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Abstract

The need for more efficient and less pollutant energy systems can be satisfied
only through the deployment of proper optimization tools, capable to improve
environmental, economic, and social sustainability.
In this master thesis are illustrated some procedures aimed at including new
functionalities to an optimization tool. XEMS13, the tool under consideration, can
be used to optimize the operation of polygeneration systems. In this case, it is able
to optimize the production of thermal and electrical energy of a group of selected
components, to satisfy the energy demands of a district heating network.

The work is divided into two main topics. The first part regards the analysis
of the input data of XEMS13. In particular, a clustering procedure is created to
derive from the annual thermal demand, a selected number of significant days,
which profiles are able to represent the entire annual profile. The scope is to reduce
the computational time and improve the accuracy of the simulation of a year.

Subsequently, two post-processing codes are realized with the aim to reconstruct,
starting from the XEMS13 simulation results of the representative periods, the
annual results profiles.

The second main topic is the realization of procedures that iteratively run the
optimization tool by changing a parameter.
The first is a procedure that performs an iterative run for the implementation
of white certificates. They are calculated through the result of the simulation
and inserted in the successive iteration, by varying the maintenance cost of the
cogenerators. The loop continues until convergence is found or a number of
maximum iterations is reached.

The last routine is able to launch a parametric run, for which the size of one
component is repeatedly changed. In the end, the best configuration is displayed.

The research showed that it is possible to identify a suitable number of input
representative days, able to return accurate annual results and that the external
iterative procedures are valid tools for multi-run simulations.

These procedures have been realized in cooperation with EGEA S.p.A. firm that
kindly provided most of the data present in this master thesis.
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Chapter 1

Introduction

The evidences of climate changes push to find solutions aimed at modify the way
people live, produce and consume. To overcome the challenges caused by greenhouse
effect and environmental degradation, different countries in the world, with EU
leading, have stipulated many pacts in the last years, beginning from the Kyoto
Protocol in 1997. In all these years steps forward have been made on the road to a
more sustainable world, but they are not sufficient.
The most recent pact is the European Green Deal, officially presented in December
2019. It is aimed at building a path to follow in order to limit as much as possible the
climate changes effects, making European Union an efficient but also competitive
economy. The main points of the Green Deal are the followings:

• Zero net emissions of greenhouse gases by 2050;

• Decoupling of the economical growth from the resources consumption;

• Inclusion of all people and places, "no one must be left behind".

Being the production and the use of energy the responsible for the 75% of
EU’s greenhouse gases emissions, the sector is one of the most relevant in the
transition. The decarbonization of the EU energy system is a critical point to meet
the long-term objectives, but also to reach the reduction of net greenhouse gas
emissions of 55% by 2030 (compared to 1990 levels), which is a midway point.
The increment of the energy efficiency and the growth of the share of renewable are
priory, but attention must be given also to a secure and affordable energy supply
and an energy market more interconnected and digitalised, [1].

In this master thesis there are different topics which are connected to the
sustainability in the energy field.

First of all, the energy system analyzed and on which the work done is based,
are district heating systems. District heating is an infrastructure that provides
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Introduction

thermal energy to multiple buildings from a group of central energy plants. Hot
water produced at the plant is transmitted through insulated underground piping
networks. The thermal energy is transferred to the building’s heating system,
avoiding the need for boilers in individual buildings. Customers avoid installing
expensive boilers and save moneys for their operations, maintenance, repair and
replacement. But the main advantage is on the point of view of energy efficiency
and emissions reduction. Connecting multiple buildings to a district system, in
fact, enables the deployment of more efficient local energy resources. This scale
also make possible the integration of cleaner options like CHP, waste to energy,
heat pumps, biomass, geothermal, and other renewables which significantly cut
emissions, [2].

From IEA statistics, district heating systems is used to meet the 4% of heating
demand in the world, with a consistent presence in China, Russia and Europe,
especially for space heating. Since 2010, new connections have increased of 3.5%
per year, in particular due to China’s large network.
On the other hand, significant effort is still needed to reduce the carbon intensity
of district heating, which has remained almost unchanged across the globe in
recent years, especially due to China’s reliance on coal. The share of renewable
energy sources in European district energy systems, instead, increased in recent
years, especially in Denmark, Finland, France, Latvia and Lithuania. The carbon
intensity of district heat production in Europe is around 150÷300 gCO2/kWh.
Decarbonisation efforts are oriented towards the improving of existing networks
and the development of fourth- and fifth-generation low-temperature new networks,
which allow a greater usage of RES and local waste heat, [3].

In 2019 in Italy there were around 330 district heating systems, with a total of
9,6 GW installed power. Considering the residential sector only, it satisfies the 2%
of the heating and domestic hot water demand. In the same year the total thermal
energy fed into the network was of 11,9 TWh, the 63% supplied from natural gas,
25% from renewables sources and wastes and 12% from the remaining fossil fuels.
In the last years also district cooling has started to spread, [4].

In the Italian perspective, one of the most relevant district heating company
is EGEA S.p.a, which kindly provided the data and the information to conduce
the example cases in this thesis. EGEA is a multiutility operating in the sectors
of electrical energy, district heating, gas distribution, water facilities and public
utility services. Based in Alba (CN), it operates predominantly in Piedmont. The
company, on May 2019, has been cited by Financial Times as the first Italian
multiutility regarding the energy sustainability sector, and it is at the 86◦ place in
Europe. The mention among the "Europe’s Climate Leaders 2021" is due to the
decrease, from 2014 to 2019, of the 17.3% of the core CO2 emissions.

Among the other technologies to produce the required energy, there are the
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Introduction

cogenerators, which are another relevant topic in the sustainability field encountered
in this thesis. Cogeneration is an efficient technology that generates both electricity
and heat. For this reason it is also called Combined Heat and Power (CHP).
Nowadays cogeneration supplies 11% of electricity and 15% of heat in Europe.
EU’s targets aims at increasing these shares to 20% and 25% respectively by 2030
and to double cogeneration capacity by 2050. COGEN Europe, indicates as main
advantages of cogeneration [5]:

• Increased energy efficiency (even of 40%) with respect to separate generation
of heat and power;

• Lower emissions (around 200 Mton of CO2 saved in Europe every year) and
reduced energy costs due to the higher energy efficiency that allow to use less
fuel;

• Cogeneration can work with renewable fuels in a cost-effective way. Nowadays,
27% of fuels used in cogeneration in Europe are renewable, as for example
biomass and biogas;

• It can have different sizes: and can fit to supply a single household or an entire
town;

• It is resilient and flexible and makes transmission and distribution costs
decrease;

• The cogeneration sector employs 100,000 people in Europe and this number is
expected to grow due to European Union investments.

Related to cogenerators, there is another important topic faced during the thesis
work, which is the white certificates. In Italy white certificates have been introduced
in 2005. They are marketable securities. They certify energy savings obtained
from measures aimed at increase the energy efficiency of a system. Each white
certificate corresponds to a TOE (Tonnes of Oil Equivalent) saving. They are issued
from GME (Gestore dei Mercati Energetici) and can be exchanged on the proper
market platform, also managed by GME. They are the main instrument for the
energy efficiency promotion in Italy and they are called "certificati bianchi" (CB) or
also "Titoli di Efficienza Energetica" (TEE). The cogeneration unit recognized as
CAR (Cogenerazione ad Alto Rendimento) have the access to the white certificates
market and get the entitled number, [6]. A cogeneration unit is defined as CAR
if its primary energy saving (PES, calculated as in formula 5.6) is of almost 10%,
or if the plant is of small (< 1 MWe) or micro (< 50 kWe) size. CAR have also
priority for the dispatch of the produced electricity and tax benefits for the gas
utilization, [7].
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Being linked to different energy carriers, cogenerators are key points for sector
coupling, which could be defined as the process of progressively inter-linking the
electricity, heat and gas sectors. The optimization of the existing synergies in the
generation, transport, and distribution of different energy carriers, has as ultimate
scope the decarbonization.
So the environmental sustainability of the energy systems goes along with the
ability to manage in the optimal way different actors, paying attention to the
technical constraint and the demands to satisfy. This critical point needs the help
of technology. Digitalization, together with the use of software and support tools,
is a valid aide in the challenges that the energy sector must face in these years.
The use of optimization tools is essential for a system management able to realize
environmental, social and economical sustainability.
The scope of this master thesis is to provide to one of them, XEMS13, some support
procedures aimed at increase its functionality. The codes will be introduced in
chapter 2 and illustrated in the respective following sections.
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Chapter 2

Optimization tool and
external procedures

In this master thesis will be presented some external support codes for the software
XEMS13, aimed at adding some useful functionalities to the tool.

2.1 XEMS13
XEMS13 is an optimization tool developed by the Energy Department of Politecnico
di Torino "Galileo Ferraris" and LINKS. It is able to simulate polygeneration
systems and optimize their management, considering all the constraint relative to
the problem. The objective function to minimize is the sum of all the operational
costs.
In order to work properly, the program needs as input:

• The time profiles of the energy demands (of heating, electricity and, when
present, also cooling), the time profiles of the energy prices (electricity pur-
chased and sold, natural gas) and of the generation from renewables (ex. solar
thermal). They are in form of hourly values listed in csv files, usually contained
in a folder called "Profiles";

• All technical and operational characteristics of the used components (as
cogenerators and boilers), inserted in an xml file. For example, it must contain
the power levels, the maintenance cost, the fuel used (if not declared natural
gas is the default) and other parameters related to each component;

• A netlist text document that resumes information about the simulations, as
the title of the profile files, the name of the component used and the length
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Optimization tool and external procedures

of the period to simulate. It is contained usually in the folder "Work", where
also the result files are created.

After the request of the folders "Work", "Profiles" and "Components" and of the
netlist file, the tool starts to elaborate the problem. The equations describing the
problem are the balance equations of each energy carrier that ensure the satisfaction
of the demands, and the constitutive equations that represent the energy flows of
each source. They are all linear or piecewise linear, so the problem can be solved
by MILP Mixed Integer Linear Programming, [8]. The approach is steady state
and the transient status of the cogenerators is not considered.
If required, also an environmental analysis can be done, which computes the mass
of the total CO2 emitted.

Figure 2.1: Optimization tool inputs and outputs

Once the problem is linearized and all the equations, boundaries and constrains
are defined, an ".mps" file is created where the information is condensed and
delivered to the MILP solver (such as SCIP, Gurobi or MatLab). The solution is
processed and the results are produced, [9].
The tool solution is presented in form of a xml result file and two csv files. The xml
contains the value of the objective function, all the values of the hourly energies
produced by all the components, the electricity sold and bought, the thermal energy
that is stored (if a storage is present) or dissipated and all the other values able
to describe the system. The csv files resume, in a tabular form, all the energy
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exchanges. There is one for the thermal energy that satisfies the heating demand
and one for the electrical energy.

The duration of the period that the tool easily simulate is about one week, so
168 hours. To understand the annual behavior, by now, the methodology most
used is to select one week per month and two weeks for the months when the
change of the heating period happens (April and October). A total of 14 weeks is
so simulated to approximate the results of all the year.

The program has been developed on Matlab, but an executable has been created
to use it also with computers without Matlab installed.
The external shell codes, instead, are realized with Python, which is nowadays
more spread.

The work done in this master thesis can be divided in four principal topics,
briefly introduced in the next sections.

2.2 Clustering of the thermal demand profile
As already said, by now, the way used by EGEA to get the annual results is to
execute XEMS13 simulating 14 weeks to represent the entire year. From the annual
thermal demand profile, only one week per month is taken, two for the switch
months.
However, for complex system, the simulation of 14 weeks can become quite compu-
tational heavy. Moreover, it could happen that the selected week does not reflect
properly the profile of the month. For example, it could happen that the chosen
week, which is usually the first one, is characterized by a demand higher than the
rest of the month, causing an overestimation of the load.

In chapter 3, an alternative method is investigated by using the clustering. The
clustering algorithms take a set of data and group similar data into clusters, which
can be represented by the cluster centroids.
So clustering can be used to derive from an annual thermal demand, a certain
number of representative days, each one depicting a group of days among the year.
The thermal demand is the most important XEMS13 input profile for EGEA, that
uses it to simulate district heating systems. For the other input profiles, as for
example the prices ones, are taken the profiles referred to the day in the year most
similar to each reference day.

Before a brief description of the main clustering techniques, two in particular
are investigated: k-means and Ward algorithms.
For each of the two, a code for the selection of the right number of cluster and a
code for the results analysis have been realized.
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2.3 Simulations and annual post-processing

In chapter 4, once completed the preliminary steps to run the tool, as the creation
of all the others input files, XEMS13 is launched for different cases: for all the
reference days derived using different numbers of clusters and for the 14 weeks case.
Whether the XEMS13 simulation is run for the 14 weeks, whether for the reference
days found with the clustering, the results will be related to each single week or to
each single day, so it is necessary a post-processing to derive the annual results.

Two post-processing codes are built for the two cases and discussed in chapter 4.
For the 14 weeks case, the results of each month are obtained assuming that all
the weeks of the month have the same behaviour of the selected (first) one.
To reconstruct the annual results for the clustering case, at each day of the year
are associated the results of the reference day that represent its cluster.

The results so obtained are used to confront the different cases, completing the
comparison started in the previous chapter.

2.4 White certificates implementation
Chapter 5 regards the implementation of the white certificates for CAR by an
iterative procedure. A part of the topic has been argument of the internship done
in EGEA.

White certificates can not be calculated during the XEMS13 simulation, being
them dependent on its outputs. In particular, they depend on the useful thermal
energy produced by the CHP, as it will be discussed more in detail in the proper
chapter.
The aim of the implemented procedure is so to take the output of a netlist simulation,
calculate the white certificates using the formulas indicated, and subtract them from
the maintenance cost of the cogenerators. The results of the successive simulation
will be different and the work is repeated until convergence is found.
With the aid of the post-processing codes, the routine is then transformed in an
annual procedure, that calculates white certificates from the approximated yearly
results.

2.5 Parametric run
Chapter 6 discusses a procedure able to make a parametric run of XEMS. In general,
the routine iteratively changes a parameter inside the xml components file, and
simulates XEMS13 to find the optimal selection of that parameter.
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In particular, the procedure is focused on the change of the size of one or more
components. The component and the range of sizes to test are chosen and then,
for the different sizes in the range, the power levels of the component are changed
in the relative xml and the tool is launched.
Among the other outcomes, all post-processed to get the annual results, the objective
functions are saved for each iteration. At the end they are all compared and the
lowest one is used to determine the optimal size.

9



Chapter 3

Analysis and discretization
of temporal series

In the perspective of the optimization of energy systems, one of the encountered
issues can be the computational time needed to have hourly results for an year. In
order to reduce the computational weight of a simulation, some significant periods
can be taken as references instead of the full year, and the simulation can be run
only over the selected periods. Then, with proper correlations, the annual results
can be extracted.
The selection of the proper reference periods, or of the method to derive them, is a
relevant matter since different situations must be taken into account and considered
in the final solution: periods of high and low load, seasonal oscillations, critical
days.
The method used by now by EGEA is based on the use of 14 representative weeks
of the year. Each week represents a months, the only exception is for April and
October. Turin and great part of the Piedmont provinces are, in fact, in the E
climatic zone. This means that the building heating period goes from the 15 of
October to 15 of April [10]. So, in these two months, two reference weeks are taken
into account to analyze the half-month behaviour of the system, before and after
the start of the heating season for October and conversely for April. However, the
simulation of 14 weeks requires a long computational time, especially for the period
when the demand is almost null, since the storage management becomes difficult.
The total running time can be reduced with the right selection of most significant
and shorter time periods.
Different techniques are analyzed in order to choose the most suitable, whose results
will be then compared with the current method used by EGEA. The series to
sample is the thermal demand of the users of the district heating system.
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Analysis and discretization of temporal series

3.1 Overview of the sampling techniques
There are different methods that can be adopted to choose the suitable reference
time periods. The desired optimization model should select a certain number
of representative periods and good compromise between accuracy of the results,
computational time and complexity must be found for the given situation. The
models most used in literature are:

• Heuristic;

• Clustering algorithms;

• Random selections;

• MILP optimization.

In [11] they are briefly described and compared.
With the heuristic method, the reference days that need to represent a period of
time (a year or a season) are chosen with a practical method, as, for example,
selecting the days with the highest and the lowest load. Heuristic methods are very
flexible and simple, but may produce solutions very far from the optimal.

Clustering algorithms are often used and comprehend a large family of different
approaches, so they will be analyzed in a separate section.

The random selection method chooses in a casual way a given number of set of
representative days and calculates the error (calculated with proper error metrics)
associated to the usage of each set. The set with the lowest error is selected. For
computational reasons it is not possible to try all the possible combinations of
representative days, so the number of set to analyze is limited before the run.

The Mixed Integer Linear Problem optimization method minimises the differ-
ences between the duration curve of the real full year data and of the representative
year data for each time series (if more than one must be used). The duration
curve is, in fact, divided in bins and for each bin the error with the approximated
duration curve must be minimized by means of the selection of the best days. The
"weight" associated to all the representative days is also calculated. It is the number
of repetitions of each day in the reconstructed year, [11].
After, a Mixed Integer Quadratic Program method can be also used to reconstruct
the chronological order of the data. It needs as input the time series to discretize,
the representative days and their weights, and gives as result the year reconstructed
with the selected days chronologically ordered, [12].
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3.1.1 Clustering algorithms

"Clustering is an unsupervised classification of patterns (observations,
data items, or feature vectors) into groups (clusters), [13]."

Clustering procedures can follow a large variety of approaches, the most relevant
are hierarchical and partitional.

• Hierarchical methods produce a nested series of partitions using a bottom-up
approach. Agglomerative types are the most common, which include the
Ward’s clustering.

• Partitional methods produce only one series of partitions. k-means clustering
is an example, [14].

3.1.2 Preliminary definitions

A table with the meanings of the most used symbols in chapter 3 is presented.

Symbol Meaning
x generic sample day
j subscript for samples
i subscript for clusters
n number of samples in a cluster
y subscript for the cluster closer to i
t subscript for the samples of the closer cluster
k number of clusters
c generic centroid
C generic cluster
X set of all the samples
h subscript for an element of a vector (so an hourly value)
v element of a vector (so hourly value)
p generic vector
q generic vector
f apex for iterations

Table 3.1: List of symbols

Moreover, some general formulas are indicated.
The centroid of a cluster is the reference day that represents all the sample days in
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the cluster. It is the mean vector, and each of its hourly values is calculated as:

ch,i = 1
ni

niØ
j=1

vh,j,i (3.1)

where ch,i is the value at hour h of the centroid of the cluster i, vh,j,i is the value
assumed at the hth hour by the jth day profile of the cluster i, that contains a total
of ni profiles.

The euclidean distance between two generic vectors is defined as:

||p− q|| =

öõõô 24Ø
h=1

(ph − qh)2 (3.2)

In the analysis under consideration all the vectors are daily profiles, so they have
24 elements.

Ward’s algorithm

Between the hierarchical agglomerative type of algorithms, the Ward’s has been
chosen as example. Others differentiate mainly on the metric used to calculate the
distances. Ward’s algorithm proceeds in the following way:

1. For each day of the year a vector with all the hourly values of the data series
is created. If there is more than a time series to sample, it is a matrix. The
quantities are normalized, scaled according to the maximum value assumed
over the year.

2. Initially each observation is a cluster;

3. The algorithm groups the days into cluster in a "rich get richer" way. Most
similar clusters are merged. Ward’s algorithm iteratively joins the two clusters
whose combination results in the smallest error increase.
Being the sum of squared error of a cluster (called also within-cluster variance)
defined as:

SSEi =
niØ
j=1
||xj,i − ci||2 (3.3)

where xj,i represents the jth observation vector in cluster i, the clusters merged
are the two clusters i and y for which:

SEEincrement,iy = SSEiy − (SSEi + SSEy) (3.4)

is minimized, [15], [16].
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4. The algorithm can continue until a certain number of clusters is reached. This
number should be a good trade-off between computational time and accuracy,
so different runs with different number of clusters should be tried;

5. At each representative day a weight is assigned, in function of its cluster size;

6. Then all the time series are re-scaled to reach the correct annual average, [17].

Figure 3.1: Dendrogram of hierarchical clustering algorithm: in this case the
algorithm is not stopped until it reaches an unique cluster, [17]

On scikit-learn Python library the agglomerative algorithms can be used thanks
to the function AgglomerativeClustering. The number of clusters to achieve at the
end can be put as input or, in alternative, the distance threshold between which
the clusters will not be merged can be inserted.
It is possible also to choose the linkage type to determine how to calculate the
distance between sets. As already said, Ward minimizes the variance between
clusters and it is the default one. The others are: "average" which uses the average
of the distances of each observation of the two sets, "complete" (or "maximum")
linkage that uses the maximum distances between all observations of the two sets,
and "single" which uses the minimum of the distances between all observations of
the two sets. [16].

k-means

k-means algorithm is, instead, a partitional clustering method based on the Lloyd’s
algorithm, called also Voronoi iteration and named after Stuart P. Lloyd. The
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Lloyd algorithm, applied in an Euclidean plane, given a set of points (or seeds), is
able to realize a Voronoi diagram. A Voronoi diagram is a partition of a plane into
regions (called Voronoi cells) consisting of all points of the plane closer to a seed
than to any other. The seeds, in the simplest case, are points on the plane. So, in
the final configuration, the seeds are the centroids and each region represents all
the samples belonging to a cluster, [16], [18].

Figure 3.2: Example of the Voronoi diagram representation for a set of points in
a 2D space, [19]

k-means algorithm minimizes the sum of the squared error over each cluster
(or within-cluster variances), called also inertia, [16]. The total inertia, which is a
measure of how internally coherent clusters are, can be calculated as:

I =
kØ
i=1

niØ
j=1
||xj,i − ci||2 (3.5)

where k is the number of clusters, ni the number of observations j in the ith
cluster, xj,i is the jth observation of the ith cluster and ci its centroid, [20]. So the
objective function of Ward and k-means are similar, but the approach is different.
The procedure, indeed, is the following:

1. Some random (or not) clusters center are chosen among the days;

2. All the observations are associated to the closer cluster;
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3. Cluster centers are then recomputed as the mean of the new observations of
the cluster;

4. Convergence check: if the selected convergence criterion is not met the loop
continues re-starting from point 2.

The k-means algorithm requires as input the number of clusters and the starting
points and results will depend on these two parameters. A solution presented in
[14] is to build a multi-objective external optimization which minimizes the number
of representative periods and the profiles deviation, expressed by some dedicated
indicators.

On scikit-learn Python library, k-means algorithm is implemented thanks to the
command KMeans. The most important input parameters are:

• Number of clusters;

• Method for the initialization. The method "k-means++" is set by default.
It initializes the centroids to be distant from each other. In alternative, the
starting points can also be random or an array can be manually inserted.

Moreover, it is possible to insert also the maximum number of iterations of the
k-means algorithm for a single run, the k-mean algorithm to use ("auto" is the
default) and other specifications.

The metric used to evaluate the distances between two observations, so between
two day profile vectors, is the euclidean distance.

The algorithm returns the cluster centers, the label of each point (so at which
cluster is associated each sample, from which is possible to calculate the weight of
each representative day), the total inertia and the number of iterations run.

