

Master of Science in Energy and Nuclear Engineering

Master Thesis

"Experimental Setup and Tests to Extract the Parameters of an Equivalent Circuit for Two High Efficiencies Photovoltaic Modules"

Supervisors:

Prof. Filippo Spertino

Muhammad Aoun Ejaz Qureshi

Candidate:

Prof. Munoz Diez Jose Vicente

Ing. Gabriele Malgaroli

October 2021

Academic Year 2020/2021

Acknowledgement

On this page, I want to thank everyone who supported me during my university experience. A cordial thanks go to **Professor Filippo Spertino**, my supervisor at the **Politecnico of Turin**, who proposed this thesis work and guided me in its realization. A special thanks is a must for **Ing. Gabriele Malgaroli**, who followed me and helped me with outstanding commitment every time and in all possible ways, he can.

Secondly, I want to thank my external **Professor José Vicente Muñoz Díez** for his support during the development of this master's thesis at the Higher Polytechnic School of the University from Jaén. His utmost commitment and support during and after the mobility period resulted in this thesis production.

A special thanks go to my parents, who have supported me in these years of university. Thanks to them, who braced me morally and economically, I was able to complete my university career. I am sure I will give them great satisfaction by graduating. Other thanks go to my friend **Hafsa Siddiqi** who have been close to me over the years, and to me, she helped not only in university times but in the entire period of thesis work.

Finally, I want to thank Spain and its citizens for warmly welcoming me to this new country, especially the UJA community.

Aoun Qureshi

Contents

Ir	trodu	uction .		X		
1	Photovoltaic Generation System1					
	1.1	Introdu	uction to Solar Energy	1		
	1.2	Monoc	crystalline Silicon Technology	1		
	1.3	Polycrystalline Silicon Technology				
	1.4	Solar Cell – Operating Principles				
	1.5	5 Photovoltaic Effect and Energy Gap				
	1.6	1.6 Standard Test Conditions (STC)				
	1.7 Nominal Operating Cell Temperature (NOCT)			10		
	1.8	Single	Diode Model	10		
2	Op	ptimization Algorithm15				
3	Da	Data Acquisition System				
3.1 Principle of I-V curve meas			ble of I-V curve measurement	17		
		3.1.1	Capacitive Load			
		3.1.2	Maximum Power Point Tracker	20		
		3.1.3	Variable Resistance	21		
		3.1.4	Electronic Load	21		
	3.2	Measu	ring Setup at UJA	22		
		3.2.1	Automatic Tracker System	23		
		3.2.2	PVPM – Automated I-V Tracer			

		3.2.3	Lab VIEW Program	27
		3.2.4	Measurement Sensors	
	3.3	Evaluat	ion of Measurement Uncertainty	31
4	Gr	aphical (User Interface	
	4.1	Step 1:	Data Pre-Processing	
		4.1.1	Import and Export Settings	34
		4.1.2	Implementation of Data Pre-Processing for UJA	
	4.2	Step 2:	Parameters Extraction	40
	4.3	Step 3:	Parameters Correlations	43
		4.3.1	Equations related with Parameters Correlations	43
		4.3.2	Normalized Root Mean Square Error (NRMSE)	46
	4.4	Step 4:	Power Validation	46
5	Ex	perimen	tal Campaign	49
	5.1	Profile	of Sharp Module	49
	5.2	Profile	of Luxor Module	52
6	PV	Module	: Sharp Results	56
	6.1	Parame	ters Extraction	56
	6.2	Parame	ters Correlation	57
	6.3	Power V	Validation	64
7	PV	PV Module: Luxor Results		
	7.1	Parame	ters Extraction	66
	7.2	Parame	ters Correlation	67
	7.3	Power V	Validation	74
8	Co	nclusion	S	76

9 Referen	ces78
10 Annexes	
10.1 Ann	ex A: Technical datasheet of measurement equipment82
10.1	A.1 Technical datasheet Agilent 34411A Multimeters
10.1	2 A.2 Technical datasheet Agilent 34970A Datalogger
10.1 Purpose	3 A.3 Technical datasheet Agilent 34901A 20-Channel General Multiplexer
10.1	 A.5 Technical datasheet Kipp and Zonnen CMP11 Pyranometer 89
10.1	 A.6 Technical datasheet Kipp and Zonnen CHP1 Pyrheliometer 90
10.1	.6 A.7 Technical datasheet Eko MS-700 Spectroradiometer92
10.1 ICU-3J2	1
10.1	A.9 Technical datasheet Young 05305VM anemometer95
10.1 and Tem	9 A.10 Technical datasheet Young 41382VC Relative Humidity perature Probe
10.2 Ann	ex B
B.1 Datasl	neet of Luxor LX-100M 125-36 module98
B.2 Datasl	neet of Sharp NU-E245J5 module100

List of Figures

Figure 1-1: Monocrystalline Module2
Figure 1-2: Polycrystalline Module3
Figure 1-3: Best Research Efficiencies4
Figure 1-4: Solar Cell I-V Curve4
Figure 1-5: Dependence of the I-V curve on Temperature5
Figure 1-6: Dependence of the I-V curve on irradiance
Figure 1-7: Energy Gap Phenomena7
Figure 1-8: Schematic representation of p-n junction connected with load9
Figure 1-9: Equivalent Circuit with 5 Parameters11
Figure 1-10: I-V curve dependence on series and parallel resistance
Figure 3-1: Main characteristics of I-V curve of measuring system17
Figure 3-2: Charging transient of a capacitor connected with a PV module19
Figure 3-3: Influence of irradiance on maximum power point20
Figure 3-4: Scheme of variable resistance connected with PV module21
Figure 3-5: Electronic load Scheme22
Figure 3-6: University of Jaen22
Figure 3-7: Schematic of UJA measurement system23
Figure 3-8: Picture of tracker system (on the left the external part, on the right the internal equipment)

Figure 3-9: View of the inside of the capacitive load25
Figure 3-10: Electrical scheme of the tracker system
Figure 3-11: (Left) Fixed system connected with (Right) PVPM and data logger controlled by LabVIEW program
Figure 3-12: LabVIEW graphical user interface of tracker system
Figure 3-13: LabVIEW measurement control software flowchart29
Figure 3-14: Pt-100 probe used to measure module temperature
Figure 3-15: Picture of Kipp and Zonnen CMP11 pyranometer31
Figure 4-1: Picture of the graphical user interface tab for the pre-processing task
Figure 4-2: Picture of the graphical user interface for the pre-processing task- import and export settings
Figure 4-3: Picture of the window for selecting the saving properties
Figure 4-4: Example of ranges division
Figure 4-5: Example of module datasheet in Excel
Figure 4-6: Picture of the graphical user interface for the pre-processing task- UJA (automatic system)
Figure 4-7: Picture of the irradiance and temperature manual selection39
Figure 4-8: Picture of the graphical user interface tab for the parameter's extraction
Figure 5-1: Density distribution of the irradiance and temperature conditions for Sharp module
Figure 5-2: Irradiance and temperature of the I-V curves for parameters extraction

Figure 5-3: Density distribution of the irradiance and temperature conditions for Luxor module
Figure 5-4: Irradiance and temperature of the I-V curves for parameters extraction
Figure 6-1: <i>I_{ph}</i> tendency with irradiance (LM algorithm)
Figure 6-2: I_0 tendency with temperature
Figure 6-3: n tendency with irradiance and temperature60
Figure 6-4: <i>R_s</i> tendency with irradiance and temperature
Figure 6-5: R _{sh} tendency with irradiance63
Figure 6-6: <i>I-V</i> curves experimentally measured (dots) and trend estimated with the correlation
Figure 6-7: Comparison of power estimation for one day. LM and OM are overlapped
Figure 7-1: <i>I_{ph}</i> tendency with irradiance
Figure 7-2: I_0 tendency with temperature
Figure 7-3: n tendency with irradiance and temperature70
Figure 7-4: <i>R_s</i> tendency with irradiance and temperature72
Figure 7-5: <i>I-V</i> curves experimentally measured (dots) and trend estimated with the correlation73
Figure 7-6: Comparison of power estimation for one day. LM and OM are overlapped

List of Tables

Table 1-1: Energy gap of the major material used for PV cells
Table 3-1: Worst case Uncertainties. 32
Table 5-1: Main specification of Sharp module
Table 5-2: Temperature coefficients of the Sharp module
Table 5-3: Main specifications of Luxor module
Table 5-4: Temperature coefficient of the Luxor module
Table 6-1: Coefficients of the correlations with LM method for Sharp module.
Table 7-1: Coefficients of the correlations with LM method for Sharp module.

Glossary of Acronyms

Acronyms	Meanings	
CIEMAT	"Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas" in Madrid	
AM	Air Mass	
ADC	Analog-to-Digital Converter	
FF	Fill Factor	
GUI	Graphical User Interface	
IDEA	Grupo de Investigación y Desarrollo en Energía Solar y Automática	
LM	Levenberg-Marquardt algorithm	
MPP	Maximum Power Point	
MPPT	Maximum Power Point Tracker	
NOCT	Nominal Operating Cell Temperature	
	$(G_{NOCT} = 800 Wm^{-2}, T_{c,NOCT} = 20 ^{\circ}C, WS_{NOCT} = 1 ms^{-1})$	
NRMSE	Normalized Root Mean Square Error	
OC	Open Circuit	
PV	PhotoVoltaic	

Acronyms	Meaning
SC	Short Circuit
RTD	Resistance Temperature Detector
5P	Single diode 5 parameters model
STC	Standard Test Condition
	$(G_{STC} = 1000 Wm^{-2}, T_{c,STC} = 25 ^{\circ}C, \text{AM 1,5})$
TRC	Temperature Coefficient of Resistance
Pt100	Temperature sensor ("Pt" platinum, "100" resistance in Ω at 0 °C)
UJA	Universidad de Jaén
I-V	Voltage and current characteristics of photovoltaic generator
P-V	Voltage and power characteristics of photovoltaic generator
PoliTO	Politecnico Di Torino

Glossary of Symbols

Symbols	Meaning	Units
X	A-dimensional empirical coefficient of the diode saturation current	-
Ta	Ambient Air Temperature	°C
APE	Average Photon Energy	eV
С	Capacitor Capacitance	F
t_c	Capacitor charging time	S
Ι	Current	А
Imodel	Current (estimated from model)	А
Iexp	Current (experiment value)	А
I_j	Current in the diode (5P model)	А
Ish	Current in the parallel resistance (5P model)	А
Impp	Current point in MPP	А
I0,STC	Diode saturation current at STC	А
G	Irradiance	$W \cdot m^{-2}$

Symbols	Meaning	Units
Emodel	Energy (estimated from model)	J
E_{exp}	Energy (experimental value)	J
E_g	Energy gap	J
$E_{g,STC}$	Energy gap at STC	J
E_{ph}	Energy of the photon	J
Xcor	Estimation from correlation parameter <i>X</i> value	-
Xexp	Experimental parameter X value	-
ν	Frequency	Hz
b	Ideality factor correlation effect in irradiance	$W^{-1} \cdot m^2$
С	Ideality factor correlation effect in temperature	C-1
а	Ideality factor correlation intercept	-
п	Ideality factor of the diode (5P model)	-
POsterwald	Power at MPP by the Osterwald method	$W \cdot m^{-2}$

Table of Constants

Symbols	Significance	Value	Units
Ta,NOCT	Air temperature in NOCT	25	°C
kb	Boltzmann constant	1,38.10-23	$J \cdot K^{-1}$
qe	Electron charge	1,602.10-19	С
GNOCT	Module (or cell) irradiance in NOCT	800	Wm ⁻²
Gstc	Module (or cell) irradiance in STC	1000	Wm ⁻²
T _{c,stc}	Module (or cell) temperature in STC	25	°C
h	Plank constant	6,626.10-34	$J \cdot s$
α Pt100	Pt100 temperature coefficient	0.00385 H	$\Omega \cdot \Omega^{-1}$
с	Speed of light in vacuum	2,998 .10 ⁸	${ m m}\cdot{ m s}^{-1}$

Introduction

The photovoltaic generator's operating principle can be described using an equivalent circuit with variable parameters, which can be assumed to be constant. Moreover, the knowledge of their dependence concerning irradiance and cell temperature permits the prediction of the generated power of photovoltaic arrays in any environmental condition. This specific information allows us to trace the current-voltage (I-V) characteristics curve of the photovoltaic generators. This knowledge may be used in future works to evaluate the state of health of photovoltaic arrays by investigating the shape of the I-V curve and the values of circuit parameters predicted in any environmental condition.

This thesis focuses on the experimental validation of an innovative technique to predict the parameters of the equivalent circuit in any weather condition. This work is a part of a joint activity between Politecnico di Torino and the Universidad de Jaén (Spain): my main task of this thesis has been developed in Universidad de Jaén.

In the first part of the thesis, an ad hoc Graphical User interface (GUI) of MATLAB was used to analyse the PV module; the GUI tools allows to perform four operations: the pre-processing of the dataset; the extraction of the circuit parameters; the identification of equations, aiming at describing the dependence of each parameter concerning irradiance and cell temperature; and the comparison between experimental energy and the predicted value with several methods. Experimental data may be affected by measurements errors, or the photovoltaic generators may work in mismatch conditions due to shadowing or other issues. However, the present analysis requires experimental measurements of photovoltaic generators correctly operating: thus, the pre-processing step removes complex measures integrating ad hoc filters. Firstly, empirical data with measurement errors are filtered by comparing the irradiance and the temperature detected by the sensors.

In case of high deviations among the measured quantities, the empirical data are excluded.

The parameters extraction step is the tool's core: in this step, the parameters are numerically determined starting from the filtered measurements. The third step of the analysis regards the identification of the dependence of circuit parameters for cell temperature and irradiance. In particular, the most common equations in literature are used, and nonlinear optimisation of specific coefficients is performed. Finally, the generated energy during the experimental campaign is compared to the predicted value by several methods. The GUI allows estimating expected power using theoretical models and the optimised equations. Using the knowledge of the parameters, the I-V curve is traced at each time step, and the corresponding maximum power is identified.

In the later step in this thesis, the GUI is applied to two monocrystalline silicon photovoltaic modules with high efficiencies, such as the Sharp NU series with a rated power of 245W and Luxor with a rated capacity of 100W. The experimental campaign under analysis lasted six months. During this experimental campaign, two different measuring systems were used to analyse the modules: one was Automated Tracker System, while another one was a manual system using a PVPM (I-V) electronic tracer device. Both modules were measured during clear sunny days at the University of Jaén (Spain), from low to high global irradiance, to record the behaviour of the modules at different cell temperatures. Later, using GUI measured data processed through 4 steps to reach the final stage.

Moreover, the single diode model, the most common circuit model in literature, is used. Furthermore, regarding the numerical algorithm, the Levenberg Marquardt was adopted. Finally, the energy prediction results are compared between experimental data, the optimised equations and the Osterwald model (the most common theoretical model in literature to estimate photovoltaic power).

Chapter 1

1 Photovoltaic Generation System

1.1 Introduction to Solar Energy

Sunlight is a form of electromagnetic radiation consisting of a range of energy bands, also called a solar spectrum. In this sense, the solar spectrum can be divided into different wavelengths that are characterized by different energies. The essential components of the spectrum consist of ultraviolet radiation (UV), visible radiation and infrared radiation (IR). Most of the UV radiation is filtered out by the atmosphere. Therefore, it never reaches the surface like the Earth's surface energy is mainly made of visible radiation (400 to 700 nm).

The electromagnetic spectrum describes light as a wave with a particular wavelength. However, for some specific applications, such as photovoltaic technologies, the light behaviour can be defined according to the Plank definition. As if it was made of 'particles' of energy with no mass that travel at the speed of light. These particles are called photons. Each photon is characterized by either a wavelength or a power, which are inversely proportional with each other.

1.2 Monocrystalline Silicon Technology

The monocrystalline silicon made cells are pure and has a single continuous crystal lattice structure. The main advantage is their high efficiency, which is around 15% while disadvantage is complex manufacturing process which result in higher cost than other technologies. The cells are square shaped with round corner and their typical colours are dark blue and black, as in the figure below.

Figure 1-1: Monocrystalline Module

1.3 Polycrystalline Silicon Technology

The polycrystalline silicon is manufactured from cast square ingots, produced by cooling and solidifying molten silicon. The solidification of material results in cells containing many crystals, making the surface less perfect; due to this, the polycrystalline cell absorbs less solar energy, producing less electricity and thus less efficiency than monocrystalline. In addition, due to lower efficiency, cells are a bit larger, resulting in a large PV module. However, since they are more manageable, so they are cheaper to produce.

Figure 1-2: Polycrystalline Module.

1.4 Solar Cell – Operating Principles

Solar cell, also called photovoltaic cell, any device that directly converts the energy of light into electrical energy through the photovoltaic effect. This is the fundamental unit of photovoltaic module, which are made up of semiconductor material: Photovoltaic (PV) conversion takes place inside them. The Figure below shown the NREL chart showing the highest confirmed conversion efficiencies for research cells for a range of photovoltaic technologies, from 1976 to 2021.

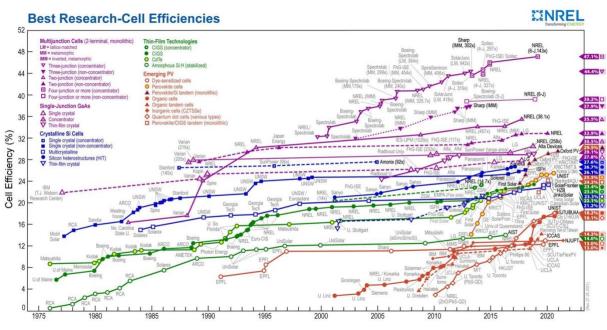
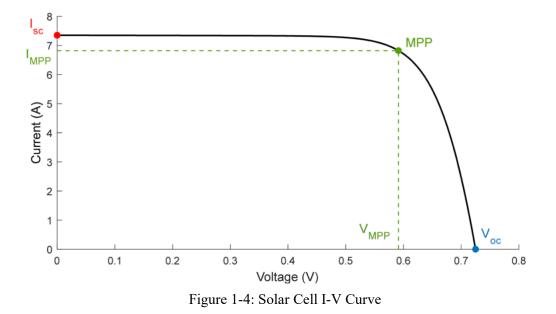



Figure 1-3: Best Research Efficiencies.

A solar cell has an open circuit voltage of 0,6 V and a short circuit current which depends on the cell surface. So, a single cell has a small, rated output power around 3 or 4 Watts. The figure shown below explains the electrical behaviour of a solar cell with the aid of I-V curve.

These characteristic points can be identified:

- *I*_{sc} is the short circuit current, the maximum current at zero voltage (A)
- *V_{oc}* is the open circuit voltage (V)
- *P_{mpp}* is the point of maximum power produced by the cell (W). This is the ideal operating power, while the corresponding values of current and voltage are called maximum power current *I_{mpp}* and maximum power voltage *V_{mpp}*, respectively.

The basic one of the properties of I-V curves connected with V_{oc} and I_{sc} is tension which increases logarithmically with irradiation: V_{oc} decreases as the temperature increase, so these dependencies are translated into the following simplified formula, though dependence on irradiance does not appear.

$$V_{oc}(Tc) = V_{oc,STC} \cdot (1 + \beta_{Voc} \cdot (T_c - T_{c,STC}))$$

Where:

- *V*_{oc,STC} is the open circuit voltage in STC conditions (V)
- β_{Voc} is the open circuit voltage temperature coefficient (°C⁻¹)
- T_c is the cell temperature (°C)
- $T_{c,STC}$ is the cell temperature in STC (°C)

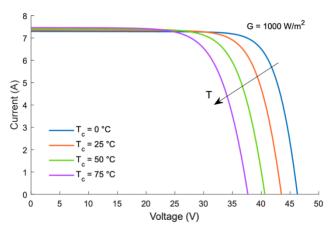


Figure 1-5: Dependence of the I-V curve on Temperature

Moreover, the current is directly proportional to the radiation and I_{sc} increases somewhat as the temperature rises.

$$I_{sc}(G,T_c) = I_{sc,STC} \cdot \frac{G}{G_{STC}} \cdot \left(1 + \alpha_{I_{sc}} \cdot \left(T_c - T_{c,STC}\right)\right)$$

Where:

- *I_{sc,STC}* is the short circuit current in STC conditions (A)
- *G* is the incident irradiance $(W \cdot m^{-2})$
- G_{STC} is the incident irradiance in STC (W · m $^{-2}$)
- α_{Isc} is the short circuit current temperature coefficient (°C⁻¹)

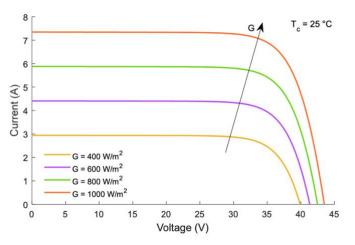


Figure 1-6: Dependence of the I-V curve on irradiance

1.5 Photovoltaic Effect and Energy Gap

Photovoltaic (PV) effect is a process by which PV cell converts the absorbed sunlight energy into electricity. PV system operates with zero carbon-dioxide emissions which has benefits for environmental safety. The photon energy absorbed by nanomaterials is transferred to the electrons in the atoms.

