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1 Introduction 

The thesis work presented below aims to use a tool belonging to the field of data assimilation, 

the algorithm of Ensemble Kalman Filter, for the estimation of a hydrological response 

characteristic of the karst system of Prato Nevoso-Bossea, in southern Piedmont. In particular, 

this method is used to statistically define a set of parameters capable of describing the state of 

the system through a series of equations typical of traditional hydrology. Those are applied 

here to an underground system, not entirely accessible and therefore largely not measurable. 

This topic was chosen by one party for the personal interest of the student, on the other hand 

for its innovative vibe, which allows comparison with topics not usually dealt with in degree 

courses, but nevertheless an integral part of today's scientific landscape, such as the field of 

data assimilation. Furthermore, the study of aquifer systems takes on an increasingly leading 

role at a local and global level as the water resource gains greater importance for contemporary 

society. With this in mind, the work is intended to be part of the modern sensitivity towards 

this fundamental good. 

In carrying out the work, an attempt was made to characterize the response of the karst system 

in the face of a precipitation event, as an instantaneous unit hydrogram and infiltration 

coefficient. In addition to all this a study of the snow melting process and its contribution turned 

out to be necessary. Ultimately, the system state thus defined allows the estimation of an 

outgoing flow, the Mora stream one, which crosses the stone halls and corridors of the Bossea 

Cave. The comparison of the estimated flow rate with that measured on site constitutes the 

basis of the applied method. Weather data are gathered by ARPA Piemonte, in particular at the 

Borello station in Frabosa Soprana, while the hydraulic and geologic data are gathered by the 

Bossea Scientific Station, under the aegis of CAI of Cuneo and Turin Polytechnic through the 

DIATI department. 

The paper presents a first part of introduction to the area under study, a description of the karst 

system and measurement stations. There follows a chapter dedicated to the theoretical 

foundations from which we start for the work carried out. Finally, the result obtained and the 

process that led to it in its salient passages are reported as well as some analysis of the results. 

All the following algorithms described and utilized are implemented in the MATLAB 

environment. 
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2 The Water System of the Bossea Cave 

In the following pages there is a summary of the main traits of the area studied, for further 

information please refer to [1]. 

2.1 Geographic framework 

The Bossea Cave is located in the municipality of Frabosa Soprana, in the Province of Cuneo. 

The entrance to the cave opens near the hamlet of Fontane, in Val Corsaglia, at an altitude of 

836 m above sea level. In Figure 2-1 is shown its location in the territory of the Piedmont 

Region (IT). 

 

Figure 2-1: Location of the Bossea Cave inside the Piedmont Region. 

The halls and galleries of the cave are set in the Mondolé-Artesinera-Bossea karst area, in the 

municipalities of Frabosa Sottana and Frabosa Soprana. The entire area is approximately 

included between the Corsaglia stream to the east, the Maudagna stream to the west, Mount 

Malanotte to the north and Cima Artesinera to the south; with a variable altitude between 800 

m asl of the Corsaglia riverbed and 2382 of Monte Mondolé. The entire area is distributed 

across the watershed between the Maudagna and Corsaglia streams [1]. 
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On the ground can be found an alternance of carbonate, permeable rocks, and impermeable 

surfaces, above which the water of precipitation streams, to be then absorbed on the limestones. 

In the summit area, a series of karst basins and plateaus drains the water into the subsoil. 

The karst phenomena are typical and extensive in the whole area, with a considerable develop 

of underground water circulation. The underground flow lines can develop for several 

kilometres, interspersed with numerous caves. The main water systems in the area are Prato 

Nevoso-Bossea, Prato Nevoso-Case Bergamino, Artesinera-Stalle Buorch, Dolly-Artesina [1]. 

 

 

Figure 2-2: 3D model of the studied area, from Google Earth. 

 

In the next page a map is shown displaying the infiltration basin of the karst system, as it has 

been identified since now, on the Regional Technical Map. 
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2.2 Climatological framework 

The Mediterranean Sea is about 40 km far as the crow flies, and it has an enormous influence 

on the Ligurian Alps through the influx of air masses of marine origin and full of moisture. 

These cause copious snowfalls in winter and spring, while in summer and autumn they take 

form of violent thunderstorms with abundant rainfall, short time extent and sometimes 

hailstorms. In the summer we usually have the dry season, although rainfalls are still present, 

therefore normally not droughty. In august the fog can persist in the absorption area for long 

times. The precipitations follow a typically Mediterranean trend, with peaks in the late summer 

and autumn (see Figure 2-4). 

The water supply of the karst system turns out to be a pluvio-nival one, with contributions 

caused by the progressive melting of the snow mantle in the spring, to which are added the 

rainy precipitations, and a totally pluvial income in the fall period. 

The mean annual precipitation calculated in the span 2001-2018 (only the years with complete 

rainfall data are considered) is equal to 1372 mm. this datum presents a strong variability, with 

standard deviation equal to 381 mm. 

 

Figure 2-3: Cumulative annual precipitation at the Borello station, only the years whose data 
are complete are taken into consideration. 

In the Figure 2-4 is possible to see how the monthly mean precipitations reach their peaks in 

the spring months, particularly May, and in autumn, particularly November. The summer is 

drought, as well as winter, during which, however, the precipitation often takes on a snowy 
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form. Due to the stormy nature assumed by the summer-autumn rainfall, the data for this period 

shows greater variability than the rest of the year. 

 

Figure 2-4: Average monthly precipitation at the Borello station in the period 2001-2018. 

With regard to snowfall, a maximum height of snow during the season can be found between 

50 and 250 cm, usually recorded in the late winter period. There is often a remarkable 

difference between the lower areas and the higher ones. The snow melting lasts for the entire 

springtime, starting in March, and continuing usually until May. It proceeds in ascending 

altitudes, affecting the sunny slopes, usually east and south, and those in the shade, north and 

west, in a different way. 

 

2.3 Geological and morphological framework 

The entrance to the cave opens onto the middle Val Corsaglia, engraved by the stream of the 

same name. The primitive glacial morphology was almost completely supplanted by the intense 

erosion of the watercourse. This phenomenon has two main causes: a change in the base level 

of the Tanaro river, of which the Corsaglia is a tributary, following its capture and a recent 

uplift of the entire alpine sector in question. 

The slopes above the entrance have strong steepness and reduced coverage. The rocks show 

marked fragmentation linked to gelling. It is also possible to identify some limited sub-

horizontal openings, relict galleries, once fully loaded, traces of the ancient base level. 
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Towards the west, the karst absorption areas open up, consisting of valleys dug by the erosion 

of temporary waterways. An alternation of waterproof quartzites can be identified, supplanted 

by limestone where the water infiltrates to reach the watershed. Karst soils are partially covered 

by insoluble residues on which vegetation grows. The portion of land that finally meets towards 

Prato Nevoso sees gentler karst forms with a grassy cover, where there are some absorbent 

sinkholes. 

Looking through a geologist’s eye, the entire area is included in the Brianzonese-Ligurian 

series. particularly, the Navonera-Bossea-Prel can be identified [2], limited by important 

tectonic lines (approximatively in a E-W direction) and characterized by strong compressions, 

folds and scales, with subvertical faults. 

 

Figure 2-5: Lithologic-giacimentologic map. Font: ARPA Piemonte. 

The Brianzonese-Ligurian series here in Bossea is constituted by a volcano-clastic basal 

succession (porphyroids, quartzites and pelites) ed a limestone-dolomite sequence (dolomites, 

limestones and schist limestones). 
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2.4 Basics of hydrogeology 

 

Figure 2-6: Conceptual model of karst inclusive of all characteristic phenomena. In dashed 
green the area of the epikarst or superficial karst, in dashed red the underground water 

system [3]. 

From general point of view, the karst phenomenon involves the erosion of carbonate rocks by 

the water that flows inside them according to the balance of (2.1). 

 𝐶𝑎𝐶𝑂3 + 𝐻2𝑂 + 𝐶𝑂2 ↔ 𝐶𝑎2+ + 2𝐻𝐶𝑂3
2− 2.1 

This phenomenon tends to create a series of drainage paths in the superficial part of the 

carbonate platform from which there is a widespread infiltration, while in the areas of contact 

with impermeable soils the runoff is conveyed to points of concentrated infiltration. A transfer 

occurs when the water is released from a secondary aquifer. 

Below the epikarst there is a transfer zone, in which the water flows into fractures or tunnels, 

generally not fully loaded, and then reaches the saturated zone, where there is a mostly sub-

horizontal transfer, up to emerging areas. Fossil tunnels, an indication of ancient transfer areas 

in conditions different from the current one, can sporadically reactivate during periods of 

floods. 

Returning specifically to the Bossea area, the soils affected by the volcanic succession 

constitute important permeability thresholds, limiting the carbonate structures. Along the main 

tectonic lines there can be strongly fractured and cataclasated areas. In these areas, especially 
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in quartzites, non-negligible secondary aquifers can be set up, which feed the karst aquifer 

through underground transfer. 

The karst, housed in the carbonate series, is the main aquifer in the area, with high capacities 

in terms of ingestion and transport. In particular, a network of fractures with different degrees 

of karstification allows the transfer of the inflows along a sub-vertical direction until the 

saturated zone is reached. This seems to be at an altitude of about 940 m asl, while the emerging 

altitude is about 810 m. The presence of a saturated area so high is explained on the one hand 

by the evolution of the system and the significant lowering of the local base level and on the 

other by the existence of some permeability thresholds within the complex. 

 

2.5 The Bossea Cave and the Scientific Station 

The discovery of the cave dates back to 1850 and in the following years the first section had 

been explored. In 1948 the first lighting system was built and in the subsequent period the 

explorations of the emerged galleries were completed. In 1968 and 1995 part of the underwater 

tunnels were explored. Access is guaranteed through a partially excavated fossil gallery to 

facilitate entry. 

 

Figure 2-7: Plan and schematic section of the Bossea Cave [1]. 

The entrance to the cave opens onto the western side of Val Corsaglia at 836 m asl, about 30 

m above the torrential bed. It develops in the WNW-ESE direction for a total of 2638 m and a 

total height difference of +184 m. A perennial stream, the Mora one, runs through it, whose 

flow rates oscillate between 50 and 1200 l/s. 
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Along the development of the cavity, five different areas can be distinguished, as indicated in 

[1]: 

• The resurgence area characterized by narrow horizontal tunnels with full load 

morphology and set on three levels. The lower one, crossed by the Mora Stream, the 

intermediate gallery, active in periods of flooding and the upper gallery through which 

you have access to the cave and now no longer active. The outflows from this section 

directly feed the Corsaglia Stream with flows into the riverbed (identified thanks to a 

thermal camera). 

• The halls’ area is set along a plane of contact between vulcanite, often cataclasated, 

and limestone. The development is about 550 m on a steep slope. There is a marked 

collapse morphology with the succession of different halls, the largest of which, the 

Garelli Hall, extends for 100 meters, is 40 meters high and 60 meters wide. The stream 

runs deeply recessed on the bottom between cyclopic boulders, high it is possible to 

notice wrecks of small pipes under pressure. Phases of partial filling of the cavities are 

evidenced by large clasts partially cemented by calcite on the walls. In the terminal area 

there is the Ernestina Lake and immediately upstream the 9 meters high waterfall of the 

same name. In this area there is a shrinkage due to the progressive reduction of 

porphyroids, whose erosion has conditioned the genesis of the previous salons. Beyond 

the waterfall, the next section opens up, the gorge. 

• • The gorge is a tunnel set on a series of vertical fractures following a horizontal course. 

It extends for 400 m with variable widths between 2 and 4 m and heights up to 30 m. 

the Mora Stream runs through it in its entirety, with sections in which it has deepened 

to create small basins. Within this area, a weir was built to measure the flows of the 

Mora Stream, resulting in a rise in the upstream level and the formation of a single large 

lake of about 120 m. On the ceiling of the gorge there are relics of large, pressurized 

ducts, sometimes partially eroded, while on the walls a series of brackets testifies to the 

subsequent phases of excavation and corrosion. 

• • The fossil tunnels overlook the gorge and are composed of large fully loaded tunnels 

where huge concretionary deposits are often present. Different groups are 

distinguished, such as the Paradise Galleries and the High Branches. In the final part of 

the cavity, we find the Galleries of Marvels, about 200 m long, which end in the siphon 

of the Dead Lake at an altitude of +184 m. Beyond they become impassable, occluded 

by imposing concretions. 
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• The submerged area includes two siphons. A submerged pipeline connects the Dead Lake 

to a shortly emerged stretch, from here a vertical well leads to the first siphon, consisting of a 

large hall and a gallery of about 90 m. Then follows the second siphon, only partially explored. 

 

Figure 2-8: Garelli Hall. Photo by A. Morabito. 

Inside the Bossea Cave there is a permanent scientific research station, managed by the Bossea 

Scientific Station of the Cuneo CAI and by the DIATI of the Turin Polytechnic, in collaboration 

with ARPA Piemonte and ARPA Valle d'Aosta. There are numerous research fields operating 

in this context, such as biospeleology, geochemistry and hydrochemistry, karst hydrogeology, 

underground meteorology, natural radioactivity, topographic surveys, hydraulics, and 

computer processing. 

The research station is divided into the main laboratory, in the halls area (divided into the 

Physical-Chemistry and Biospeleology sections) and the advanced laboratory in the gorge, 

fully automated and dedicated to the detection of hydrogeological and meteorological 

parameters in the less accessible zones. They are followed by a number of peripheral stations 

and a network of sensors spread over the entire cave. 

Thanks to the data measured by the laboratory, it is possible to know the flow rate of the Mora 

stream, measured at the weir above, thanks to a flow curve (2.2) specially calibrated that allows 
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you to make an indirect measurement of the flow rates by measuring the height of water in the 

basin upstream of the measuring weir. 

 𝑄 = 0.0647 ⋅ 𝑦1.5 2.2 

▪ Q flow rate in l/s. 

▪ y water height in mm. 

The measurement is carried out automatically, on an hourly basis starting from 2008 and daily 

in the previous period starting from 1982. 

