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Summary

The human brain is a biological machine capable of performing real time computing tasks with
an extremely reduced power budget. For this reason, brain inspired computing aims at mimick-
ing the brain functioning to implement novel computational paradigms. This requires to work
both at the hardware and at the learning algorithm level, toward the optimization of their interplay.

On the algorithmic side, a well established neuronal model is the Additive Model, that treats the
brain as a non-linear dynamical system evolving under the influence of external stimuli. This
model is classifiable as a continuous time Recurrent Neural Network (RNN). Recently, Bengio
and Scellier have designed a learning algorithm named Equilbrium Propagation (EP) [1] capable
of efficiently performing learning on this model .

On the hardware side, the capability of ReRAM devices to store in a compact component
multiple states of conductance has been explored to implement nanometric solid-state electronic
synapses, i.e. the analogue of the biological units at the basis of learning. However, these devices
present many challenges in terms of retention [2] and of linearity [3]. Additionally, RNNs can
be mapped into continuous time electronic circuitry that, if implemented, would dramatically
improve their performances in terms of computing time [4].

This work aims at exploring the interplay of learning algorithms and hardware toward the
definition and simulation of a ReRAM-based network for the analogue implementation of the
Additive Model.

In the first part, the versatility of Equilibrium Propagation is tested on the solution of two
machine learning tasks: reconstruction of corrupted patterns and image classification. While
discussing reconstruction, it is verified the possibility to use EP for the optimization of a wide
range of networked structures. Additionally, this work proposes a modified version of the EP
algorithm. The original formulation is remarkable since it was rigorously derived. Nevertheless,
its generality is affected by the fact that the directional synaptic weights between any two neurons
must be equal. To overcome this limitation, Scellier et al. extended the algorithm to non symmet-
ric connections [5]. This second algorithm is derived by means of a heuristic approach. Hence,
other solutions might be equally valid and should be taken into consideration. The proposed
variant to EP is therefore to be interpreted as a possible alternative to the Scellier extension and
its applicability is verified on the reconstruction problem.
For what concerns classification, the EP algorithm is applied to increasingly complex classifi-
cation tasks. Finally, it is discussed a Feature Engineering approach inspired by the learning
mechanisms of the Additive model. This allows to considerably reduce the number of synaptic
connections needed while guaranteeing satisfactory performances. In all the problems considered
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the non-linearity is introduced using two functions: the hard sigmoid or the hard hyperbolic
tangent. Both of them are proved to be effective in the solution of all the investigated tasks while
being compactly implementable in hardware.

The second part of this work aims at developing ngSpice models [6] to simulate the analogue
circuit associated to the RNNs discussed in the algorithmic part. The starting point is a behav-
ioral definition of the primitives to be connected in the network. Then, the description level is
progressively lowered toward a full hardware description. In its final form, the proposed neuron
is made of two operational amplifiers, three resistors, one capacitor and two Schottky diodes.
This solution is particularly promising since this neuron is designed to limit the retention problem
and the non-linearity of ReRAMs. In the last part of this work one additional non-ideality of the
ReRAMs is considered: the cycle-to-cycle variability [7]. This feature prevents from achieving
the performances that can obtained on digital platforms and forces to work with quantized states
of conductance. When extending EP to quantized networks some precautions need to be taken
and the classification task is used for discussing them.
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Chapter 1

Neuromorphic computing with
resistive switching materials

1.1 The digital revolution
In the course of the last century an unprecedented technological revolution has taken place,
leading to astonishing advancements in the quality of life in industrialised countries. The
fundamental driving forces of this revolution have been the foundation of information theory
and the concurrent development of more and more convenient electronic hardware platforms
and technology capable of processing data which nowadays permeate each aspect of our lives.
Basically, large part in this revolution is to be attributed to our capability to extract data from the
surrounding world and to perform actions based on the derived information. Hence, this revolu-
tion is ultimately based on our capability to build machines capable of performing increasingly
complex computational tasks.

1.1.1 The Von Neumann architecture
It all started in 1936, when Alan Turing developed the first theoretical model of computation [8].
He proposed the Turing machine, an abstract system capable of solving problems following rules
stored in a table. He theorised about the existence of a machine whose operating principle would
be based on symbols written on a potentially infinite strip. His work also led to the concept of
Turing completeness, a property attributable to a data-manipulation engine capable of simulating
any Turing machine. In simplistic terms, any algorithm can be expressed as a Turing machine and
the vast majority of modern programming languages are Turing complete. Therefore, a computer
equipped with an operating system supporting those languages can be transitively considered to
be Turing complete. The first practical realizations of computing systems were purpose oriented,
like the decryption device Bombe. However, soon after World-War II the research aimed at
creating general purpose computers, leading first to the Electronic Numerical Integrator and
Computer (ENIAC) and right after to the Electronic Discrete Variable Automatic Computer
(EDVAC) [9]. Thanks to their capability of solving numerical problems through programming
they were both classified as Turing complete. The latter system was the first realization of the so
called Von Neumann architecture, that is at the basis of almost any computing done to our days.
It is based on the idea that every computational problem can be divided into three steps: first
some data is to be pulled from a memory and sent to a processing unit, then the logic performs
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the computation, and finally the results are sent back to the memory. While the first realization
of such architecture was based on valve tubes technology, the work done at the Bell Labs, led by
Schockley, allowed to create the first transistor-based computer in 1954: the TRAnsistor DIgital
Computer or TRansistorized Airborne DIgital Computer (TRADIC)[10]. With this invention the
Digital era officially started.

Moore’s law and Dennard’s law

What said so far allows to understand why the main structure of the Von Neumann architecture
has remained central to our days. First of all, its Turing completeness makes it extremely versatile
as a general purpose engine. The possibility of performing many tasks with the same machine
is one of the biggest breakthrough the mankind has been capable of, and the power of this
computing paradigm can be understood just thinking at what it is possible to do nowadays with a
smartphone in terms of various forms of information transfer, including domotics. In addition to
this, its implementation in transistor technology made it dimensionally scalable. To understand
this statement, we can retrospectively follow the well known Moore’s law. In 1965 Gordon
Moore, co-founder of Intel, foresaw that the miniaturization of integrated circuits would have
allowed to fabricate electronics with increasingly complex functionalities and at lower cost [11].
In particular, his analysis was based on the manufacturing cost per component, which fixes the
optimal number of devices to be integrated in a single chip at a given technology. He noticed that
this number was increasing through years at an exponential rate, and correctly assumed that this
rate would have been qualitatively maintained. Therefore, as the semiconductors industry was
assiduously committed to follow the Moore’s trend, the computing power of the Von Neumann
architecture naturally benefited in terms of performances and capabilities.
In the evolution of the transistor technology power consumption has always had a key role.
Increasing the number of devices was necessary, but this could not induce an increase in power
dissipation. In his paper of 1965 [11], Moore stated that "shrinking dimensions on an integrated
structure makes it possible to operate the structure at higher speed for the same power per unit
area". This statement was formalized by a research led by Robert Dennard, who found the
prescription for scaling the characteristic lengths of a MOSFET transistor, while maintaining
constant the dissipated power per unit area [12]. More precisely, he estimated an expected
halve in power dissipation per transistor from one generation to the next. If one combines this
information with the doubling of transistors per unit area predicted by Moore, it is possible to
understand that a constant power dissipation per unit area was maintained from one generation
to the next, while chips became capable of more and more complex tasks.

1.1.2 Artificial Intelligence

While chips technology was evolving, computer science theory kept attracting people from
various domains of research and to branch in variegated manifestations. Among the others, also
Artificial Intelligence (AI) started to take form. As a matter of fact, AI is a field of research
whose official date of birth is just two years after the creation of TARDIC, in 1956. Some of
the most prominent minds of the last century met during the Dartmouth Summer workshop and
spent almost two months discussing on how to mathematically describe every aspect of learning,
so as to create a machine capable of doing it [13]. While research has been continuous on the
topic ever since, the interest of people on the subject has fluctuated over the years.
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Early years

The first twenty years are commonly considered the golden age of artificial intelligence. Many
of the algorithms used today date back to the findings of the 50s and 60s. The problem, at the
time, was that the computing power was not ready to sustain the creativity of researchers. This is
to say that in the early days of computing the state of technology did not allow neither to store,
nor to process any significant amount of data. Only toy models could be solved, contrarily to the
expectation of the funding agents, who had trusted the exceedingly optimistic predictions of some
researchers. In any case, the attempt to design artificial systems capable of human perception
and learning continued through the years, in a steady collection of results with much academic
interest despite the small echo in industry. A proper collection of all of the breakthroughs of this
period is out of the scope of this work. The interested reader can refer to the extensive literature
on the history of AI [14, 15]. It is just worth mentioning that in the 70s plenty of work was done
at the Artificial Intelligence Lab at MIT on optimized hardware for AI application, that led to the
LISP programming language [16]. This was the language of the Lisp machine, the first single
user workstation, optimized for AI tasks and commercialized in 1979. Unfortunately for the
developers, the commercialization occurred concurrently with the so called AI winter, during
which, once again, AI found itself unfairly downgraded. To worsen the consequences of the
diffused mistrust for AI, the technology was ready for starting the microcomputer revolution, led
by Apple and IBM. In few years desktop computers could outperform Lisp machines even for
Lisp programming tasks, killing at birth an extremely fascinating AI-oriented hardware solution.
In any case Moore’s law kept holding and computing power kept increasing. This allowed in
the years from the 90s to the first decade of the new century to have sufficient computing power
to use old algorithms for performing tasks at a significant rate. Machines started to play chess
better than humans and as digital systems permeated every aspect of our life, AI algorithms were
often silently behind the advancements our society experienced.

The Big Data Era

In the last ten years AI has re-emerged as a leading topic and, according to the predictions [17],
it is here to stay. The main reasons for this renaissance, however, are not uniquely attributable to
the Moore’s law. Moore’s law has certainly had large impact on the creation of more efficient
hardware, but what really made the difference was the advent of the Internet and of Cloud
computing, that pushed the mankind in the Big Data era. The Internet started to be present in
the everyday life in the 90s and progressively diffused through the social fabric, permeating any
aspect of our world. Soon enough, any kind of data was present on the Internet, carefully stored
for later usage. In this way, billions of people contributed to the creation of huge data-sets.
A subset of AI is Deep Learning, studying various manifestations of the so called Artificial Neural
Networks (ANN). Generally speaking, Deep Learning models are high dimensional parametric
models that can act as functions approximators. These models benefit from large data-sets since
their parameters can be optimized by presenting them many examples of something we want
the model to learn. Due to the parametric nature of these models, at first it was believed that
neural networks could not be made arbitrarily large. This expectation was based on the fact
that complex parametric models are known to be subjected to overfitting. This is the machine
equivalent of learning by heart, which is highly undesired when one wants to have a machine
capable to correctly perform a task on data never seen during the learning phase. Nonetheless, as
soon as it was possible to perform experiments with such networks, it was noted that, in some
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cases, no over-fitting occurs in Deep Neural Networks [18]. In this way it was possible to make
such models arbitrarily complex, pushing the limits of computing performances at will. This
behavior is still under investigation, especially from physicists who are trying to understand it
using tools from Statistical Mechanics [19]. However, even if unexplained, it led to brute force
empirical Deep Learning approaches that have dominated the scene over the last years. This was
made particularly easy by the seemingly unlimited computation resources available to the user
thanks to the introduction of Cloud computing. In fact, this enabled the massive parallelization
of submitted tasks, making it possible to train models with a huge number of parameters. Just to
mention some famous architectures, the GPT-n family is a clear example for this trend. GPT-n
constitute a family of AI based general purpose learners for text generation tasks. Up to now
three evolutions of it have been developed and while GPT-2 had 1.5billions parameters, GPT-3
[20] has jumped to 175 billions.

1.1.3 Need for efficient solutions
Despite the uncountable benefits induced by the aforementioned Digital Era, we are now facing
some fundamental issues. On the one hand the slowing down in the Moore’s law and Dennard’s
scaling are forcing the community to start looking for alternatives to CMOS based Von Neumann
architectures. On the other hand, modern computing trends in AI are no longer sustainable from
an energetic point of view.

Post Moore era

The Moore’s law and the Dennard’s scaling continued to foster research through years. Nonethe-
less, in the last two decades the scientific world has become aware that this trend cannot proceed
much longer [21]. The first signs came from the slow down in Dennard’s scaling. As the dimen-
sions are shrinked to nanometric scale, leakage currents gain progressively higher importance,
consequently increasing the power dissipation per integrated circuit area. Since an increase in
performances via technological advancements has become an increasingly hard challenge, the
researchers started questioning the very structure of the architecture on which our computing sys-
tems are built on: the Von Neumann architecture. One of the major limitations in this computing
system is also one of its greatest strengths, making it difficult to get rid of it. In fact, the general
applicability of the Von Neumann architecture is largely guaranteed by the separation of memory
from logic. Individually, memory and logic have been subjected to miniaturization thanks to
the aforementioned trends. Nonetheless, while the logic becomes increasingly faster thanks
to the growth in complexity that can be integrated in a single chip, the amount of information
that can be transmitted from memory to logic has reached its maximum. This is to say that
even if we can increase the speed of the actual computation performed by the central processing
unit, the total speed of the device will always be the same, since it is dictated by the speed with
which data is transmitted back and forward, in the unit time, from memory to logic. This is to
say that, even if we can increase the speed of the actual computation performed by the central
processing unit, the total speed of the processor will always be the same, since it is dictated by
the rate at which data is transferred from memory to logic and back. Therefore, if one wants to
increase performances, this is the first limiting factor to be dealt with and is generally referred to
as the Von Neumann bottleneck. The most promising approach to solve this issue is to bring
computation and memory together, in an approach named Logic In Memory (LIM). This has
taken many different forms, that interestingly require one to reduce the generality of the model
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and go back to purpose-oriented solutions for maximizing the performances. This thesis project
can be identified as belonging to this class of approaches, as it will be better described later in
the chapter.

The unsustainable trend in Deep Learning

Despite the fact that the stagnation in hardware performances could be compensated by perform-
ing it on computing clusters in the cloud, this would be blindly unsustainable in term of energy
consumption. In an article published in Forbes [22] it was argued that training GPT-3, in terms
of carbon footprint, is the Deep Learning equivalent of five cars through their whole lifetime.
Not to mention the hazardous environmental impact of Von Neumann based data centers [23].
Given these premises and trends, the whole community started to explore alternatives to the way
computing is currently performed. In a review paper on Non Von Neumann computing [24], the
authors state that

The future of computing is at crossroads. The technological advances that have sustained the
exponential growth of computing performance over the last several decades are slowing and the

roadmap for future advances is uncertain.

Among the variegated approaches that are emerging on the scientific landscape, the field of
Neuromorphic Engineering is gaining more and more credits as the future of AI electronic
processors.

1.1.4 Neuromorphic engineering
Neuromorphic engineering is a branch of research sprouted from the mind of the "father of
computation", Alan Turing. In his work on Intelligent machineries, he had envisioned the power
of networked structures for computing tasks [25]. Nevertheless, since the issues mentioned
above had not yet arisen, scientists and engineers in academia and in the corporate world did
not push so hard towards a bio-inspired approach. The goals of this field have been collected in
a on-the-run manifesto of this research area, published in 2015 [26]. Basically, Neuromorphic
Engineering is a research branch of electronics engineering which tries to implement physical
systems that, taking inspiration from the working principles of mammalian brains, try to solve
AI related problems in a much more efficient way than conventional Von-Neumann digital
systems are capable of. As already stressed, when talking about performances we mean both
computing performances and energy consumption performances. The mammalian brain is
capable of mesmerizing real time processing while consuming a very limited amount of resources.
Therefore, the goal is to create brain-inspired hardware for reaching optimal performances in
AI-related tasks. Brain inspired computing can naturally combine the eagerness of fast computing
and the old desire of building intelligent machines. In fact, it is clear that advancements in high
performance hardware for brain-inspired computation can only come as a result of a deeper
understanding of the brain functioning and of its effective reproduction in some form of hardware.
Neuromorphic engineering is therefore a broad domain of research that is being powered by
the increasing collaboration of people coming from different research areas. Mathematicians,
electrical engineers, physicists, neuroscientists, computer scientists and material scientists share
on the same level the knowledge of their fields, in the attempt to build the next generation chips.
Also the big names in Electronics are taking part to the change, including Intel and IBM. In fact,
both of them have already proposed their own neuromorphic chips, Loihi [27] and TrueNorth
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[28] respectively. Both of them are optimized for dealing with artificial neural networks and
are based on the mature CMOS-technology. The two electronics firms managed to simulate the
brain functioning by defining complex CMOS-based architectures. While these solutions already
provide an example of major achievements in Neuromorphic Engineering, their dependency on
transistors does not make them the definitive solution to our computing needs [29]. They allow to
simulate neuronal behavior but the complexity of their architectures make them extremely power
hungry, while remaining not promising in terms of future scalability, due to their dependency on
an apparently saturated technology. Many questions are still open on how to optimally mimic our
biological computing tool. One of the most promising directions, according to the International
Roadmap for Devices and Systems [30], should come from the next generation of Memory
devices.

1.2 Biological Neural Networks
As previously mentioned, the neuromorphic community has progressively gained more interest
in emerging memory technologies. This is mainly due to their potential as electronics-based
emulators of brain constituents, like synapses and neurons. This section aims at introducing the
artificial neural networks starting from biological knowledge. The reference review paper for the
discussion is the one of Tang et al. [29]. Among the different memory devices, this work focuses
on the Resistive Random Access Memory technology. In fact, recent experimental results [31,
32] were extremely promising in terms of three figures of merit of memory devices: scalability,
retention and endurance. In order to bridge biological and artificial neural networks, the brain
mechanisms to be mimicked are introduced in the following section. This allows to highlight the
properties that the electrical components must have to perform brain inspired computation.

1.2.1 The Neuron

The mammalian brain is a networked structure made of neurons [33]. The neurons are the
computing units of the brain and are connected through synapses. From a biological point of
view a neuron is a cell made of three components: a soma, an axon and dendrites. As every other
living cell, they are delimited by a lipid double layer membrane which separates them from the
extracellular environment. This membrane contains ion pumps, channels that selectively let ions
enter in the cell or expel them. Their presence allows to have a controlled voltage drop across
the membrane. In normal condition, the internal part of the neuron is at an electrical potential
around 70mV lower than the extracellular environment. In the leaky integrate and fire model,
the information processing of the neuron can be distributed among its three constituent blocks.
First the information is received through the input units of the neuron, the dentrites. These are
connected to the axons of the surrounding neurons and, in this simple model, they are assumed
to just receive the incoming signal and to send it to the soma. The soma is the body of the cell
and its functioning can be assimilated to the one of an integrator. Basically, it receives the stimuli
transmitted through the dendrites and the ion channels on the membrane are opened to generate
an in-flux or an out-flux of ions, depending on the kind of information transmitted. In this way,
the ions concentrations on the two sides of the membrane potential are altered, consequently
modifying the average voltage. If the membrane potential becomes larger than a certain threshold
an action potential is generated, that propagates in the form of a transitory fast signal along the
axon, toward the surrounding neurons.
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Figure 1.1: Schematic representation of the neurons functioning. Each neuron is described as
an information processing unit made of three components: the dendrites, the soma and the axon.
Each neuron receives the information via the dendrites and the soma integrates them. This results
in a controlled alteration of the membrane permeability to ions, that changes the membrane
potential. If the membrane potential overcomes a certain threshold, an action potential is sent
through the axon to the surrounding neurons.

Leaky integrate and fire

From the early understanding of the electrical properties of neurons, people tried to define a
compact model of the neuron activity. The membrane potential of the generic m neuron acts as
a capacitor Cm, a component separating charge in such a way to build a dynamically varying
potential. The potential evolves in time as soon as currents of ions flow through the membrane.
These currents are assumed to be controlled in some way by the stimulus received at the dendrites.
Finally, an input current is added as an external stimulus, that could be an experimental electrode
or some sensory input. The Hodgkin-Huxley model for the m-th neuron thus becomes:

Cm
dvm

dt
= ∑

k
Imk(t)+ Im(t) (1.1)

A refinement of the model is provided by the so called leaky integrate and fire model:

Cm
dvm

dt
= −vm− em

Rm
+∑

k
Imk(t)+ Im(t) (1.2)

where the resistive term is introduced to take into account possible leakages of the membrane.
Additionally, a constant potential term em is added to take into account the equilibrium voltage
difference dropping across the membrane.

Synapses and plasticity

To understand the nature of the ion currents, a deep comprehension of the way information
arrives to the soma for integration is needed. The synapse is a structural link connecting the
axon of a neuron, called pre-synaptic neuron, to the dendrites of the subsequent one, named post-
synaptic neuron. Each time a spike traverses the axon of the pre-synaptic neuron, some chemicals
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named neuro-transmitters are released at the level of the synapse, reaching the dendrites of the
post-synaptic neuron. These substances locally modify the permeability of the membrane to ions,
consequently inducing the appearance of a time dependent ion current, previously indicated as
Imk(t). This stimulus can be either excitatory or inhibitory, respectively increasing or decreasing
the voltage potential. Additionally, the synapses are known to vary in time, in a process called
synaptic plasticity. This is to say that the capability of a signal arriving at a synapse will not
influence the post-synaptic neuron in the same way at different moment in the life of the brain.
Synaptic connections can be potentiated or de-potentiated in a process that is commonly believed
to be at the basis of learning. In order to make this concept clear, it is then possible to model the
ion currents in terms of the spike voltages that induced the release of the neurotransmitter at the
level of the dendrite. This can be generally written as Imk(t) = Gmk(t)ζ (t− τmk), where Gmk
is a time varying conductance while ζ (t− τmk) is a signal indicative of the spiking activity in
the pre-synaptic neuron, given the propagation delay τmk. Additionally, since a voltage potential
is always a positive spike, the origin of the potentiation or de-potentiation must be encoded in
the conductance. Since no intrinsically negative conductance can exist in nature, it is generally
assumed that potentiation or de-potentiation can occur at different synaptic channels, leading to
the so called adaptive integrate and fire model

Cm
dvm

dt
= − vm

Rm
+∑

k
G+

mk(t)ζ
+(t− τmk)−∑

k
G−mk(t)ζ

−(t− τmk)+ Im(t)+ Ie
m (1.3)

where the synaptic contribution has been splitted into the excitatory (+) and inhibitory (−)
contributions and the rest potential has been introduced in the general term Ie

m. Furthermore,
additional equations are required to describe the evolution of the synaptic weights, namely to
model synaptic plasticity

d
dt

Gmk = f (Gmk,vm, Im) (1.4)

This corresponds to model the way the network is capable to adapt as a consequence of external
information being introduced, and in the next chapters three closely related learning approaches
are reported. The basis of them is Equilibrium Propagation, a learning algorithm ideated by
Bengio and Scellier in 2017 [1]. This is a mathematically rigorous algorithm, that is however
limited to networks in which the synaptic weights are symmetric. To overcome this potentially
non-physical limitation, they proposed a follow up work to extend the algorithm to a-symmetric
networks [5]. This corresponds to the second algorithm discussed. Finally, a third algorithmic
solution is proposed, based on the logical connection of symmetric EP and a-symmetric EP. This
is a new algorithm and might be biologically interpreted through the phenomenon of habituation.