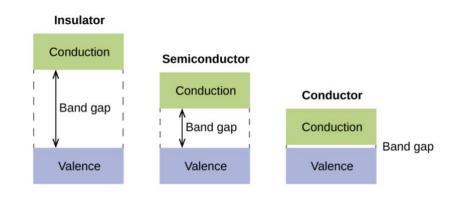


Figure 1-7: Energy Gap Phenomena

The energy band gap principle explains the phenomena of a solar cell. It represents the energy jump required by the electron to move from the valence band to the conduction band. All materials are catalogued according to their energy gap, as reported in Table below. In the case of conductors, this energy gap is low and very high for insulators. On the other hand, the in-between situation referrers to semiconductors. Therefore, when an electron receives sufficient energy, it can switch from the valence band to the conduction band.

Material	Energy gap (<i>eV</i>) @ 300 K
Crystalline silicon (c-Si)	1.12
Amorphous silicon (a-Si)	1.75
Germanium (Ge)	0.67
Gallium Arenside (GaAs)	1.42

Table 1-1: Energy gap of the major material used for PV cells

Iridium Phosphide (InP)	1.34
Copper Indium Diselenide (CuInSe ₂)	1.05
Cadmium Telluride (CdTe)	1,45
Cadmium Sulfide (CdS)	2,40

The movement of electron from valence band to the conduction band because of the energy absorption of a photon of light and this could only happen if photon has energy greater than or equal to the energy gap E_g . The equation that characterizes the energy of the photon can be expressed this relationship in analytical terms:

$$E_{ph} = h * \nu = h * \frac{c}{\lambda}$$

Where:

- *E_{ph}* is the light photon energy (J) or (eV)
- *h* is the Plank's constant i.e. 6.626e-34 (j*s)
- *v* is the light frequency (Hz)
- *c* is the speed of light in the vacuum 2.9979e (m/s)
- λ is the wavelength of the light (m)
- E_g is the energy gap

 $E_{ph} \ge E_g$

Conventionally the solar cell work like the electric field is obtained by union of two regions of a semiconductor crystal. So, in case of silicon one of the regions is dosed with phosphorous which makes this region more concentration of electrons than holes hence it is called n-type region. Further, other region is dosed with boron, which makes the region with more concentration holes, and it is called as p-type region. Combination of these two regions are knows as p-n junction. As much is the difference in concentration of electron and holes, it creates an electric filed orientated with p-type region.

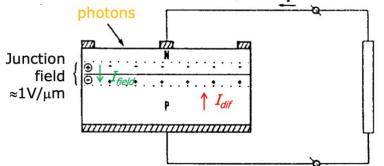


Figure 1-8: Schematic representation of p-n junction connected with load.

This

field

separates the electrons and the holes when the cell receives the light. Therefore, the photovoltaic current is generated, and it is mainly proportional to the irradiance.

1.6 Standard Test Conditions (STC)

The standard test conditions (STC) are defined in the IEC/EN60904 to ensure that the modules are tested under the same conditions. The legislation requires that, during tests for the characterization of electrical paraments and performance of the module, the STC conditions are met. The STC conditions are following:

- Irradiance of 1000 W ·m-2
- Cell Temperature of 25 °C
- Air Mass AM 1,5

1.7 Nominal Operating Cell Temperature (NOCT)

The Nominal Operating Cell Temperature (NOCT) is the equilibrium temperature of solar cells inside a module exposed to the sun, in standardized conditions (CEI EN 60904-3):

- Irradiance of 800 W/m2 (AM = 1.5)
- Ambident Temperature of 20°C
- Wind speed of 1 m/s

$$T_c = T_a + \frac{NOCT - T_{a,NOCT}}{G_{NOCT}} \cdot G$$

Where:

- T_c is the cell temperature (°C)
- T_a is the air temperature (°C)
- $T_{a,NOCT}$ is the air temperature at NOCT (°*C*)
- G is the irradiance $(W \cdot m^{-2})$
- *GNOCT* is the irradiance at NOCT

1.8 Single Diode Model

The photovoltaic cells behavior can be understood with electrical circuit which consist of current generator, that represents radiation and of an antiparallel diode. The ideal current generator produces a current proportional to the irradiance received by cell. The diode (D) represents the straightening effect of the electric field generated by the p-n junction. In absentia of radiation, the equivalent circuit is simply a diode, in-addition, two resistances are inserted tot his basic circuit:

• *R_s* is the series resistance is sole responsible for the strength of the volume of the material, interconnections and the resistance between metal contacts and semiconductors.

• *R_{sh}* is the parallel resistance due to the non-ideality of the p-n junction and the impurities close to the junction.

The obtained circuit is the 5-parameters model, schematic in the figure below.

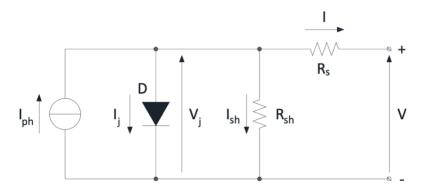


Figure 1-9: Equivalent Circuit with 5 Parameters.

Moving on there is a parameter associated with this needs to be introduced. The fill factor, FF, is a measure of the quality of the p-n junction and the cell resistances.

$$FF = \frac{V_{MPP} \cdot I_{MPP}}{V_{oc} \cdot I_{sc}}$$

Where:

- The numerator defines the point of maximum power (W)
- *V_{MPP}* is the maximum power point voltage (V)
- *I*_{MPP} is the MPP current (A)
- *V_{oc}* is the open circuit voltage (V)
- *Isc* is the short circuit current (A)

The fill factor (FF) improves for high values of R_{sh} and for low values of R_s . Interestingly, the parallel resistance is related to the slope of the *I-V* curve around *Isc*. Moreover, the series resistance is related to the *Voc*. So, to get the better quality of the cell, the fill factor should be as higher as possible. The figure below shows the schematic the influence of R_{sh} and R_s on *I-V* curve.

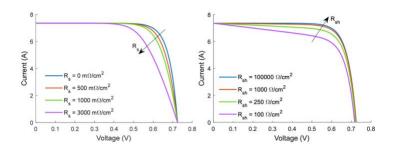


Figure 1-10: I-V curve dependence on series and parallel resistance.

The above shown 5-paramter circuit in the figure, can be solved with respect to current and with respect to voltage.

The current balance equation defines the relation:

Where:

- $I = I_{ph} I_j I_{sh}$
- *I* is the cell output current (A)
- *I_{ph}* is the photogenerated current (A)
- *I_j* is the current in the diode (A)
- $I_{sh} = V_j/R_{sh}$ is the current in the parallel resistance (A)

Irradiance controlled current source is represented in equation:

$$I_{ph} = q_e \cdot N_{ph} \cdot S$$

Where:

- $q_e = 1.602 \cdot 10^{-19} C$ is the charge of the electron
- N_{ph} is the number of incident photons in $(m^{-2} \cdot s^{-1})$
- *S* is the surface of the cell (m^2)

The equation is of junction current with single exponential:

$$I_j = I_o \cdot \left(e^{\frac{q_e \cdot V_j}{n \cdot k_B \cdot T_c}} - 1 \right)$$

Where:

- I_0 is the reverse saturation current of the diode (A)
- Vj is the voltage on the diode (V)
- N is the ideality factor of the diode
- $k_B = 1.38 \cdot 10^{-23} \text{ J} \cdot \text{K}^{-1}$ is the Boltzmann constant
- *Tc* is the p-n junction temperature (K)

By combining all the previous equations, I can be expressed:

$$I = I_{ph} - I_o \cdot \left(e^{\frac{q_e \cdot V_j}{n \cdot k_B \cdot T}} - 1 \right) - \frac{V_j}{R_{sh}}$$

Moving on tension (voltage) can be expressed with the following formulas.

The voltage balance represented here:

$$V = V_i - R_s \cdot I$$

Where:

• *V* is the cell output voltage (V)

By obtaining V_j from () and replacing in (), voltage becomes:

$$V_{oc} = \frac{n \cdot k_B \cdot T}{q_e} \cdot ln \left(\frac{I_{ph} - I_{sh} + I_o}{I_o} \right)$$

Voltage and current equations can be combined substituting () in (), hence get I

$$I = I_{ph} - I_o \cdot \left(e^{\frac{q_e \cdot (V + R_s \cdot I)}{n \cdot k_B \cdot T_c}} - 1 \right) - \frac{V + R_s \cdot I}{R_{sh}}$$

The short circuit current is obtained when V = 0

$$I_{sc} = I_{ph} - I_o \cdot \left(e^{\frac{q_e \cdot R_s \cdot I}{n \cdot k_B \cdot T_c}} - 1 \right) - \frac{R_s \cdot I}{R_{sh}}$$

Chapter 2

2 Optimization Algorithm

This chapter discusses the generic concept of optimization, which is an essential part of parameters extraction. The aim of the optimization is by using an approximation to find or reach the optimal value of a particular function.

Levenberg– Marquardt Algorithm

LM developed the Levenberg-Marquardt algorithm in the early 1960s to solve the nonlinear leastsquare problems. Most minor squares problems arise in the context of fitting a parametrized mathematical model to a set of data points by minimizing an objective expressed as the sum of the squares of the errors between the model function and a bunch of data points. It has become a standard technique for nonlinear least-squares problems, widely adopted in a broad spectrum of disciplines. Thus, LM can be thought of as a combination of steepest descent and the Gauss-Newton method.

This method evolves as a correlation between The Gradient Descent Method and The Gauss-Newton method. The former generates a variation of the parameters in the opposite direction concerning the gradient to minimize the objective function. The latter derives, in turn, from Newton's method, which develops an algorithm to meet approximations of the roots of an objective function and, therefore, the minimum of a process. For nonlinear least square estimation problems, the Newton approach may modify to originate a simple iterative algorithm. Unlike Newton's method, the Gauss-Newton algorithm does not need the second derivatives. The principle is based on a first-order Taylor series approximation of the nonlinear regression function, replaced in the nonlinear model. Therefore, a linear approximation that minimizes a sum of squared function values is obtained.

When the current solution is far from the correct one, the algorithm behaves like a steepest descent method: slow but guaranteed to converge. When the current solution is close to the correct

solution, it becomes a Gauss-Newton method. Therefore, the characteristic equation of the Levenberg Marquardt method is:

 $[J(p)^{T}J(p) + \lambda I]\delta = J(p)^{T} \cdot (y - \hat{y}(p))$

Where:

- *J* is the Jacobian matrix
- *p* is the vector of *n* parameters (variable to be optimized for the algorithm)
- λ damping parameter
- *I* is the identity matrix
- δ is the length of the calculated step
- *y* independent variable
- $\hat{y}(p)$ model curve

The λ factor is a control parameter as it determines the behavior of the algorithm. A low value of λ corresponds to a behavior close to the Gauss – Newton method, whereas a high value corresponds to moving the solution in a direction roughly opposite to the gradient, consequently, with a behavior more like the method of descending the gradient. The value of λ is adapted to each iteration, increasing it if the previous iteration produced a limited reduction in the objective function, or diminishing it in case of rapid decrease.

Chapter 3

3 Data Acquisition System

It is imperative to explain the adopted system to acquire the data on which experiment was done. So, in this chapter, this data acquisition system will be described in detail, which help us to study the I-V curves of the PV modules.

3.1 Principle of I-V curve measurement

To analyze the *I-V* curve of the photovoltaic generator is necessary to connect the PV module with the variable load, as shown in the figure below. This variable load is regulated as a variable resistor; it is adjusted according to different working points while assuming a PV module as a current generator. Moreover, another way to force the variation of the output impedance connected to the PV module is obtained as delighted to the transient charging property. Alongside this, a voltmeter and ammeter are required to record the voltage and current on the output terminal of the PV module.

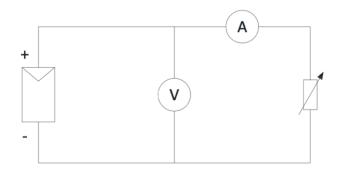


Figure 3-1: Main characteristics of I-V curve of measuring system.

To apply proper tracking of an appropriate I-V curve requires at least 100 points I-V in a process lasting a time ranged between 20 and 100 ms. Therefore, the effect of weather and environment is negligible after these certain points.

3.1.1 Capacitive Load

Instead of resistor, there is another option to use in above mention system and that is capacitor, to avoid the issue of the sinking the heat generator during the test. Moreover, the capacitor has a wide range of ability for voltage, current and power signals, because the signals last for short time: the transient charge lasts usually for less than 1s. The charging transient of a capacitor is the simplest method that can be used to trace the I-V curve. Compressively, the charging time of the capacitor can be defined by the following equation:

$$i(t) = C \cdot \frac{d\nu(t)}{dt}$$

Where:

- i(t) is the current (A) flowing in the capacitor
- *C* is the measured capacitance (F)
- v(t) is the voltage (V) across the capacitor

Let's assume, capacitor is totally discharged, the voltage and current evolve from short circuit condition into open circuit condition when the switch is closed. The charging time (t_c) could be defined as the tie for a voltage sweep from 0 uo to 99,33% of the V_{oc} , which represents the final charging voltage. Current and voltage at terminals of the capacitor are represented as function of time, as shown in the figure below.

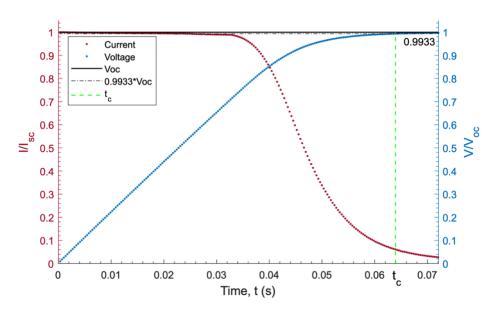
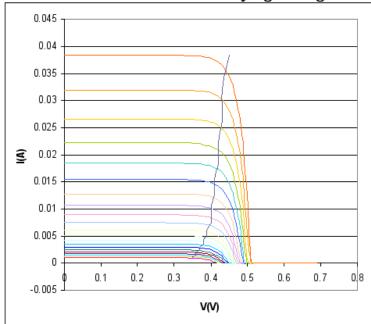


Figure 3-2: Charging transient of a capacitor connected with a PV module.

Capacitor's charging time mainly depends on two quantities of the PV module, i.e., irradiance and temperature. Following expression represents that the charging time can be evaluated looking at the short circuit current and open circuit voltage:

 $t_c = \frac{C}{A} \cdot \frac{V_{oc} \cdot N_s}{I_{sc} \cdot N_p}$


Where:

- *t_c* is the charging time of the capacitor (s)
- A = 0,55 is the proportionality factor (-)
- *V_{oc}* is the open circuit voltage (V)
- *I*_{sc} is the short circuit current (A)
- N_s is the number of cells in series (-)
- N_p is the number of cells in parallel (-)

The charging time is the most difficult and essential parameter to estimate because it determines the correct synchronization of the multimeters and it allows to properly set the reading rate. Therefore, the charging time must be estimated before acquiring the I- V curve. This estimation may be performed from the measure of the module irradiance and temperature. These two weather conditions influence the short circuit current and the open circuit voltage, respectively.

3.1.2 Maximum Power Point Tracker

It is also known as Power point tracker, a technology used with variable power to extract energy maximum in every condition. The efficiency of the system is optimized when the characteristic load varies to maintain the transfer power at highest efficiency. This characteristic load is maximum power point: MPPT is the process to find this point and keep the load characteristic there. In example, solar inverters convert the DC to AC and includes MPPT: these inverters sample the I-V curve from the solar modules and apply the load as to obtain maximum power. This maximum power (P_{mpp}) is the product of the MPP voltage (V_{mpp}) and MPP current (I_{mpp}).

Solar Cell I-V Curve in Varying Sunlight

Figure 3-3: Influence of irradiance on maximum power point.

With decreasing irradiance, the short-circuit current proportionally decreases and the open-circuit voltage is almost constant. In Figure 3-3, the influence of irradiance and the maximum power points locus (that is almost a vertical line) are shown. Photovoltaic solar cell I-V curves where a line intersects the knee of the curves where the maximum power transfer point is located.

3.1.3 Variable Resistance

As schematized in the figure below, It is the simplest way to measure the I-V curve of a PV module. So, the value of resistance varies between 0 and infinity in order to obtain points between short circuit current I_{sc} and open circuit, by measuring the voltage and current at each step. The common application to this method is low-power modules.

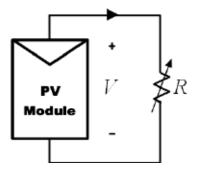


Figure 3-4: Scheme of variable resistance connected with PV module.

3.1.4 Electronic Load

This method uses a transistor as a load and in this case, transistor usually is MOSFET (Metal oxide semiconductor field effect transistor). The resistance between drain and source is modulated through the gate-source voltage, and consequently the flow of current supplied by the module. Using this method in order to obtain the I-V curve, MOSFET must operate in certain conditions; cut-off, active and ohmic region. It allows the fast variation of the equivalent load resistance of the MOSFET.

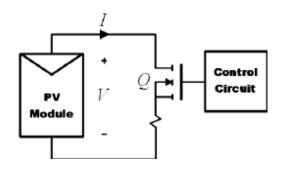


Figure 3-5: Electronic load Scheme.

3.2 Measuring Setup at UJA

The measurement system used in this experiment to obtain the data for the thesis is located on the roof terrace of the laboratory of solar energy in the "*Escuela Politécnica Superior – Universidad de Jaén*". This laboratory is equipped with an automatic tracker system and a semi-automatic fixed support system. We will deal with both the fixed support system and tracker for our thesis, also our Graphical User Interface (GUI) is developed to work with both systems. The only difference between these two systems is the placement of the PV module. In the case of the tracker system, the modules are placed on the tracker, and then the tracker using its automated programming follows the sun and record the measurements. While the fixed support system works differently as PV modules are placed on them, and their orientation is fixed at optimal angle and direction, and it measures the reading

accordingly.

Figure 3-6: University of Jaen

3.2.1 Automatic Tracker System

The laboratory of IDEA Solar Energy Research Group at University of Jaen has implemented an automatic measurement system able to sequentially record the I-V curve of up to 4 PV modules together with the weather conditions. In figure below, the schematic of measurement system is shown. The common characteristics are represented in the light blue while the peculiar characteristics are marked in violet for the tracker system and in orange for the fixed system, respectively.

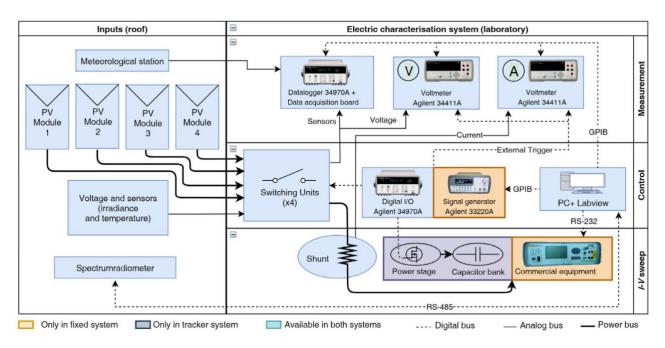


Figure 3-7: Schematic of UJA measurement system.

The "tracker system" shown in figure below, uses a BSQ D150/6 Solar 2-axes tracker. The system is designed with a 2-axis solution to hold the PV module perpendicularly always to the direct sun light. The tracker is designed to carry out activity on concentration solar with a maximum misalignment of $\pm 0.5^{\circ}$ so, this way possible angular reflection losses are avoided. This system is integrated with all instruments such as temperature probe, pyranometer, and air temperature. In addition, the two multimeters are synchronized by the Agilent 34970A datalogger that provides a trigger signal through the Agilent 34907A Digital Multifunction Module.

Chapter 3

Figure 3-8: Picture of tracker system (on the left the external part, on the right the internal equipment)

As regards the implemented load to plot the I-V-curve, the system includes a capacitive load as shown in Figure below This load mainly consists of three elements: the first one is the electrolytic capacitor with a capacitance of 47 mF and a maximum voltage of 100 V; the second one is the discharge resistance which is used to discharge the capacitor; finally, the last one is a voltage generator used to negative pre-charge the capacitor and to get the short circuit current.

Figure 3-9: View of the inside of the capacitive load.

The working principle of the load is described as follows. The Agilent 34970A datalogger controls the charge and discharge of the capacitive load using relays. Firstly, the datalogger closes only SW7, shown in Figure below, to negative pre-charge the capacitor. This process is essential to get the short circuit current point. Besides, a diode is necessary to avoid problems linked to the internal diode of the solid-state relays.

