flying Mis-
sions

There are many possible applications of Formation Flying system, they range from
remote sensing of planets, measurements of gravity potential field, to the detection
of gravitational waves etc... [20]. This section presents some real missions involving
Formation Flying in order to show how wide their implementation is.
The first example is the Swedish-led technology ESA Prototype Research Instru-
ments and Space Mission technology Advancement (PRISMA) mission which has
been successfully launched on June 15, 2010. The purpose of this mission is to
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demonstrate the feasibility and advantages of Formation Flying by implementing
small-satellites endowed with advanced proximity ranging and propulsion systems.
In particular, PRISMA was intented to perform GN&C demonstrations like au-
tonomous Formation Flying, Homing and Rendez-Vous and to test technology as
GPS-based navigation, RF metrology and star tracker-based vision navigation. Figure1.1
show a possible scenario of Autonomous Formation Flying (AFF) of the PRISMA
mission.

Figure 1.1: PRISMA possible scenario for Autonomous Formation Flying, [42]

Another important ESA mission which has analogous objectives is the PROBA-3
mission. It will be launched in 2023 into a highly elliptical orbit (600 x 60530 km
at around 59 degree inclination). The formation is composed of two satellites which
will be deployed in Tandem formation [13]. In order to avoid high fuel consumption
the orbits followed by the spacecrafts will be divided into six hours of formation
flying manoeuvres at apogee while the rest of the orbits will be traveled in passive
safe drifting.
A very important mission involving a collaboration between ESA and NASA is the
Laser Interferometer Space Antenna (LISA) whose launch is scheduled in the early
2030s. It is composed of three spacecrafts that form an equilateral triangle whose
sides are approximately a million miles long. It aims at detecting gravitational
waves (space-time distortions) produced by ultra-compact binaries in our Galaxy,
supermassive black hole mergers, and/or extreme mass ratio inspirals. To do so,
it measures relative position between the spacecrafts with laser technology, being
the relative position sensitive to the gravitational waves which would cause a slight
variation of it. The system will require a very high-stability in order to be able to
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detect relative shifts in position that are less than the diameter of a helium nucleus
over a distance of a million miles. A graphic representation of the LISA system is
showed in Figure 1.2.

Figure 1.2: Artist’s view of the LISA space mission, [47]

Another NASA mission which deserves to be mentioned is Magnetospheric Mul-
tiscale Mission (MMS) launched in 2015 and still operational (end of mission ex-
pected in 2040). MMS aims at studying the Earth’s magnetosphere, using four
identical spacecraft flying in a variable sides tetrahedral formation. To do so, the
spacecrafts gather information about the microphysics of magnetic reconnection,
energetic particle acceleration, and turbulence processes that occur in many astro-
physical plasma. In order to take good measurements, the four satellites have to
maintain their tetrahedral relative position when passing through regions of inter-
est (the so-called dayside magnetopause and magnetotail). Spacecrafts are provided
with an high-accuracy relative position measurements instrumentation based on high
altitude rated GPS receiver, and are periodically corrected by maneuvers. An artis-
tic depiction of the MMS system is given in Figure 1.3.
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Figure 1.3: Artist’s view of the MMS space mission, [51]

Regarding space exploration the NASA funded mission involving Formation Flying
New World Observer (NWO) mission is of relevant importance for the innovative
strategies implemented. NWO aims at characterizing extra-solar planets. The for-
mation is made of two satellites , a large telescope and a star-shade spacecraft, flying
at the Earth–Sun L2 (Lagrangian) point or in a drift-away solar orbit. In Figure
1.4 it is possible to visualize a 3D CAD model of the star-shade spacecraft. The
problem with detection of exo-planets is the presence of light noise produced by the
star the planet is orbiting around. NWO mission solves this issue suppressing the
starlight before it enters the telescope.
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Figure 1.4: 3D CAD model of star-shade spacecraft, [6]

This task is achieved through a configuration which presents the star-shade space-
craft operating 70000 km from the telescope being maneuvered into the near line-
of-sight of the telescope. A representation of this configuration is presented in
Figure1.5.

Figure 1.5: Nominal configuration of NWO mission, [6]

In regards to remote sensing, a very recent project is the TanDEM-X (TerraSAR-X
add-on for Digital Elevation Measurements). The objective of the mission is the gen-
eration of a consistent global digital elevation model (DEM) with an unprecedented
accuracy [13]. TanDEM-X is made of two radar satellite flying in close formation
and provides a highly re-configurable platform for the demonstration of new radar
imaging techniques and applications. The system is based on an innovative phase
synchronization link through which bistatic data can be obtained. The orbits of the
spacecrafts are initialized in order to obtain an helix configuration (Figure 1.6). The
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helix configuration is widely used in Formation Flying for remote sensing purposes
because it enables an interferometric mapping of the complete Earth surface [40].

Figure 1.6: Initial orbits design for TanDEM-X mission, [13]

The last example is the NASA Milli-Arc-Second Structure Imager (MASSIM) mis-
sion. It aims at imaging the structure of astrophysical objects (like jets from black
holes) with very accurate precision working in X-rays band. The formation presents
two spacecrafts. In detail, an optics spacecraft carries simple large collecting area,
light weight, refractive-diffractive X-ray lenses that focus radiation in the 4.5 to
11 keV band upon detectors carried by a second spacecraft 1000 km apart. A
representation of an operating scenario of such a system is presented in Figure 1.7.
Only some of the possible applications have been discussed, showing the potential
of these kind of systems.
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Figure 1.7: MASSIM spacecrafts operating scenario, [15]

This particular branch of aerospace engineering is in rapid development and contin-
uous research. In the future, an equally wide range of applications is expected to
make the Formation Flying one of the best performing system for obtaining data
from satellites.

1.5 Work Subdivision

This last section aims at describing the organization of this work by reporting the
main topics the Chapters deal with. The work can be divided into two main parts.
A first part, whose purpose is to present basic concepts, which will be widely used
in the second part, which represents the core and underlines the contribution given
to the state of the art.

In particular, Chapter 2 focuses on the theoretical background which the following
chapters are based on, by presenting the notation used in the work, the reference
frames adopted for the description of the equations and the way the description of
translational and relative motion is carried out.

Chapter 3 details the orbit propagation tool which has been developed for carrying
out all the simulations. It describes in particular the choice of the forces modeling
and the solution adopted for the integration of the differential equations.
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Chapter 4 reports the main characteristics of relative dynamics, both for transla-
tional and rotational dynamics, by presenting the equations governing the relative
motion description of a 6-DoF satellite wrt a chief spacecraft.

Chapter 5 presents one of the main issue related to Formation Flying, i.e. the
stability of the formation. The topic is widely discusses by introducing principal
configurations used for remote sensing purposes. These configurations will prove as
practical test cases which will help showing the behaviours of free-flying formations
subject to different relative initial conditions.

Chapter 6 two different types of controllers are presented: a proportional derivative
controller and an optimal controller. In both cases the 6DoF dynamics is controlled.
At the end of the chapter, partial or full optimal formation reconfiguration techniques
are presented under a linear optimization perspective.

Chapter 7 presents test cases through which it is possible to analyze the performances
of the different methodologies presented in the previous chapter.

Finally, in Chapter 8 a brief discussion on the results achieved by comparing the
different solutions adopted for solving the problems stated in previous section is
presented. In addition, possible future research which could represent an appropriate
continuation of this work will be outlined.
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Chapter 2

Theoretical background

2.1 Notation

When dealing with a multitude of reference frames, it becomes very useful to use a
notation which makes visible to what frame the vectors are referred to. A vector is
a mathematical object which posses an amplitude and a direction in the 3D-space,
so it exists independently from the way we describe it. In this work, a generic vector
will be denote by a bold letter v. A vector which has unitary amplitude, so defining
only a direction in space, is also called versor and it will be denoted by a symbol
with a v̂. A generic vector can be described through different reference frames
which will be denoted by the symbol F . A frame is completely defined by three
mutually perpendicular versors denoting its orientation with respect to an inertial
frame. With this concepts in mind, we can now define a vectrix F̂a for the frame Fa
with the following expression [38]

F̂a , [â1, â2, â3]T

that is, a vectrix simply indicates a frame using the versors it is composed by. It
is possible now to give an alternative representation of a vector, by referring it to a
generic frame. For example, if we want to describe a vector in the frame Fa we can
write

v = v1â1 + v2â2 + v3â3
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This can be synthetically expressed also through the notations

va , [v1, v2, v3]T

where the pedix clarifies in what frame the vector is being decomposed into.

Considering the matrix product, the following equations can be easily derived

v = vTa F̂a ≡ F̂T
ava (2.1)

F̂a · F̂T
a ,

 â1 · â1 â1 · â2 â1 · â3

â2 · â1 â2 · â2 â2 · â3

â3 · â1 â3 · â2 â3 · â3

 =

 1 0 0

0 1 0

0 0 1

 ≡ I3×3 (2.2)

F̂a × F̂T
a ,

 â1 × â1 â1 × â2 â1 × â3

â2 × â1 â2 × â2 â2 × â3

â3 × â1 â3 × â2 â3 × â3

 ≡
 0 â1 −â2

−â3 0 â1

â2 −â1 0

 (2.3)

In particular, the equations 2.2 and 2.3 prove very useful when dealing with transfor-
mation matrices and rotations. In fact, if we have a vector va described in reference
Fa and we want to have its representation in a frame Fb, it is sufficient to calculate
the dot product between the vetrices

vb = F̂ b · F̂T
a va

It is possible now to identify the rotation matrix

Rba = F̂ b · F̂T
a

as the matrix which allows to obtain the description of a vector initially described
in Fa to its description in Fb, and the matrix Rab = R−1

ba which allows to obtain the
inverse transformation. It is worth to say that, because the orthonormality property
of the versors composing a frame, it also true that

R−1
ba = RT

ba ⇒ Rab = RT
ba

It is also possible to sum the contribution of several rotation matrices to obtain the
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description of a vector in a generic frame Fd starting from a frame Fa and passing
through frames Fb and Fc

Rda = RdcRcbRba

The situation becomes more complicated when the reference frame is rotating with
respect an inertial one. In fact, in this case if we want to retrieve the time derivative
of a vector expressed in a rotating frame we have to consider that also the versors
are function of time, so their time derivative is not null. From now on, the generic
vector ωba will indicate the angular velocity of the frame Fb with respect to Fa,
while ωbaa will indicate the same relative angular velocity but expressed in Fa frame.
It is also evident that ωba = −ωab. Now, if we consider the time derivative of
the versors composing Fb with respect to Fa frame denoted by the symbol (̇), the
following relation holds [12]

˙̂
bi = ωba × b̂i ∀i = 1, 2, 3

which can be represented in a more compact notation as

˙̂Fb = ωba × F̂b

Developing the cross products it is possible to notice that the following relation holds

˙̂Fb = ΩbaF̂b ⇒ ˙̂Fb
T = F̂b

TΩba

where

Ωba =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


is the skew-symmetric matrix of the cross product and ωi are the components of the
relative angular velocity ωba. We can now use this notation to derive the mathe-
matical description of a vector with respect to a rotating frame Fb, in fact, the first
derivative can be written as follows

v̇ =
˙̂Fb
Tvb + F̂b

T v̇b = F̂b
T (v̇b + Ωbavb) (2.4)

and deriving another time
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v̈ = F̂b
T (v̈b + 2Ωbav̇b + Ω̇bavb + ΩbaΩbavb) (2.5)

These relations will prove useful when the relative dynamics equations will be derived
in Chapter 4, in fact, if the considered vector v is the position vector of an object,
thus Equations 2.4 and 2.5 represent its velocity and acceleration with respect to a
rotating frame.

2.2 Reference Frames

After having presented the way it is possible to describe a generic vector, it is of
fundamental importance to specify which are the reference frames effectively used
to describe the equation of motion, defining of the versors whose they are composed
by and their main characteristics.

2.2.1 ECI Frame

Earth-Centered-Inertial (ECI) Frame FI is a quasi-inertial frame which is quasi-
non-rotating with respect to the fixed stars and has its origin at the center of mass
of the Earth. It is often used for describing the motion of a celestial bodies and
spacecrafts. It is a rigth-handed frame and its axis are usually denoted with XY Z.
Using the notation of the previous section we can define it as

F̂I ,
[
X̂, Ŷ , Ẑ

]T
There are different types of ECI frame, in this work the ECIJ2000 frame is used,
where the versor X̂ is pointing towards Earth’s mean equinox of 12:00 Terrestrial
Time on 1 January 2000, Ẑ is aligned with the Earth’s rotation axis or celestial North
Pole, so forming an angle of about ε = 23.4◦ with the ecliptic, and Ŷ completes the
right-handed triad. This frame is particularly interesting because classical dynamics
equation can be expressed without virtual forces with a good precision considering
its very slow rotational movement. A visualization of this frame i presented in figure
2.1.
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Figure 2.1: ECIJ2000 Frame, [5]

2.2.2 LVLH Frame

Local Vertical Local Horizon (LVLH) frame is the main frame used for describing
motion in relative dynamics configuration. It was initially developed by [50] in order
to describe the linearized relative motion equations for docking and close-proximity
maneuvers. It is a rigth-handed frame and its axis are usually denoted as xyz. Using
the notation of the previous section we can define it as

F̂L , [x̂, ŷ, ẑ]T

It is also referred as an "orbiting frame" because its origin generally coincides with
a real satellite or with a virtual orbiting object so following a motion around the
principal body. In detail, referring to Figure. 2.2, its x̂ has the same direction of
the current position vector r of the satellite with respect to the center O of ECI
frame. The ẑ points towards the direction of the current angular moment of the
considered point h = r× v, where v is its velocity vector. ŷ = ẑ× x̂ completes the
right-handed triad.
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Figure 2.2: LVLH Frame, [52]

This reference is very important because it allows to describe in a very convenient
way the relative motion between satellites in closed-proximity thus avoiding handling
high amplitude vectors that would have been present in case of ECIJ2000 description.
There are some disadvantages in using this frame, in fact, in order to describe the
dynamics correctly, its angular velocity and acceleration have to be calculated at
each instant during the motion, and if the frame undergoes several perturbations,
this could be a computationally expensive task. This aspects will be further detailed
in Chapter 4.

2.2.3 BF frame

The Body frame (BF) is a frame usually centered at the center of mass of the
considered satellite and with arbitrary direction depending on the applications. This
frame is attached to the body so becoming non-inertial when the satellite is rotating.
This frame results particularly useful when considering the perturbation torques
both external and internal acting on the satellite. It is rigth-handed and in this
work its axis will be denoted with xbybzb. Using the notation of the previous section
we can define it as

F̂BF , [x̂b, ŷb, ẑb]
T

For convenience, it has been chosen x̂b, ŷb and ẑb pointing towards the main direc-
tions of inertia, so simplifying the form of the inertial matrix Jb which becomes a
diagonal matrix.
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2.3 Description of the Motion

In this section, the state variables used to specify the 6-DoF motion of a rigid body
will be detailed. The translational motion description and the rotational one are
separated. The notions introduced in this section will be used in Chapter 4 in order
to derive the equations of 6-DoF dynamics for a set of satellites.

2.3.1 Translational Motion

The translational motion of a point in 3-dimensional space is completely defined
by six independent parameters. In this work, two different types of parameters are
used:

• Inertial position and velocity vectors (rI and vI)
Referring to Figure 2.1, these six parameters (three for the position and three
for the velocity) describe, at a given instant, where the satellite is situated and
where it will be after an infinitesimal time interval dt with respect to ECIJ200o
frame. These elements are very useful for using classical dynamics equation.

• Keplerian elements
This common representation can be visualized in Figure. 2.3. As the previous
elements, they define completely an unperturbed orbit followed by a satellite
but they allow a simpler description of an orbiting body. The six elements O
are usually denoted by the following letters O = (a, e, i,Ω, ω, ν) where

– a is the semi-major axis. It represents the mean between the longest ra and
small rp distances of the motion of the satellite about the celestial body,
a = ra+rp

2

– e is the eccentricity of the orbit. For elliptical motion it is 0 ≤ e < 1, where 0

denotes circular orbits and 1 parabolic ones

– i is the inclination of the orbit, the angle between the plane of the orbit and
the versor ẐI

– Ω, also called RAAN, is the angle between the plane of the orbit and the versor
X̂I

– ω is the argument of perigee and is the angle in the plane of the orbit between
the intersection of the plane of the orbit with the equator and the direction of
the perigee with respect to the ECIJ2000 frame (denoted as xp in Figure. 2.3)

– ν is also called true anomaly and is the angle in the plane of the orbit between
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the vector xp and the position of the satellite

Figure 2.3: Keplerian elements, [2]

We can underline the simplicity of the description of the motion of a satellite when
only the central gravity force acts on it. In fact, in this situation the true anomaly
ν is the only parameter which is function of time.

2.3.2 Rotational Motion

Rotational motion of a rigid body with respect to an inertial frame, as the trans-
lational one, is completely described by a set of six independent parameters. They
usually are three angles and the three components of the angular velocity of the
body frame with respect to the inertial one. Concerning the angular velocity vec-
tor, no additional clarification is required with respect to what has already been
stated in the previous sections. Instead, concerning the the other three parameters,
a different choice from those stated before has been done in this work. In fact,
the description of the attitude of the body through the quaternion representation
has been employed. Following the same notation of [16], it is possible to define a
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quaternion as a 4-dimensional vector

q =


q1

q2

q3

q4

 =

[
esin( θ

2
)

cos( θ
2
)

]
= q1î+ q2ĵ + q3k̂ + q4

where esin( θ
2
) = q1î + q2ĵ + q3k̂ is also called the vector part and cos( θ

2
) = q4 the

scalar one. This comes from the fact that a quaternion simply defines a rotation of
intensity given by the value of θ in the direction specified by the vector part e. For
completeness, we report the main results of quaternion algebra:

• Norm
The norm of a quaternion is defined as follors

‖q‖ =
√
q2

1 + q2
2 + q2

3 + q2
4

In this work, only unitary quaternions will be considered, i.e. those quater-
nions which have the property

‖q‖ = 1

• Conjugate
The conjugate of a quaternion is defined as

q∗ =


−q1

−q2

−q3

q4


• Inverse

The inverse of a quaternion is defined as

q−1 =
q∗

‖q‖2

• Multiplication
The multiplication between quaternions is usually denoted by the symbol ⊗
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and it is defined by the following

qi ⊗ qj =

[
sivj + sjvi + vi × vj

sisj − vi · vj

]

where si and sj are the scalar parts, while vi and vj are the vector ones.