 

 

Figure 2-9: Bear Hall and entrance to the scientific station (on the right side of the image). 
Photo by A. Morabito. 
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2.6 Borello weather station 

In Borello-Case Cane locality, in the municipality of Frabosa Sottana, there is a meteorological 

station (code 310, altitude 1005 m asl) managed by ARPA Piemonte. The precipitation and air 

temperature data are measured on a daily scale since 1997. The same data are also available on 

an hourly scale since 2001. A heated rain gauge is used, which can also measure the equivalent 

in mm of water of fallen snow. 

 

Figure 2-10: Location of the Borello weather station, within the middle Val Corsaglia and in 
detail. 

 

The distance from the entrance to the Bossea Cave is about 2 km as the crow flies. The 

precipitation data used later are those recorded at this station, and they are made available by 

ARPA Piemonte. 

In the area there is also the Monte Malanotte station in Prato Nevoso, however the unfortunate 

positioning led to the non-use of the data. 
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3 Hydrology Basis 

3.1 The inflow-outflow transformation 

The purpose of this study is to define a hydrological response of the physical system consisting 

of the Bossea karst aquifer in the face of a precipitating event. The main source of the following 

is the [4]. Three fundamental hypotheses are posed in the modelling of the physical behaviour 

of the system: 

1. 1. Uniformity of precipitation on the feeding area 

2. Stationarity of physical processes, they do not vary over time 

3. Linearity of the response of the system, for which the superimposition of the effects is 

valid 

The first hypothesis is reasonable given the relatively modest extension of the supply basin. 

Hypotheses 2 and 3 will be discussed later. 

The precipitation that falls on the feed area can be divided into two different inflows: the part 

infiltrated into the subsoil and feeding the aquifer and the part run off on the surface that enters 

directly into the surface basin without contributing to the flow inside the cave. 

The flow rate that feeds the system is therefore: 

 
𝐼(𝑡) = 𝜒 ⋅ 𝐴 ⋅

𝑝(𝑡)

Δ𝑡
 

3.1 

Where p(t) is the measured precipitation at time t and discretized on an interval Δt, A is the 

basin’s area (in m2) and χ the infiltration coefficient, dimensionless. 

At this point, a system response is assumed according to the convolution theory of hydrograms 

[4]: 

 
𝑄(𝑡) = ∫ 𝐼(𝜏) ⋅ ℎ(𝑡 − 𝜏)𝑑𝜏

𝑡

0

 
3.2 

Where Q(t) is the outcoming flow rate, I(t) is the incoming flow rate and h(t) is the transfer 

function or Instantaneous Unit Hydrogram, IUH. This response is linear (hypothesis 3) and is 

based on the superposition of the effects, as well as being invariant over time (hypothesis 2). 

Furthermore, the continuity equation (the input volume must equal the output volume) also 

implies: 
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∫ ℎ(𝑡)𝑑𝑡 = 1

∞

0

 
3.3 

The transfer function therefore exists within the set [0,1]. 

 

Figure 3-1: Scheme of the hydrological model using the IUH. 

 

The total length of the IUH, Th, it is comparable to the basin's corrivation time. 

In practical terms, the IUH constitutes the measurable flow rate at the closing section in the 

face of a unitary inflow, from (3.1). It is assumed that each drop falling into a fixed point of 

the basin takes a fixed time to reach the closing section and the run-off time is equal to the 

longest travel time. The theoretical duration of the calculated flow rates is equal to the duration 

of the meteoric event Tp to which the maximum time of the IUH, Th must be added. 

Given the discrete form of the available data, the convolution integral of the (3.2) is substituted 

with a summation: 

 
𝑄𝑘 = ∑ 𝐼𝑗 ⋅ ℎ𝑘−𝑗+1 ⋅ Δt

𝑘≤𝑚

𝑗=1

 
3.4 

where m is the number of elements of the IUH and n the number of elements of I. Δt is the 

discretization interval, in our case it is unitary, because it is equal to a day or an hour. 
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3.2 Nash-Sutcliffe efficiency coefficient 

The Nash-Sutcliffe efficiency coefficient [5], or NSE, aims to evaluate the predictive capacity 

of a hydrological model, according to the formula: 

 𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑚

𝑡 − 𝑄0
𝑡)2𝑇

𝑡=1

∑ (𝑄0
𝑡 − 𝑄0

̅̅ ̅)2𝑇
𝑡=1

 3.5 

Where we have the time, 𝑡, from 1 to 𝑇; the measured flow rates, 𝑄0
𝑡 , of average value 𝑄0

̅̅ ̅; the 

predicted flow rates thanks to the model, 𝑄𝑚
𝑡 . 

This index varies between 1 (the model perfectly mimics reality) ands −∞ (the model is unable 

to predict reality in any way). An NSE value of 0 indicates a predictive capacity of the model 

equal to that of the average of the observations. In this way we can quantitatively evaluate the 

goodness of our result by comparing it with real data. 

It is also possible to calculate a normalized value, NNSE (Normalized Nash-Sutcliffe 

Efficiency), according to the formula: 

 
𝑁𝑁𝑆𝐸 =

1

2 − 𝑁𝑆𝐸
 3.6 

Where 𝑁𝑁𝑆𝐸 = 1 is equivalent of 𝑁𝑆𝐸 = 1, 𝑁𝑁𝑆𝐸 = 0.5 to 𝑁𝑆𝐸 = 0 and 𝑁𝑁𝑆𝐸 = 0 to 

𝑁𝑆𝐸 = −∞. This is useful for eliminating the lower limit to−∞. 

Often the efficiency is expressed in percentage terms. 
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4 Data Assimilation 

4.1 The Kalman Filter (KF) 

The Kalman Filter is deeply explored in [6], while in [7] and [8] the topic is treated as an 

introduction to the Kalman Filter Ensemble. 

The problem consists in the best possible esteem of the values of a dynamic process in the face 

of a physical estimation model affected by error and a series of observations over time (and 

space) afflicted by instrumental error. 

Is considered a stochastic process governed by the stochastic differential equation, the dynamic 

model: 

 𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝑤𝑘,    𝑘 > 1 4.1 

Where 𝑥𝑘 ∈ ℝ𝑛 is the stochastic process and the index k denotes the dependence on the time 

instant. The initial state is (𝑘 = 1): 

 𝑥0 = 𝜉~𝑁(𝑥0, 𝑃0) 4.2 

A measurement system is then added 𝑦𝑘 ∈ ℝ𝑑, the observational model: 

 𝑦𝑘 = 𝐻𝑥𝑘 + 𝜖𝑘 4.3 

The error terms are: 

 𝑤𝑘~𝑁(0, 𝑄𝑘) 4.4 

 𝜖𝑘~𝑁(0, 𝑅𝑘) 4.5 

The hypotheses of the gaussianity of the errors are therefore posed (from 4.4 and 4.5) and 

linearity of both models. Under this hypothesis, the Kalman Filter is the optimal solution to 

recursively estimate the first and second moments of the stochastic distribution, following a 

sequential, iterative process that alternates an a priori estimation phase of the value 𝑥𝑘 to one 

of data assimilation. Following the notation in [8] we will define forecast the first step, with an 

associated apex f, and analysis the latter, with apex a; 𝑥𝑓 𝑎⁄  will be the average of the 

distribution and 𝑃𝑓 𝑎⁄  the covariance matrix. 

Forecast Step 

 𝑥𝑘
𝑓

= 𝐴𝑥𝑘−1
𝑎  4.6 

 𝑃𝑘
𝑓

= 𝐴𝑃𝑘−1
𝑎 𝐴𝑇 + 𝑄𝑘 4.7 
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Analysis Step 

 𝐾𝑘 = 𝑃𝑘
𝑓

𝐻𝑇(𝐻𝑃𝑘
𝑓

𝐻𝑇 + 𝑅𝑘)
−1

 4.8 

 𝑥𝑘
𝑎 = 𝑥𝐾

𝑓
+ 𝐾𝑘(𝑦𝑘 − 𝐻𝑥𝑘

𝑓
) 4.9 

 𝑃𝑘
𝑎 = (𝑰 − 𝐾𝑘𝐻)𝑃𝑘

𝑓 4.10 

The matrix 𝐾𝑘 ∈ ℝ𝑚×𝑑is the Kalman gain, whose coefficients represent the linear combination 

of optimum between the a priori estimate and observation. The solution produced by the KF 

can be defined BLUE, Best Linear Unbiased Estimator. The process stops at a certain time T, 

after a series of cycles. 

 

4.2 The Ensemble Kalman Filter (EnKF) 

This variation of the algorithm, introduced by Evensen in 1994 [9], is considered a KF of Monte 

Carlo type. Shortly, it is proposed to extend the applicability of the filter to a non-linear system 

(4.11), whose statistical moments are difficult to estimate, through N realizations of the vector 

𝑥𝑘 representing the state of the system. There are again the observations (4.12). 

 𝑥𝑘 = 𝑓(𝑥) + 𝑤𝑘 4.11 

 𝑦 = 𝐻𝑥𝑘 + 𝜖𝑘 4.12 

An ensemble of realizations is therefore obtained: 

 𝐸𝑓,𝑎 = [𝑥1
𝑓,𝑎

, … , 𝑥𝑁
𝑓,𝑎

] ∈ ℝ𝑚×𝑁 4.13 

With mean: 

 
�̅�𝑓,𝑎 =

1

𝑁
∑ 𝑥𝑛

𝑓,𝑎

𝑁

𝑛=1

 
4.14 

And covariance matrix (approximation of the real covariance matrix of the distribution): 

 
(𝑃𝑒)𝑓,𝑎 =

1

𝑁 − 1
[𝑥1

𝑓,𝑎
− �̅�𝑓,𝑎, … , 𝑥𝑁

𝑓,𝑎
− �̅�𝑓,𝑎] ∗ [𝑥1

𝑓,𝑎
− �̅�𝑓,𝑎, … , 𝑥𝑁

𝑓,𝑎
− �̅�𝑓,𝑎]

𝑇
 4.15 

Furthermore, a vector of observations perturbed by the error is necessary: 

 𝑦𝑛 = 𝑦 + 𝜖𝑛,    1 ≤ 𝑛 ≤ 𝑁 4.16 

 𝑌 = [𝑦1, … , 𝑦𝑁] ∈ ℝ𝑑×𝑁 4.17 

 

Whose covariance matrix results in: 
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𝑅𝑒 =

1

𝑁 − 1
[𝑌 − �̅�] ∗ [𝑌 − �̅�]𝑇 =

1

𝑁 − 1
𝜖 ∗ 𝜖𝑇 4.18 

 

At this point, the algorithm resumes the two basic steps described above: 

Forecast Step 

 𝐸𝑓 = 𝑓(𝐸) + 𝑊,      𝑊 = (𝑤𝑖) 4.19 

Analysis Step 

 𝐸𝑎 = 𝐸𝑓 + (𝑃𝑒)𝑓𝐻𝑇[𝐻(𝑃𝑒)𝑓𝐻𝑇 + 𝑅𝑒]−1[𝑌 − 𝐻𝐸𝑓] 4.20 

There may be problems in the inversion of the matrix [𝐻(𝑃𝑒)𝑓𝐻𝑇 + 𝑅𝑒], covered exhaustively 

in [10]. 

 

4.3 The Ensemble Smoother with Multiple Data Assimilation (ES-MDA) 

To obtain a better result, the algorithm of the Ensemble Smoother with Multiple Data 

Assimilation was finally opted. It allows you to assimilate the same data several times unlike 

the Smoother Ensemble which uses all the observations in a single step one time. The complete 

series of measurements will then be assimilated for a certain number of cycles to be defined a 

priori, making corrections gradually more marked each time. For further information see [11].  

Given the smoother update equation: 

 𝐸𝑎 = 𝐸𝑓 + 𝐶𝑥𝑦(𝐶𝑦𝑦 + 𝐶𝑑𝑑)
−1

(𝑌 − 𝑔(𝐸𝑓)) 4.21 

In which 𝑌 represents the observations, 𝐸𝑓 the set of realizations of the vector containing the 

model parameters, 𝑔(𝐸𝑓) the data estimated at the position and time of the observations 

through the set of parameters, 𝐶𝑥𝑦 the covariance between the parameter matrix and the 

estimated data matrix, 𝐶𝑦𝑦 the self-covariance of the estimated data, 𝐶𝑑𝑑 the covariance matrix 

of measurement errors. 

The ES-MDA proposes to repeat the update step thus structured cyclically, assimilating the 

same data several times. To avoid problems in the inversion of the matrix (𝐶𝑦𝑦 + 𝐶𝑑𝑑)
−1

, 

which would tend to singularity in this condition, a method of inflation of the covariance matrix 

of the instrumental error is used, in such a way as to dampen the change made to the model. 
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We then move from the one major correction made by the smoother to several minor 

corrections made to each cycle of the algorithm. 

In this sense it is necessary to introduce a vector of coefficients 𝛼𝑖 necessary for this operation, 

such that: 

 
∑

1

𝛼𝑖

𝑁𝑎

𝑖=1

= 1 
4.22 

Where 𝑁𝑎 represents the number of cycles arbitrarily decided. 

The update step becomes: 

 𝐸𝑖+1
𝑎 = 𝐸𝑖

𝑓
+ 𝐶𝑥𝑦,𝑖(𝐶𝑦𝑦,𝑖 + 𝛼𝑖𝐶𝑑𝑑)

−1
(𝑦𝑖 + √𝛼𝑖𝜖 − 𝑔(𝐸𝑖

𝑓
)) 4.23 

In which 𝜖 is the error covariance matrix and 𝑦𝑖 the observations at time 𝑖. 

The construction of the vector 𝛼 happens in the following way: you impose a value for 

𝛼1(usually equal to 1) and a value of 𝛼𝑔𝑒𝑜, that controls the change between one step and 

another. At this point we can calculate: 

 
𝛼′𝑖+1 =

𝛼′𝑖

𝛼𝑔𝑒𝑜
 

4.24 

And then: 

 
𝛼𝑖 = 𝛼𝑖 ⋅ (∑

1

𝛼𝑖
′) 

4.25 

So, we can ensure the condition in (4.22). 

 It is remarkable how the parameter 𝛼𝑔𝑒𝑜 = 1 means a uniform change from one cycle to 

another, while 𝛼𝑔𝑒𝑜 < 1 means a decreasing update and on the opposite 𝛼𝑔𝑒𝑜 > 1 means an 

increment of the gain between cycles. 

