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“The important thing is not to stop questioning. Curiosity has its own reason for exist-

ing. One cannot help but be in awe when he contemplates the mysteries of eternity, of

life, of the marvelous structure of reality. It is enough if one tries merely to comprehend

a little of this mystery every day. Never lose a holy curiosity.”

Albert Einstein



Acknowledgments

To the Polytechnic of Turin, for the opportunity to study a master’s degree and for the

opportunity to grow in my professional career.

To ENI Mexico and the ENI Project, for the opportunity to study in Italy, for all the

friends I met and for all the experiences I had the opportunity to live.

To my supervisors, Prof. Socco, Prof. Evert, Karim, and Dieter, thank you for all the

patience, for your advice, for the opportunity to work with you. I am truly grateful for

the experience, it was amazing to work with you and I really hope to have the opportu-

nity to keep working together.

To my mother, for all the love and support, I cannot express my gratitude with words,

I love you mom.

To Steph, for all the love, for all the patience, for everything I’ve learned with you, for

all the amazing histories we have made so far and for all the stories we will make from

now on, for being my support during this journey. You showed me another view of the

world and thanks to you I’ve been able to learn so many things, that it would take me

forever to write them down. Thanks for everything my love.

To my family, for all its support along this amazing journey, without it for sure I wouldn’t

be here.

To Tom, for all the support, for all the incredible histories, and even for mocking me

in the astronomy courses, it was incredibly fun. You made me a better person and I

cannot thank you enough for that.

To Eric, Geri, Illias, and Emmanuel, being with you during this master was amazing.

To my dearest friends, for being there for me, for allowing me to get this far, for helping

me to grow and to improve. Without you, all of this would have been a dream.

ii



Abstract

The Magneto-Telluric method (MT) uses natural electromagnetic fields to investigate

the conductivity structure of the Earth, however, as in any geophysical method, usually,

an inversion process is required in order to generate a view of the structure which causes

the data that has been retrieved, this process might be computationally expensive and

very time consuming.

The main goal of this work is to assess if it is possible to determine a polynomial func-

tion to directly relate MT measurements to a resistivity model and hence to attribute

the measured resistivity to a specific point in depth using several constraints. To do

it a first depth approximation is obtained using theoretical relationships proposed in

literature, this first resistivity model is compared to the real resistivity model present in

the site assuming that information from an exploratory well is at hand. The difference

in depth (∆z) for a given resistivity point between models is obtained and this differ-

ence is modeled using a polynomial regression. The polynomial analysis aims to model

the ∆z difference for a given resistivity value providing us a mathematical expression

that describes the difference between real and theoretical behavior as a function of the

electrical properties in the subsurface.

In literature, rescaling techniques for some geophysical prospecting methods are pro-

posed to obtain accurate models that describe the geological settings present in the

subsurface using simple mathematical expressions derived from sites in which surface

measurements along with well data were compared. This mathematical expressions can

be used to describe sites surrounding the well in which the geological settings are slightly

different from the well. In this work it is proposed to use the mathematical expression

derived from the regression analysis used to model the ∆z behavior as a rescaling tool

to retrieve accurate geological models for sites nearby the exploration well.

The applicability of the method was tested in two synthetic scenarios aiming to simulate

the characterization phase of a field of interest in which only one exploratory well was

drilled. The method was also tested in a real scenario in which the goal was to monitor

the difference in the resistivity of the target layer due to water injection on a geothermal

field.

Overall further research is needed to determine the actual limits of the proposed rescaling

process, as a first step, the method seems promising especially for identifying resistivity

variations in shallow targets.
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Chapter 1

Introduction

1.1 Background to the Electromagnetic Method

Geophysical prospecting methods are used to obtain information about the physical

properties of the subsurface of the Earth that are not available from geological observa-

tions. Electromagnetic methods (EM) for the exploration of the subsurface have been

widely used since the early 20th century to map the electromagnetic properties of the

materials in the subsurface (Nabighian, 1991).

Electromagnetic methods include a variety of techniques, survey methods, applications

and interpretation procedures, however, each technique is based on the measurement of

one or more electric or magnetic field components. The measured fields are a response

of the electrical properties of the materials in the subsurface. A detailed analysis will

provide an approximation of the electrical properties of the materials and their location

in the subsurface.

Applications of EM methods can be at any scale, from searching coins in beach sands

up to a magnetotelluric survey to detect hydrocarbons in a sandy formation 3 km bel-

low the bottom of the ocean (Swift Jr, 1988). Over the past years, EM techniques

initially developed for deeper applications such as mining, hydrocarbon exploration or

crustal studies have been scaled for shallow objectives such as environmental studies or

geotechnical investigations (Pellerin, 2002). In general, the reliability and applicability

of electromagnetic methods is well known.

1
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1.2 Justification

The Magneto-Telluric method (MT) uses natural electromagnetic fields to investigate

the conductivity structure of the Earth knowing that the electromagnetic waves will

penetrate into the Earth up to a depth given as a function of the frequency of the

wave and the electrical properties of the rocks (Niblett and Sayn-Wittgenstein, 1960).

However, as in any geophysical method, usually an inversion process is required to

generate a view of the structure which causes the data that has been retrieved. This

process might be computationally expensive and very time consuming, for this reason

how to improve the inversion techniques is a topic of active research.

Over the last years new techniques are being researched in order directly estimate rele-

vant geological models of the subsurface without using an inversion process by obtaining

relationships between the data obtained by geophysical surveys and the data obtained

in one place by well logging, core analysis or other techniques in which the actual phys-

ical properties of the rocks present in the subsurface are measured. This approach has

proved to be useful to retrieve geological models that can describe properly the geolog-

ical settings present in the subsurface and in some instances the relationships obtained

can be applied to rescale the data in areas in which only surface measurements have

been acquired.

Florio (2018) proposed a simple method to obtain the depth of the basement using

gravity or pseudogravity measurements based on a linear iterative rescaling approach.

The approach takes into consideration that the gravity measurements can be related to a

certain depth using a polynomial regression, in the case of a constant density contrast the

relationship will be linear and in the case of a variable density contrast the relationship

can be approximated using a polynomial.

Socco et al. (2017) proposed a new technique to obtain the direct estimation of time-

average S-wave velocity models from Surface Waves Dispersion Curves without the need

to invert the data. Their proposed method requires the knowledge of one 1D S-Wave

velocity model along the seismic line together with relevant Dispersion Curves to esti-

mate a relationship between the surface waves wavelength and the investigation depth

on the time-average velocity model. This wavelength-depth relationship is then used to

estimate all the other time-average S-wave velocity models along the line directly from

the dispersion curves by means of a data transformation.

Considering that this approach has been proved for gravity measurements and seis-

mic data it can be supposed that the same approach could work for other geophysical

prospecting techniques such as EM methods.
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1.3 Description of this work

The main goal of this work is to assess if it is possible to obtain a polynomial function that

can be used to correct the misfit between the theoretical depth-apparent resistivity model

obtained by MT surveys and the real depth-resistivity model present in the subsurface

using additional information (provided by exploratory wells for example) as constrains.

Using the apparent resistivity measured by a MT survey an approximate depth can be

obtained by theoretical relationships that have been proposed in previous works (Gómez-

Treviño, 1996), this first depth-apparent resistivity model can be used as starting point

for the generation of a geological model that represents the settings present at the sub-

surface. However, this first approximated model deviate from the real depth-resistivity

model by a given factor. The behavior of the misfit between models will be modeled by

a polynomial expression.

Once the polynomial expression is obtained it will be used to correct the misfit between

the first model obtained by the MT measurements and the model obtained by the

exploratory well. The polynomial will be also used to directly obtain geoelectrical models

in zones with similar geological settings than the ones present at the exploratory well.

All of this will be performed for 1D resistivity models.

The applicability of the method will be tested in two scenarios. One aims to approximate

the depth using apparent electrical properties measured in the vicinity of where the real

data was acquired, and the second scenario aims to monitor the variation in resistivity

of a particular layer for geothermal purposes.

This work aims to provide a tool to generate a first depth-resistivity model that repre-

sents the real geological settings present in the subsurface with low computational cost

and with high time efficiency.

1.4 Layout of this thesis

The theoretical background is described in Chapter 2. The Mt method is summarized

briefly describing the theoretical framework in which the method is based, some acqui-

sition tools and a brief description of what is measured and how to process the data

acquired. Additionally the regression analysis theory is also described in chapter 2, in-

cluding the regression tools used in this work and an explanation of the least squares

method.
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The methodology of this work is described in Chapter 3. Starting from MT measure-

ments the process to obtain a first depth-apparent resistivity model is described; and

the difference between this first model and the real model present at the subsurface was

modeled using a polynomial regression. To see if the approach proposed by Socco et al.

(2017) and Florio (2018) can be used in MT surveys the polynomial expression obtained

was used to directly convert MT measurements to geolectrical 1D models.

Chapter 4 includes all the results derived from this workflow with a detailed description

of what has been discovered, what are the limitations of the proposed method and in

which cases this methodology provided the best results.

In Chapter 5 all the conclusions obtained from this work are stated, and foreseeable

further developments of this work are proposed.



Chapter 2

Theoretical Background

The theoretical framework used in this thesis can be divided into two

main categories, the first theoretical framework describes the theory

in which the Magnetotelluric method (MT) is based and the second

one describes the theory for regression analysis.

The MT method is a passive geophysical prospecting method that uti-

lizes naturally occurring electromagnetic waves that travel through the

Earth’s subsurface to image the electrical properties of the subsurface.

The MT method can be derived from Maxwell’s equations considering

particular cases, once the measurements are performed, they can be

processed to generate useful data that describes the electrical settings

of the subsurface.

Regression analysis is a predictive modelling technique in which a de-

fined relationship between an independent variable x and a dependent

variable y is established. The relationships obtained can be used to

describe and predict phenomenon of interest under certain circum-

stances.

