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Summary

Several new numerical methods are applied by the candidate on input point clouds of
layers of earth in order to create a proper description of the space containing them by
using tetrahedra.
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Chapter 1

General introduction

1.1 General principles
There are several operations that in order to create a proper approximation of a layer of
geological nature are computed by hand. This makes the process of analysis of soil very
long and it would be good if there was a method in order to automatize the process of
definition of surface data into a triangular mesh. On the other hand, if we suppose that

Figure 1.1. Examples of layers represented as surfaces.

a layer is described by a set of data points of which we know x, y and z coordinates,
and we think of it as a surface with a precise boundary, we can create a surface which
approximates our input data.

To be more precise, here are all the hypotheses that we make:

1. We know all the coordinates of 4 precise boundary point lines (even if not straight
lines). Specifically, we have found 4 consecutive sets of points of the surface that
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General introduction

together form the entire boundary of it and we have ordered such points in a way
that we can distinguish the sets precisely.

2. For each set we have found a parametrization in [0,1] of the curve of points , for
example:

ci(u) = (xi,u, yi,u, zi,u) ∀u ∈ [0,1]
Where ci represents the ith curve ∀i ∈ {0,1,2,3}.

3. We have made so that non consecutive boundary curves are parametrized in the
same sense. In a geometrical way we can see the image below. In an analytical way
we can imagine that the average tangent vector of the curve gives a positive scalar
product with the other one.

Figure 1.2.

1.2 Tranfinite interpolation formula
If we have 4 boundary lines which are curves parametrized in [0,1] , such that opposite
curves are parametrized in the same sense, we can use the Transfinite Interpolation
formula in order to create a surface contained in those 4 boundary lines.

S(u, v) := (1−v)c1(u)+vc3(u)+(1−u)c2(u)+uc4(v)−[(1−u)(1−v)P1,2+uvP3,4+u(1−v)P1,4+(1−u)vP3,2]
∀(u, v) ∈ [0,1]x[0,1]

Where ci(α) represents the ith curve evalued in parameter α, Pi,j represents the intersec-
tion point between curves i and j, and c1 is opposite to c3 such as c2 and c4. We can notice
that if we know the regularity in terms of derivability of the curves Cderi ∀i ∈ {0,1,2,3},
since the formula is C∞ in ci it preserves the same derivability as the minimimum of the
boundary derivabilities.

As seen above, the formula is simple but in order to be used we need to satisfy all the
hypotheses.

12



1.3 – Gradient Method

1.3 Gradient Method
After we have found the transfinite interpolation formula , if we consider an input point
Pi = (xi, yi, zi) we can define his projection Proj(i) onto the trasfinite surface as the point
that minimizes the squared euclidian distance from the point:

Proj(i) := S(argmin
(u,v)in[0,1]2

(||S(u, v)− Pi||22))

In order to find such point we need to minimize a functional which in general is non-linear
in (u, v). It is a constrained optimization because the parametric coordinates are forced
to live in a square [0,1]x[0,1].

If we want to optimize a non-linear optimization problem, a numerical method often
used is the gradient method. If we have a functional S(u, v) ∈ C1[0,1]2 , we can define its
gradient as a vectorGradS(u, v) = (GradS,u(u, v), GradS,v(u, v)) = (∂uS(u, v), ∂vS(u, v))
as follows:

GradS,u(u, v) = lim
h−→0

S(u+ h, v)− S(u, v)
h

GradS,v(u, v) = lim
h−→0

S(u, v + h)− S(u, v)
h

It is impossible to compute the limit numerically and if we do not have an explicit an-
alytic formula for it, we can use an approximation which is called finite differences
approximation. Simply, we choose an h small enough to be accurate, and we compute,
for example S(u+h,v)−S(u,v)

h .

In this way we get an approximation of GradS,u(u, v) and the same way for v. It is
obviously a concern the precision of such approximation, and it is important to see that
if h is too large the gradient will not be accurate, and on the other hand, if h is too small
the gradient could result in a NaN value, meaning that the computer, due to numerical
cancellations issues, did not find a numerical result.

The value of h is a tuning parameter of the approximation.

Now the objective is to create a numerical method which follows a proper descent direc-
tion starting from an initial guess (u0, v0) and by choosing the right step at each iteration
until convergence. Also, it has got to respect the constraints on (u, v).
After we have computed the gradient, we can notice that its vector gives the direction of
steepest increase of the functional in the point (u, v). Since we want to minimize such
functional, we choose −GradS(u, v) as the direction to follow in the next step of the al-
gorithm. In this way we have the steepest descent direction. We choose it as the descent
direction to follow

It is also important to understand how far we want to go at each iteration, so we want
to find a step α > 0 such that, if we call (uold, vold) our previous coordinates we want
(unew, vnew) := (uold, vold) + α ∗ (−GradS(uold, vold)) to satisfy certain properties.

13



General introduction

In this thesis, we decided to apply a line search with backtracking strategy, mean-
ing that if we choose an initial parameter α0 > 0 and we have a reduction parameter
ρ ∈ (0,1) we reduce α0 as far as we reach the so called Armijo conditions. If we call
our functional to minimize F (u, v) := ||S(u, v)− Pi||22 we write as follows:

1. α = α0

2. if F ((uold, vold)+α(−GradS(uold, vold)) ≤ F (uold, vold)+c1αGradS(u, v)′(−GradS(u, v))
then exit and choose α as the last one. Otherwise α = αρ and repeat second step.

Armijo control garantuees that we are descending a reasonable amount of distance with
respect to the previous one.
If second condition is never satisfied, we reach a maximum number of iteration iterarm
chosen apriori.

