
POLITECNICO DI TORINO

Master Degree in Electonic Engineering

Master Degree Thesis

Design of configurable Fault Folerant
RISC-V Instruction Fetch and

automatization through Travulog
templates

Based on cv32e40p core of OpenHW Group organization

Supervisor
Prof. Stefano Di Carlo
Co-supervisors:
Prof. Alessandro Savino
Prof. Maurizio Martina
Prof. Guido Masera

Candidate:
Elia Ribaldone

Luglio 2021

To my family and Anna

ii

“Failure is simply an opportunity to begin again,
this time more intelligently.”

Henry Ford

iii

Acknowledgements

I thank my supervisors Prof. Stefano Di Carlo, Prof. Alessandro Savino, Prof. Maurizio
Martina and Prof. Guido Masera for their technical support and guidance. I would also
like to thank my thesis teammates Luca Fiore and Marcello Neri for making the days and
evenings spent working on our thesis so much enjoyable, I am very happy to have shared
this experience and some previous projects with them. My thoughts also go to Christian
Fabiano and Andrea Trufini from whom I learned a lot during courses, in particular I thank
Andrea for all the days spent studying together and the crazy evening releases in Turin.
I want to thank my whole family, the best I could hope to have, I feel really lucky when
I think of my parents and how they have believed in me during these years. A special
thought goes to my two sisters, they have put up with me and supported me throughout
my journey. I will always love them.
Finally I want to thank Anna, we have given each other so much in these five years, without
her my life would have been very different, certainly sadder and less fun. In this thesis
I have used the passion that I have in all the projects I do, but I got the strength and
tenacity to complete this work from her.

iv

Abstract
The miniaturization of the microelectronic components together with the use of integrated
circuits in increasingly more application lead to an increasing use of Fault Tolerant (FT)
systems. For this reason new techniques are required to automatize the transformation
of systems from base to FT. This thesis investigates the automatic application of FT
techniques inside the stage of a core written in SystemVerilog (SV). The aim of this project
is to create a Toolchain able to apply different templates to an SV architecture in order to
automatize the conversion of an architecture from base to Fault Tolerant. The templates are
written in a new metalanguage called Travulog and they can be applied to an architecture
using directly Python or HTravulog metalanguage inside the SystemVerilog.
The Toolchain is used to convert the Instruction Fetch stage of the RISC-V cv32e40p to
Fault Tolerant. Anyway the Toolchain can be used for whatever SystemVerilog architecture
with the great advantage to be open source and extendible to new uses.

v

Summary
A FT (fault tolerant) system continues to work properly even if some of the internal
components are broken; this feature is necessary when a failure may cause damage to
people, dangerous destruction, military upset or loss of data. FT systems are essential in
aerospace, transport, medical and utility industries and they are usually composed by a
power source, an hardware system and a software system, each of these parts are fault
tolerant depending on application.
This work concerns the hardware system and in particular the chip architecture design. In
this context the faults are transient, intermittent or permanent and they are generated
by manufacturing defects, system degradation or particles strikes. Manufacturing defects
generate permanent faults and they reduce the yield with an increase in the cost per piece
since the affected chips are discarded during quality control process. System degradation
produces permanent faults and it is a life-limiting phenomenon that brings the chip to
wearout phase. Finally, particles strikes produce both transient or permanent faults.
These problems rely on the application: system degradation generally depends on chip
temperature, clock speed and the workload, otherwise particle strikes rely on sources of
alpha particles or neutrons, which are generated by the cosmic rays or radioactive materials.
For these reasons an ideal fault tolerant system should be protected against transient faults
caused by particle strikes and it should manage permanent faults in order to increase the
yield and chip life. A complete protection against faults creates drawbacks in speed, area
and power budgets. This is the reason why we create a configurable architecture where
faults coverage can be changed according to the specific application and the project con-
strains.

In this Master Thesis the Instruction Fetch of cv32e40p core is converted in a con-
figurable fault tolerant stage in order to reduce failures in fetching instructions. The
core used was designed by the "OpenHW Group" organization and it can be integrated in
PULPissimo platform in order to create a complete microcontroller architecture.
Before the design of the architecture we study the cv32e40p core and then we proceed with
the creation of the simulation environment, building the script used for all simulations.
These tools born in the cv32e40p core-v-verif repository with the purpose of automatize
compilation of testbenches and their simulation using QuestaSim and Modelsim.
The most important feature is the optimized fault injection method used to simulate
faults in the architecture. This tool is able to inject faults in a list of signals set in the
tcl script, in this way we are able to use both a worst case approach injecting faults only
in sequential parts (FF and memory) or inject fault also in combinatory path increasing

vi

simulation time and precision. The first method is faster since we inject faults in less signals
but in this way we consider that all faults injected in the combinatory path (for example
after a particle strike) reach a FF and are sampled. This is not always true because some
bits can be logical masked in the following cases: if they are don’t care bits when fault
occurs, if they can be electrical masked due to attenuation before latch or if the fault don’t
have the time to reach a FF (latch-windows). Knowing this we can decide to inject faults
in sequential parts or in all circuits to vary the trade off between accuracy and simulation
time.
Apart from this first considerations the tool optimizes simulation time also takes advantage
of vcdstim feature in the case of single stage simulation. Indeed the whole core is initially
simulated using a benchmark firmware, meanwhile the input and output data of a specific
stage are saved into .vcd and .wlf files, finally a stage-specific simulation started using .vcd
as input (vcdstim feature). In this way only one stage is simulated and we reduce working
times. Stage-specific injection simulation can be repeated a specified number of times
and each time the output of the stage is compared with .wlf output file in order to find
failures.
Using our tool we first simulate fault injection in the reference IF stage of cv32e40p core
and we find a fault tolerance equal to 87%. Later we use simulation results to understand
the fault masking for each signals and then we use this information to understand which
are the most critical blocks of the IF stage.
In the meanwhile we begin to apply FT techniques to the Compressed Decoder obtaining
a FT Compressed Decoder that has been tested and verified, using this new FT block we
create a template written in the new metalanguage Travulog. This template can be applied
to a whatever reference architecture with our Toolchain written in Python to obtain a new
FT architecture. We use this Toolchain, the Travulog template and HTravulog (a hidden
version of Travulog) to divide the IF stage in six parts and apply FT model to each of
them. The model that we applied is the same for each block.
The Travulog template applies a transformation to the reference design that can be con-
trolled with some System Verilog parameters, for these reason once we apply the template
to each internal block of the IF stage we only enable the possibility to protect each block.
In this way we create an Automatic Transformation Toolchain with which we create a
Configurable FT IF stage from the reference one. This conversion can be redone every
time you change something to the reference IF stage, in this way we speed up FT design
and decrease maintainability costs. Using this method during simulations and synthesis
we can enable FT for a set of blocks and depending on these settings we can manage area,
speed, power and FT trade-off.
In the design of FT architecture we use a FT technique that is able to detect and correct
transient faults using TMR (Triple Modular Redundant), this methods works only if each

vii

of the three identical blocks compared don’t have permanent faults, and if we assume to
neglect multiple particle strikes. Although multiple strikes is improbable, permanent faults
is already present after manufacturing process and increase during time, for this reason we
implement a technique to detect this faults.
In the end looking at the fault injection results on the reference IF stage we have identified
the Prefetch Buffer as the most critical block, we protect only that block and run fault
injection simulation obtaining a fault protection of 96%, if we want to further increase
protection we can also protect Aligner. As we have seen these changes can be done easily
changing some SV parameters. Finally we protect each block obtaining a fault protection
of 99%.
Summarizing the main results of this thesis is the creation of a Fault injection tool for
CV32E40P core, the creation of a Configurable FT IF stage and the parallel design of
the Automatic Transformation Toolchain for Travulog/Htravulog (TV/HTV). Using the
Toolchain and TV/HTV code we are able to recreate the Configurable FT IF stage each
time we apply changes to the reference design. The TV/HTV code can be used in other
project to speed up FT design solution increasing maintainability, even if the TV/HTV
metalanguage has been designed for FT application it can be used in other application
whenever can be defined a transformation template, the metalanguage can also be extended
to enlarge field of use.

viii

Contents

List of Figures xi

Listings xiii

1 Introduction 1
1.1 Objectives . 2
1.2 Thesis structure . 2

2 Technical Background 4
2.1 Safety critical application systems . 5

2.1.1 Dependability Model . 5
2.1.2 Electronic system parts . 11
2.1.3 IEC61508 and ISO26262 Standard 13

2.2 Dependability of Integrated Circuits . 21
2.2.1 Internal Factors of Faults . 21
2.2.2 External Factors of Faults - Radiations 24
2.2.3 Soft Errors . 33

2.3 Hardening techniques for digital circuit architectures 35
2.3.1 Spatial redundancy . 35
2.3.2 Information Redundancy . 44
2.3.3 Temporal Redundancy . 44

3 RISC-V and CV32E40P Core 47
3.1 History . 48
3.2 RISC-V ISA . 49

3.2.1 Base Instructions . 51
3.3 CV32E40P core . 54

3.3.1 CV32e40P Instruction Fetch . 55

ix

4 Fault Tolerant IF Stage 57
4.1 FT Compressed Decoder . 57

4.1.1 Basic Voter . 58
4.1.2 Configurable Voter . 59
4.1.3 Breakage Monitor . 60
4.1.4 Configurable Compressed Decoder 62

4.2 Travulog . 65
4.2.1 Declaration of ports . 66
4.2.2 Internal signals and assign . 67
4.2.3 Instance . 68
4.2.4 Multiple Operation . 70
4.2.5 Converted SV and parameters template 71
4.2.6 Apply the template in Python . 75

4.3 Hidden Travulog . 77
4.3.1 Introduction Part . 78
4.3.2 Internal signals . 80
4.3.3 Create a new module . 82
4.3.4 Use Travulog template . 83

4.4 Test of the Toolchain . 87

5 Verification 88
5.1 Simulation Flow . 90

5.1.1 Initial Setup . 90
5.1.2 Benchmark Compilation . 91
5.1.3 Core Functional Verification . 91
5.1.4 Fault Injection Process . 93
5.1.5 Number of simulations and Accuracy 94

5.2 Results . 96

6 Conclusions 100

References 102

x

List of Figures

2.1 Design and life of a Dependable System . 9
2.2 Example of Electronic System . 11
2.3 Results of system failure cause study from HSE 15
2.4 SIL definition for continuous mode . 16
2.5 SIL definition for demand mode . 16
2.6 Overall Safety Life Cycle . 17
2.7 Maximum SIL for a safety function carried out by a type A element. 19
2.8 Maximum SIL for a safety function carried out by a type B element. 19
2.9 Example of Electronic System . 23
2.10 Solar system moving within the LISM while it is hit by GCRs, the planets

are not to scale and the distance is logarithmic. 25
2.11 Galactic Cosmic Rays 23 . 25
2.12 The figure shows the variation of the Earth’s magnetic field due to the solar

wind. The Van Allen Belts are also highlighted in light red on either side of
the Earth. The Corona of the sun show how magnetic field changes particle
ejection. 26

2.13 Example of DMR using an if stage of a core 36
2.14 Example of TMR using an if stage of a core 37
2.15 Plotting of equation 2.13 . 38
2.16 Example of TMR with voter triplication in only one stage 39
2.17 Example of TMR with voter triplication used in stages connection 40
2.18 Example of TMR used in stages connection, the voter is the weak link of

the chain. 40
2.19 Example of design diversity used in conjunction with TMR technique in

order to protect an IF stage. 41
2.20 Example of generic Hybrid Redundancy with Power gating, clock gating and

input selection and blocking. 43
2.21 Example of generic Temporal Redundancy. 45

xi

2.22 Example of generic Temporal Redundancy with data encoding. 45

3.1 32-bit and 16 bit instruction, frozen in the last release. 51
3.2 RISC-V ISA instruction format. 51
3.3 RISC-V architecture with four pipeline stage. 53
3.4 CV32E40P core diagram. 54
3.5 CV32E40P Instruction Fetch block diagram. 56

4.1 This is the voter used in the fault tolerant architecture. 58
4.2 Configurable voter, with TOUT=0, a single voter. 60
4.3 Configurable voter, with TOUT=1, a triple voter. 60
4.4 Breakage Monitor to detect permanent errors. 61
4.5 A possible configuration of the Configurable Compressed Decoder. 63
4.6 Flow diagram of architecture transformation using Travulog template . . . 65
4.7 HTravulog used during architecture life cycle 77

xii

Listings

4.1 Declaration Travulog Code . 67
4.2 Declaration SVerilog code derived . 67
4.3 Travulog Code . 67
4.4 SVerilog code derived . 67
4.5 Instance Travulog Code . 68
4.6 Instance SVerilog code derived . 68
4.7 Instance foreach Travulog Code . 69
4.8 Instance foreach SVerilog code . 69
4.9 Instance foreach Travulog Code . 70
4.10 Instance foreach SVerilog code . 70
4.11 Fault Tolerant compressed decoder layer 71
4.12 Parameters template for Fault tolerant module 75
4.13 Basic Python code to use Travulog . 75
4.14 Introduction of cv32e40p if stage . 79
4.15 Introduction of cv32e40p if stage . 79
4.16 Introduction of cv32e40p if stage . 79
4.17 HTV code for new signals . 81
4.18 Converted SV code . 81
4.19 HTV code to create a new block and transform it using TV template . . . 82
4.20 SV result code after the conversion from HTV code of if stage fsm logic

module created using CREATE MODULE command 84
4.21 SV result code after the conversion from HTV code of Compressed Decoder

module . 86

xiii

Chapter 1

Introduction

Electronic is pervasive in our life; each year are sold about 1530 million of smartphones 1,
75 million of computers 2 and 65 million of cars 3. Nowadays smartphone users reach 5.22
billion which represent the 66% of worldwide population 4, about two out of ten people
own a car 5 and there are 5774 orbiting satellites 6.

These are only few data which show how many electronic devices are used today worldwide.
If you think that each of those devices contains one or many CPUs you have only partially
achieved the number of worldwide CPU used nowadays.

Processors are also used in industrial, networking and data processing fields. In each appli-
cation a system can have different requirements that should be applied also to CPU used.
The most restrictive is the Safety-Critical Application field, in this system the designers
should complain different levels of reliability. Examples of Safety-Critical Application are
the Automotive, Space Mission field and Medical devices which are three type of systems
strongly embedded in our everyday life (e.g., the Cars, the GPS, pacemakers 7).

For these reasons the study and development of more reliable and secure CPUs are really
important for VLSI industries. An improvement to CPUs development come from RISC-V
Instruction Set Architecture, nowadays this ISA is increasingly used by industries because
it enables a frozen interface between hardware and software stack. Indeed, RISC-V ISA
provides four base ISA versions described without implementation details. Starting with
these versions, as a foundation, the designers can add many standard or custom exten-
sions. Accelerators and co-processors can be also added in order to create complex and
high-performance CPUs.

1

Introduction

1.1 Objectives
This Master thesis lies on a larger project aimed to create a fault tolerant RISC-V processor
for pulpissimo processor starting from CV32E40P core. In order to achieve this result the
first step is the creation of a Fault Tolerant CV32E40P, for these reasons the core has been
divided between me and my two teammates in this way:

• Instruction Fetch (IF): Elia Ribaldone;

• Instruction Decode (ID): Marcello Neri 8;

• Execution Stage (EX): Luca Fiore 9;

In each thesis the reference stage has been converted in a Fault Tolerant one.

The objective of this thesis is the creation of a Fault Tolerant (FT) Instruction Fetch
for CV32E40P core. In particular the automatization of FT transformation has been
investigated and a metalanguage has been created to speed up this operation.
Indeed, nowadays an HDL able to automatically apply a transformation to an existing
architecture don’t exist. Such language can dramatically decrease the time to market and
the maintaining efforts of a fault tolerant architecture because FT cores are usually created
starting from a previous design. Even if the final result can be completely different from
the original design, many pieces of the starting architecture are used and modified applying
a template. A typical example is the TMR which consists in triplication and voting of a
working not FT architecture, these techniques correspond to an architectural template that
can be applied to many designs, anyway at today each time we should apply this technique
we should manually create redundancy and connect voters in a HDL language such as
System Verilog. These is the motivation that has pushed this work to a metalanguage
direction.

1.2 Thesis structure
The Thesis structure is divided into seven chapters:

• Chapter 2 - Technical Background: This chapter explains the IEC61508 stan-
dard, the fault tolerance vocabulary and metrics, the cause of bit flip in VLSI circuits
and the hardening techniques to increase reliability.

• Chapter 3 - RISC-V and CV32E40P core: Here the history, motivations and the
structure of RISC-V ISA are explained, then the Instruction Fetch of the CV32E40P
is studied in order to apply the FT techniques in the next chapter.

2

Introduction

• Chapter 4 - Fault Tolerant Compressed Decoder: In this Chapter a FT Com-
pressed decoder for CV32E40P core is designed and verified, the new stage is protected
to transient faults and can detect permanent faults.

• Chapter 5 - Travulog and HTravulog: Starting from the FT Compressed Decoder
(CD), a Travulog template and a toolchain, able to transform the original CD in
the FT CD have been developed. In this chapter there is also a description about
Travulog/HTravulog metalanguage that is used to transform each block inside the
Instruction Fetch in a FT block.

• Chapter 6 - Results: In this chapter the complete FT IF stage, created using
Travulog metalanguage, are presented and the results of simulations are reported.

• Chapter 7 - Future Works: In this chapter some improvement to FT architecture
and Travulog are proposed.

3

Chapter 2

Technical Background

This chapter describes the technical background needed to understand what is a Fault
Tolerant system, where the thesis lies inside the FT system, which are the causes of faults
and how to avoid that faults become errors.
We also briefly explain some Safety standards used in Safety Critical applications and we
deeply investigate the origins and causes of particle strikes.
The chapter is organized in three sections:

• Safety critical application system: In this section we give an overview on the
safety critical systems at high level; firstly we analyze the dependability model in
which are described all metrics to measure the dependability of a system, then we
describe the position of this thesis work inside a generic electronic system and finally
we give an introduction to the IEC61508 standard for safety critical applications;

• Dependability of Integrated Circuits: Here we analyze all causes of error inside
an integrated circuit, firstly we investigate internal factors of faults which are caused
by manufacturing processes and internal mechanisms, then we investigate external
factors of faults such as Solar, GCR and package radiations. For each factor of faults
we describe the effect on the IC and in the last section we give some definition about
Soft Errors;

• Hardening techniques for digital circuit architecture: In the last section of
the chapter we describe some techniques to protect digital circuits at RTL level, all
these techniques use redundancy to achieve this result.

4

Technical Background

2.1 Safety critical application systems
A system is defined "safety critical" when a failure may cause damage to people, dangerous
destruction, military upset or loss of data. Through the next three sections we explore
the parameters to measure the dependability of a system, how an Safety Critical elec-
tronic system is structured and which are the main standards used in the Safety Critical
Applications.

2.1.1 Dependability Model

Dependability is the ability of a system to provide a predetermined level of service to the
user 10. This capacity depends on the system application, for example a wrong use or
high workload lower the level of service offered. From the designer’s point of view, the
dependability of a system must be verified through tests and simulations, in order to verify
the correct functioning of the system in various environments.
For system that works in critical applications, in addition to the functional tests, tests
must be made to verify the level of service required despite environmental conditions.
For example in satellites it is not possible to do maintenance but it is necessary to avoid
the fall of the asset. In these cases, when the Dependability required to the system is high,
many stress tests must be done to have a complete technical testing. For these reasons to
guarantee the dependability in a given application the main factors are how the system is
designed and which kind of tests are performed on it.

Dependability is characterized by: Metrics, Attributes, Impairments and Means. These
four categories allow us to completely define the dependability in a system and they are
explained below:

Dependability Metrics Dependability metrics are used to measure the dependability
of a system and they are used to verify Dependability Attributes. The Metrics are exper-
imentally measured or estimated through various techniques. These are the main metrics
used:

• TTF : Time To Failure (TTF) is the time required to have an error in a specific
system 11. For example a device with TTF equal to 1 year will probably have an
error after one year of correct work.

• MTTF : Mean Time To Failure (MTTF) is the mean time between two failures in
a system. Under certain conditions (e.g., formula 2.6) we can combine the MTTF
of various parts to find the MTTF of overall system, to do this we should use the

5

Technical Background

following formula:

MTTFsystem = 1
MTTF−1

part1 +MTTF−1
part2

= 1
npartsq
i=0

1
MTTFi

(2.1)

• FIT : Failure In Time (FIT) is the number of errors in a billion of hours. The
relation between MTTF (expressed in year) and FIT is:

FIT = 109

MTTFyear · 365 days · 24hour (2.2)

The FIT metric is used instead of MTTF because it makes calculation easier, in fact
system FIT can be easily calculated in this way:

FITsystem =
npartsØ
i=0

FITi (2.3)

• MTTR : The Mean Time To Recover (MTTR) is the time needed to a system to
repair an error once it has been detected 11.

• MTBF : The Mean Time Between Failure (MTBF) is the mean time between the
start/restart and an error detection, for this reason we have:

MTBF = MTTF +MTTR (2.4)

Dependability Attributes Attributes are the properties which are expected from a
system that experiencing faults to be dependable 10. These attributes are evaluated from
Dependability Metrics according to a faults model. The most used Attributes are Relia-
bility, Safety and Availability, they are defined below:

• Reliability : it is the probability that a system will operate without failures in a
given time interval. This type of Attribute is widely used for example in space appli-
cations, where it is necessary to guarantee operation for certain period of time. At the
integrated circuit level many techniques have been adopted over time to increase relia-
bility by improving production processes, usually are used old processes experiences to
predict the reliability of a new product, this is done on all ICs but especially on memo-
ries An_Extended_Building-In_Reliability_Methodology_on_Evaluating_SRAM. Reliabil-
ity can be expressed according to exponential failure law :

R(t) = e−h(t) t Ä e−λ t (2.5)

Where h(t) is the Instantaneous Error Rate considered as the probability that the
system has an error in a certain interval ∆t which start at instant t, so it is the

6

Technical Background

probability of error in the time interval (t, t + ∆t). To simplify calculation h(t) is
usually approximated with the constant error rate λ, that is equal to 1/MTTF = FIT
11.

For these consideration when we have the FIT of each part of a system we can use
formula 2.5 to find total reliability, in this case we consider to have n independent
parts each with a certain failure rate hi:

R(t)system =
n−1Ù
i=0

Ri(t) = e−
!qn−1

i=0 hi

"
(2.6)

This model is valid if we consider the failure rate constant. From formula 2.6 we can
states that the FIT of a system is equal to the sum of the FIT of each part.

• Availability : It is the percentage of time the system remains active and it can
be used. This Attribute is employed a lot in the IT field, for example to characterize
servers or a communication network 12 13. It is therefore required in areas where it
is expected that the system may not work for some periods, so in this case we are
interested to know how long it will actually work properly.

Availability is usually expressed as a percentage or by the downtime at a certain in-
stant. For example, a system with Availability of 99.999% will have a mean downtime
of 5 minutes over a year. The common expression for Availability is:

Availability = MTTF

MTTF +MTTR
= MTTF

MTBF
(2.7)

• Safety : For this attribute, two types of failures are considered : fail-safe if the fail
does not cause danger or damage, while fail-unsafe if the fail causes safety problems.

A simple example is a RADAR that detects airplanes, if an airplane that doesn’t
exist is detected there is no serious damage and therefore we consider this failure as
fail-safe, instead if an airplane is not detected we have a fail-unsafe failure. The safety
of a system is the probability that it remains fail-safe over a certain period of time.
It is used in critical sensing, safety and control systems.