5
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2.1 The Magnetotelluric Method

The megnetotelluric method (MT) is an electromagnetic geophysical exploration tech-

nique that uses natural electromagnetic fields to investigate the electrical conductivity

of the Earth, from the near surface to the transition zone and beyond (Chave and Jones,

2012). The behavior of electric and magnetic fields can be fully described by the Maxwell

equations, which can be expressed in the International System of Units as

∇ ·D = ρe, (2.1a)

∇ ·B = 0, (2.1b)

∇×E = −∂B

∂t
, (2.1c)

∇×H = J +
∂D

∂t
. (2.1d)

Where D is the electric displacement, ρe is the electric charge density, B is the mag-

netic induction, E is the electric field, H is the magnetic field and J is the electric

current density. The electric and magnetic fields developed in a medium are connected

to the electromagnetic properties of the medium though their constitutive relationships

as follows

D = εE, (2.2a)

B = µH, (2.2b)

J = −σE. (2.2c)

Where ε (F/m) is the dielectric permitivity, µ (H/m) is the magnetic permeability and

σ (S/m) is the electrical conductivity. In this work isotropic media will be assumed,

hence these quantities are scalar values. Using the constitutive relationships the Maxwell

equations can be rewritten as

∇ ·E =
ρe
ε
, (2.3a)

∇ ·B = 0, (2.3b)

∇×E = −∂B

∂t
, (2.3c)

∇×B = µσE + µε
∂E

∂t
. (2.3d)

Assuming a time dependency eiωt for B (where ω = 2πf is the angular frequency),

the non-existence of current sources in the subsurface, no free charges in a homogeneous

halfspace and in a layered 1D Earth and quasi-static conditions (the propagation of elec-

tromagnetic waves is a diffusive process) (Mart́ı i Castells, 2006), the diffusion equations
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for the electromagnetic fields can be written as

(∇2 − k2)B = 0, (2.4a)

(∇2 − k2)E = 0. (2.4b)

Where k2 = iωµσ is the propagation constant in m−1. For a coordinate system x, y

and z where z increases downwards, equations 2.4a and 2.4b are also depth dependent

(Thiel, 2008). The solution for the diffusion equations in this case becomes

B = B0e
−ikz + B1e

ikz, (2.5a)

E = E0e
−ikz + E1e

ikz. (2.5b)

The fields B and E vanish when z → ∞, for this reason B1 = E1 = 0. For this reason

equations 2.6a and 2.6b can be simplified to:

B = B0e
−ikz = B0e

−iυze−υz, (2.6a)

E = E0e
−ikz = E0e

−iυze−υz. (2.6b)

Where

k = (1 + i)

√
ωµσ

2
= (1 + i)υ. (2.7)

Equations 2.6a and 2.6b illustrates how the electromagnetic fields varies in a sinusoidal

form with depth within the term e−iυz, but also shows a depth dependent attenuation

due to the e−υz term (Loewenthal and Landisman, 1973). The inverse of the real part

of k is known as skin depth or penetration depth δ

δ =

√
2

µωσ
. (2.8)

However, since the magnetic permeability µ is almost constant in the Earth (Vozoff,

1991), equation 2.8 can be approximated as

δ ≈ 500
√
Tρa. (2.9)

Where ρa = 1/σa (Ωm) is the apparent resistivity and T = 2π/ω (s) is the period.

Equation 2.9 shows that the penetration depth depends only from the conductivity of

the overlying material and the period used.
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2.1.1 Apparent Resistivity

The input of the MT method will be the natural magnetic field (B) traveling downward

in the z direction inducing a perpendicular electric field (E) that does not have a z

component (Ez = 0). The plane-wave assumptions states that the magnetic field only

has horizontal components due to the distance from the source, this assumption also

implies that (Bz = 0).

Expanding the curl operation in equation 2.3c shows the following relationship

∂Ez
∂y
− ∂Ey

∂z
=
∂Ey
∂z

= iωBx, (2.10a)

∂Ex
∂z
− ∂Ez

∂x
=
∂Ex
∂z

= −iωBy, (2.10b)

∂Ey
∂x
− ∂Ex

∂y
= −iωBz = 0. (2.10c)

For a uniform Earth the ratio between electric and magnetic field (Ey, Bx) measured at

the surface at a specific period is known as electrical impedance Z (m/s) and can be

defined by

Z(ω) =
Ex0
Hy0

=
ωµ

k
=

2πµ

Tk
= (1 + i)

√
2πµ

2Tσ
(2.11)

Where Hy0 = By0/µ. To obtain the apparent conductivity measured at a period T the

equation 2.11 can be reordered as

σa(T ) =
2πµ0
T |Zxy|2

. (2.12)

The apparent resistivity can be obtained directly by

ρa(T ) =
T |Zxy|2

2πµ0
. (2.13)

The relation between σa to a penetration depth z was derived by Niblett and Sayn-

Wittgenstein (1960) providing the following relationship

σa(T ) =
2πµ0
T

[∫ h

0
σ(z)dz.

]2
(2.14)

Where:

h =

√
T

2πµ0σa(T )
(2.15)
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Equation 2.14 represents and average conductance times a transverse resistivity which

is constant along depth.

Gómez-Treviño (1996) proposed that the average conductivity between two points can

be calculated by

σ(z1, z2) =
1

z2 − z1

∫ z2

z1

σ(z)dz. (2.16)

It is also stated that the average conductivity for a T2 > T1 can be computed directly

using the following relationship

σ(z1, z2) =
√
σa(T2)σa(T1)

1−XY
Y −X

. (2.17)

Where X =
√
T1/T2 and Y =

√
σa(T1)/σa(T2) and where the depths are given by

zn =

√
Tn

2πµ0σa(Tn)
. (2.18)

In the case when z2 → z1 the solution of equation 2.17 will reduce to the solution of the

equation 2.14.

The maximum depth at which a buried halfspace can be detected at a particular period

depends mainly on the conductivity contrast and the accuracy of the recording and

processing system. Spies (1989) mentions that the analysis of the real and imaginary

parts of the impedance shows that a reasonable estimate for the depth of investigation

for MT is taken to be 1.5 skin depths or

DOI(z) = 1.5

√
2

σµ0ω
= 700

√
Tρa (2.19)

However, this approach only takes into consideration a single layer; in a multilayered

Earth the concept of integrate or cumulative conductance needs to be introduced. Fig-

ure 2.1 shows the graphical representation of a layered Earth.
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Figure 2.1: Graphical representation of a layered Earth in which each layer has its
own electrical properties. For a layered Earth the response measured at the surface will

depend on the electrical properties of all the layers present at the site.

Price (1949) introduces the term cumulative conductance Sc(z) to determine the inves-

tigation depth in a layered Earth as

Sc(z) =

∫ z

0
σ(z)dz. (2.20)

The previous term represents how the conductance increases along z considering the

conductance and thickness of each layer. According to Spies (1989) equation 2.20 can

be used to obtain the effective conductivity up to the nth layer as follows

σavg(z) =

∑n
i=1 σi(z)(zi − zi−1)

zn
. (2.21)

2.1.2 MT Surveys

The MT method utilizes naturally occurring, broadband electromagnetic waves over

the Earth’s surface to image subsurface resistivity structure. A simple layout of the

measuring system an equipment used in a MT survey is displayed in Figure ??
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Figure 2.2: Graphical representation of a MT field setup in which electrical dipoles
are used to measure both E x and E y field components. Induction coil magnetometers
are used to measure Hx , Hy , and Hz field components. A data logger represents the

station location (Comeau, 2015).

The method measures variations of the electric and magnetic fields recorded at the sur-

face over hours or days depending on the objective to characterize. The magnetometers

are used to record the variation over time of the Earth magnetic field while the electrodes

are used to measure the variation of the Earth electric field.

Figure 2.3: Time series for 5 channels of MT data. Ex and Ey are two orthogonal
components of the electric field while Hx , Hy , and Hz are the three components of

the magnetic field. Image taken from (Comeau, 2015).



Chapter 2 12

Using the electric and magnetic fields measured over a period of time it is possible to

obtain the apparent resistivity measured at the surface by

ρa(T ) =
T |Ex

Hy
|2

2πµ0
. (2.22)

Using equation 2.22 an example of the apparent resistivity measured by a MT survey is

reported in Figure 2.4

Figure 2.4: Apparent resistivity obtained from a MT survey using equation 2.22.
The apparent resistivity measured at the surface contains information of the geological

settings present at the subsurface.

The apparent resistivity measured at the surface contains information of the layers

present at the subsurface and their electrical properties, however, the apparent resistivity

does not represent an accurate description of the reality. To obtain the model of the

subsurface that generates the apparent resistivity measured at the surface an inversion

process is performed in which an initial electrical model is proposed and by an iterative

process corrects the electrical model. The inversion process is finished when the electrical

model is able to recreate the apparent resistivity measurements present in the data.
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Figure 2.5: Example of the results of an inversion process for a MT survey in the
Gemini prospect, Gulf of Mexico. Image taken from (Zhdanov et al., 2011)

Figure 2.5 shows an example of the geological profile retrieved by an inversion process

from a MT survey.

2.1.3 Applications of the MT Method

The MT method is a powerful tool that can be used for different purposes, from shallow

studies such as freshwater reservoir characterization up to deeper applications like mantle

studies. Overall the MT method can be used for multiple studies, some examples of the

applicability of the method will be described.

The MT method can be applied for the characterization of shallow targets for environ-

mental purposes. One example is a MT survey performed at the Horonobe coastal area

in Hokkaido, Japan, the goal of the study was to characterize a shallow layer containing

freshwater along the coast. The inversion of the acquired data revealed a sedimentary

layer containing freshwater, the layer extends horizontally several kilometers. In this

survey the MT method was used to identify the groundwater distributions in coastal

areas (Ueda et al., 2014).

For hydrocarbon exploration the MT method can be used to image structures that could

host potential reservoirs and source rocks. In certain cases, they may also give evidence

for direct indication of the presence of hydrocarbons (Unsworth, 2005). Figure 2.6 shows

how a MT survey can be assumed as a smoother version of a resistivity log.
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Figure 2.6: Comparison of resistivity derived from the MT data with a resistivity log.
The resistivity-depth profile derived with the MT data is smoother than that measured
in the well because MT uses long wavelength signals that average small scale features.

Image taken from (Unsworth, 2005)

Currently the investigation related to the EM method is focused in different areas. New

techniques for joint inversion of electromagnetic data with other geophysical methods

are currently being explored, integrating electromagnetic data with other observations

can improve the quality of the resulting geological model providing a more accurate

characterization of the subsurface (Moorkamp, 2017).

New methods to improve the inversion problem for EM methods are also being studied.