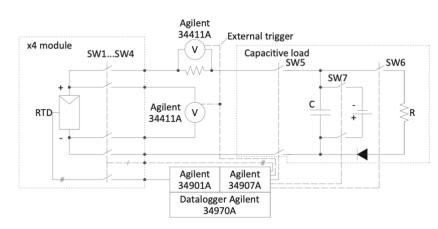


Figure 3-10: Electrical scheme of the tracker system

Secondly, always with reference to Figure 3-8, the datalogger opens SW7 and then it closes SW5. This sequence of commands connects the PV module to the capacitor load C. Then, the multimeters may acquire the voltage and current synchronously. The data acquisition is done in a specific time referred to the capacitive load properties. In fact, the estimation of the charging time (t_c) is essential to meet the timing requirement. The time between two samples is settled properly for acquiring the entire curve with enough points. Finally, the datalogger reopens SW5 at the end of the transient and it closes SW6 to discharge the capacitor on a resistor for the next acquisition.

3.2.2 PVPM – Automated I-V Tracer

The PV modules are placed manually on the fixed support system, as shown in the figure below, oriented with 0° zenith and 35° tilt angles. This system integrates the module temperature probe and same oriented pyranometer. As shown in the figure, it is designed to acquire *the I-V* curve of a specific PV module placed on the fixed support. A capacitive load is used to trace the *I-V* curve. Also, the external trigger is used to synchronize the multimeter, and it comes from HP datalogger Agilent 34970A. In this case, a commercial device PVE PVPM 2540C controlled by the LabVIEW program is used to trace the I-V curve. The LabVIEW software communicates directly with the *I-V* curve tracker through an RS232 link.

Figure 3-11: (Left) Fixed system connected with (Right) PVPM and data logger controlled by LabVIEW program.

3.2.3 Lab VIEW Program

The entire system is managed with an ad-hoc LabVIEW software on a dedicated PC. The devices are attached to the PC through GPIB connections, except for the spectroradiometer that needs a RS485-RS232 serial connection.

Chapter 3

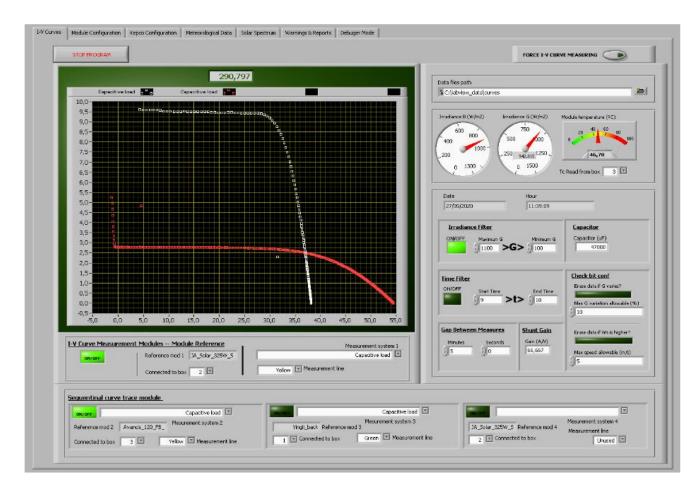


Figure 3-12: LabVIEW graphical user interface of tracker system.

The LabVIEW software operation is represented in the flowchart Figure below. Moreover, the software is designed to provide the user with extra facilities to configure the measurement process. In addition, the graphical interface shows in real-time the acquired data such as the I-V curves, the value of irradiance and temperature or the shape of the solar spectrum. A snapshot of the software's user interface is shown in the figure above. The program saves the data from different sensors and instruments in one "CSV" file for each acquisition. The output CSV file is structured with one column for each measured quantity. All columns contain 1500 values, forming a matrix. All 1500 values are equal in the case of a physical amount with a single point (i.e., temperature, irradiance, etc.).

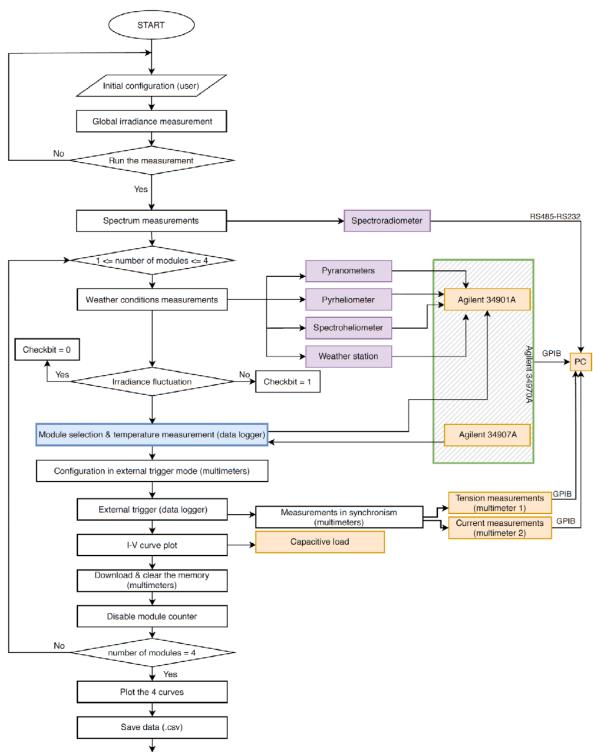


Figure 3-13: LabVIEW measurement control software flowchart.

3.2.4 Measurement Sensors

The instruments used to measure the environmental condition will be described here. All the sensors are connected with Agilent 34901A 20-Channel general purpose multiplexer boards included in the HP data logger Agilent 34970A. The LabVIEW software acquire sensors data from datalogger and using PVE PVPM device to trace the `I-V curve and store all the data in the same .csv file.

3.2.4.1 Measurement of Module Temperature (T_c)

The module temperature (T_c) is measure using a resistance temperature detector (RTDs) of Pt100 type with 4-wire connection is adopted. This sensor consists of a probe made of platinum (Pt) with 100 Ω resistance at 0°C. The temperature coefficient " α_{Pt100} " of this sensor is 0,00385 $\Omega \cdot \Omega^{-1} \cdot K^{-1}$. This coefficient describes the linear approximated characteristic of the probe resistance variation with temperature:

 $\alpha_{Pt100} = \frac{R_{100} - R_0}{100 \cdot R_0}$

Where:

•
$$\alpha_{Pt100}$$
 is 0,00385 $\Omega \cdot \Omega^{-1} \cdot K^{-1}$ is the temperature coefficient

- R_{100} is the sensor resistance at 100°C measured (Ω)
- R_0 is the sensor resistance at 0°C measure (Ω)

The temperature value is calculated by a measurement of the resistance of the Pt sensor in a 4wire configuration. Thanks to 4-wire measurement as it is precise and unaffected by the length of the laboratory wires. So, the datalogger is adjusted according to make conversion and this probe has a capability to measure in the range of -50° C to $+150^{\circ}$ C.

Figure 3-14: Pt-100 probe used to measure module temperature.

3.2.4.2 Measurement of Global Irradiance (G)

The global in-plane irradiance (G) represents the global solar power per unit of the area received by a surface with an azimuth and zenith angle. As in the figure below, the irradiance (G) is measured by a Kipp and Zonnen CMP11 pyranometer. The instrument is placed co-planar with the modules under study, and the pyranometer provides an output voltage signal proportional to the incidental irradiance. Moreover, The ADC can convert this voltage signal in irradiance units with the calibration constant. This calibration constant came from the manufacturer calibration or external calibration in an accredited laboratory (i.e. CIEMAT in Madrid). Finally, the output signal from the pyranometer is measured with the datalogger.

Figure 3-15: Picture of Kipp and Zonnen CMP11 pyranometer.

3.3 Evaluation of Measurement Uncertainty

Every experimental data has some range of fluctuation, and it is not possible to consider any measuring device or measured data 100% accurate. In order to make it more precise, its percentage uncertainty is evaluated, which help us to compare the experimental data with theoretical results. The uncertainty interval should be compared with the theoretical model to quantify the accuracy of the

results. The calculated tolerances for the worst scenario are reported in this section. The worst scenario indicates the case in which the relative tolerance $(U_{x,worst})$ is the highest.

Measurands	$U_{\varkappa,worst}$
Voltage (V)	±0.02
Current intensity (A)	±1.0
Irradiance ' $G'(W/m^2)$	±2.0
Module Temperature (T_c)	±1.16
Maximum Power (W)	±1.3

Table 3-1: Worst case Uncertainties.

Chapter 4

4 Graphical User Interface

The data pre-processing is a step to read the .csv files from the measurement systems and automatically remove the unphysical information by applying them. After, this some filters are used to brush up the raw measured data further. Further, I will explain the graphical interface and the operation of the software in this chapter.

4.1 Step 1: Data Pre-Processing

The most intuitive and user-friendly interface containing all the settings needed, as shown in the figure below

trazioneParametri_main									- 0
?									
									Ready 🔵 Clear
bbal Data pre-processing	Parameters	extraction Parameters Correlation	ns F	Power validation					
Import from			(*.CSV) Folder D File				System type	UJA (tracker system)
Export in			Filenar	me _AUTOMATIC		Auto r	name Options)	Run data pre-processin
lodule datasheet			Che	eck datasheet - files name	consista	ncy			
	Transaction of the second s							Se	elected Files
PoliTO (manual system)	UJA (autom	atic systems)							
Irradiance sources		Mismatch detector		Sunny day detector (i	rradiance	e)			
Calco Pyranometer		Enable mismatch detector		Enable sunny day de	tector				
Short circuit current		Filter sensibility High		Filter sensibility High					
Average irradiance (from differ	ent souces)	Ask for each curve	ch curve Ask always to select good range						
 Automatically 		Ask to discard		Ask to select good ra	inge only	for cloudy d	ays		
O Ask for each curve		O Discard automatically		O Discard automatical	y cloudy d	ays			
O Ask if differs more than	0 (W/m^2) ▼								
Temperature of cell source	es	Measurements position in ca	sv file	Use only IV curves in		-			
Calci Pt100 sensor		Index	1	Irradiance (W/m^2)	min	Inf	_		
Open circuit voltage		Voltage (curve)	4						
NOCT equation		Current (curve)	5	Cell temperature (°C)	-Inf	Inf			
Average cell temperature (fron	n different souce	es) Irradiance (module)	6	Wind speed (m/s)	0	5			
Automatically Ask for each curve		Cell Temperature (module)	7	Discard based on Irr					
Ask if differs more than	0 (°C) 🔻	Wind Speed	8	Discard based on W			_		
		Wind Direction	9	Monotonicity of I at sc	0.9	1			
UJA System type UJA (trac	ker system)	Spectrum Wavelength (mod	2	Reduce the number of					
Check on Isc Defective m	odules	Spectrum Irradiance (module)	3	Automatically reduce	the numb	per of point			

Figure 4-1: Picture of the graphical user interface tab for the pre-processing task.

As it can been seen from the figure above, in the tab of data pre-processing, there are two sections: one deals with import, export and insertion of module datasheet while section below contains settings and filter. Also, in this section there are two tabs, one is about UJA (automatic system) which will be explained later while other one is PoliTO (manual system) which will not be explained as that wasn't used for this thesis.

4.1.1 Import and Export Settings

The import and export settings are situated in the upper part of the interface. Three edit fields and a list box may be seen. They are described in the following lines.

Chapter 4

Global	Data pre-processing	Parameters extraction	Parameters Correlations	Power validation			
Im	port from) (c.	.csv) Folder Tile		System type	UJA (tracker system)
	Export in) File	ename _AUTOMATIC	Auto name Option	•	Run data pre-processing
Module	datasheet		···) 🗆	Check datasheet - files names	consistancy	Se	elected Files

Figure 4-2: Picture of the graphical user interface for the pre-processing task-import and export settings.

The first edit field allows the user to select the file path: in this section there are 2 types of input selection, i.e. the choice of a group of files or of an entire folder. Only the CSV files are picked up in case of in the case of a UJA system.

On the other hand, the second element allows the user to choose the data export folder in the desired format. The format selection can be made by clicking the "Options" button present in the same line as the second edit field. The options button opens a new window, shown in the Figure below and described in the following lines.

Kan StrazioneParametri_ExportSe	EstrazioneParametri_ExportSettings								
Divide by All in the sa	All in the same file Save ALL								
Filename prefix									
Filename suffix									
Include original filename	Include original filename								
	shift	step							
Ranges property for Irradiance	0	Inf	Save figure						
Ranges property for temperatur	e 0	5							
Example									
_AUTOMATIC									
Ok									

Figure 4-3: Picture of the window for selecting the saving properties

The saving settings in the list box permits to divide the data in various ways. There are different types of data division: "All in the same file", "Divide by days", "Divide by months", "Divide by years", 'Divide by irradiance", "Divide by temperature (module)", "Divide by irradiance and temperature (module)". The selection of saving data by irradiance and/or temperature involves a further specification called "the ranges property". Here, the user has to insert two values for quantity: an initial shift value from zero and a step value. The ranges division is created only between the minimum and maximum rounded values of the quantity. An example for the irradiance case with shift = 25 and step = 50 means the division of the irradiance in the ranges (0-25], (25,75], (75,125], ..., (975,1025].

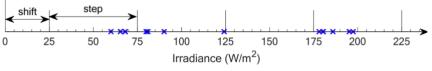


Figure 4-4: Example of ranges division.

The same logic is adopted for the module temperature classification. In the options window, there are two optional edit fields that allow the user to insert a prefix and a suffix to the name of the output data. Moreover, in the final file name, the user can also decide to include the original filename of the CSV file. Finally, two checkboxes can be seen. On the one hand, the "Save ALL" checkbox keeps a copy of all loaded information before applying the filters. On the other hand, the "Save figure" checkbox saves the figures of the day irradiance and the I-V and P-V curves of each acquisition.

		Unit of	
	Value	measurement	Notes
module name	Sharp	-	Must finish with '_'
P _{max,STC}	243,4	W	Power MPPT in STC conditions
I _{sc,STC}	8,74	А	Short circuit current in STC conditions
V _{oc,STC}	37,44	v	Open circuit voltage in STC conditions
α (I _{sc})	0,053	%/K	Coefficiente di temperatura Isc
β (V _{oc})	-0,347	%/K	Coefficiente di temperatura Voc
γ (P _{max})	-0,485	%/K	Coefficiente di temperatura Pmax
NOCT	47,5	°C	NOCT temperature
Ns	60	-	Number of cell in series
Nc	1	-	Number of cell in parallel
Cell dimension	157	mm	
G _{STC}	1000	W/m ²	Irradiance in STC conditions
Tc _{stc}	25	°C	Cell temperature in STC conditions
G _{NOCT}	800	W/m ²	Irradiance in NOCT conditions
Ta _{NOCT}	20	°C	Air temperature in NOCT conditions

The third edit field of the import and export settings is the selection of the Excel datasheet files.

Figure 4-5: Example of module datasheet in Excel.

This Excel file shall be created with a proper model as in Figure above

Lastly, there is the list box, "System type" where user declares the measurement system e.g. PoliTO or UJA ones.

4.1.2 Implementation of Data Pre-Processing for UJA

Once this tab is selected, it can be seen in the figure below that the settings are grouped into several panels: some are related with data acquisition while other use for data filtration.

•

Irradiance sources	Mismatch detector		Sunny day detector (irradiance)				
Pyranometer Calculate Select Short circuit current Image: Calculate Image: Calculate	Enable mismatch detector Filter sensibility High)	Enable sunny day detector Filter sensibility High				
Average irradiance (from different souces)	Ask for each curve		Ask always to select				
Automatically	 Ask to discard 		 Ask to select good range only for cloudy days 				
Ask for each curve	O Discard automatically	 Discard automatically cloudy days 					
Ask if differs more than 0 ((W/m^2) •							
Temperature of cell sources	Measurements position in cs	v file	Use only IV curves in	side thes	e ranges	5	
Cal <u>cul</u> ate Select	Index	1		min	max		
Pt100 sensor	Voltage (curve)	4	Irradiance (W/m^2)	0	Inf		
Open circuit voltage			Cell temperature (°C)	-Inf	Inf		
NOCT equation	Current (curve)	5	Wind anord (m/a)	0	5		
Average cell temperature (from different souces)	Irradiance (module)	6	Wind speed (m/s)	0	5		
Automatically	Cell Temperature (module)	7	Discard based on Irra	adiance ch	neck bit		
Ask for each curve	Wind Speed	8	Discard based on Wi	nd check I	bit		
Ask if differs more than 0 (°C)	Wind Direction	9	Monotonicity of I at sc	1			
UJA System type UJA (tracker system)	Spectrum Wavelength (mod	2	Reduce the number o	f point			
Check on Isc Defective modules	Spectrum Irradiance (module)	3	Automatically reduce the number of point				

Figure 4-6: Picture of the graphical user interface for the pre-processing task- UJA (automatic system)

The data acquisition involves following panels.

- The "Irradiance sources" panel allows the user to choose the irradiance sources to be used in the next steps. The sources are the pyranometer, the short-circuit current or they may be both. In the last case, the user may decide the method of calculating the average value of the two sources. The selected method between "automatically", "Ask for each curve" or "manually" defines the level of user intervention.
- The "Temperature sources" panel allows the user to choose the temperature sources to be used in the next steps. The sources of module temperature are the Pt100 probe, the open

circuit voltage and the NOCT equation. The temperature considered is the average value if more than one source is selected. Moreover, a window, in Figure below, shows up in case of user intervention.

Select the irradiance sources	—		\times	Select the module temperature sources — 🛛 🗙
Select the irradiance so	urces			Select the temperature (module) sources
Irradiance, pyranometer (W/m^2)	943.9	\checkmark		Temperature (module), Pt100 (°C) 49.15
Irradiance, from Isc (W/m^2)	922.1			Temperature (module), Voc (°C) 43.8
, , , , , , , , , , , , , , , , , , ,				Temperature (module), NOCT (°C) 42.62
Irradiance, mean (W/n 933	n^2)			Temperature (module), mean (°C) 47.37
Ok				Ok

Figure 4-7: Picture of the irradiance and temperature manual selection

The "Measurement position in .csv file" panel indicates the column position for each measured quantity in the .csv file. The position of each quantity is provided in preloaded profile for the fixed system. These profiles are selectable from the "UJA System type" list box. In addition, in this list box there is a fourth option called "Custom profile". Only in this case the edit fields of the quantities are editable. If a quantity is absent in the .csv file, a value of "-1" should be written down. Furthermore, it is important to indicate that a .csv file contains the values of the measurements for an I-V curve acquisition.

The panels those deals with filtering process are explained here.

• The "Mismatch detector" and the "Sunny day detector (irradiance)" panels are made up of three elements. They have a similar interface presented below. Firstly, the check box enables the mismatch/sunny day detector. Secondly, the list box allows the user to specify three level of filter's sensibility (high, medium, low). Finally, the button group defines the user's level of interaction (automatically, semi-automatically or manually).

- The "Use only I-V curve inside these ranges" panel is composed of editable fields for four quantities. These quantities are irradiance, cell temperature, wind, and current monotonicity at short circuit ranges. Besides, this panel includes two check boxes for filtering the data with the irradiance and/or wind check-bits.
- The "Reduce the number of points" panel contains the check box that enables a reduction in the *I-V* curve points. This reduction is necessary to solve the accumulation of points near the open circuit point.

4.2 Step 2: Parameters Extraction

The parameter extraction process consists of a numeric optimization used to solve the equations linked to the PV cells equivalent circuit. The Graphical User Interface consists of two different PV models and three different extraction algorithms. The two models are 5 parameters systems and 7 parameters system: only 5 parameter model is used in this thesis. The three algorithms are the following: Levenberg-Marquardt (LM), the combination of Simulated Annealing and Nelder-Mead (SA-NM), and lastly, We can add the third algorithm for future analysis. The five parameters model and the LM algorithms are used for the elaboration. The graphical interface is designed to contain all needed settings most simply. The below Figure shows the interface used for parameter extraction.

Chapter 4

Master Thesis

trazioneParametri_main													- 🗆
?													
												_	
											R	Ready 🔵	Clear
bal Data pre-processing Pa	arameters extraction	Parameters Correlati	ons Power va	lidation									
Import from			(*.mat) Folde	er 🌑 F	ile							Run par	ameters extracti
								(Truit par	ameters extracti
Export in			Filename Pra	ramRes_y	yyy_mm_dd_	_hh_\	uto name	Option	S				
odule datasheet			Check data	sheet - files	names cons	istancy							
select extraction model	Global	Settings							Settings				
✓ 5-parameters	Reduc	ation	Auto choice	Point 300	1 Pe	2 2	bound	-	s 5-param able limits				
7-parameters								_		• Inf	Indu	0	15
elect extraction algorithm	Reduc	tion at sc	Auto choice	100	1 200	2	Inf	lph			lph		
Levenberg-Marquardt	Bound	(red. at sc) 0 75	5					ld1	0	0.001	ld1	1e-15	1e-06
Simulated Annealing	Reduc	tion at oc	Auto choice	50	1 100	2	Inf	n1	0	5	n1	1	2
Algoritm 3	Bound	(red. at oc) 10 100	-					Rs	0	1.5	Rs	0.001	0.8
est for extraction reliability	min ci	urrent Rs 0.2	Auto choice	100	10 1000	5	Inf	Rsh	0	5e+04	Rsh	200	2e+04
%	W			100	20 1000		Inf	Setting	s 7-param	neters			
Enable max Err Pmax				100	20 1000		Ini	🗌 En	able limits	5			
Enable max NRMSE 0.02		evaluate Rsh						lph	0	Inf	lph	0	15
 Enable acceptable ranges for particular 	arameters Min IV	points 50						ld1	0	0.001	ld1	1e-15	1e-06
Save only if the curve pass the term	est 🗌 Us	e Parallel Computing	Output file	model				n1	0	5	n1	1	2
Ask confirmation for each curve												<u> </u>	
Ask confirmation only if the curve Save all curve		m Settings	Cimulated An-	ing	Algoritz 0			ld2	0	0.001	ld2	1e-15	1e-06
O Save all curve	Levenb		Simulated Anneal		Algoritm 3			n2	0	5	n2	1	2
elected Files	Tollera	ance 1e-30	Tollerance 1e-	30	Tollerand	e 1e-30		Rs	0	1.5	Rs	0.001	0.8
	N. Iter	ation 1000	N. Iteration 40	00 8000	N. Iterati	on 1000		Rsh	0	5e+04	Rsh	200	2e+04

Figure 4-8: Picture of the graphical user interface tab for the parameter's extraction

There are six panels in the settings of parameters extraction: the first panel is "Select extraction model". It includes the option of two PV models, 5 parameters and 7 parameters, which works automatically after selection. The second panel is called "Select extraction algorithm". The calculations for the parameter's extraction are done using one of its algorithms. Finally, the third panel is "Test for the extraction reliability", related to setting filters to extracted parameters. The test consists of three validations: the maximum error on power, the maximum *NRMSE*, and the value of the parameters in a user-defined range.