Dependability Impairments Dependability Impairments are used to communicate
that something in the system has gone wrong 10. There are three types of Impairments
and each indicates a problem at a different level:

• Faults : They indicate a problem at the physical level. For example in a PCB
circuit a fault can occur when a component desoldered due to incorrect manufacturing
process. In the field of integrated circuits a fault is usually due to a bit flip caused by
external particles, by a manufacturing defect or a bug in the microcode or software.

7

Technical Background

Any failure of a system always starts with a fault, this fault may or may not cause a
problem depending on how the design was done. In integrated circuits faults can be
masked by certain architectural design techniques and their number can be limited
by special layouts and processes. However, they cannot be eliminated entirely.

• Errors : They indicate a problem at computational level caused by a Fault. Errors
are caused by Faults that are not masked by the system, for example if there is a
bit flip in an input register of the ALU, there will be an Error in the output register
because the operation has a wrong result.

• Failures : They indicate system failure due to an Error. The failure of the system
is an Impairments that you never want to have in a critical application since the
behavior of the circuit is unpredictable and so unsafe.

To summarize a Fault can cause an Error and this in turn can cause a Failure. For these
reasons the designers of a critical application system should have the ability to mask Faults
and Errors in order to avoid Failure.

Dependability Means Dependability Means are a set of techniques and methods needed
to create a Dependable system10. Fault Tolerance is the method that is used in this thesis
but it is normally followed by other techniques, these are the most important ones:

• Fault Tolerance (FT) : Fault Tolerant systems continue to work even in the
presence of Faults, this result is achieved through redundancy and a set of processes:
The first is called Fault Masking and consists in avoiding the propagation of a fault
by correcting the values in the system.

In fact Fault Masking consists both in the reduction of errors and in their masking
to avoid failures. Common examples of Fault Masking techniques are TMR (Triple
Modular Redundancy) and ECC (Error Correcting Code) that allow to reduce Errors
in memories and circuits.

The second process is the Fault Detection that allows to recognize the presence of an
error in the system, for example using the TMR in order to detect a Fault we can just
verify that there is a module with different results from the others. This technique is
also used in systems without redundancy where you want to understand if the system
is working properly.

When a fault is detected in a FT system, you can decide to correct it and continue
with the execution, or you can disable the system part from which the fault started,
in the case of permanent fault. This mode of performances decay of a system is called
Graceful Degradation.

8

Technical Background

• Fault Prevention (FP) : FP is a very broad field because it is the set of processes
that allow to reduce the introduction of faults in the system. This goal is achieved
by controlling all processes from specification to manufacturing.

• Fault Forecasting : Fault Forecasting is the set of techniques that allow to predict
the trend of the number of Faults and their effects in a system.

• Fault Removal : Fault Removal is the set of techniques used to eliminate errors
already present in the system. This is done through verification of circuit operation
and maintenance.

We have seen the basic vocabulary used in dependable system design and maintenance, in
Figure 2.1 are summarized all concept explained in order to give a graphical overview of
the design of a Dependable System.

Figure 2.1: Design and life of a Dependable System

The block diagram in Figure 2.1 start with the specification of the system, then the

9

Technical Background

designer use Fault tolerant techniques to design and verify the system, finally the product
is manufactured, in these tree steps is applied Fault Prevention in order to reduce unwanted
errors.
After manufacture, the manufacturer apply a selection in order to discard broken devices
and finally the systems is sold and it begins to be used. Meanwhile we gather data from all
production chain in order to use Fault Forecasting to predict MTTF,MTTR and MTBF.
Then using predicted data are evaluated required Dependability Attributes and finally sys-
tem is validated and can be sold.

When the system begins to be used there are some periods of correct operations (estimated
as MTTF), then at a certain instant a fault occur, this fault can propagate in an Error
and this can became a System Failure. If the Failure is detected the system begins the
Recovery Time (estimated as the MTTR) in which the failure is fixed. In the diagram we
select a time interval in which fault is propagated but in a Dependable system this should
happen rarely. It is also indicated the removal of defected parts using Fault Removal, this
techniques can be also applied during Recovery time.

In the next section we contextualize this thesis work analyzing the parts of a critical
electronic system.

10

Technical Background

2.1.2 Electronic system parts

This section describe how this Thesis is positioned in a complete dependable electronic
system.
In Figure 2.2 we give an example of electronic system, it receives information from sensors
and it controls some actuators according to their specification.
The circuit is powered by a battery or by power network and this energy should be converted
inside the board to be used. For this reason there is a part of the PCB dedicated to voltage
conversion, this block is composed by analogue and digital components that together create
the Power Conversion and Distribution system.

Figure 2.2: Example of Electronic System

The elaboration part instead is composed by integrated circuits that analyze the data
received from analog and digital sensors and they use this data to decide how to control
the actuators. This elaboration is done by a microcontroller or an FPGA and the design

11

Technical Background

of these ICs have four main design level 14 as you can see in Figure 2.2:

• Manufacturing Process Level (lev. 4) : This is the level of manufacturing
processes, in this step are defined all techniques to create the die from a silicon
wafer. In the case of hardened chip the manufacturer apply fault tolerant and fault
prevention techniques in order to improve system dependability.

• Physical Layout Level (lev. 3) : It is the set of techniques used to place transistors
properly. In the case of robust systems the layout is improved in order to decrease
the sensitivity of the circuit to radiation.

• Circuit Architecture Level (lev. 2) : At this level circuits design is carried out
at the RTL level; the circuits may be digital, analogue or a mixed signal. Generally
to make this level robust are used fault tolerance redundancy and error correction
techniques.

• Electronic System Level (lev. 1) : In this case we can still work at the RTL level
using components previously created at the architectural level, or at the unit level
(e.g., cluser computers). In the case of robust systems is used processor redundancy
(e.g., lockstep technique) or redundancy of computers.

As we have seen, an electronic system is made up of many parts which must all be depend-
able in order to have a dependable system. This Master Thesis will deal with the second
design level, which is the architectural one. In order to be able to use the proposed rtl
project correctly, it is necessary to use hardening techniques in all the lower and higher
levels.
In fact what is important for the final application is the dependability of the system, so it
would be almost useless to use a hardened processor in a device where the power supply
part is not dependable.
Anyway this consideration should be done case by case by designers. In the next section
we analyze the main standards used in Safety Critical Application.

12

Technical Background

2.1.3 IEC61508 and ISO26262 Standard

In 1971 Intel produce the first microprocessors and after only ten years the decreasing
cost of processors made possible the spread of electronic devices. In only ten year an
huge amount of consumer devices was computerized but the first critical use of electronic
devices was in machinery, industrial plant and robots, for these reason in 1985 was born
the IEC61508 standard created by a IEC technical task forces created by the International
Electrotechnical Commission Advisor Committee Of Safety (IEC ACOS), in order to create
a guideline for those industries that needs to meet some safety requirements.

The IEC ACOS is the committee which manages all Technical Committee of IEC and it
reports directly to Standardization Management Board (SMB).

Despite some criticism the IEC61508 began to be used in many industries and it evolves
in other more specific standards such as IEC61511 for process industries, IEC62061 for
machinery safety , IEC61513 for nuclear plants and many others. Today IEC61508 is used
manly in machinery, chemical plants, nuclear plants and robots, instead for all on-road ve-
hicles or the so called Automotive world is used the ISO26262 created by the International
Organization for Standardization.

IEC61508 is composed by seven parts and published with the title Functional safety of elec-
trical/electronic/programmable electronic safety-related systems, for this reason the stan-
dards refers to any devices from electronic valves, relays, and switches to industrial PLC
that need to have a certain safety level.
To fulfill this safety level the designers needs to reach the Functional Safety, It is the full
program to ensures that the safety-related E/E/PE system brings to a safety state when
a safety issues occurs. Functional safety is a really important concept that is also used in
ISO26262 and any following safety-critical standards.
As already mentioned, IEC61508 is composed by seven parts, each part has it related
document:

• Part 1: This part covers General Requirements for compliance with the standard,
here are defined Safety Integrity Levels and the overall Safety Life cycle of the system.
It is composed by 68 pages.

• Part 2: This part covers requirements for E/E/PE system related systems. It is
composed by 96 pages.

• Part 3: This part covers Software requirements for compliance with the standard.
It is composed by 118 pages.

13

Technical Background

• Part 4: This part covers definitions and abbreviations. It is composed by 42 pages.

• Part 5: This part contains many example of methods for the determination of Safety
Integrity Levels. It is composed by 54 pages.

• Part 6: This part contains some guidelines on the application of IEC61508 part 2
and IEC61508 part 3. It is composed by 118 pages.

• Part 7: This part contains an overview of techniques and measures in order to
support the application of the standard. It is composed by 150 pages.

IEC61508 part one

The first part is about the General Requirements, this part is the introduction to the
standards and it could be divided in some parts or arguments:

• Scope: As already mentioned IEC61508 refers to any E/E/PE devices, these in-
clude electro-mechanical devices, solid-state non programmable electronics and and
electronic devices based on computer technology (microprocessors, micro-controller,
programmable controllers, ASIC, PLC , smart sensors, transmitters, actuators and
so on). Anyway the standard doesn’t cover E/E/PE system which with a System
Integrity level lower then 1 or an availability lower the 90% of time.

• Conformance: In order to be compliance to the standards the designers should
create a documentation in which is explained how each requirement is fulfilled ac-
cording to the decided Safety Integrity level. The documentation required is usually
considerable and you should be detailed in fulfilling the requirements.

• Documentation: The main argument of the documentation is the Safety Life Cycle
which represent the life of the product from specifications to decommissioning. This
life cycle should be described in order to enable the Functional Safety verification and
assessment, the documentation also should be a support for the life cycle process in
order to guarantee that each step is executed.

• Management of functional safety: Functional safety should be achieved and
maintained, for these reason you should write all activity that make it possible in
a document called Functional Safety Management (FSM) plan. This plan should
contain: all strategy used, all people responsible of safety , all about Safety Life Cycle
and Functional Safety, the procedures to ensure that the personals are competent
and to enable the analysis of hazardous incidents, the maintenance operations, the
procedures to change something in the system and some other minor documentations.
It is also very important that each Safety Life Cycle part should have a responsible
for that phase.

14

Technical Background

• Safety Life Cycle Requirements: Safety life cycle is a closed loop in which the
system goes through identification, analysis, design and verification. This life cycle
came from the analysis of the Health Safety Executive (HSE) about the industrial
control systems classified accident causes shown in Figure 2.3.

Figure 2.3: Results of system failure cause study from HSE

In Figure 2.3 there is the overall safety life cycle of a safety-critical system composed
by E/E/PE device and software, this is the life cycle to follow the system should
accomplish to the IEC61508 standard. The block diagram in Figure 2.3 is only a
brief summary of the safety life cycle, in order to completely understand this part
read the IEC61508 part one clause 7.

• Safety Integrity Level: IEC61508 define four level of Safety Integrity Level, they
are the order of magnitude levels of risk reduction. The SIL is defined by two tables,
a table of Low Demand Mode Figure 2.5 of operation and Continuous mode of
operation Figure 2.4. When a system work in Low Demand mode the safety function
is executed only when it is needed, otherwise in Continuous Mode of operation the
safety function is executed continuously. For these reason when the safety function is
in Continuous mode the SIL is calculated as failure per hour, instead when the safety

15

Technical Background

function works in Low Demand Mode the SIL is calculated as dangerous failure on
demand.

Figure 2.4: SIL definition for continuous mode

Figure 2.5: SIL definition for demand mode

Looking at the table you should notice that continuous mode seems to have lower value
of probability for the same SIL, anyway we should consider that SIL is evaluated in
one year for definition and that the continuous mode probability is referred to failure
per hour. For these reasons, and considering that there are 8760 hour in one year,
the two SIL table are comparable in terms of safety metric.

• Functional Safety Assessment: Basing on the Safety Integrity Level the failure
in the system could cause a certain amount of injury. For this reason the standard
states that there should be independent person, department or organization that do
a Functional Safety Assessment of the system.

This naturally increase the safety of the final system since this procedure is a redun-
dancy in verification. The people who apply the Functional Safety Assessment should

16

Technical Background

be competent and they will have the responsibility of the system.

Figure 2.6: Overall Safety Life Cycle

17

Technical Background

IEC61508 Part two Hardware Requirements

Part two of IEC61508 covers the requirements of safety-related hardware. In particular
this part discusses and expands phase 9 of the main safety life cycle (figure 2.6).
Inside this part is described the methods used to determine the SIL for a safety-related
system. In order to understands this procedure we should define some terms:

• Safe Failure Fraction (SFF): From part 4 of IEC61508 it is defined as "property
of a safety related element that is defined by the ratio of the average failure rates of
safe plus dangerous detected failures and safe plus dangerous failures". The "safe plus
dangerous failures" is the overall number of failures, since in this thesis we will work
with fault injection this number is the number of fault injected.

Instead "average failure rates of safe plus dangerous detected failures" are the overall
number of failures injected that don’t cause an error in the output of the stage. For
these reasons in this thesis:

SFF = 1 − Errors at the output of our stage
Total injected error

• Element Type: It is a classification of the elements used in the system, for the
standard exist two type of element, Type A and Type B. Element Type A: they have
well defined failure modes and they have failure behaviour completely determined and
"there is sufficient dependable failure data to show that the claimed rates of failure
for detected and undetected dangerous failures are met".

For these reason Type A are those element which are enough simple to be completely
defined and which behaviour is predictable.

Element Type B: They have not well defined failure mode or they haven’t failure be-
haviour completely defined or "there is insufficient dependable failure data to support
claims for rates of failure for detected and undetected dangerous failures".

Therefore Type B are usually complex elements which general behaviour is not com-
pletely predictable, anyway it is important to notice that for Type A is used "and"
statement instead is used "or" statement for Type B, for these reasons it is more
common to have a Type B element rather than a Type A, for our scope ASICs can
be defined as Type B since not all event inside the chip can be modeled in order to
predict failure behaviour.

• Hardware Fault Tolerance (HFT): From part 2 of IEC61508 it is defined as:
"HFT of N means that N+1 is the minimum number of faults that could cause a loss
of the safety function", This means that in a system with HTF equal to 1 we need at

18

Technical Background

least two fault to cause a loss in the safety function. So a system with HFT of one is
designed to tolerate only one dangerous failure, in this thesis we use triplication that
is a way to create a system with HTF of one.

In order to claim a certain level of SIL we should follow Route 1H or Route 2H explained
in the coming paragraph.

Route 1H This approach takes in consideration the Safe Failure Fraction (SFF) of the
elements. Route 1H starts from the calculation of SFF and from the required SIL we find
the required HFT. This connection between SFF, SIL and HFT change from Type A and
Type B as we can see in Table 2.7 for Type A and in Table 2.8 for Type B.

Figure 2.7: Maximum SIL for a safety function carried out by a type A element.

Figure 2.8: Maximum SIL for a safety function carried out by a type B element.

Route 2H Route 2H don’t consider the SFF of a system but only specify the level of
Hardware Fault Tolerance according to required SIL and the operation mode.

19

Technical Background

ISO26262

ISO26262 is the standard used in Automotive Industries and in whatever device that should
be used in on-road vehicles. It is born in order to answer to the increasing amount of
safety-related electronic used in vehicles, for these reason it has been created much later
IEC61508, in 2011.
This standard is radically different from the IEC61508. Anyway ISO26262 was created after
the IEC61508 and so many aspect of the two standards can be connected, for example the
Safety Integrity Level in ISO26262 is replaced with Automotive Safety Level (ASIL). A
complete analysis of ISO26262 is outside the scope of this thesis, anyway the use of the
designed architecture in Automotive field typically imply an ISO26262 certification.

20

Technical Background

2.2 Dependability of Integrated Circuits
Faults in integrated circuits are due to both bit flip or electrical problems such as broken
interconnects. The origins of these problems are due both to the aging of integrated tran-
sistors and their susceptibility to charge injection by external particles, such as cosmic rays.

These two phenomena are influenced by the field of use of the IC and by the working
conditions. For example, aging is accelerated by high temperatures and high workloads,
which wear out the interconnections. On the other hand the influence of external particles
increases in space applications due to the increased cosmic ray flux, as well as in nuclear
power plants or where some radioactive materials are present.

The understanding of these phenomena is essential to improve fault tolerance techniques
applied to integrated circuits also at RTL level in different application, therefore the causes
and mechanisms of faults are now investigated by dividing them into internal factors (grace-
ful degradation) and external factors (e.g., particle flux).

2.2.1 Internal Factors of Faults

As already mentioned, the internal factors of faults are due to intrinsic electrical problems
of transistors, which can be caused either by the breakage of the interconnections or by
problems related to the gate oxide failure.
As far as interconnections are concerned, there are two origins of failure:

• Electromigration (EM) : EM is a phenomenon known since 1966 15, whereby the
electrons generating the electric current in the interconnections impart a momentum
to the atoms of metal. This momentum transfer can create void in the very small
interconnections of ICs. The phenomenon is directly proportional to the square of
the charge density (je; [A/cm2]) and depends exponentially on the activation energy
of the material (Ea; [eV]) and on the temperature (T [K]). These relationship are
condensed in the Median Time To Failure calculated according to the Black’s formula
11:

MeTTFsystem = A0

j2
e

e
Ea
kT (2.8)

Where A0 is a technology dependent constant and k is the Boltzmann constant.

The opposite effect to EM is due to mechanical stress which tends to compensate
for the displacement of metal atoms, this principle is the basis of the Blech effect for
which below a certain length (called the Blech length) EM has no effect because the
two forces are balanced.

21

Technical Background

Normally the length of the interconnections is greater than the Blech length and for
this reason EM should be reduced by various techniques. Two of these techniques are
the use of metal alloys (Al+Cu, Al+Pd) or the creation of Bamboo Structures that
reduce the number of metal grains. In fact, the creation of a void in a connection
starts at the interface between two or more grains of metal. Here the mobility of the
atoms is greater respect to normal mobility, for this reason metal atoms are able to
move and they leads to an avalanche effect which creates the final void.

Electromigration create both permanent or intermittent faults and leads the chip in
the wear-out phase. As we have seen this phenomena is related to current density that
normally depends on workload, hence architecture and system fault tolerant strategy
for EM reduction lead with resource multiplexing and oversizing.

• Metal Stress Voiding (MSV) : The MSV is due to the difference in expansion
ratios between the metal of the interconnection and the surrounding material. The
phenomenon is closely related to temperature and the formula 2.9 gives a quantitative
evaluation in terms of MTTF 11:

MTTFsystem = B0

(T0 − T)n e
Eb
kT (2.9)

Where: B0, n and Eb are material dependent constants, k is the Boltzmann constant
and T is the temperature in Kelvin. According to the equation the larger the temper-
ature the lower the MTTF, this is a further reason why heat dissipation is important
for system dependability. Another important methods to reduce the influence of this
phenomenon is the use of stronger metals, with expansion constants similar to the
interfaces.

MSV related faults are very similar to those caused by EM and can be either inter-
mittent or permanent.

As far as Gate Oxide Failure is concerned, there are three main physical mechanisms that
cause faults:

• Negative Bias Time Instability (NBTI) : NBTI is the process that causes short-
channel pMOS (hence the term Negative Bias) subjected to high temperature or
negative gate voltages, to degrade the maximum frequency of the circuit and to cre-
ate faults. These phenomena is due to charges being trapped under the gate of the
pMOS 11 16. These charges slow down the switching process, decreasing the speed of
the circuit and creating Timing Faults. Timing Faults happen when the propagation
time of the critical paths no longer respects the sampling conditions according to the
circuit’s clock.

22

Technical Background

The physical effect related to this phenomenon is the decrease in mobility under the
gate due to the bombardment of charges during normal operations. This causes the
pMOS threshold voltage to increase (hence the term instability) and the maximum
current to decrease, leading the logic gates (which use pMOS) to slow down and fault
11.To reduce the contribution of this effect are used Dynamic Voltage Scaling and the
power gating 16 17 18.

• Hot Carrier Injection (HCI) : HCI leads to a reduction of the fmax of the circuit
but in this case this is due to the charges trapped in the gate. In fact, during the
acceleration along the channel, the ionization effect produces electron-hole pairs, if
these charges have sufficient energy they can inject themselves in the gate and get
trapped 11. This creates a variation of the threshold voltage that lead to faults as in
the case of NBTI.

Unlike the other effects, HCI get worse at lower temperatures due to the increase in
charge mobility in the material. The first consequence of HCI is the degradation of
the threshold voltage that decreases the maximum saturation current, this lead to a
reduction of the maximum frequency from 1% to 10% 11.

Again, duty cycle reduction is a way to reduce the effect of HCI. Despite technological
advances, HCI is still present in recent Tri-Gate Nanowire 19, FLASH memories 20

and general CMOS electronics.

• Time Dependent Dielectric Breakdown (TDDB) : Continuously applied voltages
in the transistors create defects in the gate material, which can lead to the creation
of conductive paths between the channel and the gate, knocking out the transistors.
In thicker gate this effect is more pronounced.

To reduce this phenomenon, attempts are made to reduce the gate voltage and to use
stronger gate materials, anyway many work has been done on this problem 21 22.

Figure 2.9: Example of Electronic System

All these effects added to the manufac-
turing defects lead to: an infant mortal-
ity phase of the components which are dis-
carded before being sold, a life phase with a
certain fixed value of failure rate and finally
a wear-out phase which causes the final fail-
ure of the integrated circuit. This variation
of the failure rate over time is shown in the
Figure 2.9.

23

Technical Background

2.2.2 External Factors of Faults - Radiations

For External Factors of Faults we mean all those external factors that can cause ICs to
malfunction. In the next paragraphs we first analyze the different sources of radiations,
and then the radiation effects on ICs.

Radiation Levels and Sources

There are essentially four sources of radiation: supernovae and celestial explosions that cre-
ate Galactic Cosmic Rays, the Sun that generates Solar Cosmic Rays, terrestrial radioactive
materials (e.g., 238U), and finally nuclear weapons and reactors. The characteristics and
radiation levels of these sources are described in the following paragraphs.

Galactic Cosmic Rays (GCRs) In order to understand how GCRs arrive on earth,
we need to know the structure of the heliosphere.
As described in Figure 2.10, the Sun emits particles in all directions, mainly protons and
alpha particles that form the Solar Wind at 400 − 700km/s. The Solar System moves
through the local interstellar medium (LISM) composed mainly of helium and rarefied hy-
drogen. For this reason the solar wind collides at supersonic speed with interstellar dust
(at a relative velocity of about 26km/s respect to the Sun) and is slowed down to subsonic
speeds at the so-called ’Termination Shock’ (75-100 AU from the Sun).

After the Termination Shock, moving away from the Sun there is a zone where the LISM
and solar rays are compressed to form plasma, this zone is called Heliosheath (pink filled
at the right of the sun in Figure 2.10). At the end of the Heliosheath there is the limit
beyond which the solar rays cannot go, this is called the Heliopause (Ä 121-150AU from
the Sun). Beyond the Heliopause there is probably the Bow Wave, the shock wave of the
LISM with the heliosphere, such as water does on the bow of a ship.
In this environment, the Galactic Cosmic Rays are the isotropic flow of energetic particles
from outside the solar system that try to pass through the solar wind and magnetic field
shields into the Earth’s atmosphere as shown in Figure 2.10.
GCRs are created by stellar explosions such as supernovae and gamma-ray bursts, active
galaxies or quasars, they reach the Earth isotropically and so they hit it uniformly in more
or less all directions. In fact, unlike the LISM, these rays have an energy that can reach
100 000TeV = 1020 eV . Anyway considering that GCRs need to have an energy of at least
50MeV to pass the Termination Shock, only 35% of them reach the Earth’s atmosphere.