In general, the goal of these new techniques is to decrease the uncertainty of the inverted

model and the real data without increasing the time invested in the inversion process

or without increasing the computational power needed to perform the inversion process

(Ren and Kalscheuer, 2020).
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2.2 Regression Analysis

Regression analysis is a predictive modelling technique in which a defined relationship

between an independent variable x and a dependent variable y is established. Most pre-

cisely, regression analysis is to find a mathematical expression f() capable of explaining

the y values in terms of x as y = f(x).

In this work the linear and polynomial regressions will be applied.

2.2.1 Linear Regression

Linear regression is a branch of regression analysis techniques in which a linear approach

is used to model the relationship between the independent variable x and the dependent

variable y. The main assumption of linear regression is that the value of the dependent

variable y changes at a constant rate as the value of the independent variable x increases

or decreases. The mathematical expression for this relationship can be defined as:

E(yi) = β0 + β1xi (2.23)

Where E(yi) is the expected value yi for the input xi. However, in reality there is a

deviation between an observation and the theoretical value, this deviation is taking into

consideration by adding a random error ε to the linear relationship, which leads to:

yi = β0 + β1xi + εi (2.24)

2.2.2 Least Squares Estimation

The linear relationship 2.25 contains two unknown parameters β0 and β1 which have to

be estimated from the data. To obtain the unknown parameters the method of least

squares can be used.

The method proposes that the sum of the square differences between any given value

observed yi and the value estimated from the straight line is a minimum, also the esti-

mated line satisfies the sum of the residuals equals 0. Additionally the line estimated

by least squares satisfies that when x = x the value for y = y intercept the estimated

line (Gupta, 2019). The least squares can be defined as:

S(β0, β1) =

n∑
i=1

(yi − β0 − βixi)2 (2.25)
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The solution to the least squares method must satisfy:

∂S

∂βj
= −2

n∑
i=1

(yi − β̂0 − β̂ixi) = 0 (2.26)

Using equations 2.25 and 2.26 the solutions to the least square method can be defined

as:

β̂0 = y − β̂1x (2.27)

And

β̂1 =

n∑
i=1

yixi −

(
n∑
i=1

yi

)(
n∑
i=1

xi

)
n

n∑
i=1

x2i −

(
n∑
i=1

xi

)2

n

(2.28)

Where:

y =
1

n

n∑
i=1

yi and x =
1

n

n∑
i=1

xi

Therefore β̂0 and β̂1 are the least square estimators of the intercept and the slope

respectively (Van Huffel and Vandewalle, 1991).

2.2.3 Polynomial Regression

In situations in which the relationship between x and y is nonlinear the behavior can

be approximated by using a higher degree polynomial over the range of the independent

variable x. The kth − order polynomial model for one variable can be defined as:

E(yi) = β0 + β1xi + β2x
2
i + ...+ βkx

k
i + ε (2.29)

Polynomial regressions can be solved as a multiple linear regression model, which implies

that the method previously defined can be used to obtain the kth unknowns Rawlings

et al. (2001).

There are several aspects when fitting a polynomial expression in one variable. Some of

these aspects are:

• Order of the model
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– The order of the polynomial should be the lowest possible.

• Model building strategy

– The degree of the polynomial should be increased until the diminishing of the

error between polynomials is non significant.

• Extrapolation

– the extrapolation limits for the polynomial should be carefully determined.

Polynomial models may generate data that not corresponds to the real be-

havior of the phenomenon for values of x outside the range in which the

polynomial was created.

For this work polynomial regressions will be used to model the nonlinear behavior of the

electromagnetic data.

2.2.4 Piecewise Polynomial Fitting (Splines)

Polynomial functions can be used to approximate the behavior of non linear data, how-

ever there are cases in which a low order polynomial is not useful when trying to approx-

imate the data and a high order polynomial does not improve the approximation either.

This might be due to the fact that the data behave differently depending on the range

of x, to approximate the data in complex scenarios the splines functions were proposed

(Montgomery et al., 2021).

Spline functions are a set of low order polynomials connected in a particular point in the

curve to be modeled. The approach is to divide the range of x in a number of segments

and to fit a low degree polynomial on each segment. The point in which two polynomials

are going to be connected is called a knot.

The function to be modeled by an spline approximation requires to be continuous in all

the range of x and to have k−1 continuous derivatives in order to ensure that the knots

will connect between each other (Gupta, 2019).

Splines are piecewise polynomials of order k, in this work cubic splines (k = 3) have

been used. A cubic spline with h knots can be written as:

E(y) = S(x) =
3∑
j=0

β0x
j +

h∑
i=1

β1(x− ti)3+ (2.30)



Chapter 2 18

Where:

(x− ti)+

(x− ti), if (x− ti) > 0

0, if (x− ti) ≤ 0

Assuming the position of the knots to be known equation 2.30 can be solved by the least

square method seen in Section 2.2.2.
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Methodology

This work aims to find a mathematical expression that can be used

to transform apparent measurements of a MT survey into resistivity

values to generate a rescaled geological model that represents the ge-

ological properties present in the subsurface.

Starting from field measurements and assuming information from a

exploratory well, the apparent resistivity measured by the MT survey

at the surface is processed to approximate the data as close as possible

to the data measured from the well.

From the processed apparent resistivity data a polynomial regression

is used to model and correct the differences between the apparent

measurements and the log values. Once the apparent resistivity is

corrected a resistivity model is derived from the data and is compared

to the actual resistivity model of the subsurface.

19
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3.1 General Overview

This work aims to find a mathematical expression that can transform apparent resistivity

measurements from a MT survey into resistivity values that resembles the electrical

settings present at the subsurface. Figure 3.1 shows a graphical representation of the

steps followed to obtain the expression needed to correct the apparent resistivity data

by means of a polynomial regression.

Figure 3.1: Workflow for the polynomial modeling process. The apparent resistivity
data will be approximated to the data from a exploratory well using different ap-
proaches, once the apparent resistivity data is improved a polynomial regression is used
to model and correct the existing differences between the apparent measurements and

the measurements from the well.

Starting from the apparent resistivity measurements equation 2.18 is used to obtain a

first depth-apparent resistivity model that can be compared to the geological settings in

the subsurface. However this first approximation is not close to the measurements from

the resistivity logs and can be improved.

The average resistivity proposed by Gómez-Treviño (1996) is used as a way to improve

the depth-apparent resistivity relationship; this approximation proved to be closer to

the log values, however in this representation the misfit between the measured apparent

resistivity and the resistivity values cannot be modeled by a polynomial expression. For
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this reason in this work it is proposed to used the cumulative values for the average

apparent resistivity.

The cumulative apparent resistivity is compared with the cumulative resistivity, and the

behavior of the differences between the apparent data and the log values is modeled by

a polynomial regression, the expression then is used to correct the cumulative apparent

resistivity data and a resistivity model is retrieved.

In this work the methodology described above will be applied for apparent resistivity

and apparent conductivity measurements to compare the behavior of the methodology

and to see if there are any differences overall.

3.2 Apparent Conductivity and Apparent Resistivity

To simulate the data acquired in a MT survey a resistivity model was proposed. The

characteristics of the geological settings of the subsurface are reported in Table 3.1 and

in Figure 3.2.

Table 3.1: Resistivity and Conductivity model parameters.

Resistivity [Ohm*m ] Conductivity [Ohm/m] Thickness of the Layer [m]

750 1.3x10−3 500

2500 4x10−4 800

450 2.2x10−3 Half Space
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Figure 3.2: Resistivity Model

The measurements from the MT survey represent an apparent resistivity curve that is

function of the period of the electromagnetic waves propagating through the Earth. The

apparent electrical responses corresponding to the geological model presented in Figure

3.2 are reported in Figures 3.3(a) and 3.3(b)

(a) Apparent Conductivity. (b) Apparent Resistivity.

Figure 3.3: Apparent conductivity and apparent resistivity.
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This first result represents the electrical properties of the rocks present in the subsurface,

however, this estimation cannot be related to a location in depth, for this reason a depth

estimation for the electrical measurements is needed.

3.3 Calculated Apparent Depth

The apparent resistivity measured by the MT survey is a function of the period of

the signal used to characterize the subsurface. To generate a apparent depth-apparent

resistivity model equation 2.18 can be used to obtain an estimation of a point in depth

as a function of an apparent resistivity value for a period T . Gómez-Treviño (1996)

states that the apparent location in depth for an apparent electrical measurement can

be calculated by means of

za(T ) =

√
T

2πµ0σa(T )
. (3.1)

Figure 3.4 reports the apparent depth estimation for a period T .

Figure 3.4: Calculated apparent depth as a function of the apparent resistivity for a
given period T using equation 2.18.

Figure 3.4 shows that for small periods the depth estimation is shallower than for longer

periods, this implies that the apparent resistivity measured for short periods corresponds

to shallower points in the subsurface, whereas apparent resistivity values obtained for

longer periods should be located at higher depths. Using the apparent depths pre-

viously derived, a first approximated model is obtained using the apparent resistivity
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values measured in the MT survey and the depths calculated by means of equation 3.1.

However, compared to Figure 3.5(a) it can be seen that the model obtained is not an

accurate representation of the local properties of the subsurface.

(a) Local resistivity model as a function of

depth

(b) First approximated calculated apparent

depth - apparent resistivity

Figure 3.5: Comparison between the local resistivity as a function of depth measured
in the exploratory well vs the first approximated model using the apparent resistivity

measurements and the calculated apparent depth.

This first model cannot represent the reality of the subsurface, for this reason in this

work another step is proposed to obtain a more reliable apparent resistivity model.

3.4 Average Apparent Electrical Properties and Average

Apparent Depth

The first approximated model shown in Figure 3.5(b) is not a fully accurate representa-

tion of the resistivity values and their location in depth. For this reason it is proposed

to obtain the average apparent resistivity (Gómez-Treviño, 1996) to see if the model

shown in Figure 3.5(b) can be improved.

The average apparent resistivity proposed by Gómez-Treviño (1996) is an average resis-

tivity representative of the electrical properties of the subsurface along the depth interval

between two apparent resistivity measurements. However, since we are obtaining an av-

erage apparent resistivity that corresponds to an interval between measurements its
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location in depth should be an average point too, for this reason the average electrical

resistivity will be related to an average apparent depth by means of:

za(zi+1, zi) =
za(i+1)(ρa(Ti + 1)) + za(i)(ρa(Ti))

2
(3.2)

Once the average apparent electrical properties and the average apparent depth were

obtained, the hypothesis that it could help to improve the model obtained was tested.