Averaging in time and in neurons

The neuron model introduced so far is extremely simplistic but also general. The sum runs over
all possible synaptic connections and the contribution at time t is governed by the presence of a
spike originated in the soma of the pre-synaptic neuron at previous instants of time. Thanks to
this non-locality in time, the model is extremely biologically plausible and it is generally called
a spiking model. In the neuromorphic community, spiking models are having much success and
a lot of research is oriented to create hardware in which the information transfer occurs through
spikes [34].
An alternative point of view is to consider rate models. The basic idea is that the number
of neurons in the brain is huge and there are experimentally proved neuronal structures in
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mammalians in which neurons are arranged in columnar structures and having the same properties.
In this context, let us consider a biologically layered structure in which a column of Nm′ identically
functioning neurons are post-synaptic to a column of Nk′ identical pre-synaptic neurons. In
this network it is possible to define the two populations as Pm′ and Pk′ and to define two coarse
grained neurons m′ and k′, respectively associated to the pre-synaptic and to the post-synaptic
groups of neurons. Additionally, for each pre-synaptic coarse grained unit it is possible to define
a quantity called population activity.

ϕk′(t)
.
=

〈
∑

k∈Pk′

ζ (t̃− τkm)

〉
∆t,Pm′

.
=

1
Nm′∆t

∫ t

t−∆t
dt̃ ∑

m∈Pm′

(
∑

k∈Pk′

ζ (t̃− τkm)

)
(1.5)

In words, given the pre-synaptic population Pk′ , the population activity is defined as the average
over a time interval ∆t and over the post-synaptic population Pm′ of the spiking activity signals
sent from Pk′ to Pm′ at an earlier time τkm. The neurons labelled with m (k) and giving rise to the
coarse grained neuron m′ (k′) are identical to each others. Hence, the synaptic weight connecting
any two neurons of these populations must be the same, and it will be referred to as Gmk = Gm′k′ .
Similarly, also the capacitor and the resistor of each neuron must be shared by the individuals of
each population, i.e. Ck =Ck′ and Rk = Rk′ . Not much attention was given to the spiking signal
on the communication line k→ m: ζ (t− τmk). However, it is clear that its definition should be
taken to be the residual effect at time t of the individual spiking events occurred at earlier times
on the communication line k→ m. These events are collected in the ensemble S<t

k→m of spiking
events and the spiking activity reads

ζ (t− τmk) = ∑
s∈S<t

k→m

κ(t− τ
s
mk). (1.6)

This model assumes an exceeding homogeneity in large numbers of neurons. Nonetheless the
idea of defining coarse grained versions of neurons by averaging out in time and in populations is
a useful coding principle. In fact, this concept allows to substitute the biological spiking neurons
with their coarse grained artificial counterpart, making the dynamic system of the neural network
local in time. From a mathematical point of view this is obtained by applying the average defined
in Eq.1.5 to both the sides of Eq.1.3. By further assuming that the evolution of the neurons is
such that 〈

dvm

dt

〉
∆t,Pm′

' d
dt
〈vm〉∆t,Pm′

=
dvm′

dt
(1.7)

one finally obtains

Cm′
dvm′

dt
= − vm′

Rm′
+∑

k
G+

m′k′(t)ϕ
+
k′ (t)−∑

k
G−m′k′(t)ϕ

−
k′ (t)+ Im′(t)+ Ie

m′ (1.8)

where the current terms are the averaged version of the corresponding components appearing in
Eq.1.3. This is almost equivalent to the Grossberg Additive Model for time continuous recurrent
neural networks, that is discussed in more details in the next chapter.
At this point it has been discussed one of the simplest existing models of neural networks, present
in the field for long time. The reason for this is that well established models can be safely used
to test new learning algorithms and to discuss their hardware implementation.
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1.3 Crossbars-based architectures

Once introduced the general functioning model for a neural network, it is possible to identify some
circuital desiderata for implementing them. First of all, in Eq.1.8 is contained the most ubiquitous
operation in the field of ANN: the multiply and accumulate operation (MAC). Expressions like
∑k Gmk(t)ϕk(t) are present in almost all the algorithms describing networked structures. This
basically corresponds to a matrix vector multiplication and, if combined with the introduction of
non-linearities, it is at the basis of the learning capability of these systems. In the current digital
approach to neuromorphic hardware, accelerators are employed to parallelize large matrix vector
multiplications. Nonetheless, the hardware that performs computation operates in a sequential
way. Therefore, the first desiderata for new architectures to be developed is the capability of
performing the MAC in parallel. Secondly, we pointed out that the conductances appearing in
the integrate and fire models should be varying in time, according to a dynamics that corresponds
to the learning process. In other terms the architecture should allow for a potentiation and
de-potentiation of the synaptic connections between the different neurons. It turns out that
both these requirements are met by crossbars of resistive switching devices, also referred to as
memristive crossbars.

1.3.1 Resistive Switching in ReRAM

The key feature in biological synapses is their capability to change in time. As the previously
described model showed that the strength of a synaptic connection can be associated to a
conductance value, it would be desirable to have a compact component whose resistance can
be tuned easily and in a controlled way. In the course of the last years many devices have
been proven to show this feature and have been studied with the aim of implementing artificial
synapses. Despite the ferment in the field, researchers are still struggling with the intrinsic
stochasticity of the devices, and the difficulty to reach accuracies comparable with the one we
can currently achieve with equally complex networks, simulated on digital hardware. One of
the most promising emerging memory technologies is the Resistive-switching Random Access
Memory (ReRAM)[35]. The main reason behind the scientific interest on it is that it appears
to be more likely to achieve satisfactory incremental switching in the near future. Another
interesting feature of these devices is that they are based on the well established metal oxide
technology, involving materials such as HfOx and TiOx. From this technology the ReRAMs
inherit the compatibility with CMOS circuitry, an essential requirement for a smooth transition
to future hardware solutions. Additionally, ReRAM devices can be integrated very compactly
and are extremely power efficient. In the following discussion, a Pt/HfO2/Ti/TiN device [35] is
used as a reference for modelling neural synapses.

1.3.2 Crossbars

One of the advantages of ultra-compact memory devices is the possibility to arrange them
in crossbar structures. This fact allows a natural parallelization of the MAC operation. As
previously mentioned, the ionic current induced by external stimuli to the m-th neuron of the
network is:

Im = ∑
k

GmkVk (1.9)
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where the population activity has been substituted with a generic voltage value. In a more
compact form, if there are Nu neurons in the system, it is possible to define the Nu dimensional
vector of the ionic currents Im, the Nu dimensional vector of the population activities and the
Nu×Nu matrix of the conductances, expressing all of the synapses. This being said, the ionic
currents are computable via the MAC operation

I = G ·V . (1.10)

Figure 1.2 shows how it is possible to combine Ohm law with the Kirchhoff’s Current Law
(KCL) to compute a matrix vector multiplication in a naturally parallelized way. Of course one of

Figure 1.2: Resistive crossbar realized with normal resistors.

the nodes need to be grounded but, as later discussed, it is possible to achieve this by connecting
it to the inverting input node of an operational amplifier, while connecting the non inverting
input node to ground. In this way, ideally, the node is at virtual ground while the current can be
used for defining the whole analogue brain. In Fig.1.2 normal resistors have been represented for
the aim of clarity. However, they should be substituted with resistive switching devices. More
precisely, the configuration typically adopted is the so called one transistor one resistor (1T-1R),
that can be observed in Fig.1.3. First the resistor has been substituted with a resistive switching
device in series with a transistor. The transistor allows to connect or disconnect the resistive
device, depending on the configuration and on the need to re-program it. Moreover, to take
into account the fact that no intrinsically negative resistance value can be achieved, the trick of
inverting the voltage and using two resistors has been adopted. In this way both positive and
negative weights can be achieved

I = G ·V I = (G+−G−) ·V (1.11)

In any case, the interesting thing is that we pass from a sequential computation of the MAC
operation, corresponding to a computational cost of O(N2

u ), to a constant computational time
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Figure 1.3: From left to right a resistor is substituted by a 1T1R memristive weight, that is then
splitted into two memristive devices to allow the encoding of negative weights.

O(1).

1.3.3 Memristor
In 1971 Leon Chua theorized the existence of a fundamental circuital component, that should be
added to the resistor, the inductor and the capacitor when putting into relation the fundamental
electrical quantities. For an in depth theoretical characterization of the component the interested
reader can refer to the work of Corinto et al. [36]. First of all, Chua expressed the constituent
relationships of the fundamental ideal devices in terms of four quantities: the current i, the
voltage v, the charge q and the flux linkage φ . The first two quantities can be connected to the
second ones through a time derivative:

i =
dq
dt

v =
dφ

dt

Then, the relationships between these variables expressed in terms of increments read

• dv = Rdi: The resistor connects a voltage variation to the corresponding current variation;

• dq = Cdv: The capacitor connects the charge variation to the corresponding voltage
variation;

• dφ = Ldi: The inductor connects the flux linkage variation to a the associated current
variation;

Adducing symmetry arguments, he noticed that the existing circuital components fix a relation-
ship between any two fundamental electric variables, except for the flux linkage and the charge.
He therefore theorized the existence of a fourth non-linear component and he called it memristor.
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In particular, this component can be expressed in two ways, depending on the variable considered
to be independent

dφ = M(q)dq⇔ dq = G(φ )φ (1.12)

Naturally, this component must be non-linear or it would simply be a resistor. Instead, if it is
non-linear its conduction properties must depend on q or on φ and, in these cases, the functions
M and G in Eq.1.12 are respectively called memristance and memductance. The interesting thing
about this component is that it depends on the past history of the port variables (current and/or
voltage) {

q(t) =
∫ t
−∞

i(τ)dτ

φ (t) =
∫ t
−∞

v(τ)dτ
(1.13)

Therefore, its value must depend on the whole history of the device. In 2008 a group at the
HP Labs led by Stanley Williams claimed that they had found Chua’s memristor while they
were trying to explain the pinched I-V curve of the TiO2-based ReRAM they had designed
[37]. This would generate a wave of enthusiasm that increased a lot the popularity of this
component. This generated great interest in the research community of material scientists and
electrical engineers which persists to these days and pushed the quest for brain-inspired analogue
computers. Additionally, as said before, the neuroscience community struggled for years in
the attempt to define rules well encoding learning. Furthermore, the goal in neuroscience is to
express these rules in terms of dynamic equations for the synaptic weights, that are conductances.
So lately, the theory behind the memristor seemed the natural way to go in the neuromorphic
community. There has also been some criticism in subsequent works [38, 39] which adduced
evidences of possible inconsistencies between the theoretical concept of memristor and the
physical phenomena of resisting switching in emerging memory devices. Since this is not a
theoretical work on memristive devices, the focus is put on the experimentally verified presence of
resistive switching in ReRAM devices. This holds independently of the possibility to crystallize
the neuronal dynamics by means of the theory of memristive devices.
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Chapter 2

Neuronal Dynamics

The Leaky integrate and fire model provides a well established characterization of many neuronal
phenomena at the basis of the learning capabilities in the brain. Ultimately, this model describes
the brain as a time-evolving dynamical system whose state variables are the membrane potentials
of the neurons. This chapter brings together some results in the theory of dynamic systems,
which are useful for the understanding of neuronal dynamics. The starting point is the Grossberg
theory of recurrent neural networks, that complements the description of the brain contained in
the previous chapter. In this way the Additive Model is introduced, corresponding to a description
of the neuronal dynamics as a nonlinear dynamical system. In this model, time is not an explicit
variable and the system is said to be autonomous. The reason why such a mathematical construct
is capable of learning is mathematically understandable via the Cohen-Grossberg theorem. By
stating the theorem, the conditions of validity identify the cases in which the model can be
interpreted in a physically oriented way, by means of an energy function.

2.1 Grossberg theory of Recurrent Neural Networks
The neural network models considered in this work are known ever since the first formulation of
the mathematical theory of neural networks. In 1957, Stephen Grossberg, as a college freshman,
introduced a novel computational neuroscience paradigm that would constitute the foundation of
most current biological neural network research. His ground-breaking idea was to use nonlinear
systems of differential equations to model the dynamics of the brain in its learning and inference
processes. These results started to appear in the scientific discourse only in 1964, when his
monograph [40] was published. Grossberg wanted to create a learning model to describe the
evolution of an adapting agent in a complex and changing environment. His research was
primarily driven by open psychological questions and, for this reason, the behavioral model
he ideated was not derived from the observation of experimental data, but rather deduced from
postulates of psychology. In a paper from 1969 [41], he labelled the findings of the previous
years as theory of embedded fields.

2.1.1 Theory of embedded fields
In its simplest form, this theory defines the agent as an abstract learning machine M . An external
actor in the learning process behaves as a teacher, presenting M with a list of “events” to be
learned. Each event is identified with a "letter", corresponding to the abstract label in the language
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of the machine. If the teacher wants M to learn the list of events A→ B, just as with a human
being, (s)he should present several times the event A followed by the event B. If after some time
the machine answers B when it is presented with the event A, then the machine has learned the
list. In other terms, the learning machine has encoded an association. This is a deterministic
learning theory, aiming at describing stimuli and response of M to a changing environment. To
do so he assumed that each event, just as letters, corresponds to a single atomic unit than cannot
be decomposed any further. Hence, each letter must be represented by a single state in M . In
order to do this he defined an abstract point pi in M for each behavioral unit ri = 1,2, . . . ,n, i.e.
for each possible state of the machine (see Fig.2.1). Given this he observed that, after a stimulus

Figure 2.1: Abstract learning machine defined by Grossberg in the theory of embedded fields.
To each behavioral unit (letter) it is associated a node in the machine.

is injected, M must react to it in some form to be capable of learning. He therefore defined a
real valued function of time ui(t) for each point pi. The value of ui(t) quantifies how recently ri
has been presented to M . Hence, this quantity has the role of a memory of the sensory input ri.
Let us now consider the case in which we want to teach the list of events A→ B→C. Just as
before, each event is to be presented to M , waiting some time ∆t in between any two letters.
He noticed that, as ∆t is increased, the influence of A and B on the response of any learning
machine gradually changes, ultimately becoming negligible. In other terms, a human being will
learn the list if the three letters are presented by the teacher in succession. Instead, if the teacher
says the letter A and presents the letter B after some hours or days the association cannot be
created since the two events seem not correlated to the learning individual. In more technical
terms the effects of prior presentations gradually wear off, ultimately becoming negligible. In
addition to this, since the interest is on macroscopic phenomena, each ui(t) can be assumed to
be continuous and differentiable. Another essential reasoning for the definition of the model
is that if ri is never presented to M , then ui(t) remains at a fixed equilibrium value, which is
(initially) set equal to zero. If ri is presented to M at time ti, then the memory variable should be
expected to temporarily assume non-equilibrium values ui(t), that can be forced to be positive
by convention. As already mentioned, the effect of an event must wear off and, for this reason,
the final model must encode the decay of ui(t) after t = ti. Coherently with this assumption, the
quantities ui can be associated to a specific type of memory called short term memory (STM).
Let us now suppose that the machine has learned the list of events A→ B. If the machine is then
presented at time t with A and the teacher wants that after a time lapse τAB M rises the answer B,
this must correspond to the presence of a signal travelling from uA to uB at finite velocity along a
pathway eAB. On the other hand, when M has not yet learned the list A→ B, other responses

16



Neuronal Dynamics

than B must be possible to A, otherwise there would be nothing to be learnt. This implies that
the machine must define a function zAB(t) that encodes the fact that B occurs in response to A.
This function represents the correlation existing between the past value of uA(t) with uB(t) at
all times. Since this is something that once learned must remain for a long time, he considered
the terms zi j to be associated to a form of long term memory (LTM). Additionally, since the
list A→ B is different from the list B→ A, then eAB /= eBA and zAB(t) /= zBA(t). In Fig.2.2 it is
possible to see how eAB is represented as an arrow whose head is labelled as NAB. Finally, any

Figure 2.2: Schematic representation of the travelling signal theorized by Grossberg for encoding
the transfer of information.

learning machine must be capable of learning both the lists A→ B and C→ B. Hence, the state
B is defined by combining the information coming from the surrounding units.
These postulates can be put in mathematical terms, yielding the first expression of the Grossberg
model of adaptive behavior [42]{

dui
dt = −Aiui(t)+∑

n
m=1 um(t− τmi)Bmizmi(t)+ Ii

dz jk
dt = −Q jkz jk(t)+B jku j(t− τ jk)uk(t)

(2.1)

This corresponds to a system of coupled non-linear differential equations for the STM and LTM
traces. Both dynamics are described by a passive decay term, forcing them to converge to a
steady state in a sufficiently long time. Then, the STM trace is subject to a forcing external input
Ii and perceives the information transmitted from the surrounding nodes proportionally to their
past activity. On the other hand, both the units cooperate to determine how the correlation term
z jk has to be updated.
Subsequently [43], he further improved the model with the introduction of an anti-correlation
term and by modifying the way the activity of the abstract points enters in the feedback terms.
The improved model reads as{dui

dt = −Aiui +∑
n
j=1[u j(t− τ ji)−Γ ji)]+B jiz+ji −∑

n
j=1[u j(t− τ ji)−Γ ji)]+C jiz−ji + Ii

dz±ji
dt = f LT M

ji ({z±kl}
n
k,l=1,{uk}n

k=1)
(2.2)

where [x]+ = max [x,0]. Note that only the activity dynamics is here reported explicitly because,
while modelling this term is necessary for this work, the dynamics later discussed for the LTM
traces is of a different nature.
Given the psychology derived theory, it is then possible to recognize in each term of Eq.2.2 a
neurophysiological counterpart. In particular let n be the number of neural cell bodies. The STM
variable {ui(t)}n

i=1 must represent a relatively quickly evolving quantity and, for this reason,
it can be identified with the average membrane potential. Going to the sums in the expression,
they define the interconnection between two otherwise separated cell bodies. Hence, the term
Bki (Cki) can be thought of as containing a structural information since when it is different
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from zero there must be an excitatory (inhibitory) axon e+k j (e−k j) connecting uk to u j. In the
previous derivation and in Fig.2.2 it is also possible to recognize in N+

k j (N−k j) the synaptic end
of e+k j (e−k j). Furthermore, z+ki (z−ki) are assumed to quantify the excitatory (inhibitory) chemical
transmitter release in N+

k j (N−k j). In Eq.2.2 the coefficients Bki and Cki do not only have a structural
information. In fact, they also encode a proportionality factor for the description of the spiking
frequency created by the activity of the neuron uk in e+k j (e−k j) in the time interval [t, t + dt]. This
is to say that, if this activity exceeds a threshold Γki, then the neuron fires with a certain firing
rate, proportional to [uk(t)−Γki)]

+Bki ([uk(t)−Γki)]
+Cki). The time lag for the signal to flow

across the axon ek j is labelled as τki. All together, if at time t the signal from uk reaches N+
k j

(N−k j) it induces a release of the neurotransmitter in the extracellular environment separating
the axon from u j at a rate proportional to [uk(t−τk j−Γk j)]

+Bk jz+k j ([uk(t−τk j−Γk j)]
+Ck jz−k j).

All excitatory signals are then added while all the inhibitory signals are subtracted to u j. Finally,
u j(t) is also subject to a passive decay term −Aiui and sensory inputs are introduced via the term
Ii(t). This last term can either correspond to a stimulus to the neuron from an experimentalist or
to a signal coming from independent cells.

2.1.2 Additive Model
While in Eq.2.2 are already contained all the neurophysiological informations that are expected
to be present in a neuron, the more commonly used model is the so called Additive STM equation
[44]:

dui

dt
= −Aiui +

n

∑
j=1

g j(u j)B jiz+ji −
n

∑
j=1

f j(u j)C jiz−ji + Ii (2.3)

If one considers the averaging operation in time and neurons discussed in the previous chapter,
this is nothing else than the formulation in terms of rate functions of Eq.2.2, which is a spiking
model. The non-linearities have been substituted with the generic functions f j(·) and g j(·),
called activation functions. In Fig.2.3 it is possible to graphically observe the averaging operation.
In fact, thanks to the Grossberg’s theory, the average function introduced in the Leaky integrate
and fire model must be a function of the average membrane potential in the pre-synaptic neuron,
that was the main missing information in the Leaky integrate and fire model. Once fixed the
interval of integration and the biological neurons to be averaged, it is possible to map the spiking
intensity to a certain averaged membrane potential. The higher this value, the higher must be the
number of spikes fired in the interval. Additionally, for low numbers and high numbers of spikes
there is a saturation in the function since there is always a minimum and a maximum rate.
Going back to the Additive model, a unique feedback term is generally defined by lumping the
LTM traces and the connection strengths in a unique contribution. When this is done the additive
model for the STM traces is written in the simpler form

d
dt

ui = −Aiui +
n

∑
j=1

g j(u j)z ji + Ii (2.4)

In the years following the derivation of this model, Grossberg extensively explored its applicabil-
ity to various tasks, including vision, pattern recognition, reinforcement learning and many others
[43–46]. The suitability of the Additive Model to mimic so many of the brain functionalities
combined with its relative simplicity makes it a solid cornerstone of neural network research to
our days.
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Figure 2.3: Graphical representation of the conversion of spikes into rates. The spikes of a
population of neurons are averaged in time and in neurons, converting the spiking information
into a rate information.