• Transformation Matrix
If the quaternion q describes the relative rotation of the frame Fb with respect
to Fa, it is possibile to retrieve the rotation matrix from Fa to Fb as

Rab =

 q2
1 − q2

2 − q2
3 + q2

4 2 (q1q2 + q3q4) 2 (q1q3 − q2q4)

2 (q1q2 − q3q4) −q2
1 + q2

2 − q2
3 + q2

4 2 (q2q3 + q1q4)

2 (q1q3 + q2q4) 2 (q2q3 − q1q4) −q2
1 − q2

2 + q2
3 + q2

4

 (2.6)

• Quaternion rate
The time derivative of the quaternion is linked to the angular velocity of the
body through the kinematics equation given by the following

q̇ =
1

2
W (ω)q (2.7)

where

W (ω) =


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 (2.8)

The Equation 2.7 will be used in Chapter when the rotational dynamics equa-
tions will be derived.
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Chapter 3

High-Fidelity Orbital Mechanics
Propagation Model

Cooperating satellite formations often require high accuracy in relative dynamics
management. In many missions involving this type of architecture, the satellites
have to work as a large coordinated system in order to take good data minimizing
errors due to non-correct pointing of one or more of the satellites. For these reason
an accurate modeling of the GN&C system has to be based on a very accurate
model of orbit propagation. The model must account for the main perturbations
affecting the orbit in which the formation will be flying. For relative dynamics
accelerations in the order of 10−5 m

s2
have to be properly described because proved

to be of significant importance in contributing to the drift of relative orbits. For
our purposes a model of orbit propagation accounting for gravity potential, drag,
solar pressure and third-body perturbations, has been created and validated with
the General Mission Analysis Tool (GMAT) of NASA [17] (see Appendix A). Next
pages will describe what force modeling has been chosen for the orbit propagation
model in order to better clarify which is the grade of accuracy of the simulations
reported in the next chapters.

3.1 Force Modeling

For each perturbation, usually there are different kinds of modeling depending mostly
on a trade-off between accuracy and computational cost. The choice must be mainly
conditioned by the application that it is wanted to accomplish, for example, if I want
to propagate the orbit of a satellite in LEO, the accelerations caused by gravity
potential (even up to order 4), and drag have to be taken into account, instead
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if I want to propagate a GEO orbit the same accelerations can be neglected. In
addition, different types of models exist for each of these accelerations [33], e.g. for
Drag, there are different types of density modeling that are more or less accurate and
that consider more or less factors (heating of the atmosphere by the sun, convection
motion of the atmosphere, rotational speed of the atmosphere around the earth etc.).
The specification of the model choice for each of the considered perturbations follows
in the next subsections.

3.1.1 Gravity Potential Perturbation

In Keplerian motion, the Earth is considered as a point whose mass in concentrated
in its barycenter. This approximation holds for satellites whose distance from the
Earth center is higher of about 21.9×103 km [33]. For lower orbits, the distribution
of the mass of the Earth has to be taken into account. This differential distribution
creates a potential field which can be expressed with the following

U =
GM⊕
r

∞∑
n=0

n∑
m=0

Rn
⊕

rn
Pnm(sinφ) (Cnm cos(mλ) + Snm sin(mλ))

where GM⊕ is the gravitational constant of the Earth, R⊕ is the reference radius of
the Earth, r is the distance of the satellite from the center of mass of the Earth, Pnm
is the Legendre polynomial of degree n and order m, φ is the geocentric latitude and
λ is the longitude, counted positively towards the East and Cnm and Snm are the
geopotential coefficients which describe the Earth’s internal mass distribution.The
following expressions hold for these parameters:

Pn(u) =
1

2nn!

dn

dun
(
u2 − 1

)n

x = r cosφ cosλ

y = r cosφ sinλ

z = r sinφ

Cnm =
2− δ0m

M⊕

(n−m)!

(n+m)!

∫
sn

Rn
⊕
Pnm (sinφ′) cos (mλ′) ρ(s)ds

Snm =
2− δ0m

M⊕

(n−m)!

(n+m)!

∫
sn

Rn
⊕
Pnm (sinφ′) sin (mλ′) ρ(s)ds

where x, y and z are the ECI components of the satellite position, ρ(s) is the mass
density at some point s inside the Earth and δnm denotes the Kronecker delta, which
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is equal to 1 if n = m and to 0 otherwise. Geopotential coefficients with m = 0

are called zonal coefficients because they describe the distribution of the Earth mass
which does not depend on the longitude considering that for m = 0, all the Sn0

vanishes. Usually the Cn0 are also denoted using the following notation

Jn = −Cn0

The most important of them is the J2 coefficient which is cause of the most significant
perturbation, after the central one, for a satellite in LEO. This potential generates
an acceleration which is given by its gradient, in equations

r̈GP = ∇GM⊕
r

∞∑
n=0

n∑
m=0

Rn
⊕

rn
P̄nm(sinφ)

(
C̄nm cos(mλ) + S̄nm sin(mλ)

)

where C̄nm and S̄nm are the normalized geopotential coefficients{
C̄nm

S̄nm

}
=

√
(n+m)!

(2− δ0m) (2n+ 1)(n−m)!

{
Cnm

Snm

}
(3.1)

Given a position r of the satellite in inertial space, Equation 3.1 depends only on
the geopotential coefficients. The value of these coefficients depends on the type of
gravity model used. It is precisely in the choice of the gravity model used that there
may be differences in terms of accuracy of the coefficients and the maximum order
that can be considered. The most famous are the EGM96S ad the JGM-3 gravity
models. In this work the coefficients calculated by the JGM-3 gravity model (up to
order 21 and degree 21) have been considered [4]. The algorithm used for calculating
the ECI accelerations can be detailed as follows [33]:

ẍGP =
∑
n,m

ẍnm ÿGP =
∑
n,m

ÿnm z̈GP =
∑
n,m

z̈nm

where

ẍnm
(m=0)

=
GM⊕
R2
⊕
{−Cn0Vn+1,1}

(m≥0)
=

GM⊕
R2
⊕

1

2
{(−CnmVn+1,m+1 − SnmWn+1,m+1)

+(n−m+ 2)(n−m+ 1) (CnmVn+1,m−1 + SnmWn+1,m−1)}
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ÿnm
(m=0)

=
GM⊕
R2
⊕
{−Cn0Wn+1,1}

(m≥0)
=

GM⊕
R2
⊕

1

2
{(−CnmWn+1,m+1 + SnmVn+1,m+1)

+(n−m+ 2)(n−m+ 1) (−CnmWn+1,m−1 + SnmVn+1,m−1)}

z̈nm =
GM⊕
R2
⊕
{(n−m+ 1) (−CnmVn+1,m − SnmWn+1,m)}

where V and W obey to the equations

Vmm = (2m− 1)

{
xR⊕
r2

Vm−1,m−1 −
yR⊕
r2

Wm−1,m−1

}
Wmm = (2m− 1)

{
xR⊕
r2

Wm−1,m−1 +
yR⊕
r2

Vm−1,m−1

}

Vnm =

(
2n− 1

n−m

)
zR⊕
r2

Vn−1,m −
(
n+m− 1

n−m

)
R2
⊕

r2
Vn−2,m

Wnm =

(
2n− 1

n−m

)
zR⊕
r2

Wn−1,m −
(
n+m− 1

n−m

)
R2
⊕

r2
Wn−2,m

starting with V00 = R⊕
r

and W00 = 0.

3.1.2 Drag Perturbation

The Drag is the most important non-gravitational perturbation for low altitude
satellite. It can be expressed with the following equation

r̈D = −1

2
ρ
CdA

m
v2
rev (3.2)

where ρ is the density of the atmosphere at the altitude of the satellite, Cd is the
drag coefficient of the satellite, A is the reference surface for that coefficient and
m is the mass of the satellite (CdA

m
is also called the ballistic coefficient), vr is the

amplitude of the relative velocity between the satellite and the atmosphere and ev is
the versor denoting the direction of this relative velocity. So, this acceleration tends
to slow the satellite changing its orbital parameter, in particular the drag force
tends to reduce the semi-major axis of the orbit and to circularize it. In Equation
3.2 the parameter which is mostly affected by incertitude is the density ρ. In fact,
because of the complex phenomena which interact with the atmosphere, an accurate
description of the variation of the density with altitude, temperature etc. results in
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a very hard task. For these reasons, different density models have been developed in
the last decades. The most simple is the so-called exponential density model which
considers the following law for ρ

ρ = ρ0e
−h/H0

were ρ0 = 2.34 × 10−13 kg
m3 and H0 = 68.7km is the reference altitude, and h is the

altitude of the satellite. This is a very rough estimation which is usually employed
for preliminary calculations. More accurate models are the Jacchia 1971 density
model and Harris-Priester density model. In this work the Harris-Priester density
model has been used and a little description of it follows.

The Harris-Priester density model foresees the following empirical density law

ρ(h) = ρm(h) + (ρM(h)− ρm(h)) · cosn
(

Ψ

2

)
where h is the altitude of the satellite, ρm(h) and ρM(h) are respectively the antapex
and apex densities at a given altitude which are computed with an exponential
interpolation using tabulated minimum and maximum densities [33] at the altitude
hi as follows

ρm(h) = ρm(hi)e
hi−h
Hm

ρM(h) = ρM(hi)e
hi−h
HM

hi ≤ h ≤ hi+1

and

Hm(h) =
hi − hi+1

ln (ρm (hi+1) /ρm (hi))

HM(h) =
hi − hi+1

ln (ρM (hi+1) /ρM (hi))

Finally, in Equation 3.1.2, n is a numerical value which equals 2 for low-inclination
orbits and 6 for polar orbits, and Ψ is the angle between the satellite and the apex
of diurnal bulge and it is calculated as follows

cosn
(

Ψ

2

)
=

(
1 + cos Ψ

2

)n
2

=

(
1

2
+
er · eb

2

)n
2

where er is the versor denoting the position of the satellite with respect to the Earth

28



CHAPTER 3 ORBITAL MECHANICS PROPAGATION MODEL

center and eb is the versor giving the direction of the apex of diurnal bulge given by

eb =

 cos δ� cos (α� + λl)

cos δ� sin (α� + λl)

sin δ�


where α� and δ� are the Sun’s right ascension and declination and λl ' 30◦.

3.1.3 Solar Pressure Perturbation

When a satellite is exposed to the Sun, it experiences an acceleration which is due
to the reflection and/or absorption of the incoming radiation. This force depends
on many factors and in general it can be expressed as follows

r̈SP = −P�
1AU2

r2
�

A

m
cos(θ) [(1− ε)e� + 2ε cos(θ)n] (3.3)

where P� ' 4.56 × 10−6 N
m2 is the constant of solar radiation pressure, r� is the

distance of the satellite from the Sun, AU = 1.495× 1011m is the astronomical unit,
A is the surface hit by the radiation, m is the mass of the satellite, ε is the coefficient
of reflectivity of the surface, e� is the versor pointing from the satellite to the Sun,
and θ is the angle between the normal n to the illuminated surface and e�.
The Equation 3.3 requires the knowledge at each time of the orientation of the
satellite surface n and the surfaces exposed to the radiation. This aspect could result
in an excessive computational cost which is not justified by the little improvement in
precision of the solar pressure perturbation consequences. For this reason, Equation
3.3 is often simplified with the following

r̈SP = −P�CR
A

m

d

d3
AU2

where CR = 1 + ε and d = r� − r is the distance vector between the geocentric
positions of the Sun and the satellite. This equation is a good compromise between
accuracy and computational cost, also considering that the geometry of the satellite
is not needed anymore, allowing the use of this equation even in a preliminary design
phase where the shape of the surfaces has not yet been decided.
One element which has to been taken into account when dealing with solar pressure
perturbation is the possibility of alternation between eclipse and sunlight phases.
Even in this case, different possible modelings can be used. In this work the conical
shadow model (Figure 3.1) has been employed.
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Figure 3.1: Conical shadow model, [33]

This model considers a general occultating body (in our case, the Earth has been
considered as the only occultating body) which partially or totally absorb the Sun
radiation directed to the satellite. Looking at Figure 3.1 it is possible to note two
main differents regions: the Umbra and Penumbra regions. The Umbra region is
that region of the space at which the satellite is totally in eclipse and the acceler-
ation due to saolar pressure is null, in the Penumbra region, instead, the satellite
receives partial radiation from the Sun. This aspect is included in Equation 3.1.3
by considering a factor denoted by the letter ν which equals 0 whe the satellite is
in Umbra, 1 when it is not in Umbra nor in Penumbra, and 0 ≤ ν ≤ 1 when the
satellite is in Penumbra region. So, the Equation 3.1.3 becomes

r̈SP = −νP�CR
A

m

d

d3
AU2

Considering 3.2, it is possible to calculate the value of ν. Figure 3.2 shows the
apparent diameters of the Sun and occultating body as seen from the spacecraft.
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Figure 3.2: Apparent disks for ν computation, [33]

Using the same notation of Figure 3.2 the following relations can be easily derived

a = arcsin

(
R�

|r� − r|

)
b = arcsin

(
RB

s

)
c = arcsin

(
−sT (r� − r)

|r� − r|

)
where R� is the radius of the Sun, r� is the geocentric position of the Sun, r is the
geocentric position of the satellite and s is the geocentric position of the occultating
body. Calling Θ = ACFC′ +ACDC′ the Sun apparent surface which is covered by the
occultating body and provided that |a− b| ≤ c ≤ a+ b in case of partial occultation,
it is possible to express it as [33]

Θ = a2 arccos
(x
a

)
+ b2 arccos

(
c− x
b

)
− cy

where
x =

c2 + a2 − b2

2c

y =
√
a2 − x2

Finally, ν is given by

ν = 1− Θ

πa2

If the equation |a − b| < c < a + b does not hold no occultation occurs (a + b ≤ c)
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or the occultation is total (c < b− a with a < b) or partial but maximum (c < a− b
with a > b).

3.1.4 Third-body Perturbation

Celestial bodies which are very massive and/or in proximity of the satellite cause an
attraction force which is not negligible for relative dynamics precise modeling. In this
study the perturbations on the satellites of the formation of the Sun and the Moon
have been considered. Considering the average distances between operational Earth
orbits and Moon and Sun, these bodies can be considered as point-mass perturbing
bodies. So, the following equations for the acceleration holds

r̈TB = GM

(
s− r
|s− r|3

− s

|s|3

)
where GM is the celestial body gravitational constant, r is the geocentric position
vector of the satellite and s is the geocentric position vector of the perturbing body.
The precision of this equation is mostly affected by the knowledge of s which is given
by the ephemerides calculation of the considered body.

3.1.5 Propagation of the Orbit

After having defined all the modelings for different acting forces, it is possible to in-
tegrate the equation of translational motion of the satellite in inertial frame through
the following

r̈ = r̈GP + r̈D + r̈SP + r̈TB,Moon + r̈TB,Sun (3.4)

This integration could be computationally expensive, considering also that stringent
tolerances have to be applied for a good convergence, but this equation proves very
stable for all possible orbits (for example circular ones) for which an osculating
Keplerian elements integration would have very large errors.
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Chapter 4

Relative motion

This chapter aims at reporting the main equations which describe the relative motion
between two different satellites. This approach will be extended to any number of
satellites, giving the opportunity of describing the dynamics of entire formations
and/or constellation of satellites. As already discussed in in Chapter 2, relative
motion is usually described in LVLH frame. Many works in literature focused on
deriving the equation of motion of the LVLH frame. In particular, since LVLH
frame is a non-inertial frame, the efforts have been focused on deriving its angular
velocity Ω and acceleration Ω̇ vectors which are essential for the description of the
relative motion. Deriving these quantities starting from the definition of the versors
composing the LVLH is as difficult as difficult as inefficient (this aspect will be
described in the next sections). For the reasons above, analytical solutions to this
problem has been found by [14] considering a LVLH affected only by J2 perturbation
and by [19] for a LVLH affected by J2 and Drag perturbations. In this work the
solution considering only J2 perturbation has been used and it proved sufficiently
accurate for the reasons this frame is usually implied for.
Figure 4.1 shows the main elements involved in the description of the relative motion.
In particular, the motion involves two satellite, a chief and a deputy. The chief is the
satellite the dynamics is described with respect to. Its center of mass is the origin
of LVLH frame and it can be a real satellite or a virtual one, in the latter case it is
not forced to undergo all the perturbations the deputy is subjected to. In fact, it
is used as a local observer whose main purpose is to be able to describe the motion
considering relative distances and velocities, which are the controlled quantities in
formation flying.
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Figure 4.1: Chief and deputy LVLH frame description, [7]

The deputy is a real satellite whose motion has to be described relatively to the
chief. Using the notation present in Figure 4.1, the following equation can be easily
derived

ri = ρi +R0 (4.1)

whereR0 is the ECI position vector of the chief spacecraft, ρi is the relative position
vector of the deputy spacecraft with respect to the chief and ri is the ECI position
vector of the deputy. It is convenient to solve Equation 4.1 for obtaining the expres-
sion of the relative position ρi which is the quantity relative motion equations are
interested in. So, the next equation is obvious

ρi = ri −R0 (4.2)

In the following sections translational and rotational dynamics equations will be
derived.
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4.1 Relative Translational Dynamics Modeling

There are two possible ways to obtain the relative quantities of a spacecraft relative
to another. In fact, it is always possible to integrate Equation 3.4 both for chief
and the deputy spacecrafts, and then using the following equations in order to find
relative position, velocity and acceleration seen by LVLH frame in LVLH components
[16]

ρi = RLI(rd − rc)

ρ̇i = RLI(ṙd − ṙc −Ω× (rd − rc))

ρ̈i = RLI(r̈d − r̈c − Ω̇× (rd − rc)−Ω×Ω× (rd − rc)− 2Ω× (ṙd − ṙc))

where rd and rc are the inertial position vectors of the deputy and the chief in ECI
components and RLI is the transformation matrix from ECI to LVLH frame. Par-
ticular attention has to paid for the quantities r̈c and r̈d, in fact they represent the
inertial acceleration of the chief and deputy respectively. Regarding r̈d, all pertur-
bation of Equation 3.4 can be considered without any particular problem, instead,
regarding r̈c which is also the center of LVLH frame, the same perturbations which
are taken into account in the derivation of the angular velocity and acceleration (Ω
and Ω̇) have to be used for the integration, if not, the model is inconsistent.
Another possibility is to integrate directly the relative dynamics equations in LVLH
frame. Considering Equations 2.4 and 2.5 introduced in Chapter 2, deriving two
times the left side of Equation 4.2 in LVLH frame, it is possible to obtain

ρ̇i =
˙̂FT
Lρi,L + F̂T

Lρ̇i,L = F̂T
Lρ̇i,L + F̂

T

LΩ× ρi,L (4.3)

ρ̈i =
˙̂FT
Lρ̇i,L + F̂T

Lρ̈i,L +
˙̂FT
LΩ× ρi,L + F̂T

LΩ̇× ρi,L + F̂T
LΩ× ρ̇i,L

= F̂T
Lρ̈i,L + F̂T

LΩ̇× ρi,L + F̂T
LΩ× F̂T

LΩ× ρi,L + 2F̂T
LΩ× ρ̇i,L

(4.4)

Where in particular F̂T
LΩ and F̂T

LΩ̇ are the angular velocity and acceleration of
LVLH frame with respect to ECI written in LVLH components. Considering now the
right side of Equation 4.2 and deriving it two times and expressing the components
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of the accelerations in LVLH frame the relative dynamics for translational motion
are obtained

F̂T
Lρ̈i,L =F̂T

L(F̂T
I (r̈i,I − R̈0,I))− F̂T

LΩ× F̂T
LΩ× ρi,L

− F̂T
LΩ̇× ρi,L − 2F̂T

LΩ× ρ̇i,L
(4.5)

Where F̂T
I (r̈i,I − R̈0,I) represent the difference between inertial accelerations of the

deputy and the chief expressed with components in inertial frame. After deriving
rigorously the equations exemplifying the management of different frames, in the
next chapters the notation F̂T

b vb will be abandoned in favor of the simpler vb, so
denoting a vector expressed in Fb frame. Adopting the new notation, Equation 4.5
becomes

ρ̈i,L = RLI(r̈i,I − R̈0,I)−ΩL ×ΩL × ρi,L − Ω̇L × ρi,L − 2ΩL × ρ̇i,L (4.6)

This second approach results in a more practical way of describing the relative
motion, in fact, it is possible to impose relative initial and final condition in a
simpler way, this makes the control algorithm simpler and more evident having in
mind that relative position and velocity vectors are the controlled quantities. This
aspect will be better exemplified in the last section of this chapter.