By continuing to compute each time the gradient and by following backtracking strat-
egy eventually we reach a point in which:

|F (unew, vnew)−F (uold, vold)| ≤ tolf |F (uold, vold)| , ||(unew, vnew)− (uold, vold)||22 ≤ tolp

Where tolf and tolp are chosen parameters. If the condition is never reached, we reach a
fixed maximum number of iterations NMAX. This would be in a nutshell the numerical
method if we did not have the constraints on u and v.

In order to respect such constraints, we just make some adjustments.

1. When we compute the approximation of the gradient, we pay attention to the value
of h such that u+ h ∈ [0,1] and v + h ∈ [0,1]. In order to do so, we choose the sign
of h according to u and v being greater or lower than 0.5

2. When we compute α with backtracking strategy we add a control. If at a certain
point, with given α and gradient we obtain (unew, vnew) outside the box we make a
double check:

(a) if unew > 1 we choose α such that unew = 1. Viceversa for u < 0 and we store
the value of α in a new variable αu.

(b) Same for v and we store the value in a variable αv
(c) we take the minimum between αu and αv and we choose it as new α

Then, with new value of α, we proceed with armijo controls.

An adjustment of this method comes from the fact that in a lot of cases we would like
to use a value of h such that the approximation is as close as possible to the original
Gradient value but we do not occur into numerical cancelation problems, which depends
on the coordinates on which we are computing the gradient. A very often used step in
literature for the gradient approximation is this:

h = ||(uold, vold)||2
√
ε

14



1.3 – Gradient Method

Where ε is the machine precision (usually ε = 10−16. But this is possible only if u and v
are far from 0. Indeed, the most natural solution to this problem is to change the domain
of our parametric coordinates from [0,1]2 to a domain far from 0 that we call [a, b]2. The
transformation to the new coordinates ũ and ṽ is the following:

ũ = u(b− a) + a ṽ = v(b− a) + a

And I set a and b to 100 and 300.

1.3.1 At the boundary of the surface
Let us take a generic point in the set of and let us investigate its projection on the plane.
The situation under investigation is when the projection is a point which is close to the
boundary. Let us assume that its actual optimal u is 0 and v is any value. Since the
next step will not change u and we are looking for the minimum step between u and v
coordinates, we conclude that we must converge and stay on the same point.

This can be wrong because maybe if we changed only the v coordinate in that situa-
tion by fixing u we would move along the boundary and find a new optimal point which
could cause the method to start again and converge to a true minimum.

To avoid to be stuck in such boundary points, if iwe get to u or v on the boundary
(not both of them), we take the coordinate which is not on the boundary and move along
that line by applying a monodimensional step of a gradient computed only on its per-
spective. If the method goes elsewhere, we start again by having forgotten that we had
converged before.

We truly converge if even with that added step we do not move from the actual point (it
means that u and v have reached their convergence).

Figure 1.3. Example of the situation described above. The brown points represent the
iterations of Gradient method. As we can see, when we end up on the boundary we want
to make sure to reach the green point.
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This is finally the constrained gradient method used in this thesis in order to solve the
problem:

min
(u,v)∈[0,1]x[0,1]

||S(u, v)− Pi||22

Where we remind that Pi is the input data point in exam and S(u, v) is the transfinite
surface point corresponding to (u, v).

After we have found the projection of each input data point we choose a portion of
such points taken in descending order of their distance to their projection, and we store
the coordinates (u, v) corresponding to such projections. Then we take a chosen number
of boundary points created by transfinite surface formula, and togheter with the previous
points we obtain a triangular mesh on the square [0,1]2 by using Triangle Mesh Gen-
erator (Jonathan Richard Shewchuk). Then we consider the tridimensional data of such
triangles and we obtain a tethraedal mesh of all the layers and faults manipulated as seen
above by using Tetgen (Hang Si).

The advantage of this mesh is that we took very few points (hoping that everything
works fine) from each surface and the rest of it will be described by its transfinite surface
interpolation formula. With all of this we can then work on optimized meshes which do
not contain a non-necessary amount of objects in portions of space where it is not required.
This is the main idea of the work I present as a candidate. Every step of this work will
be discussed in betail below.

1.4 Kd-Tree search for M Nearest Neighbors
If we want to find the M closest points to a fixed point P we can use Kd-Tree search for
M Nearest Neighbors algorithm.

Let us talk about what a Kd tree is.

1.4.1 Kd-Tree
A Kd-Tree is a binary tree formed by analyzing a dataset which separates its space into
different portions delimited by halfplanes perpendicular to axes. In particular, given a
point dataset in 3D space, a 3d-Tree is a tree created as follows:

1. Let us choose our first split coordinate. Let us say x.

2. Let us take the median point with respect to split coordinate value (the point which
has the value of the median).

16
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3. Let us consider two half spaces generated by the points which have split coordinate
less than the median and the point which have split coordinate greater than the
median. The new generated node is the point found before. It will generate two
child nodes.

4. Each of the two sets gets split again by using a different split coordinate following
the rule which changes at each iteration and assigning the found points to the child
nodes.

The way the coordinates which generate the rule vary is simply a subsequent way (x,y,z,x,y,z,ecc.).

Figure 1.4. Example of 3d-Tree. Image taken from https://en.wikipedia.org/wiki/K-dtree

1.4.2 M nearest search
To find the closest point to our point P after having created the 3d-Tree of a 3D set of
points, we must follow the algorithm:

1. Visit the tree following the splitting rules of each node of the tree.

2. After having reached the right leaf save it as the current best point and unfold the
tree back up.

3. If a node is closer to P save it as the current best.

4. If the hyperplane not considered during ascending to a node intersects the hyper-
sphere with center P and with radius equal to best distance, do not consider any of
the descendings of the node and keep ascending the tree. Else if there is an inter-
section descend the tree following the splitting rules and check if the distance from
the leaf node is smaller than the current best one.