Moreover, the filter can operate in four modes: first automatically (only saves the curve passes the test), second, semi-automatically (it asks confirmation for saving if the curve fails the test), third, manually (it asks confirmation for saving for each curve), and finally disabled (it saves all the curves).

In the "Global settings" panel, the user selects the main conditions of the extraction process; following are under follow:

- "Reduction". It reduces the number of points in I-V curve to speed the optimization. The user can select a number between 1 and infinite, so the value of reduction can be computed automatically to maintain a constant number of points of the I-V curve.
- "Reduction at SC". It is identical operation as Reduction but only in the current source section, between SC and MPP points.
- "Bound (red. at SC)". It restricts the section where the "Reduction at SC" operates.
- "Reduction at OC". It is identical to Reduction only in the voltage source section, between MPP and OC points.
- "Bound (red. at OC)". It restricts the section where "Reduction st OC" operates.
- "min current Rs" and "max current Rs". It helps for algorithms in convergences, these are minimum and maximum values of current used to estimate the initial condition of the R_s .
- "Start evaluate Rsh": starting point to estimate the first value of *R*_{sh}.
- "min I-V points": minimum number of point that the I-V curve must have to be elaborated.

"Algorithm Settings". This panel contains the settings of maximum number of iteration and the end tolerance for each algorithm.

"Model settings". This panel contains the bounds for the optimization and the limits for the test on the output.

4.3 Step 3: Parameters Correlations

The "Parameters Correlations" also known as "Regression", is a step to identify the trend of each parameter with irradiance and/or temperature. Every parameter is fitted with correlation in literature. The curve fitting function of MATLB is based on the algorithm, Levenberg Marquarlt. In results, as an output optimized coefficient of each parameter are obtained.

4.3.1 Equations related with Parameters Correlations

The correlations obtained are valid only for the five parameters model (i.e. *Iph*, *Io*, *n*, *Rs*, *Rsh*).

1. Photogenerated Current Correlation

The photogenerated current has a trend proportional to the irradiance and linear with the temperature. The following equation is optimized:

$$I_{ph} = I_{ph,STC} \cdot \left(1 + \left(\alpha \cdot (T_c - T_{c,STC})\right)\right) \cdot \frac{G}{G_{STC}}$$

Where:

- Iph is the photogenerated current of the five paramter model (A)
- Iph,STC is the photogenerated current in STC (A)
- G is the module irradiance (W · m-²)
- G_{STC} is the module irradiance in STC (W · m⁻²)
- T_c is the cell temperature (K)
- *Tc,STC* is the cell temperature in STC (K)
- α is the short circuit temperature coefficient (K⁻¹)

In such case, the optimization coefficient are $I_{ph,STC}$ and α , where α can be optimized or fixed to a specific value from the datasheet.

2. Saturation Current Correlation

From the diodes, the saturation current has a cubic trend proportional to the temperature, []. The following are the optimized equations:

$$I_0 = I_{0,STC} \cdot \left(\frac{T_c}{T_{c,STC}}\right)^3 \cdot \exp\left(\left(\frac{E_{g,STC}}{T_{STC}} - \frac{E_g(T_c)}{T_c}\right) \cdot \frac{1}{k_B}\right)$$
$$E_g(T_c) = E_{g,STC} \cdot \left(1 - 0,0002677 \cdot \left(T_c - T_{c,STC}\right)\right)$$
$$(\text{for m-Si} @ 298 \text{ K}) \qquad E_{g,STC} = 1,121 \cdot q_e$$

Where:

- *I*⁰ is the diode saturation current (A)
- *I*_{0,STC} is the diode saturation current in STC (A)
- $E_g(T_c)$ is the energy gap at $T_c(J)$
- $E_{g,STC}$ is the energy gap in STC (J)
- k_B is the Boltzmann constant (J · K⁻¹)
- $q_e = 1,602 \cdot 10^{-19} \text{ C}$ is the charge of the electron

It is important to mention here that above mentioned equations are studied in context of some specific technologies as their energy gas are well known. A new a-dimensional empirical coefficient χ is added to take in account the different behaviours of the energy gap. In this case following equations is optimized using coefficients are $I_{0,STC}$ and χ where χ can be optimized or fixed to specific value between 0 - 1.

3. Ideality Factor Correlation

It has a little trend with temperature and irradiance [], following are the optimized equation.

$$n = a + b \cdot G + c \cdot T_c$$

Where:

- *n* is the diode ideality factor (-)
- *a* is the intercept term (-)
- *b* expresses the linear effect in irradiance $(W^{-1} \cdot m^2)$
- c expresses the linear effect in module temperature (C⁻¹)
- a, b, c, are optimization coefficients.

4. Series Resistance Correlation

The series resistance has a trend proportional to the temperature and logarithmical to the irradiance. The following equation is optimized:

$$R_{s} = R_{s,STC} \cdot \frac{T_{c}}{T_{c,STC}} \cdot \left(1 - \lambda_{R_{s}} \cdot \log\left(\frac{G}{G_{STC}}\right)\right)$$

Where:

- R_s is the series resistance (Ω)
- $R_{s,STC}$ is the series resistance at STC (Ω)
- λ_{R_s} is an empirical coefficient that expresses proportionality to the logarithmic variation of the irradaince (-)

The optimization coefficients are $R_{s,STC}$, λ_{R_s}

5. Shunt Resistance Correlation

The trend of shunt resistance has a trend inversely proportional to the irradiance, [], following equation is optimized:

$$R_{sh} = R_{sh,STC} \cdot \frac{G_{STC}}{G}$$

Where:

• R_{sh} is the shunt resistance (Ω)

• $R_{sh,STC}$ is the shunt resistance in STC (Ω)

The optimization coefficient is $R_{sh,STC}$

4.3.2 Normalized Root Mean Square Error (NRMSE)

The Normalized Mean Square Error (NMSE) is a measure of the mean relative scatter and reflects the random errors. It is used to compute the errors between the experimental points and fitting surfaces. This operation is performed for the 5 parameters of the model using the same expression. The *X* symbols can be replaced by the symbol of the parameter analysed (i.e. I_{ph} , I_0 , n, R_s , R_{sh}).

$$NRMSE_{X} = \frac{\sqrt{\frac{\sum_{i=1}^{N_{points}} (\chi_{cor} - \chi_{exp})^{2}}{N_{points}}}}{\frac{\sum_{i=1}^{N_{points}} \chi_{exp}}{N_{points}}} \cdot 100$$

Where:

- $NRMSE_X$ is the normalized root mean square error for parameter χ (%)
- χ_{exp} is the experimental paramter value
- χ_{cor} is the estimation from correlation parameter value
- N_{points} is the number of points in the experiental samples

4.4 Step 4: Power Validation

The last step of this research consists of maximum power point or power validation from weather conditions (module irradiance and temperature). In this procedure, input an experimental set of data, the module datasheet information, and the correlation coefficient of each model. The estimation of the power is calculated with the application of the correlation. The five parameters (i.e. I_{ph} , I_0 , n, R_s , R_{sh}) are calculated from the coefficients (i.e. $I_{ph,STC}$, α , $I_{0,STC}$, χ , a, b, c, $R_{s,STC}$, λ , $R_{sh,STC}$

) for a given couple of irradiance and temperature (G, T_c). By drawing the I-V curve and the maximum power point is found on the curve. Later, the power is calculated with the Osterwald method to compare the two approaches. In this case, the Osterwald equation is following:

$$P_{Osterwald} = P_{STC} \cdot \frac{G}{G_{STC}} \cdot \left(1 + \frac{\gamma}{100} \cdot \left(T_c - T_{c,STC}\right)\right)$$

Where:

- $P_{Osterwald}$ is the power calculated by the Osterwald method (W)
- P_{STC} is the power in STC from the datasheet (W)
- γ is the power thermal coefficients (% · K⁻¹)
- *G* is the module irradiance $(W \cdot m^{-2})$
- T_c is the module temperature (K)
- G_{STC} is the irradiance in STC (i.e. 1000 W \cdot m⁻²)
- $T_{c,STC}$ is the module temperature in STC (i.e. 298,15 K)

The goodness of the power estimation may be assessed with the Normalized Root Mean Square Error (*NRMSE*) between the experimental power and the estimated ones. This computation is performed for each model using the same expression.

$$NRMSE_{P_{MPP}} = \frac{\sqrt{\frac{\sum_{i=1}^{N_{points}} (P_{MPP,model} - P_{MPP,exp})^2}{N_{points}}}}{\frac{\sum_{i=1}^{N_{points}} P_{MPP,exp}}{N_{points}}} \cdot 100$$

Where:

- $NRMSE_{PMPP}$ is the normalized root mean square error on the power at MPP (%)
- $P_{MPP.exp}$ is the experimental power at MPP (W)
- $P_{MPP,model}$ is the estimated power at MPP with the model under exam (W)

• N_{points} is the number of points in the dataset (-)

Chapter 5

5 Experimental Campaign

I will comment on the experimental data used in this thesis in this chapter. I developed this thesis during exceptional circumstances caused by COVID-19, thanks to the ease in the restriction, which let me complete the planned six-month activity physically.

I used the measuring system described in chapter 3 to carry out the experimental campaign. Moreover, the PV modules selected for this study belong to monocrystalline silicon technology. In particular, the Sharp module was measured using PVPM – Automated I-V tracer, while the Luxor was measured using Automated Tracker system. In addition, it is essential to state that before starting the experimental campaign, the PV modules under test were calibrated by an independent certified laboratory (CIEMAT laboratory). The calibration aimed to obtain the main electrical characteristics and check for the electrical response of the modules. This step was necessary to guarantee non-defective I-V curves and, therefore, to ensure the overall study's accuracy and significance.

In this chapter, a brief description of the module under-test and the corresponding experimental campaign will be carried out, emphasising the data set available and the filtering procedure applied for this study.

5.1 Profile of Sharp Module

The Monocrystalline Silicon Technology is composed of pure form of silicon in which cells are made from thin slices from the block of crystals. As already explained in the chapter 1.2, it is highly efficient technology compared to others on the other costly too.

In particular, the model of the module under test is a Sharp NU-E245J5 module. The main specifications from the manufacturer and calibration are summarized in the following tables:

	Р _{МРР} (W)	Vmpp (V)	Імрр (А)	Voc (V)	Isc (A)	FF (%)
Manufacturer	245	30.5	8.04	37.5	8.73	74.9
CIEMAT Lab	243.4	30.2	8.07	37.44	8.74	74.4

Table 5-1: Main specification of Sharp module.

Table 5-2: Temperature coefficients of the Sharp module.

	α (Isc) (%/K)	β (Voc) (V/K)	`y (Pmax) (%/°C)	NOCT (°C)
Manufacturer	0.053	-0.347	-0.485	47.5

I carried out the experimental measurement campaign of the monocrystalline silicon Sharp module between April and July 2021. Throughout these four months of measurement, the module was tested in different weather conditions. A series of charts is reported in the following pages to show the conditions in which the measures took place. The analysis in the Figure below is made to see the distribution of the most critical weather conditions using the histogram representations. The irradiation data were recorded at high GTI due to the sun tracking, especially in the ranges between 250 and 1100. Instead, the module temperature shows a more widespread tendency thanks to the campaign, mainly covering the fields between 35 and 65 °C. Furthermore, a high quantity of measurements is recorded under scattered air temperature and low wind speed values (below 5 m/s).

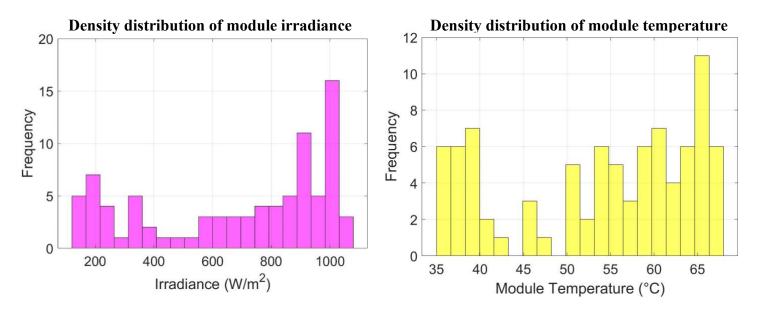


Figure 5-1: Density distribution of the irradiance and temperature conditions for Sharp module

The parameters extraction is made on a limited dataset which only involves the use of 198 I-V curves. This dataset is composed of all the reliable I-V curves for parameters extraction. Figure below shows the couples of irradiances and temperature of the I-V curves.

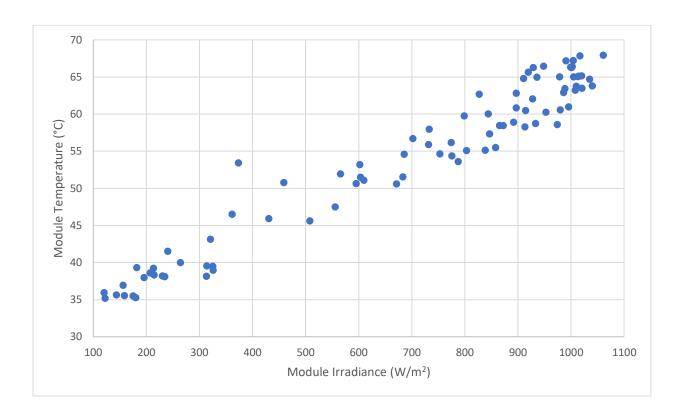


Figure 5-2: Irradiance and temperature of the I-V curves for parameters extraction.

In the end, of the 87 measures acquired, only 85 are reliable and have been used for energy estimation purposes. Moreover, for what concerns the parameter extraction, only 87 curves remained after the various filter

5.2 Profile of Luxor Module

The technology of this module same as that of the Sharp: monocrystalline silicon, As mentioned previously, it is composed of a pure form of silicon in which cells are made from thin slices from the block of crystals. As already explained in chapter 1.2, it is highly efficient technology compared to others costly.

In particular, the module model under test is a Luxor LX-100M, 125-36 module. The main specifications from the manufacturer and calibration are summarized in the following tables:

	P _{MPP} (W)	V _{MPP} (V)	IMPP (A)	Voc (V)	Isc (A)	FF (%)
Manufacturer	100	18.70	5.39	21.60	5.87	79.5
CIEMAT Lab	99.178	18.218	5.444	22.892	5.750	75.3

Table 5-3: Main specifications of Luxor module.

Table 5-4: Temperature coefficient of the Luxor module.

	α (Isc) (%/K)	β (Voc) (V/K)	`y (Pmax) (%/°C)	NOCT (°C)
Manufacturer	0.05	-0.35	-0.49	45.9

I carried out the experimental measurement campaign of the monocrystalline silicon Luxor module between April and July 2021. Throughout these four months of measurement, the module was tested in different weather conditions. A series of charts is reported in the following pages to show the conditions in which the measures took place. The analysis in the Figure below is made to see the distribution of the most critical weather conditions using the histogram representations. The irradiation data were recorded at high GTI due to the sun tracking, especially in the ranges between 250 and 1100. Instead, the module temperature shows a more widespread tendency thanks to the campaign, mainly covering the fields between 35 and 65 °C. Furthermore, a high quantity of measurements is recorded under scattered air temperature and low wind speed values (below 5 m/s).

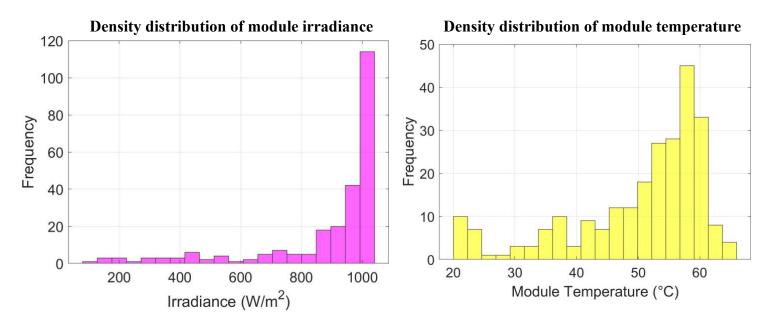


Figure 5-3: Density distribution of the irradiance and temperature conditions for Luxor module

The parameters extraction is made on a limited dataset which only involves the use of 198 I-V curves. This dataset is composed of all the reliable I-V curves for parameters extraction. The figure below shows the couples of irradiances and temperature of the I-V curves.

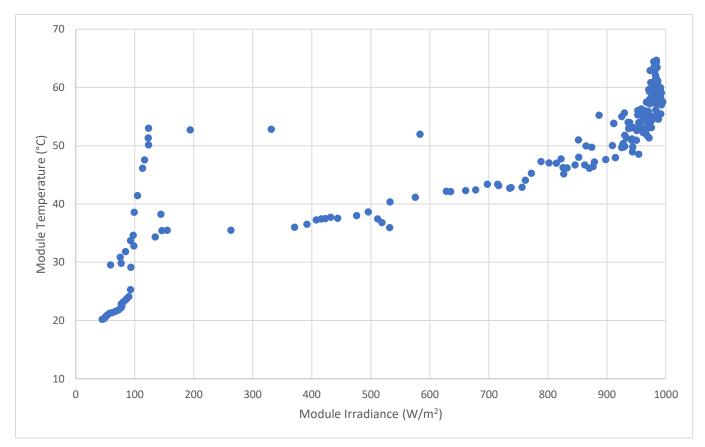


Figure 5-4: Irradiance and temperature of the I-V curves for parameters extraction.

6 PV Module: Sharp Results

The analysis of the monocrystalline silicon module of sharp will going to be present in this chapter. This will include the results of parameter extraction, moreover, the founded correlations for each parameter. Lastly, the module power and energy results will be shown. The analysis is carried out with optimization method, the Levenberg – Marquardt (LM).

6.1 Parameters Extraction

The goal of the parameter's extraction procedure is to obtain a set of parameters that can approximate as best as possible the I-V curve in analysis using the explicit transcendental equation. This process has applied to all the 88 curves. Nonetheless, after the extraction, the set of parameters has been filtered to remove those affected by overfitting. The following filters have been applied:

- 5 parameters extraction model.
- Optimization algoritm: LM (tolereance 1×10^{-30} , No. of iteration is 1000).
- Error on Maximum Power below 2%.
- NRMSE below 0.02.
- Series Resistance below 0.8Ω .
- Shunt Resistance below 20000 Ω .

In the end, the feasible parameters left were 85 for Levenberg – Marquardt.

6.2 Parameters Correlation

The extracted parameters have been used to estimate the correlations that describe their behaviours as a function of the atmospheric conditions. In particular, the procedure has been applied to the parameters extracted with the LM method: since all the parameters will be analysed separately to discuss the accuracy of the correlations and the physical meaning associated with each behaviour. Nonetheless, the coefficients of the correlations obtained from the non-linear regressions are summarised in the following tables.

	$I_{ph}(A)$	$I_0(A)$	n (-)	$R_{s}(\Omega)$	$R_{sh}(\Omega)$
a	8.53	2.06×10^{-08}	1.07	0.30	526.32
b			$3.14 \cdot 10^{-05}$	0.0304	
c			$6.62 \cdot 10^{-04}$		

Table 6-1: Coefficients of the correlations with LM method for Sharp module.

The correlations estimate how the five parameters vary with respect to the irradiance and cell temperature. The trend of each parameter is graphically presented for LM optimized method. The parameters are represented in the following order: photogenerated current, diode saturation current, diode ideality factor, series resistance and shunt resistance.

Firstly, the photogenerated current (I_{ph}) presents a main dependence on the irradiance. It can be observed that the dependence on cell temperature is negligible. In addition, the correlation equation comes from the equation. The $I_{ph,STC}$ coefficient is optimized by the correlation while the α is taken from the manufacturer datasheet. Figure below clearly show the irradiance tendence respectively for LM.