Despite this model started to appear in the neuroscience community in the 60s, it is usually
known as the Hopfield model ever since Hopfield independently rediscovered it in the years going
from 1982 [47] to 1984 [48]. In the review paper on nonlinear neural networks [44], Grossberg
explained this as a consequence of the lack of mutual dialog between the psychology world and
the physics and engineering one, induced by the progressive compartmentalisation experienced
by the research world starting from the 20th century. As a tribute to both the two scientists, in
this work this model is referred to as the Grossberg-Hopfield model.
While Eq.2.4 represents the dynamics followed by the STM traces, Grossberg also introduced
in his learning framework the dynamics associated to the LTM traces, needed by the learning
machine to improve its knowledge of the problem and to adapt:

d
dt

z ji = −Fjiz ji +G ji fi(ui)g j(u j) (2.5)

Where the factor G ji fi(ui)g j(u j) is generally called the Hebbian term. The dynamical equations
2.4 and 2.5 describe two general types of nonlinear processes. Despite the fact that they are in
principle coupled, they are expected to occur at considerably different time scales. This is to say
that the cooperative-competitive nonlinear feedback processes described by Eq.2.4 operate on a
relatively fast time scale. The network receives external information and elaborates it using as a
computing media the STM values. On the other hand the LTM processes occur on a longer time
scale. The terms defining the nature and strength of interconnections slowly vary, interacting
with the voltage membranes via feedback loops. This dynamics is essential since it encodes
the adaptability of the model to the external stimuli. This is the point where this historical path
starts to diverge from the Grossberg theory. While Grossberg focused also on the dynamical
sub-system in Eq.2.5, his approach is not deepened in the following. In fact, the goal here is to
study the alternative learning approach described by Bengio and Scellier [1]. One should anyhow
mention that both of them rely on an Hebbian learning mechanism and a proper mathematical
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mapping could be identified in between them.
Before proceeding with the learning algorithms, there is still one essential result found by
Grossberg worth being recalled as it will allow for a smoother introduction to the Bengio and
Scellier approach to RNNs. An essential result derived by Grossberg is the formal proof of the
conditions under which a very general dynamical system describing a learning machine can be
used to do inference.

2.1.3 Learning lists
Before presenting the theorem, it is first necessary to introduce the concept of Associative
memory. An associative memory, also known as Content Addressable Memory (CAM), is a
memory in which it is possible to store some data, associated to a certain information at the
input. Once the network has learned the association existing between the input and the data to
be stored, if we introduce a partial information about the input, the CAM is capable to retrieve
the missing information stored in it. This is an extremely general concept and many machine
learning problems such as classification and reconstruction correspond to associative problems,
solvable by these kinds of networks. Let us go back to analyze the neural network described by
Grossberg in this perspective. In principle, the Grossberg machine is designed to respond to an
input stimulus by converging to a certain state. Let us now assume that, in presence of a sustained
input, the machine, following the dynamics of Eq.2.4, always converges to an equilibrium pattern.
Then, the machine is capable of learning because, according to the Grossberg’s analysis (Eq.2.5),
it is able to adapt, namely to learn the proper response to a given excitation. The state to which
the machine converges to is defined by the values of the STM traces, identifying a pattern in the
network corresponding to the machine M . Hence, an association of a response to a stimulus
corresponds to identify a readable information to each pattern. Let us now assume that the

Figure 2.4: Grossberg network: learning the list A→ B.

machine has learned the list A→ B but we do not know it. With respect to Fig.2.4, observing M
allows to notice that it is a network that can be stimulated at its nodes. Moreover we notice that
each node has a label, corresponding to an abstract event. If a stimulus IA is switched on, the
dynamics of node pA is perturbed as described in Eq.2.4. Similarly, also the surrounding nodes
are perturbed according to the values of the LTM traces. If the network manages to converge, the
only node that is switched on must be node pB and, since from the external this node is labelled
as the abstract event B, an observer can discover that the answer to the stimulus A is stored at
the node associated to the event B. Hence, the neural network defined by Grossberg is a general
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form of CAM. Indeed, this is the simplest form of learning one can require to the network.
This kind of CAMs structured as the Grossberg network were then proved to be applicable to
many inference problems. In later chapters it is shown how the network associated to Eq.2.4
can be used in the reconstruction problem while a slightly modified version of it can be used
to solve the classification problems. However, before proceeding it is essential to formalize the
discussion and to determine under which conditions the system in Eq.2.4 manages to converge
to an equilibrium pattern. In fact, this is a necessary condition for the network to be used for
learning tasks.

2.2 Dynamical systems
In the previous section the characterization of the Additive Model was completed. This model
assumes that the state of the system can be described in terms of the values of the STM traces,
acting as state variables. Then, at each instant of time the system evolves dynamically, following
rules that are uniquely dictated by the values of its state variables at that instant of time. For this
reason the Additive Model is called state space model. Additionally, since the time dependence
does not directly appear in the dynamics, the system is defined to be autonomous [49]. Therefore,
the main result of the Grossberg’s theory is that the time evolution of the membrane potentials
can be described as an autonomous non-linear system of coupled differential equations. By
defining the state vector u(t) and by collecting the dynamic equations on the right hand side in a
unique field µ(u(t)), the neuronal dynamics can be written as

d
dt

u(t) = µ(u(t)) (2.6)

Generally, the time derivative of the state vector is interpreted as an abstract velocity vector
u̇, so that the right hand side of the dynamical system represents a velocity field [50]. In any
case, if the number of units is Nu, the time evolution of the system can be thought of as a well
defined dynamics in a Nu-dimensional states space. In order to give a graphical interpretation
of these concepts, one can imagine to initialize the system at some point in the state space
u(t ′0). The system then evolves according to the rules contained in the dynamical system. The

Figure 2.5: Schematic evolution of a dynamical system in the states space.

resulting trajectory will be travelled by with a time dependent speed. At each instant of time,
corresponding to a different state vector, it is possible to represent the velocity vector field as
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a collection of vectors tangent to the trajectory. Repeating this procedure starting from each
point in the states space it is then possible to build up the velocity field in a graphical way (see
Fig.2.5).

2.2.1 Equilibrium Points
Let us now assume that there is a point in the state space where the vector field is vanishing
µ(ū) = 0. This point is called a fixed point of the system. In fact, if the system ends up in ū
it will stop, since its dynamics is vanished. Nonetheless, in noisy systems like our brain [51],
the fact that the dynamics vanishes in one point does not guarantee that the system will always
remain in that condition. Depending on the nature of the velocity field around ū, in presence of a
perturbation u(t) = ū+ δu(t) the system could either go back to the fixed point or escape from
it, starting again its wandering through the state space. In order for a system to be amenable
to do learning, it should be characterized by stable regions in the space, called equilibrium
regions. Namely, the state of our brain should respond to a stimulus by converging to a stable
configuration. In this way, this final configuration can be identified with the interpretation the
learning agent is giving of the input it received.
It is therefore essential to define what it means for a system to be stable. A state ū is said to be
uniformly stable if, by choosing the starting point sufficiently close to it, its subsequent dynamics
can be confined within a small neighborhood. In mathematical terms

∀ε > 0∃δ > 0 : if ∀t > t0 ||u(t0)− ū||< δ ⇒ ||u(t)− ū||< ε (2.7)

Being uniformly stable does not guarantee that the system will end up exactly in the fixed point.
For instance it could remain stuck in a cycle around the fixed point, satisfying stability but never
reaching the desired point. The additional concept of convergence is to be introduced. A state is
convergent if, when initializing the system sufficiently close to it and waiting a sufficiently long
time, the system can be found arbitrarily close to the fixed point. Again, in mathematical terms
this reads

∃δ > 0 : ||u(t0)− ū||< δ ⇒ lim
t→∞

u(t) = ū (2.8)

This being said, the two conditions are independent, as shown in Fig.2.6. However, if both the
conditions are satisfied the system is said to be asymptotically stable. Additionally, a system is
said to be globally asymptotically stable if it is stable and all the trajectories converge to a fixed
point as times goes by. This is to say that it is the only equilibrium point of the system.
An extremely powerful approach for determining the stability of a system is the definition of a
Lyapunov function, i.e. a scalar field defined on the state space:

Definition 2.1: Lyapunov’s function

Given a dynamical system and the corresponding states space S , the Lyapunov function is
a scalar field E such that:

1. It has continuous partial derivatives with respect to all the state variables;

2. Given an equilibrium state ū, E(ū) = 0;

3. E(u) > 0 if u /= ū
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Figure 2.6: Left: A uniformly stable but not convergent system;Right: A not uniformly stable
but convergent system;

Given this definition, Lyapunov proved that in order for an equilibrium point to be stable, this
function must be non-positively varying in time in a small neighborhood of the equilibrium.

dE
dt
≤ 0 (2.9)

Moreover, in case of strict negativity the equilibrium point is asymptotically stable. In any case,
while the presence of a Lyapunov function is a sufficient condition for having stability, it is not
necessary. In fact, in many converging systems it is impossible to define a Lyapunov function.

2.2.2 The Cohen-Grossberg theorem
Grossberg and Cohen [52] proved the conditions under which the network described in 2.4
always approaches an equilibrium point in response to an arbitrary but clamped input pattern. As
mentioned before, this corresponds to the study of the stability of the dynamical system but it
ultimately results in determining whether the network can be used as a CAM or not. The final
form of their theorem holds for a more general class of dynamical systems to which Eq.2.4 is
just a particular case.

Theorem 2.1: Cohen-Grossberg theorem

Consider the dynamical system

d
dt

ui = ai(ui)

[
ci(ui)−

n

∑
j=1

z jig j(u j)

]
(2.10)

where ai(ui) is called amplification signal, ci(ui) is the self-signal function and g j(u j) is
the other-signal functions. If:
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1. The coefficient matrix is symmetric: zi j = z ji;

2. the function ai(ui) is non-negative: ai(ui) ≥ 0;

3. the function gi(ui) is non-decreasing: g′i(ui) ≥ 0

Then, the dynamical system admits the global Lyapunov function

E = −
n

∑
j=1

∫ ui
ci(ξi)g′i(ui)dξi +

1
2

n

∑
j,k=1

z jkg j(u j)gk(uk) (2.11)

Proof. By direct computation of the time derivative of E along a trajectory

dE
dt

=
n

∑
i=1

∂E
∂ui

dui

dt
= −

n

∑
i=1

ai(ui)g′i(ui)

[
ci(ui)−

n

∑
j=1

g j(u j)z ji

]2

(2.12)

Then, if the hypothesis are satisfied, along the trajectory the function E will necessarily be
d
dt

E ≤ 0 (2.13)

Therefore it is a Lyapunov function of the system.

The class of dynamical systems satisfying the Cohen-Grossberg theorem is extremely broad. As
such, it became a fundamental tools in neurodynamics for studying different possible models.
This theorem is essential since the existence of a global Lyapunov function guarantees that every
trajectory approaches one of a possibly large number of equilibrium points. In the numerical part
of this work the dynamical system used is the one in Eq.2.4. In particular, ai(ui) = 1 and the
same non-linear function g(ui) = gi(ui) is used for all the neurons. Moreover, the LTM traces
are collected in a symmetric matrix W , built in such a way that z ji = −Wi j and Wii = 0, namely
there is no self loop. In this way the STM additive model reads

dui

dt
= −ui +

n

∑
j=1

Wi jg(u j)+ bi (2.14)

With ci(u) =−ui+bi. Furthermore, according to the Cohen-Grossberg theorem, the correspond-
ing energy like function will be

E =
n

∑
i=1

∫ ui
ξig′(ξi)dξi−

n

∑
i=1

big(ui)−
1
2

n

∑
j,k=1

g(u j)Wjkg(uk) (2.15)

The Cohen-Grossberg theorem proves the global stability of the additive model by defining
a Lyapunov function, i.e. and energy-like function. If the state space is defined as the Nu-
dimensional vector space populated by the possible values of the STM traces u =

[
u1, . . . ,uNu

]t .
Then, the dynamical system in Eq.2.14 will dictate the evolution of the point u(t) over time,
up to its convergence to an equilibrium point. The interesting thing about the introduction
of an energy-like function is that it can be thought of as a potential landscape defined in the
Nu + 1-dimensional world. Then, given any initial condition, the system u(t) will evolve in the
state space toward the minimization of the energy function. This evolution will stop only if the
system manages to reach a local minimum.
As a last interesting remark, Cohen and Grossberg proved that the theorem holds not only for
monotonously increasing functions, as required by Hopfield [48], but rather under the milder
requirement that the other-signal functions gi(·) are just not-decreasing.
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2.2.3 Attractors and learning
An essential feature in the Additive model is that it is a dissipative system. Thanks to the
damping effect in the dynamics, this feature generally guarantees the presence of points or of
entire regions of vanishing velocity vector field, called attractors [49]. This property is desired
since it is possible to exploit these attractors in order to do computation.

Model Learned

Suppose that some of the variables in the system introduce some external information and the
network is designed with the aim of processing it. This might happen through the input currents
defined before, but later in the work are discussed alternatives ways in which the input can be
introduced in the network. The Grossberg-Hopfield network has the limit that the dimension of
the network is fixed by the number of input nodes. On the contrary, a more general architectural
choice admits many more state variables in addition to the input ones. This is the kind of
architecture employed by Bengio and Scellier and deepened in the next chapter. In any case, the
neurodynamics of the Additive model keeps holding and the most striking difference of the two
approaches is the way the inputs are presented to the network. While in the Grossberg-Hopfield
the inputs Ik are introduced as an additional bias terms (bk→ bk + Ik), in the Bengio-Scellier
case they appear as clamped neurons ({uk}Ni

k=1 = {Ik}Ni
k=1). In both the approaches, some of the

variables of these models are associated to a well defined meaning, that the machine is required to
learn. These variables are usually called output nodes. In other terms, given an external stimulus,
thanks to the damping nature of the dynamics the system will converge to an equilibrium point.
This equilibrium point corresponds to a state in the states space in which the dynamics vanishes.
In the additive model, this corresponds to the parametric formula in W and in the bias term I:

ūm(I) =
Nu

∑
k=1

Wmkg(uk)+ bm (2.16)

Generally, the quantity considered for a neuron is the associated firing rate. Therefore, if the No
output nodes are identified as the quantities corresponding to the response of the machine to a
stimulus, the recurrent neural network is ultimately a No-dimensional parametric function

f̂ θ
k (I) = g(ūk(I)) k = Nu−No + 1, . . . ,Nu (2.17)

This equilibrium is strongly dependent on the parameters of the dynamical system and on the
input stimulus, acting as an external force field in the additive model. Therefore, the learning
procedure in terms of dynamical systems corresponds to modify the parameters of the differential
equations so as to modify the exploration of the state space. More precisely, given the desired
values of the state variables, the target region is identified. Hence, the goal is to define a system
capable of converging to this region once the partial information is presented at its inputs. In
mathematical terms, if we want to learn the response to a stimulus H(I) ∈RNo , the goal is to
tune the parameters of the network so that the stationary point will fit the target response

f̂ θ
k (I) = lim

t→∞
g(uk)

.
= Hk(I) k = Nu−No + 1, . . . ,Nu (2.18)

There are many ways in which this computing paradigm can be employed, and later in the thesis
two typical ones are discussed: reconstruction and classification. However, before doing that,
some concepts on energy-based models need to be introduced. In fact they are at the basis of the
learning algorithm employed in this work.
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Nature of the information learned

The nice thing about the Grossberg-Hopfield model, also including the more general Bengio-
Scellier model, is that the nature of the information encoded is qualitatively easy to be understood.
In its most general form, the models considered in the algorithmic investigation here presented is
described by the equation

dsm

dt
= −sm +

Nu

∑
k=1

WNi+m,kg(uk)+ bm (2.19)

these are the equation that are later associated to the Bengio-Scellier model, that is more general
because it considers the input as neurons not evolving in time. In the previous sections the

Figure 2.7: Schematic representation of the Ns one dimensional dynamics experienced by the
agents of the model.

neuronal dynamics has been described as the time evolution in a Nu-dimensional state space
(or Ns since the first Ni nodes do not evolve). Nonetheless, the motion can be described by
considering each single neuron independently in its 1D evolution. In this perspective, the neuron
will experience two kinds of forces. The first one is an attractive force toward the bias:

µ
b
m = −(sm−bm) (2.20)

while the second is a correlation term

µ
w
Ni+m,k =WNi+m,kg(uk) (2.21)

While the first term represents an attracting field toward the point of space bm, the second term
represents the influence the unit uk has on the agent sm. Depending on the sign of the synaptic
weight, three conditions can be identified:

• WNi+m,k > 0: Positive (Negative) values of the unit uk will drive the state sm to positive
(negative) values. The nodes are correlated in their dynamics;

• WNi+m,k < 0: Positive (Negative) values of the unit uk will drive the state sm to negative
(positive) values. The nodes are anti-correlated in their dynamics;
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• WNi+m,k = 0: the state sm is independent on the node uk. The nodes are not correlated in
their dynamics.

When dealing with symmetric weights, an energy function like the one in Eq.2.15 can be defined.
Hence, in the energy picture the two fields will give rise to two energy terms, to be summed up
to obtain the overall contribution. On the one hand there is the bias term

Eb
m =

∫ sm
dξ (ξm−bm)g′(ξ ) (2.22)

This term is non-trivial and its interpretation is better to be done in term of the associated velocity
field. On the other hand the weight matrix yields the term

Ew
mk = −g(um)Wmkg(uk) (2.23)

That allows to see that, in the perspective of minimizing the energy, the neurons tend to align or
to dis-align based on their correlation, i.e. the sign of the weight connecting them.
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Chapter 3

Learning: Equilibrium
Propagation

This chapter is devoted to the discussion of the algorithms used in this thesis project. The main
interest is on Equilibrium Propagation, a learning algorithm whose working principle is based on
the definition of an energy function in the states space. For this reason, the discussion will start
from the description of energy based models. Afterward, Equilibrium Propagation is introduced
in the first version in which it was conceived by Bengio and Scellier. This algorithm is rigorously
defined mathematically since it is based on the Bengio-Scellier theorem, stated in the process.
Its mild conditions of validity make it extremely general. However, the need for a well defined
energy function is by itself a limit of validity. This led Scellier et al.[5] to extend the algorithm
to systems not admitting an energy function. Finally, the first result of the project is presented,
corresponding to an alternative learning algorithm for training networks not admitting an energy
function.

3.1 Energy-based models

Cohen and Grossberg [52], as well as Hopfield [47, 48], introduced the energy-like function
mainly to investigate the existence of stable attractors in the state space of their network, necessary
condition for encoding information. As previously mentioned, time continuous recurrent neural
networks basically constitute nonlinear dynamical systems. Since the Lyapunov function is a
fundamental quantity in the theory of dynamical systems, it enters naturally in the description.
Nonetheless, as reviewed by LeCun [53], the idea of using energies to do inference and learning
would later become a standalone paradigm in machine learning theory. This approach, called
energy-based learning, is applicable to many machine learning models. These models are called
energy-based models and the RNNs previously discussed, together with some learning rule for
the LTM traces, are only a subset of them.
Many problems in machine learning are aimed at finding the relationship existing between two
sets of variables. On the one hand there is a set X = {x(i)}Ndata

i=1 of input data. In abstract terms,
x(i) is the sensory input of the machine to be trained. On the other hand there is the set of the
corresponding interpretations Y = {y(i)}Ndata

i=1 . For instance, X may be a set containing pictures of
cats and dogs while Y the associated set of labels "cat" and "dog" or 1 and 0. In general x(i) will
be a Ni-dimensional variable while y(i) a No-dimensional one. Between the two sets of variables
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there are some dependencies and the goal of machine learning is to find a model capable of
learning them. The goal is therefore to educate a machine in such a way that whenever it is
presented with a certain data x(i) it gives the correct interpretation, namely it outputs the correct
variable y(i). The idea at the basis of the energy based models is to postulate the existence of
an energy function depending on both the variables x and y: E(x,y). This function quantifies
the degree of compatibility of the two variables and, by convention, it should be small when y
is a good interpretation of x and high otherwise. A schematic representation of this concept is
reported in Fig.3.1

Figure 3.1: Pictorial representation of the Energy function for classification purposes.

3.1.1 Energy-based inference and learning
Once postulated the existence of such an energy function, it is possible to describe the inference
process. The energy function is the tool that the machine to be trained has at disposal to make
sense of the inputs it receives. During inference, an input x is presented to the machine. Based on
its knowledge of the world, the machine must give its interpretation of the input. The knowledge
of the world is encoded in the energy function E(·, ·). Therefore, if all possible outputs are
collected in the set Y , the inference problem can be written as the minimization problem

y∗ = argmin
y∈Y

E(x,y) (3.1)

Therefore, each machine classifiable as an energy based model must be equipped with an energy
function and with a minimization strategy for determining the best output to be associated to a
given input.
While inference consists in minimizing an energy function, learning is the process by which the
best energy function is selected. The idea is to define a parametric family E , depending on the
multidimensional parameter θ .

E = {E(x,y,θ ), θ ∈Θ} (3.2)
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Then, one usually introduces a target function J(X ,Y,θ ) with which it is possible to quantify the
quality of the selected model θ . This must be a function of the parameters and of all the input
and output variables. In this way the function J provides a number expressing the goodness of the
model θ in describing the given problem. Coherently with the convention taken for the energy
function, it is reasonable to require this target function to take low values when the model is
good and high values otherwise. Consequently, also learning can be expressed as a minimization
problem, in the form

θ
∗ = argmin

θ∈Θ
J(X ,Y,θ ) (3.3)

Once solved this problem it is then possible to use the learned parameters θ ∗ for characterizing
the energy function and, consequently, for doing inference.

3.2 Equilibrium Propagation
Section 2.1 introduced a family of time continuous recurrent neural networks that is generally
known as time continuous Hopfield network. The idea at the basis of this model is to consider a
system of agents evolving dynamically in presence of external fields, while mutually interacting.
Previously it was discussed how the evolution of the STM traces can be mapped to a minimization
of an energy-like function and this process was identified with what happens when the machine
performs inference. Additionally, it was also introduced the dynamics for the LTM, namely for
the parameters of the learning machine. In this section Equilibrium Propagation is introduced
[1], corresponding to the framework introduced by Bengio and Scellier for training Hopfield-like
models with equations different from the ones introduced by Grossberg. This introduces a
learning algorithm that is particularly promising for hardware implementations.