 

A second approach useful for generating the error’s inflation factors 𝛼𝑖 is proposed in [12], to 

which reference should be made for the theoretical discussion, while the main passages will be 

summarized below. 

First of all, the number of cycles 𝑁𝑎 must be imposed. 

Defined the matrices (n represents the nth iteration): 
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Δ𝐷𝑛 =

1

√𝑛𝑟 − 1
[𝑌 − �̅�]            𝑛 ∈ [0, 𝑁𝑎] 4.26 

 𝐶𝑒 = 𝑰 ⋅ 𝑅𝑘 = 𝐶𝑑𝑑 4.27 

 
𝐴 = 𝐶𝑒

−
1
2Δ𝐷0 

4.28 

A singular value decomposition of the matrix 𝐴 is applied: 

 𝐴 = 𝑈Σ𝑉 4.29 

with 𝜎𝑖 ith element of the singular values vector Σ. 

The following calculation is then carried out: 

 𝛼1 = max {𝜎2, 𝑁𝑎} 4.30 

And a factor 𝛾 ∈ (0,1] is defined by solving with the bisection method: 

 
𝑓1(𝛾) = ∑

1

𝛾𝑘−1 ⋅ 𝛼1
− 1 = 0

𝑁𝑎

𝑘=1

 
4.31 

Finally, the inflation factors are calculated according to the formula: 

 𝛼𝑘+1 = 𝛾𝑘 ⋅ 𝛼1 4.32 

 

4.4 Of Inbreeding, Covariance Inflation e Damping Factor 

The inbreeding is a phenomenon that occurs in Monte Carlo-type statistical filters when the set 

representing the stochastic variability of system’s state collapses to a unique solution, behaving 

in a deterministic and non-statistical manner. The problem is known and dealt with in the 

literature, for example [13], [14], [15]. As indicated in these sources it is possible to measure 

the validity of the result in terms of inbreeding thanks to RMSE, Root Mean Square Error) and 

ES, Ensemble Spread: 

 𝐼 =
𝑅𝑀𝑆𝐸

𝐸𝑆
 4.33 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖

𝑚𝑒𝑎𝑠 − 〈𝑦𝑎〉𝑖)2
𝑁

𝑖=1
 4.34 

 𝐸𝑆 = √
1

𝑁
∑ 𝜎𝑖

2
𝑁

𝑖=1
 4.35 
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where 𝑁 is the number of elements in the model, 𝑦𝑖
𝑚𝑒𝑎𝑠 the measurements, 〈𝑦𝑎〉𝑖 the average 

of the guessed flow rates; 𝜎𝑖 the variance of the ensemble. 

The Covariance Inflation algorithm and the Damping Factor are used to avoid the collapse of 

the filter in a single solution, as explained in the sources cited above. 

The first is applied as in [16], a factor 𝜆 > 1 is defined and it acts on the ensemble matrix: 

 𝐸𝑖𝑛𝑓
𝑓

= 𝐸𝑓̅̅̅̅ + 𝜆 ⋅ (𝐸𝑓 − 𝐸𝑓̅̅̅̅ ) 

 

4.36 

While the damping factor, let’s call it 𝛽 ∈ (0,1], is applied in the update step of the ES-MDA:  

 𝐸𝑖+1
𝑎 = 𝐸𝑖

𝑓
+ 𝛽 ⋅ 𝐶𝑥𝑦,𝑖(𝐶𝑦𝑦,𝑖 + 𝛼𝑖𝐶𝑑𝑑)

−1
(𝑦𝑖 + √𝛼𝑖𝜖 − 𝑔(𝐸𝑖

𝑓
)) 4.37 

 

The value of the two parameters is adjusted from time to time to ensure correct filter operation. 
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5 Application of the Ensemble Kalman Filter to the Case Study 

In the following chapters we will try to present a summary that traces the salient steps in the 

development of the defined model proposed in this thesis and its functioning. The goal remains 

a set of parameters representing the state of the system, capable of receiving rainfall at the input 

and returning an outgoing flow. It is possible to make assumptions about the physical 

functioning of the system, while to estimate the value of these state parameters we use a 

statistical model, the data assimilation algorithms based on the Monte Carlo methods seen 

above. 

5.1 The data 

Incoming data are the precipitations, 𝑖, and the air temperature, 𝑡𝑚𝑝, measured at the Borello 

weather station and the flow rates, 𝑄, measured at the Bossea Scientific Station, useful for data 

assimilation. 

The complete series available covers the time span between 1-Jan-2001 and 31-Dec-2018. The 

values are measured on a daily basis. Within the series, the data are not continuous, but some 

windows are missing for technical reasons. 

 

Figure 5-1: Series of flow measurements carried out on the Mora stream by the staff of the 
Bossea Scientific Station. 
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Figure 5-2: Series of precipitation measurements carried out at the Borello station (Frabosa 
Soprana) by the staff of ARPA Piemonte. 

 

Figure 5-3: Series of air temperature measurements carried out at the Borello station 
(Frabosa Soprana) by the staff of ARPA Piemonte. 
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5.2 Measurement error variance 

The flow rate measured thanks to (2.2) is affected by an instrumental error. The gauge precision 

in equal to ±1 𝑚𝑚, from which it is possible to estimate the error on the flow rate by inverting 

the weir outflow law (2.2). 

The link between the flow rate and the height of the free surface upstream of the weir is non-

linear, so the measurement error will vary as the observed flow rate varies. We can first 

calculate the height of water measured, called here 𝑦, inverting the flow scale. Then we proceed 

to the construction of a flow vector affected by error by adding to 𝑦 a millimetre (𝑄′ = 𝑓(𝑦 +

1)). The measurement error will result from the difference between the estimated flow rates 

and those just calculated, that is: 

 𝑒𝑟𝑟 = 𝑄′ − 𝑄 5.1 

from which it is possible to calculate the variance of the measurement error useful in the applied 

algorithms: 

 𝜎2(𝑒𝑟𝑟) =
𝑒𝑟𝑟 ⋅ 𝑒𝑟𝑟𝑇

𝐿 − 1
 5.2 

With 𝐿 length of the vector. 

 

5.3 First attempt to estimate the IUH with EnKF 

The first approach to solving the problem sees the application of the EnKF for the estimation 

of the characteristic IUH of the Bossea system. 

We start by selecting the flow rate and precipitation data relating to a flood event. Once the 

suitable period has been identified, we proceed to subtract the minimum flow rate measured in 

this time interval, generally referred to the first day, in such a way as to consider only the runoff 

generated by the precipitation of the same period (an example can be seen in the Figure 5-4). 

We then proceed with the calculation of the infiltration coefficient, 𝜒, thanks to the relationship 

between the water flowing in and out according to the (3.1). 

In this chapter and the following, reference will be made to a flood event that occurred in the 

spring of 2003 to illustrate the development of the work, although the code from time to time 

has been tested on multiple events. 
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Figure 5-4: Selection of an event that took place in the spring of 2003. 

 

In other words, the infiltration coefficient can be obtained from the calculation: 

 𝜒 =
∑ 𝑄 ⋅

86400
1000

∑
𝑖

1000
⋅ 𝐴

⁄  5.3 

Where 𝑄 the flow rate measured in l/s, 𝑖 the measured rainfalls in mm/h and 𝐴 is the basin area, 

approximately 6 km2. 

 

Figure 5-5: Example of data used for the selected event. 
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At this point it is possible to proceed with the initialization phase of the Ensemble Kalman 

Filter. It is necessary to define the number of vectors that will make up the stochastic set (in 

our case 1000) and to define the initial state of the system, a set of those vectors each 

representing an IUH. Their length is equal to the duration of the event under analysis minus 

two, because the final values would be unstable and poorly defined by the filter. In fact, if the 

event in question lasts 35 days, the IUH will have a total length of 33 days. The values 

constituting the vectors are generated by stochastic extraction from an evenly distributed 

distribution between 0 and 1. The IUH thus discretized will be called non-parametric IUH, as 

opposed to a parametric IUH model developed at a later stage, referred to in paragraph 5.6-The 

IUH. The definition of the initial observational model follows by convolution of the 

hydrograms as defined in 3.1-The inflow-outflow transformation. Our initial set consisting of 

the thousand vectors containing the state of the system and the relative observational model is 

therefore ready. 

Then follows the application of the EnKF as seen in paragraph 4.2-The Ensemble Kalman 

Filter (EnKF). The assimilation of the measures proceeds starting from the first in question and 

advances along the series in chronological order, using the same value only once, perturbed by 

the error. This allows the filter to make changes to the whole set for each assimilated data, until 

it converges to an average value indicative of the solution. 

Finally, the forward problem is applied using the average of the filtered set as the value of the 

IUH, in order to visually compare, at this stage, the goodness of the solution obtained. 

In the following figures we see the initial set (Figure 5-6), the final set obtained after applying 

the filter (Figure 5-7) and the forward problem compared with the measured data (Figure 5-8). 

It is possible to see how the solution obtained gives a good result, very similar to the measured 

values in terms of flow rate. However, the IUH values obtained after applying the filter range 

well beyond the theoretical boundaries of existence, reaching being negative. The result, 

therefore, represents an excellent mathematical solution, but it is unacceptable and unjustifiable 

from a physical point of view. This implies the need to develop mathematical constraints 

capable of keeping the solution consistent with the hypotheses made about the physical 

behaviour of the system. 
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Figure 5-6: Initial set of state vectors (IUH). 

 

 

Figure 5-7: Final set of state vectors (IUH) subjected to the filter. Non-parametric IUH. 
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Figure 5-8: Forward problem and comparison with the measured data. 

 

5.4 Adoption of logarithmic values 

The problem constituted by the dispersion of the final IUH values beyond the theoretical range 

of existence can be limited by adopting logarithmic values. In short, a change of variable is 

performed where the filtered set consists of the natural logarithms of the values generated as 

described in the previous paragraph, that is to say 𝐸 = ln (𝐸′) where 𝐸′ is the generated 

ensemble and 𝐸 the ensemble to be used in the filter. In this way the field of existence of the 

solution is limited to strictly positive values. The results are visible in the following figures 

(Figure 5-9 and Figure 5-10). 

If on the one hand the flow rates estimated by the model in the forward problem are much more 

approximate than the measured values, on the other hand the average IUH is effectively limited 

in its field of existence. Nonetheless, a series of further problems arise, first of all the integral 

value, or rather the summation being discrete values, of the IUH: The average value is 4.5, far 

from the theoretical one equal to 1. Compliance with this value is necessary to ensure 

compliance with the mass conservation law (the incoming mass must be equal to the outgoing 

mass). 
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Figure 5-9: Final set of state vectors (IUH) subjected to the filter (after the adoption of 
logarithms). Non-parametric IUH. 

 

Figure 5-10: Forward problem and comparison with the measured data (after the adoption 
of logarithms). In yellow the set of solutions obtained and the average solution in blue. 

 

5.5 Adoption of the ES-MDA 

At this point, in the development of a solution to the problem under consideration, it was 

decided to adopt the algorithm of the Ensemble Smoother with multiple data acquisition, as 

described in the paragraph 4.3-The Ensemble Smoother with Multiple Data Assimilation (ES-

MDA). 
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Once again, the set of system state variables, the IUH, is stochastically extracted from an evenly 

distributed distribution. The observational model follows the ensemble of system states, the 

flow rates from the system. 

This ensemble is processed through the algorithm, reusing the same measure several times to 

search for the solution. This is made possible thanks to a decreasing monotone vector of error 

inflation factors capable of stabilizing the inversion of the filter matrices. 

In a first phase, the first and simplest method for the generation of inflation factors described 

in the appropriate paragraph was adopted, while later we switch in favour of the other method, 

proposed by Rafiee and Reynolds in [12], again described in the chapter dedicated to the ES-

MDA, also reducing the number of cycles required to reach the solution. From the confront in 

Figure 5-11 it is observed how the RMSE in the first version of the algorithm is more variable, 

while in the last it remains approximately monotonous decreasing. 

 

Figure 5-11: Evolution of the RMSE in the first version of the code (red) and in the final one 
(blue). 

 

Below we can see the results obtained at this point of the process: in Figure 5-9 the final 

distribution of the system states, in Figure 5-13 the forward problem with all the different 

possible solutions from the ensemble compared with the measured data. 

There is a clear improvement in the result in terms of event prediction and estimated IUH, the 

integral of the latter is also equal to 1.39, a value closest to the theoretical 1. 
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The model is however unstable, with difficulty in reaching convergence for some events and 

little reproducibility of the results, moreover it is applicable to periods not longer than a couple 

of months, under penalty of singularity of the matrices to be inverted during the process. In the 

following chapters the remaining difficulties and discrepancies that lead to the final model 

elaborated will be dealt with, presented below. 

 

Figure 5-12 Final set of state vectors (IUH) subjected to ES-MDA filtering. Non-parametric 
IUH. 

 

 

Figure 5-13 Forward problem and comparison with the measured data. In yellow the set of 
solutions obtained and the average solution in blue. 
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5.6 The IUH 

During the development of the thesis, an influence by the initial set of system states on the final 

result was observed. By varying the stochastic distribution, different results are obtained. 

After multiple attempts, an initial set was opted for consisting of vectors generated through a 

parametric form of the type: 

 
𝐼𝑈𝐻′𝑛 = 𝑎𝑏𝑠 (

𝑒
−

(𝑙𝑛 𝑡−𝜇𝑛)2

2𝜎𝑛
2

√2𝜋𝜎𝑛𝑡
+ 𝑤𝑛) 

 

5.4 

Where the parameters 𝜎𝑛 e 𝜇𝑛 they are stochastically extracted from a continuous uniform 

distribution between 1 and the maximum time (in days) of the IUH. The term 𝑤𝑛 represents 

instead a normal-distributed white noise 𝑤𝑛~𝑁(0, 0.0001). Lastly, the absolute value is 

necessary to avoid negative values whose logarithm would result in a complex number. The 

result is visible in Figure 5-14. 

 

Figure 5-14: Initial set of system states generated according to the above method. 