A comparison between the average apparent properties, the local electrical properties of

the subsurface shown in Figure 3.2 and the first model obtained is reported in Figure

3.5(b) provided the following results

Figure 3.6: Comparison between the local resistivity as a function of depth measured
by resistivity logs(blue), the model obtained by using the apparent resistivity as a
function of the apparent depth (orange) and the model obtained by using the average
apparent resistivity as a function of an average apparent depth (green). At first glance
it seems that the average apparent resistivity as a function of average apparent depth

is closer to the real geological model.
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Figure 3.7: Comparison between the local conductivity as a function of depth derived
from the resistivity logs (blue), the model obtained by using the apparent conductivity
as a function of the apparent depth (orange) and the model obtained by using the
average apparent conductivity as a function of an average apparent depth (green). For
the conductivity it also seems that the average apparent conductivity model is closer

to the geological settings present in the subsurface.

At first glance it seems that the model obtained using average apparent values is closer

to the local geological setting present in the subsurface. To confirm this hypothesis the

numerical error between the model obtained by the resistivity logs and the apparent

models was obtained. First the total error between estimations was calculated by means

of

ETotal =

n∑
i=1

=

∣∣∣∣z(ρ)− z(ρa)
z(ρ)

∣∣∣∣× 100 For ρ ≈ ρa. (3.3)

Where z(ρ) is the depth value for a given resistivity point measured by the resistivity

logs. The average error was obtained by means of

EAvg =
1

n

n∑
i=1

=

∣∣∣∣z(ρ)− z(ρa)
z(ρ)

∣∣∣∣× 100 For ρ ≈ ρa (3.4)

The results of the total error and the average error between models is reported in Tables

3.3 and 3.2
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Table 3.2: Total error between real and apparent electrical model compared to the
total error between real and average apparent electrical model. The error comparison
was performed to confirm the hypothesis that the average apparent electrical model is

closer to the local electrical model measured in the subsurface.

Total Error %

Apparent Resistivity Apparent Conductivity

2030 6039

Average Apparent Resistivity Average Apparent Conductivity

2015 1822

Table 3.3: Average error between real and apparent electrical model compared to the
average error between real and average apparent electrical model.

Average Error %

Apparent Resistivity Apparent Conductivity

45 140

Average Apparent Resistivity Average Apparent Conductivity

43 42

It can be seen in the Figures 3.6 and 3.7 and in Tables 3.2 and 3.3 that the average values

for the apparent electrical properties are closer to the geological settings present in the

subsurface shown in Figure 3.2. Based on the previous results, the model obtained by

the average apparent electrical properties and average apparent depth will be used as a

starting point to determine if it is possible to correct the differences between apparent

measurements and local measurements by means of a mathematical expression to ob-

tain an accurate representation of the subsurface by only using apparent measurements

performed in the surface.

However, for the current representation of the data a given apparent resistivity value

can be related with two or more points in depth, which cannot be modeled by a polyno-

mial expression. For this reason it is proposed to use the cumulative average electrical

properties as a representation of the data in which for a given cumulative value there is

only one point in depth in correspondence.
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3.5 Cumulative Apparent Conductivity and Cumulative

Apparent Resistivity

In this thesis it is proposed to use the cumulative apparent electrical properties as a

representation of the data that can be used to obtain a polynomial expression able to

correct the differences between apparent and local measurements .

The cumulative resistivity can be defined as the integrated total resistivity from the

surface up to a certain point in depth z. To calculate the cumulative electrical properties

for discrete data equation 3.9 will be used for cumulative conductivity or conductance

as

Sc(T ) =

n∑
0

σi(T )hi. (3.5)

For cumulative resistivity as

ρc(T ) =

n∑
i=0

ρi(T )hi. (3.6)

Where n is the number of layers and h is the thickness of the the nth layer.

The curves for the integrated electrical properties can provide information of the layers

present in the subsurface in similar way as the apparent electrical curves seen previously,

but the main advantage is that for one value of cumulative resistivity it has only one

corresponding depth value.

Using equations 3.5 and 3.6 the cumulative apparent electrical properties can be obtained

for each period in the same way the apparent electrical properties are function of the

period. To obtain a cumulative apparent resistivity vs depth each cumulative value was

related to its point of average apparent depth for a period T and an average apparent

depth-cumulative apparent property model can be obtained similarly as the models

shown in Figures 3.6 and 3.7.

The cumulative models obtained for cumulative apparent resistivity and cumulative

apparent conductance are reported in Figures 3.8 and 3.9 respectively.
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Figure 3.8: Average apparent depth-cumulative apparent resistivity model obtained
by integrating the apparent average resistivity shown in Figure 3.6.

Figure 3.9: Average apparent depth-cumulative apparent conductivity model ob-
tained by integrating the apparent average conductivity shown in Figure 3.7.

The models shown in Figures 3.8 and 3.9 were compared to the cumulative models

obtained by using the data coming from the resistivity logs. The comparison between

cumulative models is reported in Figures 3.10 and 3.11.
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Figure 3.10: Comparison between the cumulative resistivity model generated us-
ing the measurements from a resistivity log (blue) and cumulative apparent resistivity

model generated using MT measurements (orange).

Figure 3.11: Comparison between the cumulative conductivity model generated using
the measurements from a resistivity log (blue) and cumulative apparent conductivity

model generated using MT measurements (orange)

Figures 3.10 and 3.11 shown that there is a difference in depth (∆z) for the cumulative

apparent resistivity measured from a MT survey and the local cumulative resistivity

measured from resistivity logs. This means that for a certain cumulative property there

is a ∆z between the real location in depth and the location obtained using the apparent

measurements.
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3.6 ∆z Difference Between Local and Apparent Cumula-

tive Measurements

Based on the previous analysis it can be concluded that the cumulative apparent electri-

cal properties deviate from the cumulative properties measured using resistivity logs in

their location in depth. The z difference identifies the correction that must be applied

to the apparent depth for a specific cumulative apparent resistivity value to transform

it into a cumulative resistivity. The ∆z difference was computed for a given value of the

cumulative electrical property by means of

∆z = z − za When S ≈ Sa. (3.7)

The results of this ∆z difference between cumulative apparent measurements and cu-

mulative values are reported in Figures 3.12 and 3.13

Figure 3.12: ∆z difference for cumulative apparent resistivity. The curve represents
the misfit in meters between the value in depth calculated for a cumulative apparent

resistivity value and the value in depth for a cumulative resistivity value.
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Figure 3.13: ∆z difference for cumulative apparent conductivity. The curve represents
the misfit in meters between the value in depth calculated for a cumulative apparent

conductivity value and the value in depth for a cumulative conductivity value.

Considering the behavior of the ∆z difference it is proposed to use a polynomial regres-

sion to model the ∆z difference and correct the apparent values measured from a MT

survey to obtain a rescaled geological model that describes the settings present in the

subsurface.

3.7 Polynomial Regression

In this work it is proposed to generate a polynomial expression that will work as a filter

in the sense that it will be used to obtain a mathematical expression able to correct the

∆z difference between cumulative apparent and cumulative values.

The polynomial expression will have the following structure

∆zi(ρc) = β0 + β1x
1
i + ...+ βnx

n
i . (3.8)

Where x is the cumulative electrical property.

Rawlings et al. (2001) mentions that the degree of a polynomial used to model a phe-

nomenon should be kept as low as possible, for this reason, the root mean squared error

(RMSE) was used. To determine the degree of the polynomial to be used, a search was

performed along the first 20 polynomials, the range of polynomials that provided the
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lowest RMSE were selected and compared between each other by means of

Improvement =
RMSEi−1 −RMSEi

RMSEi−1
× 100. (3.9)

Where i is the degree of the polynomial. The degree of the polynomial is determined

when the improvement between regressions is less than 10 %. If the condition is satisfied

the polynomial with the lower degree is used, otherwise, the polynomial with the lower

RMSE is used.

Figures 3.12 and 3.13 shown that the range of variation for the cumulative apparent

resistivity is in an order of magnitude of 1 × 106 and for the cumulative apparent con-

ductivity is in an order of magnitude of 1 × 101. For this reason it was concluded that

the curve behavior and the regression analysis should be performed to two different rep-

resentations of the data. The analysis was performed in a linear representation and for

the second case the logarithmic representation of the data was studied.

3.7.1 Polynomial Regression for linear data

The first regression analysis was performed to the original ∆z difference without any

modification. The results of the regression are reported in Figures 3.14 and 3.15

Figure 3.14: Polynomial regression modeling of the ∆Z difference using a 3 degree
polynomial for the cumulative apparent resistivity
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Figure 3.15: Polynomial regression modeling of the ∆Z difference using a 6 degree
polynomial for the cumulative apparent conductance

It can be seen on Figure 3.14 that the polynomial regression of the linear representation

of the ∆z difference for the cumulative resistivity is not able to describe the subtle

changes of the ∆z difference. For this reason the regression analysis for the logarithmic

representation of the data was implemented.

3.7.2 Polynomial Regression for the logarithmic representation of the

data

For the logarithmic regression analysis the log10 of the ∆z and the cumulative apparent

property was obtained and in this representation of the data the regression was per-

formed.The results of the polynomial regression analysis are reported in Figures 3.16

and 3.17.
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Figure 3.16: Polynomial regression modeling of the logarithmic representation of the
∆Z difference using a 10 degree polynomial for the cumulative apparent resistivity

Figure 3.17: Polynomial regression modeling of the logarithmic representation of the
∆Z difference using a 15 degree polynomial for the cumulative apparent conductance

Based on the results of polynomial regressions presented in Figures 3.16 and 3.17 it can

be seen that even though the logarithmic representation of the data could be modeled in

a more accurate way, there are still some parts of the ∆z difference that the polynomial

regression cannot fully describe, based on this a another approach was applied.

3.7.3 Cubic Spline Interpolation

The analysis of the results of polynomial regressions presented in Figures 3.16 and 3.17

lead to the conclusion that the polynomial regression could be improved even more,
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considering this, a cubic spline interpolation was proposed. The cubic splines divide the

∆z curve into smaller segments, where each segment is modeled by a cubic polynomial

expression, this approximation is used to model points in the curve where sudden changes

appear, which cannot be modeled by a simple polynomial regression.