24

Technical Background

Figure 2.10: Solar system moving within the LISM while it is hit by GCRs, the planets
are not to scale and the distance is logarithmic.

.

Figure 2.11: Galactic Cosmic Rays 23

GCRs are composed for 89% of protons
(p+), 9% of alpha particles (He+) and 2 %
of heavy ions (mainly Lithium, Beryllium
and Boron). Their effect on the Terrestrial
Cosmic Rays varies according to the vari-
ation of the Earth’s magnetic field, when
the Sun’s peak occurs the Earth’s magnetic
field is maximum, consequently there is a
minimum in the radiation induced by the
GCRs. On the contrary, when the Sun is
at a minimum, there is a maximum of ra-
diation on the Earth.
The flux of cosmic rays depends on their en-
ergy, as can be seen in Figure 2.11 the flux
is measured in particles

m2 sr GeV sec , where steradi-
ans refer to the centre of the earth whilem2

is the distance of the area to be measured

25

Technical Background

from the centre of the earth.
For these reasons, the value m2 ∗sr corresponds to the area over which we want to calculate
the number of particles. Therefore to calculate the flux of 1GeV particles in a cm2 =
0.0001m2 using Figure 2.11, we have:

Fluxpart = 103 particle

m2 sr GeV sec
· 1GeV · 0.0001m2 = 0.1 particle

cm2 sec
= 6 particle

cm2 min
(2.10)

Solar Cosmic Rays The Sun is a star that continuously converts hydrogen into helium
through nuclear fusion, ejecting more than 60MW/m2.
Externally it is composed of a visible proton emitting photosphere and a corona composed
by plasma. The solar magnetic field is manifested by sunspots, relatively cold spots where
there is a concentration of magnetic field, unlike the Earth, the Sun has multiple magnetic
poles Figure 2.12 .

The appearance of new sunspots is a prelude to a period of high solar activity leading
to Coronal Mass Injection (CMEs), solar flares, prominences and coronal rings. These
activities in turn depend on the sun’s 11-year cycle; during the first 4 years we have an
inactive sun with a minimum number of sunspots and in the remaining 7 years we have an
increase of the activity with many sunspots.

Figure 2.12: The figure shows the variation of the Earth’s magnetic field due to the solar
wind. The Van Allen Belts are also highlighted in light red on either side of the Earth.
The Corona of the sun show how magnetic field changes particle ejection.

26

Technical Background

The emitted particles are mainly photons, protons, electrons, alpha particles and a small
number of heavy ions, all of which are energized and ejected at about 400-700km/s out
of the sun. The ejection is due to the high temperatures (6000K) and the inability of the
Sun’s gravitational force to hold the particles because it is too weak at that distance from
the nucleus.

The solar wind at a distance of 1AU from the Sun (149 597 900 km) strikes the Earth with
500 · 106 particles/(cm2 sec) at a speed of 300-450 km/s, the average kinetic energy of
protons is about 1keV , while for electrons it is 10eV 24. Because of the low kinetic energy
of the solar wind, it is normally trapped in the Van Allen Belts or deflected by the Earth’s
magnetic field. But when phenomena such as solar flares, CMEs and prominences occur
the energy of the ejected particles is higher and particles with E > 1GeV can be detected
on the ground, these energized particles are called Solar Energetic Particles (SEPs) and
have energy of 1MeV to 1GeV .

The main problem with SEPs is that over a period of a few hours or days they have a
very high flux of up to an excess of 500 000/(cm2 sec), so solar activity can create serious
problems for space mission electronics.
When the solar wind reaches the Earth, it changes the Earth’s magnetosphere as shown
in Figure 2.12. The Earth’s magnetic field then deflects much of the solar wind, and the
particles that manage to enter the atmosphere (the SEPs and GCRs) collide with hydrogen
and oxygen to form a cascade of particles that make up the secondary cosmic rays.

As they descend into the atmosphere, Secondary Cosmic Rays continue to collide with
nuclei in the air, until they arrive attenuated on earth as Terrestrial Cosmic Rays. The
same thing happens to GCRs that normally have higher energies and flux.

Manufacture and Package materials Radiations The materials used to build the die
and package have radioactive impurities that release alpha particles due to natural decay to
more stable atoms. For example, 232Th decays by emitting 6 alpha particles from 4MeV to
8MeV, while 238U releases 8 alpha particles with similar energy. For example, in the solder
bumps there are some isotopes that create a flux from 7 to 0.002 alpha particles/(cm2 hr)
23.

For these reasons, the primary source of alpha particles for a circuit is the package; in
fact, any particle emitted by radioactive impurities can be the source of a SEE, since it is
ionized and cannot be shielded.

27

Technical Background

Today the limit reached by ULA (Ultra Low Alpha) materials is ∼ 0.001α/(cm2 hr), if
each alpha particle generated a SEE we would have about one million FITs, but in reality
we have only from 1000 to 100 FITs in common chips since not all alpha particles generate
a SEE. This is why in terrestrial applications the main cause of error is due to the isotopes
impurities of the package since neutrons are few and rarely create SEE. As the altitude
rises, the effects are reversed because the neutrons are increasingly energetic and they cause
more SEEs.

Medical Radiation Radiation in medicine is used in exams (X-rays) and sterilization
(X-rays, gamma rays, e-Beams), normally the maximum observable dose in an examination
is 20mSv (millisievert) equal to 2 radSi, this dose is normally harmless even for commercial
electronics.
On the other hand for sterilization the radiation is much higher (∼ 5Mrad) making it
impossible for even military electronics to survive, so normally if you have electronics in a
device to be sterilized, you either use other techniques or switch it off in order to reduce
the damage.
In fact the TID depends very much on the electric field, which is absent if the circuit is
switched off 23.

Nuclear Power Plants In nuclear power plants and industrial environments, there are
sources of X-rays, gamma rays, e-beams and neutrons.
TID effects are the main effects on electronics, although in particular applications (such
as measuring the temperature of the cooling ponds of nuclear reactors) the electronics are
subject to too much radiation (even for hardened circuits) and must therefore be replaced
periodically to prevent deterioration.

Nuclear Weapon The effects of a nuclear explosion depend on the location of detonation
and on the power of the bomb. Many nuclear bomb experiments are carried out in the
air, the Hiroshima bomb itself detonated at an altitude of 580m, and some explosions have
occurred in water and soil.
For an air blasting, immediately after the explosion is formed a fireball filled with strong
radiation and temperatures of 10 000◦C, it expands over a 1km radius for Megaton. The
fireball in turn creates a pressure wave that reaches 5 to 10 psi and speeds up to 1000km/h,
reaching a distance of 5-7km for Megaton. Thus about 50% of the bomb’s energy is con-
verted into the explosion, while 3% becomes thermal energy which heats the explosion site
and can explode fuel reserves up to 10km away per Megaton.

28

Technical Background

The initial radiation in the fireball makes up about 5 % of the bomb’s energy and is com-
posed of gamma particles (at the speed of light (c)), X-rays and neutrons (at 15 % of speed
of light with 12.14MeV). After the initial explosion, 35% of the energy is converted into
Fallout, a residual radiation composed of secondary fission products and neutron-activated
products that fall out of the atmosphere for weeks after the explosion 23.

Another very important effect for the circuits is the EMP generated immediately after the
explosion, in fact the radioactive emission reacts with the atmosphere, the ionosphere and
the magnetic field in three different phases: in the first phase there is a short pulse of a few
nanoseconds caused by the hydrogen and oxygen ionized by the Gamma particles, followed
immediately by the second phase with a pulse of about 1sec produced by the reflected
Gamma rays and by the reactions of the neutrons with the atmospheric nuclei in the air.
Finally, the last pulse is formed by the radiation ionizing the upper ionosphere and dis-
torting the magnetic field. This variation in the magnetic field couples with the energy
transmission lines, creating strong pulses in the distribution network, which destroys de-
vices and transformers and causes extensive damage 23.

The circuits involved in a nuclear explosion, depending on the distance of the epicentre,
may suffer all or some of the above effects.

Radiation Effects on ICs

As far as nuclear radiation and Cosmic Rays are concerned, there is a bombardment of
the IC with Alpha or Neutron particles, which penetrate the material and release energy
in the form of electron-hole pairs. Depending on the energy of the colliding particles and
the sensitivity of the circuit the generated charges can cause a bit flip or soft error.

The sensitivity of the circuit is expressed in Critical Charge, which is the charge required
in a circuit to create a bit flip. The energy of the particle is referred to as Stopping Power
(SP) that is the energy lost per unit length by the trace left in the material by an Alpha
Particle, it is measured in eV/µm.
The interaction mechanism of Alpha particles and Neutrons is different: Alpha particles
directly generate electron-hole pairs (this is why the SP refers to Alpha particles), while
Neutrons interact with the atoms of the material in an elastic or anaelastic mode.

The most dangerous interaction is the anaelastic one, because Neutrons decay into other
particles (Alphas, Pions, Muons, Neutrons, Deuterons and Tritons) which in turn generate
charges in the material. Normally the particles generated by Neutrons have a higher Stop-
ping Power than Alpha particles and lower penetration ranges. Because of this, Neutrons

29

Technical Background

generate a high charge for a short time (hence high current pulses) while Alpha particles
create a charge streak that lasts longer (creating low but prolonged currents)11.

In the case of Neutrons impact, an example of how the Soft Error Rate can be modelled is
the following 25:

SERcircuit = K φNeutrons A e
Qcrit
Qcoll (2.11)

Where K is a constant depending on the technological processes, φNeutrons is the Neu-
tron flux, A is the area of the IC involved, Qcrit is the Critical Charge and Qcoll =
collected charge / generated charge (the ratio between the collected and generated charge
per unit volume). From the formula 2.11 it can be seen that as the critical charge decreases,
the SER of the circuit increases; there is also a linear dependence with the area and the
neutron flux.

The effects of radiation on the components concern the various types of problems that
generate the physical mechanisms explained above. They can be divided into Cumulative
Effects and Single Event Effects, the former is caused by continuous exposure to energized
particles and the latter is due to the effects of a single particle collision. The effects of each
group are described in detail below.

Cumulative Effects CEs The cumulative effects of radiation cause progressive degra-
dation of the components, in fact the exposure to primary and secondary cosmic rays
generates long-term changes in the ICs, these defects lead initially to component degrada-
tion and subsequently to faults.
There are three main cumulative effects:

• Surface Charging Damage Effect (SCDE) :The charges generated by an energy
particle can accumulate inside an insulating material in the IC and if the phenomenon
continues, they generate electrostatic discharge (ESD). Normally an ESD create noise,
bit-flip, latch-up and false signals 26. The more energized the particles, the more
frequent this phenomenon occur.

• Total Ionizing Dose (TID) : In this case the charges created by the particles are
deposited in the bulk or other active parts of the IC such as the gate, these charges lead
to degradation of the Vth, Leakage currents and timing skew. The TID is expressed in
Gray (Gy) or rad (100rad = 1Gy) where 1Gy = 1j/kg, normally in space or avionics
missions the typical received TID varies from 1 to 100 kradSi 14. It usually depends
on the orbit, shielding and many other factors that vary the incident radiation on the
chip.

30

Technical Background

• Total Non Ionizing Dose (TNID) : TNID is that portion of particles that do not
create electron-hole pairs but instead directly apply a momentum to the semiconduc-
tor material. This energy applied to the lattice crystal is transformed into defects and
variations from the crystal shape. In turn the degradation of the crystal structure
leads to degradation in the parameters of the component, especially in optoelectronic
systems 14.

These effects occur mainly in the avionics and space environment where the particles are
more energetic and their flux is orders of magnitude higher than on earth.

Single Event Effects Single Event Effects are due to the charges deposited by the parti-
cles, SEEs can be either temporary or permanent effects. They are divided into Destructive
SEEs that generate permanent damage in the circuit and Non Destructive SEEs that cause
damage reparable with fault tolerance mechanisms or by a system reboot.

There are four principal Non Destructive SEEs:

• Single Event Transient (SET) : This event is a temporary voltage change in a node
of an integrated circuit, it is caused by a single particle releasing charges as it pen-
etrates the material. SEUs, SEFIs and other spurious phenomena can be generated
by a SET.

• Single Event Upset (SEU) : The SEU is an event that corresponds to a bit-flip of
a memory element: a latch, a Flip-Flop or e.g., the cell of a flash . If the corrupted
memory is not used or is corrected by ECC, it is called a Silent SEU. The probability
of a SEU depends very much on the critical circuit charge, the supply voltages and
the size of the transistors.

• Multiple Cell/Bit Upset (MCU, MBU) :Both MCU and MBU are caused by the
corruption of the value of two or more adjacent cells by a particle. The difference is
that MCU occurs between cells of different words while MBU occurs between cells of
the same word. This difference is substantial because in a memory with ECC that
can correct only one bit, MCUs are corrected while MBUs can’t be corrected because
they cause two or more errors in the same word.

These phenomena are increasing in new generations of memories because the prox-
imity between cells continues to grow 14.

• Single Event Failure Interrupt (SEFI) : This event is defined as the soft error that
causes a reset or stall of a circuit component or the whole system 14. It is usually

31

Technical Background

caused by corruption of control memory or program memory, by communications
disturbances and internal control signals 27.

There are also three different types of SEFI, some can be repaired with a software
reset, other need power cycling due to a stall and some need partial reprogramming
due to corrupted program data.

Destructive SEEs are more technology dependent and they is divided in 14:

• Single Event Latchup (SEL) : This event occur when the parasitic PNPN or NPNP
thyristor of the CMOS structures are turned on. When this happens and the power
supply is on, the component can be destroyed by thermal effects. This mechanism
don’t exists in SOI systems because there are no parasitic thyristor.

• Single Event Snap Back (SESB) : This event occurs when NPN or PNP parasitic
bipolar structures in CMOS circuits are activated. These parasitic transistors can
self-sustain a current that can be destructive. SOI technology also suffers from this
effect because parasitic transistors are present in these systems.

• Single Event Hard Error (ESHE also Stuck-bit) : The ESHE or Stuck-bit is a
permanent or intermittent modification of a memory element. This applies to both
memories and digital circuits. It differs from an ESHE because it is permanent, in
the sense that that memory cell can no longer be used by the system after the event.

• Single Event Gate/Dielectric Rupture (SEGR, SEDR) : This event indicates
the breakdown of a gate oxide or dielectric by a single particle. SEGR and SEDR
are dangerous events because they have much faster dynamics than SEL, SESB and
SEHE. For this reason, there is no protective circuitry against these events. In any
case they are rarer events and occur mainly in the space environment where there are
very energetic particles.

32

Technical Background

2.2.3 Soft Errors

All the possible transient errors analyzed in the previous chapters are Soft Errors, these
errors remain in the memory elements (e.g., flip-flops, latch) only until a new value is
written.
When fault detection and correction systems are applied to a system, two categories of
errors are created at system level:

• SDC (Silent Data Corruption) : a faulty bit without detection is read and it
modifies the final result of the program.

• DUE (Data Unrecoverable Error) : when a faulty bit with only error detection
is read. At this point if the bit changes the final result is True DUE, otherwise it is
a False DUE.

SDC errors are dangerous because they occur on bits for which errors cannot be detected
or corrected, these errors can lead to a system crash and must be transformed into DUE
errors by error detection or corrected.

The advantage of converting SDC errors into DUE is that DUE are detectable and they
lead the system in fail-stop mode. In fact once a DUE is detected, the system stops and
evaluates how to continue execution. At the operating system level, if the error is inside
a process we can kill only that one and we talk about process-killer DUE, otherwise we
say that DUE is system-killer because the OS has to restart the machine to avoid the
propagation of the error.

DUE and SDC errors have different effects on dependability; DUE causes Availability
penalties because the system has to recover, while SDC lowers Reliability, Safety and
Availability because it can crash the system. For these reasons normally there is a budget
of TDC and DUE expressed in FIT, for example 228FIT of SDC (500 years of MTTF) and
57000FIT of DUE (2 years of MTTF) by specification.

Time Vulnerability Factor (TVF) The TVF is the fraction of time in which the
circuit is vulnerable to errors. It is calculated using the window of vulnerability (WOV),
which is the time within the clock period in which the circuit can be subject to SEE, for
example in edge-triggered flip-flops the WOV is equal to half the clock because only in
that interval the FF change state if it is struck by a particle (only in the high/low phase
is the data sampled and held). The TVF is therefore the ratio between the vulnerability
window and the clock period, so for an edge-triggered FF the TVF is equal to 50%.
Actually, the calculation of the TVF is more complicated because the propagation delay of
the circuit has to be taken into account, assuming in fact a period of 1ns and an average

33

Technical Background

combinatorial delay of 700ps, in this case the TVF will be lower than 50% since some faults
injected in the first 500ns can be masked by the logic delay, for more details 28.

In this section we have seen the effects of particle strike on ICs now we explore the known
methods to avoid system failures due to faults at RTL level.

34

Technical Background

2.3 Hardening techniques for digital circuit architec-
tures

Hardening techniques are used to improve the dependability of a system and they can be
applied at each design layer as described in section 2.1.2. We now focus on digital circuits
architecture hardening technique that are used in order to increase the Safe Failure Fraction
(SFF) and so increase the SIL of the architecture.

2.3.1 Spatial redundancy

Spatial redundancy consist in use N parallel system which output are voted, this structure
decrease the failure rate of the overall system. Indeed when a cosmic ray collide with one
of the parallel system and cause an error the other system continue to work properly. Since
the probability of a multiple strike is lower than particle flux we have a reduction in cosmic
ray sensibility.

Another advantage in the use of redundant system is the increase of MTTF. Indeed using
N parallel system each with the same λ = 1

MTTF we have this new MTTF 16:

MTTFOverall System =
NØ
k=1

1
λk

(2.12)

This formula highlight the increase in MTTF due to the use of parallel systems, this means
that it is able to protect also from permanent fault in an ideal case. Anyway not all spatial
redundancy techniques increase the MTTF, this normally is not a problem since in safety-
critical application since the system is replaced much earlier then its MTTF.

All Spatial Redundancy techniques can be used both in low level architecture for example
an FSM and in high level architecture such as cores. The first use is called Fine Grain
Redundancy while the second one is called Coarse Grain Redundancy.
We have shown that general parallel system is able to protect mainly by transient faults
and secondarily by permanent faults. In the next paragraph we analyze the main kind
of spatial redundancy techniques from architectural point of view. Any of this systems is
based on the general M-of-N system that is composed by N modules and needs at least M
of them to work properly.

Double Modular Redundancy (DMR)

An example of Double Modular Redundancy is shown in Figure 2.13, the basic idea is the
use of two identical blocks. When there aren’t faults OUT1 and OUT2 are equal and so

35

Technical Background

the output will be OUT1, instead when the two replicas have different outputs is selected
the Safe Output and is asserted an Error Detection.
The assertions of the Error Detection signals are normally handled at software level, here
should exist a routine that enable recovery of the previous state and a new execution of
the faulty step.

Figure 2.13: Example of DMR using an if stage of a core

DMR add time penalty when a fault occur because normally the execution should be
repeated to obtain the correct output, indeed DMR is only able to detect a fault.
In Figure 2.13 we use the if_stage of a processor but DMR can be used at whatever level,
e.g., at core level using two identical core in parallel.

Triple Modular Redundancy (TMR)

In Figure 2.14 there is an example of TMR using the if stage of a core, as you can see
are used three replicas of the same stage working in parallel, the outputs from the stages
are voted to find correct values using majority voters.

36

Technical Background

Figure 2.14: Example of TMR using an if stage of a core

This resilient structure is able to detect and correct only one fault, when two error occur
in two replicas at the same time this structure isn’t able to correct the faults but only to
detect it. These are some possible cases of errors:

• One error in one replica: Assume that the fault is in the first replica and so
OUT1 is wrong, the voter sees OUT2 = OUT3 /= OUT1 and so it asserts OUTV 1 =
(OUT2 = OUT2). At the same time is asserted Error Detected and Error Corrected
signals. So in this case the error is detected and corrected.

• Two parallel errors in different replicas: In this case OUT1 /= OUT2 /= OUT3
and so the voter is not able to detect and correct the output, anyway it asserted
Error Detected and negates Error Corrected signal, in this way high level software
or architecture sees that an error occurs. Normally these types of errors are rare in
terrestrial environments, since particle flux is low, anyway in the case there is already
a permanent error in one replica a SEE would be able to stress such an error.

• One error in majority voter: In this case the output will be wrong due to voter
errors, this raises questions about voter contribution in the final Safe Failure Fraction.
Normally voter is smaller respect to the stage area and so SEEs are low in absolute
number, anyway when we use fine grain redundancy we should consider the voter
contribution.

The Reliability of a TMR system can be calculated using this formula 16:

RTMR(t) = Rvoter(t)
1
3R2(t) − 2R3(t)

2
(2.13)

Where Rvoter(t) is the reliability of the voter and R(t) is the reliability of the stages (each
stage have the same reliability). As you can see in Figure 2.15 the reliability of the voter

37

Technical Background

is important such as stage reliability, as we already mentioned this difference in reliability
is assured by the area and complexity difference.

Figure 2.15: Plotting of equation 2.13

Now integrating equation 2.13 between 0 and ∞ we obtain the MTTF 16 (we consider
Rvoter about 1):

MTTFTMR = 5
6λ < MTTFsimplex = 1

λ
(2.14)

The MTTFTMR is lower then MTTF of simplex system, this is due to the fact that is
enough for a stage to break to cause an error. However the MTTF difference is very small,
we should also consider that in safety critical application is usually more important the
reliability respect to the MTTF since the system is replaced far before R(t) < 0.5 16. Usu-
ally the real MTTF and the Reliability are higher then calculated since we should take
into account fault compensation and errors that are masked by the system 16.

We have seen some advantage and limitation of basic TMR, for the large part of the
application TMR is a good solution but sometimes we need an higher level of reliability,
in these cases are used TMR with voter triplication or diversity redundancy.

Voter Triplication At first glance voter triplication seems to be useless, indeed looking
at Figure 2.16 we have three output from the voters, these three output should be newly

38

Technical Background

voted to find the correct output. Anyway voter triplication is used to connect two TMR
stages as depicted in Figure 2.17, in this case the use of three voter is useful.
Indeed when one of the voters have a fault the error propagates only in the next stage
replica, this error is then deleted by the voter at the output of the system. It is clear here
that the use of triplication is useful in fine grain application in which many stage are pro-
tected and connected together. In the architecture of Figure 2.18 an error in the middle
voter propagates in all next stages without any possible correction, this case is avoided by
voter triplication.

The main difference between architecture of Figure 2.17 and Figure 2.18 is the occupied
area, in fact if you have a high number of output from each stage the triplication of voter
imply an high number of interconnections and area, this reduce the speed of the circuit
and increase the power consumption.

Figure 2.16: Example of TMR with voter triplication in only one stage

39

Technical Background

Figure 2.17: Example of TMR with voter triplication used in stages connection

Figure 2.18: Example of TMR used in stages connection, the voter is the weak link of the
chain.