4.2 Rotational Dynamics Modeling

Concerning rotational motion, it is also possible to describe the relative attitude
between the deputy and chief spacecrafts, in particular, in [46], the dynamics equa-
tion for the relative angular accelerations between the body-frames of two different
spacecrafts is found. This approach can prove very useful in many applications,
especially for those applications which need to know relative position between any
two points of two spacecrafts which are not the center of mass. In fact, assuming the
approximations of rigid bodies, thanks to relative rotational dynamics it is possible
to calculate the velocity and acceleration of any point of the spacecraft by knowing
the position vector with respect to the center of mass. Examples of this kind of ap-
plications are tethered systems [28] [31] [30], [27], in which the links between tethers
do not necessarily pass through the center of mass or systems which present instru-
ments for relative dynamics metrology that have to be positioned in the external
surfaces of the spacecraft [45] [53] and whose position has to be known in order to
improve the precision of the calculations they perform. In other kind of application,
like in case of Earth system monitoring [11] or Interferometry [13], it can be useful
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to derive the equations of absolute rotational dynamics, i.e. it is convenient to have
the relative attitude between the body-frame and the inertial frame. In this work,
this second way of describing rotational dynamics has been pursued
Having in mind Equation 2.8 which describes the kinematic relation between the
quaternion and angular velocity of the frame, the equation for angular acceleration
is needed to complete the dynamics. Applying the same notation of [16], it is possi-
ble to write for each spacecraft the following equation in case of absence of external
torques

ḢG =
d

dt
(JGω +

∑
i

hi) = 0 (4.7)

where HG is the angular momentum of the body with respect to its center of mass
which can be written as the sum between the angular momentum of the body JGω,
where JG is the moment of inertia matrix with respect to the considered frame
whose origin coincides with the center of mass of the body and ω is the angular
velocity of the body-frame wrt inertial frame, and the internal angular momentum
hi (reaction wheels etc..). Perturbations and internal torques act on the spacecraft
conditioning its rotational dynamics, so adding this contribution to the Equation
4.7, the following holds

ḢG =
d

dt
(JGω +

∑
i

hi) =
∑
j

τ pertj +
∑
k

τ intk (4.8)

where τ pertj denotes the j-th perturbation torque, τ intk denotes the k-th unwanted
internal torque.
It is now possible to apply the derivative of the left side of the Equation 4.8, assuming
that the body is not flexible ( d

dt
JG = 0)

JGω̇ +
∑
i

ḣi =
∑
j

τ pertj +
∑
k

τ intk (4.9)

It is convenient to solve the Equation 4.9 for the angular acceleration ω̇. If the
Equation 4.9 is referred to a moving frame, when deriving, the angular velocity of
the frame has to be considered. Considering a generic frame Fb and adopting the
notation of the previous section, the following holds

ω̇b = J−1
G,b(
∑
j

τ pertj,b +
∑
k

τ intk,b −
∑
i

ḣi,b − ωb × (JG,bωb +
∑
i

hi,b)) (4.10)
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In this work Equation 4.10 has been written for the body-frame FBF so becoming

ω̇BF =J−1
G,BF (

∑
j

τ pertj,BF +
∑
k

τ intk,BF

−
∑
i

ḣi,BF − ωBF × (JG,BFωBF +
∑
i

hi,BF ))
(4.11)

Where JG,BF denotes the inertia matrix passing through the center of mass and
referred to the body-frame axis. The integration of Equation 4.11 calculates directly
the body-frame components of the angular acceleration of the body-frame wrt the
inertial frame FI . Recalling Equation 2.7 and writing it for body-frame components

q̇BF =
1

2
W (ωBF )qBF (4.12)

where the notation qBF underlines that the quaternion components are expressed in
body-frame. Equations 4.12 and 4.11 will be used in the next section for deriving
the general non-linear dynamics system describing the relative motion of all the
formation.

4.3 Non-Linear Complete State Space Representa-
tion

Now that both the translational motion equations and rotational ones have been
reported, it is possible to use the results of Chapter 3 and 4 for writing the non-
linear system whose integration returns relative positon and velocities wrt LVLH
frame and attitude and angular velocities of the body-frame wrt Inertial frame for
each spacecraft of the formation. This system will be extensively used in next
chapters when dealing with the control of the system.
In a free-flying architecture, each spacecraft is dynamically independent from the
others, so applying Equations 4.6 and 4.11 to the single spacecraft and defining the
state vector in the following way

Xi =


ρi,L

ρ̇i,L

qBF

ωBF


it is possible to obtain non-linear dynamical system for each spacecraft
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Ẋi = f(r̈i, R̈0,Ω, Ω̇,Xi) (4.13)

where the dependence on the inertial accelerations of the spacecraft and LVLH frame,
and its angular velocity and acceleration has been highlighted. The pedex i indicates
that all quantities in f are referred to the i-th spacecraft. It is possible to expand
4.13 as

f =



d
dt
ρL

RLI(r̈i,I − R̈0,I)−ΩL ×ΩL × ρL − Ω̇L × ρL − 2ΩL × ρ̇L
1
2
W (ωBF )qBF

J−1
G,BF (

∑
j τ

pert
j,BF +

∑
k τ

int
k,BF −

∑
i ḣi,BF

−ωBF × (JG,BFωBF +
∑

i hi,BF ))

 (4.14)

In order to be able to integrate Equation 4.14, the quantities r̈i,I and R̈0,I are needed.
Both of them can be derived by Equation 3.4, concerning R̈0,I a brief discussion has
been done at the beginning of the chapter, while concerning r̈i,I the following holds

r̈i,I = r̈GP,i + r̈D,i + r̈SP,i + r̈TB,Moon,i + r̈TB,Sun,i

The perturbations are function of the absolute inertial position ri,I and velocity
ṙi,I that are not available a priori from the state vector Xi, but they can easily be
computed as follows

ri,I = RILρi,L +R0,I

ṙi,I = RILρ̇i,L + ΩI × (RILρi,L) + Ṙ0,I

where RIL is the transformation matrix from LVLH to inertial frame, and ΩI is
the angular velocity of the LVLH wrt Inertial frame in inertial components (i.e.
ΩI = RILΩ). Now it is possible to write the complete system which considers the
entire formation dynamics wrt LVLH frame. If N denotes the number of satellites
composing the formation, the system can be written as
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Ṙ0

R̈0

Ẋ1

...
ẊN

 =



d
dt
R0∑
j aj,I

f(r̈1, R̈0,Ω, Ω̇,X1)
...

f(r̈N , R̈0,Ω, Ω̇,XN)

 (4.15)

where
∑

j aj,I indicates the sum in inertial frame of the accelerations acting on the
chief spacecraft.
Given a set of initial conditions, in particular, the initial position and velocity vectors
of the LVLH frame, and the initial relative position and velocity vectors expressed in
LVLH components of all the spacecrafts of the formation, it is possible to integrate
Equation 4.15 to obtain the relative dynamics at each instant of the integration
interval. It is good to remark that Equation 4.15 does not consider the control laws
which will be presented in Chapter 6, so it describes just the free-flying motion.
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Chapter 5

Configurations and Stability

In Chapter 1 a few examples of applications have been presented highlighting the
great versatility of this kind of system. Depending on the application the formation
is designed to have a particular relative configuration of the followers so that mission
requirements can be met in the best possible way. Considering that the spacecrafts
are subject to the perturbations, the most important presented in Chapter 3, they
tend to drift apart from their assigned position so decomposing the desired structure
of the entire formation. It is possible to correct periodically this drift by using some
active control techniques, some of them analysed in Chapter 6, but this requires
the use of energy coming from stored propellant. As mentioned in the introduction,
the satellites are equipped with a limited amount of propellant, which implies a
tendency to reduce these corrections to a minimum in order to extend the duration of
the mission. The capability of the formation to maintain its initial relative positions
without external control actions is called Stability. In this chapter, passive techniques
which have the purpose of improving the stability of the formation are analysed. In
particular, the Initial Relative Conditions (IRC) of the followers with respect to the
chief represent the most important aspect to consider when designing a long-lasting
mission. These conditions can be divided into Initial Relative Positions (IRP) and
Initial Relative Velocities (IRV). IRP are usually fixed by external constraints, the
main one is the kind of data the mission is designed to take, for example LISA
mission (Chapter 1) requires a triangular shape in order to measure gravitational
waves. IRP define the configuration of the formation, and they often represent
the principal quantities control algorithms aim at keeping constant. While IRV
are usually chosen to improve the stability. The objectives of this chapter are to
present some of the most used configurations for remote sensing and the problems
on the stability of the formation related to non-correct initial conditions. Then,
the method of the Energy Matching which describes how to derive correct IRC is
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reported. Finally, some results quantifying how this method improved the stability
of the presented configurations are showed and discussed.

5.1 Clohessy-Wiltshire IRC

The most important relative dynamics equations derivation can be attributed to
Clohessy-Wiltshire (CW equations) [50]. They obtained the equations in a simple
case, i.e. they derived relative motion equations of a target (a follower in our case)
moving in a circular orbit wrt a chaser (LVLH frame or chief in our case) following
an elliptical or circular orbit. The equations, usually written for the uncontrolled
propagation (appropriate for a stability analysis), are the following:

ẍ = 3n2x+ 2nẏ

ÿ = −2nẋ

z̈ = −n2z

n =
√

µ
a3

(5.1)

where x, y, z are the relative LVLH position components of the target wrt to the
chaser, and n is the orbital rate of the target body. These equations prove very
interesting mostly because a close solution of them exist. So, it is possible to express
the position vector and velocity vector of the target as functions of time and initial
position and velocity. By introducing the state transition matrices Φρρ(t), Φρρ̇(t),
Φρ̇ρ(t), Φρ̇ρ̇(t) which describe the influences of the initial position and velocity on
the next state, it is possible to report the solution of Equation 5.1

ρ(t) = Φρρ(t) ρ0 + Φρρ̇(t) ρ̇0

ρ̇(t) = Φρ̇ρ(t) ρ0 + Φρ̇ρ̇(t) ρ̇0

(5.2)
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Φρρ(t) =

 4− 3 cosnt 0 0

6(sinnt− nt) 1 0

0 0 cosnt



Φρρ̇(t) =


1
n

sinnt 2
n
(1− cosnt) 0

2
n
(cosnt− 1) 1

n
(4 sinnt− 3nt) 0

0 0 1
n

sinnt



Φρ̇ρ(t) =

 3n sinnt 0 0

6n(cosnt− 1) 0 0

0 0 −n sinnt



Φρ̇ρ̇(t) =

 cosnt 2 sinnt 0

−2 sinnt 4 cosnt− 3 0

0 0 cosnt


where ρ0 and ρ̇0 are the initial position and velocity of the target wrt to the chaser
(the pedex L indicating that the vectors are referred to LVLH frame has been omit-
ted to lighten the notation). CW equations were firstly applied to rendez-vous
problems for which they proved as a sufficient precise solutions where dealing with
relative motion with spacecrafts in close-proximity. The linearizations used by this
derivation become relevant when the distance between target and chaser increases
or when the circularity assumption on the target’s orbit is not satisfied. The litera-
ture is full of works trying to improve Equations 5.2 deriving the relative dynamics
for arbitrary near-circular orbits subject to J2 perturbing potential [11] or the state
transition matrix of relative motion for the perturbed non-circular reference orbit
[48]. Further details on the variety of the works accomplished in this domain can be
found in [18].
In the context of this work, Equations 5.2 are not appropriate to describe the evolu-
tion of relative positions and velocities but they can prove very useful to find initial
relative parameters to give to the followers in order to create a desired configuration.
In fact, it is possible to re-write the components of equations 5.2 in terms of differ-
ential Keplerian elements as follows [37]

xi(t) = −a · δei cos (nt− αi)
yi(t) = 2a · δei sin (nt− αi) + a · δθi
zi(t) = a · δii sin (nt− βi)

(5.3)

in particular, Equations 5.3 describe respectively the relative radial, relative along-
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track and relative across-track evolution of the i-th follower wrt chief spacecraft
(or the LVLH frame) given the differential orbit inclination δii, eccentricity δei and
argument of latitude δθi. In addition, a is the semi-major axis of the chief and αi
and βi define respectively the initial phase angles in xy and z planes.
From Equations 5.3 it is clearer that in the context of CW assumptions the relative
radial and along-track motion is decoupled from the across-track motion. A very
important remark is that in xy plane the relative motion describe an ellipse centered
at [xi, yi] = [0, δθi] while in the z one the motion in simply harmonic. It is simple
to obtain the components of relative velocity vector ρ̇i by deriving Equations 5.3

ẋi(t) = a · δein sin (nt− αi)
ẏi(t) = 2a · δein cos (nt− αi)
żi(t) = a · δiin cos (nt− βi)

(5.4)

As stated before, Equations 5.3 and 5.4 are not accurate to describe relative motions
in general case, it will be necessary to integrate the system 4.15, but it is possible to
use them in order to set the parameters δei, αi, δθi, δii and βi to correctly initialize
position and velocities of a formation given a desired configuration. It is sufficient
to evaluate the equations at t = 0 to obtain the IRC for the i-th spacecraft

xi(0) = −a · δei cos (−αi)
yi(0) = 2a · δei sin (−αi) + a · δθi
zi(0) = a · δii sin (−βi)
ẋi(0) = a · δein sin (−αi)
ẏi(0) = 2a · δein cos (−αi)
żi(0) = a · δiin cos (−βi)

(5.5)

In the following section Equations 5.5 will be used to initialize some configurations
which are mostly used for remote sensing, then the stability of these configurations
will be tested using the propagation model presented in Chapter 3.

5.2 Remote Sensing Configurations

Formation Flying is a particularly interesting system for remote sensing purposes.
The literature presents many studies on this subject [37] [21], in particular, applica-
tions of the system working as Synthetic Aperture Radar (SAR) have been studied in
the last years. Such a system aims at creating a high-resolution image by using the
motion of platform on which the equipment is mounted on. The working principle
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consists in sending multiple radar pulses in the direction of the target from an initial
location, and then in recapturing the echo of the pulses at a different locations in
space; signal processing is needed to combine recordings from these multiple antenna
positions to create the final image. As the name SAR suggests, this process simu-
lates data taking of a large antenna whose aperture is from hundreds or thousands
of meters.
The system just described can be implemented in monostatic, bistatic or multistatic
approaches. Monostatic consists in a single platform which works both as transmit-
ter and receiver, sending and collecting the pulses it has previously generated (as
described above).
Bistastic and multistatic approaches are those of interest for Formation Flying be-
cause more than one platform is involved in the process. In fact, in the first case,
the transmitter and receiver antennas are mounted on different platforms, the trans-
mitter has the purpose of illuminating the scene and the receiver collects the echoes
in order to create the image (Figure 5.1).

Figure 5.1: Bistatic radar working principle, [37]

Multistatic radars extend this concept by using multiple receivers and/or transmit-
ters in order to take more captures making more reliable the target characterization.
They can be used in several different configurations. Most used are the Fully-active
configuration, in which all spacecrafts act as a monostatic radar by sending and
receiving the pulses themselves have generated or the Semi-active configuration in
which one transmitter illuminates the scene and multiple receivers collect the echoes
(Figure 5.2).
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Figure 5.2: Multistatic radar working principle. Left: Fully-active configuration. Right:
Semi-active configurations, [37]

From Figures 5.1 and 5.2, it is evident that a fine control of relative position between
spacecrafts is required to improve data quality.
In particular, one of the most important quantity to control in such a system to
improve performances is the Baseline between the spacecrafts of the formation.
Considering two spacecrafts of the formation it is possible to define the baseline as
the distance between satellites-target conjunctions as showed in Figure 5.3.

Figure 5.3: Representation of radar Baseline, [23]

Baseline is of relevant importance for the resulting interferometric ground patterns
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created by the antennas which ultimately imply the type of measurements and the
trend of the Signal to Noise Ratio (SNR) as function of the terrain characteristics.
After having introduced the working principles of remote sensing systems involving
Formation Flying and the quantities which the data taken depend on, it is possible to
analyze the configurations more used in this domain so that practical examples can
help in the understanding of the much more general logical process with which it is
wanted to carry out the design of the GN&C system and of the problems associated
with it.

5.2.1 Interferometric Cartwheel (IC) Configuration

Interferometric Cartwheel is a well-known configuration in which the satellites of the
formation move in the same orbital plane. Considering the parameters introduced
in CW initial conditions Equation 5.5, the last statement implies δii = 0 ( so that
separation in cross-track plane is equal to 0). In addition, the relative eccentricities
of the followers wrt the chief is equal for all the spacecrafts (δei = δe) ensuring the
same amplitude of the motion in the xy plane elliptic motion. Finally, in order to
have an interferometric baseline it is necessary to decide the initial phasing of each
spacecraft (αi). This can be done according to different criteria but usually an equal
spacing between the followers is the one that guarantees a lower risk of collision.
In this configuration it is not necessary to give an initial differential argument of
latitude δθi because the phasing above mentioned guarantees in principle the non-
intersection of trajectories. It is then possible to summarize the parameters setting
through the following equations:

δii = 0

δei = δe i = 1, 2, ....N

αi = α1 + 2π
N

(i− 1)

δθi = 0

(5.6)

where N is the number of the followers spacecrafts (considering that a chief space-
craft could be place at the center of the formation) and α1 is an arbitrary start
phase angle of the first follower. It is possible to visualize a 3D representation of
the Interferometric Cartwheel configuration composed by 11 satellites in Figure 5.4
presenting the leader at the center of the formation.
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Figure 5.4: 3D representation of IC configuration

Regarding its time-evolution, in Figure 5.5 (where ∆rr, ∆rt, ∆rt are the radial,
along-track and across-track relative positions) it is visible as the initial conditions
give ny Equation 5.6 have the effect of maintaining the motion in xy plane in theoret-
ical cases if the CW assumptions are respected. The advantages of this configuration
comprise a good stability of the maximum baseline along the orbit with a small vari-
ation and a little across-track drift which usually is the drift which implies a greater
amount of fuel consumtion to be corrected wrt along-track and radial drifts.
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Figure 5.5: Time-evolution of IC configuration, [37]

5.2.2 Cross-Track Pendulum (CTP) Configuration

Cross-Track Pendulum is one of the most used configuration for remote sensing
applications. It can be said that it represents the opposite case to the IC configura-
tion. In fact, in this case the satellites present a separation in across-track direction
through a differential inclination equal for all the spacecrafts (δii = δi) with respect
to that of the chief. Regarding instead the eccentricity, this configuration foresees
δei = 0 cancelling in this way a difference in radial direction (the motion results
therefore confined to the plane yz). In this case, however, it is necessary to give
a separation in along-track directions through a difference in argument of latitude
δθi in order to avoid collisions. Finally, in order to obtain a baseline in cross-track
direction it is necessary to give a difference in βi. Analogously to the previous case,
the choice of equispaced phasing is normally used to minimize the risk of collision.
Finally, this configuration follows the following:
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δii = δi

δei = 0 i = 1, 2, ....N

βi = β1 + 2π
N

(i− 1)

δθi 6= 0

(5.7)

Where β1 is an arbitrary start phase angle and the choice of δθi depends on the
application. In Figure 5.6 it is possible to see a 3D visualization of the initial CTP
configuration composed by 11 spacecrafts with the leader placed at the center.