To obtain the best spline curve the number of knots was increased until a good fitting of

the ∆z difference was obtained, the results of the cubic spline interpolation are reported

in Figures 3.18 and 3.19:

Figure 3.18: Cubic spline interpolation of the logarithmic representation of the ∆Z
difference for the cumulative apparent resistivity

Figure 3.19: Cubic spline interpolation of the logarithmic representation of the ∆Z
difference for the cumulative apparent conductance
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Figures 3.18 and 3.19 shows that the cubic spline interpolation approximates the behav-

ior of the ∆z difference in a more accurate way compared to the behavior modeled by

the logarithmic representation of the data.

3.7.4 Validation of the polynomials

To determine if the process used to determine the degree of the polynomial expression

to be used mentioned in Chapter 3.7 provided the best approximation of the ∆z dif-

ference a validation phase was performed. In this validation process different degrees

for polynomial and different number of knots were used to generate different models for

the ∆z difference, then each model was used to generate the ∆z difference and each

approximation was compared to the real ∆z difference.

The error between approximations was then compared, the results of the comparisons

are reported in Tables 3.4 and 3.5.

Table 3.4: Cumulative resistivity error comparison between different polynomial approx-
imations.

Cumulative Resistivity Polynomial Regression Analysis

Type of Data Degree / Knots Used Cumulative Error % Avg. Error %

Proposed Methodology

Linear 3 68 1.7

Logarithmic 10 40 1.07

Spline 37 0.28 0.007

Different Approximations

Linear 6 269 6.9

Logarithmic 7 53 1.3

Spline 23 3.3 0.08

Different Approximations

Linear 9 486 12

Logarithmic 13 44.2 1.13

Spline 14 34 0.9

Different Approximations

Linear 15 781 20

Logarithmic 18 45 1.14

Spline 8 64 1.6
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Table 3.5: Cumulative conductivity error comparison between different polynomial ap-
proximations.

Cumulative Conductivity Polynomial Regression Analysis

Type of Data Degree / Knots Used Cumulative Error % Avg. Error %

Proposed Methodology

Linear 16 20.3 0.6

Logarithmic 15 19.4 0.55

Spline 35 0.34 0.009

Different Approximations

Linear 10 44 1.2

Logarithmic 10 56.1 1.5

Spline 8 193 5.3

Different Approximations

Linear 13 31.07 1.8

Logarithmic 12 39 1.0

Spline 20 3.2 0.09

Different Approximations

Linear 19 29 1.8

Logarithmic 18 20.4 0.6

Spline 13 31.01 0.9

Tables 3.4 and 3.5 confirmed that the process used to determine the degree of the

polynomial expression to be used provided the best approximation to the ∆z difference.

The polynomial generated were used to obtained the ∆z difference for the cumulative

apparent resistivity and the cumulative apparent conductivity.

3.8 Depth Rescaling

The main proposition of this work is that the polynomial expressions previously defined

can be used to correct the pseudo depth values for the existing ∆z difference.

This ∆z difference can be used to correct the average apparent depth value obtained

for the cumulative apparent properties, which in theory will provide a depth-cumulative

property model that describes the electrical settings present in the subsurface. The

correction process was performed by means of

zRescaled(S) = z(S) + ∆z(S) When S ≈ Sa. (3.10)
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Once the depth is corrected a rescaled depth-cumulative apparent property model was

generated, the results of this rescaled model are presented in Figures 3.20 and 3.21

Figure 3.20: Rescaled cumulative resistivity models

Figure 3.21: Rescaled cumulative conductance models

This rescaled models represent the cumulative electrical values for a certain depth in

the subsurface, however, what is useful for us is not the cumulative electrical property.

but the layered system present in the subsurface. For this reason to retrieve the layered

system the following numerical derivative was used

ρ(i) =
zRescaled(i+ 1)− zRescaled(i)

ρc(i+ 1)− ρc(i)
(3.11)

The layered systems recovered by using equation 3.11 are reported in Figures 3.22 and

3.23.
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Figure 3.22: Rescaled resistivity models obtained by deriving the corrected cumula-
tive resistivity models for the three different representations of the data. The model
obtained by the logarithmic spline corrected data was the one that resembles the geo-

logical settings of the subsurface the most.

Figure 3.23: Rescaled conductivity models obtained by deriving the corrected cumu-
lative conductivity models for the three different representations of the data. Similarly
to the resistivity rescaled model, the model obtained by the logarithmic spline corrected

data was the one that resembles the geological settings of the subsurface the most.

The error between the resistivity model and the rescaled model for each polynomial

expression was computed by means of equations 3.3 and 3.4. The error for the rescaled

models are reported in Table 3.6.
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Table 3.6: Total and average error comparison for each polynomial used in the rescal-
ing process of the resistivity model.

Rescaled Model Total Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

1493 741 437

Rescaled Model Average Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

35 18 11

Based on Figures 3.22 and 3.23 and in Table 3.6 the proposed method is able to retrieve

the layered system present in the subsurface using apparent measurements from a MT

survey and data from an exploratory well that allow us to correct the apparent mea-

surements. The cubic splines interpolation provided the best approximation of the three

polynomials used, however, all of the polynomials provided a good rescaled resistivity

model.

One question that arises is if the polynomial expressions generated using exploratory

data can be used to correct apparent measurements from nearby zones to the exploratory

well in which only apparent measurements have been conducted. In theory, the area

surrounding the exploratory well should have similar geological settings, however, some

parameters might differ, for example the resistivity of the target layer might be different,

also the depth at which the target layer can be found or the thickness of the target layer

can be slightly different. For this reason, the polynomial expression generated by means

of the exploratory data will be used to rescale apparent measurements originated from

a different layered systems that present small variations compared to the geological

settings found in the exploratory well to test if the proposed method can be applied as

a more general rescaling tool.
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Results

The goal of this work is to obtain a polynomial expression that can be

used to directly transform cumulative apparent measurements from

Mt surveys into cumulative values. The methodology to obtain the

mentioned mathematical expression has been described in detail in

Chapter 3.

However, for the polynomial expression to be of practical use it should

be able to transform cumulative apparent measurements into cumu-

lative measurements from zones in which the geological settings are

slightly different from the ones used to create this expression. To

test if the polynomials obtained can perform this task, small pertur-

bations will be applied to different resistivity models (two synthetic

models and one real case) modifying resistivity, thickness and location

of the target layer.

The rescaled geological models obtained will be compared with the

expected geological models to determine if the proposed method can

perform the expected rescaling process. In this chapter only the most

representative cases for the testing phase will be displayed.

42



Chapter 4 43

4.1 Testing Phase

The proposition of this work is to determine the relationship between apparent mea-

surements form a MT survey and local data from an exploratory well (like resistivity

logs) by means of a polynomial expression. To make this of practical use the polynomial

expression derived will be used to retrieve the layered system in areas in which only

apparent measurements have been conducted and the geological model is unknown. For

the testing phase it is assumed that the areas nearby where the polynomial was esti-

mated will have mild variations in the geological settings with respect the ones at the

exploratory well.

To determine if the polynomial can work as a more general rescaling tool a series of

tests were performed. For each test a geological model was defined and the apparent

resistivity measured at the surface was simulated using a modeling tool, then using

the apparent measurements and the local measurements the polynomial expression was

obtained following the steps seen in Chapter 3, after that the model is perturbed and

apparent measurements are obtained, finally using the polynomial previously retrieved

the apparent data coming from the disturbed model is rescaled to directly obtain a ge-

ological. If the rescaled model is similar enough compared to the disturbed model then

it can be said that the proposed methodology can be used as a rescaling tool.

The proposed method was tested in two different geological settings and for each layered

system a disturbed model was generated varying one of the following parameters.

• Resistivity of the target layer.

– From -100 % up to 100 % Difference in 10 % Intervals

• Thickness of the target layer.

– From -100 % up to 50 % Difference in 10 % Intervals

• Position of the target layer.

– From -50 % up to 100 % Difference in 10 % Intervals

Additionally a real case for monitoring purposes was included. The goal of the real case

was to monitor the variation in resistivity in a specific layer due to the injection of water

in a geothermal field.

For sake of simplicity only the more significant rescaled resistivity models are presented
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in this work, there is an online repository that contains all the results derived from the

testing phase, the link to access the repository is provided at the end of this work.

4.2 3 Layers High Contrast Resistivity Model

The first reference model was the one reported in Figure 3.2. This model is a 3 layer

system with a high resistivity layer in the middle, the properties of the model are reported

in Table 4.1

Table 4.1: Electrical parameters for the 3 layer reference model.

Resistivity [Ohm*m ] Conductivity [Ohm/m] Thickness of the Layer [m]

750 1.3x10−3 500

2500 4x10−4 800

450 2.2x10−3 Half Space

The results of the polynomial rescaling process for the reference model are displayed in

Figures 3.22 and 3.23. The testing phase used the three polynomials retrieved for the

three representations of the data as described in Chapter 3, one for the data without any

modification, one for the logarithmic representation for the data and the one obtained

using cubic splines for the logarithmic representation of the data.

4.2.1 Resistivity Variation

The first test was performed by applying resistivity variations to the reference model.

The perturbations applied are reported in Table 4.2.

Table 4.2: Resistivity perturbations applied to the target layer of the 3 layer model.

Resistivity Perturbations

Original Value Disturbed Value Difference %

2500 [Ohm*m]
1250 [Ohm*m] -50%

3750 [Ohm*m] 50%

The results for the resistivity perturbation are displayed in Figures 4.1 and 4.2 respec-

tively. Each figure display the results using the three polynomials obtained and in each

figure is displayed the original layer model (blue line), the rescaled original model (dashed

blue line), the disturbed model that is unknown (orange line) and the rescaled disturbed
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model retrieved (dashed orange line). Figure 4.1 shows the results of the testing phase

for a resistivity perturbation of -50%.
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(a) Rescaled model for a 3 layer system with -50 % resistivity variation compared with the original model

using the polynomial expression obtained without applying any change to the apparent data.

(b) Rescaled model for a 3 layer system with -50 % resistivity variation compared with the original model using

the polynomial expression obtained for the logarithmic representation of the data.

(c) Rescaled model for a 3 layer system with -50 % resistivity variation compared with the original model using the

polynomial expression obtained by using cubic splines for the logarithmic representation of the data.