Another application of the triple voter is writing into memory, indeed when we have a
triplicated memory we could use triple voter, in this way a faulty voter write only a wrong
value while other memory are correct. The same argument can be done for memory read,
in this case the use of three voter avoid a wrong reading.

Diversity Redundancy Apart from SEEs and permanent faults there are implemen-
tation errors. These types of errors are due to designer implementation mistake but they
can be reduced using Design Diversity in redundancy 29. An architecture that implements
TMR and uses design diversity is shown in Figure 2.19, as you can see the three paral-
lel stages are designed independently by different teams, this decrease the implementation

40

Technical Background

errors because the probability that two independent teams commit the same mistake is low.

Diversity redundancy is also able to increase the reliability as shown in this reaseach 30,
the paper evaluates the DTMR (Diversity Triple Modular Redundancy) using an FPGA
hit by a neutron flux of 3.98 ∗ 104n/cm2/s (standard deviation of 3.74 ∗ 103n/cm2/s) with
an energy of 10MeV for 1268 minutes. The average number of upsets detected was about
one per minute. It was found that the DTMR approach is better than TMR because each
redundant block has a different reliability.

This technique increase the cost of the design. Indeed are needed three independent teams
that work at the same architecture, this is an extra cost that may be paid for high reliability
request, for example a system that should have the maximum SIL.

Figure 2.19: Example of design diversity used in conjunction with TMR technique in order
to protect an IF stage.

N Modular Redundancy (NMR)

NMR is a more general set of all techniques that use many parallel block to increase reli-
ability, these system are also called N-of-M where M is the number of redundant system
and N is the number of system needed for proper operation. In order to avoid a deadlock
M should be an odd number. As we have seen TMR is a typical NMR system but exist
also NMR system with M=5 and upper number, anyway these type of architecture are
rarely used due to the high power and area increase, indeed it is known that an increase
in the power consumption increase temperature which in turn increase the wearout and
probability of SEEs due to particle strike.

Assuming that all system used in NMR are statistical independent, the general formula of

41

Technical Background

reliability for a NMR system is 16:

RN of M (t) =
NØ
i=M

A
N

i

B
Ri(t)[1 −R(t)]N−1 (2.15)

The independence of the parallel blocks is essential and lead to an high reliability, for these
reasons common mode failures are critical for these system. Integrating the reliability we
find the MTTF of system, as we have seen for TMR the value of MTTF is slightly lower
then for simplex architecture and this is also true for all NMR system. For these reason
NMR system are really good in terrestrial application where human is able to maintenance
devices and replace end-of-life parts. When we design an architecture for long space mis-
sion we can opt for an Hybrid Redundancy.

Even if for NMR is generally used an odd N number, a 2020 research [31] investigate the
use of Quadruple Modular Redundancy (QMR). The paper proposes an approximate QMR
redundancy method where are used three instances that approximate the true result and
one that finds the exact one. A vote on the 3 approximate architectures is done first and
then the result is voted with the exact architecture. The difference with the other works
of approximate redundancy is in the use of approximators equal to each other while in the
other works were used all different approximators.

Hybrid Redundancy

As we have seen TMR and NMR increase reliability but slightly decrease the MTTF of the
system respect to simplex architecture. This can be a problem in space application where
maintenance and replacement are not possible, for these application we can use Hybrid
redundancy. As you see in Figure 2.20 this technique starts from a NMR architecture
adding k spare blocks. During normal operation the N output of the replicas are voted,
when a primary block become faulty it is switched off and replaced with a spare block.

Compare block compares active blocks outputs with correct output and implements a faulty
block detector for example using an Alpha Counter for each block. When the Alpha
Counter of a block exceeds the critical level, the faulty block is disconnected and replaced
with a spare working block. This mechanism implements a self-maintenance system in
which end-of-life blocks are replaced, in this way MTTF and reliability of the system are
both increased.

42

Technical Background

Figure 2.20: Example of generic Hybrid Redundancy with Power gating, clock gating and
input selection and blocking.

Spare and primary blocks create a large number of elements to power and control. The
increase of power consumption increase the probability of faults 32 and this leads a perfor-
mance degradation. To reduce the power consumption designers use clock gating , power
gating and input blocking in unused blocks, in this way are reduced useless switches. These
methods reduce TID effects since without an electric field the Vth variation is low, this
leads to an higher spare block life and an higher system MTTF.

Clock gating, power gating and input blocking are controlled by compare and control block
that should maintain the should also maintain the history of faulty blocks. Problems arise
when the system is reset, in these cases there are few methods to recover informations
about block status:

• Common and Status Registers: These registers are used to store information
about hardware and they are readable by software. When a new faulty block is
detected the information should saved in one of these registers, then a software level
routine can move this data in a non volatile memory. When the system is rebooted
data from non volatile memory are loaded into CSR and then uploaded into Compare
and Control block of each system we have;

• Test Vector: CSR methods is a little complex when we have a high number of Hybrid

43

Technical Background

architecture, it also needs a software procedure. For this reason some designers prefer
to avoid CSR methods using a test vector after reboot 33. The system works on this
test vector and finds faulty blocks, indeed each Compare and Control blocks correctly
configure each hybrid system looking for faulty blocks, at the end of this procedure
the architecture is ready to start in safe mode.

2.3.2 Information Redundancy

Inside a whatever core are used memories to store information, unfortunately also memory
experience errors. For these reason there are coding techniques used to detect or/and cor-
rect data errors, coding is the most common technique information redundancy. According
to this technique are added some check bits to the original data, this extra bits are stored
with the data and are used to verify the correctness of data.

The information redundancy process is summarized here:

• Code creation: The process start when a certain data with A-bits should be written
into memory, it is encoded into B-bits codeword. the codeword can be separable if
check bit and data are not mixed together, so a separable codeword will have A-bits
for data and C-bits for check bits where A-bits + C-bits = B-bits;

• Data degradation: The data stored may be modified by SEEs, wear out process and
any kinds of possible faults. Statistically the longer the data are not read, the easier
they became corrupted due to some faults. This corruption change with memory,
technology, temperature, environment etc. and can’t be precisely calculated;

• Data reading: When data are read their correctness should be verified. At this
step a certain block uses the codeword written in memory in order to detect and/or
correct existing faults.

The most common code is the Parity Bit, the Hsiao code, the Hamming Code and the
Cyclic Redundancy Check (CRC).

2.3.3 Temporal Redundancy

The idea of temporal redundancy is to repeat an operation N times and compare results.
This decrease the area of a safety architecture but also decrease the performance, as you
can see in Figure 2.21 a certain operation is executed three times, the outputs are stored
and at the end of computation they are compared to find correct output. This techniques
is effective at processors level, where spatial redundancy adds too much overhead, using

44

Technical Background

this techniques can be used only one core plus some external logic.

Figure 2.21: Example of generic Temporal Redundancy.

Figure 2.22: Example of generic Temporal Redundancy with data encoding.

All previous techniques can be applied together and in mixed way in order to increase Reli-
ability and MTTF of the overall system. The implementation of these techniques should be
done considering power, area, performance and safety requirements. This trade off led to
refine the techniques used to decide where and when use a specific protection, for example
a 2012 research 34 investigate the use of genetic algorithm to find the best TMR configura-
tion, in this case the triplication of blocks or/and voters is done in order to optimize area

45

Technical Background

and reliability.

A 2010 work create a software supported frame-work that is able to improve the TMR
application basing on the temperature change in the chip, the methods consist in the ap-
plication of TMR to all processor, then the core is Place and Route to FPGA and the
temperature distribution is analyzed. Since temperature distribution give guidelines about
where it is most likely faults to occur, it is possible to eliminate redundancy from parts of
the design that operate under low temperatures without affecting fault masking.

In this Master Thesis we focused on the automatization of the FT design and for this
reason we use a basic TMR technique plus a permanent fault detection.

46

Chapter 3

RISC-V and CV32E40P Core

RISC-V is a free and open Instruction Set Architecture (ISA) with a small instruction set
(Reduced Instruction Set Computer) at the heart of core of a System On Chip (SOC).
An ISA is the abstract description of core instruction, registers, data types and extension,
without design imposition. Many implementation of a CPU can rely on the same ISA using
different design, in this way software used in these different implementation could be equal.
RISC-V can be seen a first try to standardize the Instruction Set world without using new
technology. The focus is on modular approach and extensibility in order to increase field
of use of the ISA.
For these reasons the use of a free and open ISA worldwide unlock partially software from
hardware implementation since the interface is always about equal. This subdivision speed
up computer CPU progress with lower efforts in software stack support. Indeed companies
efforts can be focused more on design and less on software support since the interface is
the same.

RISC-V is maintained by the RISC-V foundation born in 2015, it is driven by open collab-
oration in order to improve RISC-V ISA. The use of free and open collaboration speed up
bug resolution, reduce design risk and lead to speed up in design techniques. In order to be
used worldwide the RISC-V architecture use a Reduced Instruction Set of 47 Base Instruc-
tion, the ISA is designed with a modular approach to easily add extensions. In this way
the ISA can be used for whatever application since the core can be customized according
to application and field of use. It is already used in computer, supercomputer, embedded
application and it now supports by many Operative System like RTOS and Linux.

It is precisely the fact that it can be customized that increase the worldwide use. This
increase the test done on the ISA implementation which lead to ISA improvement and
increase the ISA dependability.

47

RISC-V and CV32E40P Core

Starting from these ideas we could summarized some benefits of a open and free ISA 35 :

• Greater Innovation: More people working on the same ISA speed up innovation;

• Shared Open Core Design: with a free ISA the implementation (e.g., System
Verilog design) can be shared as open source, this prevent malicious traps doors and
increase transparency, it also allows the born of new industries that create products
from open design;

• Cheaper Processors: the reduction of company work on software stack decrease
the processors cost, this speed up widespread of IoT;

• Longevity of Software Stack: a standard ISA allow the creation of an endurance
Software Stack since it don’t depends to a company;

• Architecture Education and Research closer to real application: the aca-
demic world could work on open hardware and software.

At 2020 the 23% of ASICs and FPGAs project incorporate at least one RISC-V core and
it is foreseen that in 2025 will be used 62.4 Billion of RISC-V Cores respect to 10 Billion
of 2020. This is surely a positive sign for open ISA strategy, it means that many industries
are rely on RISC-V ISA architecture and they use it to speed up their internal design.

3.1 History
RISC-V ISA design started in 2010 in a project for the Parallel Computing Laboratory
(Par Lab) at Berkeley held by Prof. Krste Asanović and graduate students Yunsup Lee
and Andrew Waterman. The idea of RISC-V ISA born to create a complete open hardware
ecosystem, indeed until that moment the main ISA was proprietary and academic world
work on non realistic architecture. Anyway the outcome of an open ISA also help indus-
tries since the main costs an complexity in the creation of a new chip is the development
of software stack for new ISAs. Indeed any change to the ISA means redevelop some parts
of software with high costs. Due to historical reason ISAs are proprietary, but in the last
40 years no meaningful development arise in this field and so there aren’t no meaning to
avoid ISA standardization. Starting from this ideas the RISC-V project begin and was
developed up to now.

The first release of RISC-V ISA was in 2011 and it was under the Berkeley Software
Distribution (BSD) license. After some year of RISC-V use and some publication 35 in
2011 was created the first chip in 28nm FDSOI and in 2015 was held the first RISC-V
workshop, in the same year was founded the RISC-V foundation with 36 members 36.

48

RISC-V and CV32E40P Core

In the following year the RISC-V ISA was put under Creative Common license in order to
enable an easy use and open contribution.

In the year 2013-3018 in the UC Berkeley ASPIRE Lab was created many RISC-V com-
patible free processors, today RISC-V Foundation continue to support RISCV ISA stan-
dardization helping industries to use it, the versions of the ISA is now frozen at 2019 in
order to simplify development of RISCV core. These are the official ISA standard: RISCV-
privileged and RISCV-unprivilged. Instead in this page you can find all original standard
documents: RISCV-spec.

3.2 RISC-V ISA
RISC-V ISA is described in two document:

• riscv-privileged: Or Kernel mode, in this document are described privileged in-
structions, any attempt to execute this instruction from User Mode will not be exe-
cuted and it is considered illegal instructions. These are the instructions used in the
Operative System to perform operations.

• riscv-unprivileged: Or Non privileged mode, it is made by all instructions that can
be run only in user mode.

In these two documents the ISA is described avoiding implementations details as much as
possible. At the beginning of the standards are defined some terms 37:

• core: An architecture is defined a core if it contains an instruction fetch;

• harts: Are hardware threads that can be support by the ISA, a RISC-V compatible
core can supports multiple harts;

• coprocessor: It is an instruction set extension used by the RISC-V compatible
core, this coprocessor is considered as a separate unit that is controlled by a RISC-V
instruction flux, but it have relative autonomy respect to primary RISC-V core, this is
an example of RISC-V coprocessor programming for sensor reading RISC-V sensors;

• accelerator: This component are really useful to perform specialized complex task,
e.g., I/O and AI accelerator, the first manage I/O processing task while the second
could be a voice recognition AI.

As you can see RISC-V can have extensions and coprocessors, it can also have many
system-level organizations; single-core, many-core shared memory and so on.

49

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://riscv.org/technical/specifications/
https://github.com/espressif/esp-idf/blob/c13afea635adec735435961270d0894ff46eef85/docs/en/api-guides/ulp-risc-v.rst

RISC-V and CV32E40P Core

A RISC-V ISA implementation must contain base integer ISA, starting from this basis
can be added optional extensions. The base integer ISA is enough to support a compilers,
assemblers, linkers, and operating system, in this way it provide a starting point to custom
implementations.

The RISC-V ISA is divided in four base ISA family and it is "designed to support exten-
sive customization and specialization" 37, each family is distinguished by a different register
width and the number of corresponding address space. The four family are RV32I, RV32E
(with 32 bits) RV64I (64 bits) and RV128I (128 bits), naturally 128 bits is a huge number
of address, anyway RISC-V standard want to be prepared for future huge computer ad-
dress. These four ISA are considered four base ISA, in this way e.g., RV64I shouldn’t be
compliant with RV32I and so have separate implementation.

In addition to base ISA (marked with I suffix for Integer) there are some standard extension:

• M: It is the standard integer multiplication and division extension;

• A: It is the standard Atomic instruction extension that add some instruction able to
"atomically read, modify, and write memory for inter-processor synchronization" 37;

• F: It is the standard floating point extension;

• D: It is the standard double precision floating point extension;

• C: It is the standard compressed instruction extension that provide the 16 bit form
of common instructions.

The memory of a RISC is a single byte-addressable address space of 2XLEN bytes, a word
is 32 bits, an halfword 16 bits, a doubleword 64 bits and a quadword 128 bits. The memory
accesses can be done using explicit and implicit mode, the first is used by load and store
instruction while the second is used in instruction fetch to give the encoded instruction to
execute. Only some section of the memory can be used, these sections create the execution
environment, if an instruction try to read/write outside of this zone, an exception is raised.

Each base instruction for the RISC-V ISA have 32-bit aligned to the 32-bit boundaries,
anyway are also supported variable length instruction like 16-bit compressed instruction
aligned to the 16-bit boundary, for these instruction is needed the compressed decoder
block in the Instruction Fetch stage. The term IALIGN refers to the instruction address
alignment of the ISA, it could be only 32 or 16 bit. Instead the term ILEN refers to the
maximum instuction lenght bit.

50

RISC-V and CV32E40P Core

Figure 3.1: 32-bit and 16 bit instruction, frozen in the last release.

The lowest two bit [1:0] on the right are used to recognize a compressed instruction, if they
are both 1 the instruction isn’t compressed, othewise it is compressed.
Even if the RISC-V can have either Little-Endian and Big-Endian memory order, the
instruction is divided in 16-bit Little-Endian parcels, the parcels of the same instruction
is saved contiguously with the lowest-addressed parcel in the lowest-numbered bits in the
instruction.

3.2.1 Base Instructions

We will discuss the RV32I base version since in this Master Thesis we use the CV32E40P
core. For RV32I ISA we have 32 unprivileged registers where the first is hardwired to 0
and the others are general purpose, there is also the 32 bit Program Counter register.
The base instructions used are six R/I/S/B/U/J and are shown in figure 3.2, all 47 base
instruction is encoded using these 6 formats. As you can see many parameters have the
same place, this enable an easier decode of instructions and so increase low power behaviour
of possible implementations.

Figure 3.2: RISC-V ISA instruction format.

Inside the table 3.2 in the field you can see: opcode that is the operation code, rd that is

51

RISC-V and CV32E40P Core

the number of register destination, immediate that is a constant value or the offset for an
address, func3 that is an additional opcode of 3 bit, func7 that is an additional opcode of
7 bit, rs1 & rs2 that are the first and the second source register number.

In figure 3.3 there is an implementation of the RISCV ISA.

52

RISC-V and CV32E40P Core

Figure 3.3: RISC-V architecture with four pipeline stage.
53

RISC-V and CV32E40P Core

3.3 CV32E40P core
CV32E40P is a 32-bit RISC-V core that implement RV32IM[F]C ISA using a custom ex-
tension called Xpulp, with this extension the core is able to reach a high code density,
performance and efficiency 38 39. The core architecture has been designed to work with a
Near-Threshold voltage in order to increase the efficiency of the transistors.

For this core are created some instruction extensions and architectural optimization that
increase computational density and speed up processing reaching a 3.5x faster elaboration
and 3.2x more energy efficiency. This core has been designed also to be used in the Parellel
Ultra Low Power (PULP) platform. PULP use a set of RISC-V core with shared memory
to reach high efficiency, it contain a set of IP that enable this performances.

The original name of the CV32E40P was OR10N based on the OpenRISC ISA, then in
2016 it change name in RI5CY and it became a RISC-V compatible core, it has been
maintained by PULP Platform until 2020 when it begin to be contributed by OpenHW
Group.

In figure 3.4 there is the main diagram of the CV32E40P core, it is a 4-stage in order RISC-
V processor, the MULT block correspond to the M extension while compressed decoder is
the C extension, in the figure there isn’t the floating-point unit because it is optional in
CV32E40P core.

Figure 3.4: CV32E40P core diagram.

54

RISC-V and CV32E40P Core

In core repository cv32e40p you can find all System Verilog code, documentation and veri-
fication procedures. This Master Thesis is focused on the transformation of the Instruction
Fetch (IF) of the CV32E40P in a fault tolerant stage, for this reason we will focus on IF
stage architecture of the core.

3.3.1 CV32e40P Instruction Fetch

The instruction fetch read the instruction from instruction memory and provide them to
the Instruction Decode (ID). As you can see in figure 3.5 the IF stage can be divided into
six main block, anyway only the Prefetch Buffer, the Compressed Decoder and the Aligner
are designed as separate System Verilog file.
The six block of the IF stage cover these functions:

• Prefetch Buffer (PB): PB is designed in order to fetch instruction from instruction
memory/fetch via the OBI interface (cv32e40p_obi_interface.sv file), the instruction
are then inserted to a four element FIFO (cv32e40p_fifo.sv file) and then they are sent
to the ID stage. OBI interface and the FIFO is controlled by the Prefetch Controller
(cv32e40p_prefetch_controller.sv file). The advantage of the use of Prefetch Buffer
is a higher instruction fetch speed that affects the core performances.

• Compressed Decoder (CD): CD check the instruction in order to verify if is
compressed, this identification is done using the first two bit of the instruction, when
they are both 1 means that the instruction isn’t compressed and it is copied to the
output, otherwise the instruction is decoded. The stage is completely combinatory
since it is described as a big case in System Verilog.

• Aligner: This block aligns instructions considering compressed instructions format.
It contain an FSM and so FF components.

• IF pipeline: This block contain the pipeline of the if stage, it is a System Verilog
(SV) block written inside the cv32e40p_if_stage.sv file.

• IF FSM logic: This block manage control signals of Prefetch Buffer and Aligner, it
is a System Verilog (SV) block written inside the cv32e40p_if_stage.sv file.

• Program Counter Definition (PCD): PCD define the PC according to jump,
branch, trap and exceptions. It is a System Verilog (SV) block written inside the
cv32e40p_if_stage.sv file.

55

https://github.com/openhwgroup/cv32e40p

RISC-V and CV32E40P Core

Figure 3.5: CV32E40P Instruction Fetch block diagram.

56

Chapter 4

Fault Tolerant IF Stage

We decide to begin the creation of the FT IF stage from the Compressed Decoder (CD).
The idea is to create a FT Compressed Decoder manually, test it and then convert this
architecture in a template. This generic template will be written in Travulog and used to
automatically convert IF stage sub-blocks in fault tolerant architecture. The conversion is
described in section 4.2 and 4.3, instead in the first section we focus on the design of the
FT Compressed Decoder.

4.1 FT Compressed Decoder
The Compressed Decoder is a small, one input - three output, combinatorial sub-block
of the IF stage. It is suitable to FT experimentations due to the low number of inputs
and outputs, indeed for TMR technique we need to add a voter for each output, so lower
outputs means faster design time.

The choice of the FT technique to use is linked to the final objective of the thesis: to
create a POW (Proof Of Work) of the Travulog/Htravulog Toolchain and a FT IF stage
at the same time. Therefore we decide to use the basic TMR technique plus a permanent
error detector with alpha-counters. Another reason to implement TMR is that this is a
full combinatorial block. In this way we implement a FT IF stage with the most used FT
technique; this can be a good reference in the creation of Travulog template and it speed
up the understanding of the architecture, by the simplification of the external approaches
to the Travulog/Htravulog Toolchain.

57

Fault Tolerant IF Stage

4.1.1 Basic Voter

We created as first block the cv32e40p_3voter. As you can see in Figure 4.1, the voter
compares three inputs data in_1_i, in_2_i and in_3_i, the output voted_o is the result of
the majority vote. If all three inputs are different or in_2_i != in_3_i the output is equal
to in_1_i, otherwise the output is in_2_i. This type of voting gives priority to in_1_i
when all inputs are different, this is a non-significant choice for the final fault tolerance,
indeed we can’t know what input is correct if they are all different.

Figure 4.1: This is the voter used in the fault tolerant architecture.

The designed voter has also a three bit input called broken_block_i, each bit refers to a
block, zero means that the block works properly while 1 means that it has a permanent
error. For example [0,0,0] means that all input signals come from blocks without permanent
errors, instead [0,1,0] means that the second block have a permanent error.
broken_block_i allows the discarding of input signals from permanent faulty blocks. In-
deed, the multiplexer on the left is controlled by the broken_block_i, e.g., when in_1_i
comes from a permanent faulty block, in_2_i is automatically selected as output, so the
system becomes a duplexer.

58

Fault Tolerant IF Stage

In addition to the voting part there is some logic that indicates when there is a faulty
input and when it is corrected by the voter. err_detected_1_o, err_detected_2_o and
err_detected_3_o are one if the corresponding input signals in_1_i, in_2_i and in_3_i
have a transient fault. When the input signal in_x_i is permanently faulty the corre-
sponding output err_detected_x_o is zero, the remaining two output err_detected_y_o
and err_detected_z_o will be both 1, if the corresponding inputs are different, because
we can’t know which is the correct input, otherwise they are zero.
If the detected error has been corrected, the err_corrected_o signal is one, instead it is
zero when all inputs are different.

The cv32e40p_3voter block can be used for single dimension array by changing the L1
parameter; this parameter changes the dimension of in_x_i and voted_o signals, e.g.,if
you have three 32-bit signals to compare, you have to set L1 to 32 to use the voter.