3.2 Implementation of the k-means technique
The first method used to extract the representative days from the thermal load
curve is the k-means.
k-means clusters data minimizing the already cited inertia. The algorithm, during
the initialization, chooses the initial centroids from the dataset. Consequently, it
loops between the first step, which assigns each sample to its closest centroid and
the second step, that creates new centroids by taking the mean value of all of the
samples previously assigned to each "old" centroid. The difference between the old
and the new centroids are computed and the loop stops when this value is less than
a threshold, so when the centroids do not move significantly. More in detail, [21]:
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Algorithm 1 k-means pseudo-code
1: Given a set of elements X and a desired number of clusters k:
2: Centroids c are initialized with k-means++
3: while qk

i=1 ||c
(f)
i − c

(f−1)
i || > relative tolerance so, while euclidean distance

between the clusters of two consecutive iterations is higher than the tolerance
do

4: Each profile is assigned to a cluster. ∀i ∈ {1, ..., k}, the cluster Ci is the set
of profiles in X that are closer to its centroid c(f)

i than to any other centroid
(using Euclidean distance)

5: ∀i ∈ {1, ..., k}, the centroid c
(f+1)
i of the cluster Ci is set as: c

(f+1)
i =

1
ni

qni
∀x∈Ci

x(f+1), if the cluster has ni elements
6: end while

3.2.1 Initialization
As first preliminary step, it is necessary to re-organize the set of data in the shape
desired from the algorithm. It requires, in fact, as input, the matrix X, whose
rows correspond to each sample (so to each day of the year) and whose columns
correspond to the hourly data of the thermal load. So, a matrix of dimensions
365x24 is built.
Another important input parameter is the number of clusters. At this point the
best number, in terms of accuracy of the solutions and speed of convergence, is
unknown, so an external loop that tries different numbers and then compares the
solutions on the basis of three different indicators will be implemented. By now,
attention is given to the internal k-means loop, and this matter will be investigated
later.
KMeans requires also the starting centroids. To define them, the scikit initialization
scheme k-means++ has been used. It initializes the centroids to be distant from
each other, leading to better results than random initialization and also speeding
up convergence. The algorithm allows also to choose different weights for the
samples, but in this case this property has not been used, so at each day the same
importance has been assigned. The pseudo-code of k-means++ is the following:

Algorithm 2 k-means++ initialization pseudo-code
1: An initial center c1 is chosen at random from the samples set X
2: Being D(x) the shortest distance from a data x to the closest center already cho-

sen, the next center ci = xÍ ∈ X is chosen from X with probability D(xÍ)2q
x∈X

D(x)2 ;
3: The previous step is repeated for all the remaining centroids;
4: It is possible to proceed with the standard k-means algorithm.
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3.2.2 Outcomes of the algorithm
The interesting results that can be computed are:

• The cluster centers: the vector of the desired reference days, that coincide
with the centroids;

• The labels: a vector that at each sample (day of the year) associates the
number of the cluster at which it belongs, so the reference day at which it is
associated;

• The weights of each reference day: it is not given as output, but it can be
easily calculated from the labels. It is useful to understand how big each
cluster is, so the importance of each reference day for further considerations;

• The computational time: can be useful to compare different algorithms;

• The Inertia, the Davies-Bouldin score, the Silhouette score: the three index
necessary to compare solutions with different number of clusters, analyzed in
the next paragraph.

3.2.3 External loop for the number of clusters
The algorithm has been inserted inside a loop that ranges the number of clusters
between a minimum and a maximum, set initially. At each iteration, the value of
Inertia, Davies-Bouldin score and Silhouette score are saved and at the end plotted
with respect to the number of cluster to evaluate the best number.

Inertia is the sum of squared distances of samples to their closest cluster center
(within-cluster variances), defined in 3.5. The algorithm aims at minimizing it.
Inertia tells how far the points within a cluster are from the centroid. It decreases
increasing the number of clusters.

Davies-Bouldin score is the average similarity measure of each cluster with its
most similar cluster. Similarity is calculated as the ratio of intra-cluster distances
(average euclidean distance between each point of a cluster and its centroid) to
the distance between the cluster centroid and the centroid of the closest cluster.
For a generic cluster i the intra-cluster distance is si = 1

ni

qni
j=1 ||xij − ci||, where

ci is its centroid, xij its generic jth element and ni the number of elements in i.
The between cluster distance is di,y = ||ci − cy||, if y is the cluster closest to i). So,
being:

Ri,y = si + sy
di,y

(3.6)
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Davies-Bouldin index can be calculated as:

DB = 1
k

kØ
i=1

m
i /=y
axRi,y (3.7)

A cluster is better if it is far from the others and less dispersed. Lower values
indicates best clustering, so this score must be minimized, [16].
The concept behind this index is related to the ANOVA, (Analysis of Variance)
that comprehends a series of statistical techniques that allow to confront groups of
data comparing the internal groups variance with the variance between groups. The
only difference is that in ANOVA the indexes are based on the squared euclidean
distances, [22].

Silhouette score tells how far away the samples in one cluster are from the
samples in another cluster.
Being (a) the mean distance between a sample and all other samples in the same
cluster (ai,j = 1

ni

qni
t=1 ||xi,j − xi,t||), and (b) the mean distance between a sample

and all the samples in the next closest cluster (bi,j = 1
ny

qny

t=1 ||xi,j − xy,t|| where
ny is the number of samples in cluster y), the silhouette of a single sample can be
calculated as:

Silhouettej = (bj − aj)
max(aj, bj)

(3.8)

The total Silhouette is the mean of the Silhouette of each sample.
The range of Silhouette score is from -1 to 1. The best value is 1 and the worst
value is -1, because negative values indicate that a sample is closer to a cluster
which does not belong, than to its own cluster, so it has been assigned to the wrong
cluster. Values near 0, instead, indicate that some clusters are overlapping, [16].

Plotting these three index, is possible to choose a good trade-off that minimizes
Inertia and Davies-Bouldin score and keeps Silhouette closest ad possible to 1.
Once the right cluster number has been chosen, KMeans is run again for it and the
results are further investigated.

3.3 Example cases with k-means
To implement the k-means method two codes have been written: one to select the
best number of clusters on the basis of the three indexes already cited, the one
other that repeats the k-means algorithm for the chosen number of clusters and
executes some post-processing analysis. A profile related to the thermal demand
curve own by EGEA has been used as test case. It contains the hourly thermal
load of 2020.
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3.3.1 Selection of the number of clusters
The code "k_means_n_clusters" has been developed for the correct choice of the
number of reference days.
As first thing, it is possible to set certain parameters, which are:

• The number of the sample days (or periods) in the real profile. In this case,
the whole period is of one year, and being the 2020 a leap year, the days to
sample are 366. The choice to make this parameter an independent variable is
to allow to sampling different types of periods, from season to groups of years;

• The minimum number of clusters: in this case is set to 4, so the year will be
represented at least by four representative days;

• The maximum number of clusters: it has been set to 20.

• The number of hours of each sample period: in this case the aim is to find
reference days, so it is 24, but days can also be grouped together (in this
instance also the number of the sample period must be changed. For example,
if in another situation there is the need to find one representative week for an
entire season, the number of sample periods is the number of weeks in that
season and the hours are the total hours in a week, so 168. The only limit is
that the total period must be a multiple of the number of sample periods).

After the initialization, a separate function is called. This function, built with
the package "tkinter" is able to open a window allowing the user to select the csv
file from which the profile is taken. This file, for sake of simplicity, must contain
a unique column, where the first row contains a title and the others the hourly
values in chronological order. After the selection of the file, the window must be
closed, so the code can continue to run.
From the annual profile, the matrix X is derived. It is the input of the k-means
algorithm and contains the profiles of all the days. In this case is 366x24. All the
values are normalized over the maximum, which is memorized in a variable.
Inside a for cycle, the k-means is run for all the number of clusters in the selected
range and some parameters are displayed, like the computational time and the
number of k-means iterations run for each number of cluster.

The values of Inertia, Davies-Bouldin score and Silhouette score are calculated
and plotted with respect of the number of clusters selection they refer. The results
are shown in fig 3.3.

The Silhouette score results very high up to five clusters, than decreases and
oscillates. This value should be as close as possible to the value of 1 to indicate
that all points are associated to the right cluster. Good scores are achieved for 7,
but also 6 and 8 clusters.
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(a) Inertia (b) Davies-Bouldin score

(c) Silhouette score

Figure 3.3: Plots of the three indexes for the selection of the number of clusters
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Davies-Bouldin score, which indicates how much the clusters are dispersed, should
be minimized. Good performances are achieved with 17, but there are local
minimum also for 14 and 8 clusters.
Since Inertia, which represents the sum of squared distance of each point to its
cluster centroid, always decreases increasing the number of clusters, the number of
8 clusters could be the right choice for representation of this year. It is, in fact,
quite near to the elbow of the curve after which the curve starts to flatten, after
10 further increment in the number of cluster results in smaller decrements of the
inertia.

3.3.2 K-Means and post-processing
With the code "k_means_pp", the algorithm is repeated only for the selected
number of clusters. In fact in this case, the parameters to set are:

• The number of clusters, to set after the observation of the results of the code
"k_means_n_clusters". In this example is 8;

• The number of days to sample, that, as already said, in this example case are
366.

• The path of the folders in which the required csv and text files will be created.

Initially the function to select the csv file with the thermal profile is called and
the matrix X is built. The k-means algorithm is launched and the reference days
are obtained.
From the vectors of label also the weight of each reference day can be calculated.
The reconstructed annual profile is also built by taking for each sample day its
reference day.

One important data from the original curve that must be preserved is the total
amount of thermal energy required in the entire year. Using the clustering, this
information could be not perfectly maintained, being the real and the reconstructed
profiles different. The reconstructed profile is built by taking for each sample day
its reference day. To solve this problem, the reference profiles and the reconstructed
curve are divided by the sum of the energy demands of the fictitious year and
multiplied by the sum of the energy demands of the real year. This is a precautionary
step, since actually this ratio resulted in a value very near the unit, with an error
of only 1.71e-14.

The first charts shown are the profiles of all the reference days. In the plots of
figure 3.4 all the grey curves in each graph represent the profiles of all the sample
days of the year, with the thermal load in MWh in the y-axis and the hours of
the day in the x-axis. The profiles in dark grey are the ones which belong to that
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cluster, the others are in light grey. The green curve in each graph is the profile of
the reference day that represents the cluster.

The figure 3.5(a) shows instead in a pie chart the weight of each reference day,
so the fraction of days represented by that centroid.
The graph 3.5(b) associates at each day of the year the corresponding cluster
number, so it tells from which reference day is represented each sample day. The
enumeration of the clusters is done randomly by the algorithm.

How it is possible to observe, the representative days well approximate the
different periods of the year:

• The central days are represented with the centroid 1, that alone accounts for
the 50% of the total weight. It corresponds to a reference day with a very low
demand. In fact the days that are in the range 106-298 are the days between
the 15 of April and the 15 of October, where the demand is almost null;

• The rest of the year, that is the heating period, is represented by the remaining
seven types of reference periods. The reference day number 5, which is the
one with the highest peak experienced, fits well the first days of the year, so
the January days, generally colder. The reference days 2, 3 and 6 are also
used for the winter, with 2 and 3 (highest after 5) used especially for February
and December, which are the coldest after January;

• The days just after and just before the non-heating period are in line with the
centroids 4, 7 and 8 that in fact, have a mid demand profile.

• The clusters with days with high and low demand are quite coherent: they
contain sample days with very similar profiles.
There is a cluster with medium demand which seems to collect the days whose
profiles does not match with the other reference days. In 3.4 cluster number
7, indeed, contains profiles that, after 15 p.m., assume very different shapes.

• In all the reference days the highest peak is around the 8÷10 a.m. in the
morning, there is another around 14 p.m. and the last one is the evening peak
(only exception for the summer reference day 1);

• From the labels image, it is possible to see that there are some days which
belong to a different cluster of the days before and after. This discontinuities
may be due to different environmental conditions, like a sudden change in the
external temperature.

The analysis is completed with the plot of the entire annual profiles of the
reconstructed curve and the real curve (3.6) and of the two duration curves (3.7).
The reconstructed profile, as expected, results as more step-wise and with less
oscillations then the real one.
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Figure 3.4: Reference days profiles
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(a) Weights of each reference day (b) Reference day corresponding for each
sample

Figure 3.5: Weights and labels
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The duration curve is the graphical representation of the relationship of all the
values assumed by the thermal demand and their respective duration, normalized
over the year. For the construction of the duration curves the hourly values are
disposed in descending order. Each point of the curve tells that the correspondent
load value on its ordinate is overcome for a percentage of the year equal to its
abscissa.
How it is possible to see, the region between the two duration curves are coloured
in red. The regions in which the reconstructed duration curves overcomes the real
one have the same area than the regions in which the opposite occurs, to make the
total area below the two graphs equal and the total energy demand the same.

Figure 3.6: Real and reconstructed annual profiles

Another possible analysis is related to the difference in the profiles of the two
duration curves. Despite the total energy demand of the year has been constrained
to be the same, there could be significant variations in the profiles of the two curves,
that could result in dissimilar solutions of the consequent optimization problem.
An example is if for the real DC the same thermal load has an occurrence very
different from the reconstructed DC.
To investigate this matter, an analysis based on [11] is carried out. The demand is
normalized on the maximum and it is divided in a certain number of bins Nbin, for
example 20, as in fig. 3.8. In correspondence of each bin the duration in % of the
respective normalized thermal load is obtained for both the curves. Then the error
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Figure 3.7: Real and reconstructed duration curves
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for that bin is calculated as their absolute difference. The error associated to each
bin is then plotted as in fig. 3.9(a).

NbinØ
bin=0

|Lbin − Abin| (3.9)

The formula 3.9 shows the total error that in [11] is chosen as variable to minimize
to solve the MILP problem. Despite in this analysis the k-means method is used,
this error can be used for further investigation. L is the share of time during which
the real DC curve exceeds the value of the corresponding bin. So, for that bin, it is
the horizontal distance between the blue triangular point and the y axis. A is the
share of time during which the reconstructed DC curve exceeds the value of the
corresponding bin. So, for that bin, it is the horizontal distance between the yellow
squared point and the y axis. The error associated to each bin is the discrepancy in
the share of time correspondent to the normalized thermal load of that bin for the
two DC curves that is the horizontal distance between the two curves for that bin.

Figure 3.8: DC graphs with bin analysis

As can be seen from fig. 3.9 (a), that shows the error associated to each bin
(called duration error), the error remains well under a duration difference of 2.5%
for all the bins, except for the very first one, which is associated to the null thermal
load. Observing more in detail what occurs with a zoom in this part of the graph, it
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is possible to note that for the real DC the thermal demand is not null only for the
81% of time, so for the remaining hours is zero. The reconstructed curve, instead,
never reaches values of zero demand. This could mean that the days approximated
in the worst way are the days with null demand, so the summer days.

(a) Error associated to each bin (b) Zoom of the graph in fig. 3.8(a)

Figure 3.9: Discrepancies in the DC curves

Repeating the analysis with a different number of bins, no significant differences
are detected, the error profiles is almost the same, with the highest value for the
bin associated to the null thermal load.
Actually, dissimilarity are present also for the hours of very high thermal load.
The reconstructed curve never touches value of normalized thermal demand of
100%. The maximum hourly thermal load, that is 18.09 MWh, is not present in
the reference days profiles, in which the maximum value reached is 16.85 MWh.
This is not so important in terms of the final result, since in the real profile this
value is overcome only for 17 hours, so for the 0.2% of time.
Since the summer days are less relevant in the optimization of a district heating sys-
tem, and the hours of very high thermal demand that are not perfectly represented
are few, this result can be considered acceptable.

The part of code that calculates this type of error can be implemented also in
the code that iterates the k-means for different cluster numbers. The sum of the
errors related to each bin is calculated and plotted for each cluster number.

In fig. 3.10 can be seen that this value starts to be considerably lower for 9
clusters, where there is a mean value of a difference in the share of time of real and
reconstructed DCs of 2.5%. In the figure 3.3 Silhouette score and Davies-Bouldin
score returned worst value for 9 clusters, but 9 cluster is closer to the elbow of the
inertia curve, so a trial can be done following the minimization of the duration
curve error and observing the differences.
Repeating the k-means and post-processing for 9 clusters can be noted that, in
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Figure 3.10: Error in the DC for different number of clusters used

comparison with the case with 8 clusters:

• The non-heating period days are represented with an additional reference day,
with a totality of two (2 and 7).

• The January days with the highest demand are represented by the reference
day 3;

• The remaining clusters are used to represent the winter and the mid-demand
period.

• In this case, the cluster with the less coherent profiles is the number 1, again
representing mid demand days.

It is really important to notice that the clusters are not the same as in the previous
analysis and even if there are some cluster very similar, they are associated to a
different number.
It can be observed also that with 9 clusters, the error in correspondence of the null
demand still high, instead decreases for higher loads. The algorithm finds that is
still not worth it to create a representative days with perfectly null demand.

The higher number of reference days results in representing in a more accurate
way the low demand period, capturing better the non-heating season oscillations.
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Figure 3.11: Reference days profiles for 9 clusters
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Figure 3.12: Results for 9 clusters
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The observation of the inertia values, of the Davies-Bouldin score and of the
Silhouette score that is a used and validated methodology, can be supplemented
with other types of indicators, like the clustering dispersion indicator, the scatter
index, the mean-adequacy index, the variance ratio criterion and several others,
[23]. In this analysis also a method based on the discrepancies between the real and
the reconstructed DC curves is utilized. The best number of representative days
should met different needs, from a fast optimization to a more accurate solution.
In the last case, a choice could be also clustering separately different periods of the
year, as single seasons.

The results show that the k-means algorithm with both 8 and 9 clusters approxi-
mate well the annual profile. For further considerations the optimization algorithm
should be run for both the cases and then the system results and the computational
times should be compared. This will be the next step, done in Chapter 4.

3.4 Ward implementation and example cases
Before the prosecution of the study with the XEMS simulation of the found reference
days, the procedure has been repeated with the Ward algorithm.

3.4.1 Algorithm description
Ward hierarchical agglomerative clustering is a method that builds a hierarchy
of clusters with a "bottom-up" approach: at the beginning each observation is a
cluster, subsequently pairs of clusters are merged as it goes up on the hierarchy.
As already said, the logic with which clusters are merged is the minimization of
the increase of the sum of squared errors between observations and centroids, 3.4.
The agglomerative behaviour leads to uneven cluster sizes, but Ward is the type of
linkage that returns the most regular sizes, [16].

Algorithm 3 Ward’s pseudocode
1: Given a set of elements X and a desired number of clusters k:
2: Each observation is a cluster
3: while number of clusters > k do
4: The two clusters Ci and Cy whose merging returns the minimum SSE (as

in 3.4) are joined
5: end while

The preliminary phase with the construction of the observations matrix is
identical to the previous case. The initialization does not require the starting
centroid as in the k-means case, since each sample day initially is a reference day.
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Then the algorithm continues merging similar reference days until the selected
number of cluster is reached.

The outcomes that the algorithm provides are not exactly the same of the
k-means.
The cluster centers, indeed, are not provided, so they are calculated afterwards as
a mean of the days belonging to each cluster, as in 3.1. The days of each cluster
are known since the labels are provided.
Another property that is not available with Ward is the Inertia, the validation of
the number of cluster must follow only the other indexes.
So the external loop for the choice of the number of cluster is based on the
Davies-Bouldin score, the Silhouette score and the additional duration curve error.

3.4.2 Small Ward’s example case
For a better comprehension of the algorithm, a small example is shown.
Four profiles are taken from the annual thermal demand, shown in fig 3.13: a high
demand profile from Winter, a Spring low demand profile, an almost null demand
from Summer and a mid demand profile from Autumn.

The Ward’s algorithm is applied to cluster them in three clusters and the three
reference profiles obtained are those in fig. 3.14.

It is evident that the reference profile 2 (b) represents the cluster having only
the Autumn profile (fig. 3.13 (d)) and the reference profile 3 (c), the Winter profile
(fig. 3.13 (a)). The Spring (fig. 3.13 (b)) and Summer (fig. 3.13 (c)) profiles have
been insert in the same cluster and their representative profile is the one in fig. 3.14
(a)). So the increase in SEE due to their merging is the lowest and the centroid
resulting is the mean of the two vectors.

If the Ward’s algorithm is done without stopping when a certain number of
cluster is reached, the full dendrogram tree can be plotted and the result is in fig.
3.15.

After the low and almost null demand profiles, the mid and high demand profiles
are merged, since they contribute to the lowest increase in the SEE. The final
merging in a unique cluster make the SEE increase considerably.

3.4.3 Results
In this section all the Ward’s results related to the Carmagnola case are presented.
The plots of the external algorithm for the choice of the number of clusters are
shown in fig. 3.16.

In this case, Davies-Bouldin score suggests good results for 13 clusters.
The profiles of the Silhouette score and the duration curve error are very similar,
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(a) High-demand Winter profile (b) Low-demand Spring profile

(c) Almost null demand Summer profile (d) Mid-demand Autumn profile

Figure 3.13: Initial profiles, Ward’s example
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(a) Reference profile 1 (b) Reference profile 2

(c) Reference profile 3

Figure 3.14: Reference profiles for 3 clusters, Ward’s example

36



Analysis and discretization of temporal series

Figure 3.15: Dendrogram of Ward’s example case
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(a) Davies-Bouldin score (b) Silhouette score score

(c) Duration curve error

Figure 3.16: Plots of the indexes for the selection of the number of clusters
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but it is an inconvenience since the first should be maximized and the second
minimized. So, it would be interesting to see the behaviour both before and after
the big drop in the profiles: 10 and 11 clusters.

Comparing the k-means and the Ward clustering using the "best" number found
separately with the indexes analysis could be not so fair, since with Ward the
higher number of reference days could lead to more accurate results. On the other
hand, it would be unfair also to use the same number, since 8 and 9 clusters with
Ward return a very high David-Bouldin score.
Since the computational time of the algorithm is very reduced, it is possible to
execute different trials with 5, 8, 10, 11 and 14 clusters.
Weights of each reference day, labels and profiles are plotted for all the cases.

(a) Weights of each reference day (b) Reference day corresponding for each
sample

Figure 3.17: Weights and labels with 5 ref. days

Some considerations can be done about the labels and the weights graphs :

• The "heaviest" reference day, so the day that represents the larger cluster and
is repeated more time during the reconstructed year, is always the day of the
non-heating period, with a weight in the range 40÷50%.

• From 11 clusters and above, there are two days representing the non-heating
period, but one is used to represent only some days at its beginning and at its
end;

• The vast majority of reference days is used to approximate the profile of the
heating period. The largest part of the additional reference day from 5 to 14
is added at the two edges of the year, so during the winter season. It is also
the most energetically relevant period, so this result is fitting, since accuracy
is increased when demand is higher.
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(a) Weights of each reference day (b) Reference day corresponding for each
sample

Figure 3.18: Weights and labels with 8 ref. days

(a) Weights of each reference day (b) Reference day corresponding for each
sample

Figure 3.19: Weights and labels with 10 ref. days
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(a) Weights of each reference day (b) Reference day corresponding for each
sample

Figure 3.20: Weights and labels with 11 ref. days

(a) Weights of each reference day (b) Reference day corresponding for each
sample

Figure 3.21: Weights and labels with 14 ref. days
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(a) 5 ref. days (b) 8 ref. days

(c) 10 ref. days (d) 11 ref. days

(e) 14 ref. days

Figure 3.22: Profiles using the Ward clustering with different number of clusters
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In fig. 3.22 the reconstructed profiles are shown for the different number of clusters.
Higher is the number of reference days, more accurate is the annual thermal demand
profile.

• The 8 reference days profile (b) in comparison with the 5 ones (a), approximates
better the high load of January days, that instead with 5 clusters were
represented by the same cluster of the December load. Also in correspondence
of October (around hour 7000) the profile is approximated in a best way;

• The 14 reference days clustering (e), with respect to the 11 day one (d),
increases the accuracy especially during the March-April period (around hour
2000) and again in the last part of the year;

• Profiles realized with the use of 8, 10 and 11 reference days are not distin-
guishable. In spite of the very different index scores that are associated, they
seem to return very similar results, at least on the point of view of the annual
thermal demand profiles.

Since the 8 reference days clustering returns results similar to the ones obtained
optimizing the error indexes, the comparison with the k-means can continue with
this number. In fig. 3.23 are illustrated the profiles of the 8 reference days.

The similarity with the graphs 3.4 is very high. It seems that, with different
numeration, the two algorithms return twin centroids, in such a way that each
centroid of Ward could be paired with the correspondent derived with k-means.
For example, the first in the Ward case is very close to the fifth with the k-means
clustering with 8 clusters (they are the ones with the highest demand). In table
3.2 are reported the coupled reference days.