Figure 4.1: Comparison between the three rescaling process using different polyno-
mials for a -50% variation in the resistivity of the target layer of the 3 layer system.
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To compare the quality of each rescaled model the total error and the average error were

obtained using Equations 3.3 and 3.4 respectively. Table 4.3 shows the error comparison

between the polynomials used to obtained the rescaled model for a resistivity variation

of -50 %.

Table 4.3: Total and average error comparison for each polynomial used in the rescal-
ing process for the -50% resistivity 3 layer disturbed model.

Rescaled Model Total Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

1537 2353 2549

Rescaled Model Average Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

38 54 59

Figure 4.2 shows the results of the testing phase for a resistivity perturbation of 50%.

(a) Rescaled model for a 3 layer system with 50 % resistivity variation compared with the original model

using the polynomial expression obtained without applying any change to the apparent data.
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(b) Rescaled model for a 3 layer system with 50 % resistivity variation compared with the original model using

the polynomial expression obtained for the logarithmic representation of the data.

(c) Rescaled model for a 3 layer system with -50 % resistivity variation compared with the original model using the

polynomial expression obtained by using cubic splines for the logarithmic representation of the data.

Figure 4.2: Comparison between the three rescaling process using different polyno-
mials for a 50% variation in the resistivity of of the target layer of the 3 layer system.

Table 4.4 shows the error comparison between the polynomials used to obtained the

rescaled model for a resistivity variation of 50 %.



Chapter 4 49

Table 4.4: Total and average error comparison for each polynomial used in the rescal-
ing process for the 50% resistivity 3 layer disturbed model.

Rescaled Model Total Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

1883 921 992

Rescaled Model Average Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

43 24 27

Figures 4.1 and 4.2 shows that the proposed method can track the resistivity variation

up to a certain degree, however the change in rescaled resistivity is not proportional to

the change in real resistivity, this implies that an increasing resistivity might be under-

estimated, whereas a decreasing resistivity might be overestimated. The rescaled resis-

tivity is different from the expected resistivity for a percentage ≈ 30% to overcome this

outcome a more detailed study might help to determine the ratio in which the resistiv-

ity is over or under estimated to properly retrieve the resistivity values at the subsurface.

4.2.2 Thickness Variation

The second test was performed by applying thickness variations to the reference model.

The perturbations applied are reported in Table 4.5.

Table 4.5: Thickness perturbations applied to the target layer of the 3 layer model

Thickness Perturbations

Original Value Disturbed Value Difference %

800 [m]
400 [m] -50%

1200 [m] 50%

The results for the thickness perturbation are displayed in Figures 4.3 and 4.4 respec-

tively. Figure 4.3 shows the results of the testing phase for a thickness perturbation of

-50%.
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(a) Rescaled model for a 3 layer system with -50 % thickness variation compared with the original model using

the polynomial expression obtained without applying any change to the apparent data.

(b) Rescaled model for a 3 layer system with -50 % thickness variation compared with the original model using

the polynomial expression obtained for the logarithmic representation of the data.

(c) Rescaled model for a 3 layer system with -50 % thickness variation compared with the original model using the

polynomial expression obtained by using cubic splines for the logarithmic representation of the data.

Figure 4.3: Comparison between the three rescaling process using different polyno-
mials for a -50% variation in the thickness of the target layer of the 3 layer system.
The original layer model is represented by the blue line, the rescaled original model
by dashed blue line, the disturbed model that is unknown by the orange line, and the

rescaled disturbed model retrieved is represented by the dashed orange line.
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Table 4.6 shows the error comparison between the polynomials used to obtained the

rescaled model for a thickness variation of -50 %.

Table 4.6: Total and average error comparison for each polynomial used in the rescal-
ing process for the -50% thickness 3 layer disturbed model.

Rescaled Model Total Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

1485 2359 2200

Rescaled Model Average Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

37 54 51

Figure 4.4 shows the results of the testing phase for a thickness perturbation of 50%.

(a) Rescaled model for a 3 layer system with 50 % thickness variation compared with the original model using

the polynomial expression obtained without applying any change to the apparent data.

(b) Rescaled model for a 3 layer system with 50 % thickness variation compared with the original model using

the polynomial expression obtained for the logarithmic representation of the data.
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(c) Rescaled model for a 3 layer system with 50 % thickness variation compared with the original model using the

polynomial expression obtained by using cubic splines for the logarithmic representation of the data.

Figure 4.4: Comparison between the three rescaling process using different polyno-
mials for a 50% variation in the thickness of the target layer of the 3 layer system.
The original layer model is represented by the blue line, the rescaled original model
by dashed blue line, the disturbed model that is unknown by the orange line, and the

rescaled disturbed model retrieved is represented by the dashed orange line.

Table 4.7 shows the error comparison between the polynomials used to obtained the

rescaled model for a thickness variation of 50 %.

Table 4.7: Total and average error comparison for each polynomial used in the rescal-
ing process for the 50% thickness 3 layer disturbed model.

Rescaled Model Total Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

30033 3107 3395

Rescaled Model Average Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

1001 100 117

Figures 4.3 and 4.4 shows that the proposed method cannot retrieve a change in thick-

ness; in this case an increase of the thickness is retrieved as an increase in resistivity,

and vice versa, in real applications this differences can be misleading and might lead to

wrong interpretations of the subsurface.
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4.2.3 Position Variation

The third test was performed by applying variations to the position of the target layer

in the 3 layer model. The perturbations applied are reported in Table 4.8.

Table 4.8: Position perturbations of the target layer applied to the 3 layer model

Position Perturbations

Original Value Disturbed Value Difference %

Located at 500 [m]
Located at 250 [m] -50%

Located at 750 [m] 50%

The results for the variation of the position of the target layer are displayed in Figures

4.5 and 4.6 respectively. Figure 4.5 shows the results of the testing phase for a variation

of the location of the target layer by -50%.

(a) Rescaled model for a 3 layer system with -50 % variation in the position of the target layer compared with

the original model using the polynomial expression obtained without applying any change to the apparent

data.
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(b) Rescaled model for a 3 layer system with -50 % variation in the position of the target layer compared with

the original model using the polynomial expression obtained for the logarithmic representation of the data.

(c) Rescaled model for a 3 layer system with -50 % variation in the position of the target layer compared with the

original model using the polynomial expression obtained by using cubic splines for the logarithmic representation of

the data.

Figure 4.5: Comparison between the three rescaling process using different polyno-
mials for a -50% variation in the position of the target layer of the 3 layer model.
The original layer model is represented by the blue line, the rescaled original model
by dashed blue line, the disturbed model that is unknown by the orange line, and the

rescaled disturbed model retrieved is represented by the dashed orange line.

Table 4.9 shows the error comparison between the polynomials used to obtained the

rescaled model for a position variation of the target layer by -50 %.
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Table 4.9: Total and average error comparison for each polynomial used in the rescal-
ing process for the variation of -50% in the position of the target layer for the 3 layer

model.

Rescaled Model Total Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

4335 3932 4297

Rescaled Model Average Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

180 106 130

Figure 4.6 shows the results of the testing phase for a variation of the location of the

target layer by 50%.

(a) Rescaled model for a 3 layer system with 50 % variation in the position of the target layer compared with

the original model using the polynomial expression obtained without applying any change to the apparent

data.
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(b) Rescaled model for a 3 layer system with 50 % variation in the position of the target layer compared with

the original model using the polynomial expression obtained for the logarithmic representation of the data.

(c) Rescaled model for a 3 layer system with 50 % variation in the position of the target layer compared with the

original model using the polynomial expression obtained by using cubic splines for the logarithmic representation of

the data.

Figure 4.6: Comparison between the three rescaling process using different polyno-
mials for a -50% variation in the position of the target layer of the 3 layer model.
The original layer model is represented by the blue line, the rescaled original model
by dashed blue line, the disturbed model that is unknown by the orange line, and the

rescaled disturbed model retrieved is represented by the dashed orange line.

Table 4.10 shows the error comparison between the polynomials used to obtained the

rescaled model for a position variation of the target layer by 50 %.



Chapter 4 57

Table 4.10: Total and average error comparison for each polynomial used in the
rescaling process for the variation of 50% in the position of the target layer of the 3

layer model.

Rescaled Model Total Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

1914 1513 2121

Rescaled Model Average Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

46 36 51

Figures 4.5 and 4.6 shows that the proposed method is capable of tracking the position

changes in a simple scenario, this might be helpful in cases in which the target layer is

varying its position along the field of study.

At first glance it seems that the proposed method is capable of rescaling changes in

the resistivity and position of the target layer for a high contrast resistivity model as

shown in Figure 3.2. Nonetheless, in reality usually the changes in the electrical proper-

ties of the subsurface are more subtle, for this reason, the proposes method was tested

in a more realistic model in which the changes between resistivities are smoother.
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4.3 Five Layer Low Contrast Resistivity Model

The model shown in Figure 3.2 is a high contrast resistivity model, however, in reality

the resistivity contrast between layers tend to be more subtle, for this reason a second

resistivity model was used to test the applicability of the proposed rescaling tool. The

new model has 5 layers diminishing the resistivity contrast and the thickness of the

layers. The parameters for this resistivity model are reported in Table 4.11 and in

Figure 4.7.

Table 4.11: Low contrast resistivity and conductivity model parameters.

Resistivity [Ohm*m ] Conductivity [Ohm/m] Thickness [m]

750 1.3x10−3 500

1500 6.6x10−4 300

2800 3.57x10−4 300

1050 9.52x10−4 300

450 2.22x10−3 Half Space

Figure 4.7: 5 layer low contrast resistivity model.

Using the model shown in Figure 4.7 apparent measurements were simulated and using

the methodology described in Chapter 3 a polynomial expression able to correct the

differences between apparent measurements was obtained for the representation of the

data without any change, for the logarithmic representation for the data, and also a

cubic spline interpolation was obtained for the logarithmic representation of the data.
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Once the differences between apparent and local measurements were corrected a rescaled

model was obtained by means of Equation 3.11 for each representation of the data. The

rescaled models obtained are reported in Figures 4.8 and 4.9.

Figure 4.8: 5 layer rescaled resistivity models obtained by deriving the corrected
cumulative resistivity models for the model shown in Figure 4.7 for the three different
representations of the data. The model obtained by the logarithmic spline corrected

data was the one that resembles the geological settings of the subsurface the most.