4.1.2 Configurable Voter

In order to enable triple voter configuration, we create the cv32e40p_conf_voter. This
block can be used as a simple voter if TOUT is set to zero Figure 4.2 or as a triple voter
if TOUT is set to 1 Figure 4.3 .
The external interface of the conf_voter is equal to the cv32e40_3voter apart for triple
input called to_vote_i and triple output.
If TOUT is set to 0, the output of the voter is connected to the first element of voted_o,
the other two elements aren’t connected and they don’t exist in the final layout.
The three err_detected signals of cv32e40_3voter are grouped in block_err_o, so basically
if TOUT is set to 0 the conf_voter is approximately equal to the cv32e40p_3voter.
Instead if TOUT is set to 1, the conf_voter creates three instances of cv32e40_3voter and
each voter votes independently the three inputs. The three outputs are connected to the
voted_o signal. Finally the status signals are voted and sent to the output.
As you can see, the external interface of the conf_voter remains the same if you change
TOUT, this allows a wide use of the block.

59

Fault Tolerant IF Stage

Figure 4.2: Configurable voter, with TOUT=0, a single voter.

Figure 4.3: Configurable voter, with TOUT=1, a triple voter.

4.1.3 Breakage Monitor

The third block is the cv32e40p_breakage_monitor in Figure 4.4. Each time the
Breakage Monitor is instanced we should associate it to one replica inside a NMR structure;
in our case we have a TMR and so we will use three Breakage Monitor, one for each replica
of the Compressed Decoder. Each time the associate block have an error, err_detected_i

60

Fault Tolerant IF Stage

should be asserted. This error increases reg_count_q by an INCREMENT value. In-
stead, if err_detected_i is equal to zero reg_count_q is decreased by a DECREASE
value; both INCREMENT and DECREASE are SV parameters that can be changed.
When reg_count_q is higher than the BREAKING_THRESHOLD, is_broken_o is as-
serted, this causes the activation of the clock gating which freezes the block maintaining
is_broken_o to one. The block can also be set broken using the set_broken_i input signal.

This mechanism of increment and decrease allow to discard transient errors because their
frequency is really low, so for one increment there are thousands of decreases. Instead,
when a permanent error exists, it typically appears more frequently and so the increase
rate is higher, this leads to an increase of reg_count_q and, as a consequence, to the
detection of a permanent error. Anyway you can steer INCREMENT, DECREASE and
BREAKING_THRESHOLD parameters in order to fit the error rate of your application.
The SV module allows the change of the register size: INC_DEC_BIT is the number of bit
for registers that contain INCREMENT and DECREASE variables, instead COUNT_BIT
is the number of bit of reg_count register. Naturally we fit the number of bit with the
parameter’s values.

Figure 4.4: Breakage Monitor to detect permanent errors.

61

Fault Tolerant IF Stage

4.1.4 Configurable Compressed Decoder

Finally we create the cv32e40p_compressed_decoder_ft in Figure 4.5, using all
previous blocks to create a new FT configurable Compressed Decoder (CD). On the
right there are three replicas of the CD, the nine outputs are grouped by name so all
instr_o outputs are connected to instr_o_to_vote, is_compressed_o outputs are con-
nected to is_compressed_o_to_vote and finally illegal_instr_o outputs are connected to
illegal_instr_o_to_vote.
These *_to_vote signals are connected to the relative conf_voter, as you can see in Fig-
ure 4.5 the first conf_voter have three voter inside due to TOUT=1, this is an example
of setting.

Each conf_voter have the block_err_o outputs, the first bit of these signals is referred
to the errors of the first replica, the second bit to the second replica and the third to the
third replica. The first block_err_o signal is referred to errors on instr_o, the second
block_err_o to is_compressed_o and the third to illegal_instr_o.
We apply OR operation to each element of block_err_o in order to find possible errors in
the corresponding replica, e.g., if the first replica have an error on is_compressed_o the
second conf_voter will have block_err_o=[1,0,0], while the other two conf_voter will have
block_err_o=[0,0,0], so we execute the OR between all block_err_o[0] and we find that
is occured an error in the first replica.

The outputs of the OR are connected to the inputs of the Breakage Monitor, in this way
each Breakage Monitor controls the corresponding replica. When a replica is considered
broken by the Breakage Monitor the corresponding bit of the is_broken_o vector is set
to 1 and all conf_voter will no longer consider the corresponding block. In this case the
compressed_decoder_ft became a duplex system and if one of the two replicas failed the
operation should be redone.

62

Fault Tolerant IF Stage

Figure 4.5: A possible configuration of the Configurable Compressed Decoder.

63

Fault Tolerant IF Stage

set_broken_i is a three bit signal used to set broken a replica from outside the block, at
the same time exist the is_broken_o signal used to communicate if there are permanent
broken block to the outside of the block.
The last signal can be used to save internal replicas status in some non-volatile memory
(e.g., CSR registers) and use these information to reload replicas status inside the FT
compressed decoder if the system is rebooted with set_broken_i.

Finally we have err_corrected_o and err_detected_o that communicate when an error
occurs and if it has been corrected. These two signals can be used at high level to check
architecture integrity and eventually indicate if the system should be replaced due to high
error rate.

In the Parameters From Package table there are all SV parameters that can be changed
to configure the block. So the features of the block are:

• Fault Tolerance: If CDEC_FT is equal to one is used TMR technique as you see
in the picture, otherwise is used only one Compressed Decoder and the

cv32e40p_compressed_decoder_ft became the basic cv32e40p_compressed_decoder.

• Triple Input: When you set CDEC_TIN is equal to one should be provided three
instr_i inputs, each input is connected to the corresponding compressed decoder,
otherwise is used only one input equal for each replica. This feature is useful if the
previous block implement triple voter configuration.

• Triple Output: Each bit of CDEC_TOUT corresponds to a conf_voter and so
to an output, the MSB is the last bit and it corresponds to the first output. The
order of the output corresponds to the appearance order in the port declaration
od the cv32e40p_compressed_decoder. When a bit of the CDEC_TOUT is 1 the
corresponding conf_voter implement a triple voter, this means that the corresponding
output will have three valid signals from triple voter.

• Permanent Error Settings: The remaining parameters are used to set the Break-
age Monitor parameters, all Breakage monitor will have the same configuration.

As we have seen this block is highly configurable. Due to triple input - output option
both input and output signals are triplicated in the port declaration. Anyway in some
configuration not all input and output signals are connected, this means that care must be
taken in the block connection and parameters configuration.

In the next chapter we will use the cv32e40p_compressed_decoder to create the Travulog
template in order to automatically convert each sub-block of the IF stage.

64

Fault Tolerant IF Stage

4.2 Travulog
To create a configurable FT architecture it is necessary to apply fault tolerant techniques
to all the blocks of the IF Stage and then allow to apply or not techniques in each block by
means of parameters. It was therefore decided to create a metalanguage within the Sys-
temVerilog (SV) that allows the creation of the new architecture starting from a template
and a base module, in this way we can define a template and apply it to each block of the
IF stage. The automatized application of Fault Fault tolerant methods already exists in
some commercial application but it work at netlist level 40, our solution is at RTL level
and it is open source.
As you can see in Figure 4.6 the transformation of the main module is done by a Python
object linked to the template, when you give the base module to the object a new module
is created. The new FT architecture is created on the basis of the Travulog template
and the base module, it is therefore an interface layer that makes the old module Fault
Tolerant. To allow the conversion through the Travulog object it is necessary to have an
object that contains all the data of the associated SystemVerilog base module, so we have
created a new Python class that parses a SV file containing a module, this class has been
called moddata. As shown in the Figure 4.6 the file containing the basic module must
be transformed into the corresponding moddata object and then passed to the Travulog
object which generates the new architecture.

Figure 4.6: Flow diagram of architecture transformation using Travulog template

The conversion of a SVerilog module using a Travulog template implies the use of Python
code, in fact you have to create a moddata object related to the Base module, the Travulog

65

Fault Tolerant IF Stage

object related to the TV template and then give moddata obj to TV obj to obtain the new
SV code.
For these reason, in order simplify the use of Travulog template we create the Hidden
Travulog (HTV) code or HTravulog. This code is hidden inside a synthesizable SV module
using four slash and a space: "//// " .
This code should be written in the main SV module and it indicates how to apply Travulog
template. Using HTV code you can also create new module from a SV block inside the
current module and the apply your template to this new block. The complete functionality
are described in HTravulog section.

To create the Travulog language we started from the fault tolerant compress_decoder_ft
and we created a series of commands that allow us to create the FT compress decoder from
the basic one. We will now analyze the various Travulog commands through pieces of the
Travulog template and its conversion into SVerilog.

4.2.1 Declaration of ports

Ports declaration is the first element in a System Verilog module, in this part of a new FT
block probably you will see many of the IO signals of the basic architecture, for this reason
we automatized the creation of this part allowing to use basic block signals name.

In the listing 4.1 there is a part of the Travulog template, this piece of code allows to gener-
ate the System Verilog of the listing 4.2 which is the IO declaration of the FT Compressed
Decoder. The Travulog commands used are the following :

PARAMETER_DECLARATION: The command PARAMETER_DECLARATION
copies the parameter declaration from the BLOCK module in the new System Verilog
module. BLOCK is an identifier used in the Travulog object that should be linked
to a moddata object. Note that you can have multiple ID since they are managed as
a diction:ary, e.g., if you set {"BLOCK":moddata_obj1, "BLOCK2":moddata_obj2}
in the Travulog object you can use both BLOCK and BLOCK2 identifiers in the
Travulog code.

DECLARATION_FOREACH: This command cycles on the given signals and it sub-
stitutes: INOUT with "input" or "output", BITINIT with the bits definition and
SIGNAME with the name of the signal. The first argument is the module id, the
second one is the type of signal: IN for input port of the module, OUT for output,
IN_OUT for both input and output and INTERN for internal signals of the module.
You can also indicate some signals to exclude from the list using "NOT sig1 sig2 ... "
as you can see at line 7. e.g., clk and rst_n signals are excluded since they should not

66

Fault Tolerant IF Stage

be triplicated. DECLARATION_FOREACH can also be used for the declaration of
internal signals and for assign statement as we will see later.

MODULE_NAME: This is a parameter which is substituted with the name given to
the Travulog object, it is the name of the new module.

1 module MODULE_NAME module cv32e40p_compressed_decoder_ft
2 #(
3 PARAMETER_DECLARATION BLOCK parameter FPU = 0
4)
5 ((
6 // compressed decoder input output // compressed decoder input output
7 DECLARATION_FOREACH BLOCK IN_OUT NOT clk rst_n input logic [2:0] [31:0] instr_i ,
8 INOUT logic [2:0] BITINIT SIGNAME , output logic [2:0] [31:0] instr_o ,
9 END_DECLARATION_FOREACH output logic [2:0] is_compressed_o ,

10 output logic [2:0] illegal_instr_o ,
11
12 input logic clk , input logic clk ,
13 input logic rst_n , input logic rst_n ,
14
15 // fault tolerant state // fault tolerant state
16 input logic [2:0] set_broken_i , input logic [2:0] set_broken_i ,
17 output logic [2:0] is_broken_o , output logic [2:0] is_broken_o ,
18 output logic err_detected_o , output logic err_detected_o ,
19 output logic err_corrected_o output logic err_corrected_o
20););
21

Listing 4.1: Declaration Travulog Code
Listing 4.2: Declaration SVerilog code
derived

4.2.2 Internal signals and assign

In the following listings there is the continuation of the previous ports definition. The first
"declaration_foreach" create the signals used to connect the three block outputs to the
voter while the second one creates block error signals. In the last two lines there is the
compound parameter "SIG_NUM-BLOCK-OUT" inside the square bracket, this parameter
is substituted in the right listing with the number (SIG_NUM) of output ports (OUT)
of the module (BLOCK) minus one, anyway instead of OUT you can use IN, PARAM,
INTERN or IN_OUT in order to have the correct signals number.

1 // Signals out to each compressed // Signals out to each compressed
2 // decoder block to be voted // decoder block to be voted
3 DECLARATION_FOREACH BLOCK OUT logic [2:0] [31:0] instr_o_to_vote ;
4 logic [2:0] BITINIT SIGNAME_to_vote ; logic [2:0] is_compressed_o_to_vote ;
5 END_DECLARATION_FOREACH logic [2:0] illegal_instr_o_to_vote ;
6
7 // Error signals // Error signals

67

Fault Tolerant IF Stage

8 DECLARATION_FOREACH BLOCK OUT logic [2:0] instr_o_block_err ;
9 logic [2:0] SIGNAME_block_err ; logic [2:0] is_compressed_o_block_err ;

10 END_DECLARATION_FOREACH logic [2:0] illegal_instr_o_block_err ;
11
12 // Signals that use error signal to // Signals that use error signal to
13 // find if there is one error on each // find if there is one error on each
14 // block , it is the or of previous signals // block , it is the or of previous signals
15 logic [2:0] block_err_detected ; logic [2:0] block_err_detected ;
16 logic [SIG_NUM -BLOCK -OUT :0] err_detected ; logic [2:0] err_detected ;
17 logic [SIG_NUM -BLOCK -OUT :0] err_corrected ; logic [2:0] err_corrected ;
18

Listing 4.3: Travulog Code Listing 4.4: SVerilog code derived

4.2.3 Instance

In order to create a new instance from an existing block, the INSTANCE command shown
in the listing 4.5 was create. After the INSTANCE keyword, there are the block id and the
name of the new instance. As shown in listing 4.5 the BLOCK_MODNAME parameter is
used to create the name of the new instance, this parameter is replaced in the preprocessing
phase with the name of the BLOCK module.
The connection commands are indicated inside the INSTANCE command. The command
at line two indicates to connect the parameters to the same name, in fact we have .FPU
(FPU). At line 3 instead it is indicated to connect clk and rst_n signals to the same
name, the next line connects the inputs to their same name but it adds the suffix "[0]",
however, at the signals already connected in the previous if are not appended the suffix.
In the conversion to SV on the right there are no clocks and no reset so the behavior just
described is not evident.
As already mentioned, the connections inside the INSTANCE command are sensitive to
the order in which they are made, for example the IF on the inputs should be before
assigning the inputs generically with "IN = IN", otherwise the ifs are not considered. Same
consideration for outputs and parameters.

1 INSTANCE BLOCK BLOCK_MODNAME_no_ft cv32e40p_compressed_decoder
2 PARAM = PARAM #(
3 IF clk rst_n IN=IN .FPU (FPU)
4 IN= IN [0])
5 OUT = OUT [0] compressed_decoder_no_ft
6 END_INSTANCE (
7 // Input ports of
8 compressed_decoder_no_ft
9 . instr_i (instr_i [0]) ,

10
11 // Output ports of
12 compressed_decoder_no_ft
13 . instr_o (instr_o [0]) ,
14 . is_compressed_o (is_compressed_o [0]),

68

Fault Tolerant IF Stage

15 . illegal_instr_o (illegal_instr_o [0])
16);
17

Listing 4.5: Instance Travulog Code Listing 4.6: Instance SVerilog code derived

In the cv32e40p_compressed_decoder_ft module there are as many conf_voter as the
output of the cv32e40p_compressed_decoder (CD), in fact the CD is triplicated and we
need a conf_voter for each output. In order to automatize the creation and the connection
of the conf_voter we create the command INSTANCE_FOREACH. After this keyword
there is the id of the block and the list of signals on which cycle on. It can be used IN, OUT,
IN_OUT and INTERN as abbreviation for the list, in this way the code is compressed
and clearer.
As just mentioned INSTANCE_FOREACH cycles on the signals list and it substitutes in
the verilog code: BITNUMBER with the number of bits of the signal, INDEX with the
current cycle number and SIGNAME with the name of the signal.
In the listing below you can see an example of how the INSTANCE_FOREACH command
works.

1 INSTANCE_FOREACH BLOCK OUT // Voter for TOVOTE signal , triple voter if
2 // Voter for TOVOTE signal , triple voter // CODE_TOUT [0] == 1

if cv32e40p_conf_voter
3 // PARAM_NAME_TOUT [INDEX] == 1 #(
4 cv32e40p_conf_voter .L1 (32) ,
5 #(.TOUT(CODE_TOUT [0])
6 .L1(BITNUMBER),) voter_instr_o_0
7 .TOUT(PARAM_NAME_TOUT [INDEX]) (
8) voter_SIGNAME_INDEX . to_vote_i (instr_o_to_vote),
9 (. voted_o (instr_o),

10 . to_vote_i (SIGNAME_to_vote), . block_err_o (instr_o_block_err),
11 . voted_o (SIGNAME), . broken_block_i (is_broken_o),
12 . block_err_o (SIGNAME_block_err), . err_detected_o (err_detected [0]) ,
13 . broken_block_i (is_broken_o), . err_corrected_o (err_corrected [0])
14 . err_detected_o (err_detected [INDEX]) ,);
15 . err_corrected_o (err_corrected [INDEX]) // Voter for TOVOTE signal , triple voter if
16); // CODE_TOUT [1] == 1
17 END_INSTANCE_FOREACH cv32e40p_conf_voter
18 #(
19 .L1 (1) ,
20 .TOUT(CODE_TOUT [1])
21) voter_is_compressed_o_1
22 (
23 . to_vote_i (is_compressed_o_to_vote),
24 . voted_o (is_compressed_o),
25 . block_err_o (
26 is_compressed_o_block_err),
27 . broken_block_i (is_broken_o),
28 . err_detected_o (err_detected [1]) ,
29 . err_corrected_o (err_corrected [1])
30);
31 // Voter for TOVOTE signal , triple voter if

69

Fault Tolerant IF Stage

32 // CODE_TOUT [2] == 1
33 cv32e40p_conf_voter
34 #(
35 .L1 (1) ,
36 .TOUT(CODE_TOUT [2])
37) voter_illegal_instr_o_2
38 (
39 . to_vote_i (illegal_instr_o_to_vote),
40 . voted_o (illegal_instr_o),
41 . block_err_o (
42 illegal_instr_o_block_err),
43 . broken_block_i (is_broken_o),
44 . err_detected_o (err_detected [2]) ,
45 . err_corrected_o (err_corrected [2])
46);
47

Listing 4.7: Instance foreach Travulog Code Listing 4.8: Instance foreach SVerilog code

4.2.4 Multiple Operation

An instance of compressed_decoder have an error if there is at least one output signal
wrong, for these reason error_detected signals is found by applying OR operation between
*_block_err signals out of the conf_voters as explained in Section 4.1.4. The number of
*_block_err signals is equal to the number of output of the module used, in this case the
three output of the compressed_decoder, for this reason we create the Travulog command
OP_FOREACH that apply a logic operation to a set of signals.
After the keyword OP_FOREACH there should be the module id and then the signals
identifier (IN, OUT, IN_OUT, INTERN, PARAM), these two element identify the list
of signals to cycle on. Then there should be the operation to apply (|, & etc) and the
pattern to use for each signal (SIGNAME will be replaced with the name of the signal).
In the listing 4.9 is applied a suffix to the signame in order to apply OR to correct block_err
signals, instead in the right listing there is the conversion of Travulog code, each TV line
becomes three lines of SV.

1 assign block_err_detected [0] = OP_FOREACH assign block_err_detected [0] =
BLOCK OUT | SIGNAME_block_err [0] ; instr_o_block_err [0]

2 | is_compressed_o_block_err [0]
3 | illegal_instr_o_block_err [0];
4 assign block_err_detected [1] = OP_FOREACH assign block_err_detected [1] =

BLOCK OUT | SIGNAME_block_err [1] ; instr_o_block_err [1]
5 | is_compressed_o_block_err [1]
6 | illegal_instr_o_block_err [1];
7 assign block_err_detected [2] = OP_FOREACH assign block_err_detected [2] =

BLOCK OUT | SIGNAME_block_err [2] ; instr_o_block_err [2]
8 | is_compressed_o_block_err [2]
9 | illegal_instr_o_block_err [2];

10

70

Fault Tolerant IF Stage

11

Listing 4.9: Instance foreach Travulog Code Listing 4.10: Instance foreach SVerilog code

4.2.5 Converted SV and parameters template

At the end of the Travulog conversion you will obtain the compressed_decoder_ft.sv file
(listing 4.11) containing an architecture layer that makes the compressed_decoder fault
tolerant.