Ward ref. day (fig. 3.23) k-means ref. day (fig. 3.4)
1 5
2 1
3 8
4 6
5 4
6 3
7 2
8 7

Table 3.2: Matching between the 8 reference days resulting with the Ward and
the k-means algorithms

How it is possible to note from figure 3.24, also the duration curve and the bin
error associated to it are pretty similar to the ones obtained with the k-means
clustering at fig. 3.7 and fig. 3.9(a).
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Figure 3.23: Reference days profiles for Ward with 8 clusters

(a) DC curve (b) Error associated to the DC curve

Figure 3.24: DC curve and its error with Ward 8 ref. days

44



Analysis and discretization of temporal series

In spite of the very different logic and the diverse way of operation, the two
algorithms, Ward and k-means, returned very similar results. Since no evident
difference have been noticed, the run of the optimization tool will be executed only
with different number of reference days obtained with the k-means.
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Chapter 4

Simulation with the
reference profiles

4.1 Preliminary steps
To run the optimization algorithm XEMS, it is necessary to do some preliminary
steps, so the last part of the code "kmeans_pp" builds the csv files needed by the
software.

• The hourly thermal demand for each reference day in the proper csv format
is built by calling a function at the end of the code. From the profiles of the
obtained reference days it builds as many csv files as the number of reference
days;

• The hourly electrical load is obtained from the thermal demand, taking the
3.5% of it. Since it is due mainly to the pumps work, this percentage has been
recognized as effective, [24];

• The hourly prices of the sold electrical energy are derived from the GME
database. At each reference day the price profile of its most similar real day
in the year has been associated. The real day closest to each reference day is
found exploiting a scikit function that calculates the root mean squared error
RMSE between two lists. The closest day is the one for which the function
returns the lower value. Then the prices for that day are extracted from the
csv database with another function "ad hoc" built. They are the PNord prices;

• The prices of the purchased electrical energy are derived by summing 100
e/MWh to the prices of the PUN profile for the correspondent day and hour,
as suggested by EGEA [25].
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To create all these profiles the code calls two functions contained in the code
"Create_csv".
It contains also the functions needed to build the correspondent profiles for the
case with 14 weeks. If they are called, the prices and the thermal and electrical
demands are taken for the first seven days of all the months and, for April and
October, also for the first seven days of the second half of the month.
Also the creation of the netlist has been automatized at the end of the code.
Finally a text information file is build containing necessary data for the simulation
post-processing.

In this section the XEMS optimization has been run for different cases and the
results are then compared:

• 5 reference days;

• 8 reference days;

• 9 reference days;

• 20 reference days;

• 14 representative weeks, as done routinely by now by EGEA;

• All the weeks of the year.

The cases with 8 and 9 clusters have been chosen because are the ones analyzed
in the previous paragraph, a case with a lower and a higher number of clusters
are added for further considerations. The case with the 14 representative weeks is
important because allows a comparison with the actual EGEA procedure.
To make the comparison more effective, a case as accurate as possible should be
plotted. So the XEMS simulation has also been launched for all the periods of the
year. Since the optimization can not run for periods too long, each month has been
divided into four periods (the first three weeks and the remaining days, for a total
of 48 periods) and then all of them are simulated. This is the case that obviously
will approximate in the best way the real results, but it is also very computational
heavy, so it is done only for a research purpose. The thermal load profile, which is
the one used also in the previous paragraph, represents the demand of Carmagnola.

4.1.1 Test case
Since for this city the xml components file wasn’t already built, it has been created.
It is a file which represents the operation of the components utilized. The city
of Carmagnola has two cogenerators of around 1500 kWe and three boilers (two
of 5000 kWth and one 10000 kWth), which are the components that have been
implemented. The operations at partial and full load are derived from the datasheet
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or provided by EGEA, [26] [25]. The only value that is not provided at partial load
is the thermal power provided by the CHP. To calculate it, it has been hypothesized
that the thermal efficiency at 75% of load is higher of 2% with respect to the full
load case, and that at 50% is 4% higher. This relationships, in fact, have been
often encountered in these types of components. Boiler are assumed to have the
same efficiencies also at partial loads, , [24].

Other parameters to set are the minimum on time (minimum hours that the
component must be on when started) and the minimum shut-down time (minimum
hours that the component must be off when shut down). They are imposed to avoid
too frequent on-off alternations that could damage the component. For example,
this could happen if the price of electricity decreases for an hour and it is more
economically convenient to shut down.
For the cogenerators they are set to 4 and 2 hours respectively, for the boilers both
to 1, because they can withstand more state changes.

The values of the others parameters, like the emissions, are taken from other
similar components in already existing xml files used by EGEA.
Another relevant quantity set in the xml file is the so called "etoVdef", a parameter
used to calculate the volume of the tax-free gas for the cogenerators. It is derived
by multiplying the parameter to the produced electrical energy. When the electrical
efficiency overcomes the value of 46%, instead, all the gas is tax-free, but it is not
the case. "etoVdef" is 0.22, [24].

Once completed these preliminary steps, it has been possible to run the simula-
tions for all the different cases.

4.2 Optimization and post-processing
The first difference that emerges is the computational time needed for each case.
In table 4.1 all the timeframes are resumed.

Case Hours simulated by each netlist Total time
5 reference days 24 22”
8 reference days 24 38”
9 reference days 24 40”
20 reference days 24 1’20”

14 weeks 168 6’40”

Table 4.1: Computational times needed by XEMS in the different cases

The simulation of one day requires about 4÷5 seconds, so obviously the case
with 14 weeks, that simulates a total of 98 days, is the one that requires more time.
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This difference can be not so relevant if a simple simulation is done, but it is crucial
when parametric simulations are run, for example when a component is repeatedly
substituted to determine the best configuration.

In order to adequately compare the optimization results, two post-processing
codes are built: one for the case with 14 weeks and another one for the case with a
defined number of reference days.

The first thing that the code "Post_processing_14_weeks" does, is asking for
the fourteen weeks xml files that contain the results of the optimization. If the
number of files provided is correct, the procedure continues. In the same folder
with the xml (so, the folder "Work", which is the one containing also the netlists),
it creates a csv file that resumes all the annual results, called with the name of the
first xml file plus the caption post_processing.
In order to produce it, each xml file is parsed and the most relevant hourly quantities
are summed to obtain the total results for the week. The calculated values are
the weekly: thermal, electrical and feed energy of the CHPs, thermal energy
produced by the boilers, thermal load, dissipation, total energy entered in the
storage, emissions and objective function results.
To get the monthly results, the quantities of each week are divided by seven and
multiplied by the number of days of the correspondent month. The only exception
is for April and October, having two representative weeks. The results of the two
weeks are summed and then divided by fourteen and multiplied by the number of
days of the month. Thermal, electrical and global efficiencies are calculated using
the obtained correspondent monthly energy values.
In the csv all the properties are written for each month and at the end of the file
there are also the annual results. In the annual results row are present also the
RISP (Risparmio di Energia Primaria) and the PES (Primary Energy Savings),
that are useful for considerations about the white certificates, done in the next
chapters. At the end a plot of the energy balances is shown, with at the x-axis
the months of the year. There is a plot for the thermal energies and one for the
electrical ones.

The code "Post_processing_ref_days" is the code built to post-process the result
obtained by the XEMS optimization of the reference days of an year.
As first thing, a text information file is required. It is build automatically in the
folder "Work" at the end of the "kmeans_pp" code, and it is called "Info_" plus
the number of clusters selected. It contains the number of days of the year, the
number of reference days selected, the label of each sample day and the weight of
each reference day. All these information are used later by the code to build a csv
post-processing file similar to the one built for the 14 weeks case.
Afterwards, the xml results files are requested and, if their number is equal to
the number of reference days, the procedure continues. All the quantities already
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mentioned are calculated for each reference day. Subsequently, they are multiplied
with the correspondent weight and summed to obtained the annual results.
To get the monthly results, the labels vector has been used. At each day of the
year are associated the quantities calculated for its correspondent reference day.
To obtain the values of each month the correspondent daily values are summed.
The results for each reference day, the annual results and the monthly results are
all written in the csv post-processing file built in the netlist folder.
Also in this case a plot of the desired quantities can be shown.

The table 4.2 reports the annual results obtained with the different simulations
(the value of the total energy entered in the storage is calculated in the code, but
not reported here since the storage is not present in Carmagnola). Next to each
value there is the error percentage with respect to the "all weeks" case.
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In general the results are quite similar for all the cases, but at first view it seems
that the case with the 14 reference weeks and those with the highest number of
clusters approximate better the real results.
The objective function that XEMS minimizes, which is the cost, in some cases
results lower than the actual. This is not because a better solution is found, but
due to an imperfect approximation of the prices profiles.

Figure 4.1: Comparison of the objective function in all the cases

In fig. 4.1 it can be noticed that, except for the 5 cluster cases, the costs are
closed to the real ones.
To understand in a clearer way the differences between the annual solutions, an
Excel graph has been realized for the annual energy values comparison.

How it is possible to see from fig. 4.2, the annual thermal loads found with the
reference days are equal to the real one. For the reference weeks case, instead, the
value is slightly different (+2.7%). This is because in the clustering code it has
been imposed, instead, if the simulations are run for the first days of each month,
it can not be imposed.
For the other values it seems that the case with 5 reference days returns the worst
results, quite different from the real ones. The other cases obtained with the
clustering, instead, does not show big differences on an annual level, and especially
the 8 days case return results very close to the real annual ones, meaning that the
indicators used to choose the number of reference days on the previous paragraph
are valid.

It can be also interesting to see the monthly behaviours in all the cases, so the
plots realized with the Python codes are reported.
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Figure 4.2: Comparison of the annual energies exchanged in all the cases

For a clearer comparison, some Excel graphs have been also developed to compare
the monthly results of thermal load, thermal energy produced by CHPs and thermal
energy produced by boilers.

As shown in fig. 4.3 and fig.4.4, the clustering-derived profiles are more similar
to the real ones than the profiles derived from the 14 weeks simulation. There
are some months that are not represented well by their first week, as March, July
and November when there are relevant differences with the real case, both in the
thermal load profile and in the optimization results.
For the clustering cases the thermal load is always represented very well, but the
other values, resulted from the optimization, have some small differences. This can
also be due to the prices profiles used, which are the ones of the day closest to each
reference day. Maybe a solution could be clustering more temporal series together,
but the results are quite satisfying also with this approximation.

The electrical energy balance in fig. 4.5 does not add many relevant consid-
erations. The shape of the electrical load has been derived from a percentage of
the thermal one, so it replicates it in a smaller scale. Almost all the electricity
produced by the cogenerators is sold to the grid, being the demand to satisfy very
small. No electricity is purchased in any case.

Resuming, some considerations can be done:

• The clustering cases in the results do not show the same July increment in the
CHP production as the real simulation. This is due to the lower representation
of the summer days among the reference days.

53



Simulation with the reference profiles

Figure 4.3: Comparison of the thermal production
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Figure 4.4: Comparison of the thermal production

• A month that is not approximated very well in all the cases is December. In
December the best solution for the real case is to diminish the CHP usage
and increment the boiler production. This trend is well caught only by the 20
reference day case: in this case the days of the month for which this behaviour
is the optimal one are represented by an own cluster.

• In the 14 reference weeks case there are some spikes in the graphs: representing
an entire month by only using its first seven days is risky.

• The combined usage of the Inertia, Davies-Bouldin and Silhouette scores is a
valid indicator in the choice of the number of clusters: the 8 days reference
case is a fair approximation of the real one.

In conclusion, it seems that the usage of reference days allows to reduce the com-
putational time, and can provide an improvement of the results of the simulations
with respect to the 14 weeks case, if it is done with the proper number of clusters.
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Figure 4.5: Comparison of the electricity balance
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Chapter 5

Implementation of the
white certificates

The aim of the procedure is to consider white certificates and their effects inside
the simulation, in order to make the optimal solution take them into account.
Earning from white certificates, in fact, depends on the useful energy produced
and, to take into account white certificates effects, it is necessary to implement an
iterative procedure that starts the optimization, uses the results to calculate white
certificates and re-starts the optimization with the new input data that depend on
them, until convergence is found.

In order to consider earnings from white certificates, it is necessary to distinguish
the amount of thermal energy produced that is effectively utilized (useful) from the
amount that is dissipated. The final saving is in fact dependent on a parameter β,
which expresses the ratio between thermal power that is dissipated by the plant
and the total produced. [27].

The easier way to insert the economical savings derived from white certificates,
is to modify the maintenance cost of the components. As a consequence, the
simulation will return an optimal result different from the previous and, for this
reason, an iterative procedure is necessary. It re-starts the simulation until the
difference with the previous results is lower than a tolerance or the maximum
number of iterations is reached.

The procedure is described in this chapter.

5.1 Procedure
The aim is to create a Python program that, as first thing, starts the XEMS13
executable file. During the first iteration it is necessary to ask for the folders
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"Work", "Profiles" and "Components". Subsequently it is appropriate to modify
the configuration file in a way that for the following iterations the folder are not
requested anymore, since their paths are already been saved.
Once XEMS results are obtained, these are used to get the savings derived from
white certificates. Following, in the xml file that contains the components char-
acteristic data, the maintenance values of cogenerators are modified, in order to
take into account the savings. Thereby the simulation can be repeated, thanks
to a while loop that ends when the difference between the results of the previous
iteration is lower than the selected tolerance or when the maximum number of
iterations is reached.
Following, a flow diagram that shows the described procedure.

The Python code which implements the procedure can be divided in four parts:

• The main code, called "CB", that calls all the others. It is the one that launches
the XEMS13 main for the first time, saves the real maintenance values, changes
the configuration file in a way that netlist, profiles and components folders
are not requested anymore, and starts the iterative loop;

• "Find_in_netlist" it supports CB when it is necessary to read the netlist text
file, that contains information about the simulation. It has two functions, one
is able to find the name of the component file and the other is able to find all
the cogenerators to utilize for the simulation;

• "Result_for_CB" it contains the function that is called to read the results of
the simulation from the correspondent xml file. It returns values necessary to
evaluate the outcome of the procedure;

• "Modify_maint it contains the function which rewrites the updated values of
the maintenance in the components xml, in such a way that the iteration i+1
considers earnings from white certificates, calculated with the results of the
iteration i.

5.1.1 CB
The code must be in the same folder of the executable file.
As first thing inside the code, the maximum number of iterations is set. It is set to
6, this means that after the fist simulation, maximum other 5 simulations will be
run and then the procedure will stop, even if it has not yet arrived to convergence.
So, the first simulation is started.

Subsequently, the configuration file "XEMS13cfg.txt" is re-written, in such a
way that to the indication "dialog" corresponds the value "0". This file contains
setup information and this setting avoids the request of the folders at the next
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Figure 5.1: Iterative procedure flow diagram
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XEMS executions, since their paths are already contained in another text file,
"defaultDIR.txt", that is read immediately after. The latter contains also the netlist
name with the extension txt, that corresponds to the file name from which all the
other files generated by XEMS take information.
The homonym file with the extension .xml contains instead the simulation results.
All these information are useful and are saved.

These information are immediately used in order to call the functions contained
in "Find_in_netlist". Path and netlist file name are given to the functions, that
return the name of the component file or all the cogenerators present in the
simulation. More precisely, the function that regards the cogenerators, creates
two lists, one containing all the modality (CHP, CHPLE, CHPS) and the other
containing the size of each unit (ex. "CHP_1200").

Following, it is possible to move to the components folder and read the xml file,
since its name has been just obtained. The parse of the xml file is done to read the
maintenance of the cogenerators present inside the lists and another list is created,
which contains all the original values, not yet modified.

Subsequently the function "results", contained in "Results_for_CB" is called.
It requires the path of the folder with the executable and the initial maintenance
and it returns the values updated of the maintenance that take into account the
earnings from white certificates associated to the obtained results. It returns also
a series of other results, among which the coefficient β and the RISP (in Italian
"risparmio di energia primaria"), that are used inside the iterative cycle. The other
results are useful for afterwards considerations.

Following the csv file with the iterations results is created, which name is
composed by the simulation name plus the Italian statement risultati_iterazioni.csv.
Each parameter name is written in a different column, then the file will be updated
at each iteration with the correspondent values.

The loop can start. It is a while loop based mainly to the control of the difference
of the coefficient β between one iteration and the previous. When "diff_beta" is
less than 0.01 the loop is interrupted. An absolute difference has be chosen instead
of a relative one because for very small numbers a negligible variation would result
as too influential and the difference would be higher than the tolerance.
However, in the complex cases that consider also a thermal storage, the total
dissipation is null or very near to 0, and so the same for β. As a consequence, the
loop would end after the first two iterations. To solve the problem, an additional
control had been added. It is performed only if β value is very near to zero. In this
case, the RISP is controlled and if the relative difference between two consecutive
iterations is less than 1%, the loop is interrupted. Otherwise the next iteration will
be performed, since "beta_diff" is appositely set to 1.
A further control is done on the maximum number of iterations: if it is reached,

60



Implementation of the white certificates

the loop is exited.
The first time the loop is executed, the executable file is not launched and results
are not searched with their function, because they are already been saved. Instead,
the function modify_maint is called. It requires the components file name, the
cogenerators lists and the "new" maintenance values. It updates the values inside
the xml components file, in a way that they will be used in the next iteration. For
all the following iterations, instead, before this step, the XEMS main is executed
and the new results are saved.
Finally, for all the iterations, saved results are written in the csv relative to the
iterations results.

In the end, out of the while loop, the configuration file is re-written in such a
way that at the next executable start, folders are requested again.

5.1.2 Find_in_netlist
This subcode contains the definition of two functions, both with the aim to analyze
the netlist text file. Both require as input its name and its folder path (the folder
"Work"). The functions are:

• Find_components_file_name: searches for and saves the name of the compo-
nents file;

• Find_CHP_name: searches and saves the rows containing information about
the cogenerators.

Find_components_file_name reads the rows of the netlist text file and compares
them with the stripe "@XML Library Components File". When the read line
corresponds to the stripe, the number of the following line is saved together with
its containing, because it is the xml component file name.

Find_CHP_name reads the rows and compares them to the stripe "@Dis-
patchable Electric Input". When they are equal, it saves the number of all the
successive rows until there is a void row. Each saved line contains information of
one cogenerator.
It is important to note that actually there are two stripes "@Dispatchable Electric
Input" inside the text file. First time it is followed by information regarding the
grid and the second time about cogenerators. Relevant information are the ones
about cogenerators, as a consequence, the fact that what follows the statements
the first time is overwritten by what follows it the second time is not a problem.
Inside each line referred to a cogenerator, there are multiple information. The
saved ones are the modality (CHP, CHPLE o CHPS) and the typology. So, two
lists are created, each one with the correspondent element for each cogenerator.
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5.1.3 Results_for_CB
This subcode contains the function results, which has as input the folder with the
main and the original maintenance list. The output is a series of results.

As first, the file "defaultDIR.txt" is re-opened in order to read the folder "Work"
path and the simulation name. This time it is used to build the name of the xml
results file, that is also situated inside the folder "Work".
This file is opened and parsed. All the hourly values of thermal power produced
by all the cogenerators are summed, and total thermal energy produced by all the
cogenerators is obtained. The same procedure is executed for electrical energy,
feed energy, dissipated thermal energy and total thermal energy that enters in the
storage. Also the value of the global emissions is read. It is present in the xml only
if the optimization is "ECOENVI". Otherwise, if the optimization is "ECO" only,
the emissions value is reported as "undefined". The dissipation coefficient β, so
defined, is calculated:

β = Dissipation

Thermal energy produced
(5.1)

Following thermal and electrical efficiencies as calculated:

ηthermal = E. thermal produced

E. feed
(5.2)

ηelectrical = E. electrical produced

E. feed
(5.3)

Global efficiency:

ηglobal = E. electrical produced + E. thermal useful

E. feed
(5.4)

It is important to note that in the global efficiency there is not the total thermal
energy produced, but rather the useful energy, calculated by subtracting from the
total the dissipation.
Following the RISP is calculated:

RISP = E. thermal useful

ηthermal,RIF
+ E. electrical

ηelectrical, RIF
− E. feed (5.5)

and the indicator primary energy savings, which is the dimensionless expression of
the primary energy saving realized with the cogenerative plant, with respect to the
traditional separated plants, [28]:

PES = 1− 1
E. thermal useful
E feed·ηter,RIF

+ E. electrical
E feed·ηele,RIF

= RISP
E. thermal useful
ηthermal, RIF

+ E. electrical
ηelectrical, RIF

(5.6)
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Finally the earning from white certificates can be calculated as:

cCB = a · CBvalore,euro

ηelectrical
·
A

ηelectrical
ηelectrical,RIF

+ ηthermal · (1− β)
ηthermal,RIF

− 1
B

(5.7)

The value is expressed in e/MWh, as a consequence it must be divided by
1000 and then it can be subtracted to the original maintenance values, that are
expressed in e/kWh. So a list is created, in which each element is equal to the
correspondent element of the real maintenance list, minus the value cCB.

Values returned to the main code are: updated maintenance list, thermal and
electrical produced energies, useful energy, feed energy, total dissipation, total
energy entering the storage, the three efficiencies, RISP, PES and global emissions.

Formulation and reference values are taken from [27].

5.1.4 Modify_maint

In this subcode there is the homonym function. It needs the path of the folder
with the executable, the name of the xml components file, the two lists regarding
the cogenerators and the list with the updated maintenance values. The aim is, in
fact, to modify the old maintenance values in the xml, substituting them with the
updated ones of the list.

The function does the parsing of the components xml. Subsequently, for each
cogenerator inside the lists, it searches the one with the same modality and typology
inside the xml and substitutes its maintenance value.
It is important to note that, in a simulation, it is possible to have two identical
cogenerator units, so with the same indicators in the correspondent lists. For
example, in the first complex case there are two unit called CHPLE_4401. In
the xml, the maintenance value referred to this typology will be substituted twice.
Nevertheless, this is not a problem, since inside the updated maintenance list
the value are necessarily the same. In fact, as already said, both are calculated
subtracting from the original maintenance (that must be equal because it is referred
to the same typology) the value cCB (equal for all the cogenerators).

It is important to underline that in the components xml file at each iteration all
the maintenance values are updated. As a consequence, at the end of the simulation,
the file will be modified and it will not have the effective values anymore. If the
procedure must be repeated, it is necessary to substitute the modified file with
another with the original values.

63



Implementation of the white certificates

5.2 Results
The csv document related to the iterations results is created in the folder "Work",
that contains already the netlist and the other csv results. Following, the results
of some simulations are presented. At the end of the section the tables with the
iterations results are reported for the four analyzed cases.

5.2.1 Simple cases
Two simulations have been performed in "easy" mode, meaning with only one
cogenerator, without heat recover at low temperature, without thermal storage
and of a single day.
First simulation is of a January day, the second of a March day.

Figure 5.2: β convergence in the first case

First case needs to launch XEMS13 only three times. After the first implemen-
tation of the white certificates, β settles down to a value around the 38% and the
value still the same for the next iteration. The parameter increases with respect to
the first simulation, in which it resulted 29%. This because all values of thermal,
electrical and feed energy increase. As a consequence, keeping unchanged the
demand and increasing the heat production, the dissipation and β necessarily rise.
With a lower maintenance value it worth it to produce more, until a dissipation
of the 38% of the thermal energy produced. The global efficiency decreases from
75% to 71%. The RISP rises of 271 kWh (about +2%), instead, the primary
energy savings PES decreases from about 22% to 19%, remaining by the way over
the threshold value of 10%. This can be explained with the fact that the PES
numerator, that coincides with the RISP, increases, but the denominator (at which
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the feed energy is not subtracted), increases even more, causing a PES reduction.
Feed energy, in fact, rises significantly (about +20%).

Figure 5.3: β convergence in the second case

March simulations need XEMS13 launching five times. All the values oscillate,
until they settle when β is around 50% (starting from a value of 33%). Also in
this case the feed and produced energy increase and the efficiencies decrease. RISP
rises of 4% and PES goes form 20% to 15%.

The results of these cases suggest a bigger economical advantage with a bigger
productivity and, as a consequence, dissipation. One may think that on an
environmental sustainability point of view, this leads to a disadvantage. However,
how it is possible to note, global emissions decreases. With a more detailed analysis
of the complete results of the simulations, in fact, it can be seen that the thermal
energy produced by the boilers decreases (in the first case of the 11%, in the second
one of the 40%). Accordingly, even if the total thermal energy produced increases,
the emissions decrease, being the boilers more pollutants.

It is possible to see it clearly with a Sankey diagram, for example for the April
case. The text file that allows to easily build it, is created in the folder "Work" by
XEMS13 together with the other results.