Figure 5.6: 3D representation of CTP configuration

Instead, the time-evolution for a 3 satellites case is reported in Figure 5.7 where it is
visible the only yz plane motion and the baselines created in radial direction. The
main advantage of CTP is the possibility to have constant along-track baselines,
while one of the major disadvantage is that the difference in inclination leads to a
differential precession of the RAAN, thus implying a relatively significant drift in
across-track direction after a few orbits.
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Figure 5.7: Time-evolution of CTP configuration, [37]

5.2.3 Cartwheel-Pendulum (CP) Configuration

IC and CTP can be combined in order to creat the Cartwheel-Pendulum configu-
ration. It is usually used in a 3 or 4 spacecrafts configuration depending on the
presence or not of a leader spacecraft. In this case, CP foresees 2 spacecrafts in
a CTP configuration and 1 spacecraft in an IC configuration. Denoting with sub-
scripts 1, 2 the quantities of the CP configuration spacecrafts and with 3 the IC one,
the parameters to introduce in Equations 5.2 can be summarized as follows

δi1,2 = δi 6= 0 δi3 = 0

δe1,2 = 0 δe3 = δe 6= 0

β2 = β1 + π

α3 = α

δθ1 6= δθ2 6= 0 δθ3 = 0

(5.8)

where β1 and α are arbitrary initial phase angles, δθ1 6= δθ2 6= 0 is needed for the
same reasons presented in CTP tractation and δθ3 = 0 because it is preferable for
minimisation risk of collision that spacecraft 3 follows an elliptic motion with the
leader placed at the center.
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Figure 5.8: 3D representation of CP configuration

This configuration simply acquires the disadvantages and advantages of the configu-
rations from which it derives. As previously done, in Figures 5.8 and 5.9 it is possible
to visualize a 3D representation of the CP and its orbital propagation in order to
better understand the evolution of the baselines created by this configuration. In
particular in Figure 5.8 the most distant satellite is the satellite that follows the
IC configuration and the others are the two CTP satellites, with the leader at the
center. Instead, Figure 5.9 does not present the leader spacecraft at the center.
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Figure 5.9: Time-evolution of CP configuration, [37]

5.2.4 Helix Configuration

In the most general case, Equations 5.2 create an Helix wrt the leader. In sim-
ple case, the satellite have the same differential eccentricities and inclination which
guarantees separation wrt all planes making this configuration particularly safe with
no need for differential argument of latitude, and equispaced phasing in xy plane
at z direction. In addition, the cross-track and along-track baselines can be eas-
ily changed with a relatively low fuel consumption allowing for a multi-objectives
mission. The equations of the parameters for composing the Helix configuration are:

δii = δi

δei = δe

αi = α1 + 2π
N

(i− 1) i = 1, 2, ....N

αi = βi

δθi = 0

(5.9)

Where α1 is the arbitrary start phase angle. In Figure 5.10 is possible to visualize a
11 spacecrafts Helix configuration.
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Figure 5.10: 3D representation of Helix configuration

Concerning the time-evolution of the configuration, Figure 5.11 presents the most
simple Helix case with only two spacecrafts, used in TanDEM-X mission [13]. This
configuration allows for a cross-track baseline that never nullifies (except in case
of only two spacecrafts where it nullifies in two different instants during the orbit)
which is also the cause of unwanted differential RAAN precession.
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Figure 5.11: Time-evolution of Helix configuration, [37]

5.2.5 Stability of the CW Initial Conditions

In this section the stability of the presented configurations initialized with Equa-
tions 5.2 is analysed. In particular, each configuration is propagated with the model
presented in Chapter 3 in order to monitor the evolution of relative distances in the
three directions. In the ideal case, the drift with respect to the leader of each space-
craft should be small over the course of hundreds of orbits so that corrections are
kept to a minimum. In the following simulations, the initial leader orbital elements
are those presented in Table 5.1.

a 6.94761× 106m
e 0.01
i 97◦

Ω 270◦

ω 70◦

ν 0◦

Table 5.1: Initial Orbital Parameter of the Leader spacecraft
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5.2.6 IC free-flying CW Initial Conditions stability

In Figure 5.12 it is possible to visualize relative propagation of Interferometric
Cartwheel configuration present in Figure 5.4 initialized with CW initial condi-
tions and parameters as in Table5.2. After 80 orbits, relative radial and across-track
drift is limited, approximately in the worst case, radial drift is of 2.5 m/orbit while
across-track one is only 3.8 × 10−2 m/orbit. On the other hand, as far as along-
track stability is concerned, the initial conditions used result in an exaggerated drift
(about 100 m/orbit) that would require frequent corrections in order to restore the
initial configuration, greatly decreasing the maximum possible mission duration.

a · δe 100 m
α1 9◦

N 10

Table 5.2: IC parameters for simulation.
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Figure 5.12: IC relative dynamics propagation, CW Initial Conditions

57



CHAPTER 5 CONFIGURATIONS AND STABILITY

5.2.7 CTP free-flying CW Initial Conditions stability

Cross-Track Pendulum configuration presented in Figure 5.6 has a very similar be-
haviour wrt the IC one. Figure 5.13 reports the results of relative positions for a 80

orbits simulation using parameters of the configuration as in Table 5.3. Also in this
case, radial and across-track drifts are quite limited, about 0.38 m/orbit for radial
drift and 1.25 m/orbit for across-track one. Along-track drift has the opposite direc-
tion wrt IC configuration, in fact, spacecrafts trajectories tend to converge towards
the chief spacecraft, this behaviour is not acceptable because, if not corrected, could
lead the spacecrafts to multiple collisions after only 40 orbits. It is possible to affirm
that, in terms of fuel consumption, CTP configuration initialized through Equations
5.2, is more sustainable than IC one, but not still feasible for long-duration missions.

a · δi 250 m
β1 9◦

N 10
a · δθ 200 m

Table 5.3: CTP parameters for simulation.
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Figure 5.13: CTP relative dynamics propagation, CW Initial Conditions
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5.2.8 CP free-flying CW Initial Conditions stability

Figure 5.14 presents the simulation for Cartwheel-Pendulum configuration showed
in Figure 5.8. The parameters for the simulation are reported in Table5.4. In this
case, the two spacecrafts in CTP configuration present no significant radial and
across-track drifts, as showed in the previous section, In the same way, the satellite
moving predominantly in the xy plane, exhibits a very small drifts relatively to the
same directions. Instead, similarly to the previous configurations, the behaviour in
along-track direction is not acceptable. In particular the third satellite drifts with a
rate of about 18 m/orbit, which is not adapt for a long-duration mission.

a · δi1 450 m
a · δi2 450 m
a · δe3 650 m
β1 90◦

β2 270◦

α3 90◦

a · δθ1 350 m
a · δθ2 −350 m

Table 5.4: CP parameters for simulation.
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Figure 5.14: CP relative dynamics propagation, CW Initial Conditions
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5.2.9 Helix free-flying CW Initial Conditions stability

Finally, the free-flying Helix configuration propagation is presented in Figure 5.15.
The configuration is that reported in Figure 5.10 but with seven spacecrafts in total.
The parameters of the configuration are reported in Table 5.5

a · δi 450 m
a · δe 650 m
α1 9◦

Table 5.5: Helix parameters for simulation.
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Figure 5.15: Helix relative dynamics propagation, CW Initial Conditions
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5.3 Energy Matching (EM) Initial Conditions Method

As it has been shown in previous sections the CW initial conditions are not suitable
for long-duration missions. In particular, the along-track drift proved to be the main
problem for the stability of the analysed configurations, even reaching the order of
hundreds meters per orbit. For the reasons above, it is clear that an alternative
initialization is needed.
In order to find the solution to this problem it is necessary to find the cause of these
large drifts. Firstly, it is evident that the linearization and assumptions done by
CW initial conditions are the primary source of instability. The great advantage of
this methodology is its simpleness in the physical interpretation thus resulting in
an easy task of finding parameters which return a given configuration. In order to
maintain this useful aspect, the Energy Matching (EM) Initial Conditions Method
analyses Equations 5.2 and finds Initial Relative Velocities for the followers which
minimize the drifts by imposing no difference in energy between the spacecrafts of
the formation.
In order to simplify the logical process that EM method follows to find these IRVs, it
is possible to approach the problem by considering the simple Keplerian dynamics.
In fact, in such dynamics, it is possible to state that the period of the i-th satellite
depends only on the gravitational constant and the semi-major axis of the orbit
through the following relation

Ti = 2π

√
a3
i

µ

So, it is evident, that in Keplerian dynamics a differential semi-major axis would
cause a differential period thus resulting in relative drift between the spacecrafts of
the formation. The semi-major axis also defines the energy of the orbit from which
the name of the method derives. In fact, if the energy (represented by a) is matched
(or balanced), the relative drift will be reduced. Of course, the only equality of a
is not sufficient to stabilize a formation which is subject to many conservative and
non-conservative perturbing forces, but, if through the same procedure, the main
perturbations are taken into account when calculating the energy of the spacecrafts,
good results can be achieved. With these notions in mind, following sections will
show how EM considering J2 potential field will allow to find IRVs which make the
formation stable for several orbits [8].

5.3.1 Linear Energy Matching

For the clarity of the discussion, it is convenient to recall in this sections the Equa-
tions 5.2
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x(t)

y(t)

z(t)

ẋ(t)

ẏ(t)

ż(t)


= Φ(t)



x(0)

y(0)

z(0)

ẋ(0)

ẏ(0)

ż(0)


where Φ(t) equals



4− 3 cosnt 0 0 sinnt/n 2 (1− cosnt) /n 0

6 sinnt− 6nt 1 0 2 (−1 + cosnt) /n 4 sinnt/n− 3t 0

0 0 cosnt 0 0 sinnt/n

3n sinnt 0 0 cosnt 2 sinnt 0

6n (−1 + cosnt) 0 0 −2 sinnt −3 + 4 cosnt 0

0 0 −n sinnt 0 0 cosn


The majority of coefficients in CW equations are sinusoidal, but there are some
terms which are linear in time (all the terms which are multiplied for t). These
terms are those which contribute more to the drift presented in the last sections. In
fact, it can be noticed how these terms are present in the second line of the matrix,
i.e. in the line describing the evolution of the relative along-track direction.
For these considerations, it is possible to initialize relative velocities in order to
nullify these terms, thus results in the following equation

ẏLEM(0) = −2nx(0) (5.10)

where the subscript LEM stays for Linear Energy Matching. Equation 5.10 is suffi-
cient to eliminate the time-linear coefficients, but, for defining completely the IRV,
also ẋ(0) and ż(0) have to be initialized. If no particular initial velocities are re-
quired, a good choice in order to minimize propellant is to set them to 0. So, the
final conditions are

ẋLEM(0) = 0 ẏLEM(0) = −2nx(0) żLEM(0) = 0 (5.11)

Otherwise, if a particular configuration wants to be created, ẋ(0) and ż(0) can be
initialized as done in previous sections.
This is a first step towards a greater stability but it is not sufficient. In fact, the
equations used consider Keplerian dynamics and their efficiency drastically reduces
when the satellites so initialized are subject to non-Keplerian dynamics.
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5.3.2 Non-Linear Energy Matching

It is possible to impose Energy Matching using non-linear energy equation for Ke-
plerian dynamics. If VNEM is the absolute velocity vector of the general follower
which has to be retrieved, and V is the absolute velocity of the leader spacecraft,
non-linear energy matching condition holds

‖V ‖2

2
− µ

r
=
‖VNEM‖2

2
− µ

rNEM
(5.12)

where r amd rNEM are the norm of the inertial positions of leader and follower
respectively. Equation 5.12 can be solved for ‖VNEM‖, thus obtaining

‖VNEM‖ =

√
‖V ‖2 + 2

(
µ

rNEM
− µ

r

)
(5.13)

In Keplerian dynamics, it is possible to express the vectors VNEM and V in LVLH
components as follows

V = vxx̂+
h

r
ŷ

VNEM = (vx + ẋNEM − yNEMωz) x̂+

(
h

r
+ ẏNEM + xNEMωz

)
ŷ + żNEM ẑ

where x̂, ŷ, ẑ are the LVLH versors, while vx, h and ωz = n are respectively the
radial velocity, the angular momentum of the leader and the component in ẑ of the
LVLH frame angular velocity. Equation 5.12 adds a condition on the module of
the velocity vector of the follower, so if its direction is the same of Linear Energy
Matching, it is possible to calculate the vector VNEM through the following

VNEM =
‖VNEM‖
‖VLEM‖

VLEM =

√
‖V ‖2 + 2

(
µ

rNEM
− µ

r

)
‖VLEM‖

VLEM

writing VLEM in LVLH frame as done for VNEM as follows

VLEM = (vx + ẋLEM − yLEMωz) x̂+

(
h

r
+ ẏLEM + xLEMωz

)
ŷ + żLEM ẑ

and substituting it in Equation 5.3.2, imposing the same initial relative position
(ρNEM = ρLEM = ρ(0) = [x(0), y(0), z(0)]T ) and evaluating for t = 0, the initial
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relative velocity which considers non-linear energy matching is found

ẋNEM(0) =
‖VNEM‖
‖VLEM‖

ẋLEM(0) +

(
‖VNEM‖
‖VLEM‖

− 1

)
(vx − y(0)ωz)

ẏNEM(0) =
‖VNEM‖
‖VLEM‖

ẏLEM(0) +

(
‖VNEM‖
‖VLEM‖

− 1

)(
h

r0

+ x(0)ωz

)

żNEM(0) =
‖VNEM‖
‖VLEM‖

żLEM(0) (5.14)

It is possible to substitute Equations 5.11, in order to obtain the final version

ẋNEM(0) =

(
‖VNEM‖
‖VLEM‖

− 1

)
(vx − y(0)ωz)

ẏNEM(0) =
‖VNEM‖
‖VLEM‖

(−2ωzx(0)) +

(
‖VNEM‖
‖VLEM‖

− 1

)(
h

r0

+ x(0)ωz

)

żNEM(0) = 0 (5.15)

where r0 represents the initial distance of the leader from the center of the Earth
and ‖VNEM‖ can be calculated through Equation 5.13.
The derived equations present minimal drift in all directions when the relative motion
includes arbitrary eccentricity of both the leader and the followers. Instead, when
the followers are initialized with Equations 5.15 and than propagated in a non-
Keplerian dynamics the stability of the formation is still compromised. In fact, the
perturbations act modifying the energy of the orbit followed by the followers thus
resulting in a modification of Equation 5.12 and consequently all the procedure above
presented is not valid anymore. [8] proposes an alternative method for initializing
any leader-follower pair such that the motion is stable in an environment where
the non-perfect sphericity of the earth (J2) is considered. Since J2 is the most
important perturbation in low orbit, these initial conditions are very efficient in case
of formations working in LEO and are able to maintain a good level of stability even
if the dynamics with which the formation is propagated includes perturbations of
minor importance (Drag, Solar Pressure, etc... Chapter 3).
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5.3.3 Energy Matching including J2 perturbation

Before explaining the procedure to impose Energy Matching including J2, it can be
useful to make some clarifications. In general, through the CW equations, the only
fixed initial relative velocity is the along-track component ẏLEM(0) = −2ωzx(0), the
radial and across-track components, observing the Equations 5.2 have not to satisfy
particular conditions in order to eliminate some particular drift. As they are free,
they can be set to zero, as done in Equation 5.11 for fuel saving in deployment
phase, or they can be set in order that other conditions are satisfied. In particular,
[8] set them in order to reduce risk of collision (condition on ẋLEM(0)) and to reduce
across-track drift due to differential RAAN (condition on żLEM(0)). In this case
their values are

ẋLEM(0) =
1

2
ωzy(0) (5.16)

żLEM(0) = −ωzz(0) tan θ0 (5.17)

where θ0 is the initial argument of latitude of the leader spacecraft. It is possible to
express Equations 5.16, 5.10 and 5.17 in matrix form

 ẋLEM(0)

ẏLEM(0)

żLEM(0)

 = Rωz

 x(0)

y(0)

z(0)

 =

 0 1
2
ωz 0

−2ωz 0 0

0 0 −ωz tan θ0


 x(0)

y(0)

z(0)

 (5.18)

For simplicity of equations, in this work, Equation 5.18 will be used as the starting
point for the development of the Non-Linear EM with J2 method, but, in general,
the steps that will be presented can be performed perfectly in the same way in the
case where it is possible to express the initial relative velocities as linear functions
in the relative initial positions, i.e. in the following way ẋLEM(0)

ẏLEM(0)

żLEM(0)

 =

 a1 a2 a3

−2ωz 0 0

b1 b2 b3


 x(0)

y(0)

z(0)

 (5.19)

where a1, a2, a3, b1, b2, b3 are arbitrary constants chosen following different criteria.
After detailing this aspect, it is possible to derive EM in case of presence of J2 per-
turbation.