17
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General introduction

5. for each visited node do as above until the tree top has been reached.

To generalize in order to find the M nearest neighbours of the point P you apply M
times the same algorithm discarding the previously found neighbours each time.

1.5 Ransac algorithm
Let us have a set of data points. Let us define model as any structure (which can be
parametrical or not) for which if we have a portion of such points, we can find its optimal
one in a deterministic way and we can compute the distance between an arbitrary point
and the model.

Ransac algorithm is a nondeterminstic algorithm (it gives different outputs with the same
input repeated several times), which fits a model to a set of data that does not suffer from
noise (few points which present a different distribution of coordinates compared to the
rest of the points). It can be sum up like this:

1. Take a random set of points from data and call them possible inliers.

2. fit a model to such points. See if the other points are distant from the model less
than a chosen threshold. Each time it happens, add such points to the possible
inliers.

3. Fit the model to new set of inliers and test it on each point by computing a measure
of error. If the error is better than the current best save the model.

4. Do it again a fixed number of times

Figure 1.5. On the left, a line with many outliers. In blue, the line estimated
by ransac algorithm which ignores the large number of ouliers. Images taken from
https://it.wikipedia.org/wiki/RANSAC.
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1.6 Principal Component Analysis
Principal component analysis (PCA) is a method used in order to find the right set di-
rection axes along which a certain dataset presents the greates variability in terms of
coordinates. Let us describe better what we mean by that.

1.6.1 Definitions
Let us assume that we have a dataset formed by several observations each of them pre-
senting several features. To be more precise each dataset table S of N records and n
features can be thought as a series of N realizations of a random multidimensional vari-
able X = (X1, X2, .., Xn).
Let us define several values:

1. The sample mean of N samples x1, .., xN of a r.v. is defined as µ := 1
N

∑N
i=1 xi.

2. The sample variance of N samples of a r.v. is defined as σ := 1
N−1

∑N
i=1(xi − µ)2.

3. The sample covariance of two sets of N samples of two different random variables
x1 and x2 is defined as: Cov(x1, x2) := 1

N−1
∑N
i=1(x1i − µ1)(x2i − µ2).

4. The sample correlation of two sets of N samples of two different random variables
x1 and x2 is defined as: Corr(x1, x2) := Cov(x1,x2)

σ1∗σ2

5. Let S be a matrix representing the dataset as row vectors of samples of multidimen-
sional random variables:

S =

x11 x12 ... x1n

... ... ....
xN1 xN2 ... xNn



We call S̄ :=

x11 − µ1 x12 − µ2... x1n − µn
... ... ....

xN1 − µ1 xN2 − µ2... xNn − µn


and Ŝ :=


x11−µ1
σ1

x12−µ2
σ2

... x1n−µn

σn

... ... ....
xN1−µ1
σ1

xN2−µ2
σ2

... xNn−µn

σn

 which are the re-centered matrix dataset

and the z-normalized matrix dataset.

6. We define the sample covariance matrix V (S) = 1
N−1 S̄

T S̄ and the correlation matrix
C(S) = 1

N Ŝ
T Ŝ. We have V (S)i,j = Cov(xi, xj) and C(S)i,j = Corr(xi, xj).
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1.6.2 Main Idea
If we take the correlation matrix of a given dataset V (S), we can prove that it is a
diagonalizable matrix with orthogonal matrix representing its eigenvectors. Moreover it
has real eigenvalues greater or equal than zero. If we call P the matrix with columns
as the eigenvectors v1, v2...vn of V (S) written in the canonical basis, if we consider an
observation X = (x1, .., xn) of the dataset we can project it onto the space described by
the eigenvectors of V (S) and find its coordinates with respect to such basis Y = (y1, ...yn).
We have:

Y = P TX X = PY

The interesting thing is that if we take only the first m entries of Y , we have the repre-
sentation of X into the subspace generated by the first m eigenvectors of V (S).

Now, if we order the eigenvectors with respect to descending order to the respective
eigenvalues, we can show that each set of m eigenvectors taken from the first is the best
subspace of dimension m which explains the variance of our dataset! Also, the variance
explained by them is proportional to the percentage of eigenvalue sum with respect to the
sum of all of them.

Thus we can take the proper amount of principal components, i.e. eigenvectors, in order
to explain the dataset with a lower dimensionality. This is the main idea behind PCA.
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Chapter 2

Boundary points

Given a 3D dataset: Pi = (xi, yi, zi) ∀i = 1 : dim where dim is the number of points in
the dataset, the first objective is to find all the boundary points of the dataset. First of
all let us understand what we mean by boundary point:

K-Neighborhood: Taken a point Pi, its K-Neighborhood is the set of the K points
which are closer to Pi in terms of euclidean distance.

Approximating plane: Given a set of points, their approximating plane is the plane
which describes their distribution in space in a chosen sense, by a chosen algorithm. Some
algorithm, such as the one that will be used later, also define a list of inliers, which are
the actual points that are described by the plane, and a set of outliers, that are discarded
due to lack of fitness to the plane.