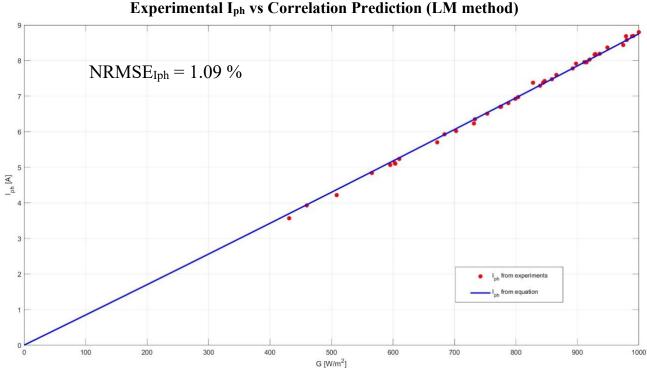
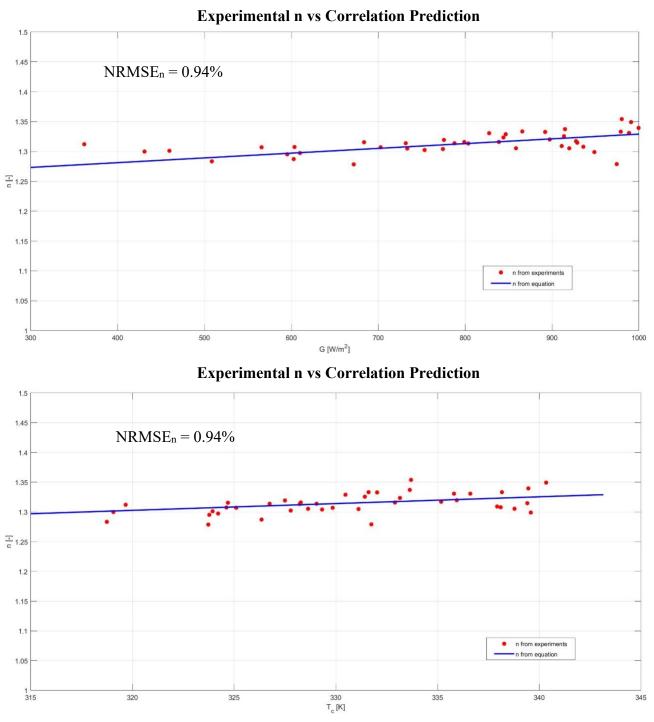
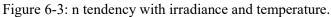



Figure 6-1: *I_{ph}* tendency with irradiance (LM algorithm).

$$I_{ph} = 8.53 \cdot \left(1 + \left(5.3 \cdot 10^{-4} \cdot (T_c - T_{c,STC}) \right) \right) \cdot \frac{G}{G_{STC}}$$

The red dots show the I_{ph} values from the LM optimization (i.e. experimental) while the blue line shows the trend of the correlation in the above equation. The goodness of the correlation is confirmed by the NRMSE value of 1.09%.

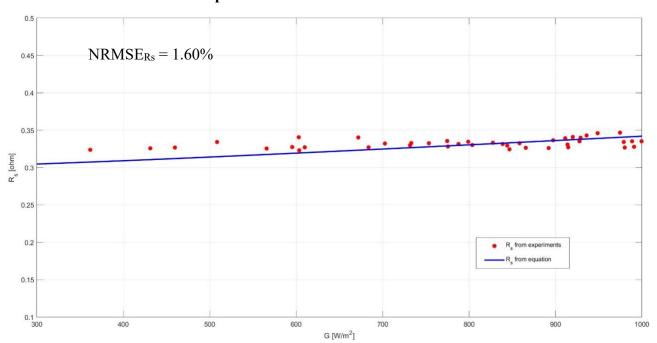

Secondly, the diode saturation current (I_0) presents only a dependence on the cell temperature. The correlation equation comes from the equation (xx). The $I_{0,STC}$ and χ coefficients are optimized by the correlation. Figure below show this tendence.

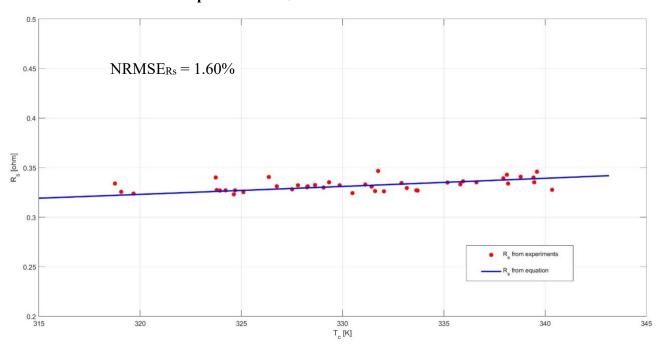


$$I_0 = 2.06 \cdot 10^{-08} \cdot \left(\frac{T_c}{T_{c,STC}}\right)^3 \cdot \exp((\frac{E_{g,STC}}{T_{STC}} - \frac{E_g(T_c)}{T_c}) \cdot \frac{1}{k_B})$$

The red dots indicate the I_0 values from the LM optimization (i.e. experimental) while the blue line shows the trend of the correlation in the above equation. The goodness of the correlation is confirmed by the NRMSE value of 23.14%. Moreover, this value is typical for the diode saturation current correlation.

Thirdly, the diode ideality factor (n) presents low variation with irradiance and cell temperature. The correlation equation comes from the equation (xx). In addition, the a, b and c coefficients are optimized by the correlation. Figure below evidently show the irradiance and temperature tendencies respectively for LM methods.




 $n = 1.07 + 3.13 \cdot 10^{-05} \cdot G + 6.62 \cdot 10^{-04} \cdot T_c$

The red dots highlight the n values from the LM optimization (i.e. experimental) while the blue line shows the trend of the correlation in the above equation. The goodness of the correlation is confirmed by the NRMSE value of 0.94%. Finally, this value is typical for the diode ideality factor correlation. The ideality factor shows an increased tendency with both irradiance and temperature.

Fourthly, the series resistance (R_s) shows variation with irradiance and cell temperature. The correlation equation comes from the equation. The $R_{s,STC}$ and λ_{Rs} coefficients are optimized by the correlation. Figure below evidently report the irradiance and temperature tendencies respectively for LM method.

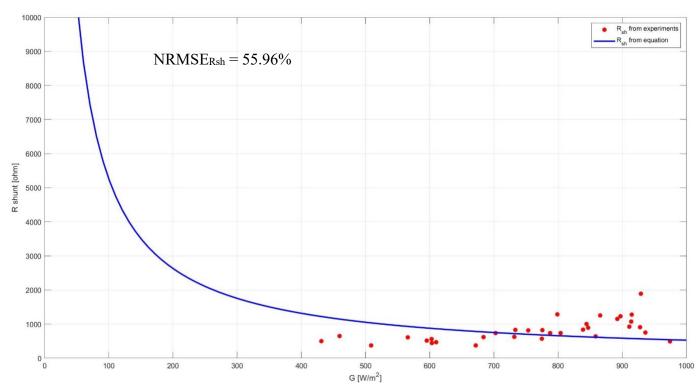

Experimental Rs vs Correlation Prediction

Figure 6-4: R_s tendency with irradiance and temperature.

$$R_s = 0.30 \cdot \frac{T_c}{T_{c,STC}} \cdot \left(1 - 0.0304 \cdot \log\left(\frac{G}{G_{STC}}\right)\right)$$

The red dots show the R_s values from the LM optimization (i.e. experimental) while the blue line shows the trend of the correlation in the above equation. The goodness of the correlation is confirmed by the NRMSE value of 1.60%. This value is typical for the series resistance correlation. The series resistance shows an increased tendency with both irradiance and temperature.

Finally, the shunt resistance (R_{sh}) shows variation with irradiance and cell temperature. The correlation equation comes from the equation. The $R_{sh,STC}$ coefficient is optimized by the correlation. Figure below illustrate the irradiance tendency respectively for LM method

Experimental Rsh vs Correlation Prediction

Figure 6-5: R_{sh} tendency with irradiance.

$$R_{sh} = 55.96 \cdot \frac{G_{STC}}{G}$$

The red dots indicate the R_{sh} values from the LM optimization (i.e. experimental) while the blue line highlights the trend of the correlation in the above equation. Besides, the plot shows a scattered tendency. This tendency is typical for the shunt resistance because this parameter has little influence in the optimization process if big enough. Therefore, the NRMSE value of 55.96% is acceptable.

The last analysis on the results of the correlation consists in redrawing the experimental I-V curve with the found correlations. Figure shown below the seven experimental I-V curves compared to the respective approximations found with the correlations.

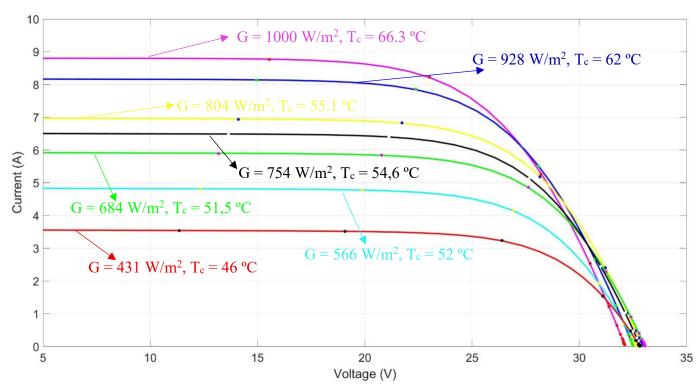


Figure 6-6: I-V curves experimentally measured (dots) and trend estimated with the correlation.

The model trends fit the experimental I-V curve with a good approximation for all the levels of irradiance.

6.3 Power Validation

The maximum power experimental data are compared to the maximum power estimated data from the two models (i.e. LM, and Osterwald). This comparison is performed in two ways. The first analysis is performed on a single day. Figure below shows the shape of the power during a day. They overestimate the experimental power especially during the central hour. In particular, the LM method presents a NRMSE 4.59% for that day. On the other hand, the Osterwald method overestimates even

more the experimental data. In this case, the NRMSE value is 6.14%. In summary, the use of the proposed correlation method leads to a reduction of the NRMSE, compared to the Osterwald method.

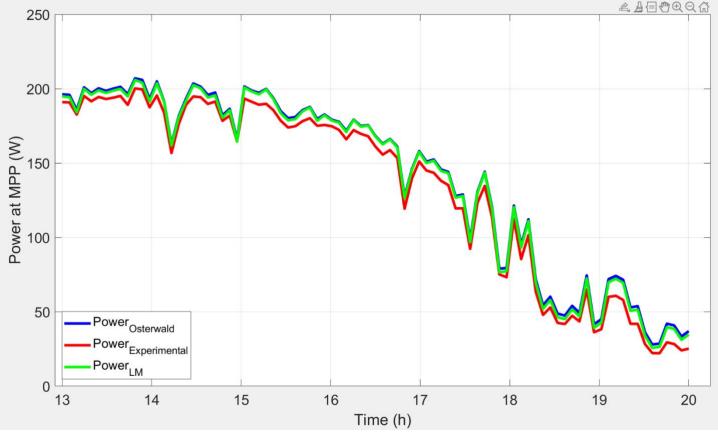


Figure 6-7: Comparison of power estimation for one day. LM and OM are overlapped.

In particular, a set of 85 curves is obtained with the LM algorithm. The most significant error on the energy with the LM dataset is respective in power profile. The curve estimated with LM is closer to experimental data than the Osterwald one.

7 PV Module: Luxor Results

The analysis of the monocrystalline silicon module of Luxor will be going to be present in this chapter. This will include the results of parameter extraction, moreover, the founded correlations for each parameter. Lastly, the module power and energy results will be shown. The analysis is carried out with the optimization method, the Levenberg – Marquardt (LM).

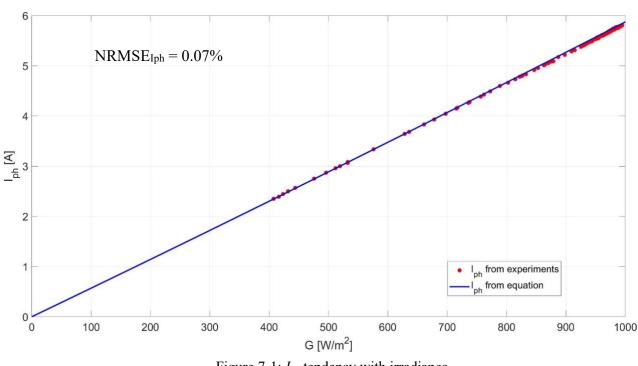
7.1 Parameters Extraction

The goal of the parameter's extraction procedure is to obtain a set of parameters that can approximate as best as possible the I-V curve in analysis using the explicit transcendental equation. This process has been applied to all 198 curves. Nonetheless, after the extraction, the parameters were filtered to remove those affected by overfitting. The following filters have been applied:

- 5 parameters extraction model.
- Optimization algorithm: LM (tolerance, No. of iteration is 1000).
- Error on Maximum Power below 2%.
- NRMSE below 0.02.
- Series Resistance below 0.8Ω .
- Shunt Resistance below 20000 Ω .

In the end, the feasible parameters left were 126 for Levenberg – Marquardt.

7.2 Parameters Correlation


The extracted parameters have been used to estimate the correlations that describe their behaviours as a function of the atmospheric conditions. In particular, the procedure has been applied to the parameters extracted with the LM method; since all the parameters will be analysed separately to discuss the accuracy of the correlations and the physical meaning associated with each behaviour. Nonetheless, the coefficients of the correlations obtained from the non-linear regressions are summarised in the following tables.

	$I_{ph}(A)$	$I_0(A)$	n (-)	$R_{s}(\Omega)$	$R_{sh}(\Omega)$
a	5.74	1.52×10^{-09}	085	0.35	5112.13
b			$2.27 \cdot 10^{-04}$	0.115	
c			$2.63 \cdot 10^{-04}$		

Table 7-1: Coefficients of the correlations with LM method for Sharp module.

The correlations estimate how the five parameters vary concerning the irradiance and cell temperature. The trend of each parameter is graphically presented for LM optimized method. The parameters are represented in the following order: photogenerated current, diode saturation current, diode ideality factor, series resistance and shunt resistance.

Firstly, the photogenerated current (I_{ph}) presents a primary dependence on irradiance. It can be observed that the reliance on cell temperature is negligible. In addition, the correlation equation comes from the equation. The correlation optimizes the coefficient while it is taken from the manufacturer datasheet. The figure below clearly shows the irradiance tendency respectively for LM.

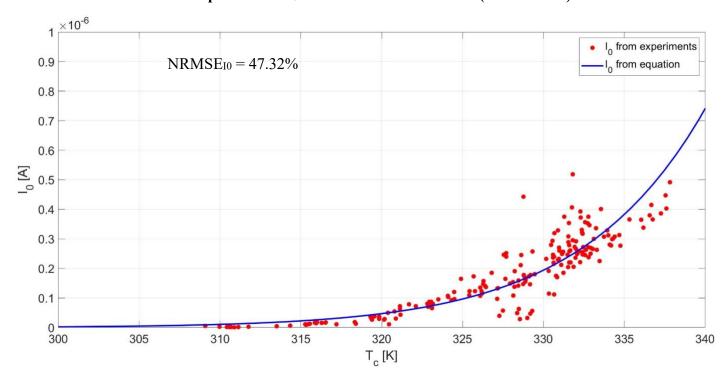

Experimental Iph vs Correlation Prediction

Figure 7-1: *I_{ph}* tendency with irradiance

$$I_{ph} = 5.74 \cdot \left(1 + \left(5.3 \cdot 10^{-4} \cdot (T_c - T_{c,STC}) \right) \right) \cdot \frac{G}{G_{STC}}$$

The red dots show the I_{ph} values from the LM optimization (i.e., experimental) while the blue line shows the trend of the correlation. The goodness of the correlation is confirmed by the NRMSE value of 0.07%.

Secondly, the diode saturation current (I_0) presents only a dependence on the cell temperature. The correlation equation comes from the equation. The $I_{0,STC}$ and χ coefficients are optimized by the correlation. Figure below shows this tendence.

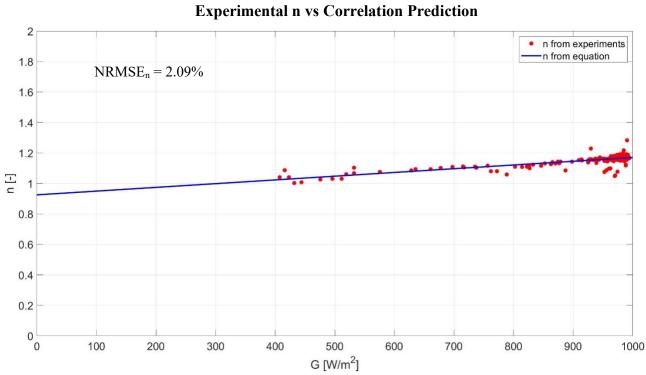

Experimental I₀ vs Correlation Prediction (LM method)

Figure 7-2: I_0 tendency with temperature.

$$I_0 = 1.52 \cdot 10^{-09} \cdot \left(\frac{T_c}{T_{c,STC}}\right)^3 \cdot \exp((\frac{E_{g,STC}}{T_{STC}} - \frac{E_g(T_c)}{T_c}) \cdot \frac{1}{k_B})$$

The red dots indicate the *I*₀ values from the LM optimization (i.e., experimental) while the blue line shows the trend of the correlation in the above equation. The goodness of the correlation is confirmed by the NRMSE value of 47.32%. Moreover, this value is typical for the diode saturation current correlation.

Thirdly, the diode ideality factor (n) presents low variation with irradiance and cell temperature. The correlation equation comes from the equation. In addition, the a, b and c coefficients are optimized by the correlation. Figure below evidently show the irradiance and temperature tendencies respectively for LM methods.

Experimental n vs Correlation Prediction

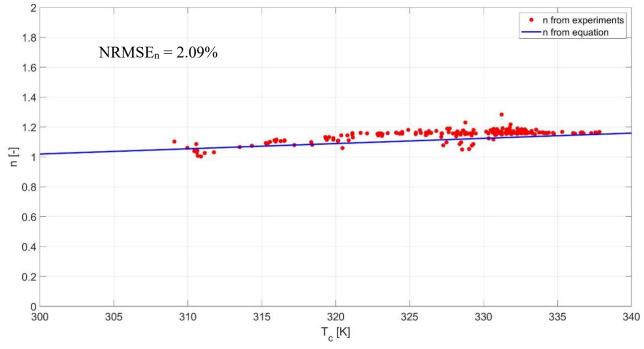
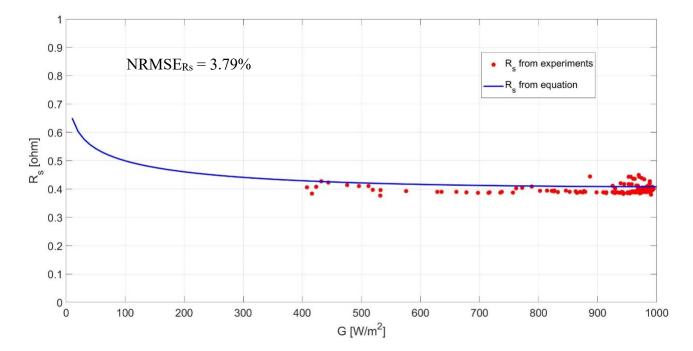
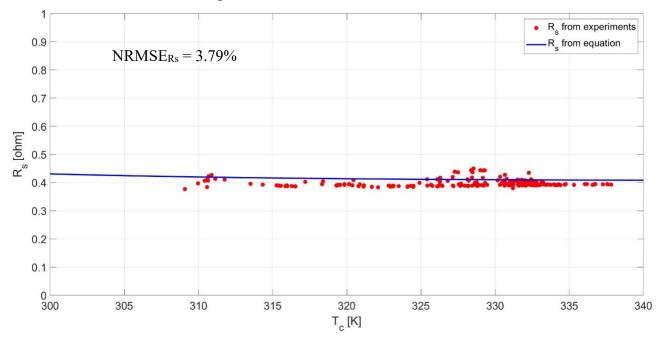



Figure 7-3: n tendency with irradiance and temperature.


$n = 0.85 + 2.27 \cdot 10^{-04} \cdot G + 2.63 \cdot 10^{-04} \cdot T_c$

The red dots highlight the n values from the LM optimization (i.e. experimental) while the blue line shows the trend of the correlation in the above equation. The goodness of the correlation is confirmed by the NRMSE value of 2.09%. Finally, this value is typical for the diode ideality factor correlation. The ideality factor shows an increased tendency with both irradiance and temperature.

Fourthly, the series resistance (R_s) shows variation with irradiance and cell temperature. The correlation equation comes from the equation. The $R_{s,STC}$ and λ_{Rs} coefficients are optimized by the correlation. Figure below evidently report the irradiance and temperature tendencies respectively for LM method.