As explained in Chapter 3, after the central body perturbation the main effect on
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an orbiting satellite of the gravity potential is that due to first zonal coefficient J2.
Thanks to conservative property of the force field generated by gravity potential, it
is possible to write the gravity potential and its gradient truncated to consider up
to J2 term as follows [14]

UJ2 = −µ
r
− kJ2

r3

(
1

3
− sin2 i sin2 θ

)
(5.20)

∇UJ2 =
µ

r2
x̂+

kJ2

r4

(
1− 3 sin2 i sin2 θ

)
x̂+

kJ2 sin2 i sin 2θ

r4
ŷ +

kJ2 sin 2i sin θ

r4
ẑ

where kJ2 = 3
2
J2µR

2
e and Re is the reference Earth radius, i and θ are the inclination

and argument of latitude of the considered spacecraft. UJ2 represents the energy of
a satellite subject to J2 potential field. It can be noticed that ∇UJ2 is not aligned
with the radial given by the versor x̂ of the LVLH. This aspect is important because,
Equation 5.18 is written in a frame which is aligned with the force acting on the
LVLH frame, and in order to exploit it properly, a frame aligned with ∇UJ2 has to be
considered. If we consider a frame in which its versor x̂′ is aligned with ∇UJ2 and ŷ′

remains in the orbital plane, it is possible to transform a generic vector described in
the LVLH frame into this new frame by two rotations, a counterclockwise rotation
about the ẑ axis by the angle α, resulting in the intermediate frame of versors
ˆ̃x, ˆ̃y, ˆ̃z, and a second rotation β about the ˆ̃y axis. In equations, the rotation matrix
which allows to describe a general vector in LVLH into [x̂′, ŷ′, x̂′] (UJ2 frame) can
be written as

RUJ2
,L =

 cαcβ sαcβ sβ

−sα cα 0

−cαsβ −sαsβ cβ

 (5.21)

where sx = sin(x) and cx = cos(x), and α and β are given by the following

α = arctan

(
∇UJ2 · ŷ
∇UJ2 · x̂

)

β = arctan

 ∇UJ2 · ẑ√
(∇UJ2 · x̂)2 + (∇UJ2 · ŷ)2


It is now possible to impose relation 5.18 in the UJ2 frame and then to retrieve the
components in LVLH frame through 5.21, thus obtaining
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 ẋ′LEMJ2
(0)

ẏ′LEMJ2
(0)

ż′LEMJ2
(0)

 =

 0 1
2
ωz 0

−2ωz 0 0

0 0 −ωz tan θ0


 x′(0)

y′(0)

z′(0)


=

 0 1
2
ωz 0

−2ωz 0 0

0 0 −ωz tan θ0

RUJ2
,L

 x(0)

y(0)

z(0)


=

 −1
2
ωzsα

1
2
ωzcα 0

−2ωzcαcβ −2ωzsαcβ −2ωzsβ

ωzcαsβ tan θ0 ωzsαsβ tan θ0 −ωzcβ tan θ0


 x(0)

y(0)

z(0)



(5.22)

where in this case ωz 6= n but ωz =

√
‖∇UJ2

‖
r

because the LVLH is also subject to J2

perturbation [14]. Initial vector of velocity [ẋ′LEMJ2
(0), ẏ′LEMJ2

(0), ż′LEMJ2
(0)]T can

be also rotated in LVLH frame in order to obtain IRV in LVLH frame

 ẋLEMJ2(0)

ẏLEMJ2(0)

żLEMJ2(0)

 = RL,UJ2

 ẋ′LEMJ2
(0)

ẏ′LEMJ2
(0)

ż′LEMJ2
(0)


= RT

UJ2
,L

 ẋ′LEMJ2
(0)

ẏ′LEMJ2
(0)

ż′LEMJ2
(0)


= RT

UJ2
,LRωzRUJ2

,L

 x(0)

y(0)

z(0)



(5.23)

where RT
UJ2

,LRωzRUJ2
,L equals

ωz


3
2
cαsαcβ − c2

αs
2
βtθ0

1
2
c2
αcβ + 2s2

αcβ − cαsαs2
βtθ0 2sαsβ + cαcβsβtθ0

−2c2
αcβ − 1

2
s2
αcβ − cαsαs2

βtθ0 −3
2
cαsαcβ − s2

αs
2
βtθ0 −2cαsβ + sαcβsβtθ0

−1
2
sαsβ + cαcβsβtθ0

1
2
cαsβ + sαcβsβtθ0 −c2

βtθ0


and tx = tan(x). Equation 5.23 simply considers the linearized conditions but in the
UJ2 frame the Energy Matching condition still needs to be imposed.

If we now consider the energy of a generic follower as described by relative quantities
instead of absolute ones as done in Equation 5.20 which will be used for the leader
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spacecraft (or LVLH frame) the following holds

UEMJ2 = − µ

rEMJ2

− kJ2

r3
EMJ2

(
1

3
− (r + x) sin i sin θ + y sin i cos θ + z cos i

r2
EMJ2

)
it is possible to write the Energy Matching considering J2 perturbation as

‖VEMJ2‖ =

√
‖V ‖2 + 2 (UEMJ2 − U)

where U is the energy of the leader spacecraft and expressed by Equation 5.20. It
is possible to follow the same passages done in the previous section but considering
that the velocity of the follower as described in a LVLH frame subject to J2 ([14])
can be written as

VEMJ2 = (vx + ẋEMJ2 − yEMJ2ωz) x̂

+

(
h

r
+ ẏEMJ2 + xEMJ2ωz − zEMJ2ωx

)
ŷ + (żEMJ2 + yEMJ2ωx)ẑ

in this case ωx 6= 0 because of the J2 perturbation [14]. The components ẋEMJ2 ,ẏEMJ2 ,
żEMJ2 can be found by imposing that Equation 5.23 satisfy

VEMJ2 =
‖VEMJ2‖
‖VLEMJ2‖

VLEMJ2 =

√
‖V ‖2 + 2 (UEMJ2 − U)

‖VLEMJ2‖
VLEMJ2 (5.24)

Developing both sides of Equation 5.24, using Equation 5.23 and evaluating it at
t = 0, the initial relative velocity conditions described in the LVLH frame subject
to J2 perturbation can be found
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ẋEMJ2(0)− ‖VEMJ2‖
‖VLEMJ2‖

[(
3

2
cαsαcβ − c2

αs
2
βtθ0

)
x(0)

+

(
1

2
c2
αcβ + 2s2

αcβ − cαsαs2
βtθ0

)
y(0) + (2sαsβ + cαcβsβtθ0) z(0)

]
ωz

+

(
‖VEMJ2‖
‖VLEMJ2‖

− 1

)
(vx − y(0)ωz)

ẏEMJ2(0) =
‖VEMJ2‖
‖VLEMJ2‖

[(
−2c2

αcβ −
1

2
s2
αcβ − cαsαs2

βtθ0

)
x(0)

+

(
−3

2
cαsαcβ − s2

αs
2
βtθ0

)
y(0) + (−2cαsβ + sαcβsβtθ0) z(0)

]
ωz

+

(
‖VEMJ2‖
‖VLEMJ2‖

− 1

)(
h

r
+ x(0)ωz − z(0)ωx

)

żEMJ2(0) =
‖VEMJ2‖
‖VLEMJ2‖

[(
−1

2
sαsβ + cαcβsβtθ0

)
x(0)

+

(
1

2
cαsβ + sαcβsβtθ0

)
y(0) +

(
−c2

βtθ0
)
z(0)

]
ωz

+

(
‖VEMJ2‖
‖VLEMJ2‖

− 1

)
y(0)ωx

(5.25)

Equation 5.25 defines the Initial Relative Velocity of a generic follower in LVLH
components which minimize relative drifts in all directions when J2 perturbation
is considered. In the next section, the stability of the presented configurations
initialized with Equation 5.25 will be analysed and compared with results obtained
in Section. 5.2.5.

5.3.4 Stability of the EM including J2 Initial Conditions

The aim of this section is to show the efficacy of Equations 5.25 wrt the initializa-
tion of the formation through CW Equations To do so properly, exactly the same
parameters of the simulations showed in Section. 5.2.5 have been used, in particular
the leader initial orbital elements are those presented in Table 5.1, and Initial Rel-
ative Positions of the followers in the different configurations are the same reported
in Figures 5.2, 5.3, 5.4, 5.5. Figures 5.16, 5.17, 5.18 and 5.19 report the results of
the simulations for all the analysed configurations. It is evident that EM Initial
Conditions improve the stability of the formations, the envelopes remain nearly the
same after 80 orbits. The only case in which relative drift is more evident, regards
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across-track direction of IC configuration, but it remains very limited showing a
relative drift of about 0.03 m/orbit.

73



CHAPTER 5 CONFIGURATIONS AND STABILITY

Figure 5.16: IC relative dynamics propagation, EM J2 Initial Conditions
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Figure 5.17: CT relative dynamics propagation, EM J2 Initial Conditions
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Figure 5.18: CP relative dynamics propagation, EM J2 Initial Conditions
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Figure 5.19: Helix relative dynamics propagation, EM J2 Initial Conditions

It has to be underlined that, even if the stability has been improved, Equations 5.25
tend to give higher Initial Relative Velocities, thus resulting in larger oscillations in
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relative positions and consequently higher risk of collision. For this reason, when
controlling the formation (Chapter 6), Collision Avoidance strategies have to be used
for the safety of the mission.
After hundreds orbits, minor perturbations start to destabilize the formation (i.e.
differential Drag), and Formation Control becomes necessary to maintain high sys-
tem performances.
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Formation Control and
Reconfigurability

After having analysed the stability of different configurations, it has been underlined
that, even if the IRC are properly chosen, relative drifts can be limited but never
nullified. For these reasons, control algorithms strategies have to be implemented.
This chapter aims at presenting only some of the possible control strategies which
can be realized. The synthesis of control laws is a very current branch of research,
there are a large number of possible methods that allow to find more or less satisfac-
tory results. Clearly, the methodology adopted depends on several factors including
available computational resources, control accuracy requirements, instrumentation
available for the implementation and for the measurement of state variables, physical
constraints related to the system being analyzed, etc... In [20] some techniques used
for the control of formations are reported. In the context of this work, in particular
two different methodologies for the synthesis of control are reported.
The first one is a classical Proportional Derivative (PD) controller, it is a technique
as simple as effective. In our case, it has been implemented for controlling the 6-DoF
dynamics of the entire formation. The downside of this technique is that intrinsi-
cally it does not optimize the fuel quantity, a very important aspect according to the
considerations made in the Chapter. 1. Therefore, a second method of synthesizing
the 6-DoF dynamics control law was investigated.
Optimal Control technique finds a control solution that minimizes a desired cost-
function. In addition, in order to have the same computational efficiency of the PD
case, it has been used in the perspective of convex optimization which has the advan-
tage to find the optimal solution in a very short time by convexifying all equations of
the problem. This technique is widely used in missions that involve the autonomous
synthesis of control laws because it allows to obtain very advantageous results, more-
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over thanks to the speed of the algorithm it is possible to find the control law of
hundreds of satellites in a reasonable amount of time (very suitable for formations)
[25][24][39]. The performances of this algorithm are tested considering two different
approaches, de-centralized and centralized (Chapter. 1), in order to better appreci-
ate the advantages and disadvantages of having computational resources distributed
among the followers or concentrated in a single spacecrafts. In the next sections all
the considerations above reported will be extensively detailed.

6.1 Proportional Derivative (PD) Control Method

The basic idea behind PD control method is the following:

The purpose is to control precise physical quantities belonging to a system subject
to a dynamics, making sure that after a certain time interval they are equal to some
reference values. In order to make this happen, a control action must be performed
until there is a difference between the instantaneous values of these quantities and
the reference values.

Most simple law it is possible to think of is the proportional control law which fore-
sees a control action which is proportional wrt the difference between the reference
and the measured value of the variable to control. The synthesis of the constant of
proportionality can be done following different criteria, this aspect won’t be deepen
because out of the scope of this work. If higher accuracy is required, a simple propor-
tional control is not sufficient anymore. For improving the quality of the law, other
measurements (or estimations of them) are necessary. In the context of this work, it
is assumed that also the measurement of the derivative of the variable to control is
available. So doing, a proportional-derivative control law can be implemented. Ac-
cording to classical assumption that translational motion is decoupled by rotational
one, two different control laws, but with the same mathematical structure, have
been implemented resulting in a complete 6-DoF dynamics control. Concerning the
translational motion, the control force for the i-th spacecraft Fi can be expressed as

Fi = kp(ρi,ref − ρi) + kv(ρ̇i,ref − ρ̇i) (6.1)

where kp and kv are the gains of the control law. Their values change the time
response of the controlled system, they have a great impact on accuracy and stability
of the control law and if not properly chosen they can give rise to instabilities which
have to be absolutely avoided. ρi,ref and ρ̇i,ref are respectively the reference relative
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position and velocity which the spacecraft should have after the end of the control
action. It is evident as the elements multiplying the gains give the direction to the
control force and a contribution to the amplitude of the control force which depends
on how much the spacecrafts is distant from its reference. Considering that, as
widely explained in Chapter. 4, the relative dynamics has been directly propagated,
in the simulations the vectors of Equation 6.1 have been decomposed in LVLH frame.
It is possible to further improve Equation 6.1 considering that the main purpose is
to control a formation which has a given configuration. In fact, in case metrology
instrumentation could return relative positions of the spacecraft it is mounted on
with respect to all the spacecrafts of the formation, the difference between these
measurements and reference relative distances (calculated considering that a desired
configuration wants to be reached) can give rise to additional proportional control
terms. In equation this can be written as

Fi = kp(ρi,ref − ρi) + kv(ρ̇i,ref − ρ̇i) +
N∑

i,j;j 6=i

kf,ij(dij,ref − dij) (6.2)

where N is the total number of satellites, dij,ref = ρi,ref − ρj,ref is the distance
reference vector between the i-th and j-th spacecrafts and it is given by the final
configuration that wants to be reached, and dij = ρi − ρj is the actual distance
vector given by relative metrology measurements.
Considering now the rotational motion, the same reasoning can be pursued. In
fact, if quaternions and angular velocities are measured, it is possible to create a
control torque which is proportional wrt the differences between attitude and angular
velocity of reference and their actual values. The problem is mathematically the
same of that solved by Equation 6.2, so the instantaneous control torque for the i-th
spacecraft can be calculated as follows

τi = kq(qi,ref ⊗ q−1
i ) + kω(ωi,ref − ωi) +

N∑
i,j;j 6=i

kτ,ij(q̃ij,ref − q̃ij) (6.3)

where the ⊗ indicates quaternion multiplication as defined in Chapter. 2, while
q̃ij,ref = qi,ref ⊗ q−1

j,ref and q̃ij = qi ⊗ q−1
j are respectively relative reference and

actual attitudes of the i-th spacecraft wrt j-th one. It has to be remarked that
the multiplication between quaternions returns another four components quaternion
whose dimensions are inconsistent with those of the control torque, for these rea-
sons only the first three components of the derived quaternion have been extracted
in Equation 6.3 (there is not a loss of information because the choice of unitary
quaternion has been made). In this work, Equation 6.3 has been decomposed in
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i-th spacecraft body-frame Fi,BF to be in line with the fact that the integration of
rotational dynamics was done in the same frame. This method proves to be very
simple and computationally cheap. Control forces and torques are quickly computed
making PD adapt to be implemented for autonomous formations.
This control law presents some disadvantages. The choice of the different gains is
not an easy task. There is not a perfect set of parameters, so some iterations have
to be made before finding the most adapt ones. Another disadvantage involves the
rapidity of convergence, in particular when the algorithm is about to converge, the
errors are very small, so decreasing the velocity of the convergence. In addition, as
previously underlined, one of the main problem of this method is that it does not
take into account the minimization of the fuel consumption. For this reason, the
results of PD controller have been used rather as reference results for comparison
with methods more appropriate to the type of applications studied.
As last remark, Equations 6.2 and 6.3 tend to return very high control forces and
torques because of the great number of terms they depend on. Physical constraints
on actuation impose limits to the maximum and minimum values attainable, so the
saturation phases have been considered by adding the following constraints to the
algorithm

 Fix

Fiy

Fiz

 ≤
 Fix,max

Fiy,max

Fiz,max


 τix

τiy

τiz

 ≤
 τix,max

τiy,max

τiz,max


6.2 Optimal Control Method

After discussing the constraints to which Flying Formations are subject to (Chapter.
1), it is possible to affirm that the main goals of a control algorithm should be: the
minimization of fuel consumption to re-configure the system and low computational
cost for calculating the control inputs. Concerning the first affirmation, optimal
control is the most adapt method, in fact, as the name suggests, it tries to find
a solution which minimizes (or maximizes) a given cost function. Regarding the
second, the question is more complicated. In fact, computational cost does not
depend only on the intrinsic characteristics of the method but also on the way it is
implemented (i.e. centralized or de-centralized architecture)
In order to reduce to a minimum the computational effort, a wide branch of research
has developed methods to reduce a general non-linear optimization problem in a
convex one. Convex optimization problems have the great advantage that they are
solvable in very short amount of time, making them very suitable for autonomous
real-time applications involving a considerable number of variables. Further details
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about convex programming will be furnished in the next subsections. The discussion
is organized as follows: firstly, the general problem will be presented, then the
convex version of the problem follows and finally its final implementation in a SCP
(Sequential Convex Programming) and in a Closed Loop with Sequential Convex
Programming (CL-SCP) algorithm will be derived.

6.2.1 Definition of the General Optimal Control Problem

The goal is to solve an optimization problem in order to find optimal control forces
and torques which are able to minimize energy actuation consumption for the 6DoF
dynamics. For reasons which will be better explained later, two different optimiza-
tion problems, one for translational dynamics and one for rotational are written. In
addition, to avoid being too repetitive, the discussion will be carried out considering
a de-centralized architecture, in which all satellites are equipped with sufficient com-
putational resources to be able to independently calculate their optimal trajectory,
the particularization for the centralized case is reported in Appendix D.
Calling x(t) = [ρT (t), ρ̇T (t)]T = [x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)]T the translational
state vector and u(t) = [ux(t), uy(t), uz(t)]

T the control input, the general non-
linear optimization problem can be written for the i-th spacecraft as in Problem 1.

Problem 1 Translational case, Non-linear Optimal Control

minui(t)

∫ tf
0
‖ui(t)‖2 dt

subject to

ẋi(t) = f (xi(t),ui(t)) ∀t ∈ [0, tf ]

‖ui(t)‖2 ≤ Umax ∀t ∈ [0, tf ]

‖C [xi(t)− xj(t)]‖2 ≥ Rcol ∀t ∈ [0, tf ] j = 1, . . . , N j 6= i

xi(0) = xi,0

xi (tf ) = xi,f

where tf represents the final time at which the reconfiguration ends, f represents the
controlled dynamics where the dependence on the state of LVLH frame (or chief) has
been omitted, Umax is the maximum available thrust (considering that spacecrafts
are equipped with single thrust [44]), N is the total number of spacecrafts, Rcol is
the minimum distance required for collision avoidance, xi,0 and xi,f are respectively
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the initial and final state vector conditions, while C = [I3×3,03×3] just extracts the
relative positions from the state vector.

Analogously, it is possible to express the optimization problem in case of rotational
motion. If x(t) = [qT (t), ω̇T (t)]T = [q1(t), q2(t), q3(t), q4(t), ωx(t), ωy(t), ωz(t)]

T is the
state vector and g(t) = [gx(t), gy(t), gz(t)]

T is the control input, for i-th spacecraft,
it is possible to derive Problem 2.

Problem 2 Rotational case, Non-linear Optimal Control

mingi(t)

∫ tf
0
‖gi(t)‖2 dt

subject to

ẋi(t) = f (ρi, ρ̇i,xi(t),gi(t)) ∀t ∈ [0, tf ]

‖gi(t)‖2 ≤ τmax ∀t ∈ [0, tf ]

xi(0) = xi,0

xi (tf ) = xi,f

where τmax is the saturation of the actuator and the dependence of the rotational
dynamics on relative positions end velocities has been highlighted (external torques
depend on accelerations and accelerations depend on absolute position and velocity
of the vector).
Problems 1 and 2 try to minimize the integral over an interval of time of the norm
of the control inputs. This is in line with the fact that fuel consumption is related
to this quantity, so the objective functions considered represent indirectly the cost
of fuel consumption. The presented problems are non-linear and constrained opti-
mization problem. They are difficult to solve, also by indirect methods which can
take a very long run time. A solution often adopted is that one to make to re-
enter the problem in the so-called convex optimization problems for which convex
programming succeeds to guarantee times of resolution much lower.