3.2.1 The architecture
The architecture considered by Bengio and Scellier is more general than the one previously seen
in two ways: first the network is enlarged through the introduction of additional nodes, increasing
in this way the computational capacity; secondly inputs are not locally injected at one node but
rather distributed to several of them as a weighted sum, where the weights are to be learned.
In Fig.3.2 a schematic representation of such a network can be observed. The architecture is
made of Nu units (or neurons) u = {ui}Nu

i=1. Each neuron can be either an input node, an hidden
node or an output node. Any two units ui and u j mutually interact via directional synaptic
connections, where Wi j expresses how much u j influences ui. In general Wi j /= Wji but this
preliminary discussion assumes Wi j =Wji and Wii = 0. The nodes of the network can be divided
into three sub-classes. First of all there are the inputs {x j}Ni

j=1 = {u j}Ni
j=1. These are nodes that

are always clamped and their role is to introduce the data to be interpreted inside the model.
The inputs are then connected to two kinds of nodes. On one hand there are the output nodes
y = {u j}Nu

j=Ni+Nh+1 = {y j}No
j=1, corresponding to the units providing the final interpretation of the

input. On the other hand there are the hidden nodes h = {u j}Ni+Nh
j=Ni+1 = {h j}Nh

j=1, corresponding
to additional agents whose presence increases the possibilities of interaction and, consequently,
the possibility of learning inter-dependencies existing in between input and output variables.
Hidden nodes and output nodes form a subclass called state nodes s = {ui}Nu

i=Ni+1. They differ
from the input nodes in the fact that they evolve in time following a certain dynamics. For this
reason these nodes correspond to the STM traces, while the input nodes are a generalization of
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Figure 3.2: Schematic representation of a recurrent neural network. Three classes of nodes can
be recognized: the input nodes (x), the hidden nodes (h) and the output nodes (y). All of the units
are connected by directional synaptic weights. The nodes labelled as d are the so called target
nodes and are used to find the best combination for the synaptic weights.

the biases in the Grossberg-Hopfield model. Following the notation used in [1], the neurons are
here referred to using their associated state variable ui. This can be interpreted as the average
membrane potential of a coarse grained neuron, just as discussed when introducing the Grossberg
theory. The model is characterized by the multidimensional parameter θ = (W,b), where W is
the synapses matrix and b is the bias vector. The weight matrix can be non-zero only between
nodes that are connected in the architecture. The biases are one per each state node. Once
the sensory inputs are introduced via the input nodes, the synaptic weights distribute the input
information to the other neurons and the whole network evolves under the influence of the
sensory input. Similarly to before, while the value uk can be interpreted as the activity of the
k-th node, the information contained into it passes through a non linear function g(·) and is
multiplied by a synaptic weight before to reach the subsequent neuron. The non-linearity maps
the average voltage potential of the neuron in a proper firing rate. Bengio and Scellier proposed
a supervised teaching strategy to train the model. By a two-stage learning setting, the network
first relaxes to a preliminary equilibrium and then the correct target answer is provided to the
output nodes by means of the external inputs d = {dk}No

k=1, shown in Fig.3.2.

3.2.2 The algorithm
Equilibrium propagation is an algorithm allowing to do energy based learning on the kind of
architectures described in the previous sub-section. The cornerstone of this procedure is the
Bengio-Scellier theorem, corresponding to a learning rule for an energy based model. This
theorem is proved under very mild assumptions, so that it is valid for any energy function of the
kind discussed in the Cohen-Grossberg theorem

E = −
Nu

∑
j=1

∫ ui
(bi−ξi)g′i(ξi)dξi−

1
2

Nu

∑
j,k=1

Wk jg j(u j)gk(uk) (3.4)
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As previously said, the parameters of the model are θ = (W,b), that identify the energy function
as belonging to a family E of parametric functions. Each of them corresponds to a different
possible model since, by changing W , one changes the way the network is recurrently connected.
Similarly, by changing b one locally varies the value of an external field at each node, influencing
the dynamics in the state space. Overall, u contains both inputs and outputs. Therefore Eq.3.4 is
a function capable of quantifying the degree of compatibility between these nodes. Moreover,
by varying the parameters θ it is possible to find the optimal energy function in this parametric
family encoding the correct inter-dependencies between the different nodes. Before describing
the learning procedure, let us discuss more concretely how a time dependent energy based model
can be used to do inference.

Inference

Since we are using the Lyapunov function of the Cohen-Grossberg theorem, it is also possible to
introduce the dynamic system used in this work for describing the evolution of the state nodes

dg(sk)

dt
=

∂g(sk)

∂ sk

∂ sk

∂ t
= −∂E

∂ sk
k = 1, . . . ,Ns (3.5)

An important difference with respect to the Grossberg-Hopfield network is that not all the nodes
evolve. Moreover, one should notice that the dynamics considered is different with respect to
the one introduced by Bengio and Scellier [1]. Thanks to the Cohen-Grossberg theorem some
conditions under which this dynamic system converges to an equilibrium point are known exactly.
In this way, after a sufficiently long time, the nodes converge to an equilibrium configuration,
corresponding to a local minumum of the energy

s0
θ ∈ argmin

s
E. (3.6)

This is to say that, by defining the dynamic system associated to the energy function, the nodes
evolve minimizing the Lyapunov function and this process is sketched in Fig.3.3. Once clamped
the input, the only variables of the system are the state nodes. Therefore, in Fig.3.3 the state
space is pictorially represented as the two sub-spaces of the hidden nodes and of the output
nodes. More precisely, they have been represented after having distorted the average membrane
potential into firing rates. In this space it is possible to define the energy profile, defining the cost
of each configuration of the variables. The cost will depend both on the parameters of the model
θ = (W,b) and on the value of x with respect to y, accordingly to the current model. After a
random initialization of the state nodes, the system finds itself in the red point, corresponding
to the initial condition. Subsequently, thanks to the neuron dynamics defined by the dynamical
system it evolves toward the minimization of the energy, reaching the yellow point. That point is
g(s0

θ
), and contains also the firing rate of the outputs g(y0

θ
). In this way, given a certain input

the system proposes a certain output g(y0
θ
), namely it has performed inference. This process is

called free phase. Figure 3.3 shows the target line, i.e. the correct output. It is worth pointing
out that the target is independent on the hidden subspace. In fact, the hidden nodes introduce
additional computing possibilities through their interaction with the inputs and outputs but they
do not appear explicitly when it comes to do inference. Ideally, we would like the energy profile
to be such that, after this evolution, the yellow points lays on the target line. To do so, a learning
strategy needs to be defined for improving the energy landscape.
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Figure 3.3: Free Phase: The system is randomly initialized in the
rates space and evolves freely minimizing the energy. The final
point is the free phase equilibrium.

Figure 3.4: Nudged Phase: The system starts from the free phase
equilibrium and evolves in a modified energy, tilted toward the
target region.
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Learning

Bengio and Scellier defined a function quantifying at each instant of time how far the current
interpretation of the input is from the target region. This may be any distance function between y
and d, and the one considered in the following is

C .
=

1
2
‖g(y)−d‖2 (3.7)

An interesting feature of this choice is that, whatever point of the state space, the farther the
interpretation is from the target, the higher the numerical value of C will be. Therefore, Bengio
and Scellier proposed to use this kind of function as an external potential to drive the system
toward the target. This is to say that, if one introduces the total energy

F = E +βC (3.8)

where β is the influence parameter (or clamping factor), an additional information is introduced,
suggesting to the system the direction to go to approach the correct region. If the local equilibrium
reached in Fig.3.3 is taken as the new starting point, this augmented potential perturbs the
equilibrium, forcing the system to evolve toward a close-by equilibrium. In this way a new
prediction g(yβ

θ
) is identified. This process can be observed in Fig.3.4 and the dynamics now

becomes
∂g(sk)

∂ sk

∂ sk

∂ t
= −∂F

∂ sk
k = 1, . . . ,Ns (3.9)

And the resulting minimization is named nudged phase.
When discussing the energy-based models, it was introduced the concept of target (objective)
function. It was said that this function quantifies the goodness of the model in giving the right
interpretation of the inputs. The idea of Bengio and Scellier was that the help given via the
external potential is only provided during training, while during inference it must disappear.
Once the model is trained, the energy function should be such that a good interpretation of
the input is performed in the free phase. Therefore, if one considers a one-point data-set, for
simplicity, a good candidate as a target function might be

J =C(θ ,v,s0
θ ) (3.10)

namely, the value of the cost function after the free phase has performed its interpretation. Using
this idea, Bengio and Scellier argued that just requiring some reasonable assumptions on the
energy function to be valid, the minimum sβ

θ
is an implicit function of both θ and β . This

observation led them to the Bengio-Scellier theorem:

Theorem 2.1: Bengio-Scellier theorem

The gradient of the objective function with respect to the network parameters θ is given by
the formula:

∂J
∂θ

(θ ,x,d) = lim
β→0

1
β

[
∂F
∂θ

(sβ

θ
,θ ,β )− ∂F

∂θ
(s0

θ ,θ ,β = 0)
]

(3.11)
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or, equivalently

∂J
∂θ

(θ ,x,d) =
∂C
∂θ

(s0
θ ,θ ,0) = lim

β→0

1
β

[
∂E
∂θ

(sβ

θ
,θ ,β )− ∂E

∂θ
(s0

θ ,θ ,0)
]

(3.12)

The most interesting thing about this theorem is that it offers a direct way to compute the objective
function gradient. This is important because it is possible to define a dynamics describing the
weights update:

dθ

dt
= − ∂J

∂θ
(θ ,x,d)⇒ ∆θ = −η̃

∂J
∂θ

(θ ,x,d) (3.13)

where this could be interpreted as if the evolution of the θ values and of the s states occurs on
two different time scales, the former much slower than the latter.
So far the energy function and all of the terms entering in the Bengio and Scellier theorem have
been considered as referred to a single data. Nonetheless, when performing the update and while
evaluating the performances of a network it is useful to have figures of merits evaluating the
performances on the whole data-set. Hence, what said so far is directly generalized to a data-set
containing Nd data by defining the energy and the objective function from the single data ones,
in a linear way. Starting from the energy function, it evaluated at the points in the state space
where the network converges

F({s(i)}Nd
i=1,θ ,β ,X ,{d(i)}Nd

i=1) =
1

Nd

Nd

∑
i=1

F(s(i),θ ,β ,x(i)d(i)) (3.14)

where

F(s(i);θ ,β ,x(i)) =
Ns

∑
j=1

∫ s(i)j
d τg′(τ)τ−

Nu

∑
j,k=1

g(u(i)j )Wj,kg(u(i)k )−
Ns

∑
j=1

bkg(s(i)k )+

+
β

2
‖g(y(i))−d(i)‖2

2

So that, the update of the synaptic weight Wi j performed on Nd data reads

∆Wi j = −
η̃

βNd

∂

∂Wi j

Nd

∑
k=1

(F(s(k);θ ,β ,x(k))−F(s(k);θ ,0,x(k))) =

= η

Nd

∑
k=1

[
g(uβ ,(k)

i )g(uβ ,(k)
j )−g(u0,(k)

i )g(u0,(k)
j )

]
Where the parameter η

.
= η̃

βNd
has been introduced while the dependence of the equilibrium

points g(uβ ,(k)
j ) on θ has been omitted for simplifying the notation. Similarly,

∆bi = η
∂

∂bi

Nd

∑
k=1

(F(s(k);θ ,β ,x(k))−F(s(k);θ ,0,x(k))) =

= η

Nd

∑
k=1

[
g(uβ ,(k)

i )−g(u0,(k)
i )

]
Finally yielding a three step algorithm called Equilibrium propagation. When performing the
update after having considered each single data, the update would be:
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1. Free phase: let the system evolve without introducing information externally
s0

θ
= argminF(s,θ ,β = 0)

2. Nudged phase: let the system evolve after having introduced a force attracting the system
toward the target sβ

θ
= argminF(s,θ ,β )

3. Update: θ ← θ +∆θ (s0
θ
,sβ

θ
)

This grasps the essential feature of the procedure while a more implementation-oriented descrip-
tion is provided in Algorithm 1 and in its training and test procedures can be found in Algorithm
2 and Algorithm 3. By referring to Algorithm 1, the data-set is first split into training and test
sub-sets. Then, the whole data-set is cycled over for a number Nepochs of epochs. During each

Algorithm 1 Equilibrium Propagation

1: procedure EQPROP(X = {x(i)}Nd
i=1,Y = {d(i)}Nd

i=1)
2: Xtrain = {x(i)}Ntrain

i=1 ,Xtest = {x(i)}Ntest
i=1 ← X

3: Ytrain = {d(i)}Ntrain
i=1 ,Ytest = {d(i)}Ntest

i=1 ← Y
4: θ (0) = (W (0),b(0))← initialize
5: t̃← 1
6: while t̃ ≤ Nepochs do . Repeat for Nepochs epochs
7: θ (e)← TRAIN(Xtrain,Ytrain,θ

(e−1))

8: [acc(e)test acc(e)train,cost(e)test cost(e)train]← T EST (Xtrain,Xtest ,Ytrain,Ytest ,θ
(e))

9: t̃← t̃ + 1

of them the model θ is updated using the training data and its targets. Afterwards, the test data
are used to check the accuracy of the model on data not used during the training phase, so as to
ensure the generality of the learned model.
Focusing on the training procedure, after an initialization of the parameters and of the state from
which the evolution should start, the training data are analyzed one by one. For each of them the
network evolves both freely and nudged and the update terms are modified. The model θ is not
updated after having observed the whole data-set but rather after small sub-sets of it called mini
batches, having a dimension called mini batch size. In this way, the Nd number of data on which
the energy function and cost functions are minimized is associated to the minibatch. For what
concerns the testing procedure of Algorithm 3 its main purpose is to determine the accuracy and
the objective function. Ideally, the accuracy should increase while the cost decreases. Addition-
ally, the result should be general, that is the reason why it is always done a comparison of the
performances when presenting to the network data seen during the training phase and data never
seen before.

3.2.3 Hardware implementation
One of the most promising features of this algorithm is its apparent high compatibility with an
analog hardware implementation. The big success of Artificial Neural Networks comes from
the Backpropagation algorithm, which is the workhorse of most Deep Learning algorithms. In
particular, for what concerns Recurrent Neural Networks the most extensively used algorithm is
Recurrent Backpropagation, developed by Almeida–Pineda [54]. The community has tried to
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Algorithm 2 Training
1: procedure TRAIN(Xtrain,Ytrain,θ )
2: ∆W,∆b← 0,0
3: s← random initialization
4: while k ≤ Ntrain do . Explore all the data in the training set
5: s0,(k)

θ
← argminsE(s;θ ,x(k)) . free phase

6: s← s0,(k)
θ

7: sβ ,(k)
θ
← argminsF(s;θ ,β ,x(k),d(k)) . nudged phase

8: s← sβ ,(k)
θ

9: ∆W ← ∆W −η [g(uβ ,(k)
θ

)g(uβ ,(k)
θ

)T −g(u0,(k)
θ

)g(u0,(k)
θ

)T ]

10: ∆b← ∆b−η [g(uβ ,(k)
θ

)−g(u0,(k)
θ

)]
11: if mod(k,batchsize) = 0 then . Update
12: W ←W +∆W
13: b← b+∆b
14: ∆W,∆b← 0,0
15: k← k+ 1
16: return θ = (W,b) . trained network

Algorithm 3 Testing
1: procedure TEST(Xtrain,Xtest ,Ytrain,Ytest ,θ )
2: Jtest ,Jtrain← 0,0
3: acctest ,acctrain← 0,0
4: while k ≤ Ntest do . Explore all the data in the test set
5: s← random initialization
6: s0,(k)

θ ,train← argminsE(s;θ ,x(k)train)

7: s0,(k)
θ ,test ← argminsE(s;θ ,x(k)test)

8: acctest ← acctest +(g(y0,(i)
θ ,test) == d(i)

test)/Ntest

9: acctrain← acctrain +(g(y0,(i)
θ ,train) == d(i)

train)/Ntest

10: Jtest ← Jtest +
1
2 ||g(s

0,(k)
θ ,test)−d(k)

test ||2/Ntest

11: Jtrain← Jtrain +
1
2 ||g(s

0,(k)
θ ,train)−d(k)

train||2/Ntest
12: k← k+ 1
13: return acctest ,acctrain,Jtest ,Jtrain . performances on the training and test data

design hardware models for training these networks from the early days of the theory. Starting
from Hopfield and Tank [47, 48, 55], also Chua himself dedicated his knowledge on non-linear
circuits to investigate the computational capabilities of brain-like networked circuits [56, 57].
This is mainly because if one managed to generate an analog network in which the membrane
potential of each neuron is modelled with an RC parallel circuit and all the neurons are connected
via proper circuital components, given an initial condition it could be possible to find the fixed
point of the network just letting evolve the circuit toward its equilibrium. This is particularly
evident if one considers the work done on the Co-content function and the Content function of
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a network, which led the electronics community to reach the same conclusions of the neuro-
dynamics people. Unfortunately, learning through Backpropagation automatically requires an
increased amount of resources, since it is based on the explicit calculation of the gradients. To
overcome this issue, Hertz et al. [58] started investigating approaches to estimate the gradient
rather than exactly computing them. Bengio and Scellier presented their learning framework
by explicitly referring to this approach. The learning rule they came up with uniquely requires
the knowledge of the firing rate of the neurons, which could be learned after the nonlinear RC
network has reached convergence. In addition to the seminal papers, many researchers who
worked on EP highlighted that the local update rules defined by this algorithm could drastically
reduce the complexity of the hardware required with the current alternative algorithms. It is
particularly worth mentioning the work done on continual weights updates by Ernoult et al. [59],
as well as some Spice analysis on memristive-based networks by Kendall et al. [60].

3.3 Asymmetric Versions of Equilibrium Propagation

The previously described algorithm is based on rigorous proofs of validity under mild conditions
on the energy function. Nevertheless, the very same requirement that an energy function can
be defined poses considerable concerns on the biological plausibility of the algorithm. As a
matter of fact, the asymmetry in the synaptic connections is believed to be at the basis of many
learning capabilities of the brain [61]. For this reason, in the follow up work made by Scellier
et al. [5], the authors proposed an extension of the framework of Equilibrium Propagation to
general dynamics.

3.3.1 Scellier Extension

The idea behind their proposal is that, when defining the evolution in the parameters space, it
might be sufficient to approximately identify the correct direction, without the need to have the
exact update at each evolution step. In addition to this, Bengio et al. [62] have verified that a
simplified Hebbian update rule can properly reproduce experimental observations of STDP. If j
is the pre-synaptic neuron and i is the post-synaptic neuron, the proposed simplified Hebbian
update, in differential form is

dWi j ∝ g(s j)dsi (3.15)

Furthermore, they noticed that the Additive model can be characterized by a non symmetric
weight matrix. The evolution of the network can still be defined as the time evolution in a vector
field, with the only difference that, the a-symmetry of the weight matrix makes it non trivial to
define and energy function.

dsi

dt
= µ(W,u) (3.16)

Focusing on the Additive model, they noticed that the linear appearance of the firing rate in the
vector field allows to say that g(si) =

∂ µi
∂Wi j

. And this led them to postulate the update rule

dWi j ∝
∂ µ j

∂Wi j
dsi (3.17)
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that, in the Additive Model, can be written as{
∆Wi j = ηg(s0

j)(s
β

i − s0
i )

∆bi = η(sβ

i − s0
i )

(3.18)

And they proved that this expression minimizes the objective function.

3.3.2 Alternative Extension
The Scellier extension of Equilibrium Propagation is potentially more general than the symmetric
counterpart. However, the update rule was derived by means of a heuristic approach, thus leaving
open an interesting branch of research devoted to formally prove the mechanisms behind its
effectiveness or identifying new algorithmic solutions. This section addresses this open question
by proposing a new asymmetric update rule.
The basic assumption is that there is a more general algorithm than EP, named a-EP, which in
principle can admit asymmetrical updates of the weight matrix W. This algorithm is supposed to
be EP-like, in the sense that the update is supposed to be calculated from the knowledge of the
states reached at the convergence of the nudged phase (sβ

θ
) and the free phase (s0

θ
).

As a starting hypothesis, let us initialize the parameters to a point in the parameter space in which
the weight matrix is symmetric. In this way EP is rigorously defined and, in principle, we could
choose to compute the update either using EP or using a-EP. Let us start from the update using
EP. First, it is possible to expand the rate in the nudged equilibrium point

g(sβ

i ) = g(s0
i )+

∂g(sβ

i )

∂ sβ

i

∣∣∣∣
sβ

i =s0
i

∂ sβ

i
∂β

∣∣∣∣
β=0

β + o(β ) =

= g(s0
i )+ g′(s0

i )
∂ sβ

i
∂β

∣∣∣∣
β=0

β + o(β )

If this term is substituted into the EP update rule, the update becomes

∆W s
i j = η [g(sβ

i )g(s
β

j )−g(s0
i )g(s

0
j)] =

= η

{[
g(s0

i )+ g′(s0
i )

∂ sβ

i
∂β

∣∣∣∣
β=0

β

][
g(s0

j)+ g′(s0
j)

∂ sβ

j

∂β

∣∣∣∣
β=0

β

]
+ o(β )−g(s0

i )g(s
0
j)

}
=

= η

[
g′(s0

i )g(s
0
j)

∂ sβ

i
∂β

∣∣∣∣
β=0

β + g′(s0
j)g(s

0
i )

∂ sβ

j

∂β

∣∣∣∣
β=0

β + o(β )
]

Since β is taken to be small in EP, the derivative of the sβ

j function can be approximated as an
incremental ratio in β and the update becomes

∆W s
i j = η [g′(s0

i )g(s
0
j)(s

β

i − s0
i )+ g′(s0

j)g(s
0
i )(s

β

j − s0
j)]+ o(β ) (3.19)

On the other hand, the symmetric update can also be written as

∆W s
i j =

W a
i j +W a

ji

2
+

(
∆W s

i j−
W a

i j +W a
ji

2

)
(3.20)
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where the symmetrization of the a-symmetric update rule has been introduced. The update ∆W s
i j

is the optimal one when the matrices are constrained to be symmetric. On the other hand, the
update ∆W a

i j is the optimal one in general. Since both of them should be computed locally,

given sβ

θ
and s0

θ
, it is possible to assume that the distance of the symmetric update from the

symmetrization of the exact update is a o(β ), i.e.