Experimental Rs vs Correlation Prediction

Figure 7-4: R_s tendency with irradiance and temperature.

$$R_s = 0.35 \cdot \frac{T_c}{T_{c,STC}} \cdot \left(1 - 0.115 \cdot \log\left(\frac{G}{G_{STC}}\right)\right)$$

The red dots show the R_s values from the LM optimization (i.e. experimental) while the blue line shows the trend of the correlation in the above equation. The goodness of the correlation is confirmed by the NRMSE value of 3.79%. This value is typical for the series resistance correlation. The series resistance shows an increased tendency with both irradiance and temperature.

Finally, the shunt resistance (R_{sh}) shows variation with irradiance and cell temperature. The shunt resistance presents a very disperse behaviour both with irradiance and temperature. Nonetheless, the non-linear regression has been applied anyway to find the correlations by optimizing a $(R_{sh,STC})$. The final result are computed but due to the high dispersion of the points it has been decided to not include the graphical representation since it has no clear tendency was observable while the NRMSE value

of 182.11% is acceptable. The equations describing the behaviour of the shunt resistance is presented below.

$$R_{sh} = 5112 \cdot \frac{G_{STC}}{G}$$

The last analysis on the results of the correlation consists in redrawing the experimental I-V curve with the found correlations. Figure below shows the seven experimental I-V curves compared to the respective approximations found with the correlations.

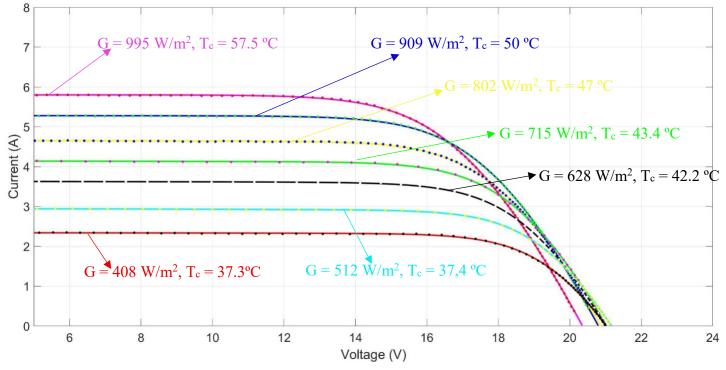


Figure 7-5: I-V curves experimentally measured (dots) and trend estimated with the correlation.

The model trends fit the experimental I-V curve with a good approximation for all the levels of irradiance.

7.3 Power Validation

The maximum power experimental data are compared to the estimated power from the two models (i.e. LM, and Osterwald). This comparison is performed in two ways, and the first analysis is performed on a single day. The figure below shows the shape of the power during a day. They overestimate the experimental power, especially during the central hour. In particular, the LM method presents an NRMSE of 3.36% for that day.

On the other hand, the Osterwald method overestimates, even more, the experimental data. In this case, the NRMSE value is 3.38%. In summary, using the proposed correlation method reduces the NRMSE compared to the Osterwald method.

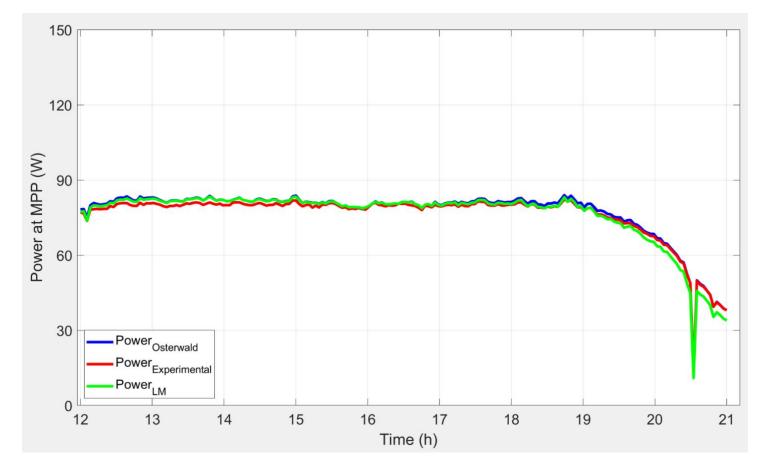


Figure 7-6: Comparison of power estimation for one day. LM and OM are overlapped.

In particular, a set of 126 curves is obtained with the LM algorithm, while the most significant error on the MPP with LM dataset coincide with the error on energy

8 Conclusions

The operating function of photovoltaic generators can be illustrated using an equivalent circuit with variable parameters, which can be assumed to be constant. Moreover, the knowledge of their dependence concerning irradiance and cell temperature permits the prediction of the generated power of photovoltaic arrays in any environmental condition. This work is a part of a joint activity between Politecnico di Torino and the Universidad de Jaén (Spain): my main task of this thesis has been developed in Universidad de Jaén.

In the first part of the thesis, an ad hoc Graphical User interface (GUI) of MATLAB was used to analyse the PV module; the GUI tools allows to perform four operations: the pre-processing of the dataset; the extraction of the circuit parameters; the identification of equations, aiming at describing the dependence of each parameter concerning irradiance and cell temperature; and the comparison between experimental energy and the predicted value with several methods.

In the second part of this thesis, the GUI is applied to two monocrystalline silicon technology with high efficiencies photovoltaic modules such as Sharp NU series with a rated power of 245W and Luxor with a rated capacity of 100W. For the module of Luxor, 198 I-V curves are selected for the parameter's extraction. The remaining data are excluded due to different factors (measurement errors, mismatch conditions etc.). First, the performance of the photovoltaic module is described by the single diode model, which is an equivalent circuit consisting of five parameters. Then, the extraction procedure is performed using the optimisation method: the Levenberg-Marquardt (LM) algorithms.

Moreover, two additional filters are applied to the results of the parameters extraction to exclude the parameters sets leading to a high error in the Maximum Power Point (MPP). In particular, a group of 126 curves is obtained with the LM algorithm, while the most significant error on the MPP

with LM dataset coincide with the error on energy. Starting from these two datasets, the equations describing the dependence of each parameter concerning irradiance and cell temperature are identified. The correlations show similar results to the analysed datasets. Regarding the most important parameters, the photogenerated current and the series resistance present, respectively, a Normalised Root Mean Square Error (NRMSE) of 0.07% and 3.79% for the LM datasets.

In comparison, the NRMSE of the reverse saturation current is 47.32%. In the last part of the analysis, the experimental energy and the predicted value with optimised equations are compared. Moreover, the proposed correlations are compared to the Osterwald Model (OM), the simplest and most common theoretical model used in literature to predict PV production. The results show that the LM equations predict PV energy with the lowest error, providing a deviation from experimental data of 3,36%, while the OM results exhibit an error of 3,38%.

Similarly, in the same way as above, 87 I-V curves are selected for the parameter's extraction in the Sharp module. Likewise, the remaining data are excluded due to errors or environmental conditions. Moreover, the Levenberg-Marquardt algorithm is used for optimisation at the parameter's extraction step. In addition, two additional filters are applied to the results of the parameters extraction to exclude the parameters sets leading to a high error in the Maximum Power Point (MPP). In particular, a group of 85 curves is obtained with the LM algorithm. The most significant error on the energy with the LM dataset is respective in power profile. The curve estimated with LM is closer to experimental data than the Osterwald one. The parameters correlations show results of this dataset the most essential parameters, the photogenerated current, and the series resistance present; respectively, a Normalised Root Mean Square Error (NRMSE) of 1.09% and 1.60% for the LM datasets.

In comparison, the NRMSE of the reverse saturation current is 23.13%. Moreover, the proposed correlations are compared to the Osterwald Model (OM), the simplest and most common theoretical model used in literature to predict PV production. The results show that the LM equations predict PV energy with the lowest error, providing a deviation from experimental data of 4.59%, while the OM results exhibit an error of 6.14%.

9 References

[1] B. Anco S, Photovoltaics for Commercial and Utilities Power Generation, Lilburn (GA, USA): Fairmont Press, Inc., 2012.

[2] F. Spertino, Lezioni di "Solar Photovoltaic System', Torino: Politecnico di Torino, 2019/2020.

[3] M. Alonso Abella, Sistemas fotovoltaicos: introducción al diseño y dimensionado de instalaciones solares fotovoltaicas, Madrid: SAPT Publicaciones Técnicas S.L., 2005.

[4] D. Murgia, «Tecniche per l'identificazione dei difetti e per l'analisi delle performance nei moduli fotovoltaici,» Politecnico di Torino, Tesi di Laurea Magistrale, 2018.

[5] A. Scaiola, «Innovative technique to estimate the performance of a photovoltaic generator using the parameters of the single diode model equivalent circuit, » Politecnico di Torino, Tesi di Laurea Magistrale, 2019.

[6] [Online]. Available: <u>https://www.futurasun.com/wp-content/uploads/2018/</u> 04/pannello-monocristallino_dettaglio.jpg.

[7] National Renewable Energy Laboratory (NREL), «Champion Photovoltaic Module Efficiency Chart,» NREL, 2019.

[8] [Online]. Available: <u>http://www.fotovoltaicosulweb.it/immagini/upload/</u> guida/policristalline_panels1.jpg.

[9] SANYO Component Europe GmbH Solar Division, «HIT-240HDE4 HIT- 235HDE4 datasheet, » SANYO Component Europe GmbH, 2009.

[10] [Online]. Available: <u>https://www.vpsolar.com/wp-content/uploads/2018/04/</u> tecnologia-perc-funzionamento.jpg. [11] [Online]. Available: <u>https://zeroemission.eu/wp-content/uploads/2020/02/</u> Thin-film-Solar-Cell-425x405.jpg.

[12] [Online]. Available: https://opentextbc.ca/chemistry/wp-content/uploads/sites/150/2016/05/CNX_Chem_08_04_Band.jpg.

[13] [Online]. Available: <u>https://solarconsultant.ca/wp-content/uploads/</u> 2017/05/Silicon-Solar-Cell-Construction.png.

[14] U. Gangopadhyay, S. Das and S. Jana, "State of the Art of Photovoltaic Technology," in International Conference on Solar Energy Photovoltaics, Bhubaneswar, India, 2013.

[14] National Renewable Energy Laboratory (NREL), "Best Research-Cell Efficiency Chart," NREL, 2020.

[15] S. Mishra e D. Sharma, «Control of photovoltaic technology, » in *Electric Renewable Energy Systems*, Elsevier, 2016, pp. 457-486.

[16] A. Haque, «Solar energy, » in *Electric Renewable Energy Systems*, Elsevier, 2016, pp. 40-59.

[17] [Online]. Available: https://www.etechnog.com/2019/05/diode-used-solarpanel-relay.html.

[18] [Online]. Available: <u>https://jerseyfirstis.com/wp-content/uploads/2018/</u> 06/solarpanel-inspection.jpg

[19] S. Gulkowski, J. V. Munoz Diez, J. Aguilera Tejero and G. Nofuentes, "Energy," Energy, vol. 172, pp. 380-390, 2019.

[20] D. W. Marquardt, «An Algorithm for Least-Squares Estimation of Nonlinear Parameters, » *Journal of the Society for Industrial and Applied Mathematics*, vol. 11, n. 2, pp. 431-441, 1963.

[21] J. A. Nelder e R. Mead, «A simple method for function minimization, » *The Computer Journal*, vol. 7, n. 4, pp. 308-313, 1965.

[22] G. Chicco, «Note sull'analisi e sull'ottimizzazione dei sistemi elettrici di distribuzione,» Politecnico di Torino, 2004.

[23] G. Blaesser and D. Munro, "Guidelines for the Assessment of Photovoltaic Plants, Document C, Initial and Periodic Tests on PV Plants," Office for Official Publications of the European Communities, Ispra, Italia, 1995.

[24] E. Durán, M. Piliougine, M. Sidrach-de-Cardona, J. Galán e J. Andújar, «Different methods to obtain the I–V curve of PV modules: A review,» in 2008 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 2008.

[25] F. Spertino, J. Ahmad, A. Ciocia, P. Di Leo, A. F. Murtaza e M. Chiaberge, «Capacitor charging method for I–V curve tracer and MPPT in photovoltaic systems,» *Solar Energy*, vol. 119, pp. 461-473, 2015.

[26] R. Núñez, C. Domínguez, S. Askins, M. Victoria, R. Herrero, I. Antón e G. Sala, «Determination of spectral variations by means of component cells useful for CPV rating and design,» *Progress in Photovoltaics*, vol. 24, n. 5, pp. 663-679, May 2016.

[27] B. García Domingo, «Análisis, caracterización y modelado del comportamiento en exterior de módulos de concentración fotovoltaica,» Universidad de Jaén, Tesis Doctoral, 2014.

[28] Z. Stokes e A. Kaknevicius, «Reverse Current Protection in Load Switches, » TexasInstruments Inc., May 2016.

[29] S. Gulkowski, J. V. Muñoz Diez, J. Aguilera Tejero e G. Nofuentes, «Computational modeling and experimental analysis of heterojunction with intrinsic thin-layer photovoltaic module under different environmental conditions, *» Energy*, vol. 172, pp. 380-390, 2019.

[30] F. Spertino, A. Ciocia, P. Di Leo, S. Fichera, G. Malgaroli e . A. Ratclif, «Toward the Complete Self-Sufficiency of an nZEBs Microgrid by Photovoltaic Generators and Heat Pumps: Methods and Applications, » *IEEE Transactions On Industry Applications*, vol. 55, n. 6, pp. 7028-7040, Nov.-Dec. 2019..

[31] M. Norton, A. M. Gracia Amillo e R. Galleano, «Comparison of solar spectral irradiance 2015

[32] F. Ghani, M. Duke e J. Carson, «Numerical calculation of series and shunt resistance of a photovoltaic cell using the Lambert W-function: Experimental evaluation, *» Solar Energy*, vol. 87, pp. 246-253, January 2013.

[33] A. Molina-Garcia, M. Bueso, M. Kessler, J. Guerrero-Perez, J. Fuentes and E. Gomez-Lazaro, "CdTe thin-film solar module modeling using a non-linear regression approach," in 17th Power system computation Conference, Stockholm (Sweden), 2011.

[34] R. Majdoul, E. Abdelmounim, M. Aboulfatah, A. w. Touati, A. Moutabir e A. Abouloifa, «Combined analytical and numerical approach to determine the four parameters of the photovoltaic cells models, » in 2015 International Conference on Electrical and Information Technologies (ICEIT), Marrakech, 2015.

[35] A. K. Tossa, Y. Soro, Y. Azoumah e D. Yamegueu, «A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions, *» Solar Energy*, vol. 110, pp. 543-560, 2014.

[36] M. Wolf e H. Rauschenbach, «Series resistance effects on solar cell measurements, » *Advanced Energy Conversion*, vol. 3, n. 2, pp. 455-479, 1963.

[37] C. R. Osterwald, «Translation of device performance measurements to reference

conditions, » Solar Cells, vol. 18, n. 3-4, pp. 269-279, September-October 1985.

10 Annexes

10.1 Annex A: Technical datasheet of measurement equipment

A.1 Technical datasheet Agilent 34411A Multimeters 10.1.1

Measurement Characteristics

DC Voltage

Measurement Method: Continuously integrating multi-slope IV A/D converter 0.0002% of reading Linearity: (10 V range) + 0.0001% of range

Input Resistance:

0.1 V, 1 V, 10 V 10 MΩ or > 10 GΩ (Selectable) 10 MΩ ± 1% Ranges 100 V, 1000 V Ranges (Fixed)

Input Bias Current: < 50 pA at 25 °C Input Protection: 1000 V DC CMRR: 140 dB¹

True RMS AC Voltage

Measurement Method: AC-coupled True RMS measurement.

Digital sampling with anti-alias filter. Crest Factor: No additional error for crest factors < 10. Limited by peak input and 300

kHz bandwidth Peak Input:

300% of range or 1100 V

Overload Ranging: Will select higher range if peak input overload is detected during auto range. Overload is reported in manual ranging.

AC CMR: 70 dB²

Maximum Input: 400 Vdc, 1100 Vpk Input Impedance: $1 \text{ M}\Omega \pm 2\%$ in parallel with < 150 pF

Input Protection: 750 V_{rms} all ranges

Resistance

Measurement Method:

Selectable 2-wire or 4-wire Current source referenced to LO input. Offset Compensation:

Selectable on the 100 Ω , 1 k Ω , and 10 k Ω ranges

Max. Lead Resistance (4-wire): 10% of range per lead for 100 $\Omega,$ 1 k $\Omega.$ 1 kΩ per lead on all other ranges

Input Protection: 1000 V on all ranges

DC Current

Current Shunt: 200 Ω for 100 µA, 1 mA 2 Ω for 10 mA, 100 mA

0.1 Ω for 1 A. 3 A Input Protection: 3 A, 250 V fuse

For 1 k Ω unbalanced in LO lead, ± 500 V peak maximum

For 1 kΩ unbalanced in LO lead and < 60 Hz, ± 500 V peak maximum

Maximum rate for DCV, DCI, and resistance functions (using zero settling delay, autozero off, manual range)

4 34411A only True RMS AC Current

Measurement Method: AC-coupled True RMS measurement. Directly coupled to the fuse and shunt.

Digital sampling with anti-alias filter. Current Shunt:

200 Ω for 100 μA, 1 mA 2 Ω for 10 mA, 100 mA 0.1 Ω for 1 A, 3 A

Maximum Input: The peak value of the DC + AC current must

be < 300% of range. The RMS current must be < 3 A including the DC current content. Input Protection: 3 A, 250 V fuse

Frequency and Period

Measurement Method: Reciprocal-counting technique. AC-coupled input using the AC voltage measurement

function Input Impedance:

 $1 \text{ M}\Omega \pm 2\%$ in parallel with < 150 pF Input Protection: 750 V_{rm} all ranges

Capacitance

Measurement Method: Current input with measurement of resulting ramp. Connection Type: 2-wire

Temperature

Thermistor: 2.2 kΩ, 5 kΩ, and 10 kΩ **RTD:** $\alpha = 0.00385$ R_o from 49 Ω to 2.1 k Ω

Continuity/Diode Test

Response Time: 300 samples/sec with audible tone Continuity Threshold: Fixed at 10Ω

Operating Characteristics Maximum readings/second

	Digits		
Function ³	4.5	5.5	6.5
DCV	50 k ⁴	10 k	1 k
2-wire Ω	50 k ⁴	10 k	1 k
DCI	50 k ⁴	10 k	1 k
Frequency	500	90	10
Period	500	90	10
Filter setting	fast	med	slow
ACV	500	150	50
ACI	500	150	50

Additional 34411A Specifications

Resolution: See table on page 4 Overall Bandwidth DCV & DCI: 15 kHz typical @ 20 µs aperture (-3 dB) Triggering: Pre/Post, Int/Ext, Pos/Neg

Timebase Resolution: 19.9524 µs 0.01% accuracy

Trigger Jitter:

2 µs (p-p), 20 µs (p-p) when pre-triggered

Spurious-Free Dynamic Range

Function DCV	Range	Spur-Free	SNDR	
	1 V	-75 dB	60 dB	
	10 V ¹	-70 dB	60 dB	
	100 V	-75 dB	60 dB	

Triggering and Memory

Reading Hold Sensitivity: 1% of reading Samples per Trigger: 1 to 50,000 (34410A) 1 to 1,000,000(34411A)

Trigger Delay: 0 to 3600 s (20 µs step size)

External Trigger: Programmable edge, Low-power TTL compatible Delay: < 1 µs Max rate: 5,000/s Jitter: < 1 µs Min Pulsewidth: 1 µs Voltmeter Complete: 3 V Logic output,

2 μs pulse with programmable edge Nonvolatile Memory: 50,000 readings

Volatile Memory: 50,000 readings (34410A) 1,000,000 readings (34411A) Sample Timer:

 Range:
 0 to 3600 s (20 μs step sizes)

 Jitter:
 < 100 ns</td>

General Specifications

Power Supply: 100 V/120 V/220 V/240 V ± 10%

Power Line Frequency: 45 Hz to 66 Hz and 360 Hz to 440 Hz, Automatically sensed at power-on

Power Consumption: 25 VA peak (16 W average)

Operating Environment: Full accuracy for 0 °C to 55 °C, 80% R.H. at 40 °C non-condensing Storage Temperature: -40 °C to 70 °C

Weight: 3.72 kg (8.2 lbs)

Safety: IEC 61010-1, EN 61010-1, UL 61010-1, CAN/CSA-C22.2 No. 61010-1, Refer to Declarations of Conformity for current revisions. Measurement CAT II 300 V, CAT I 1000 V. Pollution Degree 2

EMC: IEC 61326, EN 61326, CISPR 11, ICES-001, AS/NZS 2064.1, Refer to Declaration of Conformity for current revisions.