 

The following images show the results of the algorithm to which the variation just described is 

added. In Figure 5-15 the ensemble after the action of the filter and in Figure 5-16 the forward 

problem. 
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The solution obtained in terms of IUH is more stable with a comparable convergence of the 

single values, even in the final times. The final result in terms of estimated flow rates is 

sufficiently similar. 

Despite everything, however, this measure alone is not sufficient to make the result stable and 

reproducible, especially for periods of time longer than about two months. 

 

Figure 5-15: Set of IUHs after applying the algorithm. Non-parametric IUH. 

 

 

Figure 5-16: Corresponding forward problem. 
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A second possibility considered later is the adoption of a parametric form for estimating the 

IUH. In this way, the number of terms to be processed through the algorithm is reduced from 

one per day considered (generally one per unit of time) to a few parameters. After trying 

different solutions, comparing them with the non-parametric solution, it was decided to opt for 

a model of the type described by (5.5). 

 𝐼𝑈𝐻′(𝑡) =
1

√2𝜋𝑣1
2

⋅ 𝑒𝑥𝑝 (−
(𝑡 − 𝑚1)2

2𝑣1
2 ) +

𝑒𝑥 𝑝 (−
𝑡

𝑚2
)

𝑣2
 

 

5.5 

Only the parameters 𝑚1, 𝑣1, 𝑚2, 𝑣2 are processed by the filter, reducing the computational costs 

of the process. The initial values are extracted from a uniform continuous distribution 

respectively in the interval [1,5] for the parameters 𝑚1, 𝑚2 and [5,10] for 𝑣1, 𝑣2. 

This solution, together with what will come in the following three chapters, will be taken up 

again in the discussion about the final model. 

Lastly, it was decided to impose the integral value of the IUH equal to 1 by applying: 

 𝐼𝑈𝐻 =
𝐼𝑈𝐻′

∑ 𝐼𝑈𝐻′
 5.6 

This ensures compliance with the theoretical value; the integral of the curve is always equal to 

one. 

The possibility of developing IUH in parametric and non-parametric form is being carried out 

in parallel from here on. In this way it is possible to evaluate how strong the approximation 

due to the adoption of the (5.5). 

 

5.7 The effect of precipitations prior to the period considered 

We are now dealing with the problem posed by the flow generated by precipitation prior to the 

period considered. The outflow measured on the first day of the series under analysis will 

necessarily be generated by rain or snow prior to it. This contribution will then gradually 

decrease over the following times. We can call this outflow due to previous events with the 

name of “flow rate B”. 

A first approach consists, as described above, in subtracting the minimum flow rate recorded 

in the series from the series itself, thus only the excess is considered to be generated in the 
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period. In short, a constant flow rate B equal to the minimum recorded is identified. It goes 

without saying that it is appropriate to select events with a minimum of measurements on the 

first day, in order to make the hypothesis more consistent with physical reality. 

However, it is reasonable to assume that the flow on day one is entirely generated by previous 

precipitations, but subsequent ones will gradually be in a smaller percentage, until the influence 

of these precipitations is overcome. In this sense, it was therefore decided to hypothesize an 

outflow B with a decreasing exponential trend able to mimic the influence of what happened 

in the time before the event under analysis on the measured flow. The equation is the (5.7). 

 𝑄𝐵(𝑡) =
𝑄1

𝑒𝑥𝑝(−𝑞2)
⋅ 𝑒𝑥𝑝(−𝑞2 ⋅ 𝑡) 5.7 

It was decided to use a parametric form that is a function of time and regulated by the parameter 

𝑞2, whose value is estimated thanks to the ES-MDA. 𝑄1 is the flow rate measured on day one. 

The value of 𝑞2 it can also be bound to be greater than or equal to a value 𝑞2,𝑚𝑖𝑛, to avoid 

obtaining a result too close to zero and therefore a constant flow rate B over the entire series. 

With simple arithmetic steps it is calculated: 

 
𝑞2,𝑚𝑖𝑛 =

𝑙𝑜𝑔 (
𝑄1

𝑄𝑛
)

𝑛 − 1
 5.8 

once a minimum value at the time 𝑛 of the series is identified, reasonably to be found between 

the firsts measurements. A good indication is to look for a minimum value in the first quarter 

of the series of observations. 

The minimum constraint is then imposed with the change of variable: 

 𝑞2
′ =

1

𝑞2 − 𝑞2,𝑚𝑖𝑛
− 1 5.9 

Where the parameter 𝑞2
′  is used as a state variable in the algorithm’s ensemble. 

The value 𝑞2,𝑚𝑖𝑛 represents the limit case in which in the first period, between the first 

measurement and the minimum, there is no precipitation affecting the system, then the flow 

rate B will interpolate the measured values. But if there is rain this new contribution will be 

able to partially justify the outflows and the flow rate B will therefore have to decrease more 

rapidly. 
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5.8 The snow melting 

The instrument dedicated to the measurement of rainfall, mentioned in the paragraph 2.6-

Borello weather station, is a heated rain gauge. This implies the need to distinguish snow from 

rain. Not only that, but also the snow that falls in the cold months melts with the warm season, 

hence the need to produce an estimate of the snow melting and its trend. 

In general, snowfalls are considered to be those recorded in conjunction with an air temperature 

of less than one degree Celsius. On the other hand, snow melting occurs when the minimum 

daily temperatures exceed freezing. 

In the work presented here we tried to arrive at a model capable of correctly identifying 

snowfall (in the winter period they are distinguished because they have no immediate influence 

on the flow rate) and then redistribute them over time respecting what is the total volume of 

snow fallen, in equivalent mm of water. 

It is necessary to underline how the difference between the measurement altitude and the 

maximum height of the basin makes the snow measured probably often underestimated and the 

temperatures detected may be higher than those at altitude, where snow accumulates more 

easily. 

By comparing the results on multiple events, a logic equation was reached that can identify 

snow events in a manner deemed satisfactory, depending on the measured daily temperature 

values, the average temperature, 𝑡𝑚𝑝𝑎𝑣𝑔, the minimum temperature, 𝑡𝑚𝑝𝑚𝑖𝑛, and the 

maximum temperature, 𝑡𝑚𝑝𝑚𝑎𝑥. There is also a need to consider thermal inertia, considered 

thanks to a three-day moving average of the measured values, 𝑡𝑚𝑝𝑎𝑣𝑔
𝑚𝑚, 𝑡𝑚𝑝𝑚𝑖𝑛

𝑚𝑚, 𝑡𝑚𝑝𝑚𝑎𝑥
𝑚𝑚 . 

 
𝑠𝑛𝑜𝑤 = (𝑡𝑚𝑝𝑚𝑖𝑛

𝑚𝑚 ≤ −1 ∨ 𝑡𝑚𝑝𝑎𝑣𝑔 ≤ 1 ∨ 𝑡𝑚𝑝𝑎𝑣𝑔
𝑚𝑚 ≤ 0 𝑡𝑚𝑎𝑥 ≤ 4 ∨ 𝑡𝑚𝑝𝑚𝑖𝑛

≤ −1.5) ∧ (𝑡𝑚𝑝𝑚𝑖𝑛 ≤ 0 ∨ 𝑡𝑚𝑝𝑚𝑖𝑛
𝑚𝑚 ≤ −1) 

5.10 

 

After the snow we proceed to identify the period in which the snow melt is required. Two 

conditions have been set in this sense: the first, trivial, is the need for at least one day of snow 

to have occurred, the second is that the minimum temperature is higher than zero degrees 

centigrade. Therefore, those following the first snowfall are days of snow melt, during which 

positive minimum daily temperatures are recorded. 
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Finally, a model is needed that distributes the volume of snow fallen over the identified snow 

melt period. To do this, a vector of cumulative sum over time (the time previously identified 

as liable to melting) of the fallen snow is used, let’s call it 𝑆𝑢𝑚𝑆𝑛𝑜𝑤, and starting with it we 

can build the snow melting contribution. 

 

𝑆𝑛′(𝑡) =
0.5 ⋅ 𝑆𝑢𝑚𝑆𝑛𝑜𝑤

√2𝜋𝑏1
2

⋅ 𝑒𝑥𝑝 (−
(𝑡 − 𝑎1)2

2𝑏1
2 ) + 

+
0.5 ⋅ 𝑆𝑢𝑚𝑆𝑛𝑜𝑤

√2𝜋𝑏2
2

⋅ 𝑒𝑥𝑝 (−
(𝑡 − 𝑎2)2

2𝑏2
2 ) 

5.11 

 

All normalized to make the total volume coincide with the volume of fallen snow 𝑉𝑠𝑛𝑜𝑤: 

 𝑆𝑛(𝑡) =
𝑆𝑛′(𝑡)

∑𝑆𝑛′(𝑡)
⋅ 𝑉𝑠𝑛𝑜𝑤 5.12 

The equation (5.11) that describes the progress of the snow melt is a form governed by 

parameters 𝑎1, 𝑏1, 𝑎2, 𝑏2, whose value is determined by the ES-MDA. They are then added to 

the set of state variables. 

In Figure 5-17 the estimated average result is shown for the snow melt in spring 2003. 

 

Figure 5-17: Example of snow fusion calculated by the algorithm. 
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5.9 Estimation of the infiltration coefficient over time 

Up to this point the model provided for a constant infiltration coefficient in the selected time 

interval. It is now proposed to add a vector of infiltration coefficients to the parameters 

representing the state of the system, in order to evaluate their value day by day thanks to the 

algorithm. During the works an attempt was made to use a parametric form, but the poor results 

made it preferable to use a discrete vector of values free to vary. 

As mentioned for the IUH, the way in which the values of the initial set are extracted influences 

the final result. The vectors representing the infiltration coefficients and making up the initial 

set are extracted thanks to the equation: 

 
𝜒(𝑡) = |𝑐0 +

𝑐1

100
⋅ 𝑠𝑖𝑛 (

2𝜋

𝑇1
⋅ 𝑡 + 𝜙1

′ ) +
𝑐2

50
⋅ 𝑠𝑖𝑛 (

2𝜋

𝑇2
⋅ 𝑡 + 𝜙2

′ ) +
𝑐3

10

⋅ 𝑠𝑖𝑛 (
2𝜋

𝑇3
⋅ 𝑡 + 𝜙3

′ )| 
5.13 

In which the terms 𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝜙1, 𝜙2, 𝜙3 are extracted from an evenly distribute distribution, 

respectively the first three between 0 and 1, the last three between−𝜋 and +𝜋. 𝑇1, 𝑇2, 𝑇3 are 

randomly drawn from a normal distribution centred at 1, 150, and 365, respectively. 

The field of existence of the infiltration coefficient varies between 0 and 1. The logarithmic 

transformation applied to the set of state variables guarantees us a result included in ℝ+, but it 

is still necessary to limit the values above. Hence the change of variable: 

 𝜒′(𝑡) =
1 − 𝜒(𝑡)

𝜒(𝑡)
 5.14 

This leads to a result in the interval (0,1). The vector composed of the values of 𝜒′ calculated 

in this way, it is actually used in the ES-MDA, only to then apply the inverse of (5.14) to obtain 

the actual infiltration coefficient when applying the physical model. 

In Figure 5-18 an example of infiltration coefficients calculated with the method described 

above is shown. 
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Figure 5-18: Example of infiltration coefficients calculated by the program. The set of values 
in yellow, its average in red. 

 

5.10 The model 

The model obtained by weaving together what has been said in the previous paragraphs is 

composed of four main elements: 

• The instantaneous unit hydrogram 

• The infiltration coefficients 

• The snow melting as mm of water equivalent 

• The outflow due to prior weather events, the flow rate B 

The first point, the IUH, sees two possibilities: the generation of a vector then used in the 

algorithm, a parametric form whose regulatory parameters are used in the algorithm while the 

IUH is generated from time to time thanks to the chosen equation. 

As regards the snow melting, the infiltration coefficients and the flow rate B, the methods 

described above are used. 

The values of the state variables make up a vector 𝑥𝑛 which goes to build the initial ensemble 

𝐸 = [𝑥1, … , 𝑥𝑛, … , 𝑥𝑁], where 𝑁 has been decided equal to 1000. The set is then submitted to 

the ES-MDA algorithm for a number of cycles to be decided, commonly 15. The final set thus 

obtained converges to the first two statistical moments of the real distribution of the parameters, 

unknown to us, or at least it should. 
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The two models are now described separately, different in the formulation of the IUH, while 

the remaining part is completely similar. In both cases the time 𝑡 varies between 1 and the max 

time of the selected series 𝑇. 

5.10.1 Non-parametric IUH 

The state parameter vector will be of the type: 

 𝑥𝑛 = [𝐼𝑈𝐻1, … , 𝐼𝑈𝐻𝑛, … , 𝐼𝑈𝐻𝑇 , 𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝜒1
′ , … , 𝜒𝑛

′ , … , 𝜒𝑇
′ , 𝑞2

′ ] 5.15 

where 𝑇 is the maximum time of the input data series. 

The physical model provides for the following calculations: the snow melting vector, 𝑆𝑛, 

following the (5.12) and then (5.11), the flow rate B from (5.9) and (5.7), the tributary flow 

according to: 

 
𝑄𝑖𝑛 = (𝑖 + 𝑆𝑛) ⋅ 𝜒 ⋅

𝐴

86,4
 5.16 

where 𝐴 is the area of the basin and 𝜒 the infiltration coefficient following the (5.14). The IUH 

vector is normalized with the (5.6), then hydrograms convolution is applied (3.2) and the flow 

rate B is added to obtain the outcoming flow. 

 

5.10.2 Parametric IUH 

The state parameter vector will be of the type: 

 𝑥𝑛 = [𝑚1, 𝑣1, 𝑚2, 𝑣2, 𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝜒1
′ , … , 𝜒𝑛

′ , … , 𝜒𝑇
′ , 𝑞2

′ ] 5.17 

where 𝑇 is the maximum time of the input data series. 

The physical model provides for the following calculations: the IUH vector from (5.5) and 

them (5.6), snow melting vector, 𝑆𝑛, following the (5.12) and (5.11), the flow rate B thanks to 

(5.9) and (5.7), the income from: 

 
𝑄𝑖𝑛 = (𝑖 + 𝑆𝑛) ⋅ 𝜒 ⋅

𝐴

86,4
 5.18 

where 𝐴 is the basin’s area and 𝜒 is the infiltration coefficient from (5.14). The convolution of 

the hydrograms is then applied (3.2) and the flow rate B is added to obtain the outgoing flow. 