∆W s
i j =

W a
i j +W a

ji

2
+ o(β ) (3.21)

For all the cases in which this is true, it is possible to compare Eq.3.19 with Eq.3.21 and, by
neglecting terms of the order of o(β ), one finally obtains

∆W a
i j +∆W a

ji = 2η [g′(s0
i )g(s

0
j)(s

β

i − s0
i )+ g′(s0

j)g(s
0
i )(s

β

j − s0
j)] (3.22)

In principle it would not be possible to associate term by term, however, if we consider Bengio’s
experimental finding on the simplified Hebbian update rule dWi j ∝ g(s j)dsi, it is possible to
identify the asymmetric update with

∆W a
i j = η̃g′(s0

i )g(s
0
j)(s

β

i − s0
i ) (3.23)

This update rule is extremely analogous to the one obtained by Scellier et al., the only difference
being the first derivative of the post-synaptic rate. Basically, if the post-synaptic neuron saturates
in the free phase, no update is to be done. Similarly, also the bias term can be reproduced with
the same corrective factor as before

∆bi = η [g(sβ

i )−g(s0
i )] ' ηg′(s0

i )(s
β

i − s0
i ) (3.24)

One might observe that, in this way, the advantage of EP over Backpropagation would be lost
since, also in this case, the derivative of the activation function needs to be explicitly computed.
Despite the truth of this statement, this also introduces a first valid reason for using the hard
functions. In fact, in this work the activation functions employed are the hard sigmoid and the
hard hyperbolic function, that are both defined as

g(s) .
= min(σ↑,max(σ↓,s)) (3.25)

with σ↑ = 1 while σ↓ = −1 for the hyperbolic tangent and σ↓ = 0 for the hard sigmoid. This
choice is primarily dictated by the fact that these functions can be implemented in a very compact
way. Naturally, when implementing in analogue hardware it will not be possible to exactly
implement the activation function, but rather some smoother version of it. Hence, the derivative
is defined on the whole domain and is approximately equal to

g′(s) ' H(s−σ↓)−H(s−σ↑) (3.26)

with H(s) the Heavyside step function

H(s) =

{
0 if s < 0
1 if s > 0

(3.27)
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Consequently, the effect of the derivative term can be easily achieved by verifying whether the
corresponding rate has saturated or not.
As a final remark, it is possible to observe that the newly introduced term g′(s0) might be
interesting from a biological point of view, as it could be interpreted as encoding the habituation
capability of the network. Habituation is the process by which the reaction to a stimulus decreases
if that stimulus occurs for sufficiently long time. In our case, the response to the stimulus would
be the weight update. If the stimulus at the input of neuron i is maintained at a level such that the
rate saturates, an organism capable of learning will understand that no new information needs to
be encoded and will stop modifying the synaptic connection. In this perspective, the term g′(s0

i )
will allow to avoid to modify the weight whenever habituation is experienced.

3.4 Conclusions
This chapter introduces the three learning algorithms used during the numerical part. The
starting point is Equilibrium Propagation, that is an energy based framework for training time
continuous recurrent neural networks. Thanks to its local update rules, it seems to be extremely
promising for analog implementations. In fact, this feature is expected to allow for an hardware
implementation requiring a smaller number of components with respect to the ones required by
other learning algorithms, such as Backpropagation. This chapter also introduces the asymmetric
version proposed by Scellier et al. [5], highlighting the STDP plausible update rule. Finally,
a modified version of the asymmetric update rule is proposed, connecting the STDP plausible
update rule with the optimal learning performed by symmetric equilibrium propagation. This
new algorithm allows to introduce in the description the concept of habituation, that is generally
considered one of the main phenomena occurring in a neuron based system.
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Chapter 4

Reconstruction

In this chapter, the use of the EP algorithm for the reconstruction problem is discussed. Recon-
struction corresponds to restoring an image from a damaged version of it and many different
recurrent neural networks can solve this problem. The first network considered is the Grossberg-
Hopfield one, in which a single pixel is associated to each node. This network is particularly
interesting since in some oversimplified cases the information learned by the algorithm can be
directly interpreted. Afterward, the morphology of the network is progressively modified, so as
to pass from the Grossberg-Hopfield network to the Bengio-Scellier one. For each architecture
considered it is verified the correct functioning of the algorithm in optimizing the network for
the solution of the Reconstruction problem.

4.1 Reconstruction

In the previous chapter it was discussed how Grossberg, while trying to model the brain func-
tioning, defined a fully connected layer of neurons evolving according to the dynamics of the
Additive Model. He started from psychological postulates and he wanted a network capable of
learning a list. Hopfield described this very same behavior while rediscovering the emerging
computational capability of this network. As said before, this property is called associative
memory and in this section it is analyzed a practical example through the reconstruction problem.
Following Zoppo et al. [63], let us consider ten images, or patterns, each one representing a
different digit going from 0 to 9. The digits are represented as 8×8 binary matrices, i.e. each
pixel is either a 0 or a 1 or also either a -1 or a 1, depending on the activation function used.
In both cases, the saturation of the activation function is indicated via the notation σi

.
= g(si).

A schematic representation of the problem can be seen in Fig.4.1. During the training phase
the network receives a corrupted image, where the corruption is achieved by flipping the pixels
with a flip probability p = 0.1. Then, different networks are trained using EP, so as to create
machines capable of restoring the correct image after a certain transitory. Three different network
possibilities are here considered, introducing the input in different ways and structuring the
information in a growing order of complexity.
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Figure 4.1: Schematic representation of the reconstruction problem. The correct image is
corrupted by noise and is fed to a recurrent neural network. If the selected machine has learned
the restoring operation it reconstructs in output the original version of the image.

4.2 Grossberg-Hopfield network

The first architecture considered consists of a single layer of Ns = 64 neurons fully connected to
each others (see Fig.4.2). Each neuron evolves according to the following dynamics:

Figure 4.2: Grossber-Hopfield architecture. The network is fully connected and each node acts
both as an input and as an output neuron.

d
dt

si = −si +
Ns

∑
j=1

Wi jg j(s j)+ bi + Ii (4.1)
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corresponding to the Cohen-Grossberg generalized Lyapunov function

E =
Ns

∑
j=1

∫ s j
τg′(τ)dτ− 1

2

Ns

∑
i, j=1

g(si)Wi jg(s j)−
Ns

∑
i=1

big(si)−
Ns

∑
i=1

Iig(si) (4.2)

This is almost exactly the Cohen-Grossberg network, with the slight difference that an additional
degree of freedom was added through the bias term. The input Ii corresponds to a partial
information on the input pattern. Focusing on the inference phase, the system will start in a
random position of the state space. During all the evolution, each variable will be subject to the
force Ii− si, driving the system toward the input Ii. Nonetheless, this input does not contain the
perfect information. Therefore, the remaining terms in Eq.4.1 can be learned so as to correct
potential mistakes in the input. The bias bi is an additional uniform external field while the sum
over all the other neurons is needed to take into account the inter-dependency existing between
two any variables throughout the dynamics. In the next section this statement is developed for
the oversimplified case of learning one pattern.

4.2.1 One Pattern
Let us start from creating a machine capable of reconstructing one single image. The energy
function quantifies the likelihood for a configuration to exist. According to what discussed
while introducing energy-based learning, it is possible to build the network just from intuitive
arguments, without the need of using an algorithm for the task. In fact, if the pixels i and j are
always switched on together, then Wi j should be positive, so that g(si)Wi jg(s j) lowers the energy
when the two pixels have the same value. Similarly, if the two pixels are never to be switched
on together the synaptic weight connecting them should be negative, so as to raise the energy
every time the two satisfy the correct relationship. In this sense the synaptic weights express the
correlation or anti-correlation with their sign, and the importance of the effect on the dynamics
with their modulus. Since the dynamics brings the system toward the minimum of the energy,
if the external field Ii− si would lead to recreate the damaged image at the output, the network
corrects the trajectory in two ways. First of all the bias term can introduce a constant force,
strengthening the attraction of the constant term Ii + bi− si toward the correct point in space.
Therefore, if the pattern to be learned is the binary image σ = [σ1, . . .σNs ]

t , with σi ∈ {+1,−1}
, we should expect that bi ∝ σi. In addition to this, the synaptic weights inform about the possible
presence of non-optimal mutual values of the pixels. Therefore, in some sense their contribution
to the energy minimization is ultimately corresponding to a correlation. In the case of only one
pattern, only one configuration is desired to be the correct one. This is to say that the goal is to
have a unique attracting region M in the state space, corresponding to

s ∈S : g(si) = σi i = 1, . . . ,Ns (4.3)

Indeed, M is an entire region in the states space. Since σi corresponds to the maximum or
minimum value the activation function can reach, any si above or below the saturation will
correspond to a valid state variable. Alternatively, if the system is considered as evolving in
the rate space 1, M must be a single limiting point. The region M must be a minimum of the
energy function and the sign should satisfy the previously mentioned dependencies on the mutual

1A space in which the space variables are the states filtered by the rates.
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values of the target state variables. Therefore, a good choice is expected to be Wi j ∝ σiσ j. In fact,
for σi±1 this expression exactly reproduces the sign in the correlation information discussed
before. The proportionality factor must be a positive term, allowing to introduce a proper balance
between the various forces in the dynamical system. The discussion naturally extends to the
case in which the lower limit of the activation function is σ↓ = 0. This corresponds to the
Hebbian rule and the Hopfield paper [47] presents a more in depth discussion of its applicability
together with its generalization to more than one pattern. The goal of this analysis is to give an
intuition on the nature of the information learned by EP, as this will be useful in the following
chapters. Therefore, as a proof of concept, a Grossberg-Hopfield network was trained for the
reconstruction of the digit 1. This can be observed in Fig.4.3. On the top left it is presented
the pattern. In the 8× 8 matrix only the pixels 4+ k8 with k = 0, . . . ,7 are 1 while all of the
others are -1. The network was trained for 20 epochs, with the learning rate fixed to η = 0.001

Figure 4.3: Top-left: Pattern and damaged version; Top-right: Evolution of the accuracy and
of the objective function at the different epochs of the training; Bottom-Left: comparison of the
weight matrix learned by EP with the Hebbian rule; Bottom-Right: comparison of the bias vector
learned by EP with the target pattern. The network is defined with the hard-hyperbolic tangent
as the activation function.

and the clamping factor to β = 0.1. In Fig.4.3 the bias learned by EP was flattened and it was
normalized so as to force its maximum value to be 1. From a direct comparison with the target
pattern it is clear that, in this oversimplified problem, the network has learned that the optimal
constant field to be encoded is the constant one driving the system toward the target M-region.
Finally, on the bottom left the weight matrix learned by EP is compared with the matrix defined
as Wi j = σiσ j. More precisely the diagonal of this matrix was removed since self-correlation
are not taken into consideration. From the picture, it is clear that the difference is only a scaling
factor. One would expect the same parameters also when considering an activation function
saturating to 0 and 1, the only difference being that the weight matrix is now expected to satisfy
Wi j ∝ (2σi−1) · (2σ j−1). The training was repeated using the hard-sigmoid and the results
can be observed in Fig.4.4. The features learned are clearly related to the ones learned for the
previous activation function. The dark pixel are the negative ones, corresponding to the synaptic
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Figure 4.4: Top-left: Pattern and damaged version; Top-right: Evolution of the accuracy and
of the objective function at the different epochs of the training; Bottom-Left: comparison of
the weight matrix learned by EP with the Hebbian rule; Bottom-Right: comparison of the bias
vector learned by EP with the target pattern. The network is defined with the hard-sigmoid as the
activation function.

weights connecting switched ON pixels with switched OFF pixels. Moreover, the synaptic
weights connecting pixels that should be switched ON are always positive thanks to the positive
correlation between them. The only difference with respect to the previous case is that the
weights connecting pixels that should be OFF together are set to zero. The reason why this might
happen is that, in the parameters space, the energy function defined as Wi j = 0 for σi = σ j = 0
has the same value as the Hebbian one when evaluated in the target region M. Apparently, the
stronger information is in the anti-correlation of the ON pixels with the OFF pixels and in the
correlation of the ON pixels. Since this information is sufficient for the network to learn, the
weights that should correlate OFF target pixels can be set to zero. For the aim of completeness
in Fig.4.5 are reported the weight matrices obtained for the other patterns when using the hard
sigmoid. All of them present the well defined information content previously highlighted, as
well as the relaxation in the information encoding related to the pixels that are OFF in the target.

4.2.2 Solution with the three versions of the algorithm
In this section the Grossberg-Hopfield architecture is used to solve the Reconstruction problem
on the whole data-set of ten images. This complicates the interpretation, but a qualitative savor
of the information learned by the machine is still possible. This time there should not be a
unique equilibrium region but rather one for each pattern p. As an extension of the previous
discussion, the region in the state space where the network converges when it is presented with
a corrupted version of the corresponding input I(p) is named Mp. For what concerns the bias,
also in this case the network can use it for encoding a reference constant field in the states space.
For this reason, since more than one pattern must be learned and they all have equal importance,
the network should learn as an optimal bias term the vector related to the baricenter of the Mp
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Figure 4.5: Weight matrix of the digits in the data-set when training the network with the EP
algorithm on the individual patterns.

regions. Therefore, this time bi ∝ ∑
10
p=1 σ

(p)
i . Moving to the weight matrix, it will also be shared

in between the patterns. As a logic extension of the one pattern case, it must therefore encode a
weighted information on the correlation existing among the pixels. In his work Hopfield [47]
proposed as a prescription the weighted sum of the weight matrices for the single patterns, i.e.
the generalized Hebbian rule. This is however not exact, particularly in the case here considered,
that differs from the one he analysed in the fact that the Additive Model introduces an additional
bias term and part of the information can be encoded in it. The weight matrix is therefore a
nontrivial expression of the correlation existing among the pixels and an algorithm is needed
for finding it. Also in this case the role of each input I(p) is to perturb the velocity field shared
by the patterns so as to direct it toward the Mp-region. The information in I(p) is corrupted and
the network will use the information it has learned about the general features of the data-set to
adjust any pixel not likely to be correct.
Throughout the work the main focus is on the symmetric version of the EP algorithm. Therefore,
the starting point was to train the network with EP, fixing the learning rate to η = 0.005 and
the clamping factor to β = 0.25. The training was performed using Ntrain = 1600 corrupted
images and tested against Ntest = 400 newly generated images. The number of epochs chosen
was 20 and the mini-batch size was set to 1. The activation function considered is the hard-
sigmoid. With this choice of parameters, the achievable train accuracy is of 99.5% and the
test accuracy is of 99.75%. The objective function of the final model evaluated on the training
data is 0.012943, to be compared with 0.025247 on the test data. This shows that EP allows
to solve the reconstruction problem when the whole process is performed in purely numerical
way. Additionally, the network was trained with the hard hyperbolic tangent. Since only slight
modifications of the hyper-parameters were found to be necessary, their value and the resulting
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Figure 4.6: Symmetric EP: Accuracy and Cost as a function of the training epochs.

performances are collected in Tab.4.1. The plots of the accuracy and the cost function are not
reported because they are qualitatively equivalent to the ones obtained for the symmetric version
of the algorithm.
Imposing the symmetry on the weight matrix is extremely advantageous from a theoretical
point of view, since it allows to define an energy function and to rigorously derive the update
of the EP algorithm. However, this symmetry constraint imposes a considerable reduction of
the parameters space and might also be not physically reasonable, considering the intrinsic
asymmetry of the brain processes. Therefore, the asymmetric versions of EP was tested on
the problem considered. The hyper-parameters chosen and the main figures of merit for the
performances are reported in Tab.4.1 for both the Scelier version and for the one proposed in
this work. This table should not be considered as a comparison since no fine hyper-parameters
optimization was performed. It is just to be taken as a witness that all of the three algorithms can
be equally used for the solution of the reconstruction problem. It is also interesting to observe

algorithm function η β ACCtrain ACCtest Jtrain Jtest

EP sigmoid 0.005 0.25 0.9950 0.9975 0.033977 0.02916
EP tanh 0.001 0.4 0.9975 0.995 0.022184 0.038746

a-EP tanh 0.002 0.4 0.995 0.9925 0.10254 0.099604
a-EP∗ tanh 0.002 0.4 0.9975 1 0.080942 0.073572

Table 4.1: Parameters and performances of the three algorithms. EP is the symmetric version,
a-EP the asymmetric version proposed by Scellier and a-EP∗ the modified asymmetric version
we defined. All the activation functions are the hard version of the one indiated.

the weight matrices learned by the different algorithms, that have been reported in Fig.4.7. From
a qualitative standpoint, also in this case strong similarities can be observed in between the
information learned with the symmetric EP for different activation functions. Moreover, the
shades of the hard sigmoid weight matrix presents an higher quantity of near zero values, in
accordance with the information relaxation discussed for the one-pattern case. Additionally, a
strong similarity of the weight matrices obtained with the asymmetric versions of the algorithm
as well as with the ones obtained with the symmetric version. The distances in norm 2 of
these four matrices were computed and are reported in Tab.4.2. More precisely, the distances
considered were primarily the ones between the matrices obtained with the four algorithms
and with a uniformly generated matrix with weights in the interval [-1,1]. The random matrix
is needed to give a reference, i.e. a completely non-informative object. In order to make a
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Figure 4.7: Comparison of the weight matrices obtained with the three algorithms: Top Left:
symmetric EP with the hard sigmoid; Top Right: symmetric EP with the hard hyperbolic tangent;
Bottom Left: Scellier version of the a-symmetric EP; Bottom Right: Proposed a-symmetric EP.

proper comparison all of the matrices were normalized dividing them by their maximum entry in
absolute value. This is interesting because it suggests that there might be an absolute minimum

random EP sigmoid EP tanh a-EP a-EP∗

random 0 9.599 9.875 10.056 9.786
EP sigmoid 9.599 0 7.217 7.896 7.122

EP tanh 9.875 7.217 0 1.689 0.904
a-EP 10.056 7.896 1.689 0 1.559
a-EP∗ 9.786 7.122 0.904 1.559 0

Table 4.2: Distances in norm-2 of five matrices: the entry (i, j) of the table is the difference in
norm 2 of the i-th matrix with the j-th matrix. The first matrix is a uniformly distributed random
matrix while the others are the parameters optimized using equilibrium propagation. The second
matrix is obtained with symmetric EP and using the hard sigmoid activation function while the
third uses the hard hyperbolic tangent. The fourth matrix is obtained with the Scellier extension
while the last one is the extension proposed in this work.
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in the parameters-space, corresponding to the optimal weight matrix. Moreover, this optimum
should be symmetric since even when we use a-symmetric updates the parameters converge to
a symmetric matrix. The symmetry of the weights when training the network with a-EP has
already been observed in other networks [5]. In this case the reason for which this happen can
be understood from the discussion on the information content of the parametric model. In fact,
any two pixels enter symmetrically in the mutual interaction. The correlation of the node i
with the node j must be equal to the correlation of the node j with the node i. Therefore, due
to the symmetric nature of the Reconstruction problem it is reasonable that the exact weight
matrix should be symmetric and that an a-symmetric algorithm, despite the higher freedom of its
dynamics in the parameter space will converge to a symmetric configuration.

4.3 Multilayer with interconnections
The network described in the previous section can be considered as a special case of another
architecture, corresponding to the one originally proposed by Bengio and Scellier. In order to see
this, let us notice that, for both the hard sigmoid and the hard tanh, it is safe to rename the inputs
as Ii = xi and to substitute it with xi→ g(xi). As a matter of fact, in the hard functions there is
absolutely no difference. If this is done, it is possible to associate to each input a node in the
network, that does not vary with the state nodes since it is clamped. In this way the nodes of the
architecture read u = [x;s]t , with x ∈RNi and s ∈RNs . In these terms, the Grossberg-Hopfield
architecture is such that Ns = Ni and Nu = Ni +Ns = 2Ns. In order to go further the weight
matrix must be re-defined so as to account for the newly defined neurons. To do so, the old
matrix W (s) ∈RNs×Ns is replaced by a new matrix W ∈R2Ns×2Ns , defined in such a way that the
only interconnection existing is the one from the input node uk = xk to the associated state node
sk = uNi+k. In mathematical terms, this corresponds to define the sub-matrices connecting the
state nodes with the input nodes as

Wkm =Wmk = δm,Ni+k + δNi+k,m (4.4)

where only one delta function can actually appear in the expression. Moreover, the sub-matrix
connecting the input nodes is the zero matrix. Overall, for i = 1, . . . ,Ns:

d
dt

si = −si +
Ns

∑
j=1

W (s)
i j g(s j)+ bi + Ii

d
dt

uNi+i = −uNi+i +
Nu=2Ns

∑
j=Ni+1

WNi+i, jg(u j)+ bNi+i + g(xi)

d
dt

uk = −uk +
Nu=2Ns

∑
j=Ni+1

Wk jg(u j)+ bk +
Ni

∑
j=1

g(x j)δk,Ni+ j

d
dt

uk = −uk +
Nu=2Ns

∑
j=Ni+1

Wk jg(u j)+ bk +
Ni

∑
j=1

Wk jg(x j)

d
dt

uk = −uk +
Nu

∑
j=1

Wk jg(u j)+ bk

Therefore, the inputs can be equivalently thought of as a layer of neurons, each of which is
connected only with one other node in the output layer. In order to increase the number of degree
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of freedoms, the input nodes can be allowed to connect also to the other output neurons, as shown
in Fig.4.8. Using EP, the weights connecting the clamped input nodes to the output neurons can
be learned authomatically, in order to find the optimal redistribution of the information to the
next layer.

Figure 4.8: Generalization of the Grossberg-
Hopfield network to the Bengio-Scellier one.

Figure 4.9: Bengio-Scellier network used as
a denoising autoencoder.

The network was trained on 1600 data and the learned model was tested on 200 data. From
the hand-tuning optimization the selected hyper-parameters were η = 0.01 and β = 0.5. A batch
size of 20 was selected and the network was trained for 10 epochs. In Fig.4.10 it is possible to
observe the training history through the epochs. The objective function on the train data reached
Jtrain = 0.00080329 and on the test data Jtest = 0.0032227. For what concerns the accuracy
on both the data the network reached 100% accuracy. This comes at the cost of introducing
more resources but it could be thought of as a natural way of extending the memory in case the
Grossberg-Hopfield alone had not a storage capacity sufficiently high for the desired number of
patterns.

4.4 Recurrent Denoising AutoEncoder
Once generalized the Grossberg-Hopfield network with the Bengio-Scellier one, it is now possible
to do one step further in terms of complexity. While discussing Equilibrium Propagation it
was pointed out that the most general network may be further enlarged by introducing hidden
neurons. If properly defined, the new networks that can be designed would naturally increase the
computational potential. In the most trivial way this is achieved by projecting the input nodes
in a new space with higher dimensions. However, also a reduction of the dimension could be
useful, as discussed in this section. The addition of a layer in between the input layer and the
output layer defined before generates a network that can be identified with a recurrent denoising
autoencoder (DAE).
A DAE is a low pass filter capable of removing high frequency noise from an image. Neural
networks have been proved to be highly effective for the implementation of such machines thanks
to their capability of naturally creating bottlenecks of information. In Fig.4.11 it is reported the
basic idea behind this concept. The architecture is made of two operational blocks: an encoder
and a decoder. The Encoder maps a vector field into a vector field of reduced dimension, called
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Figure 4.10: Reconstruction using the input as nodes: Top Left: MatLAB table summarizing
the architecture defined; Top Right: Weight matrix learned by EP; Bottom: history of the
performances during training.

latent space. Then, a decoder takes the compressed information and restores the original data.
This is a natural low pass filter since the latent space constitutes a bottleneck of information.
Not all the information presented in the input can be transferred integrally to the output and the
structure needs to encode some structural constraints present in the data it has to handle, so as to
overcome the architectural problem. Therefore, forced by the impossibility to take into account
all possible shades, only the core information of the data is learned, and the noise is ignored. A
layered structure was defined, having a 20 dimensional latent space represented in Fig.4.9. The
network was trained on 1600 training data and 400 test data for 10 epochs. This time the batch
size was set to 1 while the parameters optimized on the previous network (η = 0.01, β = 0.5)
turned out to yield satisfactory performances: the accuracy of the best model was 99.25% while
the objective function reached Jtrain = 0.045468 and Jtest = 0.053961.