With these type of plots in fig. 5.4 and 5.5 is highlighted the decrease of the
boiler production (blue top flux) in favour of a higher cogenerators activity (orange
bottom flux) on the left sources side.
On the right part with the final outputs, instead, a higher thermal energy dissipation
and higher values of electricity sold to the grid can be noticed.
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Figure 5.4: Sankey diagram without white certificates

Figure 5.5: Sankey diagram with white certificates
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5.2.2 Cases with storage
Complex cases simulations consider the use of more than one cogenerative unit
with heat recover and a thermal energy storage. They simulate the activity of a
week. Thanks to the heat storage presence, in these simulations, the dissipation is
null or almost null and the results is a β value equal to 0. As a consequence, the
parameter to confront is the RISP. Two simulations has been executed, one for a
January week, and the other for an April week.

In the first case, the executable is started only twice. All the values, in fact,
slightly variate after the first maintenance modification, RISP comprehended, which
increases of less than 0.1%. Despite the rise of the thermal energy produced by the
cogenerators, total energy stored decreases. It could seem a contradictory result,
however comparing the complete results of the simulation with and without white
certificates, it can be seen that, in the case in which white certificates are not
included, thermal energy produced with heat pumps is higher. As a consequence,
considering all the sources, total thermal energy decreases with the implementation
of white certificates and for this reason also the storage usage decreases.
This is the only case in which emissions slightly increases (+0.6%). It could be due
to the less smart storage utilization, however all these variation are not significant.

Figure 5.6: RISP convergence in the second complex case

In the April week simulation, three iterations are needed. The final RISP is
bigger than the initial of almost 1 GWh (so, it increases of about 40%), while PES
decreases only from 33.12% to 32.98%. The storage usage rises, with an increment
of the total thermal energy introduced of almost 2 Gwh (+40%). It is important to
note that also dissipation increases, and goes from being nonexistent to 26 MWh,
a value that is, by the way, very low with respect to the produced thermal energy,
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and that results in a β lower than 0.1%. Global emissions decreases of 26%.
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5.3 Annual version
Primary energy savings, and so also the economical earnings deriving from the
white certificates, have more meaning if calculated on a yearly base instead than
related to a single week.
With the help of the post-processing codes already elaborated for both the 14
reference weeks case and the clustering case, it is possible with few modification of
the code.

The CB code has been modified only by saving the names of all the netlist
launched and calling a different function to calculate the results.

The functions in Find_in_netlist do not require modifications, since the as-
sumption that the same components are used all the year has been made.

The function in Results_CB is substituted with two different versions to utilize
in diverse situations: Results_CB_an to use if a run with the 14 reference weeks is
made, and Results_CB_an_rdays to use when the run is done using the clustering
outputs. They contain part of the correspondent post-processing codes already
analyzed: Post_processing_14_weeks and Post_processing_ref_days.
After the parsing of all the xml results files and the calculation of the required
annual values, also the white certificates savings and the new values of maintenance
are computed, as demanded to the function.

The function that modifies the maintenance in the xml files, contained in
modify_maint is kept the same, since the xml components file is in common for all
the netlists of the same year.

In order to validate the code, a run has been executed with the thermal profile
of Carmagnola, choosing the 8 day reference case. It had shown good results in
chapter 4 and requires the simulation of only 8 days for each iteration, so it is not
too computational heavy.
After the first run, the procedure requires only other three iterations and then it
finds convergence, as the picture 5.7 shows.

With the implementation of white certificates, β coefficient grows from 2% to
26%. The thermal energy produced by the cogenerators increases of the 46%,
instead that produced by boiler slightly decreases (-9%). It implies a rise of the
total dissipation, as shown in figure 5.8. So the additional thermal energy produced
by CHPs in part causes a decrease of the usage of boilers and in part an increase
of dissipation.

With a small increment of the CO2 emissions (+6%) there is a huge drop of the
total cost (-39%). As expected, The primary energy saved RISP increases (+5%)
and the PES indicator decreases from 29% to 22%, being affected by the increment
of the cogenerators fed energy.
All iterations results are reported in table 5.5. In the last row, so the row of the
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Figure 5.7: β convergence in the Carmagnola 8 ref. days annual case

Figure 5.8: Thermal energy produced CHPs, boilers and dissipated

convergent iteration, there are also the differences in percentage between the case
without white certificates.
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Chapter 6

Parametrical optimization

The aim of this chapter is to describe a parametric procedure for the substitution
of a component inside a system. It can happen that the choice of the components
is not the optimal one. In order to check if a component in a system has effectively
the most suitable size, another parametric procedure has been implemented in
Python.

Given one or more components of the same type, and given a range of sizes that
the analysis should investigate, the code is able to run the XEMS13 tool for all the
desired sizes and to return the configuration that gives the lowest cost.
The code is directly been built for the annual version with the post-processing
(of the 14 weeks or of the reference days) already incorporated. The routine is
described by the flow chart in fig. 6.1.

6.1 Procedure
The procedure is similar to the one implemented for the white certificates and is
divided in more codes, all referring to a main one that calls the functions contained
in the others. They are:

• "Parametric": the main code. It allows to write the component to change and
the sizes range. After the first run with the original size, a for loop continues
to change the xml component file and re-run XEMS13 until all the sizes have
been tested. The costs with the different configurations are compared and the
one that returns the lowest is printed;

• "Find_in_netlist": the code is the same already used in the white certificates
routine. In this case, only the function able to find the name of the xml
components file is utilized;
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Figure 6.1: Iterative procedure
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• "Results_for_param_an" or "Results_for_param_an_r_days": are the two
codes built for the post-processing of the XEMS13 results. The first obtains the
annual values from the 14 reference weeks run, the second from the reference
days run. They are similar to their equivalents for the white certificates, but
they do not calculate white certificates and new maintenance values;

• Modify_size: it contains the function to modify the xml component file. It is
called as many times as the sizes to test.

6.1.1 Parametric
This code must be contained in the same folder of the XEMS13 tool.

As first thing, it is possible to choose the components to change in the parametric
run. If more than one components are chosen, they must be of the same type (for
example two cogenerators) and they will have the same size in each iteration. In
the example case with Carmagnola profile, the two cogenerators have been chosen.
For each component, different parameters must be inserted:

• The types: in this example the two "CHP" components have been chosen;

• The names: they coincide with the component original sizes; "CHP_1413"
and "CHP_1487" are the ones taken into consideration;

• Efficiencies related to the each component. Since the cogenerators have two
efficiencies (thermal and electrical) two lists are created, both containing the
two values for the two cogenerators. They are needed to change the sizes in
the proper way;

• The CO2 emissions at full load with the original size;

• Minimum size: smallest size of the components to simulate; 1000 kWe is
selected;

• Maximum size: biggest size of the components to simulate; 2000 kWe is
selected;

• Size gap: gap between two successive sizes. 100 kWe is selected, so there will
be 11 run with fictitious sizes;

Subsequently, the XEMS13 main is started, the first run is performed with the
original sizes. The configuration file is modified so the required folders are not
requested again and the "defaultDIR.txt" file is read in order to save their paths.
A csv file is created where the results of the parametric runs will be written.
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Following, the function Find_components_file_name is called to get the name
of the component xml file from the netlist. This function is inside the already cited
Find_in_netlist code, that won’t be analyzed again.

After this, the function results in the code Results_for_param_an_r_days, is
called to derive from the xml results file the first outcomes, which are written in
the csv file. This function requires the main path and the netlists name. It parses
the xml results of all the reference days and does the post-processing to obtain the
annual results, with a procedure equal to the one already described previously. It
returns the objective function, the electrical and the thermal energies produced
by the cogenerators, the thermal one produced by the boilers, the dissipation,
the global efficiency, the indicators RISP, PES and the total CO2 emissions. The
objective function is saved in a list.
There is also a twin function inside the code Results_for_param_an that does the
same for the 14 weeks post-processing case. The two functions will be no more
discussed since they are very similar to the ones already cited.

The for cycle can start. For each size in the selected range, the function
modify_size is called and the components xml is updated with the new values.
Then, the proper function gets the results, which are written in the csv.

After the end of the cycle, the minimum value among all the objective functions
is extracted, and the size that gave it as result (so, the best one) is printed.
At the end, the configuration file is restored with the option that makes XEMS13
ask again the folders.
At end the xml components file will remain modified, so if it is required to re-run
the procedure, a new original xml file should be used to substitute the modified
one.

6.1.2 Modify_size
The code contains the homonym function.
It needs the main path, the name of the components xml file, the types and names
of the components to change, their electrical and thermal efficiency and the size to
write in the xml. It does not return anything.

The function does the parsing of all the xml of the components.
For each of the components to change size there is the following procedure:

1. The component with the same type and name is found in the xml;

2. Its thermal and electrical efficiencies are got from the correspondent lists, as
well as the emissions with its original size;

3. For the power levels going from 50% to 75% to 100% of load the correspondent
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electrical power, thermal power and fed power are calculated and written in
the xml.

At each iteration, the electrical power at 100% of load corresponds to the size in
kWe. To derive the thermal and the fed powers, the hypothesis of constant thermal
and electrical efficiencies for all the sizes has been made.
By now, this hypothesis can be considered as sufficient because in this phase the
aim is to create fictitious cogenerators varying the parameters with continuity.
Following, it will be possible also to use a series of real components as substitutes.
So the fed power has been calculated by dividing the electrical power by the
electrical efficiency and the thermal one by multiplying the fed power for the
thermal efficiency.

For the thermal and fed power at the lower power levels, it has been made again
the hypothesis that at 50% of load the thermal efficiency is higher of +4% points
with respect to that at 100% and the electrical efficiency decreases of 4%.
At 75% of load the thermal efficiency increases of 2% and the electrical one decreases
of 2%, [24].

The CO2 emissions are, by hypothesis, proportional to the size of the component.
So, for each size and each load, they are derived through a linear proportion with
the original value. The other emissions are neglected.

6.2 Results
The example case is the parametric run of the Carmagnola case with the 8 reference
days approximation, varying the size of the two cogenerators.
Since they originally have similar sizes (1413 kWe and 1487 kWe), it is reasonable
to change with continuity their sizes together from 1000 to 2000 kWe, increasing
by 100 kWe.

In table 6.1 are listed all the results. In the objective function column there is
also the percentage increase or decrease with respect to the original case. The sizes
that return the lowest objective function value are the highest, so 2000 kWe per
cogenerator. It must be underlined that in the table the size indicated is the one
of each cogenerator, instead in the following graphs is the total cumulative size of
all the CHPs.
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Indeed, it results as more convenient to produce more thermal energy from
cogenerators than from boiler, as shows the image 6.2 that illustrates the variation
of the thermal energies produced by CHPs and boilers increasing the cumulative
size of the cogenerator unit.

Figure 6.2: Thermal energies produced by CHPs and boilers and dissipated

It can be useful also to compare the number of equivalent hours of the cogenera-
tors in each simulation. It can be calculated as the ratio between the annual total
electrical energy produced over the nominal electrical power (the size), [29]:

heq = Eele
Pnom

(6.1)

Considering the cogenerators as a single unit, the equivalent hours are plotted
in function of the size in fig. 6.3.

As it can be expected, the equivalent hours decrease increasing the size of the
cogenerators, reaching a value of around 4206 h, so about half of the year.
From the csv results of the reference days, it can be seen that with the optimal size
during the winter days the cogenerators work almost always near the 100% of load.
During the non-heating period, instead, there is only one cogenerator working at
partial load to satisfy the small peak.

As it could be expected from the increase of the cogenerators use to the detriment
of boilers, the emissions of CO2 decrease linearly with the size increase.
With a total size of 400 kWe, emissions decrease of 10.5% with respect to emissions
with original size.
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Figure 6.3: Thermal energies produced by CHPs and boilers and dissipated

The range of sizes to variate has been chosen to be realistic, but it can be extended
in order to check the behaviour of the system also for larger sizes. Increasing them
further, at a certain point the objective functions start increasing again. This
happens when the cogenerators have a size of around 8000 kWe each.

Doing the test with the boiler sizes make no sense. In fact, when it operates at
partial load there is the assumption of constant efficiency, as well as for the size
scale. So the procedure does not see any differences, for example, in using a boiler
of 5000 kW at 50% of load or a boiler of 2500 kW at 100%. Anyway, the possibility
to change also the boiler sizes has been implemented for the case in which real
boilers taken from an external list must be compared.

In conclusion, this analysis is quite approximate and it is done only as an
example for the procedure. In order to obtain more reliable results, more precise
information should be given, preferably taken from real components. In this case,
with few modification of the code is possible to realize a procedure that, taking
real data from a file, iteratively substitutes a component with the ones whom
information are contained in the file.
Moreover, in order to understand if it actually worth to change the components,
a more accurate analysis should be performed, taking in consideration also the
capital fixed costs that in the procedure are ignored since the simulation optimizes
only the operation of the system.

80



Chapter 7

Conclusions

In this master thesis different codes to add functionalities to the optimization tool
XEMS13 have been presented. They have been tested using the data related to
the Carmagnola district heating system, kindly provided by EGEA.

The first topic that has been illustrated is the clustering, that can allow to
simulate shorter periods without compromising the annual results of the simulation,
and sometimes improving them. The use of the right number of reference days,
based on the observation of some main indicators (Inertia, Silhouette and Davis-
Bouldin score, and one additional, the DC error), allows to reconstruct the annual
thermal profile with a shape fitting with the real one. The tested algorithms are
k-means and Ward, that even if characterized by different logic, return similar
solutions. Since no evident differences have been detected, the comparison continued
only between different number of cluster obtained with k-means and the actual
method of 14 reference weeks.

In chapter 4 the analysis has been pursued by running the optimization with the
profiles got in the previous chapter. Before, some preliminary steps were necessary
in order to complete the input profiles needed by XEMS13, as the electrical demands,
taken as percentage of the derived thermal one, and the electricity prices, taken
from the day most similar to each reference day. By means of two post-processing
algorithms, aimed at building the annual results from the single netlists results, the
outcomes are then compared. The results obtained with the clustering reference
days are confronted with the results obtained by running all the year divided in
periods and with those obtained running 14 reference weeks. The comparison
showed that, in the Carmagnola case, 8 reference days is already enough to obtain
quite accurate results, not much different from the complete year case and with a
very reduced computational time in comparison with the 14 weeks reference case.

The study then focused on the codes for the implementation of the white
certificates. The XEMS13 procedure does not take them into account, so an
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external procedure was necessary to include them in the final solution. The
earning derived from the white certificates is calculated from the output of the
simulation, than they are implemented by subtracting them to the maintenance
cost of the cogenerators. The simulation is run again and the routine is repeated
until convergence of the dissipation coefficient β (or RISP in presence of a storage)
is found or a given maximum number of iterations is reached. The procedure has
been implemented for a single netlist run, or also for annual run (with multiple
netlist, one for each reference period and then a post-processing of the results).
In the proven cases the procedure stopped before the fifth iteration and returned
consistent results. White certificates allow to reduce the total costs, but not always
emissions decreased, since a certain margin of thermal dissipation is allowed and
sometimes the solution suggests to run the cogenerators more then necessary,
without a consistent reduction of the boiler work. The presence of the storage
can be a great advantage in this case, avoiding the energy waste. Generally, its
utilization is mean to increase thanks to white certificates implementation.

In chapter 6, the discussion is about a parametric procedure with an iterative
substitution of a component. The routine can change the size of a component (or
more, but by now sizes are changed in parallel) and run for each size in the chosen
range the optimization. The results, in particular the objective functions, are then
compared to obtain the best configuration. The results got with the modification
of the size of the cogenerators are interesting. They suggest a bigger size for
the Carmagnola cogenerators, but more information regarding the components
are needed to got more accurate outcomes and evaluate a real substitution or
supplements.

The results of the procedures are satisfying and leave room for further possible
insights in the field of data analysis and modelling of energy systems.
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Appendix A

Codes

A.1 Table of codes
Note: the codes indicated with * contain only the definition of functions called in
other codes.

Code Input Output Description
kmean_n_cluster Minimum and

maximum num-
ber of clusters,
number of sample
days and hour
of each reference
period, annual
profile to cluster

Plots of Inertia,
Davies-Bouldin,
Silhouette score
and duration
curve error

Used to select
the right number
of cluster for
k-means

Select_Ut * Annual hourly de-
mand profile

Vector of the an-
nual profile

Takes the profile
from csv and cre-
ates a vector
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k_means_pp Number of clus-
ters, number of
sample days and
hour of each refer-
ence period, paths
of the folders of
netlists and pro-
files

Reference days.
Plots of: reference
day for each
cluster, weights,
labels, annual
profiles and DC
curves compar-
isons, duration
curve error. csv
profiles of each
reference day,
netlist of each ref-
erence day. A text
file containing
useful informa-
tion for the
post-processing

Main code for k-
means algorithm

Create_csv * Number of clus-
ters, reference
days profiles,
labels of the day
closest to the
centroids, the
profiles folder
path, the annual
PNord and PUN
prices profiles

The csv profiles
of thermal and
electrical demand
and the prices pro-
files in the profiles
folder

Used to create
automatically the
csv profiles

ward_n_cluster Minimum and
maximum num-
ber of clusters,
number of sample
days and hour
of each reference
period, annual
profile to cluster

Plots of Davies-
Bouldin, Silhou-
ette score and du-
ration curve error

Used to select the
right number of
cluster for Ward
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Ward_pp Number of clus-
ters, number of
sample days and
hour of each refer-
ence period, paths
of the folders of
netlists and pro-
files

Reference days.
Plots of: the
reference day
for each cluster,
the weights, the
labels, the annual
profiles and DC
curves compar-
isons, duration
curve error

Main code for
Ward’s algorithm

Post_processing_
14_weeks

The xml results
files of the 14
simulations of the
weeks

A csv file with
all the main an-
nual results and
the plots of the an-
nual profiles of the
thermal and elec-
trical energies bal-
ance

Used for the post-
processing of the
14 reference weeks
case

Post_processing_
ref_days

The xml results
files of all the ref-
erence days

A csv file with
all the main an-
nual results and
the plots of the an-
nual profiles of the
thermal and elec-
trical energies bal-
ance

Used for the post-
processing cluster-
ing case

CB Maximum num-
ber of iterations,
netlists, profiles
and components
folders, netlist file

xml and csv re-
sults files, a csv
file with the main
results at each it-
eration

Main code for the
implementation of
white certificates
on a single netlist

CB_an Maximum num-
ber of iterations,
netlists, profiles
and components
folders, netlist
files

xml and csv re-
sults files, a csv
file with the an-
nual main results
at each iteration

Main code for the
implementation of
white certificates
over an year
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Find_in_netlist * Path of the netlist
folder, netlist file
name

The name of the
xml components
file, the name and
the type of the co-
generators used

Functions that
search informa-
tion through the
netlist text file

Results_for_CB
*

Netlist folder
path, original
maintenance
vector

Main results of
the iteration, in-
cluded the vec-
tor of the updated
maintenance

Calculates the re-
sults of the iter-
ation for a single
netlist

Results_for_CB
_an *

Netlist folder
path, original
maintenance
vector

Main annual re-
sults of the it-
eration, included
the vector of the
updated mainte-
nance

Calculates the an-
nual results of the
iteration for the
14 weeks case

Results_for_CB_
an_rdays *

Netlist folder
path, original
maintenance
vector

Main annual re-
sults of the it-
eration, included
the vector of the
updated mainte-
nance

Calculates the an-
nual results of the
iteration for the
clustering case

Modify_maint * Path of the netlist
folder, name of
the components
file, used cogen-
erators, updated
maintenance vec-
tor

None Updates the co-
generators mainte-
nance in the xml
components file

Parametric Names and types
of the components
to modify and
their efficiencies
and emissions at
100% of load. The
range of sizes to
test.

A csv with the
main results for
each size and the
configurations
that returns the
lowest cost

Main code for the
parametric run
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Results_for_
param_an *

Path of the netlist
folder, name of
the netlist file

Main annual re-
sults

Calculates the
main annual
results in the 14
reference weeks
case

Results_for_
param_an_
r_days *

Path of the netlist
folder, name of
the netlist file

Main annual re-
sults

Calculates the
main annual
results in the
clustering case

Modify_size * Path of the netlist
folder, name of
the components
file, name, types,
efficiencies and
emissions of the
components to
test, new size

None Updates the xml
components file
with the data
relative to the
new size to test

Table A.1: All the used codes

A.2 Codes relative to chapter 3
Only the codes using k-means algorithm are shown, since the Ward codes are very
similar.

kmean_n_clusters: to find the optimal number of clusters for the clustering. It
plots also the indexes.

1 from sk l ea rn . c l u s t e r import KMeans
2 import numpy as np
3 import time as time
4 from sk l ea rn . met r i c s import davies_bouldin_score
5 from sk l ea rn . met r i c s import s i l h ou e t t e_s co r e
6 import matp lo t l i b . pyplot as p l t
7 import Select_Ut
8

9

10 # Parameters to s e t
11 sample_days = 366
12 min_clusters = 4
13 max_clusters = 20
14 hours = 24
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15

16 Real = Select_Ut . Rea l_pro f i l e ( )
17 n = 0
18 X = np . ones ( [ sample_days , hours ] )
19 f o r i in range (0 , sample_days ) :
20 f o r j in range (0 , hours ) :
21 X[ i , j ] = Real [ n + j ]
22 n = n + hours
23

24 # Find the maximum value and normal ize
25 Max = 0
26

27 f o r i in range (0 , sample_days ) :
28 List_day = X[ i , : ] . t o l i s t ( )
29 Maximum = max( List_day )
30 i f Maximum > Max:
31 Max = Maximum
32 X = X / Max
33

34 max_clusters_plus = in t ( max_clusters + 1)
35 I n e r t i a = [ ]
36 D_B = [ ]
37 S i l h ou e t t e = [ ]
38 e r r o r_ l i s t = [ ]
39

40 f o r n_c lus te r s in range ( min_clusters , max_clusters_plus ) :
41 s t = time . time ( )
42 kmeans = KMeans( n_c lus te r s=n_clusters , random_state=0) . f i t (X)
43 elapsed_time = time . time ( ) − s t
44

45 # Cluste r c ent ro id s , so r e f e r e n c e days
46 # pr in t ( " Reference days are : " , kmeans . c lus te r_center s_ )
47

48 # Label : vec to r t e l l s at which c l u s t e r be longs each sample
49 # pr in t ( " Label o f each sample : " , kmeans . l abe l s_ )
50 l a b e l s = kmeans . l abe l s_ . t o l i s t ( )
51 weights = [ ]
52 f o r t in range (0 , n_c lus te r s ) :
53 weights . append ( l a b e l s . count ( t ) )
54 total_w = sum( weights )
55 f o r t in range (0 , n_c lus te r s ) :
56 weights [ t ] = weights [ t ] / total_w # Weight o f each r e f e r e n c e

day
57 pr in t ( "Weight o f each r e f e r e n c e day : " , we ights )
58

59 pr in t ( "Number o f i t e r a t i o n s run : " , kmeans . n_iter_ )
60 I n e r t i a . append ( kmeans . i n e r t i a_ )
61 pr in t ( " Elapsed time : " , elapsed_time , " s " )
62 D_B. append ( davies_bouldin_score (X, l a b e l s ) )
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63 S i l h ou e t t e . append ( s i l h ou e t t e_s co r e (X, l a b e l s ) )
64 Reference_days = kmeans . c lus te r_center s_
65 Reconstructed = [ ]
66 f o r l a b e l in l a b e l s :
67 Rec_day = Reference_days [ l a b e l ]
68 Rec_day = Rec_day . t o l i s t ( )
69 Reconstructed = Reconstructed + Rec_day
70 Reconstructed = np . array ( Reconstructed )
71 Reconstructed = Reconstructed / sum( Reconstructed ) ∗ sum( Real )
72 Reference_days = Reference_days / sum( Reconstructed ) ∗ sum( Real )
73 Real_DC = np . s o r t ( Real , kind=" s t ab l e " ) [ : : − 1 ]
74 Reconstructed_DC = np . s o r t ( Reconstructed ) [ : : − 1 ]
75 time1 = np . arange (1 , hours ∗ sample_days + 1 , 1)
76 timen = time1 / ( sample_days ∗ hours ) ∗ 100
77 n_bin = 20
78 bins = np . arange (0 , 1 , 1 / n_bin )
79 index_L_list = [ ]
80 index_A_list = [ ]
81 e r r o r = 0
82

83 f o r bin in b ins :
84 Real_DC_0 = abs (Real_DC − bin )
85 Reconstructed_DC_0 = abs (Reconstructed_DC − bin )
86 Real_DC_list = Real_DC_0 . t o l i s t ( )
87 Reconstructed_DC_list = Reconstructed_DC_0 . t o l i s t ( )
88 x = min (Real_DC_list )
89 y = min ( Reconstructed_DC_list )
90 index_L = Real_DC_list . index (min (Real_DC_list ) )
91 index_A = Reconstructed_DC_list . index (min (

Reconstructed_DC_list ) )
92 index_L_list . append ( index_L )
93 index_A_list . append ( index_A)
94 L = timen [ index_L ]
95 A = timen [ index_A ]
96 error_bin = abs (L − A)
97 e r r o r = e r r o r + error_bin
98 e r r o r_ l i s t . append ( e r r o r )
99

100 # Plots :
101 Num_clusters = range ( min_clusters , max_clusters_plus )
102

103 p l t . p l o t ( Num_clusters , I n e r t i a , marker=" o " , c o l o r=’ blue ’ , l a b e l="
I n e r t i a " )

104 p l t . t i t l e ( " I n e r t i a " )
105 p l t . x l ab e l ( "Number o f c l u s t e r s " )
106 p l t . g r i d ( )
107 p l t . show ( )
108
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109 p l t . p l o t ( Num_clusters , D_B, marker=" o " , c o l o r=’ green ’ , l a b e l=" Davies−
Bouldin s co r e " )

110 p l t . t i t l e ( " Davies−Bouldin s co r e " )
111 p l t . x l ab e l ( "Number o f c l u s t e r s " )
112 p l t . g r i d ( )
113 p l t . show ( )
114

115 p l t . p l o t ( Num_clusters , S i l houe t t e , marker=" o " , c o l o r=’ red ’ , l a b e l="
S i l h ou e t t e s co r e " )

116 p l t . t i t l e ( " S i l h ou e t t e s co r e " )
117 p l t . x l ab e l ( "Number o f c l u s t e r s " )
118 p l t . g r i d ( )
119 p l t . show ( )
120

121 p l t . p l o t ( Num_clusters , e r r o r_ l i s t , marker=" o " , c o l o r=’ black ’ , l a b e l="
Total e r r o r " )

122 p l t . t i t l e ( "DC e r r o r " )
123 p l t . x l ab e l ( "Number o f c l u s t e r s " )
124 p l t . y l ab e l ( "Sum of durat ion e r r o r s [%] " )
125 p l t . g r i d ( )
126 p l t . show ( )

Select_Ut: contains a function that extracts the annual thermal load from the
csv file.