If we construct the approximating plane of the K-neighborhood of a point Pi , we can
consider only the inliers. If then we construct an orthonormal base {e1, e2} of that plane
with center Pi, given a neighbor Qj j = 1 : dimInli (where dimInli is the number of
inliers around the point) we can consider the vector v := Pi−Qj and the angle θj formed
by v and e1 by computing his cosinum and sinum with the following formula:

cos(θj) =< e1, v > sin(θj) =< e2, v > tg(θj) = sin(θj)
cos(θj)

where <,> is the scalar product.
We can do that for all the inliers Qj by obtaining the set Θi := {θj , j = 1 : numInli}.

Angular Gap: For a Point Pi, if we construct the approximating plane ,only con-
sider the inliers of that plane and compute Θi after having chosen an orthonormal basis
for the plane, we can order the angles θj in ascending order of tangent value. After
done that we can compute δj,j+1 := tg(θj+1 − tg(θj) for each j = 1 : numInli and also
δnumInli,1 := tg(2π − θ1)− tg(θnumInli). We say that the point Pi has an angular gap if
there is a δi,j such that it is greater than the threshold t.
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Boundary points

boundary point: We say that a point Pi in a dataset is a boundary point if, chosen
a threshold t, it has an angular gap.
So, the objective is to find all the boundary points of the dataset. The main idea for this
way of finding boundary points can be found in the article Zhang [2016].

2.1 Finding boundary points
In order to do so, I implemented a c++ program and used a library which is called Point
cloud library (Rusu and Cousins [2011]).

In order to find the K-neighbordhood of a point Pi, I decided to use the Kd − Tree
algorithm, which was less expensive than a naive computation of all the distances be-
tween all the points and Pi.
In order to fit the approximating plane I decided to use RansacAlgorithm to find the
ouliers and inliers.
The algorithms above are all given by the library PCL (Rusu and Cousins [2011]).

In order to compute an orthonormal basis {e1, e2} for the plane I considered two inlier
points Q1 and Q2 and I computed the normal to the plane by taking the cross product
between the vectors v1 := Pi − Q1 and v2 := Pi − Q2, and then normalized obtaining
n := v1xv2

||v1xv2||2 . I set e1 := v1
||v1||2 and then I simply define e2 as follows:

e2 := nxe1

After that, everything goes as said above and boundary points are finally found. They
are not ordered in a particular way.

Sometimes it could happen that interior points are found even if not wanted. It is the
case in which a point is on the edge of a curvature area of the surface, i.e. a portion of
surface in which there is a steep change in the direction of the normal to the surface. To
solve that problem, simply we make another run of the above algorithm but this time we
consider as input the boundary points found so far and the neighborhood is every point
each time. In this way, since the interior points that have been wrongly found before now
are surrounded by the true wanted points, they will not present an angular gap and will
be discarded leading to the final set.

For layers 8 and 9, which are very special in terms of shape, another final elimination
of internal points has been made by projecting each point to the plane xy.

2.2 Creating boundary pieces
After having found all the boundary points, we have to merge them in a proper way such
that we obtain the 4 boundary points. Before that, there is an intermediate phase, which
is the creation of boundary pieces.
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2.2 – Creating boundary pieces

Let us now describe this procedure:

1. We set a flag to 0 for each of the points to remember that they have yet to be
checked. We start from the beginning of boundary points until the end.

2. We take a boundary point Pi. If its flag is 1, we skip it and repeat this step.

3. We consider a K-Neighborhood of such point Qj . We fit a line through it neighbor-
hood by using ransac algorithm and we consider only the inliers of such line. We
compute the tangent vector of such line and we call it tangi.

4. We cycle through all the boundary pieces found so far pieceu. If none are found so
far, we simply create a new boundary piece piecei and we merge the inliers and store
its tangent vector after having set to 1 the flag of all the considered points.

5. If there is at least one piece we consider the tangent vector of this boundary piece
tangu and a random point of it, let us say Pu.

6. We compute the cross product between tangi and tangu in order to see if they are
parallel vectors (the cross product is close to 0). If they are not parallel, we skip this
boundary piece.

7. If they are parallel under a certain tolerance, we consider the vector that links our
point Pi to Pu and we call it w. We compute the cross product between w and tangi
to see if the vectors are parallel under a certain tolerance. If it is not so we skip the
boundary piece.

8. If it is so, we have that the piece pieceu can be merged with the set of inliers of the
line fitted around Pi. We update the piece and store its tangent vector. The point
Pi and all the inliers’ flags are set to 1 (considered).

After this, we end up with several boundary pieces that could not be the 4 that we
need but in the most cases could still be split into small ones. We then need to further
merge the pieces.
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Chapter 3

Boundary edges

3.1 Merging boundary pieces
We want to make sure that now we end up with 4 boundary sets of points that form our
curves for transfinite interpolation surface.

Let us describe the procedure used to merge such boundary pieces:

1. We set a flag to 0 for each piece which means they have not been checked yet. We
cycle from the first boundary piece until the end.

2. If the boundary piece’s flag is 1 we skip it. Otherwise we call it piecei and we cycle
through the following boundary pieces until the end (from i+ 1 to end).

3. If the piece’s flag is 1 we skip it. Otherwise we call it piecej and we take two random
points from the pieces Pi and Pj and the tangent vectors tangi and tangj .

4. We consider two angles θ1i,j and θ2i,j . The first one is the angle formed by the vector
Pi − Pj and tangi, i.e. sin(θ1i,j) = (Pi−Pj)×tangi

||tangi||||θ1i,j || . The second is the angle formed
by the two tangent vectors, i.e. sin(θ2i,j) = tangj×tangi

||tangi||||tangj || . We compute the sinum
of such angles and we if they are both below a certain tolerance we store piecej in
a list inherent to piecei and keep their values. Otherwise we skip the piece and go
ahead to another j.