4.5 Conclusions
This chapter is devoted to discussing the applicability of Equilibrium Propagation for the
solution of the Reconstruction problem. The starting point is the Grossberg-Hopfield network,
corresponding to a single layer fully connected RNN. The nature of the information learned by
the algorithm is discussed in the simple case in which the network has to learn only one pattern.
In particular, the bias vector can be put in one-to-one correspondence with the target vector and
the weight matrix is shown to store the information on the correlation existing in between the
pixels. Then, the analysis focuses on the ten patterns case, testing the three algorithms introduced
in the previous chapter and arguing the possibility of the existence of an optimal weight value in
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Figure 4.11: Schematic representation of the main blocks constituting a DAE. The input is
encoded in a latent space and then decoded to the output space.

Figure 4.12: Reconstruction using the DAE architecture: Top Left: MatLAB table summarizing
the architecture defined; Top Right: Weight matrix learned by EP; Bottom: history of the
performances during training.

the symmetric sub-space of the parameters space. Afterwards, the Grossberg-Hopfield network
is proved to be a particular case of the Bengio-Scellier one. As a first example, it is considered
a network in which each input is shared by all the state nodes. Finally, a recurrent Denoising
autoencoder is proposed and the Reconstruction problem is solved using it. This last architecture
is particularly interesting since it corresponds to a layered structure. Layered structures are
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naturally modular and this is particularly practical in the perspective of designing configurable
AI chip.
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Chapter 5

Classification

The classification task is one of the most common problems in machine learning. Given a data-set
containing objects from a certain number of classes, the model is trained to recognize the class to
which an input data belongs to. In this chapter, classification problems of increasing complexity
are considered. The starting point is the regression of the AND function, which is essentially
a linear binary classification problem. Later, it is discussed the XOR regression, a non-linear
binary classification problem. The last problem considered is digit classification. In this way it
is possible to verify the success of the recurrent neural network models when combined with
the Equilibrium Propagation algorithm for solving the classification problem. Finally, a Feature
Engineering approach is discussed. This is inspired by the nature of the information encoded by
the Additive model and allows to drastically reduce the number of parameters needed.

5.1 Basics of classification with recurrent neural networks
Neural networks are extremely successful for solving classification tasks. When considering
recurrent neural networks, this must be understood in terms of dynamical systems. Given a
dataset X containing images belonging to No classes, a neural network used for classification
will generally have No output nodes, connected to the Ni output nodes through an arbitrarily
complex networked parametric model. Once trained, each output node n corresponds to a
parametric function f̂ θ

n of the input. Since the model used is the Grossberg’s Additive Model,
this corresponds to the value of the corresponding state variable at convergence, after the
application of the non-linearity.

f̂ θ
n (x) = g(yn(t→ ∞)) = g

( Nu

∑
j=1

Wñ jg(u j)+ bñ

)
ñ = Ni +Nh + n (5.1)

Due to the fact that the AM is a rate model, the activation function will saturate at both limits:{
lims→∞ g(s) = σ↑
lims→−∞ g(s) = σ↓

(5.2)

Where σ↑ = 1 and σ↓ = −1 for the hyperbolic tangent while σ↓ = 0 for the sigmoid and the
hard-sigmoid. Therefore, training the network for solving the classification task corresponds to
identify each one of the No classes with an output node and to find the parameters θ such that
given an input belonging to the k-th class, f̂ θ

k (u) will be the highest value at convergence.
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5.2 Logic functions
Let us start from the problem of learning logic functions, that is a binary classification. The inter-
esting thing of these networks is that their simplicity makes it possible not only to theoretically
determine the minimally complex architecture capable of solving them, but also to visualize
the dynamics in the state space. First of all it is necessary to associate σ↓ to the false boolean
variable and σ↑ to the true one. In the following, two of the main logic functions are considered:
the AND and the XOR.

5.2.1 Linearly separable classification problem
Given two logic values x1 and x2, the AND function evaluated on them is defined as follows:

x1∧ x2 =

{
σ↑ iff x1 = σ↑ and x2 = σ↑
σ↓ otherwise

(5.3)

This can be equivalently expressed with the truth table Tab.5.1. Figure 5.1 shows that, in the

x1 x2 x1∧ x2
0 0 0
0 1 0
1 0 0
1 1 1

Table 5.1: truth table of the AND function.

Figure 5.1: Graphical representation of the
AND classification problem.

Figure 5.2: Structure of the
AND architecture.

(x1,x2) space, the two truth classes can be separated by means of a line. Due to this peculiar
behavior, this is called a linearly separable problem and a sigle neuron, namely the perceptron
parametric function, can be fit to solve this task

f̂ θ = g
(

W31x1 +W32x2 + b
)

(5.4)
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In fact, if one defines the vector û = [W31,W32]t , it can be chosen as the vector normal to the line
needed to separate the two classes. If the scalar product of the weight matrix with an input vector
is performed (Wx), the result is a scalar that will be positive only if x is a point on the right of the
line parallel to the separation line in Fig.5.1, and intercepting the origin. Instead, the additional
bias term b allows to find the correct separating line. In this way, the term Wx+ b will be grater
than a threshold value in one class and lower than the threshold in the other. If this threshold
value corresponds to the mean image of the activation function, it is easy to see how the value
at the output identifies the correct class. In Fig.5.3 it is reported the data used for training the

Figure 5.3: Data-set used for the AND problem.

network. As it is commonly done, some random noise has been added to make the problem
closer to something that would happen in a real logic gate. The selected activation function
was the hard sigmoid and the network was trained using Ntrain = 100 data for the training and
Ntest = 80 data for the test. The hyper-parameters were optimized to η = 0.5 and β = 0.1 and
the network was trained for Nepochs = 10 epochs, checking the accuracy at the end of each epoch.
The batch-size was fixed to 1 and the weights were initialized using the standard initialization
technique [64]. The behavior of the network through the training process can be observed in
Fig.5.4.
Let us now observe some figures of merit of the dynamical system. As expected, the parameters

Figure 5.4: AND history

learned were W13 = W31 = 0.4804 and W23 = W32 = 0.4686 while the bias learned is b =
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−0.2528. This result can be interpreted in two ways. The first one is in terms of the final
parametric model. As expected, the vector normal to the separating line is parallel to the diagonal
to the first quadrant. For what concerns the bias, it identifies a separating line crossing the
diagonal of the first quadrant at a point whose distance from the origin is 0.25. Since the average
value of the hard sigmoid is 0.5, the hard-sigmoid will reach this value at another point of the
diagonal, whose distance from the origin is 0.5. In this way, the points [0,0],[0,1] and [1,0] will
certainly be on the lower half of the image of the sigmoid while only [1,1] will be in the higher
half. By identifying the two halves as false and true respectively, the theoretical expectation
is reproduced. This reasoning is only done at convergence. Instead, in Fig.5.5 the complete
information about the associated dynamical system is presented. In the AND function there is
only one dynamical variable, i.e. the output. Once given the input, the velocity field is defined
in the 1D state space, and it can be explicitly represented for all the inputs. This was done in
Fig.5.5: In blue are reported the numerical value of the velocity field while in red are sketched
the corresponding arrows, driving the dynamics at each value of y. As it is possible to evince,
in all the cases there is only one equilibrium point and it resides in the correct half of the state
space.

Figure 5.5: Caption

5.2.2 Non-linearly separable classification problem
Once clarified what is meant with using recurrent neural networks for the classification task, it is
possible to move to considering the exclusive OR (XOR) problem. The function can be defined
as

x1⊗ x2 =

{
σ↑ iff x1 /= x2, xi ∈ {σ↑,σ↓}
σ↓ otherwise

(5.5)

This can be equivalently expressed with the truth table Tab.5.2 or, alternatively, with the graphical
representation in Fig.5.6. As it is possible to evince, this problem is not linearly separable. This
automatically implies that the architecture in Fig.5.2 is no longer sufficient for performing a

58



Classification

x1 x2 x1⊗ x2
0 0 0
0 1 1
1 0 1
1 1 0

Table 5.2: truth table of the XOR function.

Figure 5.6: Graphical representation of the XOR classification problem.

similar classification. Nonetheless, the complexity is still sufficiently low to guess the minimally
complex architecture needed to solve the problem. As a matter of fact the XOR problem can be
written as two nested linearly separable problems

x1⊗ x2 = (¬x1∧ x2)∨ (x1∧¬x2) (5.6)

as it is shown in Tab.5.3. Just as for the AND function, the composite non-linear function
corresponding to this formula can be written. When considering activation functions bounded
between 0 and 1, one should keep in mind that the result naturally extends to the hyperbolic
tangent. Let us start from the negation

¬x = 1−1x (5.7)

Going to the composition of the negation with the AND

¬x1∧ x2 = g
(

1
2
(1−1 · x1)+

1
2

x2−0.25
)
= (5.8)

= g
(

W31x1 +W32x2 + b3

)
(5.9)

That is a linearly separable problem. Furthermore, also x1∧¬x2 can be solved with a similar
function. Just as before, x can be substituted with g(x) without compromising the separation,
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x1 x2 ¬x1 ¬x2 ¬x1∧ x2 x1∧¬x2 x1⊗ x2
0 0 1 1 0 0 0
0 1 1 1 1 0 1
1 0 0 1 0 1 1
1 1 0 0 0 0 0

Table 5.3: truth table of the XOR function.

finally obtaining a formula corresponding to the parametric model that can be learned by the
Bengio-Scellier RNN. This implies that the minimally complex architecture that could solve
the problem is the one reported in Fig.5.7. In fact, each layer must solve one of the nested

Figure 5.7: Minimally complex architecture for learning the XOR function

linearly separable problems. The training has been performed using Ntrain = 400 training data
and Ntest = 320 test data, sampled with the same approach used for the AND function( Fig.5.3).
The hyper-parameters have been optimized to η = 0.1 and β = 0.5. The training was perrformed
for Nepochs = 10 epochs and the performances were checked at each epoch, with mini batch size
equal to 1, i.e. updating the weights after each data. The model reached an accuracy of 100%
with Jtest = 6.8596 ·10−7 and Jtrain = 6.5668 ·10−7.
The XOR problem is of particular interest because it allows a clear graphical representation of

the state space. The network has two hidden nodes and one output node, so that the state space is
a 3D euclidean space. For each input the system was initialized at ten random starting points:

si(t = 0) = ζi i = 1, . . . ,3 ζi ∼N (µ = 0,σ = 1) (5.10)

The solution can be observed in Fig.5.9 and in Fig.5.10. As it is possible to evince, when the
two inputs are equal the system converges toward an equilibrium point in the subspace y = −1,
corresponding to f̂ θ = −1. On the contrary, when the inputs are one the opposite of the other
the system converges to an equilibrium point at y = 1, corresponding to f̂ θ = 1.
Similar performances were obtained using a hard sigmoid. In the last chapter of this thesis it is
described a 2x2x1 network trained for solving the XOR problem with the hard-sigmoid activation
function. Nevertheless some difficulties were encountered in properly training the network under
these conditions. Hence, in this case the problem was circumvented by introducing a hidden
space with a slightly higher dimensionality, so as to increase the strength of the model in learning
the logic function. The number of hidden nodes was increased to 5, thus creating the RNN
2×5×1. The network was trained on 400 data and tested on 320, fixing the learning rate to 0.1
and the clamping factor to 0.5. The process was iterated for 10 epochs, using 12 data in each
mini-batch. In the course of 10 epochs the network managed to achieve a 100% accuracy on the
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Figure 5.8: Performances of the RNN defined in the solution of the XOR classification problem.

Figure 5.9: When the inputs are both belong-
ing to the false class the system converges to
y = −1 for every starting point in the state
space.

Figure 5.10: When the inputs are belong-
ing to opposite classes the system converges
to y = 1 for every starting point in the state
space.

test data and a 99.375% on the training data, corresponding to a 1.65 ·10−8 error on the training
data and 5.59 ·10−9 on the test data.

5.3 Digit classification

The classification of the MNIST data-set [65] is a universal standard for checking the correct
functioning of a ML classifier. The content of this data-set are the ten handwritten digits
going from 0 to 9, each one written as a 28×28 images. A nearest-neighbor interpolation was
performed to obtain its 14×14 equivalent, with the aim of reducing the computational burden
and to allow for a full data-set training within a reasonable time. The comparison between
the two data-sets can be observed in Fig.5.11 The ML problem to be performed corresponds
to determine the class number using handwritten images. The way this is done is sketched in
Fig.5.12. The entries of the matrix representing an image are inserted in a RNN as the input
vector x. Many architectures are possible to be used for the network but all of them must be
characterized by one input layer of Ni = 142 = 196 input nodes and No = 10 output nodes.
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Figure 5.11: On the top there is the original 28×28 MNIST image while on the bottom there is
the equivalent 14×14 version.

Figure 5.12: Scheme of the MNIST classification problem via a recurrent neural network

5.3.1 Multilayer network

The starting point of this analysis follows closely the architecture chosen by Bengio and Scellier
[1]. The network considered is a three layers network, in which the 196-dimensional input is fully
connected to 128 hidden neurons, that in turns are fully connected to the output. The activation
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function used was the hard sigmoid and the hyperparameters were optimized to η = 0.01 and
β = 0.2. Once initialized the network using the standard initialization, the model was trained
on the whole data-set, reaching an accuracy of 96.98% in 10 epochs. In Fig.5.13 is reported
the history of the training while in Fig.5.14 it can be observed the final confusion matrix of the

Figure 5.13: Accurcy and Cost of the network while training it on the MNIST data-set.

model. Bengio and Scellier [1] achieved 100% accuracy with an analogous network. However,

Figure 5.14: Confusion matrix of the MNIST classification using the hard sigmoid.

some important differences are present and might be the cause of the reduced performances of
this implementation:

1. The dynamical evolution of the state nodes is different. This was done because the interest
of this thesis aims at the circuital implementation and the Additive Model has already been
studied from an hardware point of view;

2. They used the 28× 28 images while here, for the aim of speeding up the calculations,
14×14 images have been used;
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3. They introduced a different η parameter per each layer. This trick allowed them to increase
the performances, even if it is not completely justified by their theory. In this work the
algorithms strictly follow the original formulation of their work;

4. They used the Glorot-Bengio initialization while the standard one [64] was observed to
yield better performances for the selected parameters;

5. They trained the network for 25 epochs while only 10 are considered in this analysis;

6. They integrated the dynamics equation manually while, in this work, the built-in MatLAB
routine ode45 has been used.

Due to the importance of the MNIST classification to benchmark a ML model, also the hyper-
parmeters needed for solving the problem using the hard hyperbolic tangent were optimized.
In Tab.5.4 are reported the main figure of merits of the MNIST classification using the two
activation functions of interest. In both cases the network was trained on the whole data-set,
corresponding to Ntrain = 60000 and Ntrain = 10000. The architectures selected were equivalent,
with 196 input nodes, 128 hidden nodes and 10 output nodes. In both cases the training was
performed for 10 epochs, with mini-batches of 20 data.

activation η β ACCtrain ACCtest Jtrain Jtest

sigmoid 0.01 0.2 0.975 0.9698 0.022596 0.026901
tanh 0.005 0.1 0.9642 0.9614 0.1182 0.12819

Table 5.4: Figure of merits of the two networks optimized for the MNIST classification task.

Mini batch size

The main purpose of this thesis is to work on the circuital implementation of the algorithms here
discussed. To this aim, it is later discussed how the synaptic weights can be substituted with
resistive switching devices and how it is possible to program them using external digital hardware.
The important thing is that every time the weights are to be updated, a computation must be
done and a programming procedure must be effected on the crossbar. Therefore, this process
is both time and power demanding, implying the natural advantage of reducing the number
of circuital updates to the lowest possible number. In particular, considering the previously
introduced concept of mini batch, such an update is to be performed after the network has
experienced a number of inputs equal to the mini batch size. So far this parameter was kept
fixed to 20, in analogy to what done in [1]. However, in order to reduce the number of updates
to be done on the weights, it is necessary to verify whether it is possible or not to increase the
mini batch size. In order to do so, an architecture of the kind previously described was trained
with the hard sigmoid activation function. The dimension of the data-sets used were respectively
Ntrain = 6000 and Ntest = 1000, rather than the full data-set. In practice, the only important
thing is the variation in accuracy with respect to the working point of miny batch size equal to
20. Therefore, reducing the size of the data-sets considered induces a reduction in the accuracy
but it preserves the possibility to perform a proper comparison. The hyper-parameters were
kept fixed at η = 0.05 and β = 0.1 and the training was performed over 5 epochs. The results
can be observed in Fig.5.15. The plot shows that the mini batch size could be increased with
no significant loss of accuracy. Nonetheless, if it is increased too much it can lead to a drastic
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Figure 5.15: Accuracy as a function of the mini batch size

degradation of the performances. This is particularly evident if one considers the accuracy of the
class whose classification is subject to the lowest accuracy. This is particularly dramatic when
the mini-batch size is higher than 100. Nonetheless, from this analysis it is possible to see that
the number of updates necessary could be halved, yielding a considerable reduction of the power
required for the update.

5.3.2 Feature Engineering

Later in this work quantized network are discussed. Recently, Laydevant et al.[66] proposed
an algorithm to train network with binarized weights. They managed to reach state of the art
accuracies on the MNIST data-set but at the cost of introducing an hidden layer with a demanding
number of neurons. The need to go in high dimension is easy to be understood when one passes
from a continuous weights update to a discrete one. In the continuum much more information can
be encoded in the weights, that can store particularly detailed informations about the correlations
in between the neurons. When the information that can be stored in the weights is limited, a
workaround is needed to achieve the same accuracy. Rather than limiting to increase the number
of nodes, an alternative is to project the data-set into an higher dimensional space using a process
called Feature Engineering. Features Engineering consists in pre-processing the input data to
a network in order to limit the amount of information the network needs to extract. For this
purpose it can be noticed that, despite the MNIST classification problem is not linearly separable,
trying to perform a linear separation can lead to an accuracy of around 80%. The approach here
proposed is based on the definition of the new features starting from the Principal Component
Analysis and combining it to the previously gained insight on the nature of the information
learned by the Additive model.
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Principal Component Analysis

Principal Component Analysis (PCA) is an unsupervised ML technique capable to find the most
informative linear representation of an object belonging to a given data-set. In particular, given a
Ntrain dimensional data-set, each object of which is characterized by a number of features N f ,
PCA determines a hierarchically-based new set of features [67]. In the following an overview on
PCA done in a previous work [68] is adapted to the context under investigation.
Let us consider a generic object x(i) ∈RN f . Firstly, an Euclidean orthonormal basis is introduced
via the column vectors B f = {es}

N f
s=1 and the corresponding identity operator reads

I
.
=

N f

∑
s=1

eset
s

The object can then be represented as a linear combination of these basis vectors, weighted by
the associated projection

x(i) =
N f

∑
s=1

(et
sx

(i))es =
N f

∑
s=1

x(i)s es (5.11)

The aim of Machine Learning is to identify and exploit informative patterns in a data-set.
Therefore, disposing of a large number of such objects is desirable. As already mentioned, these
objects are generally stored in a matrix, that is named X . Having at hand this data-set allows to
define a new basis in which to describe the input vectors, and this is done through a procedure
named Principal Component Analysis. Overall, performing a PCA on the dataset Xtrain can be
identified with the definition of two important quantities:

• The average vector xo. The knowledge of this quantity allows to describe each object as a
variation from it x = xo + x̃. x̃ is termed the mean-adjusted vector and the mean vector in
the previously defined basis reads

(x0)k =
1

Ntrain

Ntrain

∑
i=1

x(i)k .

• A new orthonormal basis: Bpca = {p(l)}N f
l=1. This set of vectors is generally referred to

with the name principal components (or principal directions). They correspond to the
normalized eigenvectors of the covariance matrix

C =
N f

∑
s,s′=1

css′eset
s′

css′ =
1

Ntrain−1

Ntrain

∑
i=1

(x(i)s − (x0)s)(x
(i)
s′ − (xo)s′).

and the eigenvalues are termed the variances {σ2
i }

N f
i=1. The principal components are the

directions along which, in the data-points, there are the most informative variations with
respect to the average vector. They are hierarchically sorted depending on the value of the
associated eigenvalue.
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Figure 5.16: 2D example of PCA. The data-points are in light blue, the mean data-point is in
red and the principal components are multiplied by a scaling factor proportional to the associated
eigen-value. Taken with permission from [68].

Generally, the meaning of this analysis is explained by referring to a 2D example (see [69]). In
Fig. 5.16 it is possible to observe a data-set of points randomly scattered along a line. PCA has
been performed on this data-set with the aim of graphically representing the technique described
so far. The mean vector x0 is represented in red and any point in the data-set can be represented
starting from this point. The most informative direction is the eigen-vector of the correlation
matrix associated to the biggest eigenvalue, namely p(1). The principal components have been
scaled proportionally to the associated eigen-values to represent their different importance in
describing the data. PCA has been able to understand that the most striking feature of the objects
to be described is their distribution along a line. Therefore, the first principal component (p(1))
corresponds to that line. Then, the second eigen-vector, orthogonal to the first one, takes into
considerations the remaining information in the 2D space.
Once identified the previous quantities, any object x belonging to the same class of the data-
set can finally be expressed in this new basis in an expansion called principal components
decomposition:

x− xo = Ix̃ =
N f

∑
l=1

[(p(l))t · x̃]p(l) =
N f

∑
l=1

γl p(l) (5.12)

Linear separation of the MNIST data-set

With the aim of generating new features, a PCA was performed on the training data-set, obtaining
in this way the matrix of the principal directions

P =

p(1) p(2) . . . p(N f )


As said before, the column vectors in this matrix identify the most informative directions in the
features space. They are sorted by importance, so that p(1) will be the direction along which the
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data most strikingly vary. The optimal features in which to represent the data should be the most
informative possible. Since the principal components allow to separate the features so that they
are maximally informative, it is reasonable to define the variable

γ
.
= Pt x̃ =

[
γ1 γ2 . . . γN f

]t x,γ ∈RN f (5.13)

The new variable will have the same number of features. However, the component γi will have a
precise higher hierarchical importance with respect to any γ j, whenever j > i. In order to use
this, first it was tried to solve the problem linearly. To each input vector it was subtracted the
average one, computed on the training set

x̃ = x− xo (5.14)

Then, the architecture was defined to be a one layer network, where each input was directly
connected to the 10 output nodes, the only evolving variables. The network was trained with
3000 training data and tested against 500 images. The learning rate was set to η = 0.05, the
clamping factor to β = 0.5 and the hard sigmoid was used as the activation function. After 10
epochs of training, the network reached a 82.8% accuracy on the test set and a 86.6% accuracy
on the training one. The plots reporting the history of the training can be observed in Fig.5.17.
This is a remarkable result, considering that the number of trained weights is 1960 synaptic

Figure 5.17: Caption

weights and 10 biases, for a total of 1970 parameters, considerably lower than the 250880 of the
previous model. However, so far nothing new has been added since the new data-set is a linear
transformation of the old one. This is to say that the learning process is just a linear separation
of the original data in an alternative basis. Considering this high linearity in the data, it would be
useful to exploit this for designing an efficient network, with the smallest number of parameters
possible. When adding an hidden layer this linear information is lost. Therefore, in the next
section we will propose some features with which to augment the original features. The goal is
to introduce information that the RNN should learn by itself, simplifying in this way the task for
the network and allowing to reach higher accuracies with a lower number of parameters.