1 import t k i n t e r as tk
2 from tk i n t e r import t tk
3 from tk i n t e r import f i l e d i a l o g as fd
4 import os
5 import pandas as pd
6

7

8 de f Rea l_pro f i l e ( ) :
9 g l oba l f i l enames

10 root = tk .Tk( )
11 root . t i t l e ( ’ F i l e s e l e c t i o n ’ )
12 root . r e s i z a b l e ( False , Fa l se )
13 root . geometry ( ’ 300x150 ’ )
14

15 de f s e l e c t _ f i l e s ( ) : # Ask the Ut csv f i l e
16 g l oba l f i l enames
17

18 f i l e t y p e s = (
19 ( ’ csv f i l e s ’ , ’ ∗ . csv ’ ) ,
20 ( ’ A l l f i l e s ’ , ’ ∗ .∗ ’ )
21 )
22

23 f i l enames = fd . askopenf i l enames (
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24 t i t l e=’Open f i l e s ’ ,
25 i n i t i a l d i r=’ / ’ ,
26 f i l e t y p e s=f i l e t y p e s )
27

28 # open button
29 open_button = ttk . Button (
30 root ,
31 t ex t=’ Choose thermal load f i l e ’ ,
32 command=s e l e c t _ f i l e s
33 )
34

35 open_button . pack ( expand=True )
36

37 root . mainloop ( )
38 name = " undef ined "
39 path = " undef ined "
40 f o r f i l ename in f i l enames :
41 name_complete = os . path . basename ( os . path . normpath ( f i l ename ) )
42 name = name_complete . r s p l i t ( " / " , 1) [ 0 ] # name o f the

s imu la t i on
43 path = f i l ename [ 0 : ( l en ( f i l ename ) − l en ( name_complete ) − 1) ]

# path o f the s imu la t i on
44

45 os . chd i r ( path )
46 df = pd . read_csv (name)
47 Demands = df . to_numpy ( )
48 Real = Demands . r av e l ( )
49

50 re turn Real

kmeans_pp: main code for the generation of the reference days.

1 from sk l ea rn . c l u s t e r import KMeans
2 import numpy as np
3 from numpy import z e r o s
4 import time as time
5 import matp lo t l i b . pyplot as p l t
6 import Select_Ut
7 import Create_csv
8 from sk l ea rn . met r i c s import mean_squared_error
9 import os

10

11 # Parameters to s e t
12 n_c lus te r s = 9
13 sample_days = 366
14 hours = 24
15

16 Real = Select_Ut . Rea l_pro f i l e ( )
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17

18 n = 0
19 X = np . ones ( [ sample_days , hours ] )
20 f o r i in range (0 , sample_days ) :
21 f o r j in range (0 , hours ) :
22 X[ i , j ] = Real [ n + j ]
23 n = n + hours
24

25 s t = time . time ( )
26 kmeans = KMeans( n_c lus te r s=n_clusters , random_state=0) . f i t (X)
27 elapsed_time = time . time ( ) − s t
28

29 # Cluste r c ent ro id s , so r e f e r e n c e days
30 Reference_days = kmeans . c lus te r_center s_
31 # pr in t ( " Reference days are : " , Reference_days )
32

33 # Label : vec to r t e l l s at which c l u s t e r be longs each sample
34 # pr in t ( " Label o f each sample : " , kmeans . l abe l s_ )
35 l a b e l s = kmeans . l abe l s_ . t o l i s t ( )
36 weights = [ ]
37 f o r t in range (0 , n_c lus te r s ) :
38 weights . append ( l a b e l s . count ( t ) )
39 total_w = sum( weights )
40 f o r t in range (0 , n_c lus te r s ) :
41 weights [ t ] = weights [ t ] / total_w # Weight o f each r e f e r e n c e day
42 pr in t ( "Weight o f each r e f e r e n c e day : " , we ights )
43 pr in t ( " Elapsed time : " , elapsed_time , " s " )
44 pr in t ( "Number o f i t e r a t i o n s run : " , kmeans . n_iter_ )
45

46 Reconstructed = [ ]
47 f o r l a b e l in l a b e l s :
48 Rec_day = Reference_days [ l a b e l ]
49 Rec_day = Rec_day . t o l i s t ( )
50 Reconstructed = Reconstructed + Rec_day
51 Reconstructed = np . array ( Reconstructed )
52 pr in t ( " Error in the r a t i o between r e a l t o t a l energy and re cons t ruc t ed

p r o f i l e t o t a l energy : " , 1 − sum( Real ) / sum( Reconstructed ) )
53 Reconstructed = Reconstructed / sum( Reconstructed ) ∗ sum( Real )
54 Reference_days = Reference_days / sum( Reconstructed ) ∗ sum( Real )
55

56 # Plots
57

58 # To f i nd the c l o s e s t day to each r e f e r e n c e day
59 Closest_days = np . arange (1 , n_c lus te r s + 1 , 1) # matrix with the

p r o f i l e s o f the c l o s e s t days
60 f o r re ference_day in range (0 , n_c lus te r s ) :
61 min_MSE = 100
62 r e f e r e n c e_p r o f i l e = Reference_days [ re ference_day ] [ : ] . t o l i s t ( )
63 f o r sample_day in range (0 , sample_days ) :
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64 day_pro f i l e = X[ sample_day ] [ : ] . t o l i s t ( )
65 RMSE = mean_squared_error ( day_prof i l e , r e f e r e n c e_p r o f i l e ,

squared=" Fal se " )
66 i f RMSE < min_MSE:
67 min_MSE = RMSE
68 Closest_days [ re ference_day ] = sample_day + 1
69

70 # Pr o f i l e s p l o t s
71 time = np . arange (1 , hours + 1 , 1)
72 f o r re ference_day in range (0 , n_c lus te r s ) :
73 f o r p r o f i l e in range (0 , sample_days ) :
74 p r o f i l o = X[ p r o f i l e , : ]
75 i f l a b e l s [ p r o f i l e ] != reference_day :
76 p l t . p l o t ( time , p r o f i l o , marker=" o " , c o l o r=’ s i l v e r ’ , l a b e l

=" p r o f i l e " )
77 f o r p r o f i l e in range (0 , sample_days ) :
78 p r o f i l o = X[ p r o f i l e , : ]
79 i f l a b e l s [ p r o f i l e ] == reference_day :
80 p l t . p l o t ( time , p r o f i l o , marker=" o " , c o l o r=’ grey ’ , l a b e l="

p r o f i l e " )
81 p l t . x l ab e l ( " Hours o f the day [ h ] " )
82 p l t . y l ab e l ( " Thermal load [MWh] " )
83 p l t . p l o t ( time , Reference_days [ re ference_day ] , marker=" o " , c o l o r=’

green ’ , l a b e l=" r e f e r e n c e day " )
84 t i t l e = ( " Clus te r nr . " , s t r ( re ference_day + 1) )
85 t i t l e = ’ ’ . j o i n ( t i t l e )
86 p l t . t i t l e ( t i t l e )
87 p l t . g r i d ( )
88 p l t . show ( )
89

90 # Pie chart
91 graph_labe ls = range (1 , n_c lus te r s + 1 , 1)
92 p l t . p i e ( weights , l a b e l s=graph_labels , autopct=’%1.1 f%%’ , counte r c l o ck

=False , normal ize=True )
93 p l t . t i t l e ( "Weight o f each r e f e r e n c e day " )
94 p l t . show ( )
95

96 # Labels
97 days = range (1 , sample_days + 1 , 1)
98 l abe l s_p lu s = np . array ( l a b e l s ) + 1
99 Matrix = ze ro s ( ( n_c lus te r s + 1 , sample_days + 1) )

100 f o r i in range (0 , sample_days ) :
101 f o r j in range (0 , n_c lus te r s ) :
102 i f l a b e l s [ i ] == j :
103 Matrix [ j +1] [ i +1] = 1
104

105 p l t . imshow (Matrix , i n t e r p o l a t i o n=’ nea r e s t ’ , cmap=" Greens " , a spect=’
auto ’ )

106 p l t . x l ab e l ( "Days o f the per iod " )
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107 p l t . y l ab e l ( " Reference days " )
108 p l t . ax i s ( [ 1 , sample_days , 1 , n_c lus te r s ] )
109 p l t . t i t l e ( " Reference day used f o r each sample " )
110 p l t . show ( )
111

112 # Real and re cons t ruc t ed p r o f i l e s
113 time = np . arange (1 , hours ∗ sample_days + 1 , 1)
114 p l t . p l o t ( time , Real , c o l o r=’ blue ’ , l a b e l=" Real p r o f i l e " )
115 p l t . p l o t ( time , Reconstructed , c o l o r=’ orange ’ , l a b e l=" Reconstructed

p r o f i l e " )
116 p l t . x l ab e l ( " Hours o f the per iod [ h ] " )
117 p l t . y l ab e l ( " Thermal load [MWh] " )
118 p l t . f i l l_be tween ( time , Real , Reconstructed , f a c e c o l o r=" red " )
119 p l t . l egend ( )
120 p l t . t i t l e ( " P r o f i l e s " )
121 p l t . g r i d ( )
122 p l t . show ( )
123

124 # Duration curves
125 time = time / ( sample_days ∗ hours ) ∗ 100
126 Real_DC = np . s o r t ( Real , kind=" s t ab l e " ) [ : : − 1 ]
127 Reconstructed_DC = np . s o r t ( Reconstructed ) [ : : − 1 ]
128 p l t . p l o t ( time , Real_DC , c o l o r=’ blue ’ , l a b e l=" Real durat ion curve " )
129 p l t . p l o t ( time , Reconstructed_DC , c o l o r=’ orange ’ , l a b e l=" Reconstructed

durat ion curve " )
130 p l t . x l ab e l ( " Duration [%] " )
131 p l t . y l ab e l ( " Thermal load [MWh] " )
132 p l t . f i l l_be tween ( time , Real_DC , Reconstructed_DC , f a c e c o l o r=" red " )
133 p l t . l egend ( )
134 p l t . t i t l e ( " Duration curves " )
135 p l t . g r i d ( )
136 p l t . show ( )
137

138 # Error DC ana l y s i s
139 Max = 0
140 f o r i in range (0 , sample_days ) :
141 List_day = X[ i , : ] . t o l i s t ( )
142 Maximum = max( List_day )
143 i f Maximum > Max:
144 Max = Maximum
145 X = X / Max
146 Reconstructed_DCn = Reconstructed_DC / Max
147 Real_DCn = Real_DC / Max
148

149 n_bin = 20
150 bins = np . arange (0 , 1 , 1 / n_bin )
151 e r r o r = [ ]
152 index_L_list = [ ]
153 index_A_list = [ ]
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154 f o r bin in b ins :
155 Real_DC_0 = abs (Real_DCn − bin )
156 Reconstructed_DC_0 = abs (Reconstructed_DCn − bin )
157 Real_DC_list = Real_DC_0 . t o l i s t ( )
158 Reconstructed_DC_list = Reconstructed_DC_0 . t o l i s t ( )
159 x = min (Real_DC_list )
160 y = min ( Reconstructed_DC_list )
161 index_L = Real_DC_list . index (min (Real_DC_list ) )
162 index_A = Reconstructed_DC_list . index (min ( Reconstructed_DC_list ) )
163 index_L_list . append ( index_L )
164 index_A_list . append ( index_A)
165 L = time [ index_L ]
166 A = time [ index_A ]
167 error_bin = abs (L − A)
168 e r r o r . append ( error_bin )
169 p l t . p l o t ( bins , e r ror , c o l o r=’ red ’ , l a b e l=" Error " )
170 p l t . x l ab e l ( " Bins " )
171 p l t . y l ab e l ( " Duration e r r o r [%] " )
172 p l t . g r i d ( )
173 p l t . t i t l e ( " Error " )
174 p l t . show ( )
175

176 p l t . p l o t ( time , Real_DCn , c o l o r=’ blue ’ , l a b e l=" Real durat ion curve " )
177 p l t . p l o t ( time , Reconstructed_DCn , c o l o r=’ orange ’ , l a b e l="

Reconstructed durat ion curve " )
178 p l t . x l ab e l ( " Duration [%] " )
179 p l t . y l ab e l ( " Normalized thermal load " )
180 f o r number_bin , bin in enumerate ( b ins ) :
181 p l t . h l i n e s ( y=bin , xmin=0, xmax=100 , c o l o r=" grey " , l s="−−" )
182 x = index_L_list [ number_bin ]
183 y = index_A_list [ number_bin ]
184 p l t . p l o t ( time [ x ] , Real_DCn [ x ] , marker="v " , c o l o r=" blue " )
185 p l t . p l o t ( time [ y ] , Real_DCn [ y ] , marker=" s " , c o l o r=" orange " )
186 p l t . h l i n e s ( y=0.05 , xmin=0, xmax=100 , c o l o r=" grey " , l s="−−" )
187 # pl t . ax i s ( [ 7 0 , 100 , −0.05 , 0 . 1 ] ) # To zoom a part o f the graph
188 p l t . l egend ( )
189 p l t . t i t l e ( " Duration curves e r r o r an a l y s i s " )
190 p l t . show ( )
191

192 # To bu i ld the csv f i l e s
193 path = "C:/ Users /simx_/Documents/ Un iv e r s i t à/PoliTo/Tes i_Tiroc in io

/2020_9_Carmagnola/ P r o f i l e s " # Folder where to save the f i l e s
194 Create_csv . Build_Ut_Ue( path , Reference_days , n_c lus te r s )
195 Create_csv . Build_cp_cs ( path , n_clusters , Closest_days , hours )
196

197 # To save u s e f u l in f o rmat i ons
198 os . chd i r ( "C: / Users /simx_/Documents/ Un iv e r s i t à/PoliTo/Tes i_Tiroc in io

/2020_9_Carmagnola/Work" )
199 text_name = " Info_ " + s t r ( n_c lus te r s ) + " _c lu s t e r s . txt "
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200 with open ( text_name , "w" ) as t e x t_ f i l e :
201 t e x t_ f i l e . wr i t e ( s t r ( sample_days ) )
202 t e x t_ f i l e . wr i t e ( " \n " )
203 t e x t_ f i l e . wr i t e ( s t r ( n_c lus te r s ) )
204 t e x t_ f i l e . wr i t e ( " \n " )
205 f o r element in l a b e l s :
206 t e x t_ f i l e . wr i t e ( s t r ( element ) )
207 t e x t_ f i l e . wr i t e ( " " )
208 t e x t_ f i l e . wr i t e ( " \n " )
209 f o r element in weights :
210 t e x t_ f i l e . wr i t e ( s t r ( element ) )
211 t e x t_ f i l e . wr i t e ( " " )
212

213 os . chd i r ( "C: / Users /simx_/Documents/ Un iv e r s i t à/PoliTo/Tes i_Tiroc in io
/2020_9_Carmagnola/Work" )

214 with open ( " ex . txt " , " r " ) as n e t l i s t :
215 example = n e t l i s t . r e a d l i n e s ( )
216 f o r i in range (0 , n_c lus te r s ) :
217 name_txt = s t r (1+ i ) + " . txt "
218 with open (name_txt , "w" ) as t ex t :
219 f o r row in example :
220 i f row == " 0 1 Ut Ut\n " :
221 row = s t r ( " 0 1 Ut Ut_" + s t r ( i + 1) + " \n" )
222 i f row == " 0 1 Ue Ue\n" :
223 row = s t r ( " 0 1 Ue Ue_" + s t r ( i + 1) + " \n" )
224 i f row == " 0 1 Cs Cs\n" :
225 row = s t r ( " 0 1 Cs Cs_" + s t r ( i + 1) + " \n" )
226 i f row == " 0 1 Cp Cp\n" :
227 row = s t r ( " 0 1 Cp Cp_" + s t r ( i + 1) + " \n " )
228 t ex t . wr i t e ( row )

A.3 Codes related to chapter 4
Create_csv: contains all the functions needed to create the csv profile, inputs of
XEMS13.

1 import csv
2 import os
3

4

5 de f Build_Ut_Ue( path , Reference_days , n_c lus te r s ) :
6 os . chd i r ( path )
7 f o r re ference_day in range (0 , n_c lus te r s ) : # Ut
8 ref_day = reference_day + 1
9 csv_name = "Ut_" + s t r ( ref_day ) + " . csv "

10 Ut = Reference_days [ re ference_day ] [ : ]
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11 with open ( csv_name , "w" , newl ine=" " ) as c s v_ f i l e :
12 f o r i , ut in enumerate (Ut) :
13 wr i t e r = csv . wr i t e r ( c sv_ f i l e , d e l im i t e r=" , " )
14 wr i t e r . writerow ( [ " 0 " , " 0 " , " 0 " , " 0 " , i + 1 , ut ∗

1000 ] )
15 f o r re ference_day in range (0 , n_c lus te r s ) : # Ue
16 ref_day = reference_day + 1
17 csv_name = "Ue_" + s t r ( ref_day ) + " . csv "
18 Ue = Reference_days [ re ference_day ] [ : ] ∗ 0 .035
19 with open ( csv_name , "w" , newl ine=" " ) as c s v_ f i l e :
20 f o r i , ue in enumerate (Ue) :
21 wr i t e r = csv . wr i t e r ( c sv_ f i l e , d e l im i t e r=" , " )
22 wr i t e r . writerow ( [ " 0 " , " 0 " , " 0 " , " 0 " , i + 1 , ue ∗

1000 ] )
23 re turn
24

25

26 de f Build_cp_cs ( path , n_clusters , Closest_days , hours ) :
27

28 os . chd i r ( "C: / Users /simx_/Documents/ Un iv e r s i t à/PoliTo/
Tes i_Tiroc in io " ) # Path with p r i c e s f i l e

29 with open ( " prezzi_PNord . csv " , " r " ) as p r i c e s_ f i l e : # Cs
30 p r i c e s = p r i c e s_ f i l e . r e a d l i n e s ( )
31 f o r re ference_day in range (0 , n_c lus te r s ) :
32 ref_day = reference_day + 1
33 os . chd i r ( path )
34 csv_name = "Cs_" + s t r ( ref_day ) + " . csv "
35 Cs = [ ]
36 day = Closest_days [ re ference_day ]
37 f o r hour in range (0 , hours ) :
38 cs = s t r ( p r i c e s [ day∗hours + hour + 1 ] ) . s t r i p ( " \n " )
39 Cs . append ( cs )
40 with open ( csv_name , "w" , newl ine=" " ) as c s v_ f i l e :
41 f o r i , c s in enumerate (Cs ) :
42 wr i t e r = csv . wr i t e r ( c sv_ f i l e , d e l im i t e r=" , " )
43 wr i t e r . writerow ( [ " 0 " , " 0 " , " 0 " , " 0 " , i + 1 , cs ] )
44

45 os . chd i r ( "C: / Users /simx_/Documents/ Un iv e r s i t à/PoliTo/
Tes i_Tiroc in io " )

46 with open ( " prezzi_PUN . csv " , " r " ) as p r i c e s_ f i l e : # Cp
47 p r i c e s = p r i c e s_ f i l e . r e a d l i n e s ( )
48 f o r re ference_day in range (0 , n_c lus te r s ) :
49 ref_day = reference_day + 1
50 os . chd i r ( path )
51 csv_name = "Cp_" + s t r ( ref_day ) + " . csv "
52 Cp = [ ]
53 day = Closest_days [ re ference_day ]
54 f o r hour in range (0 , hours ) :
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55 cp = f l o a t ( s t r ( p r i c e s [ day∗hours + hour + 1 ] ) . s t r i p ( " \n " ) )
+ 100

56 Cp. append ( cp )
57 with open ( csv_name , "w" , newl ine=" " ) as c s v_ f i l e :
58 f o r i , cp in enumerate (Cp) :
59 wr i t e r = csv . wr i t e r ( c sv_ f i l e , d e l im i t e r=" , " )
60 wr i t e r . writerow ( [ " 0 " , " 0 " , " 0 " , " 0 " , i + 1 , cp ] )
61

62 re turn

Post_processing_ref_days: XEMS13 post-processing to obtain the annual
results from the reference days outcomes.