Below are graphs relating to the analysis of the flood event that occurred in the spring of 2003. 

From the data in Figure 5-19 you can see how the duration of the selected event is greater, to 
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ensure a good estimate of the snow fallen in winter, moreover, a high initial flow rate is no 

longer a problem thanks to the estimate of the flow rate B. 

The following figures will show part of the initial set (infiltration coefficient and IUH), the 

result obtained thanks to the algorithm for the same parameters and the forward problem with 

the various components of the model, compared with the recorded data. 

 

Figure 5-19: Input data, spring 2003. 

 

 

Figure 5-20: Initial set, non-parametric IUH. 



47 
 

 

Figure 5-21: Final result in terms of IUH and infiltration coefficient, non-parametric IUH. 

 

 

 

Figure 5-22: Forward problem, non-parametric IUH. In green the outflow B, in blue the 
contribution of the snow melt. 
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Figure 5-23: Initial set, parametric IUH (the curves representing the different IUH are 
generated thanks to the parameters part of the system state vector). 

 

 

 

Figure 5-24: Results obtained thanks to the algorithm, parametric IUH. Again, the IUH 
curves are generated thanks to the corresponding parameters. 
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Figure 5-25: Forward problem, parametric IUH. In green the outflow B, in blue the 
contribution of the snow melt. 

 

 

 

5.11 The inbreeding problem 

Now, to continue with the development of the model, we proceed to an evaluation of the results 

obtained so far in terms of efficiency of Nash-Sutcliffe, NSE, and of inbreeding. 

Let's keep with example the realization and the event analysed in the previous paragraph 

(spring 2003) and let's see how the results behave in terms of NSE: with non-parametric IUH 

a value of 0.98 is recorded, while with parametric IUH of 0.96. In these terms, the model is 

therefore satisfactory. 

With regard to inbreeding, the indicator calculated according to (4.33) provides the following 

results: 12.12 for non-parametric IUH and 39.20 for parametric IUH. From this point of view, 

the results are everything but acceptable. 



50 
 

 

Figure 5-26: RMSE and RMSE/ES trend for the spring 2003 event, non-parametric IUH. 

 

 

Figure 5-27: RMSE and RMSE / ES trend for the spring 2003 event, parametric IUH. 

 

In Figure 5-26 and Figure 5-27 are shown the complete trends of the RMSE and the inbreeding 

indicator. 

Yet in Figure 5-22 and Figure 5-25 the problem is to some extent visible; the set of solutions 

is poorly distributed and always very close to the average. 



51 
 

At this point the problem arises of containing the collapse of the filter without compromising 

the hydrological validity of the final result. During the works it was seen that none of the 

solutions proposed in the paragraph 4.4-Of Inbreeding, Covariance Inflation e Damping Factor 

is able, on its own, to solve the problem. On the other hand, when both damping factor and 

covariance inflation are used, better results are obtained. Added to this is the possibility of 

increasing the variance of the error (5.2) to allow greater variability of the result. In this way 

the error on the observations is able to also incorporate the error of the model. It was decided 

to use a multiplier factor, let's call it error multiplier, to achieve this result. 

It was not possible to define unique values of damping factor (DF), error multiplier (EM) and 

covariance inflation coefficient (𝜆) able to work for any selected event, therefore each time it 

is advisable to proceed with the selection of these coefficients by trial and error. 

Below are the graphs of the results obtained for the same event analysed above, but they are 

applied: 

• Non-parametric IUH: 𝐷𝐹 = 0.8, 𝜆 = 1.1, 𝐸𝑀 = 2; 

• Parametric IUH: 𝐷𝐹 = 0.4, 𝜆 = 1.15, 𝐸𝑀 = 3. 

In the first case (non-parametric IUH) we have an NSE value of 98% and an inbreeding index 

of 3.95; in the second case (parametric IUH) we have an NSE value of 96% and an inbreeding 

index of 3.05. 

We can also see in Figure 5-30 and Figure 5-33 how the trend of the RMSE remains 

predominantly monotonous and decreasing, while the RMSE / ES ratio remains low and does 

not skyrocket as the cycles advance, as was the case previously. 
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Figure 5-28: IUH and infiltration coefficient obtained with the definitive algorithm. Non-
parametric IUH. 

 

 

 

Figure 5-29: Forward problem, non-parametric IUH. 
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Figure 5-30: RMSE and RMSE / ES trend. Non-parametric IUH. 

 

 

 

Figure 5-31: Final result in terms of IUH and infiltration coefficient, parametric IUH. 
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Figure 5-32: Forward problem. Parametric IUH. 

 

 

 

Figure 5-33: RMSE and RMSE / ES trend. Parametric IUH. 
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5.12 The final model 

In Appendix A-Analysed Events the events analysed by the model are reported as graphs and 

useful data. The following conclusions have been drawn from the observation of these results. 

Ultimately, the model thus developed provides for the estimation of a series of data: 

• A flow rate due to previous events (the flow rate B), mostly useful for correctly 

estimating the other parameters that most directly affect the selected event 

• The IUH, the response of the system to a unitary influence, in a parametric or non-

parametric form 

• The infiltration coefficient, in a discrete form as a vector in which each element 

represents the infiltration coefficient of the corresponding day 

• The snow melting, that is the input contribution that undergoes a translation over time; 

the snow that fell in winter does not turn into an income until spring, hence the need 

for an estimate of the melting over time 

The water system under analysis is complex, with fractured parts, conducted under full load, 

siphons, and transfers from detrital aquifers. This implies a variability in terms of response, 

IUH, and infiltration coefficient. 

The IUH in parametric form displays a rather acceptable result, but on the one hand the 

difficulty in maintaining variability in the ensemble and avoiding its collapse and on the other 

hand the differences, in some cases marked, with the non-parametric result suggest that this 

approximation is very strong and not always acceptable. However, the concomitant estimate of 

the infiltration coefficient is able to absorb part of the irregularity of the real system. 

On the other hand, the infiltration coefficient presents a variability that differs considerably 

from the first hypothesis of a constant value over the period. In general, recurring seasonal 

variations are observed, especially in summer involving values that are lower than the average. 

This somewhat stochastic trend can be explained thanks to several concomitant factors: rainfall, 

assumed to be constant on the supply basin, can actually have a spatially discontinuous 

character due to their sometimes-stormy nature; the aquifer system reacts differently according 

to the stored water volume; temperatures can vary significantly in short periods, as well as soil 

moisture and vegetation behaviour, consequently evapotranspiration can change dramatically 

and quickly. 
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6 Results Interpretation 

Once the model described in the previous chapter was developed, the work continued with the 

analysis of a series of flood events identified in the 2001-2018 period, the data of which are 

reported in Appendix A-Analysed Events. These data were then processed, and the results are 

presented below. 

6.1 Of IUH 

The average values of the instantaneous unit hydrogram calculated for the different events were 

recorded and compared with each other. It was decided to group them according to seasonal 

criteria, in two groups: autumn events (including summer ones) and spring events. 

The results obtained with the non-parametric model are shown below. From the images it is 

clear that this solution involves a distinctly irregular response with high variability between 

different events. The average response, in red in the figures, was calculated as the daily average 

of the reported values, in order to identify a general trace of the seasonal behaviour of the 

aquifer. The confrontation between Figure 6-1 and Figure 6-2 allows us to observe the 

differences in the two seasonal responses: where spring distributes the influx over a longer 

period and gradually, going to zero in about 100 days, autumn is characterized by impulsive 

behaviour, with an initial peak and a smaller exhaustion queue in terms of volumes and times. 

 

Figure 6-1: Non-parametric IUH recorded for spring events and daily average of values. 
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Figure 6-2: Non-parametric IUH recorded for autumn events and daily average of values 

. 

At this point the responses estimated with parametric IUH are going to be analysed. The 

adoption of a parametric shape, it goes without saying, eliminates the irregular trend of the 

curve. The seasonal mean response this time is calculated using the average of the recorded 

parameters. In addition, there is a second possibility for estimating an average response: after 

calculating the daily average of the responses obtained during the various events, we proceed 

to estimate the parameters capable of fitting (with Trust-Region and Bisquare weights 

algorithms) better this average response. The values obtained are presented below, the 

interpolation operations return in both cases (spring and autumn) a value of 𝑅2 higher than 

0.99. 

The average values of the parameters recorded in the spring season are: 𝑚1 = 7.54, 𝑣1 =

25.64, 𝑚2 = 9.96, 𝑣2 = 58.54, while the interpolation parameters for the average daily spring 

response: 𝑚1 = 10.57, 𝑣1 = 17.91, 𝑚2 = 4.054, 𝑣2 = 15.84. For the summer-autumn season 

the average values of the parameters are: 𝑚1 = 1.13, 𝑣1 = 25.41, 𝑚2 = 1.94, 𝑣2 = 5.91, 

while the fitting parameters: 𝑚1 = 0.072, 𝑣1 = 2.313, 𝑚2 = 21.75, 𝑣2 = 32.82. The average 

response estimated by interpolation does not fully respect the integral equal to 1, with a spring 

value of 0.94 and an autumn value of 1.07. 
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Again, the observations made for the previous model are valid: the spring responses tend 

towards volumes distributed over long times, while the autumn ones behave in a more 

impulsive manner. 

 

Figure 6-3: Parametric IUH recorded for spring events and response with average 
parameters. 

 

 

Figure 6-4: Parametric IUH calculated for fall events and response with mean parameters 
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The response of the two models is similar in the trend. A decrease in the time in which the IUH 

goes to zero can be observed in the parametric model, present in both the spring and autumn 

seasons. The adoption of IUH in parametric form reduces the variability of seasonal responses, 

making them more uniform among themselves. Is interesting to observe how the area 

subtended by those average calculated IUH is very close to 1 in all the four cases. 

Part of the difference in the behaviour recorded in the two periods of the year can be explained 

by the complexity of the aquifer system and the different feeding. Spring involves snow melting 

and widespread rains, these phenomena affect the groundwater in the fractured with a delay in 

response times; summer and autumn are the seasons of thunderstorms with short and intense 

precipitations, able to affect the karst pipes with full load through the sinkholes and to activate 

siphons, in this way a large volume is immediately conveyed to the measurement section, while 

the runoff coefficient grows in the face of high volumes not able to widely affect the fracture 

in the short time of a stormy downpour. 

Now, we can make a comparison between those average responses and the ones of a specific 

event. In other words, we put into a confrontation the response obtained through the ES-MDA 

and a similar one, in which the IUH has been switched with the average one of the same season 

and type (parametric or non-parametric). To do so a couple of flood events has been selected, 

whose IUH doffers enough to the average one to be a good yardstick. Particularly we are talking 

about the events registered in the 2006 spring and in 2014 autumn, chosen by chance before 

the test. In the following table the NSE of those average IUH responses are reported, then we 

can see the charted flow rates. A more extensive analysis suggest placing the selected events 

between the worsts in term of efficiency and error of the mean IUH response, with only a 

couple that performed in an even less favourable way. This analysis displays how the average 

IUH has its predictive power, and it is consistently higher the average flow rate. Moreover, the 

parametric type of IUH seems to lead to a better average response with a better behaviour when 

used instead of the specific one. 

Table 6.1: NSE of the events selected to compare average IUH with specific ones. 

spring 2006 
non-parametric 

average IUH 
0.60 

parametric 

average IUH 
0.78 

fall 2014 
non-parametric 

average IUH 
0.65 

parametric 

average IUH 
0.74 
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Figure 6-5: Confront between the event specifical IUH response and the average IUH 
response, non-parametric IUH, spring 2006. 

 

 

 

Figure 6-6: Confront between the event specifical IUH response and the average IUH 
response, parametric IUH, spring 2006. 
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Figure 6-7: Confront between the event specifical IUH response and the average IUH 
response, non-parametric IUH, fall 2014. 

 

 

 

Figure 6-8: Confront between the event specifical IUH response and the average IUH 
response, non-parametric IUH, fall 2014. 

 

 



62 
 

6.2 Of infiltration coefficient 

On the front of the infiltration coefficient, in the first instance, the correlations of the estimated 

data with the rains and its distribution over time were analysed. 

The diagrams depicting the ratio between the daily infiltration coefficient and cumulative 

precipitation in the previous three days are shown below (Figure 6-9) and in ten days before 

(Figure 6-10). The results from this point of view are completely comparable both when 

obtained with parametric IUH and with non-parametric IUH. As can be seen from the graphs, 

no trend is observed in the distribution of data. 

When the data is arranged in chronological order, as in Figure 6-11 and Figure 6-12, we can 

notice a certain repetitiveness in the behaviour of the infiltration coefficient. For this reason, it 

was decided to continue the analysis following a temporal criterion. 

Specifically, the vectors of average values calculated were compared on the basis of the 

corresponding day of the year. In this way it was possible to estimate an average infiltrative 

year from January 1st to December 31st. The development of a solid statistic is hampered by 

the low number of data available, generally around ten values per day. In particular, the summer 

months, little affected by flood events and therefore not very represented, suffer from a 

dramatically reduced sample population, around 3-4 values per day. 

An initial evaluation of the statistical distribution of daily values using Pearson's fit test, where 

the sample size allows it, suggests the approximation with normal distribution truncated in the 

interval [0,1] as acceptable. 

In Figure 6-13 the values referring to the model with non-parametric IUH are shown, in Figure 

6-14 with parametric IUH. The first shows a strong discontinuity of the average values in early 

August, where the data are reduced in number, as already mentioned. For the rest there is a 

comparable trend between the two graphs, with a period of high infiltration between March 

and May, with higher maximum values when referring to the model with non-parametric IUH. 

Subsequently, the coefficient gradually decreases in value, until it reaches its minimum around 

October and then rises again. 

Although it may seem counterintuitive a reduction in infiltration during a period typically 

characterized by flood events, it is possible to make hypotheses to justify this behaviour. As 

already mentioned, the high intensity of storm events typical of the season leads the influx to 

move mainly through sinkholes and karst tunnels, while the fractured portion of the aquifer is 
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only marginally affected, for this reason large portions of the territory are subject to strong 

runoff. 