Correlation based non-linear features

The goal of this section is to define non-linear features with which to augment the input. Let us
consider once more the generic vector x and its projection γ in the space of the principal compo-
nents. For the previous discussion about the representation in the PCA basis, the information
contained in each entry of the projected vector γ is associated to a different principal component.
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Therefore, the first entry will be much more informative than the last ones. If one wants to design
new features while minimizing the number of weights used, the most natural thing to do is to try
to use the first few M entries of γ . This is possible only thanks to the hierarchical way in which
PCA redefines the variables. In order to increase the accuracy, the new features to be created
must introduce non-linear information. The simplest way in which we can try to do this is by
computing the Kronecker product of the first M values of γ with themselves. In this way, the non
linear set of features for the variable x reads

γ
nl =

[
γ2

1 γ1γ2 . . . γ1γM γ2γ1 γ2
2 . . . γ2

M
]t . (5.15)

Alternatively it is possible to define the associated matrix

Γnl =


γ2

1 γ1γ2 . . . γ1γM
γ2γ1 γ2

2 . . .
... . . . ...

γMγ1 . . . γ2
M

 . (5.16)

If one considers the entry Γnl
mk, this reads

Γnl
mk = γmγk = γmγ

t
k = (p(m))t · x̃x̃t p(k) (5.17)

Where it has been used the fact that the transpose of a scalar is the scalar itself. Finally, defining
PM as the matrix whose columns are the first M principal components, the Γnl matrix defining
the new feature vector γnl reads

Γnl = (PM)t(x− xo)(x− xo)
tPM (5.18)

By direct comparison of the Γnl matrix with the correlation matrix it is possible to evince that
the introduced non-linear features are the contribution of the single data to the correlation matrix,
represented in the sub-space of the first M principal components. In the end, given an input
vector x ∈RN f , the new set of features is defined as the vector z ∈RN f +M2

z =
[

γ

γnl

]
. (5.19)

The Kronecker product of a vector with itself generates repeated values. Nonetheless they were
not removed, since an increase in performances was observed when proposing also the repeated
values. Therefore, an additional number of M2 entries were inserted. The single layer network
was trained for a progressively increasing number of components. The reason why this choice
might be well suited for helping the network to learn seems to be related to the relationship
existing between PCA and the nature of the information encoded in the Additive model. In
Chapter 4 the information encoded in the weights is argued to be closely related to the correlation
existing in between the variables. Hence, using as new features the most relevant correlations
with a given number of features is a good way to obtain a tunable accuracy with the number of
parameters.
The important result is that by reducing the number of parameters by one order of magnitude it
was still possible to achieve performances comparable with the ones obtained in the multi-layered
network. To understand why this might be useful, one should consider that at least one resistive

69



Classification

M features parameters accuracy test accuracy train
0 196 1970 82% 87%

10 296 2970 92.2% 95%
15 421 4220 92.6% 96.8%
20 596 5970 93.6% 98%
25 821 8220 94% 98.8%
30 1096 10970 95% 98.6%

Table 5.5: Increase of the performances when adding the PCA-based engineered features. The
first column is the number M of components considered, the second column is the dimensionality
of the newly defined input vector z, i.e. N f +M2. The remaining columns are the remaining
figures of merits.

switching component should be associated to each one of these parameters. Working prototypes
of similar networks have already been discussed. However, researchers are often forced to limit
the experimental measurements to simple one layer networks with a limited number of resistive
components. Since this often results in dramatic reductions in the accuracy [70], the proposed
feature engineering might be a simple tool for increasing the compactness of the networks while
guaranteeing a satisfactory accuracy with single layer networks.

5.4 Conclusions
In this chapter Equilibrium Propagation is used for solving classification problems of progres-
sively higher degree of complexity. The starting point is the AND function, the analysis of which
allows us to discuss a 1D dynamical system and the way the velocity field can be learned. Then,
a 3D dynamical states space is analysed while solving the XOR problem. This problem is of
historical interest in the Machine Learning world and allows to verify the correct implementation
on a non-linearly separable problem. Finally, the MNIST classification problem is addressed.
The main advantage of these numerical simulations is that they allow to verify the capability of
the Additive Model to solve also classification tasks in multilayered networks. In this way, new
valid architectures are optimized, obtaining in this way optimal parameters, useful when going
to the hardware implementation of the network. In addition, two hardware oriented analysis are
performed. Firstly it is verified the possibility to reduce the number of updates needed in the
training phase. Secondly it is defined an heuristic approach to engineer informative features from
the principal components of the training data-set. As mentioned in the main text, this might be
particularly useful to increase the accuracy of the implemented networks at the research level.
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Chapter 6

Electronic Components

This chapter summarizes the basic features of the main circuital components used for the
implementation. Taking for granted the resistor, the capacitor and the sources, the first component
considered is the diode, of which its basic functioning and the Schottky version are briefly
discussed. The second component is the Operational Amplifier, that is essential both for the
implementation of the neuron and for the activation function. Finally, the resistive switching
phenomenon in bipolar valence change memory devices is briefly described since it is at the
basis of the implementation of the synspses.

6.1 Diodes
The diode is a non-linear component physically corresponding to a semiconductor junction. On
one side of the junction the semiconductor is p-doped and is named anode while on the other side
the semiconductor is n-doped and is called cathode. The reader can refer to the Sze book [71]
for an in depth discussion on the physical mechanisms at the basis of the electronic properties
of this device. In simplistic terms, at room temperature the dopants are ionized, so that on the
n-side electrons are promoted to the conduction band while in the p-side holes are released in the
valence band. If the materials are separated, both of them are globally and locally neutral in each
region since the mobile charge balances the fixed charges of the dopants. On the contrary, when
the junction is created there will be a high difference in concentration of the mobile carriers and
a diffusion process will drive the free carriers in the material in which they are minoritary. As
this process goes on, while the global neutrality is always satisfied, the local neutrality is violated
in the junction region, where the carriers are injected to the other side. This charge will generate
an electric field competing with the diffusion of the carriers, i.e. introducing a competing drift
current. In terms of energies, the generation of a localized charge locally alters the electrostatic
potential of the free carriers, progressively creating a barrier aimed at confining the free carriers
in the region in which they are majoritary. Once equilibrium is reached, the current components
are balanced and no current flows through the device. If a positive voltage is applied at the p-side,
this will result in a lowering of the barriers and in a consequent injection of minority carriers
that will diffuse. In the meanwhile, in the region where they are the majoritary carriers they
experience an electric field and move by a drift effect. Overall, this will result in an exponentially
increasing current as a function of the applied voltage. On the other hand, if a negative voltage is
applied at the anode, the barriers are further raised. The only available conduction mechanism is
an injection of the minority carriers populating the top parts of the respective energy barriers.
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This results in an almost constant reverse saturation current, generally termed Io. Putting these
things together, it is possible to mathematically prove that this device can be considered as a
non-linear resistor and its characteristic equation reads

iD = Io

(
e

vD
VT −1

)
(6.1)

In Fig.6.1 it is shown the circuital symbol together with the I-V plot of the Default diode model
implemented in ngSpice. The red dashed line corresponds to the piece-wise approximation
of the diode in which the current is assumed to be zero up to the voltage Vγ , starting from
which the diode behaves as a voltage generator at the voltage Vγ ' 0.7V . These devices can be
characterized by the so called forward voltage, corresponding to the positive voltage at which
the current has a selected value

iD; f wd ' IoevD; f wd/VT → vD; f wd = VT log
iD; f wd

Io
(6.2)

The substitution of one of the two semiconductors with a metal corresponds to the definition of

Figure 6.1: Symbol of the p-n diode and I-V
characteristic of the ngSpice default model.

Figure 6.2: Symbol of the Shottky diode and
I-V characteristic of the ngSpice DFLS220L
model.

the Schottky diode. This device qualitatively behaves as the diode since its characteristic curve
can be found to be

iD = Is

(
e

vD
VT −1

)
(6.3)

Nonetheless, the inversion charge might now be dominated by a new phenomenon. In fact,
in inversion condition, the inversion current will still have a contribution from the injection
in the metal of the minority carriers of the semiconductor. However, from the metal side the
carriers will flow to the semiconductor due to thermoionic emission. This change in the physical
phenomenon results in a reverse current that can be considerably higher than the the one in the
diode Is� Io. Therefore, when considering the forward voltage of the Schottky diode at the
same reference current, the two are related by

vs−s
D; f wd− vm−s

D; f wd = VT log
Is

Io
(6.4)
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Since the ratio of the two terms can be of the order of 106 and at room temperature VT = 26mV
the forward voltage can be hundreds of millivolts lower than the corresponding forward voltage
of the p-n diode. If the threshold voltage Vγ of the p-n diode is of the order of 0.6V , the
corresponding quantity for the Shottky diode can be as low as Vγ = 0.15V . In Fig.6.2 it can be
observed the case of the DFLS220L Shottky diode [72], that is used in the final implementation
of the neuron unit.

6.2 Operational Amplifier
The next electronic component to be introduced is the operational amplifier.

Figure 6.3: Symbol of the Operational Amplifier.

This device is represented in Fig.6.3 and, ideally, the current entering at its input nodes and
the differential voltage between its input nodes can be neglected.

i+ ' 0A
i− ' 0A
vd ' 0V

(6.5)

The interesting thing about these features is that, if the differential voltage vd is close enough to
0V and the positive node is connected to ground, then also the negative node is constrained to a
low voltage, without being directly connected to ground. This node is said to be at virtual ground.
Each operational amplifier presents at the output an amplified version of the input differential
voltage Vo = fK(vd), where the meaning of the K parameters can be observed by performing a
first order Taylor expansion of the output

fK(vd) ' fK(0V )+ f ′K(0V )vd + o(vd) =

= fK(0V )+Kvd + o(vd)

While fK(0V ) corresponds to the bias term, the K factor is the gain of the amplifier. At the
output of the component the voltage must vary. Therefore, the ideal operational amplifier must
have a diverging gain K→ ∞. Another interesting property is the dependence of the device on
the power supply. The amplifier cannot present an output voltage higher than V+

al or lower than
V−al . Therefore, in case the circuit tried to drive the output outside from its natural limits, the
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device would tend to saturate at the supply values. The properties of this component make it
extremely versatile and ubiquitous in analogue electronics. In the following chapters it will be
shown to be the key component for the implementation of an analogue neuron. In fact, it will
appear in all of its constituent blocks: from the integrating block to the activation function.
In order to go further, let us discuss a more realistic model for the component. In Fig.6.4 it is
reported a model of the operational amplifier, allowing to take into account some non-idealities.

Figure 6.4: Internal functioning of an oper-
ational amplifier: basic model as a voltage
controlled source.

Figure 6.5: Internal functioning of an opera-
tional amplifier: parasitic currents and capac-
itors.

First of all, the input nodes are assumed to be connected by a resistance. This implies that the
input currents will in general be different from zero, as well as the differential input voltage will
be not rigorously vanishing. In general, the input resistance is considerably high, generally in
the range rd ∈ [106,1012]Ω, so that it can safely be assumed to satisfy the ideal limit rd → ∞.
Moving to the output port, the operational amplifier takes a vanishing input voltage and it
transforms it into a finite output voltage. Therefore, considering the gain factor K, in the ideal
component it must tend to infinite. As a further constraints on the gain, the output voltage can
never exceed the values of the power supply in both direction. To properly model this function,
the voltage controlled source representing the voltage amplification was modelled as follows: fK(vd) = V−al +∆Val f σ

(
K

∆Val
vd

)
∆Val = V+

al −V−al

lim
x→∞

f σ (x) = 1 lim
x→−∞

f σ (x) = 0

This expression is reasonable because it allows for a continuous amplification saturating at
the low alimentation value and at the high alimentation value. Moreover, if one linearizes the
function around the ideal differential voltage:

fK(vd) = fK(0V )+
d f σ

dvd

∣∣∣∣
vd=0V

vd + o(vd)

= fK(0V )+Kvd
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corresponding to the usual linear amplification of the operational amplifier. The hyperbolic
tangent was chosen to model this behavior:

f σ (vd) =
1
2

[
1+ tanh

(
2K

∆Val
vd

)]
(6.6)

With this choice the saturation of the amplification was correctly accounted for and the correct
behavior for small values of the differential voltage

limvd→∞ fK(vd) = V+
al

limvd→−∞ fK(vd) = V−al

d f σ

dvd

∣∣∣∣
vd=0V

= K

Additionally, at zero input voltage the operational amplifier is biased in such a way that the
output voltage is half the alimentation value fK(0V ) = 1

2(V
+
al +V−al ). In the ideal case the gain

factor should diverge K → ∞ to guarantee an appreciable voltage at the output of the device.
Instead, in real applications such a gain factor ranges between 105 to 106. The worst case value
for an operational amplifier is of the order of 104. Since this quantity is just a number, it is not
influenced by the adimensionalization procedure and it is directly mapped into the corresponding
circuit quantity. Finally, while in the ideal device the output resistance is zero, in the real device
an output resistance ro needs to be considered. The open loop transcharacteristic for various gain

Figure 6.6: Open loop transcharacteristic for various gain values of the chosen operational
amplifier model.

values of this device can be observed in Fig.6.6. It is worth remarking that, even if the worst
case values for the non idealities are ro = 150Ω and K = 104, in the simulations even worse
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values were considered. This was done because some models are found to be extremely stable to
these non-idealities while the proposed model for the amplifier is extremely general. Therefore,
showing the stability of the implementation to extremely bad amplification units is not limited to
operational amplifiers. On the contrary, this would suggest the possibility to use less complex
and area demanding amplification blocks.

6.3 Resistive Switching Random Access Memory

In this section it is qualitatively discussed the working principle of an extremely promising
resistive memory device: the Resistive Random Access Memory (ReRAM). This memory
is one of the most popular to date due to its large number of interesting features. First of
all, it can be used as a memory since its resistance value can be programmed by means of a
proper electrical stimulus. Moreover, as later discussed, the physical process at the basis of the
resistance variability can be harnessed to store more than one bit in a single component. In an
era in which increasing the density of integration of the CMOS technology has become a serious
challenge, this property is extremely interesting, making the ReRAM a possible competitor with
the CMOS-based NAND Flash memory technology. The structure of a ReRAM is extremely
simple. It consists of a two terminal metal-insulator-metal, where the insulator is often taken to be
Hafnium Dioxide H f O2. This is appealing because the H f O2-technology is compatible with the
CMOS implementation, and this is an essential requirement for allowing a smooth technological
transition. In addition to this, the simplicity of the structure makes it easily scalable and allows for
a high density integration. As mentioned before, one of the main interests in the Neuromorphic
community is the reduction of the power consumption. Also in this perspective the ReRAM
seems a good choice due to its low power consumption (≤ pJ). Additionally, the device presents
a good capability to maintain the programmed state, i.e. it exhibits good retention capabilities.
In order for the ReRAM to be competitive as a non-volatile memory, this device should be
characterized by a fast switching from one state to another, but its resistance value should also
remain unperturbed when applying voltages of few hundreds of millivolts. For what concerns
the switching speed, this seems to be satisfied by the current ReRAM experimental realizations.
On the other hand, the low voltages allowed to avoid an alteration of the states is something to
be considered very carefully, and will be at the basis of the proposed implementation.

6.3.1 Physical mechanisms and programming

The physical mechanism at the basis of the resistive switching properties of a ReRAM is widely
accepted to be the formation and rupture of a conductive nanofilament (CNF). In the following
the work done by Giovinazzo et al.[35] is closely followed as it constitutes a good reference for
understanding how it is possible to experimentally perform the multistate programming. For
this reason, their implementation of the ReRAM is used as a reference. In their implementation,
the voltage is applied to the Titanium Top Electrode (TE) while the Platinum Bottom Electron
(BE) is grounded. The oxide of their choice was HfO2. The starting point of this overview is
a DC characterization, that will shed light on the concept of Conductive NanoFilment CNF.
Afterwards, the focus is put on pulse-based programming in the HRS, that is extremely promising
in terms of fine control of several multi-states. Finally, the Stanford model [73] is outlined, due
to its versatility for Spice simulations while being highly effective in fitting experimental data.
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DC characterization

Let us start from applying a voltage sweep to the TE with the BE grounded, in order to study
the I-V curve (Fig.6.7). The first step is to create the filament, in a process called forming (red
line). After the filament is formed the subsequent processes just require a local formation and
destruction of the filament. On the contrary, at the beginning the filament needs to be built
up to connect the conductive electrodes. A positive bias attracts the O2− ions present in the
HfO2 to the TE. Titanium is easily oxidized, so that a layer of TiOx appears at the interface.

Figure 6.7: Schematic representation of the DC cycle in a valence change memory device.

As the process goes on, the absence of oxigen negative ions progressively forms a filament of
positive vacancies VÖ, attracted toward the BE. The filament will have a conic shape, wide at
the TE and narrow at the BE. Once the filament is formed, the device is in the LRS thanks to a
conductive filament between the electrodes. From now on, in normal conditions, the device will
mainly experience local changes of the filament at the BE. In fact, if one now applies a negative
voltage, the oxigen vacancies in the intermediate oxide start to be attracted by the TE and start
to experience a force that makes them migrate toward the TE, far from the thin tip of the cone.
The electric field gets stronger the closer the vacancies are to the BE, therefore, as soon as the
electric field is sufficiently high, vacancies start to migrate toward the TE. In this process, an
insulating gap is formed at the narrow side of the filament, reducing the capability of conducting
electrons from one metal plate to the other. The first appreciable effect of migration can be
observed at a voltage value named Vreset . After this first abrupt change, a step-like behavior is
then observed in the resistance states, witnessing the progressive rupture of the filament. This is
usually attributed to the presence of a preferred atomic-scale rearrangement. In Fig.6.7 is also
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reported the Vstop value, corresponding to the minimum voltage value considered in the DC cycle.
Below this value, the system is in a HRS depending on the value of Vstop and the voltage can be
raised to explore this new configuration. In any case, what results from the DC analysis is that
after the forming process a cyclic behavior can be attained. Starting from the HRS one can apply
a positively increasing voltage. When the applied voltage reaches a Vset value, in a relatively
quick time interval the system jumps from the HRS to the LRS, thanks to the CNF creation. The
scheme shows also the compliance current. This is done because, when the device switches to
the high conductance state, the current might raise to unbearable values. The compliance current
(Icc) removes this possibility by limiting the amount of current that can flow in the device.

Programming: Compliance current and reset voltage

In Fig.6.7 it is possible to observe that two parameters are externally fixed: the stop voltage and
the compliance current. Both of them can be exploited to tune the resistance states of the devices.
In Fig.6.8 are shown three I-V curves, parameterized on different Vstop values, in order to show
the effect that changing this parameter has on the cycle characteristic. When following the IV

Figure 6.8: Programming the memristor with
the stop voltage.

Figure 6.9: Programming the memristor with
the compliance current.

plot in the LRS, independently of the stop voltage, the first rupture of the filament will always
occur at the same Vreset voltage. What changes is that, as the negative voltage is further increased,
more oxigen vacancies will migrate, lowering the conductance of the HRS. Therefore, lowering
the Vstop will induce a tuning of the HRS. On the other hand, let us change the compliance
current. In Fig.6.9 the effect of this change was sketched. The compliance current blocks the
process of vacancies formation to a threshold value. By increasing (lowering) its value, it is
possible to increase (reduce) the thickness of the CNF or, more likely, the number of CNF. This
will induce an increase (lowering) of the conductance in the LRS.

HRS modulation by pulses

In addition to the previously discussed possibility to tune the resistance states, Giovinazzo et al.
also discussed a third possibility. From the DC analysis it was remarked the presence of step-like
resistance states in the device while moving from the Vreset to Vstop. These states can also be
exploited and are particularly promising because a voltage variation as small as ∆V ≤ 50mV is
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sufficient to determine a resistance change. Therefore, this seems likely to enable a fine grain
control of several multistates of conductance. As shown by the authors, the most reliable way
of doing it is by means of pulses. By applying negative (positive) pulses it is possible to have
depression (potentiation) of the synaptic connection. In this way, they proved the existence of a
linear variation of the conductance in the range [1µS,32µS], that they called the Subthreshold
region. A linear variation with the number of pulses is a relation which is extremely appealing in
the perspective of developing fast programming approaches and in terms of having a sufficient
number of conductance states to exploit for mimicking the synapses. These findings are at the
basis of the discussion done in the following chapters. Nonetheless, it should be pointed out
from the beginning that the first two programming approaches are more likely to be used for
our system. The absence of state retention when the stimulus is around 50mV , despite being an
advantage, is not compatible with the retention requirements of our system.