Vibration & Shock: MIL-T-28800E, Type III, Class 5 (Sine Only)

LXI Compliance: LXI Class C, ver. 1.0

Warranty: 3 year standard

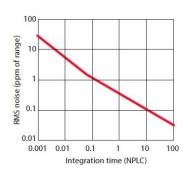
A-to-D Converter Noise Performance

Integration Time (NPLC)	Resolution (ppm of range) ¹	Normal Mode Rejection (dB) ²	Readings/Second ⁴
0.0015	30	0	50,000
0.0025	15	0	25,000
0.006	6	0	10,000
0.02	3	0	3,000
0.06	1.5	0	1,000
0.2	0.7	0	300
1	0.3	55	60 (50)
2	0.2	110 ³	30 (25)
10	0.1	110 ³	6 (5)
100	0.03	110 ³	0.6 (0.5)

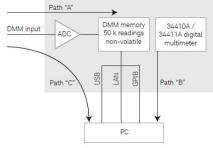
See manual for additional noise characteristics. Normal mode rejection for power line frequency ± 0.1%. For power-line frequency ± 1% 75 dB and for ± 3% 55 dB.

2.

3.


4. Maximum rate with auto-zero off for 60 Hz and (50 Hz) operation.

5. Only available for the 34411A.


System Reading and Throughput Rates

DMM memory to PC (Maximum reading rate out of memory⁶ Drawing - Path B

Reading Format	GPIB Readings/s	USB 2.0 Readings/s	LAN (VXI-11) Readings/s	LAN (Sockets) Readings/s
ASCII	4,000	8,500	7,000	8,500
32-bit Binary	89,000	265,000	110,000	270,000
64-bit Binary	47,000	154,000	60,000	160,000

System Reading Architecture

Direct I/O Measurements (Single reading - measure and I/O time)6

Function	Resolution (NPLC)	GPIB ms	USB 2.0 ms	LAN (VXI-11) ms	LAN (sock- ets) ms	into Memory or to Direct I/O (Readings/s) Drawing – Path A or C
DCV/2-wire Resistance	0.006 (0.001)	2.6	2.9	4.6	3.2	10,000 (50,000)
ACV/ Frequency	Fast Filter 1 ms gate	10.0	10.0	10.0	10.0	500

 1/2 scale input signal, immediate trigger, trigger delay 0, auto-zero off, auto-range off, no math, null off, 60 Hz line frequency. Specifications are for 34410A or (34411A). See manual for performance on other functions.

System Performance

2	Function Change (ms) ⁷	Range Change (ms) ⁸ LAN/GPIB	Auto- range (ms) ⁹	Maximum External Trigger Rate	Maximum Internal Trigger Rate ¹⁰
DCV/2-wire Resistance	22	3.9/2.6	7.5	5,000/s	10,000/s (50,000/s)
ACV/ Frequency	37	6.5/6.4	19	500/s	500/s

Time to change from 2-wire Resistance to this specified function, or DCV to 2-wire Resistance using the SCPI "FUNC" command. 7.

Time to change from one range to the next higher range, ≤ 10 V, ≤ 10 MΩ. 8.

9 Time to automatically change one range and be ready for the new measurement, \leq 10 V, ≤ 10 MΩ.

10. Specifications are for 34410A or (34411A).

Accuracy Specifications ± (% of reading + % of range)¹

Function	Range ³	Frequency, Test Current or Burden Voltage	24 Hour ² Tcal ± 1 °C	90 Day Tcal ± 5 °C	1 Year Tcal ± 5 °C	Temperature Coefficient/°C 0 °C to (Tcal -5 °C) (Tcal +5 °C) to 55 °C
DC Voltage	100.0000 mV 1.000000 V 10.00000 V 100.0000 V 1000.000 V ⁴		0.0030 + 0.0030 0.0020 + 0.0006 0.0015 + 0.0004 0.0020 + 0.0006 0.0020 + 0.0006	0.0040 + 0.0035 0.0030 + 0.0007 0.0020 + 0.0005 0.0035 + 0.0006 0.0035 + 0.0006	0.0050 + 0.0035 0.0035 + 0.0007 0.0030 + 0.0005 0.0040 + 0.0006 0.0040 + 0.0006	0.0005 + 0.0005 0.0005 + 0.0001 0.0005 + 0.0001 0.0005 + 0.0001 0.0005 + 0.0001
True RMS AC Voltage ⁵	100.0000 mV to 750.000 V	3 Hz – 5 Hz 5 Hz – 10 Hz 10 Hz - 20 kHz 20 kHz – 50 kHz 50 kHz – 100 kHz 100 kHz – 300 kHz	0.50 + 0.02 0.10 + 0.02 0.02 + 0.02 0.05 + 0.04 0.20 + 0.08 1.00 + 0.50	0.50 + 0.03 0.10 + 0.03 0.05 + 0.03 0.09 + 0.05 0.30 + 0.08 1.20 + 0.50	0.50 + 0.03 0.10 + 0.03 0.06 + 0.03 0.10 + 0.05 0.40 + 0.08 1.20 + 0.50	0.010 + 0.003 0.008 + 0.003 0.005 + 0.003 0.010 + 0.005 0.020 + 0.008 0.120 + 0.020
Resistance ⁶	100.0000 Ω 1.000000 kΩ 100.0000 kΩ 1.000000 kΩ 1.000000 MΩ 10.00000 MΩ 100.0000 MΩ 1.000000 GΩ	1 mA 1 mA 100 μA 10 μA 5 μA 500 nA 500 nA 500 nA 10 MΩ 500 nA 10 MΩ	$\begin{array}{c} 0.0030 + 0.0030\\ 0.0020 + 0.0005\\ \textbf{0.0020} + 0.0005\\ 0.0020 + 0.0005\\ 0.0020 + 0.0010\\ 0.0100 + 0.0010\\ 0.200 + 0.001\\ 2.000 + 0.001\\ \end{array}$	0.008 + 0.004 0.007 + 0.001 0.007 + 0.001 0.007 + 0.001 0.010 + 0.001 0.030 + 0.001 0.600 + 0.001	0.010 + 0.004 0.010 + 0.001 0.010 + 0.001 0.010 + 0.001 0.012 + 0.001 0.040 + 0.001 0.800 + 0.001	0.0006 + 0.0005 0.0006 + 0.0001 0.0006 + 0.0001 0.0010 + 0.0002 0.0030 + 0.0004 0.1000 + 0.0001 1.0000 + 0.0001
DC Current	100.0000 μA 1.00000 mA 10.0000 mA 100.0000 mA 1.000000 A 3.000000 A	< 0.03V < 0.3 V < 0.03V < 0.3 V < 0.8 V < 2.0 V	0.010 + 0.020 0.007 + 0.006 0.007 + 0.020 0.010 + 0.004 0.050 + 0.006 0.100 + 0.020	0.040 + 0.025 0.030 + 0.006 0.030 + 0.020 0.030 + 0.005 0.080 + 0.010 0.120 + 0.020	0.050 + 0.025 0.050 + 0.006 0.050 + 0.020 0.050 + 0.005 0.100 + 0.010 0.150 + 0.020	0.0020 + 0.0030 0.0020 + 0.0005 0.0020 + 0.0020 0.0020 + 0.0005 0.0050 + 0.0010 0.0050 + 0.0020
True RMS AC Current ⁷	100.0000 μA to 3.00000 A	3 Hz - 5 kHz 5 kHz - 10 kHz	0.10 + 0.04 0.20 + 0.04	0.10 + 0.04 0.20 + 0.04	0.10 + 0.04 0.20 + 0.04	0.015 + 0.006 0.030 + 0.006
Frequency or Period	100 mV to 750 V	3 Hz – 5 Hz 5 Hz – 10 Hz 10 Hz – 40 Hz 40 Hz – 300 kHz	0.070 + 0.000 0.040 + 0.000 0.020 + 0.000 0.005 + 0.000	0.070 + 0.000 0.040 + 0.000 0.020 + 0.000 0.006 + 0.000	0.070 + 0.000 0.040 + 0.000 0.020 + 0.000 0.007 + 0.000	0.005 + 0.000 0.005 + 0.000 0.001 + 0.000 0.001 + 0.000
Capacitance ⁸	1.0000 nF 10.000 nF 100.00 nF 1.0000 μF 10.000 μF	500 nA 1 μA 10 μA 10 μA 100 μA	0.50 + 0.50 0.40 + 0.10 0.40 + 0.10 0.40 + 0.10 0.40 + 0.10 0.40 + 0.10	0.50 + 0.50 0.40 + 0.10 0.40 + 0.10 0.40 + 0.10 0.40 + 0.10	0.50 + 0.50 0.40 + 0.10 0.40 + 0.10 0.40 + 0.10 0.40 + 0.10 0.40 + 0.10	0.05 + 0.05 0.05 + 0.01 0.01 + 0.01 0.01 + 0.01 0.01 + 0.01
Temperature ⁹ RTD Thermistor	-200 °C to 600 °(-80 °C to 150 °C		0.06 °C 0.08 °C	0.06 °C 0.08 °C	0.06 °C 0.08 °C	0.003 °C 0.002 °C
Continuity	1000.0 Ω	1 mA	0.002 + 0.010	0.008 + 0.020	0.010 + 0.020	0.0010 + 0.0020
Diode Test ¹⁰	1.0000 V	1 mA	0.002 + 0.010	0.008 + 0.020	0.010 + 0.020	0.0010 + 0.0020

Specifications are for 90 minute warm-up and 100 PLC. 1

2. Relative to calibration standards.

20% overrange on all ranges, except DCV 1000 V, ACV 750 V, DCI and ACI 3 A ranges.

4. 5. For each additional volt over ± 500 V add 0.02 mV of error.

Specifications are for sineway input > 0.3% of range and > 1 mVrms. Add 30 μ V error for frequencies below 1 kHz. 750 VAC range limited to 8 x 107 Volts-Hz. For each additional volt over 300 Vrms add 0.7 mVrms of error. 6. Specifications are for 4-wire resistance measurements, or 2-wire using Math Null.

Without Math Null, add 0.2 Ω additional error in 2-wire resistance measurements.

7. Specifications are for sinewave input > 1% of range and > 10 μ Arms. Frequencies > 5 kHz are typical for all ranges. For the 3 A range (all frequencies) add 0.05% of reading + 0.02% of range to listed specifications. 8. Specifications are for 1-hour warm-up using Math Null. Additional errors may occur for non-film capacitors.

9. For total measurement accuracy, add temperature probe error.

10. Accuracy specifications are for the voltage measured at the input terminals only. 1 mA test current is typical. Variation in the current source will create some variation in the voltage drop across a diode junction.

A.2 Technical datasheet Agilent 34970A Datalogger 10.1.2

	Range ^[3]	Frequency, etc.	24 hour ^[2] 23 ±1°C	90 Day 23 ±5°C	1 Year 23 ±5°C	Temperature coefficient 0 - 18°C, 28 - 55°
DC voltage		,,,,,				
	100.0000 mV		0.0030 + 0.0035	0.0040 + 0.0040	0.0050 + 0.0040	0.0005 + 0.0005
	1.000000 V		0.0020 + 0.0006	0.0030 + 0.0007	0.0040 + 0.0007	0.0005 + 0.0001
	10.00000 V		0.0015 + 0.0004	0.0020 + 0.0005	0.0035 + 0.0005	0.0005 + 0.0001
	100.0000 V		0.0020 + 0.0006	0.0035 + 0.0006	0.0045 + 0.0006	0.0005 + 0.0001
	300.000 V		0.0020 + 0.0020	0.0035 + 0.0030	0.0045 + 0.0030	0.0005 + 0.0003
Frue RMS AC voltage	9 [4]					
	All ranges from 100.0000	3 Hz-5 Hz	1.00 + 0.03	1.00 + 0.04	1.00 + 0.04	0.100 + 0.004
	mV to 100.0000 V	5 Hz-10 Hz	0.35 + 0.03	0.35 + 0.04	0.35 + 0.04	0.035 + 0.004
		10 Hz-20 kHz	0.04 + 0.03	0.05 + 0.04	0.06 + 0.04	0.005 + 0.004
		20 kHz-50 kHz	0.10 + 0.05	0.11 + 0.05	0.12 + 0.05	0.011 + 0.005
		50 kHz-100 kHz	0.55 + 0.08	0.60 + 0.08	0.60 + 0.08	0.060 + 0.008
		100 kHz-300 kHz [5]	4.00 + 0.50	4.00 + 0.50	4.00 + 0.50	0.20 + 0.02
	300.0000 V	3 Hz-5 Hz	1.00 + 0.05	1.00 + 0.08	1.00 + 0.08	0.100 + 0.008
		5 Hz-10 Hz	0.35 + 0.05	0.35 + 0.08	0.35 + 0.08	0.035 + 0.008
		10 Hz-20 kHz	0.04 + 0.05	0.05 + 0.08	0.06 + 0.08	0.005 + 0.008
		20 kHz-50 kHz	0.10 + 0.10	0.11 + 0.12	0.12 + 0.12	0.011 + 0.012
		50 kHz-100 kHz	0.55 + 0.20	0.60 + 0.20	0.60 + 0.20	0.060 + 0.020
		100 kHz-300 kHz [5]	4.00 + 1.25	4.00 + 1.25	4.00 + 1.25	0.20 + 0.05
Resistance ^[6]						
	100.0000 Ω	1 mA current source	0.0030 + 0.0035	0.008 + 0.004	0.010 + 0.004	0.0006 + 0.0005
	1.000000 kΩ	1 mA	0.0020 + 0.0006	0.008 + 0.001	0.010 + 0.001	0.0006 + 0.0001
	10.00000 kQ	100 µA	0.0020 + 0.0005	0.008 + 0.001	0.010 + 0.001	0.0006 + 0.0001
	100.0000 kΩ	10 µA	0.0020 + 0.0005	0.008 + 0.001	0.010 + 0.001	0.0006 + 0.0001
	1.000000 MQ	5.0 µA	0.002 + 0.001	0.008 + 0.001	0.010 + 0.001	0.0010 + 0.0002
	10.00000 MΩ	500 nA	0.015 + 0.001	0.020 + 0.001	0.040 + 0.001	0.0030 + 0.0004
	100.0000 MQ	500 nA 10 MΩ	0.300 + 0.010	0.800 + 0.010	0.800 + 0.010	0.1500 + 0.0002
Frequency and period		SOO TA TO MA	0.000 - 0.010	0.000 - 0.010	0.000 - 0.010	0.1000 - 0.0002
requency and period	100 mV to 300V	3 Hz-5 Hz	0.10	0.10	0.10	0.005
		5 Hz-10 Hz	0.05	0.05	0.05	0.005
		10 Hz-40 Hz	0.03	0.03	0.03	0.001
		40 Hz-300 kHz	0.006	0.01	0.01	0.001
DC current (34901A	only)					
	10.00000 mA	<0.1 V burden	0.005 + 0.010	0.030 + 0.020	0.050 + 0.020	0.002+0.0020
	100.0000 mA	<0.6 V	0.010 + 0.004	0.030 + 0.005	0.050 + 0.005	0.002 + 0.0005
	1.000000 A	<2 V	0.050 + 0.006	0.080 + 0.010	0.100 + 0.010	0.005 + 0.0010
rue RMS AC current						
	10.00000 mA	3 Hz-5 Hz	1.00 + 0.04	1.00 + 0.04	1.00 + 0.04	0.100 + 0.006
	and ^[4]	5 Hz-10 Hz	0.30 + 0.04	0.30 + 0.04	0.30 + 0.04	0.035 + 0.006
	1.000000 A	10 Hz-5 kHz	0.10 + 0.04	0.10 + 0.04	0.10 + 0.04	0.015 + 0.006
	100.0000 mA ^[8]	3 Hz-5 Hz	1.00 + 0.5	1.00 + 0.5	1.00 + 0.5	0.100 + 0.06
		5 Hz-10 Hz	0.30 + 0.5	0.30 + 0.5	0.30 + 0.5	0.035 + 0.06
		10 Hz-5 kHz	0.10 + 0.5	0.10 + 0.5	0.10 + 0.5	0.015 + 0.06
Temperature	Туре	1-year accuracy [9]		Extended range 1-	year accuracy [9]	Temp coefficient/°C
Thermocouple [10]	В	1100 to 1820°C	1.2°C	400 to 1100°C	1.8°C	
	E	-150 to 1000°C	1.0°C	-200 to -150°C	1.5°C	
	J	-150 to 1200°C	1.0°C	-210 to -150°C	1.2°C	
	K	-100 to 1200°C	1.0°C	-200 to -100°C	1.5°C	
	N	-100 to 1300°C	1.0°C	-200 to -100°C	1.5°C	0.03°C
	R	300 to 1760°C	1.2°C	-50 to 300°C	1.8°C	
	S	400 to 1760°C	1.2°C	-50 to 400°C	1.8°C	
	T	-100 to 400°C	1.0°C	-200 to -100°C	1.5°C	
RTD	R0 from 49 Ω to 2.1 kΩ	-200 to 600°C	0.06°C	200 10-100 0	1.5	0.003°C
	The second secon	-80 to 150°C	0.08°C			0.002°C

34970A/34972A accuracy specifications ±(% of reading + % of range)^[1]

Includes measurement error, switching error, and transducer conversion error

Specifications are for 11 warm-up and or orgins, Stow ac Inter Relative to calibration standards
 20% over range on all ranges except 300 Vdc and ac ranges and 1 Adc and ac current ranges
 For sinewave input > 5% of range. For inputs from 1% to 5% of range and < 50 kHz, add 0.1% of range additional error
 Typically 30% of reading error at 1 MHz, limited to 1 x 108 V Hz

Find us at www.keysight.com

Construction
Construction<

Page 16

Measurement char	acteristics ^[7]	Operatin
DC voltage Measurement Method A/D linearity	Continuously Integrating Multi-slope III A-D converter 0.0002% of reading + 0.0001 % of range	Single cha Function
Input resistance 100 mV, 1 V, 10 V ranges 100 V, 300 V ranges Input bias current	Selectable 10 MΩ or > 10,000 MΩ 10 MΩ ±1% < 30 pA at 25°C	dcV, 2-wire
Input protection	300 V all ranges	Thermocou
True RMS AC voltage Measurement method	AC coupled True RMS – measures the AC component of the input with up to 300 Vdc of bias on any range Maximum of 5:1 at Full Scale	RTD, thermi
Additional crest factor errors (non-sinewave)	Crest Factor 1-2 0.05 % of reading Crest Factor 2-3 0.15 % of reading Crest Factor 3-4 0.30 % of reading Crest Factor 4-5 0.40 % of reading	acV
Input impedance Input protection	$1~\text{M}\Omega$ ±2% in parallel with 150 pF 300 Vrms all ranges	Frequency,
Resistance Measurement method	Selectable 4-wire or 2-wire Ohms	2
Offset compensation Maximum lead resistance	Current source referenced to LO input Selectable on 100 Ω , 1 k Ω , 10 k Ω ranges 10% of range per lead for 100 Ω and 1 k Ω ranges. 1 k Ω on all other ranges	[1] For 1 K [2] For por
Input protection	300 V on all ranges	[3] For pov [4] Readin
Frequency and period Measurement method Voltage ranges Gate time Measurement timeout	Reciprocal counting technique Same as AC Voltage function 1s, 100 ms, or 10 ms Selectable 3 Hz, 20 Hz, 200 Hz LF limit	[5] For fixe off, AZ[6] Maxim[7] Isolatio[8] 6½ dig
DC current Shunt resistance Input protection	5Ω for 10 mA, 100 mA; 0.1 Ω for 1 A 1 A 250 V fuse on 34901A module	
True RMS AC current Measurement method Shunt resistance Input protection	Direct coupled to the fuse and shunt. AC coupled True RMS measurement (measures the ac component only) 5Ω for 10 mA; 0.1 Ω for 100 mA, 1 A 1 A 250 V fuse on 34901A module	
Thermocouple Conversion Reference junction type Open thermocouple check	ITS-90 software compensation Internal, Fixed, or External Selectable per channel. Open > 5 kΩ	
Thermistor	44004, 44007, 44006 series	
RTD	$\pmb{\alpha}$ = 0.00385 (DIN) and $\pmb{\alpha}$ = 0.00391	
Measurement noise rejectio dc CMRR ac CMRR Integration time 200 plc/3.33s (4s) 100 plc/1.67s (2s) 20 plc/333 ms (400 ms) 10 plc/167 ms (200 ms) 2 plc/333.3 ms (40 ms) 1 plc/16.7 ms (20 ms) 4 plc/16.7 ms (20 ms) 2 plc/33.3 ms (40 ms) 1 plc/16.7 ms (20 ms) < 1 plc	n 60 (50) Hz ^[1] 140 dB 70 dB Normal mode rejection ^[2] 110 dB ^[3] 105 dB ^[3] 100 dB ^[3] 95 dB ^[3] 90 dB 60 dB 0 dB	

ing characteristics [4]

Function	Resolution ^[8]	34970A/34972A readings/sec
dcV, 2-wire resistance	61/2 digits (10 plc)	6 (5)
	51/2 digits (1 plc)	54 (47)
	41/2 digits (0.02 plc)	500
Thermocouple	0.1 °C (10 plc)	6 (5)
	0.1 °C (1 plc)	52 (47)
	(0.02 plc)	280
RTD, thermistor	0.01 °C (10 plc)	6 (5)
	0.1 °C (1 plc)	49 (47)
	1 °C (0.02 plc)	200
acV	61/2 Slow (3 Hz)	0.14
	61/2 Med (20 Hz)	1
	61/2 Fast (200 Hz)	8
	61/2 [6]	100
Frequency, period	61/2 digits (1 s gate)	1
	51/2 digits (100 ms)	9
	4½ digits (10 ms)	70

I KΩ unbalance in LO lead bower line frequency \pm 0.1% bower line frequency \pm 1% use 80 dB or \pm 3% use 60 dB ding speeds for 60 Hz and (50 Hz) operation fixed function and range, readings to memory, scaling and alarms λ ZERO OFF. USB datalogging OFF mum limit with de fault settling delays defeated tion voltage (ch-ch, ch-earth) 300 Vdc, ac rms digits = 22 bits, 5½ digits = 18 bits, 4½ digits = 15 bits

Find us at www.keysight.com

Page 17

A.3 Technical datasheet Agilent 34901A 20-Channel 10.1.3 **General Purpose Multiplexer**

Multiplexer selection guide

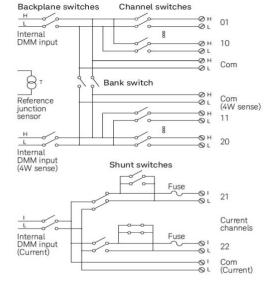
Choose between the broad functionality of the 34901A, the high speed scanning of the 34902A, or the single-ended density of the 34908A. These three modules are the only way to connect to the 34970A/34972A internal DMM. They can be used to scan with external instruments as well.