6.2.2 Convexification of the Optimal Control Problem

Convex programming requires that the problem being treated be expressed as

minimize J (Z)

subject to gj (Z) ≤ 0, j = 1, · · · , l
ai
TZ − bi = 0, i = 1, · · · ,m

(6.4)
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where the vector Z is the variable to be optimized, gj are convex funtions while the
equality constraints aiTZ − bi = 0 are expressed as affine functions. In order to
reduce Problems 1 and 2 to the problem given by (6.4), it is necessary to linearize
the dynamics and discretize the continuous problem in order to identify a single
vector to optimize.

Linearization of the Dynamics

It is possible to approximate the non-linear dynamics of the system by using a
reference trajectory through Taylor expansion. If only the first term of this expansion
is considered the resulting approximation function is linear. Considering the Problem
1, if we call xi(t) the reference trajectory and ui(t) the reference control law (for
Problem 2 the considerations are exactly the same), the linearized dynamics can be
written as

ẋi(t) = Ai(t)xi(t) +Bi(t)ui(t) + ci (t) (6.5)

whereAi(t) = ∂f
∂xi

∣∣∣
xi(t),ui(t)

, Bi(t) = ∂f
∂ui

∣∣∣
xi(t),ûi(t)

and c(t) = f(xi(t),ui(t))−Ai(t)xi(t)−
Bi(t)ui(t). The main problem is that Equation 6.5 requires reference trajectories
and the more distant this reference will be from the real value of the trajectory the
coarser the approximation will be resulting in a lower accuracy in reaching the final
state. This problem will be solved by adopting the sequential convex programming
explained in the next sections. In the context of this work, the linearizations pre-
sented require the calculation of the Jacobian of the function f . This is a complex
task, especially in the case where the model takes into account all the perturbations
presented in Chapter 3. For such motivations, in this work, the Jacobians have been
numerically estimated through the finite difference method.

Remark:
Concerning B matrix it is possible to do some remarks. In fact, in simple case the
translational dynamics can be written as the sum between the uncontrolled dynamics
and the effect of the control. Using Equation 4.6 this means

ρ̈L = RLI(r̈I − R̈0,I)−ΩL ×ΩL × ρL − Ω̇L × ρL − 2ΩL × ρ̇L +
Fc,L
m

where Fc,L is the control force expressed in LVLH frame and m is the mass of
the considered spacecraft. Depending on the definition of control input u of the
optimization control B matrix could take simple form. For example if u =

Fc,L
m
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it is easy to find that B = [03×3, I3×3]. Instead, if u = Fc,L, and the constant
mass assumption has been done B = [03×3,

1
m
I3×3] also constant in time. In general

case, in which u = Fc,L but the mass is not constant, the solution holds B =

[03×3,
1

m(t)
I3×3] and a model for the dynamics of the mass of the spacecraft ṁ(t) has

to be taken into account.

Discretization

The optimization time interval [0, tf ] is discretized in K points. tk is the time in
the k-th point and, ∆tk = tk+1 − tk is the k-th interval of time. In this work, an
equispaced discretization has been used so ∆tk = ∆t ∀k = 0, 1, · · · , K − 1 thus
resulting also in tf = K∆t. We can now apply this discretization to Problem 1
starting from the cost-function. The integral becomes a sum over the time-interval

K−1∑
k=0

‖uki ‖2

where uki = ui(tk), while the dynamics can be written as follows

ẋk+1
i = Aki x

k
i +Bk

i u
k
i + cki k = 0, 1, · · · , K − 1 (6.6)

where xki = xi(tk) and

Aki = eAi(tk)∆t Bk
i =

∫ ∆t

0
eAi(tk)t̃B(t̃)dt̃ cki =

∫ ∆t

0
eAi(tk)t̃c(t̃)dt̃

The other conditions do not need any other clarification and it is possible to write
directly the problems 1 and 2 in discretized form

Problem 3 Translational case, Discretized Optimal Control

minui

∑K−1
k=0 ‖uki ‖2

subject to

ẋk+1
i = Aki x

k
i +Bk

i u
k
i + cki k = 0, 1, · · · , K − 1∥∥uki ∥∥2

≤ Umax k = 0, 1, · · · , K − 1∥∥C [xki − xkj
]∥∥

2
≥ Rcol k = 0, 1, · · · , K j = 1, . . . , N j 6= i

x0
i = xi,0

xKi = xi,f
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Problem 4 Rotational case, Discretized and Convex Optimal Control

mingi

∑K−1
k=0 ‖gki ‖2

subject to

ẋk+1
i = Aki x

k
i +Bk

i g
k
i + cki k = 0, 1, · · · , K − 1∥∥gki ∥∥2

≤ τmax k = 0, 1, · · · , K − 1

x0
i = xi,0

xKi = xi,f

Remark:
Concerning rotational case, the derivation of matrices Aki and Bk

i is slight differ-
ent from previous case. In fact, as highlighted before, i-th spacecraft rotational
dynamics depends also on ρi and ρ̇i, thus resulting in the need of translational ref-
erence trajectories (ρi(t) and ρ̇i(t)) for the computation of the first-order Taylor
expansion, so that Ai(t) = ∂f

∂xi

∣∣∣
xi(t),ui(t),ρi(t),ρ̇i(t)

, Bi(t) = ∂f
∂ui

∣∣∣
xi(t),ui(t),ρi(t),ρ̇i(t)

and

c(t) = f(xi(t),ui(t),ρi(t), ρ̇i(t))−Ai(t)xi(t)−Bi(t)ui(t) The discretization process
does not change wrt the translational case.

It is now more evident the reasons why the choice of writing two different problems,
one for translational motion and one for rotational, has been taken. In general,
a single problem involving all variables for 6DoF dynamics could be derived, thus
resulting in a very huge problem increasing the difficulty of finding the solution. By
splitting this single problem into two sub-problems allows to control only one type of
motion without solving the other. For example, if the formation pointing has to be
corrected without controlling translational motion, it is possible to solve problems
2 or 4 by linearizing the dynamics about the free-flying translational motion (from
Equations 4.15). This results in a lower computational effort. In addition, especially
if SCP strategy is not adopted, if a 6DoF control is needed, it is possible to solve
Problem 3 and then using the controlled trajectories so obtained as reference tra-
jectories for Problem 4. Being these trajectories closer to reality, the linearization
error decreases.

Problem 4 is a convex problem. In fact if we define the optimization variable for
the i-th spacecraft as Zi as Zi = [(x0

i )
T , · · · (xKi )T , (g0

i )
T , · · · , (gK−1

i )T ]T , all the con-
straints and cost-function can be re-written with the formalism of Equation 6.4.
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Concerning Problem 3, the Collision Avoidance constraint makes the problem still
non-convex. In addition, it requires the knowledge of the position of all the space-
crafts for all instants xki which is a complicated aspect. If a centralized strategy
is adopted, the task is simpler because the chief can calculate all the trajectories
and then send them to each spacecraft considering the CA constraint. Instead, if
a de-centralized strategy is adopted, each spacecraft should calculate its optimal
trajectory without CA constraint, send this to the chief and then receive all other
trajectories in order to add CA constraint and re-calculate the optimal trajectory.
These aspects will be considered in the following subsection where the CA constraints
is convexified.

Convexification of Collision Avoidance Constraint

The convexification of CA constraint follows the procedure adopted by [44]. It
is possible to show that a sufficient condition for the non-convex CA constraint∥∥C [xki − xkj

]∥∥
2
≥ Rcol k = 0, 1, · · · , K j = 1, . . . , N j 6= i is the following

(
xki − xkj

)T
CTC

(
xki − xkj

)
≥ Rcol

∥∥C (xki − xkj
)∥∥

2
(6.7)

where xi is an initial guess trajectory for the i-th spacecraft. The idea behind
Equation 6.7 can be better understood with Figure 6.1. Figure 6.1 (Left) shows
the constraint before convexification, it is clear that a prohibited spherical volume
prevents the two spacecrafts from collision, while Figure 6.1 (Right) shows the con-
vexified constraint by changing the prohibited spherical volume into a larger one
which encompasses the old prohibited volume.

Figure 6.1: Left Non-convex CA constraint, Right Convex CA constraint, [44]
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A proof that Equation 6.7 is a sufficient condition of the CA constraint can be
quickly derived.

Proof: (
xki − xkj

)T
CTC

(
xki − xkj

)
≥ Rcol

∥∥C (xki − xkj
)∥∥

2∥∥C (xki − xkj
)∥∥

2

∥∥C (xki − xkj
)∥∥

2
cosφ ≥ Rcol

∥∥C (xki − xkj
)∥∥

2∥∥C (xki − xkj
)∥∥

2
cosφ ≥ Rcol∥∥C (xki − xkj

)∥∥
2
≥
∥∥C (xki − xkj

)∥∥
2

cosφ ≥ Rcol

Remark:
Equation 6.7 implies that the spacecraft performing the optimization should know
trajectories of all the satellites. This is not verified in case of de-centralized strategy
where each satellite optimizes its own trajectory. For this reason the constraint just
presented needs to be changed so that we can have a CA requirement in this strategy
as well. This problem can be solved by changing Equation 6.7 in(

xki − xkj
)T
CTC

(
xki − xkj

)
≥ Rcol

∥∥C (xki − xkj
)∥∥

2
(6.8)

which implies that also the trajectory of the j-th spacecraft is estimated. This
problem is not present in centralized strategy where the optimization involves all
the spacecrafts.

This procedure allows to make Problem 3 solvable through convex programming.
However, two negative aspects are still present. The first is that this methodology
makes the solution of the problem a potentially sub-optimal solution, in fact, by
increasing the volume of forbidden space, solutions that could present a lower cost-
function are discarded. The second is that guess trajectories are necessary. These
trajectories can be obtained in different ways. The choice that has been made in this
work, consists, in the case of de-centralized architecture, in solving the optimization
problem at least two times. The first solution does not consider the CA constraint
and the second uses the trajectories found in the first one as guess trajectories in
order to include the CA convex constraint. In the case of centralized architecture,
the procedure is the same, but in this case there is no need for the frequent passage
of information between satellites, only after all optimal trajectories have been cal-
culated, the satellites receive the control inputs. Problem 3 can be finally written
as Problem 5 including Eqution. 6.8
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Problem 5 Translational case, De-centralized Convex Optimal Control

minui

∑K−1
k=0 ‖uki ‖2

subject to

ẋk+1
i = Aki x

k
i +Bk

i u
k
i + cki k = 0, 1, · · · , K − 1∥∥uki ∥∥2

≤ Umax k = 0, 1, · · · , K − 1(
xki − xkj

)T
CTC

(
xki − xkj

)
k = 0, 1, · · · , K j = 1, . . . , N j 6= i

≥ Rcol

∥∥C (xki − xkj
)∥∥

2

x0
i = xi,0

xKi = xi,f

Before passing to the algorithm of Sequential Convex Programming, it is necessary
to make some clarifications. Problem 5 is written in the context of a de-centralized
strategy. This implies that the i-th spacecraft optimizes its own trajectory regardless
of the position and/or velocity of others. This strategy, which is more suitable
in the case where the satellites of the formation are all equipped with the same
computational resources, does not consider the optimization of the formation as a
single entity which is what we would be most interested in. In fact, if instead of
the cost-function minui

∑K−1
k=0 ‖uki ‖2 we had min[u1,··· ,uN ]

∑N
i=1

∑K−1
k=0 ‖uki ‖2 , where

N is the number of spacecrafts, the optimization would choose a path that would
minimize the overall fuel consumption. This, as demonstrated in [44], results in a
more efficient use of the fuel consumption, so it can be affirmed that, if a satellite
can be endowed with a high-performances data handling system, this solution is to
prefer wrt to de-centralized one. The detailed definition of the centralized optimal
problem is given in Appendix D. Concerning Problem 4, there is not a particular
distinction between centralized and de-centralized strategy. In fact, there is not
coupling between the various rotational optimization problems of the formation (the
coupling for translational case is given by the CA constraint), making each satellite
rotational state independent from those of other spacecrafts.

6.3 Sequential Convex Programming (SCP)

Several approximations were introduced during the convexification of Problem 1.
First, the introduction of initial guess trajectories x̂i for linearization can lead to
significant errors. Moreover, if the initial trajectories deviate a lot from the real
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ones, the constraint on the CA may result in the elimination of solutions that could
in reality satisfy the minimum distance criterion and consequently the solution thus
obtained would deviate even further from the optimal one. In order to solve this
problem, the Sequential Convex Programming (SCP) method is used. As the name
suggests, SCP involves a sequential and iterative resolution of the problem, trying
to refine the solution more and more until a certain accuracy is satisfied. The
idea behind SCP is simple, if xi,m−1 represents the solution of the problem at (m-
1)-th iteration, it is possible to use this solution as the new reference trajectory
for iteration (m)-th x̂i = xi,m−1. At this point, one criterion is needed to stop the
iterative process. The most used and the most intuitive would be to stop the process
in the case in which the new iteration does not differ more than a predetermined
quantity from the previous one, this can be written through the following equation

‖xki,m − xki,m−1‖∞ < ε ∀k = 0, · · · , K (6.9)

where ε is a constant and it is chosen depending on the desired accuracy.

It is now possible to write a pseudo-algorithm for SCP in order to clarify the opti-
mization process. It is reported in case of de-centralized strategy but the centralized
case is simple to derive.
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Algorithm 1: Sequential Convex Programming
x̂ki ← 06×1 or xki,initial ∀i, k
xki,0 ← solution to Problem 5 excluding CA constraint ∀i, k
x̂ki ← xki,0 ∀i, k
G := {1, · · · , N}
m← 1

while G 6= ∅ do
forall i ∈ G do

xki,m ← solution of the Problem 5 ∀k
end
forall i ∈ G do

x̂ki ← xki,m ∀k
end
H := {1, · · · , N}
forall i ∈ G do

if ‖xki,m − xki,m−1‖∞ < ε ∀k and ‖C(xki,m − xkj,m)‖∞ ≥ Rcol ∀k, j ∈ H
then

Remove i from G
end

end
m← m+ 1

end
M ← m

xki,M is the SCP solution to Problem 5

Algorithm 1 allows to obtain more precise results wrt solving only once Problem
5. After calculating these trajectories, Problem 4 can be solved for controlling
rotational motion with higher precision. The problem of this method is that it does
not consider unmodeled disturbances or errors in the application of control. In fact,
having no external measurements Algorithm 1 still represents an open-loop control.
This can lead to non-negligible errors in the reached final state. In order to close
the loop, the method of Closed Loop control with Sequential Convex Programming
(CL-SCP) will be described in the following section.

6.4 Closed Loop Control with Sequential Convex
Programming (CL-SCP)

The concept behind (CL-SCP) algorithm is very simple and is based on classical
characteristics of a feedback control loop. If relative measurements are available,
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it is possible to re-initialize Algorithm 1 by using the measurements as initial state
vectors. This is equal to closing the control loop as in a feedback controller. If the
re-initialization is applied several times during the maneuvers the final result will
more accurate. If we call k0 the instant at which the re-initialization is applied and
KH the optimization horizon of the single CL-SCP iteration, it is possible to rewrite
Problem 5 by considering re-initialization as

Problem 6 Translational case, De-centralize Convex Optimal Control for CL-SCP

minui

∑K−1
k=k0
‖uki ‖2

subject to

ẋk+1
i = Aki x

k
i +Bk

i u
k
i + cki k = k0, · · · , K − 1∥∥uki ∥∥2

≤ Umax k = k0, · · · , K − 1(
xki − xkj

)T
CTC

(
xki − xkj

)
k = k0, · · · , k0 +KH j = 1, . . . , N j 6= i

≥ Rcol

∥∥C (xki − xkj
)∥∥

2

x0
i = xi,actual

xKi = xi,f

where xi,actual is the measured state at k0. It is clear how Problem 6 is simpler to
solve. In particular, the most time-spending part of optimal control is due to CA
constraints, in Problem 6 the constraints is considered only up to k0 +KH , while it
is evident that the control input has to be calculated in all the time span K which
is the instant at which the final position xi,f has to be reached.
In case of k0 + KH > K Problem 6 is not defined and in this case Problem 5 can
be used to complete the maneuvers. It can be remarked that the smaller is the
horizon KH the more the trajectory followed will be optimal but the greater will be
the computational effort. The choice of KH depends also on the total time used for
the correction tf and will always be dictated by a trade-off between precision and
available computational resources. In Figure 7.16 the working principle of CL-SCP
method is showed. In particular, it is possible to see how closing the loop improves
the accuracy (Figure 7.16 (Right)) by re-calculating the new trajectory by measuring
the actual state.

93



CHAPTER 6 FORMATION CONTROL

Figure 6.2: Left: Trajectory given by SCP . Right: Trajectory given by CL-SCP, [44]

For sake of completeness the algorithm of CL-SCP is presented in Algorithm 2.