5. By considering the pieces taken in ascending order of sin(θ1), we cycle through
them and compute the angle between the tangent vectors of the actual piece and the
tangent vector of the previous one. If we reach a gap, which means that the angle is
too big, it means that eventually we reached another boundary curve and we stop.
Each time a new sinum is computed and is not too big the piece is added to the
actual piece. When the process stops the flags of all the pieces analyzed are set to 1
and if there is one of them which forms a gap a new boundary is created.
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Boundary edges

Figure 3.1. An example on layer 3 of boundary edges that have been found.

3.2 Ordering each edge points

When we end up with 4 sets of points forming the 4 edges, we need to order them in a
consequential order such that close points in the set are actually close in terms of euclidean
distance.
This is the algorithm:

1. Let us take an edge set Ei. Let us consider a random point of it Pi and the tangent
vector of it tangi

2. For each point Qi in Ei, we compute the scalar product between tangi and the vector
Pi−Qi. If it is positive we add it to a list of "positive points" with respect to Pi and
we store the distance between the points. Otherwise we save it to a list of "negative
points".

3. Then we order the points in both lists with respect to their distance from Pi. And
we simply merge the lists by taking the negative point list, the point Pi, and the
positive list.

After this procedure the edge has ordered points following the sense of its tangent vector.

3.3 Non classical approach used for layers 8 and 9

As it will be clear in second part of this thesis, the most problematic layers are layer 8
and layer 9. Such layers did not present a regular division of the surface boundary into 4
distinct edges which could easily be separated by the algorithm.
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3.3 – Non classical approach used for layers 8 and 9

3.3.1 Merging boundaries in a different way
In this case, a more brave procedure has been implemented starting from the merged
boundary pieces (which in this case are not 4 unfortunately) with all the points that have
been already ordered:

1. First of all let us set a flag to 0 for all the pieces which means that they have not
been checked yet. Take the first boundary piece and set its flag to 1. Let us create
a list of points with his points.

2. Let us take the final point of this list Pf and search between the other pieces with
flag 0 for the one which has the initial point or the final point closer to Pf .

3. Let us consider the winning piece in this competition. If the point closer to Pf is his
starting point, simply add it as it is to the list. Otherwise add it with reverse order
of points. Set its flag to 0 and start again by searching at the previous step until
each piece has been analyzed.

In this way the final list of points is the list of boundary points ordered in a precise way
(clockwise or viceversa) and we simply take equal portions of points starting from the
beginning. Those will be our 4 edges for transfinite surface and the couples will be the
first and third edge, and the second and fourth.

Sometimes this procedure has shown to present critical problems due to the fact that
we are using boundary pieces which could be already corrupted by mistakes during order-
ing of points. So a second way has been tried.

3.3.2 Re-ordering of original boundary points: naive baricenter
The idea is that the original boundary points can be ordered clockwise or viceversa by
taking their baricenter, which is the average point, and then by taking a system of axes
centered around such point and with two orthogonal axes found like the phase of detection
of boundary points. And then, we order the points with respect to their angle formed
with the first of those axes. The main issue of this idea is that probably since the points
do not lie on a plane the approximating plane created by the two axes does not describe
well the angular situation.

3.3.3 Re-ordering of original boundary points: PCA baricenter
Now, the most natural thing to think is that in order to project the points onto a plane
that shows the angular situation with respect to the baricenter we need to find the best
possible plane that explains the variation of our 3D data points forming the boundary.
Since this sentence recalls itself the algorithm, we decided to use the plane formed by the
first two principal components. And so the algorithm is the following:

1. Let us take the boundary points {pi}Ni=1
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2. Let us take their 2D projections onto the plane formed by the two principal compo-
nents computed as eigenvectors of the covariance matrix of boundary points dataset.

3. Let us take the baricenter of this set of 2D points and let us define as the axes of a
baricenter centered system the two canonical vectors (0,1) and (1,0).

4. Let us compute the angle formed by each vector linking the baricenter to a point
with (1,0) as discussed in boundary points detection.

5. Let us order the points with respect to such angle. The result is the wanted one.

This has been the best idea so far in order to reorder the points.

3.3.4 Finding 4 cracking points
After having ordered our points, we need to divide them in 4 set of points which will be
our edge pieces for transfinite surface.
The most naive way (told before) is to crack the boundary points into 4 equally sized
consecutive sets. But it is also important to notice that it could be important to crack
them as best as possible since they will become the four describing lines of an entire surface.

It could be better to try a different method. The first alternative was to take them
as the points which presented the highest angular gap between two consecutive edges.
Both for original 3D coordinates and 2D PCA projected points. The algorithm is the
following:

• For each point pi let us take the vector formed with its following v := pi+1 − pi and
also the vector w := pi+2 − pi+1. Let us take their scalar product and divide it for
their norms.

• Let us order the scalar products in ascending order. The lowest ones represent the
steepest angular gap between vectors. The first 4 will be the searched points

Otherwise, it could be possible to think of a more creative procedure by using Triangle
(Jonathan Richard Shewchuk). Since when Triangle gets used on a set of points, it creates
a so called Conver hull to cover the boundary points and to enclose the dataset, it can be
a good idea to triangulate the projected 2D boundary points on the principal components
and, by following the convex hull, take the points which present the steepest angular gap
as seen as above as the 4 cracking points.