Figure 4.9: 5 layer rescaled conductivity models obtained by deriving the conductivity
models for the for the model shown in Figure 4.7 three different representations of the
data. Similarly to the resistivity rescaled model, the model obtained by the logarithmic
spline corrected data was the one that resembles the geological settings of the subsurface

the most.

To determine the quality of the rescaling process the total and average error between the

resistivity model and the rescaled model for each polynomial expression was obtained

using equations 3.3 and 3.4. The error for the rescaled models are reported in Table 3.6.
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Table 4.12: Total and average error comparison for each polynomial used in the
rescaling process of the resistivity model for the 5 layer system.

Rescaled Model Total Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

527 458 197

Rescaled Model Average Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

14 12 5

Similarly to the errors shown in Table 3.6 the rescaled model obtained by using the cubic

spline interpolation provided the best approximation to the geological settings present

in the subsurface.

Also for the resistivity model shown in Figure 4.7, the testing phases included varia-

tions to the resistivity, thickness and location of the target layer.

4.3.1 5 Layer System Resistivity Variation

The first test was performed by applying resistivity variations to the reference model

shown in Figure 4.7. The perturbations applied are reported in Table 4.24.

Table 4.13: Resistivity perturbations applied to the target layer of the 5 layer model

Resistivity Perturbations

Original Value Disturbed Value Difference %

2800 [Ohm*m]
1400 [Ohm*m] -50%

4200 [Ohm*m] 50%

The results for the resistivity perturbation are displayed in Figures 4.10 and ?? re-

spectively. Each figure display the results using the three polynomials obtained and in

each figure is displayed the original layer model (blue line), the rescaled original model

(dashed blue line), the disturbed model that is unknown (orange line) and the rescaled

disturbed model retrieved (dashed orange line). Figure 4.10 shows the results of the

testing phase for a resistivity perturbation of -50%.
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(a) Rescaled model for a 5 layer system with -50 % resistivity variation compared with the original model

using the polynomial expression obtained without applying any change to the apparent data.

(b) Rescaled model for a 5 layer system with -50 % resistivity variation compared with the original model using

the polynomial expression obtained for the logarithmic representation of the data.

(c) Rescaled model for a 5 layer system with -50 % resistivity variation compared with the original model using the

polynomial expression obtained by using cubic splines for the logarithmic representation of the data.

Figure 4.10: Comparison between the three rescaling process using different polyno-
mials for a -50% variation in the resistivity of the target layer of the 5 layer resistivity

model.
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Table 4.14 shows the error comparison between the polynomials used to obtained the

rescaled model for a resistivity variation of -50 % for the 5 layer system.

Table 4.14: Total and average error comparison for each polynomial used in the
rescaling process for the -50% resistivity disturbed 5 layer model.

Rescaled Model Total Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

611 537 390

Rescaled Model Average Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

16 14 10

Figure 4.11 shows the results of the testing phase for a resistivity perturbation of 50%.

(a) Rescaled model for a 5 layer system with 50 % resistivity variation compared with the original model

using the polynomial expression obtained without applying any change to the apparent data.

(b) Rescaled model for a 5 layer system with 50 % resistivity variation compared with the original model using

the polynomial expression obtained for the logarithmic representation of the data.
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(c) Rescaled model for a 5 layer system with 50 % resistivity variation compared with the original model using the

polynomial expression obtained by using cubic splines for the logarithmic representation of the data.

Figure 4.11: Comparison between the three rescaling process using different polyno-
mials for a 50% variation in the resistivity of the target layer of the 5 layer model.

Table 4.15 shows the error comparison between the polynomials used to obtained the

rescaled model for a resistivity variation of 50 % for the 5 layer system.

Table 4.15: Total and average error comparison for each polynomial used in the
rescaling process for the 50% resistivity disturbed 5 layer model.

Rescaled Model Total Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

516 538 538

Rescaled Model Average Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

13 13 16

Figures 4.10 and 4.11 shows that even though the rescaled models show a resistivity

variation, the rescaled resistivities are not a real representation of the actual changes in

resistivity between the disturbed and the original model. This could be due to the fact

that since the resistivity contrast between layers is smaller the tracking capabilities of

the proposed model are reduced as well.

4.3.2 5 Layer System Thickness Variation

The second test was performed by applying thickness variations to the 5 layer model

shown in Figure 4.7. The perturbations applied are reported in Table 4.16.



Chapter 4 64

Table 4.16: Thickness perturbations applied to the target layer of the 5 layer model

Thickness Perturbations

Original Value Disturbed Value Difference %

300 [m]
150 [m] -50%

450 [m] 50%

The results for the thickness perturbation are displayed in Figures 4.12 and 4.13. Figure

4.13 shows the results of the testing phase for a variation in the thickness of the target

layer of -50% for the 5 layer system.

(a) Rescaled model for a 5 layer system with -50 % thickness variation compared with the original model using

the polynomial expression obtained without applying any change to the apparent data.

(b) Rescaled model for a 5 layer system with -50 % thickness variation compared with the original model using

the polynomial expression obtained for the logarithmic representation of the data.
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(c) Rescaled model for a 5 layer system with -50 % thickness variation compared with the original model using the

polynomial expression obtained by using cubic splines for the logarithmic representation of the data.

Figure 4.12: Comparison between the three rescaling process using different polyno-
mials for a -50% variation in the thickness of the target layer of the 5 layer model.

Table 4.17 shows the error comparison between the polynomials used to obtained the

rescaled model for a thickness variation of -50 % for the 5 layer system.

Table 4.17: Total and average error comparison for each polynomial used in the
rescaling process for the -50% thickness disturbed 5 layer model.

Rescaled Model Total Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

485 479 405

Rescaled Model Average Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

13 12 11

Figure 4.13 shows the results of the testing phase for a thickness perturbation of 50% of

the 5 layer system.
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(a) Rescaled model for a 5 layer system with 50 % thickness variation compared with the original model using

the polynomial expression obtained without applying any change to the apparent data.

(b) Rescaled model for a 5 layer system with 50 % thickness variation compared with the original model using

the polynomial expression obtained for the logarithmic representation of the data.

(c) Rescaled model for a 5 layer system with 50 % thickness variation compared with the original model using the

polynomial expression obtained by using cubic splines for the logarithmic representation of the data.

Figure 4.13: Comparison between the three rescaling process using different polyno-
mials for a 50% variation in the thickness of the target layer of the 5 layer model.



Chapter 4 67

Table 4.18 shows the error comparison between the polynomials used to obtained the

rescaled model for a thickness variation of 50 % for the 5 layer system.

Table 4.18: Total and average error comparison for each polynomial used in the
rescaling process for the 50% thickness disturbed 5 layer model.

Rescaled Model Total Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

697 613 443

Rescaled Model Average Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

19 17 12

Figures 4.12 and 4.13 shows the same behavior seen in the thickness variation for the 3

layer system (Figures 4.3 and 4.4). This implies that thickness variations of the target

layer are misinterpreted as variations in resistivity.

4.3.3 5 Layer System Position Variation

The third test was performed by applying variations to the position of the target layer

in the 5 layer model. The perturbations applied are reported in Table 4.19.

Table 4.19: Position perturbations of the target layer applied to the 5 layer model

Position Perturbations

Original Value Disturbed Value Difference %

Located at 800 [m]
Located at 400 [m] -50%

Located at 1200 [m] 50%

The results for the variation of the position of the target layer are displayed in Figures

4.14 and 4.15 respectively. Figure 4.14 shows the results of the testing phase for a

variation of the location of the target layer by -50%.
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(a) Rescaled model for a 5 layer system with -50 % variation in the position of the target layer compared with

the original model using the polynomial expression obtained without applying any change to the apparent

data.

(b) Rescaled model for a 5 layer system with -50 % variation in the position of the target layer compared with

the original model using the polynomial expression obtained for the logarithmic representation of the data.

(c) Rescaled model for a 5 layer system with -50 % variation in the position of the target layer compared with the

original model using the polynomial expression obtained by using cubic splines for the logarithmic representation of

the data.

Figure 4.14: Comparison between the three rescaling process using different poly-
nomials for a -50% variation in the position of the target layer of the 5 layer model.
The original layer model is represented by the blue line, the rescaled original model
by dashed blue line, the disturbed model that is unknown by the orange line, and the

rescaled disturbed model retrieved is represented by the dashed orange line.
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Table 4.20 shows the error comparison between the polynomials used to obtained the

rescaled model for a position variation of the target layer by -50 % in the 5 layer system.

Table 4.20: Total and average error comparison for each polynomial used in the
rescaling process for the variation of -50% in the position of the target layer of the 5

layer model.

Rescaled Model Total Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

1499 1332 1463

Rescaled Model Average Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

42 37 41

Figure 4.15 shows the results of the testing phase for a position perturbation of 50% in

the target layer of the 5 layer system.

(a) Rescaled model for a 5 layer system with 50 % variation in the position of the target layer compared with

the original model using the polynomial expression obtained without applying any change to the apparent

data.
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(b) Rescaled model for a 5 layer system with 50 % variation in the position of the target layer compared with

the original model using the polynomial expression obtained for the logarithmic representation of the data.

(c) Rescaled model for a 5 layer system with 50 % variation in the position of the target layer compared with the

original model using the polynomial expression obtained by using cubic splines for the logarithmic representation of

the data.

Figure 4.15: Comparison between the three rescaling process using different polyno-
mials for a 50% variation in the position of the target layer of the 5 layer model.

Table 4.21 shows the error comparison between the polynomials used to obtained the

rescaled model for a position variation of the target layer by 50 % in the 5 layer system.
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Table 4.21: Total and average error comparison for each polynomial used in the
rescaling process for the variation of 50% in the position of the target layer of the 5

layer model.

Rescaled Model Total Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

644 473 514

Rescaled Model Average Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

19 13 15

Figures 4.14 and 4.15 show a different and more complex behavior compared to the 3

layer model. In this case if the target layer is located above its original position the

proposed method is capable of tracking this movement, but the rescaled movement is

less than the actual movement of the target layer. Whereas,if the target layer is below

its original position the proposed method cannot see it, when the movement of the target

layer is below its original position the proposed method rescaled it also as a resistivity

variation.