All multiplexer modules employ break-before-make scanning, ensuring only one closed channel (or channel pair) at a time. Multiple channel closures are allowed on the 34901A and 34902A modules when not configured for scanning.

The 34908A does not allow multiple channel closures at any time.

34901A

20-Channel General Purpose Multiplexer


- 60 ch/s scanning
- Two- and four-wire scanning
- Built-in thermocouple reference
- junction - 300 V switching

The Keysight 34901A is the most versatile multiplexer for general purpose scanning. It combines dense, multifunction switching with 60-channel/ second scan rates to address a broad spectrum of data acquisition applications.

Two- and four-wire channels can be mixed on the same module. Two additional fused inputs (22 channels total) route up to 1 A of current to the internal DMM, allowing ac and dc current measurements without the need for external shunt resistors.

Find us at www.keysight.com

10.1.4 A.5 Technical datasheet Kipp and Zonnen CMP11 Pyranometer

Technical Specifications

1		
	CMP10 CMP11	SMP10 SMP11
Classification to ISO 9060:2018	Spectrally Flat Class A	Spectrally Flat Class A
Sensitivity	7 to 14 µV/W/m²	-
Impedance	10 to 100 Ω	-
Expected output range (0 to 1500 W/m²)	0 to 20 mV	-
Maximum operational irradiance	4000 W/m ²	-
Analog output • V-version	-	0 to 1 V
Analog output range*	-	-200 to 2000 W/m ²
Analog output • A-version	-	4 to 20 mA
Analog output range*	-	0 to 1600 W/m²
Serial output	-	RS-485 Modbus®
Serial output range	-	-400 to 4000 W/m ²
Response time (63 %)	< 1.7 s	< 0.7 s
Response time (95 %)	< 5 s	< 2 s
Spectral range (20 % points)	270 to 3000 nm	270 to 3000 nm
Spectral range (50 % points)	285 to 2800 nm	285 to 2800 nm
Zero offsets (unventilated) (a) thermal radiation (at 200 W/m²) (b) temperature change (5 K/h)	< 7 W/m² < 2 W/m²	< 7 W/m² < 2 W/m²
Non-stability (change/year)	< 0.5 %	< 0.5 %
Non-linearity (100 to 1000 W/m²)	< 0.2 %	< 0.2 %
Directional response (up to 80 ° with 1000 W/m² beam)	< 10 W/m²	< 10 W/m ²
Spectral selectivity (350 to 1500 nm)	< 3 %	< 3 %
Tilt response (0 ° to 90 ° at 1000 W/m²)	< 0.2 %	< 0.2 %
Temperature response	< 1 % (-10 °C to +40 °C)	< 1 % (-20°C to +50 °C) < 2 % (-40 °C to +70 °C)
Field of view	180 °	180 °

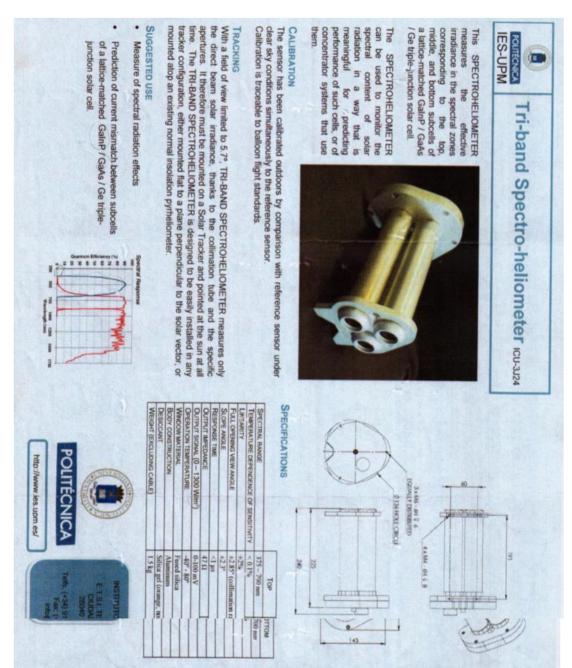
	< 0.1 °	< 0.1 °
Power consumption (at 12 VDC)	-	V-version: 55 mW A-version: 100 mW
Supply voltage		5 to 30 VDC
Software, Windows™	÷	SmartExplorer Software, for configuration, test and data logging
Detector type	Thermopile	Thermopile
Operating and storage temperature	e range -40 °C to +80 °C	-40 °C to +80 °C
Humidity range	0 to 100 %	0 to 100 %
MTBF (Mean Time Between Failure	> > 10 years	> 10 years **
Ingress Protection (IP) rating	67	67
	thermal collector testing, materia	Is testing collector testing, solar energy research, solar prospecting, materials testing, advanced meteorology and climate netw
	ations quoted are worst-case and/or maximum values. xplorer Software ** extrapolated after introduction in Ja	anuary 2012

10.1.5 A.6 Technical datasheet Kipp and Zonnen CHP1 Pyrheliometer

Chapter 10

Master Thesis

	Ø38 mm	Lemme Lemm
Specifications	CHP 1	SHP1
ISO 9060:1990 CLASSIFICATION	First Class	First Class
Response time (63 %)	< 1.7 s	< 0.7 s
Response time (95 %)	<5s	<2 s
Zero offsets due to		
temperature change (5 K/hr)	< 1 W/m ²	< 1 W/m ²
Non-stability (change/year)	< 0.5 %	< 0.5 %
Non-linearity (0 to 1000 W/m ²)	< 0.2 %	< 0.2 %
Temperature dependence of sensitivity	< 0.5 % (-20 °C to +50 °C)	< 0.5 % (-30 °C to +60 °C)
Sensitivity	7 to 14 µV/W/m ²	NA
Other specifications		
Analogue output	10 to 20 mV for 1400 W/m ²	-V version: 0 to 1 V -A version: 4 to 20 mA
Analogue output range	0 to 4000 W/m ²	-V version: -200 to 2000 W/m ^{2 (1)} -A version: 0 to 1600 W/m ²
Digital output	NA	2-wire RS-485, Modbus® protocol
Operating temperature	-40 °C to +80 °C	-40 °C to +80 °C
Full viewing angle	5° ±0.2°	5° ±0.2°
Maximum irradiance	4000 W/m ²	4000 W/m ²
Humidity	0 to 100 % RH	0 to 100 % RH
Spectral range (50 % points)	200 to 4000 nm	200 to 4000 nm
Required sun tracker accuracy	< 0.5° from ideal	< 0.5° from ideal
Weight (excluding cable)	0.9 kg	0.9 kg
Slope angle	1° ±0.2°	1° ±0.2°
Temperature sensor	Both Pt-100 and 10k thermistor as standard ⁽²⁾	Internal ⁽³⁾
Supply voltage	NA	5 to 30 VDC
Power consumption (at 12 VDC)	NA	-V version: 55 mW -A version: 100 mW
Expected daily uncertainty	< 1 %	< 1 %
Documentation	Calibration certificate traceable to WRR, multi-language in	
Recommended applications	High performance direct radiation monitoring for meteoro	logical stations or concentrated solar energy applications
⁽¹⁾ The analogue output range of SHP1 can be ⁽²⁾ Supplied with individual temperature dep ⁽³⁾ Output data individually temperature cor		2



Go to www.kippzonen.com for your local distributor

10.1.6 A.7 Technical datasheet Eko MS-700 Spectroradiometer

ЕКО	MS-700 Specifications (Ty	ypical)	
Sensor head	MS-700	MS-700 DNI	
Wavelength range	350 to 1050 nm		
Wavelength interval	3.3 nm		
Spectral resolution FWHM	10 nm		
Wavelength accuracy	<0.3 nm		
Exposure time	10 ms to 5 s		
Temp. dependency (-20° to 50°C)	<±1%		
Temperature control	$25 \pm 5^{\circ}\mathrm{C}$		
Cosine response (0° to 80°)	<7%	_	
Aperture	180°	5°	
Slope angle	_	1°	
Stray light	0.15%		
Window material	Optical glass	Quartz glass	
Communication	RS-422 (Between head and power supply) 10 m (Optional max. 30 m) 12 Vdc, 50 VA (power supply) -20 to +50		
Cable length			
Power requirements			
Operating temperature range (°C)			
Dimensions (sensor)	200(φ)×175(H) mm (With sun screen: 240(φ)×175(H) mm)	200(φ)×300(H) mm	
Weight (sensor)	4 kg	4.5 kg	
Power supply			
AC supply voltage	AC100-240V, 50/60 Hz, 50 VA DC 12 V		
DC supply voltage			
Operating environment	Temperature: 0° to 40°C, Relative Humidity: 0 to 90%, non-condensing		
Dimensions	200 (W) x 140 (D) x 80 (H) mm		
Weight	1 kg		

10.1.7 A.8 Technical datasheet Tri-band Spectro-Heliometer IES-UPM ICU-3J24

10.1.8 A.9 Technical datasheet Young 05305VM anemometer

WIND SPEED SPECIFICATION SUMMARY

Range	0 to 40 m/s (90 mph), gust survival 100 m/s (220 mph)				
Sensor	20 cm diameter 4-blade helicoid carbon fiber thermoplastic propeller,				
	su./ cm all passage per revolution				
Distance Constant	2.1 m (6.9 ft.) for 63% recovery				
Threshold Sensitivity	0.4 m/s (0.9 mph)				
Transducer	Centrally mounted stationary coil,				
	2K Ohm nominal DC resistance				
Output Signal	0 to 1.00 VDC over specified range				
Model No.					
Suffix	Range				
M	0 to 50 M/S				
P	0 to 100 MPH				
N	0 to 100 KNOTS				
к	0 to 200 KILOMETERS/HOUR				
WIND DIRECTION (A	ZIMUTH) SPECIFICATION SUMMARY				
Panga	360° mechanical, 355° electrical				
Range	(5° open)				
Sensor	Balanced vane, 48.3 cm (19 in) turning radius.				
Damping Ratio	0.45				

 Damping Ratio
 0.45

 Delay Distance
 1.2 m (3.9 ft) for 50% recovery

 Threshold Sensitivity
 0.5 m/s (1.0 mph) at 10° displacement

 Damped Natural
 4.9 m (16.1 ft)

 Undamped Natural
 4.4 m (14.4 ft)

 Transducer
 Precision conductive plastic potentionmeter, 10K ohm resistance (±20%), 0.25% linearity, life expectancy 50 million revolutions, rated 1 watt at 40°C, 0 watts AT 125°C

 Output Signal
 0 to 1.00 VDC for 0 to 360°

GENERAL

Power Requirement: 8 - 24 ∨DC (5mA @ 12 ∨DC) Operating Temperature: -50 to 50°C (-58 to 122°F)

INTRODUCTION

The Wind Monitor measures horizontal wind speed and direction. Developed for air quality applications, it is accurate, sensitive, and corrosion resistant. The main housing, nose cone, propelier, and other internal parts are injection molded U.V. stabilized plastic. The tail section is lightweight expanded polystyrene. Both the propeller and vertical shafts use stainless steel precision grade ball bearings. Bearings have shields to help exclude contamination and molsture.

Propeller rotation produces an AC sine wave signal with frequency proportional to wind speed. Internal circuitry converts the raw signal to a linear voltage output.

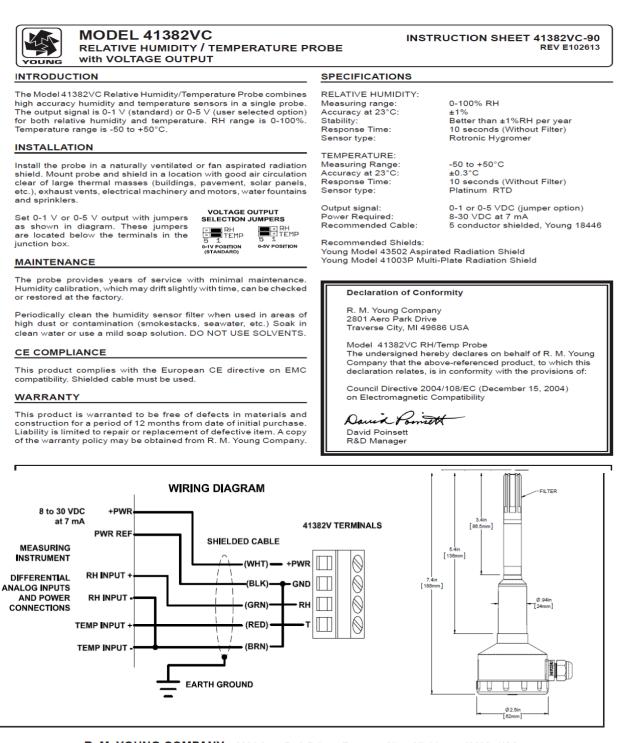
Vane position is sensed by a 10K ohm precision conductive plastic potentiometer. This signal is also converted to voltage output.

The instrument mounts directly on standard one inch pipe, outside diameter 34 mm (1.34"). An orientation ring is provided so the instrument can be removed for maintenance and re-installed without loss of wind direction reference. Both the sensor and the orientation ring are secured to the mounting pipe by stainless steel band clamps. Electrical connections are made in a junction box at the base.

INITIAL CHECKOUT

When the Wind Monitor is unpacked it should be checked carefully for any signs of shipping damage.

Remove the plastic nut on the propeller shaft. Install the propeller on the shaft with the serial number of the propeller facing forward (into the wind). The instrument is aligned, balanced and fully calibrated before shipment; however, it should be checked both mechanically and electrically before installation. The vane and propeller should easily rotate 360° without friction. Check vane balance by holding the instrument base so the vane surface is horizontal. It should have near neutral torque without any particular tendency to rotate. A slight imbalance will not degrade performance.


INSTALLATION

Proper placement of the instrument is very important. Eddies from trees, buildings, or other structures can greatly influence wind speed and wind direction observations. To get meaningful data for most applications, locate the instrument well above or upwind from obstructions. As a general rule, the air flow around a structure is disturbed to twice the height of the structure upwind, six times the height downwind, and up to twice the height of the structure above ground. For some applications it may not be practical or necessary to meet these requirements.

FAILURE TO PROPERLY GROUND THE WIND MONITOR MAY RESULT IN ERRONEOUS SIGNALS OR TRANSDUCER DAMAGE.

Grounding the Wind Monitor is vitally important. Without proper grounding, static electrical charge can build up during certain atmospheric conditions and discharge through the transducers. This discharge may cause erroneous signals or transducer failure.

10.1.9 A.10 Technical datasheet Young 41382VC Relative Humidity and Temperature Probe

R. M. YOUNG COMPANY 2801 Aero Park Drive, Traverse City, Michigan 49686 USA TEL (231) 946-3980 FAX (231) 946-4772

10.2 Annex B

B.1 Datasheet of Luxor LX-100M 125-36 module

SOLO LINE SOLO LINE 36/5 - 140W

Mono-/Polycrystalline module family

Electrical data	LX-5M	LX-10M	LX - 50P	LX-100M	LX-140P
Article description	LX-5M/62.5x15.625-36	LX-10M/62.5x31.25-36	LX-50P/156x52-36	LX-100M/125-36	LX-140P/156-36
Rated power Pmpp [Wp]	5	10	50	100	140
Rated voltage Vmpp [V]	17.39	17.39	17.44	18.70	17.97
Rated current Impp [A]	0.29	0.58	2.88	5.39	7.81
Power tolerance	0/+5%	0 / +5%	0/+5%	0 / +5%	0/+5%
Max. system voltage [V]	150	150	400	1000	1000
Open-circuit voltage [V]	21.60	21.60	21.60	21.60	21.60
Short-circuit current Isc [A]	0.32	0.64	3.24	5.87	8.24
Temperature coefficient [%/°C]	LX-5M	LX-10M	LX - 50P	LX-100M	LX-140P
Temperature coefficient [P]	- 0.49 %	-0.49%	-0.45%	-0.49%	-0.45%
Temperature coefficient [I]	0.05%	0.05%	0.05%	0.05%	0.05%
Temperature coefficient [V]	- 0.35%	-0.35%	-0.32%	-0.35%	-0.32%
Specifications	LX-5M	LX-10M	LX-50P	LX-100M	LX-140P
Cell size	62.5 x 15.625 mm	62.5 x 31.25 mm	52 x 156 mm	125 x 125 mm	156 x 156 mm
Number of cells cell type	4 x 9 mono	4 x 9 mono	4 x 9 poly	4 x 9 mono	4 x 9 poly
Weight	1.01	1.5.1	c.c.b	7.0 kg	4.4.5.1

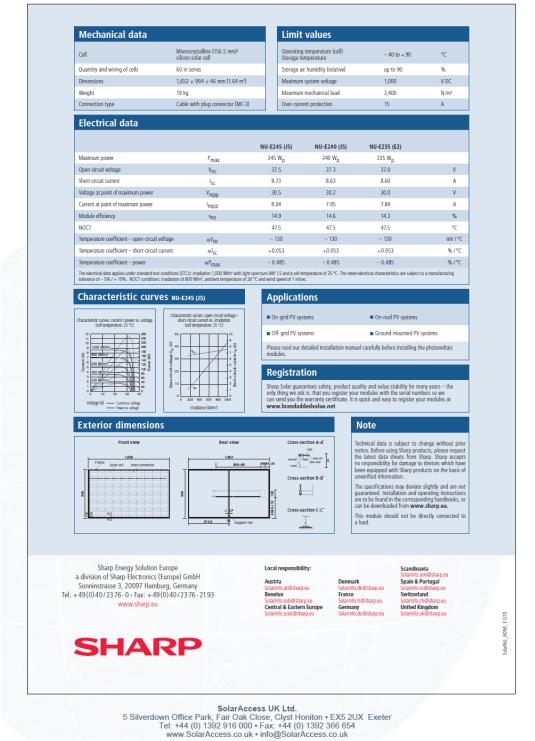
opeonicationa	EX-SIM	EX-TOW	DX-301	EX-TOOM	LX-1401
Cell size	62.5 x 15.625 mm	62.5 x 31.25 mm	52 x 156 mm	125 x 125 mm	156 x 156 mm
Number of cells cell type	4 x 9 mono	4 x 9 mono	4 x 9 poly	4 x 9 mono	4 x 9 poly
Weight	1.2 kg	1.5kg	5.5 kg	7.8 kg	11.5kg
Cable length	-	-	850 mm	850 mm	850 mm
Cable diameter	-	-	4 mm²	4 mm²	4 mm ²
Diode	-	-	-	2 x 12 A	2 x 12 A
Socket	IP 54	IP 54	IP 54	IP 65	IP 65

Front view / Back view / Side view

LX-5M LX - 100M LX-140P 542 293 676 (+) (+) (-) 850 50 194 LX-10M 1482 293 ; (+) (-) HY H 353 LX-50P IEC 61215 IEC 61730 665 Cerres MCS Τ CE *IEC, MCS, UL and TÜV Rheinland only valid for LX-80M till LX-140M 538 850 Your Luxor Partner Printed on Recystar Polar, recycling paper with FSC certificate and the "Blue Angel" eco-label. ClimatePartner O klimaneutral gedruckt FSC RECYCL Paper Zertifikatsnummer: 778-53212-0511-1068

B.2 Datasheet of Sharp NU-E245J5 module

Datasheet Sharp solarmodule NU-E245 (J5) 245 Wp



5 Silverdown Office Park, Fair Oak Close, Clyst Honiton • EX5 2UX Exeter Tel: +44 (0) 1392 916 000 • Fax: +44 (0) 1392 366 654 www.SolarAccess.co.uk • info@SolarAccess.co.uk

Datasheet Sharp solarmodule NU-E245 (J5) 245 Wp

2/2