3.4 Making sure that opposite edges are oriented the
same way

The concept of this part is quite simple. Two boundary edges are considered opposite if
their tangent vectors are quite parallel under a certain tolerance. If we find two opposite
edges we simply make sure that their tangent vectors are oriented the same way. If not,
we invert the list of point and change the sign of one of the two edges.
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Chapter 4

Projection of points and Mesh
generation

4.1 Creation of transfinite surface

Let us summarize the situation we are in. We have 4 edge lists of points that surround
our surface, we have isolated the couples and we have made sure that they were oriented
the same way. Let us take a look at the transfinite interpolation formula:

S(u, v) := (1−v)c1(u)+vc3(u)+(1−u)c2(u)+uc4(v)−[(1−u)(1−v)P1,2+uvP3,4+u(1−v)P1,4+(1−u)vP3,2]

We have Pi,j which is simply the point in common with two edge boundarys that touch
each other (we manually add a point to the other one in order to link them). We need
a [0,1] parametrization of each edge and all the ingredients for the transfinite surface are
ready. We thought of creating a cubic 3d spline in the sense of least squares that fitted
each edge by using a c++ library called "splines". It automatically creates what we need.
So now we have finally created our transfinite surface.

It is important to notice that there are two input dataset which represents faults that
are not given as surfaces, but only two opposite curves of boundary points are given in
order. In this case a simple thing can be done. Each curve can be approximated by a
cubic spline parametrized in [0,1]. Those for example could represent our c1 and c3. The
remaining two are taken as straight lines linking two final points of the curves and they
can simply be parametrized as a segment with the following formula:

c2(u) := uP1in + (1− u)P2f
c4(u) := uP2in + (1− u)P1f

∀u ∈ [0,1]

Where Piin and Pif represent initial and final point of curve i.
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4.2 Finding worst points
The spline is C2 by definition , so the formula for the transfinite surface defines a C2

functional from R2 to R3. Infact, if we take a point Pi belonging to the original data set,
we can define:

F (u, v) := ||S(u, v)− Pi||22
which is indeed a C2 functional.

Thus, we can apply the gradient method in order to minimize such functional in u and
v in order to find the projection of the point onto the transfinite surface. The details
about the algorithm are discussed above at general principles paragraph. After having
obtained the projection for each point we can then simply take a portion of them in order
of descending distance from their projection (which is the value of the functional) and
consider them as worst points.

4.2.1 How many points?
In order to understand how many points to take in order to achieve a good mesh, we could
think of an iterative procedure which creates a progressive number of meshes formed by
more and more triangles until a certain criterion has been reached.

The idea is to compute at each iteration the volume under the 3D triangular mesh by
summing toghether each volume define by each triangle Ti :

V =
numbOfTriangles∑

i=1
hiA(Ti)

where A(Ti) is the are of each triangle and hi is the average z coordinate of the three
points of the triangle.

If we continue until a relative tolerance has been reached, we find the optimal number of
points to add to our mesh.

4.3 Triangular Mesh generation
After having a list of worst points we can manually add a list of edge points from transfi-
nite interpolation and pass everything to Jonathan Richard Shewchuk which will generate
a 2D triangular mesh of the square [0,1]2 by following the instructions given above. In
fact, for the worst point, the u and v coordinates passed to triangle are the ones of their
projection, and the edge ones are chosen by us.
If we choose to have a quality mesh new points will be generated to the mesh, and our
job is to evaluate such 2D points in 3D space by using transfinite interpolation formula.
We keep such evalutations and the original worst points with their coordinates.
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4.4 – Tethraedal Mesh generation

On the other hand, we could choose to not add steiner points to our mesh. This could
be the case when we do not want to risk to have a confusing mesh and we want only to
consider original points.

After this, a 3D triangular mesh of space has been created. This mesh is very dense
on triangles on areas that are populated by worst points (which are points badly ap-
proximated by transfinite interpolation) and less dense on areas in which the transfinite
interpolation does its job.

4.3.1 Particular cases and mesh management
For layers 8 and 9 the classical method used to generate a mesh dows not work properly.
The reason is that the surfaces are not well approximated by transfinite interpolation.
The only way in order to create a proper triangular 3D mesh with triangles that do not
intersecate each other is to consider as 2D domain the plane x, y, not the plane u, v of
the surface. In this way tha triangulation will generate only non intersecting cells. The
number of points given to the mesh is chosen based on the order given by gradient method,
as the previous cases.

4.3.2 Cheap selection of boundary points
In some cases it is good to choose the least possible amount of boundary points in order
to create a more coarse triangular mesh of the surface. In such cases it is enough to do
this:

• Take the initial point of the edge. Take its second point and compute the unit
tangent vector v1 of the line that links them

• Check the next edge. If the unit tangent vector formed by the second edge v2 and
the previous v1 are parallel enough, which means that ||v1xv2|| < tol (tol = 10−5),
the point is useless. Otherwise it becomes the next point to choose for the edge and
the tangent vector v2 the new term of comparison for the next ones.

• Iterate over all the points until the edge has been seen completely.

In this way, we obtain a proper amount of boundary points which describe well the
curvatures on the border of the surface.

4.4 Tethraedal Mesh generation
In order to generate a tethraedal mesh of space containg all layers and faults, The simplest
idea has been to enclose the space into a cube created by respecting the min and max
coordinates of the points of the data.
The meaning of this sentence is that the vertices of the cube are chosen as the one contain-
ing the extremal coordinates. For example one vertex is (min(x),min(y),min(z)), another
one is (max(x),min(y),min(z)) and so on by considering each combination.

31
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In this way , the software tetgen (Hang Si) is able to work properly without giving
any error, because the geometry is well defined. But if the cube touches some points of
the layers (this is highly probable since it has been chosen on the boundary), each face
that gets touched must be divided into sub faces in order to be geometrically defined for
the program.