1 import t k i n t e r as tk
2 import os . path
3 import matp lo t l i b . pyplot as p l t
4 import numpy as np
5 from numpy import mean
6 import csv
7 import xml . e t r e e . ElementTree as ET
8 from tk i n t e r import t tk
9 from tk i n t e r import f i l e d i a l o g as fd

10

11 # Create root window to ask text f i l e
12 root = tk .Tk( )
13 root . t i t l e ( ’ F i l e s e l e c t i o n ’ )
14 root . r e s i z a b l e ( False , Fa l se )
15 root . geometry ( ’ 300x150 ’ )
16 f i l enames = " undef ined "
17

18 f l a g = 0
19

20

21 de f s e l e c t _ f i l e s ( ) :
22 g l oba l f i l enames
23

24 f i l e t y p e s = (
25 ( ’ t ex t f i l e s ’ , ’ ∗ . tx t ’ ) ,
26 ( ’ A l l f i l e s ’ , ’ ∗ .∗ ’ )
27 )
28

29 f i l enames = fd . askopenf i l enames (
30 t i t l e=’Open f i l e s ’ ,
31 i n i t i a l d i r=’ / ’ ,
32 f i l e t y p e s=f i l e t y p e s )
33

34

35 # open button

98



Codes

36 open_button = ttk . Button (
37 root ,
38 t ex t=’ Choose f i l e s with c l u s t e r s in fo rmat ion ’ ,
39 command=s e l e c t _ f i l e s
40 )
41

42 open_button . pack ( expand=True )
43

44 root . mainloop ( )
45 week = 0
46 n_days = in t (0 )
47 name = " undef ined "
48 path = " undef ined "
49

50 f o r f i l ename in f i l enames :
51 with open ( f i l ename , " r " ) as t e x t_ f i l e :
52 Text = t e x t_ f i l e . r e a d l i n e s ( )
53 sample_days = in t (Text [ 0 ] . s t r i p ( " \n " ) )
54 n_c lus te r s = in t (Text [ 1 ] . s t r i p ( " \n " ) )
55 l a b e l s = Text [ 2 ] . s p l i t ( )
56 weights = Text [ 3 ] . s p l i t ( )
57

58 # Create the root window to ask xml f i l e s
59 root = tk .Tk( )
60 root . t i t l e ( ’ F i l e s e l e c t i o n ’ )
61 root . r e s i z a b l e ( False , Fa l se )
62 root . geometry ( ’ 300x150 ’ )
63 f i l enames = " undef ined "
64

65 f l a g = 0
66

67

68 de f s e l e c t _ f i l e s ( ) : # Ask the xml f i l e s
69 g l oba l f i l enames
70

71 f i l e t y p e s = (
72 ( ’ xml f i l e s ’ , ’ ∗ . xml ’ ) ,
73 ( ’ A l l f i l e s ’ , ’ ∗ .∗ ’ )
74 )
75

76 f i l enames = fd . askopenf i l enames (
77 t i t l e=’Open f i l e s ’ ,
78 i n i t i a l d i r=’ / ’ ,
79 f i l e t y p e s=f i l e t y p e s )
80

81

82 # open button
83 open_button = ttk . Button (
84 root ,
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85 t ex t=’ Choose f i l e s to post−proce s s ’ ,
86 command=s e l e c t _ f i l e s
87 )
88

89 open_button . pack ( expand=True )
90

91 root . mainloop ( )
92 day = 0
93 n_days = in t (0 )
94 name = " undef ined "
95 path = " undef ined "
96

97 f o r f i l ename in f i l enames :
98 n_days = n_days + 1 # number o f r e f e r e n c e pe r i od s
99 i f name == " undef ined " :

100 name_complete = os . path . basename ( os . path . normpath ( f i l ename ) )
101 name = name_complete . r s p l i t ( " . " , 1) [ 0 ] #

name o f the s imu la t i on
102 path = f i l ename [ 0 : ( l en ( f i l ename )−l en ( name_complete )−1) ] #

path o f the s imu la t i on
103

104 os . chd i r ( path )
105 name_post_processing = name + " _post_process ing . csv "
106 Emiss ions = [ ]
107 E_thermal = [ ]
108 E_e l e c t r i c a l = [ ]
109 Di s s i pa t i on = [ ]
110 E_entered_storage = [ ]
111 Energy_fed = [ ]
112 Boi ler_the = [ ]
113 Demand_the = [ ]
114 Demand_ele = [ ]
115 eta_E = [ ]
116 eta_T = [ ]
117 eta_G = [ ]
118 Obj_f = [ ]
119 Ele_p = [ ]
120 Ele_s = [ ]
121

122 rendimento_E_rif = f l o a t ( 0 . 4 6 )
123 rendimento_T_rif = f l o a t ( 0 . 9 )
124

125 with open ( name_post_processing , "w" , newl ine=" " ) as r i s u l t a t i :
126 wr i t e r = csv . wr i t e r ( r i s u l t a t i , d e l im i t e r=" ; " )
127 wr i t e r . writerow (
128 [ " Re ference day " , " Thermal energy CHP [kWh] " , " E l e c t r i c a l

energy CHP [kWh] " , " Feed energy CHP [kWh] " , " D i s s i p a t i on [kWh] " , "
Bo i l e r product ion [kWh] " , "Ut Thermal load [kWh] " ,
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129 " In energy s to r ed [kWh] " , " Global e f f i c i e n c y CHP" , " Thermal
e f f i c i e n c y CHP" , " E l e c t r i c a l e f f i c i e n c y CHP" , "CO2 emi s s i on s [ kg ] "
, " Object ive func t i on [e ] " , "RISP [kWh] " , "PES" ] )

130

131 E_e l e t t r i c a = 0
132 E_termica = 0
133 E_in = 0
134 E_storage_in = 0
135 Di s s i pa z i one = 0
136 Emiss ion i = 0
137 E_ter_boi ler = 0
138 Utenza_ter = 0
139 Utenza_ele = 0
140 Month = 0
141 num_mese = 0
142 num_period = 0
143 E_uti le = 0
144 Costo = 0
145 E_p = 0
146 E_s = 0
147

148 i f n_days == n_c lus te r s :
149

150 f o r day , f i l ename in enumerate ( f i l enames ) :
151 E_e l e t t r i c a = 0
152 E_termica = 0
153 E_in = 0
154 E_storage_in = 0
155 Di s s i pa z i one = 0
156 Emiss ion i = 0
157 E_ter_boi ler = 0
158 Utenza_ter = 0
159 Utenza_ele = 0
160 Costo = 0
161 E_p = 0
162 E_s = 0
163

164 t r e e = ET. parse ( f i l ename ) #
read a l l va lue s in xml f i l e

165 f o r va l o r e in t r e e . f i n d a l l ( ’ . // Costo ’ ) :
166 Costo = f l o a t ( va l o r e . t ex t )
167

168 f o r va l o r e in t r e e . f i n d a l l ( ’ . // Emis s i on iG loba l i ’ ) :
169 Emiss ion i = f l o a t ( va l o r e . t ex t )
170

171 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHP/ i s t anza /Pt/VAL’ ) :
172 Pot = f l o a t ( va l o r e . t ex t )
173 E_termica = E_termica + Pot
174 # legge l e potenze termiche prodotte dal CHP
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175 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHP/ i s t anza /Pe/VAL’ ) :
176 Pot = f l o a t ( va l o r e . t ex t )
177 E_e l e t t r i c a = E_e l e t t r i c a + Pot
178 # legge l e potenze e l e t t r i c h e prodotte da l CHP
179 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHP/ i s t anza /Pc/VAL’ ) :
180 Pot = f l o a t ( va l o r e . t ex t )
181 E_in = E_in + Pot
182 # legge l e potenze in i n g r e s s o a l CHP
183

184 # legge i r i s u l t a t i de i CHP con recupero d i c a l o r e a
bassa temperatura

185 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHPLE/ i s t an za /Pt le /VAL’
) :

186 Pot = f l o a t ( va l o r e . t ex t )
187 E_termica = E_termica + Pot
188 # legge l e potenze termiche prodotte dal CHPLE
189 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHPLE/ i s t an za /Pele /VAL’

) :
190 Pot = f l o a t ( va l o r e . t ex t )
191 E_e l e t t r i c a = E_e l e t t r i c a + Pot
192 # legge l e potenze e l e t t r i c h e prodotte da l CHPLE
193 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHPLE/ i s t an za /Pcle /VAL’

) :
194 Pot = f l o a t ( va l o r e . t ex t )
195 E_in = E_in + Pot
196 # legge l e potenze in i n g r e s s o a l CHPLE
197

198 # legge i r i s u l t a t i de i CHPS
199 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHPS/ i s t an za /Pts/VAL’ ) :
200 Pot = f l o a t ( va l o r e . t ex t )
201 E_termica = E_termica + Pot
202 # legge l e potenze termiche prodotte dal CHP
203 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHPS/ i s t an za /Pes/VAL’ ) :
204 Pot = f l o a t ( va l o r e . t ex t )
205 E_e l e t t r i c a = E_e l e t t r i c a + Pot
206 # legge l e potenze e l e t t r i c h e prodotte da l CHP
207 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHPS/ i s t an za /Pcs/VAL’ ) :
208 Pot = f l o a t ( va l o r e . t ex t )
209 E_in = E_in + Pot
210 # legge l e potenze in i n g r e s s o a l CHP
211

212 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/ Stt / i s t an za /PStt in /VAL’
) :

213 Pot = f l o a t ( va l o r e . t ex t )
214 E_storage_in = E_storage_in + Pot
215 # legge l e potenze in i n g r e s s o a l l o s t o rage ( se c ’ è )
216

217 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/Dt/Dt/VAL’ ) :
218 Pot = f l o a t ( va l o r e . t ex t )

102



Codes

219 Di s s i pa z i one = Di s s i pa z i one + Pot
220 # legge l a d i s s i p a z i o n e termica ( per t u t t i i c a s i )
221

222 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/ Bo i l e r / i s t an za /Bt/VAL’ )
:

223 Pot = f l o a t ( va l o r e . t ex t )
224 E_ter_boi ler = E_ter_boi ler + Pot
225 # legge l e potenze termiche prodotte dal CHP
226

227 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/Ut/P/VAL’ ) :
228 Pot = f l o a t ( va l o r e . t ex t )
229 Utenza_ter = Utenza_ter + Pot
230 # legge l a domanda termica ( per t u t t i i c a s i )
231

232 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/Ue/P/VAL’ ) :
233 Pot = f l o a t ( va l o r e . t ex t )
234 Utenza_ele = Utenza_ele + Pot
235 # legge l a domanda e l e t t r i c a ( per t u t t i i c a s i )
236

237 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/Grid/ i s t an za /Ps/VAL’ ) :
238 Pot = f l o a t ( va l o r e . t ex t )
239 E_s = E_s + Pot
240 # legge e l e t t r i c i t à venduta a l l a r e t e
241

242 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/Grid/ i s t an za /Pp/VAL’ ) :
243 Pot = f l o a t ( va l o r e . t ex t )
244 E_p = E_p + Pot
245 # legge e l e t t r i c i t à a cqu i s t a t a da l l a r e t e
246

247 E_uti le = E_termica − Di s s i pa z i one
248

249 E_thermal . append ( E_termica ) # update
the ve c to r s

250 E_e l e c t r i c a l . append ( E_e l e t t r i c a )
251 E_entered_storage . append ( E_storage_in )
252 Di s s i pa t i on . append ( D i s s i pa z i one )
253 Energy_fed . append (E_in)
254 Boi ler_the . append ( E_ter_boi ler )
255 Demand_the . append ( Utenza_ter )
256 Demand_ele . append ( Utenza_ele )
257 rendimento_T = E_termica / E_in
258 rendimento_E = E_e l e t t r i c a / E_in
259 rendimento_globale = E_uti le / E_in + E_e l e t t r i c a / E_in
260 eta_T . append ( rendimento_T )
261 eta_E . append ( rendimento_E )
262 eta_G . append ( rendimento_globale )
263 Obj_f . append ( Costo )
264 Emiss ions . append ( Emiss ion i )
265 Ele_p . append (E_p)
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266 Ele_s . append (E_s)
267

268 with open ( name_post_processing , " a " , newl ine=" " ) as r e s u l t s :
# update csv f i l e

269 wr i t e r = csv . wr i t e r ( r e s u l t s , d e l im i t e r=" ; " )
270 wr i t e r . writerow (
271 [ day + 1 , E_termica , E_e le t t r i ca , E_in , D i s s ipaz ione ,

E_ter_boiler , Utenza_ter , E_storage_in ,
272 rendimento_globale , rendimento_T , rendimento_E ,

Emiss ioni , Costo , "−" , "−" ] )
273

274 with open ( name_post_processing , " a " , newl ine=" " ) as r e s u l t s : #
update csv f i l e with annual va lue s

275 wr i t e r = csv . wr i t e r ( r e s u l t s , d e l im i t e r=" ; " )
276 wr i t e r . writerow ( "Annual r e s u l t s " )
277 E_thermal_w = [ 0 ] ∗ n_c lus te r s
278 E_electr ical_w = [ 0 ] ∗ n_c lus te r s
279 Energy_fed_w = [ 0 ] ∗ n_c lus te r s
280 Dissipation_w = [ 0 ] ∗ n_c lus te r s
281 Boiler_the_w = [ 0 ] ∗ n_c lus te r s
282 E_entered_storage_w = [ 0 ] ∗ n_c lus te r s
283 Emissions_w = [ 0 ] ∗ n_c lus te r s
284 Costs_w = [ 0 ] ∗ n_c lus te r s
285 Demand_the_w = [ 0 ] ∗ n_c lus te r s
286 Demand_ele_w = [ 0 ] ∗ n_c lus te r s
287 Ele_s_w = [ 0 ] ∗ n_c lus te r s
288 Ele_p_w = [ 0 ] ∗ n_c lus te r s
289

290 f o r day in range (0 , n_days ) :
291 E_thermal_w [ day ] = E_thermal [ day ] ∗ f l o a t ( weights [ day ] ) ∗

sample_days
292 E_electr ical_w [ day ] = E_e l e c t r i c a l [ day ] ∗ f l o a t ( weights [

day ] ) ∗ sample_days
293 Energy_fed_w [ day ] = Energy_fed [ day ] ∗ f l o a t ( weights [ day ] )

∗ sample_days
294 Dissipation_w [ day ] = Di s s i p a t i on [ day ] ∗ f l o a t ( weights [ day

] ) ∗ sample_days
295 Boiler_the_w [ day ] = Boi ler_the [ day ] ∗ f l o a t ( weights [ day ] )

∗ sample_days
296 E_entered_storage_w [ day ] = E_entered_storage [ day ] ∗ f l o a t

( weights [ day ] ) ∗ sample_days
297 Emissions_w [ day ] = Emiss ions [ day ] ∗ f l o a t ( weights [ day ] ) ∗

sample_days
298 Costs_w [ day ] = Obj_f [ day ] ∗ f l o a t ( weights [ day ] ) ∗

sample_days
299 Demand_the_w [ day ] = Demand_the [ day ] ∗ f l o a t ( weights [ day ] )

∗ sample_days
300 Demand_ele_w [ day ] = Demand_ele [ day ] ∗ f l o a t ( weights [ day ] )

∗ sample_days
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301 Ele_s_w [ day ] = Ele_s [ day ] ∗ f l o a t ( weights [ day ] ) ∗
sample_days

302 Ele_p_w [ day ] = Ele_p [ day ] ∗ f l o a t ( weights [ day ] ) ∗
sample_days

303

304 E_thermal_a = sum(E_thermal_w)
305 E_elect r i ca l_a = sum( E_electr ical_w )
306 Energy_fed_a = sum(Energy_fed_w)
307 Diss ipat ion_a = sum( Dissipation_w )
308 Boiler_the_a = sum(Boiler_the_w )
309 Demand_the_a = sum(Demand_the_w)
310 Demand_ele_a = sum(Demand_ele_w)
311 E_entered_storage_a = sum(E_entered_storage_w )
312 Emissions_a = sum(Emissions_w )
313 Cost_a = sum(Costs_w)
314 Ele_s_a = sum(Ele_s_w)
315 Ele_p_a = sum(Ele_p_w)
316 E_useful_a = E_thermal_a − Diss ipat ion_a
317 RISP = E_elect r i ca l_a / rendimento_E_rif + E_useful_a /

rendimento_T_rif − Energy_fed_a
318 PES = RISP / ( E_elect r i ca l_a / rendimento_E_rif + E_useful_a

/ rendimento_T_rif )
319 eta_T_a = E_thermal_a / Energy_fed_a
320 eta_E_a = E_elect r i ca l_a / Energy_fed_a
321 eta_G_a = eta_E_a + E_useful_a / Energy_fed_a
322 wr i t e r . writerow (
323 [ " Annual r e s u l t s " , E_thermal_a , E_electr ica l_a ,

Energy_fed_a , Diss ipat ion_a , Boiler_the_a , Demand_the_a ,
324 E_entered_storage_a ,
325 eta_G_a , eta_T_a , eta_E_a , Emissions_a , Cost_a , RISP ,

PES ] )
326

327 # Monthly r e s u l t s
328 Emissions_y = [ ]
329 E_thermal_y = [ ]
330 E_electr i ca l_y = [ ]
331 Diss ipat ion_y = [ ]
332 E_entered_storage_y = [ ]
333 Energy_fed_y = [ ]
334 Boiler_the_y = [ ]
335 Demand_the_y = [ ]
336 Demand_ele_y = [ ]
337 eta_E_y = [ ]
338 eta_T_y = [ ]
339 eta_G_y = [ ]
340 Obj_f_y = [ ]
341 rendimento_T_y = [ ]
342 rendimento_E_y = [ ]
343 rendimento_globale_y = [ ]
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344 Ele_s_y = [ ]
345 Ele_p_y = [ ]
346

347 f o r sample_day in range (0 , sample_days ) :
348 index = in t ( l a b e l s [ sample_day ] )
349 E_thermal_y . append (E_thermal [ index ] )
350 E_electr i ca l_y . append ( E_e l e c t r i c a l [ index ] )
351 E_entered_storage_y . append ( E_entered_storage [ index ] )
352 Diss ipat ion_y . append ( D i s s i p a t i on [ index ] )
353 Energy_fed_y . append ( Energy_fed [ index ] )
354 Boiler_the_y . append ( Boi ler_the [ index ] )
355 Obj_f_y . append (Obj_f [ index ] )
356 rendimento_T_y . append ( eta_T [ index ] )
357 rendimento_E_y . append ( eta_E [ index ] )
358 rendimento_globale_y . append (eta_G [ index ] )
359 Emissions_y . append ( Emiss ions [ index ] )
360 Demand_the_y . append (Demand_the [ index ] )
361 Demand_ele_y . append (Demand_ele [ index ] )
362 Ele_p_y . append (Ele_p [ index ] )
363 Ele_s_y . append ( Ele_s [ index ] )
364

365 E_thermal_my = [ ]
366 E_electrical_my = [ ]
367 Energy_fed_my = [ ]
368 Boiler_the_my = [ ]
369 Demand_the_my = [ ]
370 Demand_ele_my = [ ]
371 Dissipation_my = [ ]
372 Ele_p_my = [ ]
373 Ele_s_my = [ ]
374

375 with open ( name_post_processing , " a " , newl ine=" " ) as r e s u l t s : #
update csv f i l e with annual va lue s

376 wr i t e r = csv . wr i t e r ( r e s u l t s , d e l im i t e r=" ; " )
377 wr i t e r . writerow ( "Monthly r e s u l t s " )
378 f i r s t = " undef ined "
379 l a s t = " undef ined "
380 f o r month in range (0 , 12) :
381 i f month == 0 :
382 mese = " January "
383 f i r s t = 0
384 l a s t = 31
385 i f month == 1 :
386 mese = " February "
387 f i r s t = 31
388 l a s t = 60
389 i f month == 2 :
390 mese = "March "
391 f i r s t = 60
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392 l a s t = 91
393 i f month == 3 :
394 mese = " Apr i l "
395 f i r s t = 91
396 l a s t = 121
397 i f month == 4 :
398 mese = "May"
399 f i r s t = 121
400 l a s t = 152
401 i f month == 5 :
402 mese = " June "
403 f i r s t = 152
404 l a s t = 182
405 i f month == 6 :
406 mese = " July "
407 f i r s t = 182
408 l a s t = 213
409 i f month == 7 :
410 mese = "August "
411 f i r s t = 213
412 l a s t = 244
413 i f month == 8 :
414 mese = " September "
415 f i r s t = 244
416 l a s t = 274
417 i f month == 9 :
418 mese = " October "
419 f i r s t = 274
420 l a s t = 305
421 i f month == 10 :
422 mese = "November "
423 f i r s t = 305
424 l a s t = 335
425 i f month == 11 :
426 mese = "December "
427 f i r s t = 335
428 l a s t = 366
429

430 E_thermal_m = sum(E_thermal_y [ f i r s t : l a s t ] )
431 E_electrical_m = sum( E_electr i ca l_y [ f i r s t : l a s t ] )
432 Energy_fed_m = sum(Energy_fed_y [ f i r s t : l a s t ] )
433 Dissipation_m = sum( Diss ipat ion_y [ f i r s t : l a s t ] )
434 Boiler_the_m = sum( Boiler_the_y [ f i r s t : l a s t ] )
435 Demand_the_m = sum(Demand_the_y [ f i r s t : l a s t ] )
436 Demand_ele_m = sum(Demand_ele_y [ f i r s t : l a s t ] )
437 E_entered_storage_m = sum( E_entered_storage_y [ f i r s t : l a s t

] )
438 a = eta_T_y [ f i r s t : l a s t ]
439 eta_G_m = mean( rendimento_globale_y [ f i r s t : l a s t ] )
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440 eta_T_m = mean( rendimento_T_y [ f i r s t : l a s t ] )
441 eta_E_m = mean( rendimento_E_y [ f i r s t : l a s t ] )
442 Emissions_m = sum( Emissions_y [ f i r s t : l a s t ] )
443 Obj_f_m = sum(Obj_f_y [ f i r s t : l a s t ] )
444 Ele_p_m = sum(Ele_p_y [ f i r s t : l a s t ] )
445 Ele_s_m = sum(Ele_s_y [ f i r s t : l a s t ] )
446

447 wr i t e r . writerow (
448 [ month + 1 , E_thermal_m , E_electrical_m , Energy_fed_m

, Dissipation_m , Boiler_the_m , Demand_the_m,
449 E_entered_storage_m ,
450 eta_G_m, eta_T_m, eta_E_m, Emissions_m , Obj_f_m, "−"

, "−" ] )
451

452 E_thermal_my . append (E_thermal_m)
453 E_electrical_my . append ( E_electrical_m )
454 Energy_fed_my . append (Energy_fed_m)
455 Boiler_the_my . append (Boiler_the_m )
456 Demand_the_my . append (Demand_the_m)
457 Demand_ele_my . append (Demand_ele_m)
458 Dissipation_my . append ( Dissipation_m )
459 Ele_s_my . append (Ele_s_m)
460 Ele_p_my . append (Ele_p_m)
461

462 # Plots :
463

464 E_thermal_y = np . array (E_thermal_y )
465 E_electr i ca l_y = np . array ( E_electr i ca l_y )
466 Diss ipat ion_y = np . array ( Diss ipat ion_y )
467 Energy_fed_y = np . array (Energy_fed_y )
468 Boiler_the_y = np . array ( Boiler_the_y )
469 Time = x = np . arange (1 , 13 , 1)
470 E_useful_y = E_thermal_y − Diss ipat ion_y
471 p l t . p l o t (Time , E_thermal_my , marker=" o " , c o l o r=’ green ’ , l a b e l="

Thermal energy CHP" )
472 p l t . p l o t (Time , Demand_the_my , marker=" o " , c o l o r=’ red ’ , l a b e l="

Thermal load " )
473 # pl t . p l o t (Time , Energy_fed_my , marker="o " , c o l o r =’ black ’ , l a b e l

="Energy fed " )
474 p l t . p l o t (Time , Boiler_the_my , marker=" o " , c o l o r=’ blue ’ , l a b e l="

Thermal energy b o i l e r " )
475 p l t . p l o t (Time , Dissipation_my , marker=" o " , c o l o r=’ orange ’ , l a b e l=

" D i s s i p a t i on " )
476 p l t . yl im (0 , 6 e6 )
477 p l t . l egend ( )
478 t i t o l o = "Annual r e s u l t s with " + s t r ( n_c lus te r s ) + " c l u s t e r s "
479 p l t . t i t l e ( t i t o l o )
480 p l t . x l ab e l ( "Month" )
481 p l t . y l ab e l ( "kWh" )
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482 p l t . g r i d ( )
483 p l t . show ( )
484

485 p l t . p l o t (Time , E_electrical_my , marker=" o " , c o l o r=’ green ’ , l a b e l=
" E l e c t r i c a l energy CHP" )

486 p l t . p l o t (Time , Demand_ele_my , marker=" o " , c o l o r=’ red ’ , l a b e l="
E l e c t r i c a l load " )

487 # pl t . p l o t (Time , Energy_fed_my , marker="o " , c o l o r =’ black ’ , l a b e l
="Energy fed " )

488 p l t . p l o t (Time , Ele_p_my , marker=" o " , c o l o r=’ blue ’ , l a b e l="
E l e c t r i c i t y purchased " )

489 p l t . p l o t (Time , Ele_s_my , marker=" o " , c o l o r=’ orange ’ , l a b e l="
E l e c t r i c i t y so ld " )

490 p l t . yl im (0 , 2 . 5 e6 )
491 p l t . l egend ( )
492 t i t o l o = "Annual r e s u l t s with " + s t r ( n_c lus te r s ) + " c l u s t e r s "
493 p l t . t i t l e ( t i t o l o )
494 p l t . x l ab e l ( "Month" )
495 p l t . y l ab e l ( "kWh" )
496 p l t . g r i d ( )
497 p l t . show ( )
498

499 e l s e :
500 pr in t ( "Numero i n c o r r e t t o d i f i l e s e l e z i o n a t i " ) # i f the re i s not

the c o r r e c t number o f s e l e c t e d f i l e s

Post_processing_14_weeks: XEMS13 post-processing to obtain the annual
results from the 14 weeks outcomes.