The proposed method only works for cases in which the resistivity of the target layer is

the only parameter that is changing. As seen previously the proposed method struggles

to accurately rescale the position or thickness of the target layer if those parameters

differ from the ones from which the polynomial expression was obtained.
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4.4 Delft Model

As final test the proposed rescaling tool was used in a real case. The goal for this case

was to track the resistivity changes in a water bearing zone at 2300 [m] deep in the

subsurface of a geothermal field in Delft, Netherlands. In the geothermal field water is

being injected into the formation, for this reason is of particular interest to track how

the injected water is moving through the water bearing layer, this could be tracked by

means of the resistivity changes. The layered system of the geothermal field is described

in Table 4.22 and in Figure 4.16.

Table 4.22: Delft case resistivity and conductivity model parameters.

Resistivity [Ohm*m ] Conductivity [Ohm/m] Thickness [m]

3 0.33 750

5.5 0.181 500

30 0.033 750

25 0.04 300

10 0.1 200

40 0.025 Half Space

Figure 4.16: Delft resistivity model.

Using the model shown in Figure 4.16 apparent measurements were simulated and using

the methodology described in Chapter 3 a polynomial expression able to correct the

differences between apparent measurements was obtained for the representation of the
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data without any change, for the logarithmic representation for the data, and also a

cubic spline interpolation was obtained for the logarithmic representation of the data.

Once the differences between apparent and local measurements were corrected a rescaled

model was obtained by means of Equation 3.11 for each representation of the data. Fig-

ures 4.20 and 4.21 show the rescaled models.

Figure 4.17: Rescaled resistivity models obtained by deriving the corrected cumula-
tive resistivity models for the Delft case for the three different representations of the

data. Similarly to the resistivity rescaled model.

Figure 4.18: Rescaled conductivity models obtained by deriving the corrected cumu-
lative conductivity models for the Delft case for the three different representations of

the data. Similarly to the resistivity rescaled model.

Figure 4.20 and 4.21 show that for this case the target layer is too thin and it cannot

be seen by the apparent measurements performed in the surface. For this reason the

methodology was applied but for this second attempt the MT sensors were placed at a

depth of 1500 [m].
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The new resistivity model for the Delft case is shown in Figure 4.19.

Figure 4.19: Updated Delft resistivity model. This model takes into consideration
the movement of the sensors 1500 [m] in the subsurface.

Once the differences between apparent and local measurements were corrected for the

resistivity model shown in Figure 4.19 a rescaled model was obtained by means of Equa-

tion 3.11 for each representation of the data. Figures ?? and ??

Figure 4.20: Rescaled resistivity models obtained by deriving the corrected cumu-
lative resistivity models for the updated version of the Delft resistivity model for the
three different representations of the data. The model obtained by the logarithmic
spline corrected data was the one that resembles the geological settings of the subsur-

face the most.
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Figure 4.21: Rescaled conductivity models obtained by deriving the corrected cumu-
lative resistivity models for the updated version of the Delft conductivity model for
the three different representations of the data. The model obtained by the logarithmic
spline corrected data was the one that resembles the geological settings of the subsurface

the most.

The error between rescaled models was obtained to determine the quality of the approx-

imations. Table 4.23 shows the total and average error between the resistivity model

derived for each polynomial obtained for the updated Delft resistivity model.

Table 4.23: Total and average error comparison for each polynomial used in the
rescaling process of the resistivity model.

Rescaled Model Total Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

1011 899 1302

Rescaled Model Average Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

15 13 20

For this case the polynomial obtained for the logarithmic representation of the data

provided the best approximation.

4.4.1 Delft System Resistivity Variation

For this real case the resistivity present in the waterbearing zone has been monitored

and the changes in the layer resistivity were registered. For this case is is known that

the resistivity of the target layer increased by
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Table 4.24: Resistivity perturbations registered for the Delft system.

Resistivity Perturbations

Original Value Disturbed Value Difference %

10 [Ohm*m] 35 [Ohm*m] 350%

Considering this new resistivity tree rescaled models were obtained are are reported in

Figure 4.22. Each figure display the results using the three polynomials obtained and in

each figure is displayed the original layer model (blue line), the rescaled original model

(dashed blue line), the disturbed model that is unknown (orange line) and the rescaled

disturbed model retrieved (dashed orange line).

(a) Rescaled model for the Delft system with 350 % resistivity variation compared with the original model

using the polynomial expression obtained without applying any change to the apparent data.

(b) Rescaled model for the Delft system with 350 % resistivity variation compared with the original model using

the polynomial expression obtained for the logarithmic representation of the data.
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(c) Rescaled model for the Delft system with 350 % resistivity variation compared with the original model using the

polynomial expression obtained by using cubic splines for the logarithmic representation of the data.

Figure 4.22: Comparison between the three rescaling process using different polyno-
mials for a 350% variation in the resistivity of the target layer of the Delft system.

Table 4.25 shows the error comparison between the polynomials used to obtained the

rescaled model for a resistivity variation of 350 % for the Delft system.

Table 4.25: Total and average error comparison for each polynomial used in the
rescaling process for the 350% resistivity disturbed Delft model.

Rescaled Model Total Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

1845 1452 2003

Rescaled Model Average Error %

Linear Polynomial Logarithmic Polynomial Cubic Splines Polynomial

30 23 33

Figure 4.22 shows that the proposed rescaling process is able to track the resistivity

changes in the target layer due to the water injection. However, as seen in the previous

tests the rescaled resistivity does not correspond to the actual change in resistivity.

This over or under estimation in the resistivity value should be studied in the future to

improve the rescaling technique.

As mentioned at the beginning of this chapter only the most representative results were

included in this thesis. The following link contains a series of videos summarizing all

the results obtained during the testing phase.

• https://1drv.ms/u/s!AhbYaiuBV_Gqh_NQ91hU1HQQB2to0g?e=OmfaAH

https://1drv.ms/u/s!AhbYaiuBV_Gqh_NQ91hU1HQQB2to0g?e=OmfaAH
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Conclusions and Future Work

5.1 Conclusions

This work was performed to determine if it is possible to obtain a mathematical expres-

sion able to transform apparent measurements form a MT survey into electrical values

that represent the geological settings present in the subsurface.

Starting from field measurements and assuming information from a exploratory well, the

apparent resistivity measured by the MT survey at the surface is processed to obtain

a first apparent depth-apparent electrical model. This model is compared to the local

model obtained in the assumed exploratory well and the differences between models

are obtained. To correct the differences between apparent and local measurements a

polynomial regression is used to model and correct these differences and once the appar-

ent resistivity is corrected a resistivity model is derived and is compared to the actual

resistivity model of the subsurface.

However, for the polynomial expression to be of practical use it should be able to trans-

form apparent measurements into local measurements from zones in which the geological

settings are slightly different from the ones used to create this expression. The proposed

method was tested different geological settings varying one of the following parameters.

• Resistivity of the target layer.

• Thickness of the target layer.

• Position of the target layer.

The variations of each parameter provided approximately 100 different models to test

the applicability of the rescaling tool.

78
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Based on the testing phase it can be concluded that the proposed rescaling process is

able to track resistivity changes of the target layer for geological systems with high re-

sistivity contrast as shown in Figures 4.1 and 4.2. In systems with a smoother resistivity

contrast (Figures 4.10 and 4.11) the rescaling tool is still able to provide an approximate

tracking of the resistivity variation, however as the contrast between layers diminishes

the tracking capabilities of the method diminishes too.

For changes in the thickness of the target the proposed methodology is not able to pro-

vide a realistic rescaled geological model, in this case the rescaling process misinterpret

thickness variations as resistivity variations. If the thickness of the target layer increases

it is rescaled as a increase in the resistivity of the target layer and vice versa. This might

be due to several factors that should be studied in the future.

For changes in the position of the target the proposed methodology presents a more

complex behavior. In the case of a high resistivity contrast the rescaling tool can track

the movement of the target layer as shown in Figures 4.5 and 4.6. Nonetheless, for a

smooth resistivity contrast the proposed rescaling tool can track the movement of the

target layer only if the layer is above its original position as shown in Figure 4.14, if the

target layer is below its original position the rescaled model will misinterpret the change

in position as a resistivity change as shown in Figure 4.15.

In monitoring scenario the proposed methodology was able to reflect the change in the

resistivity of the formation as shown in the Figure 4.22, however, the rescaled geological

model can be improved.

At the moment the method can be used to track resistivity changes in a target layer, as

shown in Figures 4.1 ,4.2, 4.10, 4.11 and 4.22 providing a good first approximation resis-

tivity model that can be used as a starting point for the interpretation of the geological

settings present in the subsurface. This might be useful for tracking the movement of

shallow plumes of contaminated water along a certain area or for tracking the movement

of the salt water wedge near the coast.

Overall the proposed rescaling process can provide a first approximation that can help

in the process of retrieving accurate geological models for fields of study in which only

surface measurements can be used.
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5.2 Future Work

For future work the proposed rescaling process should be studied more in detail, in this

work it has been proved that the method can transform apparent measurement into a

geological model that resembles the properties of the subsurface under certain condi-

tions. For the immediate future more wells should be included, if more data is added

the rescaling capabilities of the polynomials can increase.

Something else that should be tested is the regression technique applied to create the

polynomials used to model the difference between apparent and local measurements.

Other type of regressions might characterize the properties of the subsurface in much

more detail providing a more accurate rescaling tool. Combining the results of different

regression techniques might also improve the technique overall.

Additionally, combining data from other geophysical surveys might help to improve

the retrieved geological model, including different geophysical prospecting methods into

one rescaling process might provide a robust approach in which different geophysical

prospecting methods complement each other.

Further research is needed to determine the actual limits of the proposed rescaling

process, as a first step, the method seems promising especially for identifying resistivity

variations in shallow targets. From now on different approaches can be taken to test the

capabilities and limitations of the proposed rescaling method, but surely is something

worthy of further research.



Bibliography

Chave, A. D. and Jones, A. G. (2012). The magnetotelluric method: Theory and practice.

Cambridge University Press.

Comeau, M. (2015). Electrical Resistivity Structure of the Altiplano-Puna Magma Body

and Volcan Uturuncu from Magnetotelluric Data: University of Alberta. PhD thesis,

PhD thesis, 337 pp.

Florio, G. (2018). Mapping the depth to basement by iterative rescaling of gravity or

magnetic data. Journal of Geophysical Research: Solid Earth, 123(10): 9101–9120.
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