 

 

Figure 6-9: Coefficient of infiltration in relation to the accumulated precipitation in the 
previous three days. Values estimated with parametric IUH. The result is completely 

comparable with that obtained thanks to the non-parametric IUH. 

 

 

Figure 6-10: Coefficient of infiltration in relation to the accumulated precipitation in the 
previous ten days. Values estimated with parametric IUH. The result is completely 

comparable with that obtained thanks to the non-parametric IUH. 
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Figure 6-11: Distribution of daily infiltration coefficients over time, model with non-
parametric IUH. 

 

Figure 6-12: Distribution of daily infiltration coefficients over time, model with parametric 
IUH. 
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Figure 6-13: Average yearly infiltration calculated with a non-parametric IUH model. 

 

Figure 6-14: Average yearly infiltration calculated with a parametric IUH model. 
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6.3 Of flow rate B 

As regards the flow rate B, the outflow generated by precipitation events prior to the period 

considered, we have taken into account the values of the regulating parameter of the (5.7), 𝑞2, 

to evaluate its statistical distribution. Again, the Pearson test is adopted for the purpose. The 

analysis of the results obtained with non-parametric IUH considers to be valid a log-normal 

distribution with parameters 𝜇 = −2.55 𝜎 = 1.42, and probability of exceeding equal to 0.09, 

or a gamma distribution with parameters 𝑎 = 0.70 𝑏 = 0.26, with probability of exceeding 

equal to 0.36. The results are reported in Figure 6-15 in the form of cumulative distribution 

functions. The results obtained with parametric IUH are interpreted well through a log-normal 

distribution of parameters 𝜇 = −4.22 𝜎 = 1.01, with probability of exceeding equal to 0.50. 

Again, the empirical and theoretical cumulative distribution functions are reported in Figure 

6-16. 

 

Figure 6-15: Cumulative distribution functions, empirical and theoretical, for the parameter 
𝑞2 obtained from the model with non-parametric IUH 
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Figure 6-16: Cumulative distribution functions, empirical and theoretical, for the parameter 
𝑞2 obtained from the model with parametric IUH. 

 

Furthermore, the relationship between the regulator parameter 𝑞2 and the flow rate on the first 

day of the series, to which the flow rate B is constrained by construction, was evaluated. 

However, the data, even separated on a seasonal basis, do not have a reciprocal dependence, as 

can be seen in the images below. 

                   
   

 

   

   

   

   

   

   

   

   

   

 

             
             



68 
 

 

Figure 6-17: Scatter plot of parameter 𝑞2 and flow rate on the first day of the series. Non-
parametric IUH. 

 

 

Figure 6-18: Scatter plot of parameter 𝑞2 and flow rate on the first day of the series. 
Parametric IUH. 
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6.4 Of snow melting 

The data collected on the equation (5.11), used to describe the progress of the snow merger, 

are quite variable. An analysis performed using the 𝜒2 test reveals that the average parameters 

of the events estimated thanks to the model with parametric IUH can be approximated to 

random variables belonging to a gamma or log-normal distribution, each of suitable 

parameters. On the other hand, what is obtained from the non-parametric model is adequately 

described by gamma distributions, again of suitable parameters. In Table 6.1 the values of these 

statistical distributions are summarized. 

Table 6.1: Parameters of the gamma distributions able to describe the parameters of the 
snow melting equation. 

non-parametric IUH –  

gamma distribution parameters 
𝑎1 𝑏1 𝑎2 𝑏2 

𝑎 1.84 0.87 1.62 1.53 

𝑏 4.45 11.49 6.64 4.61 

parametric IUH –  

gamma distribution parameters 
𝑎1 𝑏1 𝑎2 𝑏2 

𝑎 1.51 1.38 1.18 1.56 

𝑏 10.14 6.83 9.59 5.19 

 

In general, the snow melting is closely linked to the temperature and the volume of snow fallen, 

this makes it a phenomenon difficult to describe in detail. This strong variability is reflected in 

the diversity of the values assumed by the parameters in the various events studied, as well as 

in the diversity of days involved. The impossibility of accurately predicting daily temperatures 

makes it impossible to establish in advance when the snow melt will occur, if not in a general 

way. 
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6.5 Is it possible to identify a system signature? 

In other words, to conclude the analysis of the results hitherto carried on, we wonder if it is 

possible to identify a set of parameters capable of describing the behaviour of the system with 

a good approximation in the face of precipitation, an average model with some predictive skills. 

Now, from the analyses carried out, it is necessary to extrapolate this average, possibly 

representative model. The choices made to do so are then described: 

• The IUH was selected differently for the two developed models: the non-parametric 

IUH is the daily average of the mean values recorded for the different events, divided 

into spring and summer-autumn; the parametric IUH was selected as the interpolation 

model of the average daily response (which was discussed in the paragraph 6.1) 

• The outflow B depends on the parameter called 𝑞2 and the flow rate at the beginning of 

the series. This can be considered known (the last measured value available before the 

forecasting process), while for the parameter 𝑞2 it was decided to use the median (more 

stable than the average) of the estimated values thanks to the analysis of the events, 

again following a seasonal classification between spring and summer-autumn 

• The infiltration coefficient was calculated as the average daily coefficient (see Figure 

6-13 and Figure 6-14). In addition, the average values to which the daily standard 

deviation is subtracted and the average values to which the daily standard deviation is 

added are considered as borderline cases 

• The snow melting is calculated by assuming the median of the regulatory parameters. 

As for the days in which the phenomenon occurs, the daily temperatures are considered 

to be known. A temporal and quantitative abstraction of the phenomenon requires 

accurate analysis not yet carried on at this stage 

Ultimately there are two average models depending on the choice of IUH made. 

Once an identification response has been defined in this way, flood events are required to test 

this "system signature". It was therefore decided to pre-select four events, two spring and two 

autumns, drawn by lot: Spring 2004, Spring 2013, Autumn 2010, and Autumn 2007. For each 

event, the efficiency of Nash-Sutcliffe and the volume error are measured each in three 

different values representing respectively the model with mean infiltration coefficient minus 

standard deviation, mean infiltration coefficient and mean infiltration coefficient plus standard 

deviation. At the end of the paragraph, the summary tables of the different efficiencies 
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measured and the comparison graphs between the calculated responses and the data actually 

measured are shown. 

From what can be observed thanks to the NSE values, the models behave better than the 

average, in general terms. On the other hand, the considerable variability of the responses 

makes even large errors possible. The phenomenon of snow melting is described in a 

satisfactory manner, but the impossibility of knowing the temperatures in large advance 

prevents it from being used for long-term forecasts. The model struggles to predict the long-

term depletion curves of the aquifer, both as regards the tail of the IUH and on the side of the 

flow rate B. 

The predictive model was evaluated in terms of overall outcoming volumes as well, compared 

with the real values in terms of percentage error. We can say that the adoption of the average 

infiltration coefficient reduces the deviation from reality, although the mistakes made are still 

quite remarkable in some cases. It is also observed how the confidence interval of the 

infiltration coefficient leads to extreme errors in both directions: the extreme values often lead 

to a noticeable underestimation or overestimation. In addition, between the model developed 

thanks to parametric IUH and the counterpart there does not seem to be any evident differences 

for the autumn season, while in spring there is an average better result in the first case, 

parametric IUH, whereas the model with non-parametric IUH tends to underestimate the 

outgoing volumes. 

The discussion regarding the signature of the aquifer will be resumed in the next chapter. 

 

Spring 2004 forecast 𝜒 − 𝑠𝑡𝑑 𝜒 𝜒 − 𝑠𝑡𝑑  

NSE -0.41 0.28 0.58 
Non-parametric IUH 

Volume error (%) -53.75 -33.20 -12.65 

NSE 0.23 0.69 0.81 
Parametric IUH 

Volume error (%) -37.96 -20.41 -2.87 
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Figure 6-19: Spring 2004, non-parametric IUH. 

 

Figure 6-20: Spring 2004, parametric IUH. 

 

Fall 2007 forecast 𝜒 − 𝑠𝑡𝑑 𝜒 𝜒 − 𝑠𝑡𝑑  

NSE -3.48 -0.49 -1.70 
Non-parametric IUH 

Volume error (%) -80.89 -36.14 10.48 

NSE -1.39 -1.42 -8.07 
Parametric IUH 

Volume error (%) -51.82 -4.33 47.12 

 

                                                        

    

 

  

  

  

  

  

  

  
 

 

                  
       

 

   

   

   

   

   

   

   

   

   

    
   

  

                  
                   
                             
                             
           
                     
        

                                                        

    

 

  

  

  

  

  

  

  
 

 

                  
       

 

   

   

   

   

   

   

   

   

   

    

   
  

                  
                   
                             
                             
           
                     
        



73 
 

 

Figure 6-21: Fall 2007, non-parametric IUH. 

 

Figure 6-22: Fall 2007, parametric IUH. 

 

Spring 2013 forecast 𝜒 − 𝑠𝑡𝑑 𝜒 𝜒 − 𝑠𝑡𝑑  

NSE 0.59 0.83 0.54 
Non-parametric IUH 

Volume error (%) -34.69 0.27 35.23 

NSE 0.60 0.72 0.41 
Parametric IUH 

Volume error (%) -27.98 1.84 31.65 
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Figure 6-23: Spring 2013, non-parametric IUH. 

 

Figure 6-24: Spring 2013, parametric IUH. 

 

Fall 2016 forecast 𝜒 − 𝑠𝑡𝑑 𝜒 𝜒 − 𝑠𝑡𝑑  

NSE 0.06 0.74 0.61 
Non-parametric IUH 

Volume error (%) -71.24 -15.49 40.25 

NSE 0.55 0.84 0.16 
Parametric IUH 

Volume error (%) -36.16 16.11 68.88 
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Figure 6-25: Fall 2016, non-parametric IUH. 

 

Figure 6-26: spring 2016, parametric IUH. 
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7 Conclusions 

Since now we have seen the model chosen to describe our karst system and the methods used 

to concretely define it as well as some analysis performed on the data consequently obtained. 

We now try to discuss its effectiveness. 

The data collected thanks to the analysis of flood events in the period 2001-2018, in Appendix 

A, suggest a good ability to estimate the response of the system a posteriori, that is, when the 

extent data of the event are available, and it is therefore possible to proceed with methods of 

data assimilation. This system response also varies considerably from one event to another. 

This reflects the complexity of the aquifer, consisting of fully loaded pipelines, fractured 

limestones and affected by transfers from secondary detrital aquifers. 

In general, the use of a non-parametric IUH allows for a more efficient solution, thanks to the 

ability to better describe the irregularity of the response. On the other hand, the parametric IUH 

reduces the accuracy of the response on a single event, but, as seen in paragraph 6.1, the 

different events, grouped according to seasonal criteria, have a more homogeneous behaviour, 

making it easier to identify a characteristic trend. 

The infiltration coefficient is characterized by considerable random behaviour. There are 

remarkable differences between chronologically contiguous values, and this has made it 

impossible to adopt some sort of parametric equation to describe their progress. Instead, we 

have chosen to use discrete daily values. This approach proved to be better than a single 

constant infiltration coefficient over the selected period. This calls into question the first 

hypothesis posed in paragraph 3.1, the uniformity of precipitation on the basin, because part of 

the high variability of the parameter in question can be explained by uneven precipitation on 

the feeding area, the intensity of which varies in space and with the altitude, thus affecting 

different portions of the aquifer in different ways. In any case, the infiltration coefficient is 

deeply linked to many environmental factors, such as temperature, soil and air moisture, 

vegetation behaviour, and the distribution of precipitation, therefore its irregularity is necessary 

to ensure sufficient variability for our approximate model. In this sense, this parameter 

conceals, summarizes, and compresses part of the complexity typical of natural phenomena 

that we have tried to describe up to now. 

The snowfall and snow melting forecast model, although developed by observing the flow rate 

trend and therefore still to be compared with snow data collected in the field, was found to be 
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fundamental for the development of an efficient model. The influence of snow melting in spring 

is remarkable, just as in autumn the contribution of snowfall has no (immediate) influence on 

the watershed. In this way we were able to correct the contributions and redistribute them in 

the most appropriate period. This improved the quality of the results and allowed a temporal 

extension for the single event analysed without deteriorating the final response. 

The flow rate B, designed to reduce the influence of previous rainfall, underlines a weakness 

of the model: the difficulty in predicting long-term exhaustion queues. The response through 

IUH, especially in the parametric form, finds it difficult to correctly describe the gradually 

decreasing flows in the absence of precipitation for prolonged times, becoming dependent on 

the rate flow B to guarantee this contribution. In general, given the hypothesis of stationarity 

of physical processes, the tail of the instantaneous unit hydrogram and the flow rate B should 

have a comparable trend, while this is not the situation in most cases. This suggests different 

behaviour between different parts of the system, described however through a single answer 

(the IUH). This approximation is therefore incomplete and unable to fully describe the system 

in all its complexity. 

The previous chapter saw an attempt to identify a unique system signature. Now, we can say 

that this is not possible on all state parameters. The autumn IUH of the different events are 

similar, so the approximation to an average response is acceptable, especially with the use of 

the parametric form. The spring response is more varied, but its close link with snow melting 

means that overall, it is possible to obtain a typical seasonal behaviour described by the sum of 

these two components and able to predict events with a good approximation. It should be 

remembered again that the temperature-dependent snow melting process is difficult to predict 

before time in its temporal development. The infiltration coefficient has a repetitive trend on 

an annual basis, however significant variations with respect to the average are possible and 

probable. Furthermore, we can affirm that the single events tend to present a moment of 

maximum infiltration and then the values usually decrease after this maximum. Finally, the 

flow rate B is the most difficult parameter to approximate to a univocal response. Its 

contribution to the outflow is often significant and this involves a non-negligible level of error. 

However, this part of the model, being dependent on the antecedent data, can be guessed by 

those, as an interpolation of flow rate data. The behaviour expected thanks to the model with 

parametric IUH on this parameter seems to be better than that obtained with non-parametric 

IUH, with a more distributed trend over time. 
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Ultimately, if an approximate answer in terms of seasonal IUH seems possible, the trend of the 

other parameters is difficult to predict accurately, leaving room for statistical evaluations. 