1 import t k i n t e r as tk
2 import os . path
3 import matp lo t l i b . pyplot as p l t
4 import numpy as np
5 import csv
6 import xml . e t r e e . ElementTree as ET
7 from tk i n t e r import t tk
8 from tk i n t e r import f i l e d i a l o g as fd
9

10

11 # crea t e the root window
12 root = tk .Tk( )
13 root . t i t l e ( ’ F i l e s e l e c t i o n ’ )
14 root . r e s i z a b l e ( False , Fa l se )
15 root . geometry ( ’ 300x150 ’ )
16 f i l enames = " undef ined "
17

18 f l a g = 0
19
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20

21 de f s e l e c t _ f i l e s ( ) : # Ask the 14 xml f i l e s
22 g l oba l f i l enames
23

24 f i l e t y p e s = (
25 ( ’ xml f i l e s ’ , ’ ∗ . xml ’ ) ,
26 ( ’ A l l f i l e s ’ , ’ ∗ .∗ ’ )
27 )
28

29 f i l enames = fd . askopenf i l enames (
30 t i t l e=’Open f i l e s ’ ,
31 i n i t i a l d i r=’ / ’ ,
32 f i l e t y p e s=f i l e t y p e s )
33

34

35 # open button
36 open_button = ttk . Button (
37 root ,
38 t ex t=’ Choose f i l e s to post−proce s s ’ ,
39 command=s e l e c t _ f i l e s
40 )
41

42 open_button . pack ( expand=True )
43

44 root . mainloop ( )
45 week = 0
46 n_weeks = in t (0 )
47 name = " undef ined "
48 path = " undef ined "
49

50 f o r f i l ename in f i l enames :
51 n_weeks = n_weeks + 1 # number o f pe r i od s analyzed
52 i f name == " undef ined " :
53 name_complete = os . path . basename ( os . path . normpath ( f i l ename ) )
54 name = name_complete . r s p l i t ( " . " , 1) [ 0 ] #

name o f the s imu la t i on
55 path = f i l ename [ 0 : ( l en ( f i l ename )−l en ( name_complete )−1) ] #

path o f the s imu la t i on
56

57 os . chd i r ( path )
58 name_post_processing = name + " _post_process ing . csv "
59 Emiss ions = [ ]
60 E_thermal = [ ]
61 E_e l e c t r i c a l = [ ]
62 Di s s i pa t i on = [ ]
63 E_entered_storage = [ ]
64 Energy_fed = [ ]
65 Boi ler_the = [ ]
66 Demand_the = [ ]
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67 eta_E = [ ]
68 eta_T = [ ]
69 eta_G = [ ]
70 RISP = [ ]
71 PES = [ ]
72 Obj_f = [ ]
73 Ele_demand = [ ]
74 Ele_s = [ ]
75 Ele_p = [ ]
76 rendimento_E_rif = f l o a t ( 0 . 4 6 )
77 rendimento_T_rif = f l o a t ( 0 . 9 )
78

79 with open ( name_post_processing , "w" , newl ine=" " ) as r i s u l t a t i :
80 wr i t e r = csv . wr i t e r ( r i s u l t a t i , d e l im i t e r=" ; " )
81 wr i t e r . writerow (
82 [ "Mese " , " Energia termica CHP [kWh] " , " Energia e l e t t r i c a CHP

[kWh] " , " Energia d i a l imentaz ione CHP [kWh] " , " D i s s i pa z i one [kWh] "
, " Produzione c a l d a i e [kWh] " , " Utenza termica [ kwh ] " ,

83 " Energia accumulo i n g r e s s o [kWh] " , " Rendimento g l oba l e CHP" ,
" Rendimento termico " , " Rendimento e l e t t r i c o " , " Emiss ion i CO2 [ kg ]

" , " Object ive func t i on [e ] " , "RISP [kWh] " , "PES" ] )
84

85 E_e l e t t r i c a = 0
86 E_termica = 0
87 E_in = 0
88 E_storage_in = 0
89 Di s s i pa z i one = 0
90 Emiss ion i = 0
91 E_ter_boi ler = 0
92 Utenza_ter = 0
93 Month = 0
94 num_mese = 0
95 num_period = 0
96 Costo = 0
97 Utenza_ele = 0
98 E_p = 0
99 E_s = 0

100

101 i f n_weeks == 14 :
102

103 f o r week , f i l ename in enumerate ( f i l enames ) :
104

105 i f week != 4 and week != 11 :
106 E_e l e t t r i c a = 0
107 E_termica = 0
108 E_in = 0
109 E_storage_in = 0
110 Di s s i pa z i one = 0
111 Emiss ion i = 0
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112 E_ter_boi ler = 0
113 Utenza_ter = 0
114 Costo = 0
115 Utenza_ele = 0
116 E_p = 0
117 E_s = 0
118

119 i f week <= 3 :
120 Month = week + 1
121 e l i f 4 <= week <= 10 :
122 Month = week
123 e l s e :
124 Month = week − 1
125

126 t r e e = ET. parse ( f i l ename ) #
read a l l va lue s in xml f i l e

127 f o r va l o r e in t r e e . f i n d a l l ( ’ . // Costo ’ ) :
128 Costo = f l o a t ( va l o r e . t ex t )
129

130 f o r va l o r e in t r e e . f i n d a l l ( ’ . // Emis s i on iG loba l i ’ ) :
131 Emiss ion i = f l o a t ( va l o r e . t ex t )
132

133 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHP/ i s t anza /Pt/VAL’ ) :
134 Pot = f l o a t ( va l o r e . t ex t )
135 E_termica = E_termica + Pot
136 # legge l e potenze termiche prodotte dal CHP
137 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHP/ i s t anza /Pe/VAL’ ) :
138 Pot = f l o a t ( va l o r e . t ex t )
139 E_e l e t t r i c a = E_e l e t t r i c a + Pot
140 # legge l e potenze e l e t t r i c h e prodotte da l CHP
141 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHP/ i s t anza /Pc/VAL’ ) :
142 Pot = f l o a t ( va l o r e . t ex t )
143 E_in = E_in + Pot
144 # legge l e potenze in i n g r e s s o a l CHP
145

146 # legge i r i s u l t a t i de i CHP con recupero d i c a l o r e
147 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHPLE/ i s t an za /Pt le /VAL’

) :
148 Pot = f l o a t ( va l o r e . t ex t )
149 E_termica = E_termica + Pot
150 # legge l e potenze termiche prodotte dal CHP
151 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHPLE/ i s t an za /Pele /VAL’

) :
152 Pot = f l o a t ( va l o r e . t ex t )
153 E_e l e t t r i c a = E_e l e t t r i c a + Pot
154 # legge l e potenze e l e t t r i c h e prodotte da l CHP
155 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHPLE/ i s t an za /Pcle /VAL’

) :
156 Pot = f l o a t ( va l o r e . t ex t )

112



Codes

157 E_in = E_in + Pot
158 # legge l e potenze in i n g r e s s o a l CHP
159

160 # legge i r i s u l t a t i de i CHPS
161 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHPS/ i s t an za /Pts/VAL’ ) :
162 Pot = f l o a t ( va l o r e . t ex t )
163 E_termica = E_termica + Pot
164 # legge l e potenze termiche prodotte dal CHP
165 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHPS/ i s t an za /Pes/VAL’ ) :
166 Pot = f l o a t ( va l o r e . t ex t )
167 E_e l e t t r i c a = E_e l e t t r i c a + Pot
168 # legge l e potenze e l e t t r i c h e prodotte da l CHP
169 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHPS/ i s t an za /Pcs/VAL’ ) :
170 Pot = f l o a t ( va l o r e . t ex t )
171 E_in = E_in + Pot
172 # legge l e potenze in i n g r e s s o a l CHP
173

174 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/ Stt / i s t an za /PStt in /VAL’
) :

175 Pot = f l o a t ( va l o r e . t ex t )
176 E_storage_in = E_storage_in + Pot
177 # legge l e potenze in i n g r e s s o a l l o s t o rage ( se c ’ è )
178

179 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/Dt/Dt/VAL’ ) :
180 Pot = f l o a t ( va l o r e . t ex t )
181 Di s s i pa z i one = Di s s i pa z i one + Pot
182 # legge l a d i s s i p a z i o n e termica ( per t u t t i i c a s i )
183

184 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/ Bo i l e r / i s t an za /Bt/VAL’ )
:

185 Pot = f l o a t ( va l o r e . t ex t )
186 E_ter_boi ler = E_ter_boi ler + Pot
187 # legge l e potenze termiche prodotte dal CHP
188

189 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/Ut/P/VAL’ ) :
190 Pot = f l o a t ( va l o r e . t ex t )
191 Utenza_ter = Utenza_ter + Pot
192 # legge l a domanda termica ( per t u t t i i c a s i )
193

194 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/Ue/P/VAL’ ) :
195 Pot = f l o a t ( va l o r e . t ex t )
196 Utenza_ele = Utenza_ele + Pot
197 # legge l a domanda termica ( per t u t t i i c a s i )
198

199 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/Grid/ i s t an za /Ps/VAL’ ) :
200 Pot = f l o a t ( va l o r e . t ex t )
201 E_s = E_s + Pot
202 # legge e l e t t r i c i t à venduta a l l a r e t e
203
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204 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/Grid/ i s t an za /Pp/VAL’ ) :
205 Pot = f l o a t ( va l o r e . t ex t )
206 E_p = E_p + Pot
207 # legge e l e t t r i c i t à a cqu i s t a t a da l l a r e t e
208

209 E_uti le = E_termica − Di s s i pa z i one
210 i f week == 3 or week == 10 :
211 cont inue
212

213 i f week == 0 or week == 2 or week == 5 or week == 7 or week
== 8 or week == 13 :

214 num_mese = 31
215 num_period = 7
216 e l i f week == 1 :
217 num_mese = 29
218 num_period = 7
219 e l i f week == 6 or week == 9 or week == 12 :
220 num_mese = 30
221 num_period = 7
222 e l i f week == 4 :
223 num_period = 14
224 num_mese = 30
225 e l i f week == 11 :
226 num_period = 14
227 num_mese = 31
228

229 E_termica = E_termica / num_period ∗ num_mese #
ca l c u l a t e monthly va lue s

230 E_e l e t t r i c a = E_e l e t t r i c a / num_period ∗ num_mese
231 E_storage_in = E_storage_in / num_period ∗ num_mese
232 E_storage_in = E_storage_in / num_period ∗ num_mese
233 Di s s i pa z i one = Di s s i pa z i one / num_period ∗ num_mese
234 Utenza_ele = Utenza_ele / num_period ∗ num_mese
235 E_in = E_in / num_period ∗ num_mese
236 Emiss ion i = Emiss ion i / num_period ∗ num_mese
237 E_ter_boi ler = E_ter_boi ler / num_period ∗ num_mese
238 E_uti le = E_uti le / num_period ∗ num_mese
239 Utenza_ter = Utenza_ter / num_period ∗ num_mese
240 Costo = Costo / num_period ∗ num_mese
241 E_p = E_p / num_period ∗ num_mese
242 E_s = E_s / num_period ∗ num_mese
243

244 E_thermal . append ( E_termica ) # update
the ve c to r s

245 E_e l e c t r i c a l . append ( E_e l e t t r i c a )
246 E_entered_storage . append ( E_storage_in )
247 Di s s i pa t i on . append ( D i s s i pa z i one )
248 Emiss ions . append ( Emiss ion i )
249 Energy_fed . append (E_in)
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250 Boi ler_the . append ( E_ter_boi ler )
251 Demand_the . append ( Utenza_ter )
252 Ele_demand . append ( Utenza_ele )
253 Obj_f . append ( Costo )
254 Ele_p . append (E_p)
255 Ele_s . append (E_s)
256 rendimento_T = E_termica / E_in
257 rendimento_E = E_e l e t t r i c a / E_in
258 rendimento_globale = E_uti le / E_in + E_e l e t t r i c a / E_in
259 eta_T . append ( rendimento_T )
260 eta_E . append ( rendimento_E )
261 eta_G . append ( rendimento_globale )
262

263 with open ( name_post_processing , " a " , newl ine=" " ) as r i s u l t a t i
: # update csv f i l e

264 wr i t e r = csv . wr i t e r ( r i s u l t a t i , d e l im i t e r=" ; " )
265 wr i t e r . writerow (
266 [Month , E_termica , E_e le t t r i ca , E_in , D i s s ipaz ione ,

E_ter_boiler , Utenza_ter , E_storage_in ,
267 rendimento_globale , rendimento_T , rendimento_E ,

Emiss ioni , Costo , "−" , "−" ] )
268

269 e l s e :
270 pr in t ( "Numero i n c o r r e t t o d i f i l e s e l e z i o n a t i " ) # i f the re are

not 14 f i l e s s e l e c t e d
271

272 E_thermal = np . array (E_thermal )
273 E_e l e c t r i c a l = np . array ( E_e l e c t r i c a l )
274 E_entered_storage = np . array ( E_entered_storage )
275 Di s s i pa t i on = np . array ( D i s s i pa t i on )
276 Energy_fed = np . array ( Energy_fed )
277 Time = x = np . arange (1 , 13 , 1)
278 E_useful = E_thermal − Di s s i pa t i on
279

280 with open ( name_post_processing , " a " , newl ine=" " ) as r e s u l t s : #
update csv f i l e with annual va lue s

281 wr i t e r = csv . wr i t e r ( r e s u l t s , d e l im i t e r=" ; " )
282 E_thermal_a = sum(E_thermal )
283 Demand_ele_a = sum(Ele_demand)
284 E_elect r i ca l_a = sum( E_e l e c t r i c a l )
285 Energy_fed_a = sum( Energy_fed )
286 Diss ipat ion_a = sum( D i s s i p a t i on )
287 Boiler_the_a = sum( Boi ler_the )
288 Demand_the_a = sum(Demand_the)
289 E_entered_storage_a = sum( E_entered_storage )
290 Emissions_a = sum( Emiss ions )
291 Obj_f_a = sum(Obj_f )
292 E_useful_a = sum( E_useful )
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293 RISP = E_elect r i ca l_a / rendimento_E_rif + E_useful_a /
rendimento_T_rif − Energy_fed_a

294 PES = RISP / ( E_elect r i ca l_a / rendimento_E_rif + E_useful_a /
rendimento_T_rif )

295 eta_T_a = E_thermal_a / Energy_fed_a
296 eta_E_a = E_elect r i ca l_a / Energy_fed_a
297 eta_G_a = eta_E_a + E_useful_a / Energy_fed_a
298 wr i t e r . writerow (
299 [ " Annual r e s u l t s " , E_thermal_a , E_electr ica l_a , Energy_fed_a ,

Diss ipat ion_a , Boiler_the_a , Demand_the_a , E_entered_storage_a ,
300 eta_G_a , eta_T_a , eta_E_a , Emissions_a , Obj_f_a , RISP , PES ] )
301

302 # Plots :
303

304 E_the = p l t . p l o t (Time , E_thermal , marker=" o " , c o l o r=’ green ’ , l a b e l="
Thermal energy CHP" )

305 E_ele = p l t . p l o t (Time , Demand_the , marker=" o " , c o l o r=’ red ’ , l a b e l="
Thermal load " )

306 E_boi = p l t . p l o t (Time , Boi ler_the , marker=" o " , c o l o r=’ blue ’ , l a b e l="
Thermal energy b o i l e r " )

307 E_diss = p l t . p l o t (Time , D i s s ipa t i on , marker=" o " , c o l o r=’ orange ’ ,
l a b e l=" D i s s i pa t i on " )

308 p l t . yl im (0 , 6 e6 )
309 p l t . l egend ( )
310 p l t . t i t l e ( " Annual r e s u l t s with 14 weeks " )
311 p l t . x l ab e l ( "Month" )
312 p l t . y l ab e l ( "kWh" )
313 p l t . g r i d ( )
314 p l t . show ( )
315

316 p l t . p l o t (Time , E_e l e c t r i c a l , marker=" o " , c o l o r=’ green ’ , l a b e l="
E l e c t r i c a l energy CHP" )

317 p l t . p l o t (Time , Ele_demand , marker=" o " , c o l o r=’ red ’ , l a b e l=" E l e c t r i c a l
load " )

318 # pl t . p l o t (Time , Energy_fed_my , marker="o " , c o l o r =’ black ’ , l a b e l ="
Energy fed " )

319 p l t . p l o t (Time , Ele_p , marker=" o " , c o l o r=’ blue ’ , l a b e l=" E l e c t r i c i t y
purchased " )

320 p l t . p l o t (Time , Ele_s , marker=" o " , c o l o r=’ orange ’ , l a b e l=" E l e c t r i c i t y
so ld " )

321 p l t . yl im (0 , 2 . 5 e6 )
322 p l t . l egend ( )
323 t i t o l o = "Annual r e s u l t s with 14 weeks "
324 p l t . t i t l e ( t i t o l o )
325 p l t . x l ab e l ( "Month" )
326 p l t . y l ab e l ( "kWh" )
327 p l t . g r i d ( )
328 p l t . show ( )
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A.4 Codes related to chapter 5
Only the codes related to the implementation of white certificates using single
netlist are reported.

CB: main code for white certificates.

1 import csv
2 import os
3 import xml . e t r e e . ElementTree as ET
4 import numpy as np
5 import Results_for_CB
6 import Find_in_net l i s t
7 import Modify_maint
8

9 max_iteraz ioni = 6 # i n s e r t maximum number o f i t e r a t i o n s
10

11 main_path = os . getcwd ( )
12 os . system (main_path + " \main_XEMS13_v2_7 . exe " ) # f i r s t XEMS13 lauch
13

14 with open ( ’XEMS13cfg . txt ’ , ’w ’ ) as Con f i gu ra t i onF i l e :
15 Con f i gu ra t i onF i l e . wr i t e ( " CSVdelimiter=,\n " )
16 Con f i gu ra t i onF i l e . wr i t e ( " d i a l o g=0\n" )
17 Con f i gu ra t i onF i l e . wr i t e ( " print_var=0\n" )
18 Con f i gu ra t i onF i l e . wr i t e ( " Sankey=sankeymatic \n " )
19 # to modify the c on f i g u r a t i on f i l e , s e t t i n g d i a l o g=0
20 # to avoid the t o o l asks again the f o l d e r s
21

22 with open ( " defaultDIR . txt " , " r " , encoding=’ ut f8 ’ ) as d i r e c t o r i e s :
23 Paths = d i r e c t o r i e s . r e a d l i n e s ( )
24 netl ist_name = s t r ( Paths [ 3 ] . s t r i p ( " \n " ) ) # n e t l i s t name
25 net l i s t_path = s t r ( Paths [ 0 ] . s t r i p ( " \n " ) ) # n e t l i s t f o l d e r path
26 components_path = s t r ( Paths [ 2 ] . s t r i p ( " \n " ) )
27 # components f o l d e r path
28 netl ist_only_name = Paths [ 3 ] . r s p l i t ( " . " , 1) [ 0 ]
29 # n e t l i s t name without extens i on
30

31 os . chd i r ( ne t l i s t_path ) # move to n e t l i s t f o l d e r
32

33 components_name = Find_in_net l i s t . Find_components_file_name (
net l i s t_path , net l i st_name )

34 CHP_type , CHP_tag = Find_in_net l i s t .Find_CHP_name( net l i s t_path ,
net l i st_name )

35 # CHP_type i s the l i s t o f a l l the t ypo l o g i e s o f cogene ra to r s pre sent
( ex . CHP, CHPLE)

36 # CHP_tag i s the l i s t o f a l l the names ( s i z e s ) o f the cogene ra to r s
pre sent ( ex . CHP_1203)

37
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38 os . chd i r ( components_path ) # move to components f o l d e r
39 t r e e = ET. parse ( components_name )
40 root = t r e e . g e t roo t ( )
41 old_maintenance = [ ]
42 # to save the va lue s o f the o r i g i n a l maintenance :
43 f o r numero_cogeneratore , cogenera to re in enumerate (CHP_type) :
44 i f c ogene ra to re == "CHP" :
45 f o r components_CHP in t r e e . f i n d a l l ( " . //CHP" ) :
46 i f components_CHP . a t t r i b [ "name" ] == CHP_tag [

numero_cogeneratore ] :
47 old_maintenance . append ( f l o a t (components_CHP . a t t r i b [ "

maint " ] ) )
48 e l i f cogenera to re == "CHPLE" :
49 f o r components_CHP in t r e e . f i n d a l l ( " . //CHPLE" ) :
50 i f components_CHP . a t t r i b [ "name" ] == CHP_tag [

numero_cogeneratore ] :
51 old_maintenance . append ( f l o a t (components_CHP . a t t r i b [ "

maint " ] ) )
52 e l i f cogenera to re == "CHPS" :
53 f o r components_CHP in t r e e . f i n d a l l ( " . //CHPS" ) :
54 i f components_CHP . a t t r i b [ "name" ] == CHP_tag [

numero_cogeneratore ] :
55 old_maintenance . append ( f l o a t (components_CHP . a t t r i b [ "

maint " ] ) )
56 e l s e :
57 pr in t ( "CHP non r i c on o s c i u t o " )
58 old_maint = np . array ( old_maintenance )
59

60 new_maint , D i s s ipaz ione , E_termica , E_in , E_e le t t r i ca , beta ,
E_storage_in , rendimento_E , rendimento_T , rendimento_globale , RISP
, PES, Emis s i on iG loba l i = Results_for_CB . r e s u l t s (

61 main_path , old_maint ) # c a l c u l a t e s white c e r t i f i c a t e s
62 previous_maint = old_maint
63 os . chd i r ( ne t l i s t_path )
64 Risu l tat i_f i l e_name = s t r ( netl ist_only_name + " _ r i s u l t a t i_ i t e r a z i o n i .

csv " )
65 # name o f i t e r a t i o n s r e s u l t s csv f i l e
66

67 with open ( Risu l tat i_f i l e_name , "w" ) as R i s u l t a t i_ i t e r a z i o n i :
68 wr i t e r = csv . wr i t e r ( R i s u l t a t i_ i t e r a z i o n i , d e l im i t e r=" ; " )
69 wr i t e r . writerow (
70 [ " I t e r a z i o n e " , " D i s s i pa z i one [kWh] " , " Energia termica [kWh] " ,

" Energia d i a l imentaz ione [kWh] " , " Energia e l e t t r i c a [kWh] " , "
Beta " ,

71 " Energia s to rage i n g r e s s o [kWh] " , " Rendimento e l e t t r i c o " , "
Rendimento termico " , " Rendimento g l oba l e " , "RISP [kWh] " , "PES" ,

72 " Emiss ion i CO2 [ kg ] " , " Maintenance [ euro /kWh] " ] )
73

74 i t e r a z i o n e = in t (0 )
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75 beta_d i f f = 0 .5
76 # c i c l o whi l e i t e r a t i v o
77 whi le be ta_d i f f > 0 . 0 1 :
78 previous_beta = beta
79 previous_RISP = RISP
80 i f i t e r a z i o n e == 0 :
81 Modify_maint . modify_maint (main_path , components_name ,

CHP_type , CHP_tag , new_maint )
82 pass
83 e l s e :
84 os . chd i r (main_path )
85 os . system (main_path + " \main_XEMS13_v2_7 . exe " )
86 new_maint , D i s s ipaz ione , E_termica , E_in , E_e le t t r i ca , beta ,

E_storage_in , rendimento_E , rendimento_T , rendimento_globale , RISP
, PES, Emis s i on iG loba l i = Results_for_CB . r e s u l t s (

87 main_path , old_maint )
88 Modify_maint . modify_maint (main_path , components_name ,

CHP_type , CHP_tag , new_maint )
89

90 beta_d i f f = abs ( previous_beta − beta )
91

92 os . chd i r ( ne t l i s t_path )
93

94 with open ( Risu l tat i_f i l e_name , " a " , newl ine=" " ) as
R i s u l t a t i_ i t e r a z i o n i :

95 wr i t e r = csv . wr i t e r ( R i s u l t a t i_ i t e r a z i o n i , d e l im i t e r=" ; " )
96 wr i t e r . writerow ( [ i t e r a z i o n e , D i s s ipaz ione , E_termica , E_in ,

E_e le t t r i ca , beta , E_storage_in , rendimento_E , rendimento_T ,
rendimento_globale , RISP , PES, Emiss ion iGloba l i , previous_maint ] )

97

98 previous_maint = new_maint
99 i f −0.000001 < previous_beta < 0 .000001 :

100 beta_d i f f = 1 # to make i t remain in the loop
101 i f i t e r a z i o n e > 0 :
102 scarto_RISP = abs ( ( previous_RISP − RISP) / previous_RISP )
103 i f scarto_RISP < 0 . 0 1 :
104 break
105

106 i t e r a z i o n e = i t e r a z i o n e + 1
107

108 i f i t e r a z i o n e == max_iteraz ioni :
109 pr in t ( "Massimo numero d i i t e r a z i o n i ragg iunto " )
110 break
111

112 os . chd i r (main_path )
113 with open ( ’XEMS13cfg . txt ’ , ’w ’ ) as Con f i gu ra t i onF i l e :
114 Con f i gu ra t i onF i l e . wr i t e ( " CSVdelimiter=,\n " )
115 Con f i gu ra t i onF i l e . wr i t e ( " d i a l o g=1\n" )
116 Con f i gu ra t i onF i l e . wr i t e ( " print_var=0\n" )
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117 Con f i gu ra t i onF i l e . wr i t e ( " Sankey=sankeymatic \n " )
118 # to modify c on f i gu r a t i on f i l e to make XEMS13 ask the f o l d e r s

again
119 # at the next launch

Find_in_netlist: support functions that finds element in the netlist text file.