In order to do so the idea was to create a triangular 2D mesh of the face by consid-
ering all the points who touched it as input data. In this way each face was divided into
triangles well defined.

Then, a simple application of tetgen (Hang Si) is the key of success.

4.4.1 Subfaces refining
Each face of the cube gets divided in several triangles using the software triangle. After
having projected the point of the mesh which were close enough to the face, the optimizing
step is to make sure only the necessary amount of sub faces remain. The objective is to
merge togheter the polygons which share an edge that is not one of the pre existing edges
before the usage of triangle.

In order to do so, these are the steps applied to the created 2D mesh on each face of
the square:

• Set each triangle to a state 0 which means it has not been controlled.

• For each polygon of the mesh, create a queue which contains all its neighbors. Set
the initial triangle to state 1.

• Start scrolling the queue. For each neighbour, control if the triangle has been con-
trolled. If yes, control if the shared edge is a pre-mesh edge. If so, discard the
neighbour. If yes merge the polygon to that neighbour and set its state to 1.

• Do that until each triangle gets controlled and all the new polygon are created.

• Take the new list of polygons as the updated one of the mesh.

In this way tetgen will have to make way less computational effort to create the tethraedal
mesh.

.
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Chapter 5

Results

5.1 Computational aspects
I decided to make a preprocessing of raw data by centering around their sample mean x,
y and z coordinates. This has been done in order to avoid dealing with too big numbers.
Also, with layers 3,4 and 5, I decided to make a rescaling of x and y coordinates in order
to make the computation of gradient more stable, since they varied too much with respect
to z coordinates. The most successful rescaling was multiplying them by 10−2.4. The
rescaling was succesful with gradient method but poorly behaving with the part of finding
border points. For this reason, It is applied after that phase.

Sometimes, since the subtraction of two vectors could lead to numerical cancellation,
I decided to enlarge their norm before making the operation.

5.2 Hyperparameter tuning
Hyperparameter tuning was not a technical driven procedure. In this context it is too
difficult to grid parameters in order to find the best because the best way to achieve a
good degree of precision is to try different combinations after seeing repeatedly the image
of point cloud. Now I will present the most important parameters that have been tuned
and their best configuration for each fault and layer.

1. K1: number of neighbors of each cloud point to be considered in the process of
finding border points.

2. DT: distance threshold for ransac algorithm in order to fit the best plane (used in
finding border points)

3. K2: the number of neighbors to be considered for each cloud point in the process of
creating border pieces
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4. DT2: distance threshold for ransac algorithm in order to fit the best line (used in
border pieces creation)

5. tolj: relative tolerance on functional used in Gradient Method

6. tolx: absolute tolerance on u and v coordinates used in Gradient Method

7. NMAX: maximum number of iterations used in gradient method

8. nmax: maximum number of alpha reductions used in wolfe condition control in
gradient method

9. h: used in the approximation of gradient with finite differences

The number of neighbors is a very important parameter because if chosen too high or too
low it changes a lot the way a point is seen.
If too high for example a point that is a border point could be mistaken for an internal
point due to close boundaries of the surface.
If chosen too low an internal point could be seen as a border point simply because it does
not have enough neighbors to avoid angular gap.
Distance threshold is a really sensitive parameter. If it increases more points will be in-
cluded in the plane/line fitted and we will get more inliers.
This could eventually lead to new border points never found before when it was too strict
and did not find a good model.

c1, the coefficient used in armijo controls is chosen as standard value 10−5.

5.3 Output and results
Here I present all the layers in exam from a graphical point of view. Each colored image
from now on has been produced thanks to the MATLAB software (MathWorks).

Figure 5.1. Layer 0 and 1.
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Figure 5.2. Layer 2 and 3.

Figure 5.3. Layer 4 and 5.

Figure 5.4. Layer 6 and 7.
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Figure 5.5. Layer 8 and 9.

Figure 5.6. All the layers between 0 and 7.

Figure 5.7. Layer 8 and 9 together.
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5.3 – Output and results

5.3.1 Best Hyperparameters

For each layer we will now present the best hyperparameter values found to work better.

K1 DT K2 DT2 tolj tolx NMAX nmax
Layers between 0 and 7 100 100 200 2 10−5 10−3 100 300

Layer 8 300 600 40 50000 10−9 10−9 200 300
Layer 9 200 600 500 400 10−9 10−9 200 300

Good Hyperparameters value presented for layers.

5.3.2 Border points

And know let us see how the algorithm to find border points on the different layers
behaved graphically. We can notice that layers 8 and 9 are more unstable than the others
because they represent a way more irregular figure. In this sense sometimes border points
are discarded even if it would be better to keep them. It is a counter effect of using an
algorithm which uses a lot of special features and has a lot of hyperparameters.

Figure 5.8. Border points for 0 and 1.

Figure 5.9. Border points for 2 and 3.
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Figure 5.10. Border points for 4 and 5.

Figure 5.11. Border points for 6 and 7.

Figure 5.12. Border points for 8 and 9.

5.3.3 Gradient method and outputs
A good way of choosing the total number of original points that are approximated the
worst to be taken into the mesh is to see if there is a good elbow of the graph of the
function "squared distance from projection onto transfinite surface" with respect to each
point ordered in descending value of it.

Another, which is the one that has been used more frequently, is to simply take a look at
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5.3 – Output and results

first m bad approximated points compared to their projection onto transfinite surface in
an image, and decide to take a proper amount of them based on the figure.

Now let us see each situation taking the first 5000 badly approximated points from each
layer.