Generally speaking, an answer estimated in the ways seen above seems to behave better than 

the average of the flow rates, but it is possible to make even considerable errors. The system 

signature predicted through the model with parametric IUH seems to have greater predictive 

capabilities than the counterpart, although the model is more imprecise on individual events. 

7.1 Possible developments 

At the end of the conclusions, some future developments of the work described so far are hoped 

for. First of all, the application to different aquifer systems would allow a more complete study 

of the algorithm and possible improvements. A further study of the dependencies of the 

infiltration coefficient on other environmental parameters, such as soil moisture or air 

temperature, could allow to restrict the variability of the parameter. The model used to define 

the snow melting requires in-depth analysis to define its validity and applicability, perhaps by 

applying the model in locations where snow data are available. It is also possible to evaluate 

the adoption of other parametric forms than those used, where provided for by the model. A 

further development could concern an application on a yearly basis data and the comparison 

with seasonal responses. Finally, the analysis of sufficiently extensive data over time could 

help identify variations in the behaviour of the aquifer over time and therefore help define 

future behaviours and possible evolutions. 

 

Figure 7-1: Detail of the Mora stream inside the Bossea Cave. Photo by A. Morabito. 



79 
 

8 Bibliography 

 

[1]  M. Civita, F. Gregoretti, A. Morisi, G. Olivero, G. Peano, B. Vigna, E. Villavecchia and 

F. Vittone, Atti della stazione scientifica di della Grotta di Bossea, Savigliano: Gruppo 

Speleologico Alpi Marittime C.A.I. Cuneo - Dipartimento Georisorse e Territorio del 

Politecnico di Torino, 1990.  

[2]  M. Vanossi, “Analisi stratigrafico-strutturale della zona tra le alte valli del Casotto e 

dell'Ellero,” Atti SOcietà Geologica Universita di Pavia, vol. 24, pp. 72-120, 1974.  

[3]  A. Hartmann, N. Goldscheider, T. Wagener, J. Lange and M. Weiler, “Karst water 

resources in a changing world: Review of hydrological modeling approaches,” Reviews 

of Geophysics, no. 52, pp. 2018-242, 2015.  

[4]  V. T. Chow, D. R. Maidment and L. W. Mays, Applied Hydrology - second edition, 

Mcgraw-Hill, 2013.  

[5]  J. E. Nash and J. V. Sutcliffe, “River flow forecasting through conceptual models part I 

— A discussion of principles,” Journal of Hydrology, vol. 10, no. 3, pp. 282-290, 1970.  

[6]  R. G. Brown and P. Y. Hwang, Introduction to Random Signals and Applied Kalman 

Filtrering, United States of America: John Wiley & Sons, Inc., 2012.  

[7]  A. Almendral-Vazquez and A. Randi Syversveen, “The Ensemble Kalman Filter - theory 

and applications in oil industry,” Norsk Regnesentral - Norwegian Computing Center, 

Oslo, 2006. 

[8]  A. Carrassi, M. Bocquet, L. Bertino and G. Evensen, “Data Assimilation in the 

Geosciences, An overview on methods, issues and perspectives,” 2018. 

[9]  G. Evensen, “Sequential data assimilation with nonlinear quasi-geostrophic model using 

Monte Carlo methods to forecast error statistics,” JOURNAL OF GEOPHYSICAL 

RESEARCH, vol. 99, pp. 10,143-10,162, 1994.  

[10]  G. Evensen, “The Ensemble Kalman Filter: theoretical formulation and practical 

implementation,” Ocean Dynamics, no. 53, pp. 343 - 367, 2003.  



80 
 

[11]  A. A. Emerick and A. C. Reynolds, “Ensemble smoother with multiple data 

assimilation,” Computers & Geosciences, vol. 55, pp. 3-15, 2013.  

[12]  J. Rafiee and A. C. Reynolds, “Theoretical and efficient practical procedures for the 

generation of inflation factors for ES-MDA,” Inverse Problems, vol. 33, no. 11, 2017.  

[13]  Z. Chen, T. Xu, J. J. Gómez-Hernández and A. Zanini, “Contaminant Spill in a Sandbox 

with Non-Gaussian Conductivities: Simultaneous Identification by the Restart Normal-

Score Ensemble Kalman Filter,” Mathematical Geosciences, 2021.  

[14]  X. Liang, X. Zheng, S. Zhang, G. Wu, Y. Dai and Y. Li, “Maximum likelihood estimation 

of inflation factors on error covariance matrices for ensemble Kalman filter assimilation,” 

Quarterly Journal of the Royal Meteorological Society, no. 138, pp. 263-273, 2012 A.  

[15]  T. Xu, J. J. Gómez-Hernández, H. Zhou and L. Li, “The Power of Transient Piezometric 

Head Data in Inverse Modeling: An Application of the Localized Normal-score EnKF 

with Covariance Inflation in a Heterogenous Bimodal Hydraulic Conductivity Field,” 

Advances in Water Resources, 2013.  

[16]  J. L. Anderson and S. L. Anderson, “A Monte Carlo Implementation of the Nonlinear 

Filtering Problem to Produce Ensemble Assimilations and Forecasts,” Monthly Weather 

Review, vol. 127, pp. 2741-2758, 1999.  

[17]  M. E. P. Raddusa, F. Boano, A. Viglione and B. Vigna, Tesi di Laurea Magistrale - 

Analisi di portate in un sistema acquifero carsico, Torino, 2020.  

[18]  “Sito Web ARPA Piemonte,” [Online]. Available: http://www.arpa.piemonte.it/. 

[19]  G. Evensen, “Sampling strategies and square root analysis schemes for the EnKF,” Ocean 

Dynamics, no. 54, pp. 539-560, 2004.  

[20]  “openspeleo,” [Online]. Available: www.openspeleo.org. 

[21]  “La Grotta di Bossea,” [Online]. Available: www.grottadibossea.com. 

[22]  T. Xu and J. J. Gómez-Hernández, "Joint identification of contaminant source location, 

initial release time and initial solute concentration in an aquifer via Enseble Kalman 

Filtering," WATER RESOURCES RESEARCH, 2016.  



81 
 

[23]  H. H. Bauser, D. Berg, O. Klein and K. Roth, “Inflation method for ensemble Kalman 

filter in soil hydrology,” Hydrol. Earth Syst. Sci., vol. 22, pp. 4921-4934, 2018.  

[24]  J. Gómez-Hernández, How to implement the ensemble Kalman filter, 2013.  

[25]  “Gruppo Speleologico Apli Marittime C.A.I. Cuneo,” [Online]. Available: 

http://speleocuneo.blogspot.com/p/bossea.html. 

[26]  V. Todaro, M. D'Oria, M. G. Tanda and J. J. Gómez-Hernández, “Ensemble smoother 

with multiple data assimilation for reverse flow routing,” Computers & Geosciences, no. 

131, pp. 32-40, 2019.  

[27]  S. J. Fletcher, Data Assimilation for the Geosciences, Elsevier, 2017.  

[28]  I. Butera, J. J. Gómez-Hernández and S. Nicotra, “Contaminant-Source Detection in a 

Water Distribution System Using the Ensemble Kalman Filter,” Journal of Water 

Resources Planning and Management, vol. 147, no. 7, 2021.  

[29]  W. B. White, “Conceptual models for karstic aquifers,” Speleogenesis, vol. 1(1), pp. 1-

6, 2003.  

[30]  P. J. Van Leeuwen, “Comment on ‘‘Data Assimilation Using an Ensemble Kalman Filter 

Technique’’,” Monthly Weather Review, vol. 127, pp. 1374-1377, 1998.  

[31]  G. Evensen, “Analysis of iterative ensemble smoothers for solving inverse problems,” 

Computational Geosciences, no. 22, pp. 885 - 908, 2018.  

[32]  A. A. Emerick, “Analysis of geometric selection of the data-error covariance inflation for 

ES-MDA,” Journal of Petroleum Science and Engineering, vol. 182, 2019.  

[33]  G. Evensen and P. J. van Leeuwen, “An Ensemble Kalman Smoother for Nonlinear 

Dynamics,” M O N T H L Y W E A T H E R R E V I E W, vol. 128, pp. 1852-1867, 2000.  

[34]  J. L. Anderson, “An adaptive covariance inflation error correction algorithm for ensemble 

filters,” Tellus A: Dynamic Meteorology and Oceanography, vol. 59, no. 2, pp. 210-224, 

2007.  



82 
 

[35]  “Ambiente carsico e umano in Val Corsaglia,” in Atti dell'incontro di Bossea 14-15 

settembre 1991, Bossea, 1991.  

[36]  G. Evensen, “Accounting for model errors in iterative ensemble smoothers,” 

Computational Geosciences, no. 23, pp. 761-775, 2019.  

 

 

 

 

  



II 
 

Appendix A Analysed Events 

The following are the 27 flood events analysed with the developed code and the results are 

reported in the form of diagrams and tables. The results are organized in chronological order, 

the model with non-parametric IUH precedes the one with parametric IUH. In the time interval 

of available data, all flood events whose data were complete were selected and analysed, 

selecting a suitable time window. It is generally more extensive for spring events in order to 

better consider the snow contribution of winter. 

The analysis of the events is summarized as follows: first the starting data are shown (image 

with the measured flows of the Mora stream, black line, and the meteorological events divided 

into rains, blue, and snow, blue and image with temperatures and rainfall), the result with non-

parametric IUH follows as a table of salient values, final result in terms of IUH, blue, and 

infiltration coefficient, red, and forward problem (flow rates measured in black and estimated 

in red, rainfall measured in blue, snow melting estimated in blue), then result with parametric 

IUH in the same exposure sequence. 

The tables summarize some values considered summary of the final model. The bias is the 

average error of the model, the Mean Absolute Error is the average of the error in absolute 

value, NSE represents the Nash-Sutcliffe efficiency referred to in paragraph 3.2, the 

value𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  indicates the ratio between the input and output volumes estimated by the model 

(whose value should be equal to 1 in theory), while the remaining parameters concern 

inbreeding and is dealt with extensively in the paragraphs 4.4 and 5.11. 

 

  



III 
 

I. Spring 2001 

 

Figure 8-1: data used. 

 

non-parametric IUH 

Bias [l/s] -3.54 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.08 𝜆 1.1 

Mean Absolute 

Error [l/s] 
13.47 RMSE 20.41 DF 0.7 

NSE 0.96 RMSE/ES 5.29 EM 2 

 

 



IV 
 

 

 

parametric IUH 

Bias [l/s] -2.77 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.02 𝜆 1.13 

Mean Absolute 

Error [l/s] 
16.92 RMSE 27.38 DF 0.4 

NSE 0.94 RMSE/ES 5.3 EM 2 

 

 



V 
 

 

 

 

  



VI 
 

II. Spring 2002 

 

Figure 8-2: data used. 

non-parametric IUH 

Bias [l/s] -1.81 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.43 𝜆 1.12 

Mean Absolute 

Error [l/s] 
5.57 RMSE 8.72 DF 0.8 

NSE 1.00 RMSE/ES 1.87 EM 2 

 

 



VII 
 

 

 

parametric IUH 

Bias [l/s] -5.73 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.05 𝜆 1.15 

Mean Absolute 

Error [l/s] 
23.71 RMSE 38.86 DF 0.4 

NSE 0.92 RMSE/ES 6.52 EM 4 

 

 



VIII 
 

 

 

  



IX 
 

III. Summer 2002 

 

Figure 8-3:data used. 

 

Non-parametric IUH 

Bias [l/s] 4.66 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.18 𝜆 1.1 

Mean Absolute 

Error [l/s] 
7.60 RMSE 13.75 DF 0.4 

NSE 0.99 RMSE/ES 2.16 EM 4 

 

 



X 
 

 

 

Parametric IUH 

Bias [l/s] -2.06 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.04 𝜆 1.1 

Mean Absolute 

Error [l/s] 
22.58 RMSE 29.61 DF 0.4 

NSE 0.96 RMSE/ES 4.45 EM 4 

 

 



XI 
 

 

 

  



XII 
 

IV. Spring 2003 

 

Figure 8-4:data used. 

 

Non-parametric IUH 

Bias [l/s] -1.07 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.09 𝜆 1.1 

Mean Absolute 

Error [l/s] 
7.96 RMSE 10.42 DF 0.6 

NSE 0.98 RMSE/ES 2.12 EM 4 

 

 



XIII 
 

 

 

Parametric IUH 

Bias [l/s] -1.93 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.09 𝜆 1.15 

Mean Absolute 

Error [l/s] 
11.07 RMSE 15.07 DF 0.75 

NSE 0.96 RMSE/ES 4.24 EM 4 

 

 



XIV 
 

 

 

  



XV 
 

V. Fall 2003 

 

Figure 8-5:data used. 

 

Non-parametric IUH 

Bias [l/s] 0.01 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.01 𝜆 1.05 

Mean Absolute 

Error [l/s] 
8.98 RMSE 14.45 DF 0.7 

NSE 0.99 RMSE/ES 3.03 EM 3 

 

 



XVI 
 

 

 

Parametric IUH 

Bias [l/s] -9.45 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.09 𝜆 1.1 

Mean Absolute 

Error [l/s] 
11.80 RMSE 16.8 DF 0.7 

NSE 0.98 RMSE/ES 2.89 EM 3 

 

 



XVII 
 

 

 

  



XVIII 
 

VI. Spring 2004 

 

Figure 8-6:data used. 

 

Non-parametric IUH 

Bias [l/s] -10.78 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.02 𝜆 1.12 

Mean Absolute 

Error [l/s] 
25.02 RMSE 36.37 DF 0.5 

NSE 0.93 RMSE/ES 7.81 EM 4 

 

 



XIX 
 

 

 

Parametric IUH 

Bias [l/s] -14.06 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.06 𝜆 1.13 

Mean Absolute 

Error [l/s] 
27.69 RMSE 37.88 DF 0.35 

NSE 0.91 RMSE/ES 7.95 EM 3 

 

 



XX 
 

 

 

  



XXI 
 

VII. Spring 2005 

 

Figure 8-7:data used. 