1 import cv32e40p_pkg2 ::*;
2 import cv32e40p_pkg ::*;
3
4 module cv32e40p_compressed_decoder_ft
5 #(
6 parameter FPU = 0
7)
8 (
9

10 // compressed decoder input output
11 input logic [2:0] [31:0] instr_i ,
12 output logic [2:0] [31:0] instr_o ,
13 output logic [2:0] is_compressed_o ,
14 output logic [2:0] illegal_instr_o ,
15
16 input logic clk ,
17 input logic rst_n ,
18
19 // fault tolerant state
20 input logic [2:0] set_broken_i ,
21 output logic [2:0] is_broken_o ,
22 output logic err_detected_o ,
23 output logic err_corrected_o
24);
25 // Signals out to each compressed decoder block to be voted
26 logic [2:0] [31:0] instr_o_to_vote ;
27 logic [2:0] is_compressed_o_to_vote ;
28 logic [2:0] illegal_instr_o_to_vote ;
29
30 // Error signals
31 logic [2:0] instr_o_block_err ;
32 logic [2:0] is_compressed_o_block_err ;
33 logic [2:0] illegal_instr_o_block_err ;
34
35 // Signals that use error signal to find if there is one error on
36 // each block , it is the or of previous signals
37 logic [2:0] block_err_detected ;
38 logic [2:0] err_detected ;
39 logic [2:0] err_corrected ;
40
41 // variable for generate cycle
42 generate
43 case (CODE_FT)
44 0 : begin

71

Fault Tolerant IF Stage

45 cv32e40p_compressed_decoder
46 #(
47 .FPU (FPU)
48)
49 compressed_decoder_no_ft
50 (
51 // Input ports of compressed_decoder_no_ft
52 . instr_i (instr_i [0]),
53
54 // Output ports of compressed_decoder_no_ft
55 . instr_o (instr_o [0]),
56 . is_compressed_o (is_compressed_o [0]),
57 . illegal_instr_o (illegal_instr_o [0])
58);
59 // Since we don ’t use FT can ’t be detected an
60 // error
61 assign block_err_detected = {1’b0 ,1’b0 ,1’b0 };
62 end
63 default : begin
64 // Input case
65 case (CODE_TIN)
66 0 : begin // Single input
67 genvar i;
68 for (i=0; i <3; i=i+1) begin
69 cv32e40p_compressed_decoder
70 #(
71 .FPU (FPU)
72)
73 compressed_decoder_single_input
74 (
75 // Input ports of compressed_decoder_single_input
76 . instr_i (instr_i [0]),
77
78 // Output ports of compressed_decoder_single_input
79 . instr_o (instr_o_to_vote [i]),
80 . is_compressed_o (is_compressed_o_to_vote [i]),
81 . illegal_instr_o (illegal_instr_o_to_vote [i])
82);
83 end
84 end
85 default : begin // Triplicated input
86 genvar i;
87 for (i=0; i <3; i=i+1) begin
88 cv32e40p_compressed_decoder
89 #(
90 .FPU (FPU)
91)
92 compressed_decoder_tiple_input
93 (
94 // Input ports of compressed_decoder_tiple_input
95 . instr_i (instr_i [i]),
96
97 // Output ports of compressed_decoder_tiple_input
98 . instr_o (instr_o_to_vote [i]),
99 . is_compressed_o (is_compressed_o_to_vote [i]),

100 . illegal_instr_o (illegal_instr_o_to_vote [i])
101);

72

Fault Tolerant IF Stage

102 end
103 end
104 endcase
105
106 // Voter for TOVOTE signal , triple voter if
107 // CODE_TOUT [0] == 1
108 cv32e40p_conf_voter
109 #(
110 .L1 (32) ,
111 .TOUT(CODE_TOUT [0])
112) voter_instr_o_0
113 (
114 . to_vote_i (instr_o_to_vote),
115 . voted_o (instr_o),
116 . block_err_o (instr_o_block_err),
117 . broken_block_i (is_broken_o),
118 . err_detected_o (err_detected [0]) ,
119 . err_corrected_o (err_corrected [0])
120);
121
122 // Voter for TOVOTE signal , triple voter if
123 // CODE_TOUT [1] == 1
124 cv32e40p_conf_voter
125 #(
126 .L1 (1) ,
127 .TOUT(CODE_TOUT [1])
128) voter_is_compressed_o_1
129 (
130 . to_vote_i (is_compressed_o_to_vote),
131 . voted_o (is_compressed_o),
132 . block_err_o (is_compressed_o_block_err),
133 . broken_block_i (is_broken_o),
134 . err_detected_o (err_detected [1]) ,
135 . err_corrected_o (err_corrected [1])
136);
137
138 // Voter for TOVOTE signal , triple voter if
139 // CODE_TOUT [2] == 1
140 cv32e40p_conf_voter
141 #(
142 .L1 (1) ,
143 .TOUT(CODE_TOUT [2])
144) voter_illegal_instr_o_2
145 (
146 . to_vote_i (illegal_instr_o_to_vote),
147 . voted_o (illegal_instr_o),
148 . block_err_o (illegal_instr_o_block_err),
149 . broken_block_i (is_broken_o),
150 . err_detected_o (err_detected [2]) ,
151 . err_corrected_o (err_corrected [2])
152);
153
154
155 assign err_detected_o = err_detected [0]
156 | err_detected [1]
157 | err_detected [2];
158 assign err_corrected_o = err_corrected [0]

73

Fault Tolerant IF Stage

159 | err_corrected [1]
160 | err_corrected [2];
161
162 assign block_err_detected [0] = instr_o_block_err [0]
163 | is_compressed_o_block_err [0]
164 | illegal_instr_o_block_err [0];
165 assign block_err_detected [1] = instr_o_block_err [1]
166 | is_compressed_o_block_err [1]
167 | illegal_instr_o_block_err [1];
168 assign block_err_detected [2] = instr_o_block_err [2]
169 | is_compressed_o_block_err [2]
170 | illegal_instr_o_block_err [2];
171
172 genvar m;
173 for (m=0; m <3 ; m=m+1) begin
174 // This block is a counter that is incremented each
175 // time there is an error and decremented when it
176 // there is not. The value returned is is_broken_o
177 // , if it is one the block is broken and should ’t be
178 // used
179 cv32e40p_breakage_monitor
180 #(
181 . DECREMENT (CODE_DECREMENT),
182 . INCREMENT (CODE_INCREMENT),
183 . BREAKING_THRESHOLD (CODE_BREAKING_THRESHOLD),
184 . COUNT_BIT (CODE_COUNT_BIT),
185 . INC_DEC_BIT (CODE_INC_DEC_BIT)
186) breakage_monitor
187 (
188 . rst_n (rst_n),
189 .clk(clk),
190 . err_detected_i (block_err_detected [m]) ,
191 . set_broken_i (set_broken_i [m]) ,
192 . is_broken_o (is_broken_o [m])
193);
194 // We find is the block have an error .
195 end
196
197 end
198 endcase
199
200 endgenerate
201
202 endmodule

Listing 4.11: Fault Tolerant compressed decoder layer

This SVerilog architecture needs some parameters: CODE_FT, CODE_TIN,
CODE_TOUT, CODE_DECREMENT, CODE_INCREMENT,
CODE_BREAKING_THRESHOLD, CODE_COUNT_BIT, CODE_INC_DEC_BIT.
These parameters are contained in the cv32e40p_pkg2 package imported at line one of
listing 4.11, the creation of this package can be automatized using a TV parameters tem-
plate, for example our fault tolerant TV template ft_template.sv needs its TV parameters
template ft_template_parameters.sv, this template is shown in listing 4.12.

74

Fault Tolerant IF Stage

1 // //
2 // MODULE_NAME_ft
3 // //
4 parameter int PARAM_NAME_FT = 1;
5 parameter int PARAM_NAME_TIN = 0;
6 // TOUT is referred to output signal in order of definition
7 //
8 // OP_FOREACH BLOCK OUT // TOUT[INDEX]-refers -to ->> SIGNAME
9 parameter int PARAM_NAME_TOUT [SIG_NUM -BLOCK -OUT :0] = { OP_FOREACH BLOCK OUT , 0 };

10
11 // Parameter for breakage monitors
12 parameter PARAM_NAME_DECREMENT = 1;
13 parameter PARAM_NAME_INCREMENT = 1;
14 parameter PARAM_NAME_BREAKING_THRESHOLD = 3;
15 parameter PARAM_NAME_COUNT_BIT = 8;
16 parameter PARAM_NAME_INC_DEC_BIT = 2;
17
18 parameter MAIN_MOD_ID_CURRENT_MOD_ID = MODULE_ORDER ;
19
20

Listing 4.12: Parameters template for Fault tolerant module

This Template should be converted in System Verilog using our Toolchain.

4.2.6 Apply the template in Python

In order to apply the Travulog template to a module you can use HTravulog code where
the module is instanced or you can directly use Python code. In this section we follow the
second way and so we explain how Python code is structured and how to use it.
The whole code of the toolchain is in the https://github.com/Elia1996/Travulog repos-
itory, so you can clone it and use it.
In order to use Travulog template you need the files moddata.py and travulog.py, the first
file contains many functions and the moddata class that enable the parsing an manipulation
of a SVerilog module, instead the second file contains the travulog class.
If you want to apply a Travulog template, the faster way is to look at test_travulog.py file
reported below.

1 #!/ usr/bin/ python3
2 from travulog import *
3
4 template_fname = " templates / ft_template .sv"
5 template_params_fname = " templates / ft_template_parameters .sv"
6 module_fname_dict = {" BLOCK " : "./ test/arch/ cv32e40p_compressed_decoder .sv"}
7 module_prefix = " cv32e40p_ "
8
9 tr = travulog (template_fname , template_params_fname , module_fname_dict , module_prefix)

10
11 print (tr. GetElaboratedTemplate (" New_module_name "," PARAM_NAME "))
12 print (tr. GetElaboratedTemplateParams (" New_module_name "," PARAM_NAME "))
13

75

https://github.com/Elia1996/Travulog

Fault Tolerant IF Stage

Listing 4.13: Basic Python code to use Travulog

As you can see after the import of the travulog module are defined some parameters:

• template_fname: this is the fault tolerant template written in Travulog, the ex-
tension is irrelevant.

• template_params_fname: this is the TV template of parameters, it is used at
line twelve where it is converted according to the current module name that in our
case is the compressed_decoder,

• module_fname_dict: This is a dictionary which connects modules ids with cor-
responding filenames of SVerilog modules. In this case BLOCK is connected to the
compressed_decoder filename and for this reason the Travulog object create the fault
tolerant compressed decoder. Anyway you can have multiple module ids inside the
TV template, you only need to set it in this dictionary.

• module_prefix: This should be the prefix of each filename and module name, it
should always end with a "_" character and it is used to create correct parameter
base name.

Once created the travulog object using these parameters, you can use GetElaboratedTem-
plate function to create the new cv32e40p_compressed_decoder_ft.sv file text and you
can use GetElaboratedTemplateParams function to create the parameters initialization for
the package. For directly use the new architecture you should create a new package file
containing the parameters initialization and import this package in the new ft module.
The way in which has been structured the Python code enable the creation of new powerful
Travulog commands, so the TV commands analyzed is only a small example of what can
be done using this tool since TV code can be extended according to your architectural
needs.

76

Fault Tolerant IF Stage

4.3 Hidden Travulog
As already mentioned, Hidden Travulog or HTV is a particular comment code inside a
SVerilog file, the difference respect to a comment is the "//// " beginning key (HTKEY)
instead of "//". The HTV parser only analyze the code after the HTKEY so be careful to
correcty write "//// " before the HTV code.
The result of a hidden code as HTV is the higher architecture maintenance, indeed the
SVerilog architecture can be simulated, synthesised and modified with HTV code in it.
After that a change in the base arch is done you can proceed with the HTravulog conversion,
at the end of the process you obtain a new architecture that contains the base architecture
changes. This maintenance process is shown in figure 4.7.

Figure 4.7: HTravulog used during architecture life cycle

For the purpose of this Master Thesis are created only few HTV commands that can be
extended for other uses. Anyway at this implementation step, HTV code can be used
inside a whatever SVerilog module for these purpose:

• Add some line: The command ADD_LINE allows to add an arbitrary line to the
converted architecture.

• Change internal signals: The command FOREACH allows to cycle on input, out-
put, internal signals and parameters in order to use their name for some connections
or declarations.

• Create new module: When you want to apply a Travulog template to a piece
of your architecture called A but it is written as a part of the module, you can use

77

Fault Tolerant IF Stage

CREATE_MODULE command. With this command you can transform the piece
of arch A in a new module B written in a new SV file, additionally the command
automatically creates the instance of module B in the converted architecture A.

• Apply a Travulog template to a module: In the main module of an architec-
ture you normally have many instances of modules, for each instance you can use
ADD_MODULE_LAYER. This commmand transforms the instanced module using
a Travulog template and it create the new correct instance.

These are the main transformation you can apply with HTravulog code.
Now in order to explain how HTV parser works we divide SVerilog module in these four
parts:

• Introduction: It is the SV code from the beginning of the file up to the mod-
ule declaration, here you usually import package and you write the architecture
license. In this part you can use these HTV commands: IMPORT, ADD_LINE,
NEW_MODULE_NAME and NEW_MODULE_FILE. These command are ex-
plained in 4.3.1 section.

• Port declarations: In this part are defined the input and output of the module,
at the moment this part can’t be modified in order to maintain the same interface,
anyway the code is organized in order to simplify the extension of HTV code also in
this part.

• Intern signals and assign: This part starts at the end of port declaration and ends
with the HTV command "END_DECLARATIONS", In this part you should define
all intern signals and all assignment that you want to change during conversion.
Just before the begin of the architecture structure definition you should place the
"END_DECLARATIONS" command in order to notify the tool that the third part
ends. This part is analyzed in Section 4.3.2.

In this section you can use only the command FOREACH.

• Architecture definition: This part starts after the "END_DECLARATIONS"
command and ends with the module. Here you can use CREATE_MODULE and
ADD_MODULE_LAYER commands, these are two powerful commands that are
described in section 4.3.3 and 4.3.4.

In the following section we analyze each part and each command in detail.

4.3.1 Introduction Part

This is the part of code before the declaration of the module, in listing 4.14 there is an
example of SV mixed with HTV code used in cv32e40p_if_stage.sv file.

78

Fault Tolerant IF Stage

1 // // IMPORT htv_pkg .tv
2
3 import cv32e40p_pkg ::*;
4 // // ADD_LINE import cv32e40p_pkg2 ::*;
5
6 // // NEW_MODULE_NAME cv32e40p_if_stage
7 // // NEW_MODULE_FILE OUT_DIR / cv32e40p_if_stage_ft .sv
8

Listing 4.14: Introduction of cv32e40p if stage

IMPORT command: At line one there is the IMPORT command used to import a
parameters file, this file is parsed by the tool in order to import some parameters. In
listing 4.15 there is an example of htv_pkg.tv file, all parameter are mandatory. BASEDIR
is an abbreviations of the complete base path, we use BASEDIR for space reasons but the
real file contains the complete path.

1 IN_DIR BASEDIR /test/arch
2 OUT_DIR BASEDIR /out
3 TEMPLATE ft_template
4 FILE BASEDIR / templates / ft_template .sv
5 PARAM_FILE BASEDIR / templates / ft_template_parameters .sv
6 END_TEMPLATE
7 PKG_FILE BASEDIR / templates / cv32e40p_pkg2 .sv
8 PKG_OUT_FILE BASEDIR /out/ cv32e40p_pkg2 .sv
9 MODULE_PREFIX cv32e40p_

10

Listing 4.15: Introduction of cv32e40p if stage

The first two line set IN_DIR and OUT_DIR, these two parameters can be used in the
main file as abbreviations of the corresponding directory set. Usually you set IN_DIR as
the directory where there is all base architecture and OUT_DIR as the directory where
you want to save the transformed architecture.
The TEMPLATE statement is a command that you should use to define Travulog templates
used in ADD_MODULE_LAYER command as you can see in listing 4.16. Right after
TEMPLATE there is the template id that you will use in HTV code, in the next line is
defined the Travulog file of the template with the FILE key and at line five is defined
the parameters template file with the PARAM_FILE key. The TEMPLATE statement
terminate with the keyword END_TEMPLATE at line six, anyway in this file there is the
possibility to define multiple template id using the structure defined before.

1 // // IMPORT htv_pkg .tv
2 .
3 .
4 .
5 // // ADD_MODULE_LAYER
6 // // TEMPLATE ft_template

79

Fault Tolerant IF Stage

7 // // INFILE IN_DIR / cv32e40p_prefetch_buffer .sv
8 // // OUTFILE OUT_DIR / cv32e40p_prefetch_buffer_ft .sv
9 .

10 verilog instance
11 .
12 // // END_ADD_MODULE_LAYER
13

Listing 4.16: Introduction of cv32e40p if stage

Line seven and eight set the package template file (see listing 4.13) and the output package
file that will be created by the Toolchain. The last variable is the module prefix, this
prefix is used to create automatic short name to substitute at MODNAME variable inside
Travulog/HTravulog.
This parameters file has be introduced later in the Toolchain to simplify Python interface,
for these reason all parameters are mandatory, anyway the code can be changed e.g.,
avoiding compulsory of MODULE_PREFIX that in some architecture probably doesn’t
exist.
The IMPORT of the same parameter file can be used in any HTravulog/SystemVerilog file
you want.

ADD_LINE command: In some cases there is the needs to add a particular line in
the converted SystemVerilog for this reason we create the ADD_LINE HTV command. It
simply copies the string after " ADD_LINE " and write it in the converted file.
In the listing 4.15 the command is used at line four and it adds a new package in the
converted file. This package will be created by the Toolchain from the package template
PKG_FILE indicated in the IMPORT file.

NEW_MODULE_NAME & NEW_MODULE_FILE commands:
NEW_MODULE_NAME has a clear name, it set the name of the converted module.
Instead NEW_MODULE_FILE set the file name of the new converted module. As you
can see we use the OUT_DIR parameter in the definition of the name of the file, this
parameter has been set previously in the IMPORT file.

4.3.2 Internal signals

In the current Toolchain state the definitions of all internal signals should be placed im-
mediately after the IO declaration and must end with "END_DECLARATIONS" keyword
(line 31 of listing 4.17).
In this part of SV you can insert the HTV code that will creates the new internal signals
definition and assignment . Indeed all SV declaration will be deleted, in the converted file
there will be only the elaboration of HTV code.

80

Fault Tolerant IF Stage

In listing 4.17 you can see all HTV code used in the internal signals part of the IF Stage,
there is only one HTV command used called FOREACH, it allow to cycle on a certain
list of signals substituting the name of each signal in SIGNAME parameter and the bit
number definition in BITINIT.
FOREACH can be used both for declaration or for assignment, it also support the NOT
statement as at line 5,9 and 17 of listing 4.17, on the right you can see the resulting SV
code

1 // // FOREACH MAIN_MOD_INTERN logic [2:0] if_valid_tr ;
2 // // logic [2:0] BITINIT SIGNAME_tr ; logic [2:0] if_ready_tr ;
3 // // END_FOREACH logic [2:0] prefetch_busy_tr ;
4 logic [2:0] branch_req_tr ;
5 // // FOREACH MAIN_MOD_OUT NOT if_busy_o logic [2:0] [31:0] branch_addr_n_tr ;
6 // // logic [2:0] BITINIT SIGNAME_tr ; logic [2:0] fetch_valid_tr ;
7 // // END_FOREACH logic [2:0] fetch_ready_tr ;
8 logic [2:0] [31:0] fetch_rdata_tr ;
9 // // FOREACH MAIN_MOD_OUT NOT if_busy_o logic [2:0] [31:0] exc_pc_tr ;

10 // // assign SIGNAME = SIGNAME_tr [0]; logic [2:0] [23:0] trap_base_addr_tr ;
11 // // END_FOREACH logic [2:0] [4:0] exc_vec_pc_mux_tr ;
12 logic [2:0] fetch_failed_tr ;
13 // // FOREACH NEW_OUT logic [2:0] aligner_ready_tr ;
14 // // logic [5:0] BITINIT SIGNAME_ft ; logic [2:0] instr_valid_tr ;
15 // // END_FOREACH logic [2:0] illegal_c_insn_tr ;
16 logic [2:0] [31:0] instr_aligned_tr ;
17 // // FOREACH NEW_IN NOT clk rst_n logic [2:0] [31:0] instr_decompressed_tr ;
18 // // logic [5:0] BITINIT SIGNAME_ft ; logic [2:0] instr_compressed_int_tr ;
19 // // assign SIGNAME_ft = logic [2:0] instr_req_o_tr ;
20 {3’b0 , 3’b0 ,3’b0 , 3’b0 , 3’b0 , 3’b0 }; logic [2:0] [31:0] instr_addr_o_tr ;
21 // // END_FOREACH logic [2:0] instr_valid_id_o_tr ;
22 logic [2:0] [31:0] instr_rdata_id_o_tr ;
23 // // FOREACH prefetch_busy logic [2:0] is_compressed_id_o_tr ;
24 // // assign if_busy_o = SIGNAME_tr [0]; logic [2:0] illegal_c_insn_id_o_tr ;
25 // // END_FOREACH logic [2:0] [31:0] pc_if_o_tr ;
26 logic [2:0] [31:0] pc_id_o_tr ;
27 // // FOREACH fetch_failed logic [2:0] is_fetch_failed_o_tr ;
28 // // assign SIGNAME_tr = logic [2:0] csr_mtvec_init_o_tr ;
29 {1’b0 , 1’b0 , 1’b0 }; logic [2:0] perf_imiss_o_tr ;
30 // // END_FOREACH
31 assign instr_req_o = instr_req_o_tr [0];
32 // ///////////////////////////////////// assign instr_addr_o = instr_addr_o_tr [0];
33 // // END_DECLARATIONS assign instr_valid_id_o =
34 // ///////////////////////////////////// instr_valid_id_o_tr [0];
35 assign instr_rdata_id_o =
36 instr_rdata_id_o_tr [0];
37 assign is_compressed_id_o =
38 is_compressed_id_o_tr [0];
39 assign illegal_c_insn_id_o =
40 illegal_c_insn_id_o_tr [0];
41 assign pc_if_o = pc_if_o_tr [0];
42 assign pc_id_o = pc_id_o_tr [0];
43 assign is_fetch_failed_o =
44 is_fetch_failed_o_tr [0];
45 assign csr_mtvec_init_o =
46 csr_mtvec_init_o_tr [0];

81

Fault Tolerant IF Stage

47 assign perf_imiss_o = perf_imiss_o_tr [0];
48
49 logic [5:0] [2:0] is_broken_o_ft ;
50 logic [5:0] err_detected_o_ft ;
51 logic [5:0] err_corrected_o_ft ;
52 logic [5:0] [2:0] set_broken_i_ft ;
53 assign set_broken_i_ft = {3’b0 , 3’b0 , 3’b0 ,
54 3’b0 , 3’b0 , 3’b0 };
55
56 assign if_busy_o = prefetch_busy_tr [0];
57
58 assign fetch_failed_tr = {1’b0 , 1’b0 , 1’b0 };
59

60 Listing 4.18: Converted SV code
Listing 4.17: HTV code for new signals

4.3.3 Create a new module

In order to apply our FT template we should have a file containing the SV module to
transform. For these reason we should divide the IF Stage in six block as depicted in
Figure 3.5, anyway only the Prefetch Buffer, the Aligner and the Compressed decoder
are already in separate file, for this reason we create a new command to create a module
from a piece of SV that describe a separate architecture.

The command is called CREATE_MODULE as you see in listing 4.19, it takes as the first
argument the string on the same line cv32e40p_if_stage_fsm_logic, this should be the
name of the module to create. In the following line is set the OUTFILE, it is the file that
will be used to save the new module SystemVerilog. In this line is used the OUT_DIR
parameter set in the IMPORT file.
After these two setting are defined inputs and outputs of the new module, these IO signals
could be both internal signals or IO of the main module (the IF Stage in our case).

1 // // ADD_MODULE_LAYER
2 // // TEMPLATE ft_template
3 // // INFILE OUT_DIR / cv32e40p_if_stage_fsm_logic .sv
4 // // OUTFILE OUT_DIR / cv32e40p_if_stage_fsm_logic_ft .sv
5 // //
6 // // CONNECT IF clk rst_n IN = IN
7 // // IF MAIN_MOD_IN IN = {IN , IN , IN }
8 // // IF NEW_IN IN = IN_ft [MAIN_MOD_ID_CURRENT_MOD_ID]
9 // // IN = IN_tr

10 // // IF NEW_OUT OUT = OUT_ft [MAIN_MOD_ID_CURRENT_MOD_ID]
11 // // OUT = OUT_tr
12 // // END_CONNECT
13
14 // // CREATE_MODULE cv32e40p_if_stage_fsm_logic
15 // // OUTFILE OUT_DIR / cv32e40p_if_stage_fsm_logic .sv
16 // //

82

Fault Tolerant IF Stage

17 // // IN pc_set_i
18 // // fetch_valid
19 // // req_i
20 // // if_valid
21 // // aligner_ready
22 // // END_IN
23 // // OUT branch_req
24 // // fetch_ready
25 // // perf_imiss_o
26 // // END_OUT
27 .
28 // FSM state transition logic SV code
29 .
30 .
31 // // END_CREATE_MODULE
32 // // END_ADD_MODULE_LAYER
33

Listing 4.19: HTV code to create a new block and transform it using TV template

Using the settings explained before the command execute these steps:

• Check: The directory of the oufile is checked, the input and output signals are
checked to verified that are used inside the SV code of the new module.

• Port declaration: The IO signals of the new module are searched in the main
module to find the number of bit, this information is used to create the new declaration
statement.

• Internal signals: All signals used inside the SV code of the new module that aren’t
in the IO declaration are considered internal signals and they will be init in the new
block.

• Creation of New Module: Using all previous information the new module is
created and saved in the outfile.

• Instance: Finally in the new main module is written the instance of the new module,
the connection is automatic. The creation of the new main module is done using a
python string and it is written in the file at the end of the process. Thanks to this can
be used nested HTV command as you see in listing 4.19 where the CREATE_BLOCK
command is nested inside a ADD_NEW_LAYER command.

4.3.4 Use Travulog template

The final objective of the HTV code in this Thesis is the application of the Travulog
template automatically. Indeed the HTV command ADD_NEW_LAYER is designed
to simplify the transformation of an instanced module using a Travulog template. The

83

Fault Tolerant IF Stage

name of the command is referred to the type of template, in our case inside the con-
verted Travulog module is instanced the basic module and so we need to include this
module during compilation. If you imagine the hierarchical order of the final structure
the top module is the if_stage then we have the cv32e40p_if_stage_fsm_logic_ft (it is
instanced inside the if_stage) and finally the cv32e40p_if_stage_fsm_logic module (it is
instanced inside the cv32e40p_if_stage_fsm_logic_ft). Therefore the command is called
ADD_NEW_LAYER because it add an architectural layer between the main module and
one of its submodules.