1 import os
2

3

4 de f Find_components_file_name ( net l i s t_path , net l i st_name ) :
5 os . chd i r ( ne t l i s t_path )
6 with open ( netl ist_name , " r " , encoding=’ ut f8 ’ ) as n e t l i s t :
7 Lines = n e t l i s t . r e a d l i n e s ( )
8 f o r l ine_counter , l i n e in enumerate ( Lines ) :
9 l i n e a = s t r ( l i n e . s t r i p ( " \n " ) )

10 i f l i n e a == "@XML Library Components F i l e " :
11 num_components_file_name = l ine_counter + 1
12 components_name = s t r ( Lines [ num_components_file_name

] . s t r i p ( " \n " ) ) + " . xml "
13 # saves the components xml f i l e name
14 re turn components_name
15

16

17 de f Find_CHP_name( net l i s t_path , net l ist_name ) :
18 os . chd i r ( ne t l i s t_path )
19 primo_CHP = in t (0 )
20 ultimo_CHP = in t (0 )
21 CHP_type = [ ]
22 CHP_tag = [ ]
23 with open ( netl ist_name , " r " , encoding=’ ut f8 ’ ) as n e t l i s t :
24 Lines = n e t l i s t . r e a d l i n e s ( )
25 f o r l ine_counter , l i n e in enumerate ( Lines ) :
26 l i n e a = s t r ( l i n e . s t r i p ( " \n " ) )
27 i f l i n e a == " @Dispatchable E l e c t r i c Input " :
28 primo_CHP= l ine_counter + 1
29 i f primo_CHP != 0 and ultimo_CHP < primo_CHP and l i n e a ==

’ ’ :
30 ultimo_CHP = l ine_counter
31

32 f o r num_CHP in range (primo_CHP , ultimo_CHP) :
33 CHP_name = s t r ( Lines [num_CHP] . s t r i p ( " \n " ) )
34 # saves the names o f the used CHP
35 CHP_names = CHP_name. s p l i t ( )
36 CHP_type . append (CHP_names [ 2 ] ) # CHP, CHPLE o CHPS
37 CHP_tag . append (CHP_names [ 3 ] )
38

39 re turn (CHP_type , CHP_tag)
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Results_for_CB: analyzes the simulation results for a single netlist.

1 import os
2 import os . path
3 import xml . e t r e e . ElementTree as ET
4

5

6 de f r e s u l t s (main_path , old_maint ) :
7 E_termica = 0
8 E_e l e t t r i c a = 0
9 Di s s i pa z i one = 0

10 E_in = 0
11 E_storage_in = 0
12 Emis s i on iG loba l i = " undef ined "
13

14 a = f l o a t ( 0 . 0 86 )
15 rendimento_E_rif = f l o a t ( 0 . 4 6 )
16 rendimento_T_rif = f l o a t ( 0 . 9 )
17 CB_val = f l o a t ( 264 . 08 ) # euro per CB
18 # values taken from " C e r t i f i c a t i Bianchi "
19

20 os . chd i r (main_path )
21

22 with open ( " defaultDIR . txt " , " r " , encoding=’ ut f8 ’ ) as d i r e c t o r i e s :
23 Paths = d i r e c t o r i e s . r e a d l i n e s ( )
24 # Paths [ 2 ] conta in s the path o f the components d i r e c t o r y
25 # Paths [ 0 ] conta in s the path o f the work d i r e c t o r y with the

r e s u l t s
26 # Paths [ 3 ] conta in s name o f the n e t l i s t . txt
27 net l i s t_path = s t r ( Paths [ 0 ] . s t r i p ( " \n " ) ) # n e t l i s t f o l d e r

path
28 Al lRe su l t s = Paths [ 3 ] . r s p l i t ( " . " , 1) [ 0 ] + " . xml " # name o f

xml r e s u l t s f i l e
29

30 os . chd i r ( ne t l i s t_path ) # move to the n e t l i s t f o l d e r to read the
r e s u l t s

31 t r e e = ET. parse ( A l lRe su l t s )
32

33 # CHP
34 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHP/ i s t anza /Pt/VAL’ ) :
35 Pot = f l o a t ( va l o r e . t ex t )
36 E_termica = E_termica + Pot
37 # reads thermal powers produced by CHP
38 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHP/ i s t anza /Pe/VAL’ ) :
39 Pot = f l o a t ( va l o r e . t ex t )
40 E_e l e t t r i c a = E_e l e t t r i c a + Pot
41 # reads e l e c t r i c a l powers produced by CHP
42 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHP/ i s t anza /Pc/VAL’ ) :
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43 Pot = f l o a t ( va l o r e . t ex t )
44 E_in = E_in + Pot
45 # reads powers en t e r i ng CHP
46

47 # CHPLE
48 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHPLE/ i s t an za /Pt le /VAL’ ) :
49 Pot = f l o a t ( va l o r e . t ex t )
50 E_termica = E_termica + Pot
51 # reads thermal powers produced by CHPLE
52 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHPLE/ i s t an za /Pele /VAL’ ) :
53 Pot = f l o a t ( va l o r e . t ex t )
54 E_e l e t t r i c a = E_e l e t t r i c a + Pot
55 # reads e l e c t r i c a l powers produced by CHPLE
56 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHPLE/ i s t an za /Pcle /VAL’ ) :
57 Pot = f l o a t ( va l o r e . t ex t )
58 E_in = E_in + Pot
59 # reads powers en t e r i ng CHPLE
60

61 # CHPS
62 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHPS/ i s t an za /Pts/VAL’ ) :
63 Pot = f l o a t ( va l o r e . t ex t )
64 E_termica = E_termica + Pot
65 # reads thermal powers produced by CHPS
66 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHPS/ i s t an za /Pes/VAL’ ) :
67 Pot = f l o a t ( va l o r e . t ex t )
68 E_e l e t t r i c a = E_e l e t t r i c a + Pot
69 # reads e l e c t r i c a l powers produced by CHPS
70 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/CHPS/ i s t an za /Pcs/VAL’ ) :
71 Pot = f l o a t ( va l o r e . t ex t )
72 E_in = E_in + Pot
73 # reads powers en t e r i ng CHPS
74

75 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/ Stt / i s t an za /PStt in /VAL’ ) :
76 Pot = f l o a t ( va l o r e . t ex t )
77 E_storage_in = E_storage_in + Pot
78 # reads powers ene t e r i ng the s to rage ( i f p re sent )
79

80 f o r va l o r e in t r e e . f i n d a l l ( ’ . //Node_1/Dt/Dt/VAL’ ) :
81 Pot = f l o a t ( va l o r e . t ex t )
82 Di s s i pa z i one = Di s s i pa z i one + Pot
83 # reads thermal d i s s i p a t i o n
84

85 f o r va l o r e in t r e e . f i n d a l l ( ’ . // Emis s i on iG loba l i ’ ) :
86 Emis s i on iG loba l i = f l o a t ( va l o r e . t ex t )
87 # reads CO2 emi s s i on s
88

89 beta = Di s s i pa z i one / E_termica
90

91 rendimento_E = E_e l e t t r i c a / E_in
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92 rendimento_T = E_termica / E_in
93 E_uti le = E_termica − Di s s i pa z i one
94 rendimento_globale = ( E_e l e t t r i c a + E_uti le ) / E_in
95 RISP = E_e l e t t r i c a / rendimento_E_rif + E_uti le /

rendimento_T_rif − E_in # Risparmio d i ene rg i a pr imar ia
96 PES = RISP / ( E_e l e t t r i c a / rendimento_E_rif + E_uti le /

rendimento_T_rif ) # primary energy sav ing
97 Ccb = a ∗ CB_val / rendimento_E ∗ ( rendimento_E /

rendimento_E_rif + (
98 1 − beta ) ∗ rendimento_T / rendimento_T_rif − 1) / 1000

# euro / kWh
99 # ca l c u l a t e s the white c e r t i f i c a t e s

100

101 new_maint = old_maint − Ccb # update maintenance o f each
cogenerato r

102

103 os . chd i r (main_path )
104

105 re turn (new_maint , D i s s ipaz ione , E_termica , E_in , E_e le t t r i ca ,
beta , E_storage_in , rendimento_E , rendimento_T ,

106 rendimento_globale , RISP , PES, Emis s i on iG loba l i )

Modify_maint: modifies maintenance values of cogenerators in the xml compo-
nents file.

1 import os
2 import xml . e t r e e . ElementTree as ET
3

4

5 de f modify_maint (main_path , components_name , CHP_type , CHP_tag ,
new_maint ) :

6 os . chd i r (main_path )
7 with open ( " defaultDIR . txt " , " r " , encoding=’ ut f8 ’ ) as d i r e c t o r i e s :
8 Paths = d i r e c t o r i e s . r e a d l i n e s ( )
9 components_path = s t r ( Paths [ 2 ] . s t r i p ( " \n " ) ) # components

f o l d e r path
10 os . chd i r ( components_path ) # moves to the components f o l d e r
11 t r e e = ET. parse ( components_name )
12

13 f o r num_cogeneratore , cogenera to re in enumerate (CHP_type) :
14 new_maintenance = new_maint [ num_cogeneratore ]
15 i f cogene ra to re == "CHP" :
16 f o r components_CHP in t r e e . f i n d a l l ( " . //CHP" ) :
17 i f components_CHP . a t t r i b [ "name" ] == CHP_tag [

num_cogeneratore ] :
18 components_CHP . a t t r i b [ " maint " ] = s t r (

new_maintenance )
19
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20 e l i f cogenera to re == "CHPLE" :
21 f o r components_CHP in t r e e . f i n d a l l ( " . //CHPLE" ) :
22 i f components_CHP . a t t r i b [ "name" ] == CHP_tag [

num_cogeneratore ] :
23 components_CHP . a t t r i b [ " maint " ] = s t r (

new_maintenance )
24

25 e l i f cogenera to re == "CHPS" :
26 f o r components_CHP in t r e e . f i n d a l l ( " . //CHPS" ) :
27 i f components_CHP . a t t r i b [ "name" ] == CHP_tag [

num_cogeneratore ] :
28 components_CHP . a t t r i b [ " maint " ] = s t r (

new_maintenance )
29

30 t r e e . wr i t e ( components_name , encoding=" utf−8" )
31 pass

A.5 Codes relative to chapter 6
Parametric: main code for the parametric run

1 import csv
2 import os
3 import Find_in_net l i s t
4 import Results_for_param_an_r_days
5 import Results_for_param_an
6 import Modify_size
7

8

9 Component_types = [ ]
10 Component_names = [ ]
11

12 Component_types . append ( "CHP" ) # append type o f f i r s t
component

13 Component_names . append ( "CHP_1413" ) # append s i z e o f f i r s t
component

14 Component_types . append ( "CHP" ) # and so on . . .
15 Component_names . append ( "CHP_1487" )
16 eta_E_list = [0 . 428831563 , 0 .429768786 ]
17 eta_T_list = [0 . 435811836 , 0 .419364162 ]
18 Emis s i on s_ l i s t = [ 111 . 1 47 , 111 . 147 ]
19

20 Min_size = 1000 # i n s e r t minimum s i z e (kWe)
21 Max_size = 2000 # i n s e r t maximum s i z e
22 Gap_size = 100 # i n s e r t d i f f e r e n c e between two

i t e r a t i o n s
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23

24 ######################################
25

26 main_path = os . getcwd ( )
27 os . system (main_path + " \main_XEMS13_v2_7 . exe " ) # f i r s t XEMS run with

the e x i s t i n g components
28

29 with open ( ’XEMS13cfg . txt ’ , ’w ’ ) as Con f i gu ra t i onF i l e :
30 Con f i gu ra t i onF i l e . wr i t e ( " CSVdelimiter=,\n " )
31 Con f i gu ra t i onF i l e . wr i t e ( " d i a l o g=0\n" )
32 Con f i gu ra t i onF i l e . wr i t e ( " print_var=0\n" )
33 Con f i gu ra t i onF i l e . wr i t e ( " Sankey=sankeymatic \n " )
34 # f i l e i s modi f i ed with d i a l o g=0 so the f o l d e r s are not reques ted

anymore
35

36 with open ( " defaultDIR . txt " , " r " , encoding=’ ut f8 ’ ) as d i r e c t o r i e s :
37 Paths = d i r e c t o r i e s . r e a d l i n e s ( )
38 net l i s t_names = Paths [ 3 : l en ( Paths ) ] # sa lva i l nome d e l l e

n e t l i s t
39 net l i s t_path = s t r ( Paths [ 0 ] . s t r i p ( " \n " ) ) # i l pe r co r so d e l l a

c a r t e l l a d e l l e n e t l i s t
40 components_path = s t r ( Paths [ 2 ] . s t r i p ( " \n " ) ) # i l pe r co r so d e l l a

c a r t e l l a de i componenti
41 netl ist_only_names = [ 0 ] ∗ ( l en ( Paths ) − 3)
42 f o r i , e lement in enumerate ( net l i s t_names ) :
43 net l i s t_names [ i ] = s t r ( element ) . s t r i p ( " \n " )
44 netl ist_only_names [ i ] = s t r ( element ) . r s p l i t ( " . " , 1) [ 0 ] #

senza e s t en s i on e
45

46 os . chd i r ( ne t l i s t_path )
47 Risu l tat i_f i l e_name = s t r (
48 netl ist_only_names [ 0 ] ) + " _r i su l t a t i_paramet r i c . csv " # name o f

the csv f i l e
49 with open ( Risu l tat i_f i l e_name , "w" ) as R i s u l t a t i_ i t e r a z i o n i :
50 wr i t e r = csv . wr i t e r ( R i s u l t a t i_ i t e r a z i o n i , d e l im i t e r=" ; " )
51 wr i t e r . writerow (
52 [ " S i z e s " , "Obj . f . [e ] " , "CHP e l e c t r i c a l [kWh] " , "CHP thermal

[kWh] " , " Bo i l e r thermal [kWh] " , " D i s s i p a t i on [kWh] " , " Global
e f f i c i e n c y " , "RISP [kWh] " , "PES" , "CO2 emi s s i on s [ kg ] " ] )

53

54 components_name = Find_in_net l i s t . Find_components_file_name (
net l i s t_path , net l i s t_names [ 0 ] )

55 Obj_f_l ist = [ ] # l i s t o f a l l the ob j e c t i v e f unc t i on s
56 Obj_f , E_ele_CHP, E_the_CHP, E_ter_boiler , D i s s ipa t i on , eta_G , RISP ,

PES, Emiss ions = Results_for_param_an_r_days . r e s u l t s (
57 main_path , netl ist_only_names )
58 Obj_f_l ist . append (Obj_f )
59 os . chd i r ( ne t l i s t_path )
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60 with open ( Risu l tat i_f i l e_name , " a " , newl ine=" " ) as
R i s u l t a t i_ i t e r a z i o n i :

61 wr i t e r = csv . wr i t e r ( R i s u l t a t i_ i t e r a z i o n i , d e l im i t e r=" ; " )
62 S i z e = " o r i g i n a l s "
63 wr i t e r . writerow ( [ S ize , Obj_f , E_ele_CHP, E_the_CHP, E_ter_boiler ,

D i s s ipa t i on , eta_G , RISP , PES, Emiss ions ] )
64

65 Range = Max_size − Min_size
66 i t e r a t i o n s = in t (Range / Gap_size )
67 f o r i in range (0 , i t e r a t i o n s + 1) :
68 S i z e = Min_size + i ∗ Gap_size
69 Modify_size . modi fy_size (main_path , components_name ,

Component_names , Component_types , S ize , eta_E_list , eta_T_list ,
Emi s s i on s_ l i s t )

70 os . system (main_path + " \main_XEMS13_v2_7 . exe " )
71 Obj_f , E_ele_CHP, E_the_CHP, E_ter_boiler , D i s s ipa t i on , eta_G ,

RISP , PES, Emiss ions = Results_for_param_an_r_days . r e s u l t s (
72 main_path , netl ist_only_names )
73 Obj_f_l ist . append (Obj_f )
74 os . chd i r ( ne t l i s t_path )
75 with open ( Risu l tat i_f i l e_name , " a " , newl ine=" " ) as

R i s u l t a t i_ i t e r a z i o n i :
76 wr i t e r = csv . wr i t e r ( R i s u l t a t i_ i t e r a z i o n i , d e l im i t e r=" ; " )
77 wr i t e r . writerow ( [ S ize , Obj_f , E_ele_CHP, E_the_CHP,

E_ter_boiler , D i s s ipa t i on , eta_G , RISP , PES, Emiss ions ] )
78

79 Minimum_o_f = min ( Obj_f_l ist )
80 Index = Obj_f_l ist . index (Minimum_o_f)
81 i f Index == 0 :
82 pr in t ( "The c on f i gu r a t i on that r e tu rn s the lowest va lue o f the

ob j e c t i v e func t i on i s the o r i g i n a l one " )
83 e l s e :
84 pr in t ( "The c on f i gu r a t i on that r e tu rn s the lowest va lue o f the

ob j e c t i v e func t i on i s the one with the s i z e s : " , Min_size + ( Index
− 1) ∗ Gap_size )

85

86 os . chd i r (main_path )
87 with open ( ’XEMS13cfg . txt ’ , ’w ’ ) as Con f i gu ra t i onF i l e :
88 Con f i gu ra t i onF i l e . wr i t e ( " CSVdelimiter=,\n " )
89 Con f i gu ra t i onF i l e . wr i t e ( " d i a l o g=1\n" )
90 Con f i gu ra t i onF i l e . wr i t e ( " print_var=0\n" )
91 Con f i gu ra t i onF i l e . wr i t e ( " Sankey=sankeymatic \n " )
92 # modi f i ca i l f i l e impostando nuovamente d i a l o g=1 a l l a f i n e d e l l e

i t e r a z i o n i

Modify_size: modifies sizes of the chosen components in the xml components
file.
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1 import os
2 import xml . e t r e e . ElementTree as ET
3

4

5 de f modify_size (main_path , components_name , Component_names ,
Component_types , S ize , eta_E_list , eta_T_list , Emi s s i on s_ l i s t ) :

6 os . chd i r (main_path )
7 with open ( " defaultDIR . txt " , " r " , encoding=’ ut f8 ’ ) as d i r e c t o r i e s :
8 Paths = d i r e c t o r i e s . r e a d l i n e s ( )
9 components_path = s t r ( Paths [ 2 ] . s t r i p ( " \n " ) ) # i l pe r co r so

d e l l a c a r t e l l a de i componenti
10 os . chd i r ( components_path ) # va n e l l a c a r t e l l a de i componenti

per mod i f i c a r e l ’ xml
11 os . chd i r ( components_path )
12 t r e e = ET. parse ( components_name )
13 root = t r e e . g e t roo t ( )
14

15 f o r i , component in enumerate (Component_types ) :
16 i f component == "CHP" :
17 f o r element in root . f i n d a l l ( component ) :
18 i f e lement . a t t r i b [ "name" ] == Component_names [ i ] :
19 eta_T = eta_T_list [ i ]
20 eta_E = eta_E_list [ i ]
21 Original_emi = Emis s i on s_ l i s t [ i ]
22 Or ig ina l_s i z e = Component_names [ i ]
23 Or ig ina l_s i z e = f l o a t ( Or i g i na l_s i z e [ 4 : l en (

Or i g ina l_s i z e ) ] )
24

25 pl = 0 .5
26 f o r PowerLevel in element . f i n d a l l ( "CHP_PowerLevel

" ) :
27 i f p l == 0 . 5 :
28 eta_E_ = eta_E − 0 .04
29 eta_T_ = eta_T + 0.04
30 PL = PowerLevel . f i nd ( "CHP_PowerLevel1 " )
31 PL. text = s t r ( S i z e ∗ pl )
32 PL = PowerLevel . f i nd ( "CHP_PowerLevel2 " )
33 PL. text = s t r ( S i z e ∗ pl / eta_E_ ∗ eta_T_

)
34 PL = PowerLevel . f i nd ( "CHP_PowerLevel3 " )
35 PL. text = s t r ( S i z e ∗ pl / eta_E_)
36 PL = PowerLevel . f i nd ( "CHP_PowerLevel6 " )
37 PL. text = s t r ( p l ∗ S i z e ∗ Original_emi /

Or i g i na l_s i z e )
38

39 i f p l == 0 . 7 5 :
40 eta_E_ = eta_E − 0 .02
41 eta_T_ = eta_T + 0.02
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42 PL = PowerLevel . f i nd ( "CHP_PowerLevel1 " )
43 PL. text = s t r ( S i z e ∗ pl )
44 PL = PowerLevel . f i nd ( "CHP_PowerLevel2 " )
45 PL. text = s t r ( S i z e ∗ pl / eta_E_ ∗ eta_T_

)
46 PL = PowerLevel . f i nd ( "CHP_PowerLevel3 " )
47 PL. text = s t r ( S i z e ∗ pl / eta_E_)
48 PL = PowerLevel . f i nd ( "CHP_PowerLevel6 " )
49 PL. text = s t r ( p l ∗ S i z e ∗ Original_emi /

Or i g i na l_s i z e )
50

51 i f p l == 1 :
52 PL = PowerLevel . f i nd ( "CHP_PowerLevel1 " )
53 PL. text = s t r ( S i z e )
54 PL = PowerLevel . f i nd ( "CHP_PowerLevel2 " )
55 PL. text = s t r ( S i z e / eta_E ∗ eta_T)
56 PL = PowerLevel . f i nd ( "CHP_PowerLevel3 " )
57 PL. text = s t r ( S i z e / eta_E)
58 PL = PowerLevel . f i nd ( "CHP_PowerLevel6 " )
59 PL. text = s t r ( p l ∗ S i z e ∗ Original_emi /

Or i g i na l_s i z e )
60

61 pl = pl + 0 .25
62 e l i f component == " Bo i l e r " :
63 f o r element in root . f i n d a l l ( component ) :
64 i f e lement . a t t r i b [ "name" ] == Component_names [ i ] :
65 eta_E = eta_E_list [ i ]
66 pl = 0
67 f o r PowerLevel in element . f i n d a l l ( "

Boiler_PowerLevel " ) :
68 i f p l == 0 :
69 PL = PowerLevel . f i nd ( " Boiler_PowerLevel1 "

)
70 PL = PowerLevel . f i nd ( " Boiler_PowerLevel2 "

)
71

72 i f p l == 1 :
73 eta_E_ = eta_E
74 PL = PowerLevel . f i nd ( " Boiler_PowerLevel1 "

)
75 PL. text = s t r ( S i z e )
76 PL = PowerLevel . f i nd ( " Boiler_PowerLevel2 "

)
77 PL. text = s t r ( S i z e / eta_E_)
78

79 pl = pl + 1
80

81 t r e e . wr i t e ( components_name , encoding=" utf−8" )
82 os . chd i r (main_path )
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83 re turn
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