 

Non-parametric IUH 

Bias [l/s] -4.94 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.08 𝜆 1.08 

Mean Absolute 

Error [l/s] 
7.47 RMSE 12.96 DF 0.5 

NSE 0.98 RMSE/ES 3.36 EM 2 

 

 



XXII 
 

 

 

Parametric IUH 

Bias [l/s] -2.06 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.04 𝜆 1.12 

Mean Absolute 

Error [l/s] 
12.88 RMSE 23.88 DF 0.4 

NSE 0.95 RMSE/ES 7.49 EM 4 

 

 



XXIII 
 

 

 

  



XXIV 
 

VIII. Fall 2005 

 

Figure 8-8:data used. 

 

Non-parametric IUH 

Bias [l/s] 2.54 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.05 𝜆 1.1 

Mean Absolute 

Error [l/s] 
14.81 RMSE 23.17 DF 0.4 

NSE 0.96 RMSE/ES 4.31 EM 3 

 

 



XXV 
 

 

 

Parametric IUH 

Bias [l/s] -4.23 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.09 𝜆 1.1 

Mean Absolute 

Error [l/s] 
18.15 RMSE 24.71 DF 0.3 

NSE 0.96 RMSE/ES 3.1 EM 3 

 

 



XXVI 
 

 

 

  



XXVII 
 

IX. Spring 2006 

 

Figure 8-9:data used. 

 

Non-parametric IUH 

Bias [l/s] -4.17 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.08 𝜆 1.05 

Mean Absolute 

Error [l/s] 
10.42 RMSE 15.66 DF 0.4 

NSE 0.94 RMSE/ES 4.50 EM 3 

 

 



XXVIII 
 

 

 

Parametric IUH 

Bias [l/s] -4.09 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.05 𝜆 1.1 

Mean Absolute 

Error [l/s] 
12.93 RMSE 18.93 DF 0.35 

NSE 0.92 RMSE/ES 5.19 EM 4 

 

 



XXIX 
 

 

 

  



XXX 
 

X. Summer 2007 

 

Figure 8-10:data used. 

 

Non-parametric IUH 

Bias [l/s] -0.24 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.17 𝜆 1.1 

Mean Absolute 

Error [l/s] 
3.65 RMSE 7.09 DF 0.7 

NSE 0.99 RMSE/ES 2.94 EM 2 

 

 



XXXI 
 

 

 

Parametric IUH 

Bias [l/s] 0.04 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.00 𝜆 1.1 

Mean Absolute 

Error [l/s] 
7.50 RMSE 9.22 DF 0.5 

NSE 0.97 RMSE/ES 3.29 EM 4 

 

 



XXXII 
 

 

 

  



XXXIII 
 

XI. Fall 2007 

 

Figure 8-11:data used. 

 

Non-parametric IUH 

Bias [l/s] -0.53 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.10 𝜆 1.1 

Mean Absolute 

Error [l/s] 
4.83 RMSE 7.55 DF 1.00 

NSE 0.98 RMSE/ES 3.43 EM 2 

 

 



XXXIV 
 

 

 

Parametric IUH 

Bias [l/s] 0.63 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.09 𝜆 1.1 

Mean Absolute 

Error [l/s] 
4.19 RMSE 7.36 DF 0.6 

NSE 0.98 RMSE/ES 3.13 EM 2 

 

 



XXXV 
 

 

 

  



XXXVI 
 

XII. Spring 2008 

 

Figure 8-12:data used. 

 

Non-parametric IUH 

Bias [l/s] -13.25 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.08 𝜆 1.1 

Mean Absolute 

Error [l/s] 
18.72 RMSE 23.32 DF 0.6 

NSE 0.94 RMSE/ES 3.6 EM 4 

 

 



XXXVII 
 

 

 

Parametric IUH 

Bias [l/s] -4.44 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.03 𝜆 1.1 

Mean Absolute 

Error [l/s] 
22.82 RMSE 32.15 DF 0.3 

NSE 0.92 RMSE/ES 7.81 EM 4 

 

 



XXXVIII 
 

 

 

  



XXXIX 
 

XIII. Fall 2008 

 

Figure 8-13:data used. 

 

Non-parametric IUH 

Bias [l/s] 0.05 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.16 𝜆 1.05 

Mean Absolute 

Error [l/s] 
2.62 RMSE 4.67 DF 0.7 

NSE 1.00 RMSE/ES 2.38 EM 2 

 

 



XL 
 

 

 

Parametric IUH 

Bias [l/s] -0.55 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.18 𝜆 1.1 

Mean Absolute 

Error [l/s] 
6.36 RMSE 9.40 DF 0.6 

NSE 0.98 RMSE/ES 2.62 EM 2 

 

 



XLI 
 

 

 

  



XLII 
 

XIV. Spring 2010 

 

Figure 8-14:data used. 

 

Non-parametric IUH 

Bias [l/s] -4.50 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.04 𝜆 1.07 

Mean Absolute 

Error [l/s] 
16.28 RMSE 26.30 DF 0.55 

NSE 0.99 RMSE/ES 4.61 EM 2 

 

 



XLIII 
 

 

 

Parametric IUH 

Bias [l/s] -7.17 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.08 𝜆 1.1 

Mean Absolute 

Error [l/s] 
15.74 RMSE 24.18 DF 0.5 

NSE 0.98 RMSE/ES 3.85 EM 4 

 

 



XLIV 
 

 

 

  



XLV 
 

XV. Fall 2010 

 

Figure 8-15:data used. 

 

Non-parametric IUH 

Bias [l/s] -1.39 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.04 𝜆 1.07 

Mean Absolute 

Error [l/s] 
9.26 RMSE 18.29 DF 0.55 

NSE 0.99 RMSE/ES 4.44 EM 2 

 

 



XLVI 
 

 

 

Parametric IUH 

Bias [l/s] -2.65 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.06 𝜆 1.1 

Mean Absolute 

Error [l/s] 
12.74 RMSE 17.43 DF 0.5 

NSE 0.99 RMSE/ES 2.92 EM 3 

 

 



XLVII 
 

 

 

  



XLVIII 
 

XVI. Spring 2011 

 

Figure 8-16:data used. 

 

Non-parametric IUH 

Bias [l/s] -2.55 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.10 𝜆 1.07 

Mean Absolute 

Error [l/s] 
10.00 RMSE 14.86 DF 0.6 

NSE 0.99 RMSE/ES 3.93 EM 3 

 

 



XLIX 
 

 

 

Parametric IUH 

Bias [l/s] -8.40 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.04 𝜆 1.1 

Mean Absolute 

Error [l/s] 
25.77 RMSE 41.05 DF 0.4 

NSE 0.92 RMSE/ES 5.0 EM 3 
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LI 
 

XVII. Fall 2011 

 

Figure 8-17:data used. 

 

Non-parametric IUH 

Bias [l/s] -0.08 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.03 𝜆 1.07 

Mean Absolute 

Error [l/s] 
3.21 RMSE 8.36 DF 0.6 

NSE 1.00 RMSE/ES 1.74 EM 3 

 

 



LII 
 

 

 

Parametric IUH 

Bias [l/s] -0.70 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.05 𝜆 1.07 

Mean Absolute 

Error [l/s] 
10.88 RMSE 17.75 DF 0.3 

NSE 1.00 RMSE/ES 3.22 EM 3 

 

 



LIII 
 

 

 

  



LIV 
 

XVIII. Spring 2012 

 

Figure 8-18:data used. 

 

Non-parametric IUH 

Bias [l/s] -0.95 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.14 𝜆 1.08 

Mean Absolute 

Error [l/s] 
8.30 RMSE 12.90 DF 0.5 

NSE 0.98 RMSE/ES 4.79 EM 3 

 

 



LV 
 

 

 

Parametric IUH 

Bias [l/s] -2.36 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.07 𝜆 1.10 

Mean Absolute 

Error [l/s] 
8.12 RMSE 14.10 DF 0.4 

NSE 0.97 RMSE/ES 4.87 EM 3 

 

 



LVI 
 

 

 

  



LVII 
 

XIX. Fall 2012 

 

Figure 8-19:data used. 

 

Non-parametric IUH 

Bias [l/s] 2.90 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.51 𝜆 1.08 

Mean Absolute 

Error [l/s] 
7.76 RMSE 12.14 DF 0.6 

NSE 0.97 RMSE/ES 3.17 EM 3 

 

 



LVIII 
 

 

 

Parametric IUH 

Bias [l/s] 0.44 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.00 𝜆 1.10 

Mean Absolute 

Error [l/s] 
9.00 RMSE 17.72 DF 0.5 

NSE 0.96 RMSE/ES 3.87 EM 3 

 

 



LIX 
 

 

 

  



LX 
 

XX. Spring 2013 

 

Figure 8-20:data used. 

 

Non-parametric IUH 

Bias [l/s] -3.87 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.05 𝜆 1.08 

Mean Absolute 

Error [l/s] 
9.53 RMSE 13.96 DF 0.6 

NSE 0.99 RMSE/ES 3.87 EM 3 

 

 



LXI 
 

 

 

Parametric IUH 

Bias [l/s] -1.24 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.07 𝜆 1.10 

Mean Absolute 

Error [l/s] 
11.78 RMSE 17.95 DF 0.4 

NSE 0.99 RMSE/ES 6.30 EM 3 

 

 



LXII 
 

 

 

  



LXIII 
 

XXI. Spring 2014 

 

Figure 8-21:data used. 

 

Non-parametric IUH 

Bias [l/s] -8.14 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.05 𝜆 1.07 

Mean Absolute 

Error [l/s] 
14.00 RMSE 20.94 DF 0.5 

NSE 0.99 RMSE/ES 4.84 EM 2 

 

 



LXIV 
 

 

 

Parametric IUH 

Bias [l/s] -8.24 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.05 𝜆 1.10 

Mean Absolute 

Error [l/s] 
22.65 RMSE 34.76 DF 0.35 

NSE 0.96 RMSE/ES 5.72 EM 3 

 

 



LXV 
 

 

 

  



LXVI 
 

XXII. Summer 2014 

 

Figure 8-22:data used. 

 

Non-parametric IUH 

Bias [l/s] -1.34 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.18 𝜆 1.10 

Mean Absolute 

Error [l/s] 
5.62 RMSE 19.11 DF 0.6 

NSE 0.94 RMSE/ES 5.45 EM 3 

 

 



LXVII 
 

 

 

Parametric IUH 

Bias [l/s] -4.80 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.20 𝜆 1.10 

Mean Absolute 

Error [l/s] 
16.30 RMSE 26.87 DF 0.30 

NSE 0.88 RMSE/ES 6.68 EM 3 

 

 



LXVIII 
 

 

 

  



LXIX 
 

XXIII. Fall 2014 

 

Figure 8-23:data used. 

 

Non-parametric IUH 

Bias [l/s] -4.80 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.27 𝜆 1.08 

Mean Absolute 

Error [l/s] 
8.19 RMSE 16.05 DF 0.8 

NSE 0.99 RMSE/ES 6.57 EM 2 

 

 



LXX 
 

 

 

Parametric IUH 

Bias [l/s] 0.33 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.18 𝜆 1.10 

Mean Absolute 

Error [l/s] 
12.19 RMSE 18.97 DF 0.5 

NSE 0.99 RMSE/ES 4.96 EM 3 

 

 



LXXI 
 

 

 

  



LXXII 
 

XXIV. Spring 2016 

 

Figure 8-24:data used. 

 

Non-parametric IUH 

Bias [l/s] -3.23 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.12 𝜆 1.12 

Mean Absolute 

Error [l/s] 
6.11 RMSE 10.15 DF 0.8 

NSE 0.99 RMSE/ES 2.03 EM 3 

 

 



LXXIII 
 

 

 

Parametric IUH 

Bias [l/s] -0.94 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.15 𝜆 1.10 

Mean Absolute 

Error [l/s] 
7.65 RMSE 12.00 DF 0.6 

NSE 0.99 RMSE/ES 4.34 EM 3 

 

 



LXXIV 
 

 

 

  



LXXV 
 

XXV. Fall 2016 

 

Figure 8-25:data used. 

 

Non-parametric IUH 

Bias [l/s] -4.03 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.02 𝜆 1.09 

Mean Absolute 

Error [l/s] 
6.49 RMSE 10.70 DF 0.7 

NSE 1.00 RMSE/ES 4.09 EM 2 

 

 



LXXVI 
 

 

 

Parametric IUH 

Bias [l/s] -4.19 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.04 𝜆 1.10 

Mean Absolute 

Error [l/s] 
14.28 RMSE 17.87 DF 0.7 

NSE 1.00 RMSE/ES 3.76 EM 3 

 

 



LXXVII 
 

 

 

  



LXXVIII 
 

XXVI. Spring 2017 

 

Figure 8-26:data used. 

 

Non-parametric IUH 

Bias [l/s] -2.03 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.11 𝜆 1.10 

Mean Absolute 

Error [l/s] 
4.68 RMSE 8.79 DF 0.7 

NSE 0.99 RMSE/ES 2.46 EM 3 

 

 



LXXIX 
 

 

 

Parametric IUH 

Bias [l/s] 0.11 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.15 𝜆 1.12 

Mean Absolute 

Error [l/s] 
6.75 RMSE 8.48 DF 0.9 

NSE 0.98 RMSE/ES 6.24 EM 3 

 

 



LXXX 
 

 

 

  



LXXXI 
 

XXVII. Spring 2018 

 

Figure 8-27:data used. 

 

Non-parametric IUH 

Bias [l/s] -5.70 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.10 𝜆 1.15 

Mean Absolute 

Error [l/s] 
25.17 RMSE 39.39 DF 0.8 

NSE 0.97 RMSE/ES 6.68 EM 3 

 

 



LXXXII 
 

 

 

Parametric IUH 

Bias [l/s] -4.95 𝑉𝑖𝑛
𝑉𝑜𝑢𝑡

⁄  1.03 𝜆 1.18 

Mean Absolute 

Error [l/s] 
23.59 RMSE 39.97 DF 0.5 

NSE 0.98 RMSE/ES 4.62 EM 3 

 

 



LXXXIII 
 

 

 