We use this specific name because a Travulog template can be used to create also a stan-
dalone architecture, probably for other applications then Fault Tolerance. In this way if
you need to apply such template you can create your command and use it.

1 cv32e40p_if_stage_fsm_logic_ft if_stage_fsm_logic_ft
2 (
3 // Input ports of if_stage_fsm_logic_ft
4 . pc_set_i ({ pc_set_i , pc_set_i , pc_set_i }),
5 . fetch_valid (fetch_valid_tr),
6 . req_i ({ req_i , req_i , req_i }),
7 . if_valid (if_valid_tr),
8 . aligner_ready (aligner_ready_tr),
9

10 // Input diff ports of if_stage_fsm_logic_ft
11 .clk (clk),
12 . rst_n (rst_n),
13 . set_broken_i (set_broken_i_ft [CVIFST_IFSTFSLOFT]),
14
15 // Output ports of if_stage_fsm_logic_ft
16 . branch_req (branch_req_tr),
17 . fetch_ready (fetch_ready_tr),
18 . perf_imiss_o (perf_imiss_o_tr),
19
20 // Output diff ports of if_stage_fsm_logic_ft
21 . is_broken_o (is_broken_o_ft [CVIFST_IFSTFSLOFT]),
22 . err_detected_o (err_detected_o_ft [CVIFST_IFSTFSLOFT]),
23 . err_corrected_o (err_corrected_o_ft [CVIFST_IFSTFSLOFT])
24);
25

Listing 4.20: SV result code after the conversion from HTV code of if stage fsm logic
module created using CREATE MODULE command

In listing 4.19 you can see the ADD_MODULE_LAYER command. The command ar-
guments must start at the second line, and their order can be whatever, the complete
command start with "//// ADD_MODULE_LAYER" and it ends with
"//// END_ADD_MODULE_LAYER", the SystemVerilog code inside the command should
be an instance of a module, in listing 4.19 this instance is created by the command CRE-
ATE_MODULE. The arguments that must be set are:

84

Fault Tolerant IF Stage

• TEMPLATE id: This argument indicates what is the Travulog template to use,
the id used must be defined in the IMPORT file as described in paragraph 4.3.1. This
Travulog Template will be used to add a layer that apply FT techniques.

• INFILE filename: This is the full path of the file containing the module to convert
that should be the same instanced in the SV below (line 27 - 30 of listing 4.19).
The extension is irrelevant and in the path can be used parameters defined in the
import file, in listing 4.19 line 3 the directory of the INFILE is OUT_DIR, this is
why the CREATE_MODULE save the new module file in the OUT_DIR as set
at line 15. So CREATE_MODULE create the new module in the OUT_DIR and
replace the CREATE_MODULE command with the instance of the new module,
then the ADD_MODULE_LAYER use the new module in OUT_DIR directory and
the instanced SV to create the FT layer.

• OUTFILE filename: This parameter sets the name of the output filename in which
will be saved the Travulog template converted.

• CONNECT .. END_CONNECT: This command allow the designer to decide
the final connection of the Converted template instance. In order to understand this
command notation you can look at the final instance in listing 4.20, the first IF on
the clk and rst_n orders to connect these signals with the same name at line 11 and
12 of listing 4.20.

The second IF order to triplicate the input signals if they are input of the main
module, indeed MAIN_MOD_IN will be replaced with the list of the if_stage input,
so at line 4 there is the triplication of pc_set_i signal. Also the clk and rst_n are
input signals of the if_stage, anyway they are already connected in the previous IF
and so they are not considered in this IF.

In the third IF there are three new parameters: NEW_IN that is the list of new
signals respect to the basic module (in this case: set_broken_i, clk and rst_n),
MAIN_MOD_ID that is an automatic ID created b the Toolchain that is composed
of the concatenation of the first two letters of each word in the name of the main
module, so CV32e40p_IF_STage become CVIFST, finally CURRENT_MOD_ID
is another automatic id created in the same way as MAIN_MOD_ID but referred
to the name of the new module which is extrapolated by the OUTFILE filename.
Knowing the means of this parameters, the third IF orders to connect the new input
how it is done at line 13 of listing 4.20, indeed clk and rst_n are already connected
by previous IF.

The fourth IF connect the remaining input simply adding a suffix.

85

Fault Tolerant IF Stage

The fifth IF use the parameter NEW_OUT that is like NEW_IN but for outputs,
so this IF connects new output adding a suffix how it is done at line 21,22 and 23 of
listing 4.20.

The last IF connects the remaining output adding a suffix.

These parameters enable the creation of a custom instance automatically. In listing 4.20
all connection is done using the same name, this is why the previous CREATE_MODULE
command creates a basic instance in which each IO is connected with itself. Anyway
ADD_MODULE_LAYER command is powerful since it look at previous connection and
use it for the new instance with some changes according to CONNECT command and
new signals from template. To clarify ideas we include listing 4.21 where there is the
instance created by a ADD_MODULE_LAYER command applied to the instance of the
Compressed Decoder, the old instance was hand written and so there are custom connection
as you can see at line 8, 16, 17 and 18. This custom connection are elaborated by the
ADD_MODULE_LAYER according to CONNECT command and the new connection is
created.

1 cv32e40p_compressed_decoder_ft
2 #(
3 .FPU (FPU)
4)
5 compressed_decoder_ft
6 (
7 // Input ports of compressed_decoder_ft
8 . instr_i (instr_aligned_tr),
9

10 // Input diff ports of compressed_decoder_ft
11 .clk (clk),
12 . rst_n (rst_n),
13 . set_broken_i (set_broken_i_ft [CVIFST_CODEFT]),
14
15 // Output ports of compressed_decoder_ft
16 . instr_o (instr_decompressed_tr),
17 . is_compressed_o (instr_compressed_int_tr),
18 . illegal_instr_o (illegal_c_insn_tr),
19
20 // Output diff ports of compressed_decoder_ft
21 . is_broken_o (is_broken_o_ft [CVIFST_CODEFT]),
22 . err_detected_o (err_detected_o_ft [CVIFST_CODEFT]),
23 . err_corrected_o (err_corrected_o_ft [CVIFST_CODEFT])
24);
25

Listing 4.21: SV result code after the conversion from HTV code of Compressed Decoder
module

86

Fault Tolerant IF Stage

4.4 Test of the Toolchain
In order to simplify the use of the Toolchain we show a typical example of directory tree
that can be used:

htravulog.py
moddata.py
travulog.py
test_htravulog.sh
out

cv32e40p_aligner_ft.sv
cv32e40p_aligner.sv
cv32e40p_compressed_decoder_ft.sv
cv32e40p_compressed_decoder.sv
cv32e40p_if_pipeline_ft.sv
cv32e40p_if_pipeline.sv
cv32e40p_if_stage_fsm_logic_ft.sv
cv32e40p_if_stage_fsm_logic.sv
cv32e40p_if_stage_ft.sv
cv32e40p_pkg2.sv
cv32e40p_prefetch_buffer_ft.sv
cv32e40p_prefetch_buffer.sv
cv32e40p_program_counter_definition_ft.sv
cv32e40p_program_counter_definition.sv

templates
cv32e40p_pkg2.sv
ft_template_parameters.sv
ft_template.sv

test
arch

cv32e40p_aligner.sv
cv32e40p_compressed_decoder.sv
cv32e40p_if_stage.sv
cv32e40p_prefetch_buffer.sv
htv_pkg.tv
include

cv32e40p_pkg.sv

This is a part of the directory organization in the Toolchain repository https://github.
com/Elia1996/Travulog, the first three file are the whole Toolchain written in Python,
the fourth file is a bash script that run the analysis of testarchcv32e40p_if_stage.sv file in
which there is the HTravulog code.
In the templates directory there is the template parameters file (PARAM_FILE in htv_pkg.tv)
ft_template_parameters.sv, the package structure (PKG_OUT_FILE) file cv32e40p_pkg2.sv
and the Travulog FT template (TEMPLATE FILE) ft_template.sv.
In the directory testarch there is a part of the core architecture that we need, here there
is the IMPORT file htv_pkg.tv where there are parameters useful for correct Toolchain
conversion and the if_stage with HTV code inside.
Finally in out directory there is the SV code generated by the Toolchain, here you can
see the new modules: program_counter_definition, if_stage_fsm_logic and if_pipeline.
Each basic module has the correlated FT layer which is instanced inside the if_stage.

87

https://github.com/Elia1996/Travulog
https://github.com/Elia1996/Travulog

Chapter 5

Verification

The verification of our architecture was done starting from the existing verification reposi-
tory of the cv32e40p. It is maintained by the Open HW Group https://github.com/
openhwgroup/core-v-verif and all its feature are described in detail here https://
core-v-docs-verif-strat.readthedocs.io/en/latest/.
This part of the thesis is done together with Marcello Neri and Luca Fiore, we fork the
core-v-verif repository and we start to create our tools in https://github.com/RISKVFT/
core-v-verif, here we create some scripts which automatize verification through:

• Benchmarks compilation: benchmarks are a set of programs written in C language
which should be cross compiled in order to run on the cv32e4op core. The toolchain for
the compilation already exists, we simpify the interface to speed up experimentation.

• Core Verification: we need a way to verify that our new stage inside the core is
working properly, so we create a comparison structure in which the reference core is
simulated saving inputs and outputs of the reference stage. Then our new stage inside
the core is simulated using reference inputs as stimulus and finally the outputa of our
stage are compared to the reference one to find any differences. This comparison can
be done for whatever software of the benchmark.

• Fault Injection: Once the new Instruction Fetch is verified we should check the
behaviour of the stage respect to faults, to do this we start from the verification
structure: as first step we save reference inputs and output of the stage as before,
then we simulate the core with the new stage but we inject fault during simulation,
finally the outputs are compared to find how many errors arrive to the output of the
stage. The final FT level is the ratio between the output errors and injected errors.

In this process the most challenging part is the fault injection, indeed we spent many
time to understand how inject faults, anyway now our script is able to inject transient

88

https://github.com/openhwgroup/core-v-verif
https://github.com/openhwgroup/core-v-verif
https://core-v-docs-verif-strat.readthedocs.io/en/latest/
https://core-v-docs-verif-strat.readthedocs.io/en/latest/
https://github.com/RISKVFT/core-v-verif
https://github.com/RISKVFT/core-v-verif

Verification

and permanent faults, the injection is uniformly distributed along simulation time and
on all bits of the signals, finally the signals in which inject faults can be changed.

We choose Statistical Fault Injection since it is the most common used methods, it
exists also analytical estimation of FT level 41 and ground radiation test.

• FT level evaluation: During all simulation our script save many data about faults
and errors, in this way at the end of the process it automatically calculates the number
of faults and the FT level (which is 1 − Nout_errors

Ninjected_faults
).In order to have a better

coverage of core functionality during Fault Injection we simulate all benchmark and
we create a script that elaborate all FI data of these simulations, giving a global FT
level percentage to speed up FI verification.

The script which manage all the previous functionalities is called comp_sim.sh and it is lo-
cated in core-v-verif/cv32/sim/core/. In order to simplify the use of the script we create a
man page comp_sim_man in the same directory which you can visit using man command :
"man ./comp_sim_man". The man page can be visualized also with the command
"./comp_sim.sh -h".
In the next sections we analyze the simulation flow we use in the comp_sim script and
then we discuss the main results.

89

Verification

5.1 Simulation Flow
Now we start to describe in detail the flow we have followed to verify and simulate fault
injection in the if stage, during the description we also show directories organization, scripts
behaviour and command arguments of comp_sim.sh. We finally underline some design and
simulation choice. This is a brief summary of the next paragraph:

• Initial Setup: It describe the basic operations to perform in order to begin to
simulate the new stage.

• Benchmark Compilation: It describe where to place benchmark programs and
how to cross-compile it using comp_sim.sh.

• Core Functional Verification: It describe all steps performed to compare reference
and new architecture together, it also explain how to execute this comparison using
comp_sim.sh script.

• Fault Injection Process: Here is described the structure of the Fault Injection
simulation using vsim_stage_compar.tcl script, it is also described how to execute a
FI simulation using comp_sim.sh.

• Number of simulations and Accuracy: It describe the Statistical Fault Injection
method and the formula used to find the number of simulation to perform for a certain
accuracy.

5.1.1 Initial Setup

When you clone for the first time the core-v-verif repo from https://github.com/RISKVFT/
core-v-verif.git you should checkout the FT_verif_Elia branch and run a little script
which set current base directory in all scripts, its name is set_core_v_verif.sh and it is
located in core-v-verif/ directory. Now all scripts know what is the path before core-v-verif
dir and they could build absolute paths correctly.

The complete cv32e40p core with our new if stage is in https://github.com/RISKVFT/
cv32e40p/tree/FT_Elia repository, so as first step set it as the ft architecture, this can be
done using -a option of comp_sim.sh, in particular we use
"-a ftr https://github.com/RISKVFT/cv32e40p" to set the repository url and
"-a ftb FT_Elia" to set our branch. We also set the reference architecture with
"-a refr https://github.com/RISKVFT/cv32e40p" and "-a refb master", this will be the
reference architecture that we will use to do the functional verification. At the end of
settings we can check them using "-a i".

90

https://github.com/RISKVFT/core-v-verif.git
https://github.com/RISKVFT/core-v-verif.git
https://github.com/RISKVFT/cv32e40p/tree/FT_Elia
https://github.com/RISKVFT/cv32e40p/tree/FT_Elia

Verification

Each time that the script is run it checks the repositories and the branches of reference
and ft repositories which are located at core-v-verif/core-v-cores, if the repository or the
branch is wrong the script clones and changes branch automatically.

5.1.2 Benchmark Compilation

In order to compile all software of the benchmark we create the directory
cv32/tests/programs/custom_FT where we saved all c file. Then we create the build_all.py
script in this directory which allows to cross compile all c file using make files, the output
hex files are saved in cv32/tests/programs/out dir.
In order to easly copile c files we should set the compiler script and the out directory into
comp_sim using the command:
"-b d cv32/tests/programs/build_all.py cv32/tests/programs/out", the path should be rel-
ative to the core-v-verif directory. Now after any change to the c file we can easly recompile
it with "-b c" command. At the end of the process we have all .hex file in the "out" directory
and they are ready to be used in core simulation.

5.1.3 Core Functional Verification

The functional verification of the core is the first important step to check the correct
behaviour of the new core in normal condition.
To do this we should compare the output of the reference core with the core containing the
new stage, anyway this approach is slow since we needs to simulate the whole core using
many resources and time.
In order to reduce computational load we decide to implement a way to compare both the
complete core or only a certain stage of the core. To do this we follow these steps:

• Save Reference Input: Both for core or for stage comparison the first step is to
run the reference architecture and save the input data. So we create a tcl script
in cv32/sim/questa directory called vsim_save_data_in.tcl which can be run with
-b asvb ref hello_world save_data_in if_stage" , in this command asvb argument
is a legend for the means and order of the next arguments: "a" is related to "ref"
that is the reference architecture, "s" indicates the software to use that in this case
is "hello_world" (the software should be a .hex file in the out dir of the bench-
mark which we compile before), "v" indicates the suffix of the tcl script, in this case
"save_data_in", and finally "b" is related to the name of the stage.

The order of the letter in the first arguments give the order of the next argu-
ments, e.g.,the previous command is equivalent to "-b avbs ref save_data_in if_stage
hello_world".

91

Verification

The command described simulate the reference architecture with hello_world software
using vsim_save_data_in.tcl as QuestaSim script for saving the input data of the
if_stage in a .vcd file located in /cv32/sim/core/sim_FT/dataset/, this vcd file will
be automatically named "gold-ref-if_stage-hello_world-in.vcd".

• Save Reference Output: In this case the procedure is very close to the previous,
indeed the command to run is "-b asvb ref hello_world save_data_out if_stage", it
will creates the file "gold-ref-if_stage-hello_world-out.wlf . This is why to enable the
output comparison we needs a wlf file.

• Compare Architectures:

To compare the two architecture we should use vsim_stage_compare.tcl script (al-
ways located in questa directory). This script is the most complex because it contains
all code to do comparison, fault injection and data saving. The behaviour is changed
using some environmental variables which are set by the comp_sim script. For the
current step we use this script to simulate the new stage using the Reference Inputs
as stage stimulus and to compare the simulation outputs with the Reference wlf file,
all these operations can be done with the command: "-b atvsb ref ft stage_compare
hello_world if_stage". Here comp_sim use the previous vcd and wlf file created, so
if they don’t exist we will have some errors.

• Show results: At the end of the simulation all data file are saved in sim_FT/sim_out
directory, here there will be a file called cnt_error-if_stage-hello_world-1-0.txt ,
where "1" is referred to the number of simulation while "0" means that we don’t
use fault injection. The second file is the info-if_stage-hello_world-1-0.txt, it contain
the simulation time duration and the number of signals in which can be applied fault
injection. Finally there is a file called signals_fault_injection-if_stage-hello_world-
1-0.txt which we will use in FI. So at the end of the simulation the cnt_error file
should contain "0" as error number, in this way we have checked that the new stage
give the same output of the reference.

• GUI: When some errors occurs we could run again the comparison command using
the -g option to open the GUI while QuestaSim does comparison, in this way we
could see all signals and the source of error in the architecture.

The previous steps should be repeated for each c firmware in the benchmark in order to
increase as much as possible the coverage of the stage verification.
After a high number of test we decide to condense the flow above in a single command:
"-sfiupi atvsb ref ft stage_compare hello_world if_stage" . This command is powerful
because it checks that the existence of wlf and vcd files, if they don’t exist the script
begins the process to create them automatically, then it runs the simulation to verify the

92

Verification

stage. As before if we need to use the gui we should only add "-g" as last argument and
during simulation the gui will open.
Our new if_stage is highly configurable through SV parameters, therefore a complete
verification means the check of each configuration, anyway there are approximately 96
possible state for each sub-block and so about 500 possible configuration for the overall
stage. This is a really high number and so we can’t verify all possibility. Probably this
can be done with a script able to change the SV parameters and then simulate the core in
each configuration, anyway this can be considered as a future work.
Knowing this issue we decide some configuration useful to show the ability of the new
architecture and we verify only these, the analysis is done in the Results section 5.2.

5.1.4 Fault Injection Process

The fault injection process is managed by the vsim_stage_compare.tcl script that we
already mentioned before. These are the main steps that the script follows:

• Save Variable: comp_sim sets many variable according to options and arguments
used, these environmental variables are set using export bash command and saved in
tcl variables inside the stage_compare script.

• Set signals for FI: Inside stage_compare there is a list called sim_fi_sig that should
contain the name of signals in which inject faults. To create this variable we use "find
nets" command with regular expression to select signals inside the if_stage adapt
to fault injection. We can decide to inject faults only in sequential parts or also in
combinatorial parts, we also can decide to exclude reset and clock signals because
they are usually protected at layout level.

• Fault distribution: We should apply a uniform distribution of faults on all bits in
order to simulate real behaviour of particle strike, so we copy each signal N times as
the number of the bits of that signal, in this way when we use random selection we
have a uniform distribution along all bits, e.g., if we have the signals sig1 with 4 bits
and sig2 with 2 bits the final sim_fi_sig list will be [sig1 sig1 sig1 sig1 sig2 sig2].

• Manage previous simulations: Sometimes we happened to stop a simulation be-
fore the end, for these cases we create a recovery part that automatically load old
interrupted simulation. This load needs to avoid the repetition of fault injection on
the same signals at the same time.

• FI of stage: Suppose to run "-sfiupi atfcsb ref ft 1 100 hello_world if_stage" the
new option here are: "f" which set or not fault injection (1 -> FI, 0 ->not FI) and "c"
which refers to the number of simulation to do, in this case 100. When we run this

93

Verification

command, comp_sim run the Makefile in sim_FT directory which set the correct
vcd as input stimulus and in turn run the stage_compare script inside QuestaSim.
Stage_compare looks at the env variables "FI" and "CYCLE" to know whether inject
faults and how many simulation it has to do. Then are set signals in which inject
faults, are checked previous simulation and finally the fault injection on the stage
begins.

In this part the first operation is to load the reference simulation or the wlf file saved
previously, then is created the clock because vcdstim don’t set it, finally is selected
a random simulation time fi_instant and a random signal sig_fi, inside the selected
signal is extracted a bit bit_number. The triplet fi_instant, sig_fi and bit_number
creates a unique simulation id which is saved inside the signals_fault_injections files
in the sim_FT/sim_out directory. Now the simulation starts and continue up to
fi_instant, here the selected bit_number of the sig_fi signal is flipped and the output
comparison begins.

This cycle corresponds to one Fault Injection Simulation and it is repeated CYCLE
times as we set in comp_sim command.

As we already mentioned the fault is injected flipping the bit, anyway this could
be done both using "force -deposit" command or the "force -freeze" command, the
first create a transient error that can be overwritten, the second instead flip the bit
permanently up to the end of simulation.

We observe that usually the faults lead to an error in few clock cycle, so we simulate
some clock cycle and compare the signals, if there are errors we stop, otherwise
we continue simulating a tenth of the remaining time and so on. This methods
decrease significantly the simulation time. At the end of each simulation we write the
simulation results on the signals_fault_injections file.

Using this methods the Fault injection is fast and efficient, it also inject fault uniformly in
bits and time.

5.1.5 Number of simulations and Accuracy

A single FI simulation can needs from three seconds up to thirty seconds related to the
workload of the software used, for this reason the choice of the number of simulations is
important to reach good accuracy with the lowest simulation time. In order to achieve
the best trade-off we use the Statistical Fault Injection (SFI) technique expressed in the

94

Verification

formula 42:
ntrade−off = Nmax

1 − e2 Nmax−1
t2·p·(1−p)

(5.1)

In this formula we have these parameters:

• Nmax: Max number of injectables faults, it is equal to the total number of injectables
bits multiplied by the simulation clock cycle number.

• e: It is the margin error of the final probability obtained during the simulations,
this parameter have strong impact on ntrade−off , the more "e" decrease, the more
ntrade−off increase, a typical value for e is 0.05. In this way at the end of the FI
process we will have a FT% between FT%-5% and FT%+5%.

• t: It is the cut-off point from which depends the confidence level, for t equal to 1.96
, 2.57 and 3.09 we have confidence level of 90%, 95% and 99%.

• p: It is the estimated probability of fault, even if it is unknown we decide to use the
p value that maximize the product p · (1 − p) in order to have maximum n_trade-off,
this value is 0.5.

• ntrade−off : It is the estimated number of simulation in order to have a certain sta-
tistical confidence level of the final fault tolerance level, according to the previous
parameters.

Since Nmax depends on the simulation clock cycle, each software will have the correspond-
ing ntrade−off . In order to evaluate this number of simulation we create the tcl script
vsim_cycle_to_certain_coverage.tcl which can be executed with the command "-b asvb ref
hello_world cov if_stage" where cov is a script abbreviation for cycle_to_certain_coverage.
Inside cycle_to_certain_coverage you can set the signals you what to use in fault injection,
the error margin and the cut off point obtaining the number of simulations you should run.

In this section we have described the software architecture we create over the core-v-verif
repository in order to do functional and FI simulation in automatic way. In the next section
we describe the main results we reach for our stage using the techniques explained above.