Algorithm 2: CL-SCP
k0 ← 0

while k0 +KH ≤ K do
Solve Problem 6 using Algorithm 1
Store xki ∀i, k = k0, · · · , k0 +KH

Store uki ∀i, k = k0, · · · , k0 +KH − 1

k0 ← k0 +KH

end
Solve Problem 5 using Algorithm 1
Store xki ∀i, k = k0, · · · , K
Store uki ∀i, k = k0, · · · , k0 +K − 1

6.5 Reconfigurability

As discussed in Chapter. 1, Reconfigurability property is one of the main advantage
of Formation Flying. We can distinguish two different kinds of reconfiguration

• reconfiguration aiming at restoring the initial configuration that has undergone
drift due to differential accelerations

• reconfiguration aiming at changing the actual configuration of the formation
into another for needs dictated by the mission

Both of them can involve all the spacecrafts of the formation (total reconfiguration)
or a number Nr ≤ N of them (partial reconfiguration). The first typology does
not involve particular other considerations than those made above. In fact, once
it is decided that one or more satellites in the formation should undergo correction
maneuvers, Problem 5 in de-centralized or centralized strategy can be solved through
Algorithm 1 or 2
The second typology is more complicated. In fact, if the formation has to reach
another configuration the decision-making process that assigns a satellite from the
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previous configuration a place in the new one can lead to several problems. The first
is that the place assignment may not take into account possible crossings between
trajectories. This aspect is very critical, even if by using the CA constraint a certain
safety margin is already obtained. The second aspect is to try to figure out which
satellite of the old formation should go to occupy a given place in the new one so
that the total fuel consumption is minimized. In particular, it is clear that if old
configuration has N satellites and the new one foresees only Nr satellites, there are
NNr possible place assignments.
This problem can be solved with a second optimization whose the optimization
variable is the NNr dimensional vector

y = [y11, · · · , y1,Nr , y2,1, · · · , yNNr ]T

where yil is a boolean variable which indicates if i-th satellite of old configuration
should go to l-th place of the new one (yil = 1) or not (yil = 0). It is possible to
underline that the fact that y is a vector of booleans creates an additional compli-
cation. In fact, optimizing y means solving an integer optimization problem. This
type of problem can be easily solved in the case of linear optimization, in which both
the constraints and the objective function are linear functions, on the contrary the
problem can become much more difficult in the case in which the problem presents
non-linearities in one of the equations that describe it. Before defining the optimiza-
tion problem, a discussion on the constraints y must respect follows. There are two
main evident constraints which applies in this situation.
The first is the so-called final state condition [44] which dictates that the l-th place
of the new configuration may be occupied by one and only one spacecraft from the
old formation. In addition, it binds at least one satellite of the formation to occupy
the l-th place, so that no free places remain in the new configuration. This condition
can be expressed by the following equations

y11 + · · ·+ yi1 + · · ·+ yN1 = 1
...

y1l + · · ·+ yil + · · ·+ yNl = 1

{
i = 1, · · ·N
l = 1, · · ·Nr

...
y1Nr + · · ·+ yiNr + · · ·+ yNNr = 1

(6.10)

This constraint avoids that more than one satellites occupy a given place, this pre-
vents also from possible collision.
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The second constraint is called exclusion condition. This condition dictates that i-th
spacecraft can occupy at most one place of the new configuration. It can be written
as

y11 + · · ·+ y1l + · · ·+ y1Nr ≤ 1
...

yi1 + · · ·+ yil + · · ·+ y1Nr ≤ 1

{
i = 1, · · ·N
l = 1, · · ·Nr

...
yN1 + · · ·+ yNl + · · ·+ yNNr ≤ 1

(6.11)

Having in mind Equations 6.10 and 6.11, is now possible to present the complete
problem. Both in centralized strategy or in de-centralized one, the cost-function
considering the reconfiguration problem can be expressed as

N∑
i=1

Nr∑
l=1

K−1∑
k=0

yil‖ukil‖2 (6.12)

Where variables ‖uil‖ represent the control inputs for placing the i-th spacecraft in
the l-th place of the new configuration and they have to respect the same constraints
presented in Problem 5 for no-assignation optimization problem. Thus, the complete
optimization problem becomes
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Problem 7 Translational case, reconfiguration Optimal Control

miny
∑N

i=1

∑Nr
l=1

∑K−1
k=0 yil‖ukil‖2

subject to

Equation 6.10
Equation 6.11

ẋk+1
il = Akilx

k
il +Bk

ilu
k
il + ckil k = 0, · · · , K − 1 i = 1, · · · , N

l = 1, · · · , Nr∥∥ukil∥∥2
≤ Umax k = 0, · · · , K − 1 i = 1, · · · , N

l = 1, · · · , Nr(
xkil − xkj

)T
CTC

(
xkil − xkj

)
k = 0, · · · , K i = 1, · · · , N

≥ Rcol

∥∥C (xkil − xkj
)∥∥

2
j = 1, . . . , N j 6= i

x0
il = xi,0 i = 1, · · · , N l = 1, · · · , Nr

xKil = xil,f i = 1, · · · , N l = 1, · · · , Nr

where xil underlines the reconfiguration of i-th spacecraft in l-th place while xil,f

represents final state in case the i-th satellite is assigned to l-th place of the new
configuration. The presented problem is not easy to solve, mainly because of the
presence of the optimization variable y. It is possible to find the solution through
the exploitation of a genetic algorithm (GA) [44]. It extracts samples of y (a popula-
tion) which satisfy all the constraints, and then it evaluates the cost-function these
realizations create. Then, it takes the subpopulation composed of the λ samples
that have the lowest cost-function values and averages them. At the next iteration
it creates new samples using the average computed at the previous iteration. This
method can be very effective because it may allow not to evaluate all possible com-
binations of place assignments, but does not guarantee that the solution found is
actually the global minimum. In this work, it was preferred to use another method
to find the optimal y. This method is based on the following observations:

• Considering the physics of the problem, the cost of the maneuver that brings
the i-th satellite to the l-th position is independent of the variable yil.

• Convex optimization allows the cost of this assignment to be obtained in ex-
tremely small time periods
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So, if in a vector ξ = [ξ11, · · · , ξ1,Nr , ξ2,1, · · · , ξNNr ]T we save all the costs for placing
i-th satellite in l-th position derived by Problem 5, then it is possible to reduce the
Problem 7 into a linear optimization problem for which there are several and very
performing solvers. In fact, observing that Equations 6.10 and 6.11 represent linear
constraints and ξ vector of constants is the so-called weights vector, the Problem 7
can be written also as

Problem 8 Translational case, reconfiguration Integer Linear Programming

miny ξ
Ty

subject to

y11 + · · ·+ yi1 + · · ·+ yN1 = 1
...

y1l + · · ·+ yil + · · ·+ yNl = 1

{
i = 1, · · ·N
l = 1, · · ·Nr

...
y1Nr + · · ·+ yiNr + · · ·+ yNNr = 1

y11 + · · ·+ y1l + · · ·+ y1Nr ≤ 1
...

yi1 + · · ·+ yil + · · ·+ y1Nr ≤ 1

{
i = 1, · · ·N
l = 1, · · ·Nr

...
yN1 + · · ·+ yNl + · · ·+ yNNr ≤ 1

This problem is solved very quickly through solvers that implement techniques such
as branch and bound, greedy algorithms, cutting planes etc...[1]. The most interest-
ing thing is that it allows to find the global optimum unlike the GA which, according
to the problem, may have difficulties in convergence. The only negative aspect of
applying this methodology is the calculation of the vector of weights ξ, in fact it
is required to calculate the cost of maneuvering to place the satellite i-th in all
possible Nr places. This aspect is strongly mitigated by the speed of the convex
programming. In fact, in [10] reference is made to possible applications of convex
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programming in the case of hundreds, or even thousands of satellites in reasonable
times. Hence, as long as NNr is kept in the order of 103 Problem 8 can be solved.
There is another major advantage in solving Problem 8 rather than Problem 7. In
fact, the GA, as explained above, creates a population of vectors y. To calculate the
cost of each realization, Problem 5 is solved for each satellite whose yil = 1. If within
the same population it often happens that yil = 1, the algorithm calculates several
times the same cost, which is absolutely inefficient since this cost is a constant given
an initial and a final position. It is therefore very likely, that if the GA fails to
converge correctly, Problem 5 is solved a number of times greater than NNr. For
these reasons GA should be used only for very large problems.
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Numerical Results and Discussion

This chapter aims at presenting some test cases simulations based on the meth-
ods and algorithms presented in Chapter 6. In particular, Proportional Derivative
and Optimal 6DoF controls will be compared in order to verify anticipations made
regarding fuel consumption, precision. Concerning Optimal control. simulations
of different strategies (centralized, de-centralize, SCP only and CL-SCP) will be
presented to show different performances in terms of accuracy, computational time
and fuel efficiency. Finally, an example of partial re-configuration in de-centralized
strategy will be reported. In the first section, common parameters used for all sim-
ulations are presented, while specific parameters are described for each simulation
in the relative section.

7.1 Common Parameters

Common parameters involve the initial conditions of the leader spacecraft which are
reported in Table7.1

a 6.94761× 106m
e 0.01
i 97◦

Ω 270◦

ω 70◦

ν 0◦

Table 7.1: Initial Orbital Parameters of the Leader spacecraft, control simulations

The simulations have been carried out on different configurations, parameters rel-
ative to each one of these configurations will be detailed in the next sections. In
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all cases, the formation is composed by spacecrafts with the same initial inertial
properties and dimensions (cubic satellites have been considered) which are detailed
in Table7.2

Initial mass m0 20 kg
Inertia matrix JG,BF diag([7.2, 7.2, 7.2]) kg ·m2

Length a 0.3 m

Table 7.2: Initial inertial properties and dimensions

All simulations have been carried out considering un-modeled perturbations. In
fact, even if the propagation model used is very accurate, it doesn’t account for less
important perturbations. In addition, when the control inputs are applied, they
could be subject to variations wrt the calculated values because of misalignment
of the actuators, dynamics of the actuators, coupling between translational and
rotational effects etc.. These effects are taken into account by considering the applied
control inputs as gaussian random variables with properties detailed in Table 7.3
which also reports actuators saturation values

Force actuator saturation Fi,max i = x, y, z 1 N
Control force average µF 0 N

Control force standard deviation σF 2× 10−2 N
Torque actuator saturation τi,max i = x, y, z 1 N ·m
Control torque average µτ 0 N ·m

Control torque standard deviation στ 10−4 N ·m

Table 7.3: Actuators properties

As far as the propulsion system is concerned, in the simulations a cold gas system
with an Isp = 70 s has been considered to control the translational dynamics, while
as far as the rotational one is concerned, the control is done by reaction wheels
whose dynamics is neglected and whose only parameter considered is the maximum
torque they can generate (as in Table 7.3). For completeness, the equations used to
calculate fuel consumption during control maneuvers are reported below

∆m = mb(1− e
− ∆V
Ispg0 )

where mb is the mass of the spacecraft before the maneuver, g0 = 9.80665m
s2

is a
constant and ∆V is calculated as

∆V =

∫ t1

t0

‖Fc(t)‖
m(t)
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where [t0, t1] is the interval of time of control maneuver, ‖Fc(t)‖ is the control force
and m(t) is the mass of the spacecraft.

Finally, all simulations consider all perturbations presented in Chapter 3 if not
otherwise specified.

7.2 Drift Correction

In this simulation, a Helix configuration composed by seven spacecrafts (leader in-
cluded) has been propagated in free-flying configuration until a condition activates
the control loop. It is possible to adopt different criteria to activate control algo-
rithms, the one chosen in this work activates the control loop when the euclidean dis-
tance of a generic follower wrt the leader is higher than a predetermined value. This
value depends on the configuration and on the maximum admissible drift the for-
mation can undergo while remaining operational. Another possible criterion would
consider a limit on the proximity of the spacecrafts of the formation by activating
the loop when the distance between two spacecrafts is lower than a predetermined
quantity in order to avoid collisions.
The Drift correction simulation has been chosen to show differences between meth-
ods presented in Chapter 6, in particular, the same configuration has been controlled
in 6DoF with the PD controller, with the optimal controller centralized architecture
in SCP and in de-centralized architecture both in SCP and CL-SCP. The initial
conditions of the spacecrafts of the formation are dictated by the propagation in un-
controlled mode until the control algorithm is activated by the criterion explained
above, while the final relative positions are the same as reported in Table 7.4 and
initial relative velocities have been found with 5.25 for improving stability. Concern-
ing rotational motion, also in this case the initial state depends on the history of
perturbations acting during the propagation while the final state is the same for all
the spacecrafts and considers an Earth pointing direction for attitude and ωBF = 0.

a · δi 100 m
a · δe 200 m
α1 9◦

N 7

Table 7.4: Helix final parameters for drift corrction simulation.

7.2.1 PD Controller

In Table 7.5, the gains used for this simulation are reported
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Position Gain kp,i i = 1, . . . , N 0.1 N/m
Velocity Gain kv,i i = 1, . . . , N 5 Ns/m

Quaternion Gain kq,i i = 1, . . . , Nm 0.1 Nm
Angular Velocity Gain kω,i i = 1, . . . , N 0.1 Nms/rad

Table 7.5: PD gains definition

Since the transfer function of the system is quite complicated, the gains used have
been chosen having as objective the convergence of the control law. It is clear that
more accurate synthesis methodologies could be studied but such a study would be
outside the scope of interest of this study. For simplicity all the crossed gains hav
been set to zero( kf,ij = 0 N/m and kτ,ij = 0 Nm). In Figure 7.1 it is possible to
visualize the trajectories followed by spacecrafts in case of PD controller. The final
position required is highlighted in red and it is visible that the target position state
has bee correctly reached. If one looks carefully at the figure, one can perceive how
the trajectories of the satellites have a not very smooth shape, this is an indication
of the fact that the control applies instantaneous manoeuvres based on the value
of the sensors received in real-time and is therefore unable to predict the trend in
future instants. In order to have quantitative information, it is possible to display
the convergence history in (Figures 7.2 and 7.3).

Figure 7.1: Trajectories drift correction PD controller
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Figure 7.2: Position errors history drift correction PD controller

Figure 7.3: Velocity errors history drift correction PD controller

The convergence behaviour is quite good, it is possible to see how the position errors
is almost zero after 150 s, while the velocity errors after 200 s. It is also evident
how the convergence rate decreases in last part of the maneuver because of small
errors between reference state and the real one. This behaviour is obtained thanks
to control forces reported in Figure 7.4. It is evident how the control is saturated in
the initial phases of the maneuver, this is in agreement with what was anticipated
in the Chapter 5, i.e. this kind of control tends to have very high input forces. It
is worthy to underline the symmetric behaviour of control forces, this is due to the
inherent symmetry of the initial helix configuration. Finally, it is very important to
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point out that the forces required in the radial direction are lower than in the other
two directions, this aspect validates what was seen in the stability Chapter 5.
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Figure 7.4: Actuation Forces drift correction PD controller
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Concerning rotational motion, Figure 7.6 shows the history of versor ẑBF of each
spacecrafts and the final target state, while Figure 7.5 presents a zoom in the neigh-
borhood of a spacecraft. It is clear how, at the end of the simulation, versors ẑBF
are correctly oriented towards the radial direction (Earth pointing direction). The
results are verified through the plots describing the attitude and angular velocity er-
rors (Figures 7.7 and 7.8). It should be noted that the rotational dynamics is slower
to converge with the parameters chosen. Moreover, it presents strong oscillations
about the final target showing a more unstable behavior than the translational case.
This aspect could be corrected by decreasing the gains kq and kω, but in this way
the convergence will be slowed down further. Ultimately, it is a matter of making a
trade-off between convergence speed and stability.

Figure 7.5: ẑBF field drift correction PD controller
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Figure 7.6: ẑBF field drift correction PD controller (detail)

Figure 7.7: Quaternion errors history drift correction PD controller
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Figure 7.8: Angular velocity errors history drift correction PD controller
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Figure 7.9: Actuation Torques drift correction PD controller
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The ∆mtot fuel consumption of the entire formation for the maneuver is ∆mtot =

1.10427 kg. Considering the initial mass of the spacecrafts it can be noticed that it
corresponds to an average of ∆mav = 0.184045 kg per satellite which is not negligible
(0.920225% of the initial mass).

7.2.2 Optimal Controller de-centralized SCP

The parameters used for all Optimal control simulations are reported in Table 7.6.

Final time tf 0.05T0 s
Number of points K 100
Stopping criterion ε 10−2

Minimum distance Rcol 20 m
Initial guess trajectories xki free-flying leader trajectory ∀i, k

Initial guess control inputs uki 0 ∀i, k

Table 7.6: SCP simulation paramters

In Figure 7.10 optimal trajectories as calculated by Optimal controller in de-centralized
strategy sing sequential convex programming are calculated. It is visible how in this
case the trajectories have a different shape wrt PD controller, they try to use the
dynamics in order to save fuel thus resulting in more homogeneous and smoother
paths. These trajectories are obtained through control forces presented in Figure
7.11. It is visible how the control Forces are one order of magnitude lower than PD
controller case. Again, the control forces remain symmetrical with respect to the
time axis. One aspect in common with the PD controller is that both are able to
identify the least need for control along the radial direction by predicting smaller
control forces Fx than in the other two directions.
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Figure 7.10: Trajectories drift correction Optimal controller de-centralized SCP
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Figure 7.11: Actuation Forces drift correction Optimal controller de-centralized SCP
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In this case the total fuel consumption is ∆mtot = 0.613562 kg, while the average is
∆mav = 0.102260 kg. It is already evident that the control forces obtained by the
optimal controller allow to perform the same correction with less fuel consumption.
A more in-depth comparative analysis will be done in a later section.

7.2.3 Optimal Controller centralized SCP

The centralized architecture simulation has been effectuated in order to analyse
the effects of adopting a different architecture. The simulation solves the Problem
reported in Annex. D. In Figure 7.12 the calculated trajectories are reported. It is
visible how they are very similar to the de-centralized case, they both present the
smoothness of Optimal control trajectories. Analogous behaviour could be expected
in control forces which are reported in Figure 7.13.

Figure 7.12: Trajectories drift correction Optimal controller centralized SCP
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Figure 7.13: Actuation Forces drift correction Optimal controller centralized SCP
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Regarding convergence behaviour there are not relevant remarks. What is more
interesting is the total fuel consumption and the actuation forces reported in Figure
7.13. Total fuel consumption is of ∆mtot = 0.404724 kg (smaller than the de-
centralized case). Regarding computational times, Table 7.7 indicates the CPU
time taken to find the final trajectories. It should be noted that in the de-centralized
case, the value shown in the table is the average computation time taken by a single
satellite. In fact, the total time of the simulation, which is carried out for the entire
formation, has been divided by the number of satellites that make up the formation.
It is evident how de-centralized strategy allows to calculate trajectories in a shorter
interval of time, underlying that the choice of the architecture is dictated by a trade-
off between fuel consumption and computational resources.

Centralized strategy 115.7343 s
De-entralized strategy 26, 3616 s

Table 7.7: Computational times comparison

In this case total fuel consumption is ∆mtot = 0.404724 kg.and the average is
∆mav = 0.067454 kg.

7.2.4 Optimal Controller de-centralized CL-SCP

Parameters used for this simulation are the same of the Table 7.6 and only the
definition of the CL-SCP horizon KH = 12 was added. Similarly to previous cases,
in Figure 7.14 the trajectories calculated through CL-SCP method are shown. In
Figure 7.15, control input forces are reported for completeness, not showing any
particular appreciable difference from previous optimal control cases.
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Figure 7.14: Trajectories drift correction Optimal controller de-centralized CL-SCP
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Figure 7.15: Actuation Forces drift correction Optimal controller de-centralized CL-SCP
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The most interesting thing is that in this case the final position error has been
reduced wrt the Open Loop case. This is the main reason why an Open Loop
control system cannot meet the accuracy requirements of the mission. Figures 7.16
and 7.17 show qualitatively a comparison in xy plane between de-centralized OL
and CL strategies. It is clear how the final position obtained through the closed
loop strategy is nearer to the required one for all the spacecrafts. These results will
be also quantitatively analyzed in the next section.

Figure 7.16: xy trajectories comparison between SCP and CL-SCP

Figure 7.17: xy trajectories comparison between SCP and CL-SCP (detail)

Concerning rotational motion, Figures 7.18, 7.19, 7.20 and Figure 7.21 report the
ẑBF versor field, the evolution of the quaternions and angular velocities and the
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control torques obtained through the Optimal control algorithm.

From Figure 7.18, it is already possible to see how the satellites ẑBF versors converge
to the required attitude without oscillations, unlike the PD controller. This result is
further confirmed by the Figures 7.19 and 7.20 which present smoother curves that
converge homogeneously to the reference quantities. It is also interesting to note
that in this case the angular velocities are always an order of magnitude smaller
than in the case of the PD controller anticipating the lower intensity of the control
torques. In fact, in Figure 7.21 it is immediately visible how also in this case the
profiles of control torques are more homogeneous and above all are of the order of
10−3 Nm, proving the effective optimization of the rotational trajectories.

Figure 7.18: ẑBF field drift correction Optimal controller CL-SCP

120



CHAPTER 7 ANALYSIS OF PERFORMANCES

Figure 7.19: Quaternion errors history drift correction Optimal controller CL-SCP

Figure 7.20: Angular velocity errors history drift correction Optimal controller CL-SCP
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Figure 7.21: Actuation Torques drift correction Optimal controller CL-SCP
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Regarding fuel consumption this simulation presents ∆mtot = 0.439086 kg and the
average is ∆mav = 0.073181 kg.