Figure 5.13. Distance function and graphical situation for layer 0.

Figure 5.14. Distance function and graphical situation for layer 1.

Figure 5.15. Distance function and graphical situation for layer 2.
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Figure 5.16. Distance function and graphical situation for layer 3.

Figure 5.17. Distance function and graphical situation for layer 4.

Figure 5.18. Distance function and graphical situation for layer 5.
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Figure 5.19. Distance function and graphical situation for layer 6.

Figure 5.20. Distance function and graphical situation for layer 7.

Figure 5.21. Distance function and graphical situation for layer 8.
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Figure 5.22. Distance function and graphical situation for layer 9.

We can see clearly that the gradient method finely approximated each layer unless some
points which were obviously over the comprehension of the transfinite surface. Therefore
the method did his work.

For tolj and tolx chosen for layers between 0 and 7 the gradient method always con-
verged before NMAX iterations.
Only 24 times with NMAX=500 and same tolerances the method did not converge in
Layer 9. It is a good result indeed.

5.3.4 Triangular Meshes

Here are the meshes created by triangle:

Figure 5.23. Meshes 0 and 1.
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Figure 5.24. Meshes 2 and 3.

Figure 5.25. Meshes 4 and 5.

Figure 5.26. Meshes 6 and 7.
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Figure 5.27. Meshes 8 and 9

Figure 5.28. Meshes of fault 1 and 2.

5.3.5 Tetrahedal meshes
After having retrieved the meshes of all the surfaces we have several files that describe
them, all of them generated by Triangle (Jonathan Richard Shewchuk).
In order to create the tetrahedal mesh we first consider for each triangulated surface two
files which are ele file and node file. Node file describes all the points of a triangulation,
by attributing them their index into the mesh, their 2D coordinates which are associated
to the transfinite surface, and also as attributes their 3D coordinates into space, togheter
with a number which indicates if they are on the boundary of the surface or not.

Ele file describes all of the elements of the mesh (in this case all the triangles). For
each element there is a specific index and the set of n indexes of the points that form the
elements, where n is the number of vertices of it.

The output of the process is a poly file which contains the list of points related to all
of the faces of the meshes and of the cube which containts them all, followed by the list
of faces which form the mesh which are in general convex polygons.
This file is then processed by Tetgen (Hang Si) with the flag p which simply tells to
process a poly file without any kind of quality optimizer.
Here is an example of a Poly file:
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5.3 – Output and results

breaklines
1 24 3 0 0
2 %number_of_points d imens iona l i ty_of_points number_of_attribute

presence_of_border_f lag
3 1 33343254.257096 4971589.283837 0.000000
4 %index x y z
5 2 33364954.257096 4971589.283837 0.000000
6 3 33364954.257096 4992789.283837 0.000000
7 4 33343254.257096 4992789.283837 0.000000
8 5 33343254.257096 4971589.283837 0.000000
9 6 33364754.257096 4971689.283837 −50.000000

10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11 35 0
12 %number_of_faces number_of_attributes
13 1
14 % one polygon
15 3 4 5 2
16 %number_of_vertices vertex_1 vertex_2 . . . . vertexN
17 1
18 3 2 3 4
19 1
20 3 10 11 7
21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here is an example of a Node file:

breaklines
1 6 2 4 1
2 %number_of_nodes dimensional i ty_of_nodes number_of_attributes

presence_of_border_f lag
3 1 0 0 33364754.257096 4971689.2838369999 −50 0 1
4 %index u v x y z a t t r i b u t e border_f lag
5 2 0 .02 0 33364370.257096 4971589.2838369999 −50 0 1
6 3 1 0 33343054.257096 4971589.2838369999 −50 0 1
7 4 1 1 33343054.257096 4992789.2838369999 −50 0 1
8 5 0 1 33364754.257096 4992789.2838369999 −50 0 1
9 6 0 0 33364754.257096 4971689.2838369999 −50 0 1

Here is an example of a Ele file:

breaklines
1 3 3 0
2 %number_of_ele d imens i ona l i t y presence_of_border_f lag
3 1 5 6 2
4 %index_of_ele index_f i r s t_po int index_second_point index_third_point
5 2 2 3 4
6 3 2 4 5
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Results

Below we present an example of how the space gets described by a caged set of layers
into a cube which is optimized as described in the first part. Layers 0,1 and 2 have been
chosen for the process. Since all of the chosen layers are basically plane shaped, their mesh
after the optimization are formed by only 4 points which represent only the vertices of
the rectangle that define them. The resulting situation after the enclosure into a polygon
with the creation of a poly file is 24 nodes and 35 faces. After the creation of a tetrahedal
mesh we find only 50 tetrahedra. The important fact is that all of the layers originally
presented 46008 point each, so in total 138024 points which have been reduced to only 24.

Figure 5.29. Several layers grouped togheter.

Also, we show the relative tethraedal corresponding mesh
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5.4 – Conclusions and future developments

Figure 5.30. Several layers grouped togheter.

The mesh is represented with several files which recall the same structure of the files
which represent a triangular mesh of a surface.

5.4 Conclusions and future developments
This algorithm has been shown to be functional with respect to complex geometrical
surfaces but it still lacks of precision and efficiency. This is the point from which it is
necessary to continue in order to create a finite structure which can be really used by
several companies which need it for many purposes. The tethraedal mesh generation has
not been completed yet, it will be investigated in future research about the topic and
hopefully in few months acceptable results will be produced. It is a good idea to automize
everything with several shell scripts which call the files automatically. Also, Artificial
intelligence has a lot of growth potential and it could show itself to be effective in no
time.
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