95

Verification

5.2 Results
Initially we should analyze the fault tolerance level of the original architecture in order to
have a comparison metrics for the FT arch. In table 5.1 there are all benchmark software
with the relative FT percentage:

Software FT Level [%] N sim N err
coremark_1 89.2 987 107
counters 89.0 1028 113
csr_instructions 90.0 999 100
cv32e40p_csr_access_test 88.2 941 111
dhrystone 89.7 970 100
fibonacci 87.2 993 127
generic_exception_test 87.9 1046 127
hello_world 86.4 963 131
illegal 90.7 951 88
interrupt_bootstrap 87.7 972 120
interrupt_test 89.8 983 100
misalign 89.8 976 100
modeled_csr_por 89.4 970 103
perf_counters_instructions 88.9 967 107
requested_csr_por 88.5 1023 118
riscv_arithmetic_basic_test_0 78.4 1044 225
riscv_arithmetic_basic_test_1 79.2 1023 213
riscv_ebreak_test_0 87.0 1000 130

Table 5.1: Results of FT Level for each software for the reference IF stage architecture,
transient errors, confidence level of 99% and error of 4%

The global FT level is 87%. The fault injection is done both on sequential and combi-
natorial signals, in this way we have a good approximation of real FT level. Now we are
ready to test the new architecture in two different configuration.

Full FT configuration The first architecture we verify is full FT so each sub-block
has: FT variable set to 1, we don’t use triple voter so all TOUT are 0 and also all TIN
are 0, for permanent fault configuration we use increment and decrement equal to 1 and
the Breaking Threshold equal to 3 anyway this part isn’t tested. The configuration setted
can be considered a fine-grain TMR plus permanent error detection through alpha counter
architecture. The results of trasient Fault Injection is shown in Table 5.2

96

Verification

Software FT Level [%] N sim N err
coremark_1 99.4 534 3
counters 99.6 546 2
csr_instructions 99.0 617 6
cv32e40p_csr_access_test 98.6 589 8
dhrystone 99.5 568 3
fibonacci 99.7 608 2
generic_exception_test 99.0 578 6
hello_world 99.1 580 5
illegal 98.9 561 6
interrupt_bootstrap 98.8 588 7
interrupt_test 99.0 599 6
misalign 99.6 554 2
modeled_csr_por 99.0 578 6
perf_counters_instructions 99.3 584 4
requested_csr_por 99.8 537 1
riscv_arithmetic_basic_test_0 98.8 575 7
riscv_arithmetic_basic_test_1 99.3 577 4
riscv_ebreak_test_0 99.7 597 2

Table 5.2: Results of FT Level for each software with all blocks protected in the new
architecture, transient fault, confidence level of 99% and error of 5%

The global fault tolerance of the stage compleatly protected is 99.2%, it isn’t 100% because
we inject fault also in the signals which connect blocks each other. The errors introduced
by these signals can be eliminated using triple voter configuration. Anyway this solution
isn’t effective because there is a complete triplication of each sub blocks which can be
optimized using TMR on the overall stage, the TMR on the complete IF stage reduces the
number of voters and avoid the sub blocks interconnection problem. We test this solution
to have the maximum FT level reachable with our architecture, anyway in real application
will be used trade-off configuration like the one shown in the next paragraph.

FT trade-off configuration We want to set a configuration in which the lower number
of TMR sub-block reach a considerable Fault Level, to do this the first step is to understand
what is the critical part of the whole stage. For this reason we use the reference architecture
results, in Table 5.3 there is the result of this simulation grouped in blocks.

97

Verification

subblocks N err N sim FT level [%]
aligner_i 1952 11902 83.6
prefetch_buffer_i 2142 19484 89.0

Table 5.3: Results of FT Level for the two main blocks of the reference IF stage

As you can see the prefetch_buffer is the block with the higher number of errors and so
the most impactful in terms of Fault Tolerant . We should look at the total number of
errors since the FT level of each block doesn’t consider the number of bits. Looking at the
total number of error we automatically consider the number of bits and so the probability
that a particle reaches the block. These statements are true because we inject faults using
uniform distribution along signals and bits and so a higher number of error in a stage
means a higher contribution to FT level.
We also exclude the other 4 blocks because they are little and so have lower impact on FT
level.

Starting from these considerations we protect only the prefetch buffer, the protection of this
block is easy to perform since we should only set PRBU_FT = 1 in the cv32e40p_pkg2.sv
package. After this configuration we run fault injection and we find the results in table
5.4.

98

Verification

Software FT Level [%] N sim N err
coremark_1 96.8 468 15
counters 96.5 519 18
csr_instructions 96.0 524 21
cv32e40p_csr_access_test 96.4 498 18
dhrystone 95.4 482 22
fibonacci 95.4 525 24
generic_exception_test 96.8 537 17
hello_world 97.7 483 11
illegal 96.6 502 17
interrupt_bootstrap 98.5 475 7
interrupt_test 96.9 518 16
misalign 96.7 512 17
modeled_csr_por 97.9 487 10
perf_counters_instructions 96.0 529 21
requested_csr_por 96.2 497 19
riscv_arithmetic_basic_test_0 96.7 522 17
riscv_arithmetic_basic_test_1 94.2 504 29
riscv_ebreak_test_0 98.6 502 7

Table 5.4: Results of FT Level for each software with only Prefetch Buffer protected in the
new architecture ,transient fault, confidence level of 99% and error of 5%

The global FT level is 96%, this is a good number if we want increase the FT level with
very low overhead in area. This result is near to the FT level of the full FT configuration
and for this reason is is a good trade off.

99

Chapter 6

Conclusions

In this thesis we have designed an Instruction Fetch stage for the cv32e40p core with these
properties:

• Automatic Creation: We create a Travulog/HTravulog Toolchain able to trans-
form the original Instruction Fetch in a Fault Tolerant stage. This means that we
automatize the creation of the stage starting from: some Travulog template, some
HTravulog code in the original IF stage and the Toolchain.

• Configurable FT level: In the design of the templates we have focused our atten-
tion to the configurability of the final Fault Tolerant IF stage, indeed we use many
parameters which can change the FT level and properties of each block. In this way
the new IF stage will be configurable according to the application.

• Maintainability: The automatic creation of the Fault Tolerant IF stage allows to the
designer a higher level of maintainability because a change in the original architecture
can be applied to the converted IF stage easly running the Toolchain.

Another important result of the thesis is the creation of the Travulog/HTravulog Toolchain
that make possible the automatic creation of the FT IF stage.

The Toolchain is open source and can be used for many application, indeed it enable the
transformation of an architecture using a Travulog Template. During this thesis we only
show Fault Tolerant Template, anyway you can design whatever type of template you needs
and verify the Toolchain support, if new Travulog commands is needed you can add it to
the Python Toolchain.

In this way we create a tool to transform architectures reducing design time and encour-
aging the template reuse. For example the Fault Tolerance template designed during this

100

Conclusions

thesis can be used for other architectures.

In this thesis we also show that both Full and Trade-off configurations of the new Fault
Tolerant IF stage created with the Toolchain has good results in terms of FT level (
respectively 99% and 96%).

Future Work Surely the main work that could be done is test the remaining configura-
tions of the new IF stage to see how it works. This is a long job because of the simulation
time and it cannot be done completely, so you should choose the most important configu-
rations and test those. The response to the permanent errors when varying the FT in the
blocks and the use of the triple voter should certainly be tested.
The thesis opens new developments towards automating the design of architectures, so an
important work is the improve of the toolchain. For example to facilitate the use we could
add others Travulog/HTravulog commands and create a complete manual of the language.
Many work can also be done on the creation of Template Library for Fault Tolerant trans-
formation, in this way complex FT architectures can be reused reducing design time and
during the creation of the template can be exploited all new FT techniques (e.g., genetic
algorithm 34, resilient structure 43, byzantine fault tolerance 44).

101

Bibliography

[1] Smartphone statistics. url: https://www.statista.com/statistics/263437/
global-smartphone-sales-to-end-users-since-2007/.

[2] Personal Computer statistics. url: https : / / www . statista . com / statistics /
263393/global-pc-shipments-since-1st-quarter-2009-by-vendor/.

[3] Car statistics. url: https://www.best-selling-cars.com/international/2019-
full-year-international-worldwide-car-sales/.

[4] Total number of worldwide smartphone used. url: https://financesonline.com/
number-of-smartphone-users-worldwide/.

[5] Total number of cars. url: https://www.live-counter.com/number-of-cars/.

[6] Total number of satellites. url: https : / / www . pixalytics . com / satellites -
orbiting-earth-2020/?format=pdf.

[7] G. G. Maxwell. “Pacemaker reliability: design to explant”. In: Annual Reliability
and Maintainability Symposium 1995 Proceedings. 1995, pp. 460–464. doi: 10.1109/
RAMS.1995.513285.

[8] Marcello Neri’s Thesis. url: https://webthesis.biblio.polito.it/17871/1/
tesi.pdf.

[9] Luca Fiore’s Thesis. url: https://webthesis.biblio.polito.it/17869/1/tesi.
pdf.

[10] Elena Dubrova. “Fault Tolerant Design : An Introduction”. In: Ece.Nus.Edu.Sg X.X
(2013).

[11] Shubu Mukherjee. Architecture Design for Soft Errors. 2008. doi: 10.1016/B978-0-
12-369529-1.X5001-0.

[12] Hairong Sun, J.J. Han, and H. Levendel. “Availability requirement for a fault-management
server in high-availability communication systems”. In: IEEE Transactions on Reli-
ability 52.2 (2003), pp. 238–244. doi: 10.1109/TR.2003.812624.

102

https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
https://www.statista.com/statistics/263393/global-pc-shipments-since-1st-quarter-2009-by-vendor/
https://www.statista.com/statistics/263393/global-pc-shipments-since-1st-quarter-2009-by-vendor/
https://www.best-selling-cars.com/international/2019-full-year-international-worldwide-car-sales/
https://www.best-selling-cars.com/international/2019-full-year-international-worldwide-car-sales/
https://financesonline.com/number-of-smartphone-users-worldwide/
https://financesonline.com/number-of-smartphone-users-worldwide/
https://www.live-counter.com/number-of-cars/
https://www.pixalytics.com/satellites-orbiting-earth-2020/?format=pdf
https://www.pixalytics.com/satellites-orbiting-earth-2020/?format=pdf
https://doi.org/10.1109/RAMS.1995.513285
https://doi.org/10.1109/RAMS.1995.513285
https://webthesis.biblio.polito.it/17871/1/tesi.pdf
https://webthesis.biblio.polito.it/17871/1/tesi.pdf
https://webthesis.biblio.polito.it/17869/1/tesi.pdf
https://webthesis.biblio.polito.it/17869/1/tesi.pdf
https://doi.org/10.1016/B978-0-12-369529-1.X5001-0
https://doi.org/10.1016/B978-0-12-369529-1.X5001-0
https://doi.org/10.1109/TR.2003.812624

BIBLIOGRAPHY

[13] L. Valcarenghi, M. Kantor, P. Cholda, et al. “Guaranteeing High Availability to
Client-Server Communications”. In: 2008 10th Anniversary International Conference
on Transparent Optical Networks. Vol. 3. 2008, pp. 34–37. doi: 10.1109/ICTON.
2008.4598649.

[14] ECSS. “Space Product Assurance - Techniques for radiation effects mitigation in
ASICs and FPGAs handbook”. In: Structure April (2016).

[15] Paul S. Ho and Thomas Kwok. “Electromigration in metals”. In: Reports on Progress
in Physics 52.3 (1989). issn: 00344885. doi: 10.1088/0034-4885/52/3/002.

[16] Fault-Tolerant Systems. 2021. doi: 10.1016/c2018-0-02160-x.

[17] Z. Zhang, R. Wang, Y. Wang, et al. “Impacts of Channel Doping on NBTI Reliability
and Variability in Nanoscale FinFETs”. In: 2019 IEEE 26th International Symposium
on Physical and Failure Analysis of Integrated Circuits (IPFA). 2019, pp. 1–4. doi:
10.1109/IPFA47161.2019.8984834.

[18] S. Das, T. P. Dash, S. Dey, et al. “NBTI Degradation and Recovery in Nanowire
FETs”. In: 2019 Devices for Integrated Circuit (DevIC). 2019, pp. 70–74. doi: 10.
1109/DEVIC.2019.8783566.

[19] K. Ota, R. Ichihara, M. Suzuki, et al. “Random Telegraph Noise after Hot Carrier
Injection in Tri-gate Nanowire Transistor”. In: 2019 Electron Devices Technology and
Manufacturing Conference (EDTM). 2019, pp. 169–171.

[20] W. Lin, W. Tsai, C. C. Cheng, et al. “Hot-Carrier Injection-Induced Disturb and
Improvement Methods in 3D NAND Flash Memory”. In: 2019 International Sym-
posium on VLSI Technology, Systems and Application (VLSI-TSA). 2019, pp. 1–2.
doi: 10.1109/VLSI-TSA.2019.8804652.

[21] H. Kim, M. Jin, H. Sagong, et al. “A systematic study of gate dielectric TDDB
in FinFET technology”. In: 2018 IEEE International Reliability Physics Symposium
(IRPS). 2018. doi: 10.1109/IRPS.2018.8353577.

[22] K. Joshi, S. W. Chang, D. S. Huang, et al. “Study of dynamic TDDB in scaled
FinFET technologies”. In: 2018 IEEE International Reliability Physics Symposium
(IRPS). 2018. doi: 10.1109/IRPS.2018.8353665.

[23] Kirby Kruckmeyer Robert Baumann. Radiation Handbook for Electronics. 2020.

[24] “COSMIC-RAY PICTURE OF THE HELIOSPHERE.” In: Johns Hopkins APL
Technical Digest (Applied Physics Laboratory) 6.1 (1985). issn: 02705214.

[25] P. Hazucha and C. Svensson. “Impact of CMOS technology scaling on the atmospheric
neutron soft error rate”. In: IEEE Transactions on Nuclear Science 47.6 (2000),
pp. 2586–2594. doi: 10.1109/23.903813.

103

https://doi.org/10.1109/ICTON.2008.4598649
https://doi.org/10.1109/ICTON.2008.4598649
https://doi.org/10.1088/0034-4885/52/3/002
https://doi.org/10.1016/c2018-0-02160-x
https://doi.org/10.1109/IPFA47161.2019.8984834
https://doi.org/10.1109/DEVIC.2019.8783566
https://doi.org/10.1109/DEVIC.2019.8783566
https://doi.org/10.1109/VLSI-TSA.2019.8804652
https://doi.org/10.1109/IRPS.2018.8353577
https://doi.org/10.1109/IRPS.2018.8353665
https://doi.org/10.1109/23.903813

BIBLIOGRAPHY

[26] Mengfei Yang, Gengxin Hua, Yanjun Feng, et al. Fault-Tolerance Techniques for
Spacecraft Control Computers. 2017. doi: 10.1002/9781119107392.

[27] P. V. Nekrasov, A. B. Karakozov, D. V. Bobrovskyi, et al. “Investigation of Single
Event Functional Interrupts in Microcontoller with PIC17 Architecture”. In: 2015
15th European Conference on Radiation and Its Effects on Components and Systems
(RADECS). 2015, pp. 1–4. doi: 10.1109/RADECS.2015.7365625.

[28] N. Seifert and N. Tam. “Timing vulnerability factors of sequentials”. In: IEEE Trans-
actions on Device and Materials Reliability 4.3 (2004), pp. 516–522. doi: 10.1109/
TDMR.2004.831993.

[29] Avizienis and Kelly. “Fault Tolerance by Design Diversity: Concepts and Experi-
ments”. In: Computer 17.8 (1984), pp. 67–80. doi: 10.1109/MC.1984.1659219.

[30] L. A. Tambara, F. L. Kastensmidt, J. R. Azambuja, et al. “Evaluating the effective-
ness of a diversity TMR scheme under neutrons”. In: 2013 14th European Conference
on Radiation and Its Effects on Components and Systems (RADECS). 2013, pp. 1–5.
doi: 10.1109/RADECS.2013.6937382.

[31] M. Masadeh, A. Aoun, O. Hasan, et al. “Highly-Reliable Approximate Quadru-
ple Modular Redundancy with Approximation-Aware Voting”. In: 2020 32nd In-
ternational Conference on Microelectronics (ICM). 2020, pp. 1–4. doi: 10.1109/
ICM50269.2020.9331771.

[32] K. Siozios and D. Soudris. “A Methodology for Alleviating the Performance Degra-
dation of TMR Solutions”. In: IEEE Embedded Systems Letters 2.4 (2010), pp. 111–
114. doi: 10.1109/LES.2010.2083632.

[33] H. T. Vierhaus. “Combining fault tolerance and self repair in a virtual TMR scheme”.
In: 2013 Signal Processing: Algorithms, Architectures, Arrangements, and Applica-
tions (SPA). 2013, pp. 12–18.

[34] F. S. Khodadad and M. Jahed. “Optimization of a Cascading TMR system configura-
tion using Genetic Algorithm”. In: IEEE 10th International Conference on Industrial
Informatics. 2012, pp. 470–474. doi: 10.1109/INDIN.2012.6300853.

[35] K Asanovic and DA Patterson. “Instruction sets should be free: The case for RISC-
V”. In: EECS Department, University (2014).

[36] RISC-V history. url: https://riscv.org/about/history/.

[37] RISCV unprivileged isa. url: https://github.com/riscv/riscv-isa-manual/
releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf.

104

https://doi.org/10.1002/9781119107392
https://doi.org/10.1109/RADECS.2015.7365625
https://doi.org/10.1109/TDMR.2004.831993
https://doi.org/10.1109/TDMR.2004.831993
https://doi.org/10.1109/MC.1984.1659219
https://doi.org/10.1109/RADECS.2013.6937382
https://doi.org/10.1109/ICM50269.2020.9331771
https://doi.org/10.1109/ICM50269.2020.9331771
https://doi.org/10.1109/LES.2010.2083632
https://doi.org/10.1109/INDIN.2012.6300853
https://riscv.org/about/history/
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

BIBLIOGRAPHY

[38] Michael Gautschi, Pasquale Davide Schiavone, Andreas Traber, et al. “Near-Threshold
RISC-V Core With DSP Extensions for Scalable IoT Endpoint Devices”. In: IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 25.10 (2017), pp. 2700–
2713. doi: 10.1109/TVLSI.2017.2654506.

[39] Pasquale Davide Schiavone, Francesco Conti, Davide Rossi, et al. “Slow and steady
wins the race? A comparison of ultra-low-power RISC-V cores for Internet-of-Things
applications”. In: 2017 27th International Symposium on Power and Timing Model-
ing, Optimization and Simulation (PATMOS). 2017, pp. 1–8. doi: 10.1109/PATMOS.
2017.8106976.

[40] L. Sterpone and M. Violante. “A new analytical approach to estimate the effects of
SEUs in TMR architectures implemented through SRAM-based FPGAs”. In: IEEE
Transactions on Nuclear Science 52.6 (2005), pp. 2217–2223. doi: 10.1109/TNS.
2005.860745.

[41] G. Asadi and M. B. Tahoori. “An analytical approach for soft error rate estimation in
digital circuits”. In: 2005 IEEE International Symposium on Circuits and Systems.
2005, 2991–2994 Vol. 3. doi: 10.1109/ISCAS.2005.1465256.

[42] R. Leveugle, A. Calvez, P. Maistri, et al. “Statistical fault injection: Quantified error
and confidence”. In: Proceedings -Design, Automation and Test in Europe, DATE.
2009. doi: 10.1109/date.2009.5090716.

[43] M. S. Farias, N. Nedjah, and P. V. R. de Carvalho. “Resilient Hardware Design
for Critical Systems”. In: 2019 IEEE 10th Latin American Symposium on Circuits
Systems (LASCAS). 2019, pp. 237–240. doi: 10.1109/LASCAS.2019.8667549.

[44] Leander Jehl and Hein Meling. “Towards Byzantine fault tolerant publish/subscribe:
A state machine approach”. In: Proceedings of the 9th Workshop on Hot Topics in De-
pendable Systems, HotDep 2013. Association for Computing Machinery, 2013. isbn:
9781450324571. doi: 10.1145/2524224.2524232.

[45] L. A. C. Benites and F. L. Kastensmidt. “Automated design flow for applying Triple
Modular Redundancy (TMR) in complex digital circuits”. In: 2018 IEEE 19th Latin-
American Test Symposium (LATS). 2018, pp. 1–4. doi: 10 . 1109 / LATW . 2018 .
8349668.

[46] H. Pham, S. Pillement, and S. J. Piestrak. “Low-overhead fault-tolerance technique
for a dynamically reconfigurable softcore processor”. In: IEEE Transactions on Com-
puters 62.6 (2013), pp. 1179–1192. doi: 10.1109/TC.2012.55.

[47] RISCV privileged isa. url: https://github.com/riscv/riscv- isa- manual/
releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-
20190608.pdf.

105

https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1109/TNS.2005.860745
https://doi.org/10.1109/TNS.2005.860745
https://doi.org/10.1109/ISCAS.2005.1465256
https://doi.org/10.1109/date.2009.5090716
https://doi.org/10.1109/LASCAS.2019.8667549
https://doi.org/10.1145/2524224.2524232
https://doi.org/10.1109/LATW.2018.8349668
https://doi.org/10.1109/LATW.2018.8349668
https://doi.org/10.1109/TC.2012.55
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf

BIBLIOGRAPHY

[48] PULP-Platform Simulation Verification. url: https : / / core - v - docs - verif -
strat.readthedocs.io/en/latest/pulp_verif.html.

[49] Davide Rossi, Antonio Pullini, Igor Loi, et al. “193 MOPS/mW at 162 MOPS, 0.32V
to 1.15V voltage range multi-core accelerator for energy efficient parallel and sequen-
tial digital processing”. In: 2016 IEEE Symposium in Low-Power and High-Speed
Chips (COOL CHIPS XIX). 2016, pp. 1–3. doi: 10.1109/CoolChips.2016.7503670.

106

https://core-v-docs-verif-strat.readthedocs.io/en/latest/pulp_verif.html
https://core-v-docs-verif-strat.readthedocs.io/en/latest/pulp_verif.html
https://doi.org/10.1109/CoolChips.2016.7503670

	List of Figures
	Listings
	Introduction
	Objectives
	Thesis structure

	Technical Background
	Safety critical application systems
	Dependability Model
	Electronic system parts
	IEC61508 and ISO26262 Standard

	Dependability of Integrated Circuits
	Internal Factors of Faults
	External Factors of Faults - Radiations
	Soft Errors

	Hardening techniques for digital circuit architectures
	Spatial redundancy
	Information Redundancy
	Temporal Redundancy

	RISC-V and CV32E40P Core
	History
	RISC-V ISA
	Base Instructions

	CV32E40P core
	CV32e40P Instruction Fetch

	Fault Tolerant IF Stage
	FT Compressed Decoder
	Basic Voter
	Configurable Voter
	Breakage Monitor
	Configurable Compressed Decoder

	Travulog
	Declaration of ports
	Internal signals and assign
	Instance
	Multiple Operation
	Converted SV and parameters template
	Apply the template in Python

	Hidden Travulog
	Introduction Part
	Internal signals
	Create a new module
	Use Travulog template

	Test of the Toolchain

	Verification
	Simulation Flow
	Initial Setup
	Benchmark Compilation
	Core Functional Verification
	Fault Injection Process
	Number of simulations and Accuracy

	Results

	Conclusions
	References