7.3 Discussion

It is now possible to make a discussion about the results that have just been found
in the case of correcting drifts of the initial configuration. In particular, it is possible
to compare the different methodologies applied considering the accuracy with which
the final target state was reached and the fuel consumption of the manoeuvre. In
terms of accuracy, this work has rather focused on the analysis of reaching the
final position of the spacecrafts (same considerations can be done with velocities,
quaternions and angular velocities). The metric chosen for this comparison is the
euclidean distance between the final position of the spacecraft and the desired final
position

∆ρ =
√

(∆ρx,ref −∆ρx)2 + (∆ρy,ref −∆ρy)2 + (∆ρz,ref −∆ρz)2

In Table 7.8 the results of this quantity for each simulations have been reported in
terms of maximum position error and the average one. It is evident that the optimal
control cases in de-centralized and non-centralized SCP are the worst cases. This
result was predictable considering that they are Open-Loop methodologies that do
not consider external measures, so linearization errors and unmodeled perturbations
have more important effects. As far as the PD controller is concerned, it is worth
noting that the differences in position and velocity are 0.05 since this is the stopping
criterion of the algorithm, which therefore makes it easier to reach the final state
with more precision at the expense of a greater use of fuel. Finally, it is important
to underline how the closing of the loop in the case of Optimal control has gained
an order of magnitude in reaching the final position. The final error is due to the
fact that at a certain point the remaining part of the instants in which the optimal
calculation is performed is smaller than the horizon KH , so the last part of the
trajectories is propagated without further updating the initial states through the
measurements. The precision with which the final state is reached is very important
because the stability of the configuration depends on it. If the final conditions have
been imposed in such a way that the satellites are placed in J2 invariant orbits, an
error in position or velocity with respect to these conditions will cause a higher drift
rate and consequently a greater need for corrections.
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PD ∆ρ [m]
Maximum ≤ 0.05
Average ≤ 0.05

OC dec SCP ∆ρ [m]
Maximum 8.6289
Average 4.52795

OC cen SCP ∆ρ [m]
Maximum 4.7097
Average 3.3175

OC dec CL-SCP ∆ρ [m]
Maximum 0.7887
Average 0.6207

Table 7.8: Final position errors drift corrections simulations

In Table .7.9, the fuel consumption of each simulation has been reported in terms
of total mass used by the whole formation ∆mtot, the average one ∆mav and the
percentage of the average mass wrt the initial one ∆m%av = ∆mav/m0 · 100. It is
possible to notice that the case of PD controller is prohibitive. With a single maneu-
ver, each satellite on average uses almost 10% of the initial mass. This implies that
a small number of corrections can be made, thus reducing the life of the mission.
The case of de-centralized Optimal control behaves better. For the same maneuver it
consumes almost half of the mass, showing how the optimization algorithm is able to
find fuel saving solutions. The de-centralized strategy finds however a sub-optimal
solution since each satellite does not know a priori the position of the other space-
crafts, which instead the centralized strategy does. In fact, if only one spacecraft
could calculate all the trajectories, it would be able to plan the control forces in
order to avoid collisions in a preventive way. The centralized strategy reduces by
one third the fuel used by the PD controller, but it has still the problem of accuracy.
A good compromise is the de-centralized strategy in closed-loop. In fact, it increases
the accuracy of the system but at the expense of greater fuel use than the simple
de-centralized strategy. This is due to the fact that the actual trajectory followed
by the spacecrafts is not the one calculated by Optimal control, and consequently,
a trajectory that requires more corrections (sub-optimal trajectory).

Case ∆mtot [kg] ∆mav [kg] ∆m%av

PD 1.10427 0.184045 0.920225
OC dec SCP 0.410259 0.0683765 0.3418825
OC cen SCP 0.404724 0.067454 0.33727

OC dec CL-SCP 0.439086 0.073181 0.365905

Table 7.9: Fuel consumption summary drift corrections simulations

Ultimately, the best compromise is the case of decentralized Optimal control in CL,
since, although it makes use of more fuel than the open-loop (but less than the PD
controller), it allows to improve the accuracy which leads to greater stability of the
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formation so requiring less frequent correction maneuvers.

7.4 Closed-Loop Partial reconfiguration

This simulation aims at showing a test case solution to Problem 8 in order to bet-
ter understand the relationships between quantities involved in partial reconfigura-
tion. The algorithm has been applied in conjunction with the optimal controller in
de-centralized strategy in the context of Sequential Convex Programming. Initial
configuration was composed by seven satellites flying in Helix configuration (Table
5.5) which have been partially re-configured in a four satellites Cartwheel-Pendulum
configuration (Table 5.12). First of all, the weights vector ξ has been calculated by
solving NNr = 28 (N = 7 and Nr = 4) optimal control problems. The value of
the objective function to place the i-th spacecraft of old configuration in l-th place
of new one, which are a measure of fuel consumption for the maneuvers, has been
stored as the ξil component. Problem 8 has finally been solved in very short time
with function intlinprog. The solution y of this test case is the following

y = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

its physical meaning is reported in Table 7.10 which indicates, through a satellite
ID, which place of the new configuration has been assigned to the spacecraft of the
old formation.

Old configuration ID New configuration ID
1 1
2 2
3 4
5 3

Table 7.10: y physical meaning

The spacecrafts not present in the table are those which have not been assigned to
any place of the new configuration, so they’ve been propagated in a free-flying mode.

In Figure 7.22 it is possible to visualize the re-configuration trajectories while the
fuel consumption of each spacecraft and the total has been reported in Table 7.11
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Figure 7.22: Trajectories partial re-configuration Optimal controller de-centralized SCP

In Figure 7.23 input control forces are reported. It is easy to see how the control
forces were applied to only three spacecrafts of the previous formation (the leader
does not apply correction forces since it is in the same place in both configurations).
The two satellites that were reconfigured in Cross-Track Pendulum configuration
exhibit similar behaviors in all three directions both in terms of trend and orders
of magnitude. The satellite that has been reconfigured in Interferometric-Cartwheel
configuration presents instead more intense control forces reaching saturation in
the along-track direction. These trends depend very much on the initial and final
configurations and it is possible to reduce the fuel consumption by reducing the
distances involved.
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Figure 7.23: Actuation Forces partial re-configuration Optimal controller de-centralized
SCP
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Spacecraft ID ∆m [kg]
1 0
2 0.03601
3 0.23867
5 0.03916

Total 0.31384

Table 7.11: Fuel consumption partial re-configuration

As stated in Chapter 6, Problem 8 can be also used if an optimal total re-configuration
is required. In fact, it can happen that after many orbits, drifts are so high that
the actual configuration is very different from the initial one. This implies that, in
case we want to correct the current configuration bringing it back to the initial one,
the assignment of the places that involves the re-location of the spacecraft i-th in
its initial position may not be the optimal one, that is, there could be a spacecraft
closer to the position i-th of the initial configuration which would use less fuel to
occupy it. This is true if the spacecrafts are all the same and interchangeable.

Figure 7.24 shows the consequences of not using the optimal reassignment algorithm.
After many orbits the configuration turns out to be very different from the initial
one, if each satellite would be assigned to the place it had in the initial configuration,
many crossings (possibility of collisions) and higher fuel consumption could occur.
The optimal re-configuration algorithm allows to solve this problem by reassigning
the seats in such a way that these aspects are taken into account, obtaining the
trajectories shown in the previous sections.

Figure 7.24: Trajectories drift correction non-optimal places assignation
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Chapter 8

Conclusions and Future Work

8.1 Research Outcome and Discussion

This research tries to give a complete overview on formation flying. The main as-
pects of this kind of systems have been presented starting from the requirements the
propagation model should have in order to properly deal with relative dynamics to
the control of the formation by using two different controllers. Problems related to
the management of such a system, like fuel consumption and computational cost,
gave a definite direction to the discussion that had as main objective to present
the state of the art of methods that try to mitigate such problems. In particular,
the study of formation stability, which led to the synthesis of initial conditions that
guarantee the smallest possible drift, is essential for a long duration missions and
for a higher quality of data taken. Despite the importance of the study of stabil-
ity, it has been seen that it is not sufficient to eliminate the drift of the followers
with respect to the leader, so it is necessary to provide strategies for active control
of the formation. There are an infinite number of possible control techniques. In
this work, the attention has been brought to the Proportional Derivative controller
and the Optimal controller, since each of them has characteristics useful in the case
under consideration. In particular, the PD is simple to implement and does not
need a lot of computing power, so it can be easily implemented in real-time systems,
but unfortunately it does not optimize fuel consumption which is very important for
this kind of applications. It is worth pointing out that a PID (Proportional Integral
Derivative controller) is usually the most used controller in this kind of applications
because of its ability to reduce any static errors in the steady-state phase to zero. In
this work, the simplest PD has been adopted in order to avoid an in-depth synthesis
of the integration constants of the controller, this aspect could be treated in future
developments of this work. This last aspect is instead taken into account by the op-
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timal control whose purpose is to calculate the control inputs in order to minimize
a given objective function. Normal methods of solving a non-linear optimization
problem would take too long to find the solution if computational capabilities are
limited. It is for this reason that, in order to be able to implement optimal compu-
tation in autonomous systems, the problem has been convexified and finally solved
in very limited time through Sequential Convex Programming. While the PD con-
troller is intrinsically a Closed-Loop controller, optimal controller does not normally
take into account possible external measures with which the boundary conditions
of the problem to be solved can be updated. In order to increase its effectiveness,
optimal control was periodically solved using external measures obtained from a
propagation of the full non-linear dynamics with the control actions computed in
the previous iteration. Both methods gave satisfying results in terms of accuracy
even in cases where unmodeled perturbations and in general external disturbances
act on the system. Finally, the problem of total or partial optimal re-configuration
was addressed. This aspect makes this system particularly flexible and suitable for
those missions that aim to take data of different types. It has been noted, as one
could already imagine, that the re-configuration maneuver is usually more expensive
than a simple control maneuver (i.e. Station Keeping maneuver, Collision Avoid-
ance maneuver etc...). However, it must be underlined that this cost depends on
multiple variables, first of all, the starting and final configurations and the dimen-
sions that characterize these configurations (relative positions and velocities). It is
also important to underline that the type of architecture chosen for the mission, is
closely linked to the choice of algorithm for the calculation of formation control that
must also be based on the type of sensors and communication system with which
the formation spacecrafts are equipped.

8.2 Future Works

This thesis has treated the problem in its entirety in order to get an overall idea of
the different steps that lead to the design of a system of the general. It is evident
how several aspects can be further investigated. Other types of control could be
treated in such a way as to be able to make several comparisons with the methods
used in this work. This study could be done by varying the number and type of
sensors on board so that a more complete picture can be obtained that considers the
limitations related to physical reality, such as the visibility between satellites and
the rate of information exchange between satellites.
It would be interesting to see how the system behaves when one has sensors that
derive relative quantities with respect to the leader and other spacecraft, in partic-
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ular how to mitigate sensor-related errors using filtering systems such as Kalman’s,
and especially how these estimates vary as position and number of sensors vary.

An important analysis would include the evaluation of the system performance if
some of the system quantities are considered as random variables. For example,
to understand what the error of the system would be if an error was made in the
estimation of the mass of each satellite. Clearly, the Monte Carlo method would
allow such an analysis to be carried out, but would entail a great computational
cost. Other methodologies that allow an analysis of this problem would include the
use of mapping through Taylor series approximations up to an arbitrary order by
exploiting the results of Differential Algebra [41]. Such a methodology would also
allow the optimal trajectory to be calculated in very small times if an error in the
initial or final state, or any other magnitude that is part of the optimization, starts
from the nominal optimal trajectory.

A very interesting study would involve Machine Learning algorithms for estimating
relative position and velocity if satellites are equipped with dedicated cameras. This
very recent study would be part of the more general branch called Video-Based Au-
tonomous Navigation on which nowadays many researchers are developing more and
more performing methods. The most critical aspect of this study would be to find
a large dataset with which to train the Machine Learning model. However, the size
and computational resources of the individual spacecrafts should be able to perform
the required calculations, in addition it would be necessary to perform an extensive
study of model interpretability so that the probability of error in the estimate is
minimized.
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Appendix A

Model Validation

This appendix is intended to give an idea of the level of accuracy of the dynamic
propagation model that was used for all simulations, by comparing it with NASA
General Mission Analysis Tool (GMAT). In particular, the effects of the perturba-
tions will be seen individually in order to verify their absolute goodness, in fact,
in the case in which we put in a single graph the effect of J2 and solar pressure,
the second would not be visible since its effect is of some order of magnitude less
than the first. In any case, only the effects on the semi-major axis, eccentricity and
inclination are shown to avoid an excessive number of images. The only remark
involves the Drag perturbation. In fact, the GMAT tool does not present the pos-
sibility to use the Harris-Priester density model, so the comparison has been made
with the Jacchia model. It is possible to see that although the density models are
different, the difference between the two models remains very small. In Figures.
A.1, A.2,A.3,A.4,A.5, the comparisons of the following cases are given:

• Only Gravity Potential (up to grade 4 order 4).

• Only Drag

• Only Solar Pressure

• Only Third-body perturbation (Sun and Moon)

The initial conditions of the satellite are those reported in Table. 5.1.
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Figure A.1: GMAT comparison, Gravtiy Potential (up to grade 4 order 4)
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Figure A.2: GMAT comparison, Drag (HarrisP riestervsJacchia)
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Figure A.3: GMAT comparison, Solar Pressure
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Figure A.4: GMAT comparison, Third-body (Moon)
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Figure A.5: GMAT comparison, Third-body (Sun)
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Appendix B

Relative Motion under J2
perturbation

Satellite motion around an oblate Earth has analytical solution. Considering a
spacecraft subject only to J2 perturbation, its motion can be described through the
following equations [14]

ṙ = vx

v̇x = − µ
r2 + h2

r3 − kJ2

r4 (1− 3s2
i s

2
θ)

ḣ = −kJ2s
2
i s2θ
r3

θ̇ = h
r2 +

2kJ2c
2
i s

2
θ

hr3

i̇ = −kJ2s2is2θ
2hr3

Ω̇ = −2kJ2cis
2
θ

hr3

(B.1)

where sx = sinx, cx = cosx, kJ2 = 3J2µR2
e

2
, Re is the radius of the Earth, h is the

angular momentum of the spacecraft, r is its distance from the center of the Earth,
vx is the radial velocity, i the inclination of the orbit, θ the argument of latitude of
the orbit and Ω the RAAN. Equations. B.1 have been used only to propagate the
orbit of the LVLH frame. The main reason is that, for this simple case, analytical
solutions for angular velocity and acceleration of the frame subject to J2 exist, if we
write the LVLH components of these quantities the following equations hold
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ωx = −kJ2s2isθ
hr3

ωy = 0

ωz = h
r2

αx = ω̇x = −kJ2s2icθ
r5 + 3vxkJ2s2isθ

r4h
− 8k2

J2s
3
i cis

2
θcθ

r6h2

ω̇y = 0

αz = ω̇z = −2hvx
r3 − kJ2s

2
i s2θ
r5

(B.2)

Equations. B.2 prove necessary to solve Equations. 4.15 describing relative motion
wrt the LVLH frame.
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Appendix C

Cetralized Optimal Problem

In the centralized strategy, the translational problem is very similar to the de-
centralized case. The difference is that, in this case the optimization variable
comprises all the spacecrafts of the formation. As done in Chapter. 6, if we call
Zi = [(x0

i )
T , · · · (xKi )T , (u0

i )
T , · · · , (uK−1

i )T ]T the i-th optimization variable referring
to the i-th spacecrafts, the centralized problem can be reformulated using the new
optimization variable defined as Z = [ZT

1 , · · · ,ZT
N ]T , being N the number of space-

crafts. It is clear that this approach greatly increases the number of elements to be
optimized, but the speed of convex programming ensures that this does not result
in an excessive increase in the time required for resolution. The centralized problem
just reduces to a concatenation of all constraints of each spacecraft but with a dif-
ferent cost-function. In fact, the main goal of this approach is that of optimizing the
overall consumption as a formation, this can be done by using the following cost-
function min[u1,··· ,uN ]

∑N
i=1

∑K−1
k=0 ‖uki ‖2. The optimization problem is summarized

as follows
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Problem Translational case, Centralized Convex Optimal Control

min[u1,··· ,uN ]

∑N
i=1

∑K−1
k=0 ‖uki ‖2

subject to

ẋk+1
i = Aki x

k
i +Bk

i u
k
i + cki k = 0, · · · , K − 1 i = 1, · · · , N∥∥uki ∥∥2

≤ Umax k = 0, · · · , K − 1 i = 1, · · · , N(
xki − xkj

)T
CTC

(
xki − xkj

)
k = 0, · · · , K i = 1, · · · , N

≥ Rcol

∥∥C (xki − xkj
)∥∥

2
j = 1, . . . , N j 6= i

x0
i = xi,0 i = 1, · · · , N

xKi = xi,f i = 1, · · · , N
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Test case: Optimal control
high-number of satellites

For completeness, in this section a case of drift correction maneuver through Optimal
control de-centralized SCP strategy of 80 satellites without unmodeled perturbation
is discussed. The simulation involves a Helix configuration in the same manner as
presented in Chapter 7. In this case, the final parameters of the helix are reported
in Table.D.2 which shows how the quantities a · δi and a · δe have been increased in
order to take into account the high number of satellites that would otherwise be too
close. The parameters used for Optimal control algorithm are summarized in Table.
D.1. K has been reduced in order to respect RAM limit imposed by MATLAB and
to improve computational speed. Figure. D.1 shows the trajectories followed by
the spacecrafts while control forces are reported in Figure. D.4. For completeness,
also the convergence in position and velocities are reported in Figures. D.2 and D.3.
Fuel consumption is instead shown in Table.D.3. The Optimal control with SCP
allows to obtain results even in cases where the formation is composed of a high
number of satellites. It should be noted, however, that in the centralized case , as
the number of satellites increases, more computing power is required, in such cases a
de-centralized architecture should be preferred despite the higher fuel consumption.

Final time tf 0.05T0 s
Number of points K 20
Stopping criterion ε 10−2

Minimum distance Rcol 5 m
Initial guess trajectories xki free-flying leader trajectory ∀i, k

Initial guess control inputs uki 0 ∀i, k

Table D.1: SCP simulation paramters
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a · δi 200 m
a · δe 800 m
α1 9◦

N 80

Table D.2: Helix final parameters for drift correction 80 satellites simulation.

Figure D.1: Trajectories 80 satellites Optimal controller de-centralized SCP

Figure D.2: Position errors history drift correction 80 satellites Optimal controller de-
centralized SCP
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Figure D.3: Velocity errors history drift correction 80 satellites Optimal controller de-
centralized SCP
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Figure D.4: Actuation Forces drift correction 80 satellites Optimal controller de-
centralized SCP
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Case ∆mtot [kg] ∆mav [kg] ∆m%av

OC dec SCP 5.6743 0.07092875 0.35464375

Table D.3: Fuel consumption summary drift corrections 80 satellites simulations
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