6.3.2 The Stanford/ASU model
The promising features of the ReRAM devices led to the creation of various models for their
simulation. The technological study of the device is out of the scope of this work and they
cannot be discussed extensively. However, the interested reader can refer to the unifying work
done by Panda et al.[74] for an extensive description of the whole spectrum of possibilities.
Among the various models, this work focuses on the Stanford/ASU model [73]. This is a physics
based parametric model in which the filament gap previously discussed is treated as an internal
state variable. The groundbreaking idea of Guan et al. was that, when it comes to electron
conduction in the ReRAM environment, the conduction mechanisms most commonly associated
with ReRAM systems share some common features: both the tunneling distance and the field
strength have an exponential relationship. For this reason, they defined a generalized conduction
mechanism capable of encoding these properties. The electron conduction mechanism they
proposed reads:

i(v;g) = iSAe−g/gSA sinh
v

VSA
(6.7)

Thanks to the generality of the model, it is possible to find the effective parameters iSA, gSA and
VSA by means of a fit of the experimental data. As reference values, the fit performed in the
seminal paper are considered: g∼ 0.3nm and Vo ∼ 0.6V . Given this information, this model can
be associated to the programming method reported in Fig.6.8. In fact, when programming by
means of a change in the stop voltage, the effect is exactly to vary the gap in the high resistance
state.
An extremely important thing to be remarked is the intrinsic stochasticity of the ReRAM devices.
From an experimental point of view, it is in principle possible to identify a relationship in
between the stop voltage and the corresponding gap. However, this dependency will not be
entirely deterministic. More in general, what it is possible to obtain is an average relation over
the programming cycles: 〈g〉cycles(Vstop). This is the so called cycle-to-cycle variability, which is
one of the most important stochastic behaviors in the device and the Spice implementation of the
Stanford model takes this into account. In this perspective, one should immediately understand
that the hardware version of the synaptic weights is considerably different with respect to the one
used in the Learning Algorithms part. First of all the weight should not vary in the continuum
but rather in a quantized way. This is primarily motivated by the physics of the device. Each
time a vacancy recombines, removing a contact, the conductance is lowered by a quantum of
conductance. Moreover, due to the stochasticity of the filament rupture the states must be defined
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sufficiently far apart to be identified as distinguishable, and fluctuations should be introduced in
the description. In the Stanford model, this was done by adding to the gap a time and temperature
dependent gaussian random fluctuation, with the temperature varying as the device is electrically
stimulated. Another striking difference with respect to the weights previously considered is
the linearity. As deepened in the next chapter, the Additive model can be mapped to a linear
RC circuit, in which the current on the synaptic weight Gk j reads ik j = Gk jϕ(v j), where the
function is bounded by a characteristic voltage value |ϕ(v j)| ≤Vo. Since ϕ(v j) corresponds to
the voltage drop at the terminals of the ReRAM, the corresponding Stanford expression would
be {

ik j = Gk jVSA sinh ϕ(v j)
VSA

Gk j
.
= iSAe−gk j/gSA/VSA

(6.8)

From this it is clear that, in order for the previous analysis to be valid, the characteristic voltage
of the circuit needs to be fixed so as to work in linearity. This is to say that, if Vo� VSA, the
system is approximately in linearity and the current reads ik j ' Gk jϕ(v j).
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Chapter 7

Hardware Implementation

In this chapter, the hardware implementation of the Additive Model is discussed. The starting
point is to map it into the Standard Electrical Circuit Interpretation of a recurrent neural network.
In this way the characteristic quantities of the circuit are introduced, that are necessary for a proper
dimensioning of the electrical components. The result of this process are Ns Kirchhoff’s current
laws, one per each state variable. In this way, the solution of a dynamical system can be obtained
by letting evolve a dynamical circuit. The simulations are performed using the ngSpice circuital
simulator. In the following, two circuital solutions are presented. The first one is a Behavioral
description, in which ideal components are considered that exactly reproduce the relationship
defining the dynamical system. Subsequently, the Operational Amplifier is introduced, allowing
to lower the description level of the network. In the process some importance is to be given to the
components dimensionalization, taking into account the ReRAM devices features. This allows
to shed light onto some compatibility problems existing when interfacing operational amplifiers
with memristive devices.

7.1 Standard Electrical Circuit Interpretation

The learning capability of recurrent neural networks has aroused the interest of the hardware
community thanks to the work done by Hopfield. Ever since his early research [47], he explicitly
mapped the dynamical system previously discussed in a high-level description of an analogue
circuit. This was then extensively explored through the years in the field of nonlinear circuit
theory, especially by Chua and collaborators [56, 57, 75]. In this section the mapping is performed
explicitly, in order to introduce the characteristic quantities needed to map the dimensionless
equations described so far into well defined circuits. Let us start from the generic formulation of
the Additive Model:

duk

dta
= −uk +

Nu

∑
j=1

Wk jg(u j)+ bk k = Nu−Ns + 1, . . . ,Nu (7.1)

By construction, every term of this equation is dimensionless. The introduction of a characteristic
voltage value vo allows to map the state variable uk into an equivalent voltage vk = vouk of an
electrical circuit. Therefore, Eq.7.1 can be thought of as the time evolution of the voltage at some
nodes of a non-linear resistive network. This corresponds to the introduction of the following
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characteristic quantities:{
vk = νouk

t = τota
where

{
[νo] = [vk] = V
[τo] = [t] = s

(7.2)

The time constant τo can be written as the product of a characteristic capacitance and of a
characteristic resistance τo = RoCo. The substitution of these dimensionless quantities in Eq.7.1
yields the system of equations

Co
dvk

dt
= − vk

Ro
+

Nu

∑
j=1

Wk j

Ro
νog(u j)+

νobk

Ro
(7.3)

For the aim of simplifying the notation, it is better to define the following quantities
Gk j =

Wk j
Ro

Ik =
vobk
Ro

ϕ(vk) = vog(vk/vo)

where


[Gk j] = [R−1

k ] = S
[Ik] = [vo/Ro] = A
[ϕ(vk)] = [vo] = V

(7.4)

The Additive Model can then be mapped into the standard electrical circuit interpretation of
neural networks, first introduced by Plonsey and Fleming [76]:

Co
dvk

dt
= − vk

Ro
+

Nu

∑
j=1

Gk jϕ(v j)+ Ik (7.5)

With respect to the schematics proposed in chapter 1, we can now try to understand what is
needed for an actual hardware implementation. Figure 7.1 shows a more accurate model of
the neuron. First of all, the neuron is connected to all the neighboring ones through synaptic
connections, i.e. resistive switching components. These signals are cumulated at a summing
node, corresponding to the Soma of the biological neuron. In addition to this, also the bias
term has been introduced in the form of a variable resistor connected to a fixed voltage value.
This is because all the models considered are equipped with a bias term as a parameter to be
learned. This parameter is characteristic of the model and, for this reason, it must be stored
in a non-volatile component as well as the synaptic connections. Once summed these signals,
the current is fed to an RC circuit, corresponding to the leaky membrane potential. Finally, the
voltage drop at the ends of the RC is distorted by a non linear activation function, transforming
the average membrane voltage into the corresponding spiking rate. It is worth pointing out
that the convention adopted is the one used by NgSpice, in which once fixed a direction in a
branch, both the voltage and the current are referred to it. This is a high level description of
the core of the neuron to be implemented. Nonetheless, it does not accounts for the inputs, that
are architecture dependent. While in the Grossberg-Hopfield model the inputs are injected as
currents in the input summing node, in the Bengio-Scellier model the input are introduced as a
voltage source.
In the following the numerical simulations discussed so far are mapped into hardware simulations.
The basic idea here is to design a circuit to implement the kind of dynamical systems described
so far. This is to say that, rather than using a generic numerical solver of differential equations as
done before, the dynamic system to be solved is mapped in a corresponding netlist. Eventually,
a transient simulation is performed in ngSpice, finding in this way the steady state of the
dynamical system on hardware.
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Figure 7.1: Scheme of the Standard Electrical Circuit Interpretation of a recurrent neural
network. The signals flowing through the synaptic connections together with a bias term are
collected at the input of the neuron. Here, the Soma sums the synaptic contribution to the current
effects occurring at the level of the leaky membrane, represented as an RC circuit. Finally, the
rate model is completed by finding the rate equivalent of the state variable, corresponding to the
membrane potential averaged over time and neurons.

7.2 Behavioral circuit definition

The first thing done was the definition of the network using a behavioral description. This
is general and any analogue implementation has to be a non-ideal version of what presented
in this section. The selected process amounts to split the building blocks of the network into
behavioral primitives, that were connected on the basis of the architecture considered. The goal
of the behavioral description is to create the ideal structure of the network. Afterwards, once
obtained a working circuit, the ideal building blocks is substituted with non-ideal ones, toward
the simulation of a progressively more realistic circuit. In this way, the non-idealities can be
introduced by substituting the primitives with a lower level representation of the same building
blocks.

7.2.1 Integrator and activation function

Considering Fig.7.1 it is possible to see that the elements to be modelled are two: the integrator
and the activation function. The behavioral circuit for the neuron is represented in Fig.7.2. The
input is a reference voltage node. This is necessary because, in this way, the outputs of the
neighboring neurons can be connected to it and the incoming signal depends uniquely on the
state of the previous neuron. The direction of the input current is taken positive outward, so that
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its value will be

Im←∂m = −
Nu

∑
k=1

Gmkϕ(vk)− Im (7.6)

The last term is the bias reported in Fig.7.1 while ∂m identifies the neighboring neurons. Once
defined the incoming signal, it must be coupled with the dynamics of the state variable. To do so
it is sufficient to recognize Eq.7.5 as the KCL of a RC circuit and a current source controlled
by all the neighboring neurons. Therefore, a RC circuit is connected to ground and the state
variable vm is chosen to be the voltage drop from ground to the other end of the RC. The voltage
controlled source is connected to the same nodes, so as to obtain Eq.7.5.

Figure 7.2: Behavioral description of the
neuron circuit.

Figure 7.3: Behavioral description of the ac-
tivation function.

Moving to the non-linearity, the behavioral circuit can be observed in Fig.7.3. The input
voltage is used to control a voltage source, defined as the non-linearity ϕ(·). Together with the
nonlinear version of the state variable, also the negated version of it is given at the output. The
motivation of this will be clearer in the following. In Fig.7.4 it has been reported the simulation
done of the output voltage as under an input voltage going from −0.5vo to 1.5vo The block for
the body of the neuron (Fig.7.2) was introduced and a transient analysis of 3τo was performed.
The time interval was set to 10−2τo and the voltage across the capacitor was initialized to 1.5vo.
The result of this simulation can be observed in Fig.7.5. Figure 7.4 allows to verify the correct
functioning of the activation function block. On the other hand, Fig.7.5 allows to verify that
connecting the integrator block with the activation function block it is possible to obtain at
the outputs of the activation function the correct distortion of the state variable throughout its
evolution.

7.2.2 Building the network
Once defined the building blocks, it is now possible to integrate them in a networked structure.
Let us start from the state neuron, which is present in both the Bengio-Scellier and the Grossberg-
Hopfield networks. The structure implemented has been reported in Fig.7.6. Starting from
the left, the memristive crossbar transmits the signal from the output nodes of the surrounding
neurons to the state unit considered. As previously described, two resistive switching devices
are used, one if the synaptic weight is positive and one if it is negative. When defining the
network there are two possibilities: either two neurons should be independent or they need
to be connected. In the first case both the switches have to be open. On the contrary, in the
second case only one among the two memristors will be connected, depending on the sign of
the weight to be programmed. In principle, this is not the only possibility. If one memristor is
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Figure 7.4: DC sweep simulation to verify
the correct functioning of the activation func-
tion block. The input voltage has been varied
in the interval vin = [−0.5vo,1.5vo].

Figure 7.5: Transient simulation of the neu-
ron block connected in series to the activation
function block. The simulation has been per-
formed on the interval t ∈ [0,3τo]

Figure 7.6: Behavioral description of a state node of the circuit.

associated to the positive weight and one to the negative weight there are more possible choices
of their conductances to reproduce a desired value of the final parameter. Nonetheless, the choice
of using only one memristor is the less ambiguous one, hence easier to implement. A further
development would require to substitute the ideal switch with a MOS transistor, corresponding
to the 1T1R crossbar described before. Since the model must be non-volatile, the information
about the sign should be encoded in an additional binary memory element, in a configuration
that could be called the 1R1T1R configuration. This would introduce additional non-idealities,
that are not considered in this preliminary analysis. All the synaptic connections enter in the
neuron input, which is referred to ground. In this way the current coming from the surrounding
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neurons and entering in the node NIm (see Fig.7.6) will be

INIm←∂NIm = −INIm→∂NIm =
Nu

∑
k=1

Gmkϕ(vk)+ Ib
m

=
Nu

∑
k=1

δSW+,ONG+
mkϕ(vk)−

Nu

∑
k=1

δSW−,ONG−mkϕ(vk)+ Ib
m

Where the delta functions are used to indicate whether or not one of the two switches is
conducting. Since only one of the switches must be conducting, they will be related as δSW+,ON =
1−δSW−,ON .
In all the models discussed so far there is a bias term to be introduced. This is some non-volatile
information, to be stored in a resistive switching device as well as any synaptic weight. In the
circuit, this has been achieved by connecting to the neuron 1vo or -1vo, accordingly to the sign
of the weight stored. This voltage reaches the input of the neuron through a resistive switching
device, storing the absolute value of the weight. The current is then injected in the RC parallel of
the neuron_int block, making the voltage evolve according to

Co
dvm

dt
= −vm

Ro
+

Nu

∑
k=1

Gmkϕ(vk)+ Ib
m (7.7)

As a final step, the voltage across the RC parallel is taken by the activation function block, which
first applies the non-linearity and then inverts the resulting signal. In this way the signals are
transmitted to the surrounding neurons, in the process of mutual interaction to which the nodes
are subjected.
What is missing in the description is the introduction of the information from the external world,
that depends on the architecture chosen. When considering the Grossberg-Hopfield model, the

Figure 7.7: Hardware implementation of the
input in the Grossberg-Hopfield network.

Figure 7.8: Hardware implementation of the
input in the Bengio-Scellier network.

input is introduced as an additional bias. To do so, since all the quantities have been controlled in
voltage, the clamped input value can be obtained as voltage values at the input. This input must
be converted into current by the unit conductance connecting the input of the circuit to the input
of the neuron, floating on the bottom left of Fig.7.6. In this way the full Grossberg-Hopfield
model is defined

Co
dvm

dt
= −vm

Ro
+

Nu

∑
k=1

Gmkϕ(vk)+ Ib
m + Im (7.8)

Instead, for what concerns the Bengio-Scellier model the input is introduced as an additional
neuron. However, in this case the membrane voltage is clamped, and one should only apply the
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non-linearity to it. This can be observed in Fig.7.8.
Before performing the simulation it is necessary to define the network. Basically, this corresponds
to connecting the building blocks described so far in order to produce the correct architecture.
Given the weight matrix, the bias vector and the numbers of state, hidden and input neurons the
implementation can be easily automated.

7.2.3 Verifying the circuit functioning
Before considering more realistic models for the different components, the correct functioning
of these two networks was verified on the previously defined models. As mentioned before, once
mapped the dynamic system into equations, it is possible to use it for solving the system of non-
linear differential equations. Initially, the circuital solver must give the very same performances
as the purely numerical one. Basically, the MatLAB solver ode45 was substituted with a ngSpice
netlist defining an architecture evolving according to the same equations. It is worth noticing that
all the amplitudes were expressed in terms of the characteristic quantities. In order to bridge in a
simplified way the hardware and the numerical description, the network was first implemented
in these units, i.e. imposing Ro = 1Ω, Co = 1S, τo = 1s and vo = 1V .

Classification

The first thing to be done is to define the differential equation solver for the classification problem,
that is named odeCIR_CLA. Since the interest is mainly in verifying that the network can actually
be used to solve the dynamical system, this solver was used for doing inference. First a network
was trained in MATLAB for the solution of the MNIST dataset. The training was performed on the
whole dataset, using an architecture 196x125x10. The learning rate was fixed to η = 0.05 and the
clamping factor to 0.2. Ten epochs were considered and, as usual, mini batches of 20 data were
used. The activation function selected was the hard sigmoid. The resulting accuracy was 96.78%
on the test set and 97.5% on the training set. The weight matrix and the bias vector were stored
and were used to define the spice netlist. Then, the defined network was tested on 1000 images,
reaching an accuracy of 97.8%. The main problem with this network is that each time the odeCIR
solver is called, the network needs to be defined and than the integration can be performed. The
combination of transferring information, defining the circuit, solving the differential equation
and then returning the results makes the whole process extremely slow. For instance, the training
just described took around 43 minutes, despite the parallelization on the four cores available on
the machine (see Tab.7.1). This approximately corresponds to an equivalent time per data of
∆t ' 3s. Given a network of medium dimensions, Ntrain data are needed for the training and Ntest
for the test. Each time both a free phase and a nudged phase need to be performed, bringing to
2Ntrain integrations. The test should be performed on a number of Ntest data both for the training
set and the test set. Therefore, for each epoch 2(Ntrain +Ntest) simulations need to be performed,
bringing to a total simulation time which is 2(Ntrain +Ntest)Nepc∆t. This makes it clear the huge
computational burden of using circuital simulators for obtaining the evolution of these hardware
constructs.

Reconstruction

Similarly, for the reconstruction, each network considered was trained in the MATLAB framework
up to achieving 99.75% of accuracy both on the training and test data-set. The weights and biases
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Figure 7.9: MNIST with the hard-sigmoid:
Trajectories of the state neurons when per-
forming inference using the behavioral de-
scription.

Figure 7.10: MNIST with the hard-sigmoid:
Confusion Matrix of the 1000 data considered
when performing inference using the behav-
ioral description.

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian
Address sizes: 39 bits physical, 48 bits virtual

CPU(s): 8
Thread(s) per core: 2
Core(s) per socket: 4

Socket(s): 1
Vendor ID: GenuineIntel

Model name: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz
CPU MHz: 800.129

CPU max MHz: 4000,0000
CPU min MHz: 400,0000

Table 7.1: Main features of the machine used for the simulations.

found were then used to define the netlist and from this the correct integration was performed
on 100 data, reaching an accuracy of 99% in 100 seconds. One trajectory associated to this
simulation can be observed in Fig.7.11.

7.3 Operational Amplifier and Hard Sigmoid
One critical detail for moving to a lower level description of the network is the summing node. It
must be at the reference voltage, to guarantee that the voltage drop across the conductance is
dictated uniquely by the output of the previous neuron. However, the current cannot be exactly
at ground since it must reach the node k, where it sums to the contribution of the RC component
modelling the membrane. One possible solution is to use the operational amplifier. As discussed
in the previous chapter, both the current entering at its input nodes and the differential voltage at
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Figure 7.11: Reconstruction with the hard-sigmoid: Convergence of the trajectories for a given
input image.

its input nodes can be neglected. In the next sections this property is exploited for building the
analogue neuron.

7.3.1 Operational Amplifier Based Primitives

Using this component in a configuration called integrator, it is possible to completely represent
the body of the neuron, as reported in Fig.7.12. In this way all of the memristors have a node

Figure 7.12: Analogue implementation of the neuron block.
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at the virtual ground of the operational amplifier and this results into a summation of each
contribution to obtain the current Ak.

Ak = −
( Nu

∑
j=1

Gk jϕ(v j)+ Ik

)
(7.9)

Since i+ ' 0A, almost all of the current converges at the node shared with the capacitor Co and
the resistor Ro. One essential feature of this circuit is that the reference voltage is not vk, but
−vk. This must be taken into account by the activation function, that was chosen to be the hard
sigmoid. A direct application of the non linearity would yield a completely wrong picture. This
is because the hard sigmoid min(1,max(0,x)) is not anti-symmetric, i.e. it is different from
−min(1,max(0,−x)). Therefore, in the following it is used the fact that

min(1,max(0,x)) = −max (−1,min (0,−x)) (7.10)

Another interesting thing regarding the activation function is that it is now possible to understand
why it was given priority to the hard-sigmoid and to the hard-tanh as activation functions.
Not only they allow to have a proper saturation of the dynamics, as pointed out by Bengio
and Scellier, but it also apparently allows for a simple circuital implementation when using
operational amplifiers. In fact, there is a particular configuration of the operational amplifier
that exactly reproduces the hard functions and it is called the voltage follower configuration
(see Fig.7.13). In this section it is discussed the hard-sigmoid but also the hard-tanh could be
implemented with this component. The features of the device allow to fix the output voltage

Figure 7.13: Voltage follower Configuration Figure 7.14: Activation function block.

equal to the input one, independently of the current. This is an amplifier with gain 1, having
an extremely high input resistance and a relatively low output resistance. In input it absorbs an
extremely low amount of current while at the output it is an ideal voltage generator. The feature
to be exploited is the saturation of the device to the supply voltages. The output voltage cannot
exceed the power supply values. Therefore, it yields a straightforward implementation of the
hard functions.

Vout = min(V+
al ,max(V−al ,vin)) (7.11)

Nevertheless this block cannot be directly placed after the operational amplifier. As mentioned
before the input voltage at the activation function block will be the negated form of the reference
voltage. Since both the non-linear version of the voltage and its negation are needed, it is
reasonable to first implement the negation and, afterwards, to invert it. This can be theoretically
achieved by connecting the positive supply to ground and the negative supply to a properly
chosen V−al . Moreover, in order to properly perform the mapping of this function with the
adimensional equations it is clear that the supply corresponds to the characteristic voltage:
|V−al | = vo. Finally, also the inverting block can be implemented using operational amplifiers.
The complete operational amplifier based hard sigmoid can be observed in Fig.7.15.
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Figure 7.15: Operational amplifier based implementation of the hard sigmoid.

7.3.2 Some dimensional considerations
Let us consider the VCM device characterized by Giovinazzo et al. [35]. When discussing the
programming of the memristive device, they showed that using a number of pulses lower than
30, it is possible to achieve a linear variation of the conductance with the number of pulses,
which yields a particularly simple way of achieving well spaced and defined conductance states.
These states belong to the interval G ∈ [1,32]µS and they called this interval the subthreshold
region. This allows to identify the order of magnitude of other quantities, such as the membrane
resistance. In fact, if a numerical simulation finds the dimensionless weights to be |W | ≤ ωabs,
the characteristic resistance must be chosen to be

Ro =
ωabs

Gmax
(7.12)

to put some numbers, in the case of subthreshold region of the HfOx valence change memory,
Gmax = 32µS. Previously, it was noticed that the weight parameters of the MNIST architecture
196x125x10 could be pruned to ωabs ' 0.3. Therefore, in this specific case Ro ' 0.3

30µS = 10kΩ
could be a good choice for the resistance. This being fixed, it is then possible to tune the
simulation time by modifying the capacitor. For instance, in order to achieve a characteristic time
τo = 1ms, compatible with the proper functioning of many operational amplifiers, the capacitance
should be set to Co = 100nF . This value seems reasonable if one compares this characteristic
time with the typical slew rate of the operational amplifiers, which is generally around 10V /µs.
In order to have a faster circuit one could further reduce this quantity. Nonetheless, additional
considerations should be done on the effect of parasitic capacitors. In Fig.6.5 these capacitors
have been introduced. These appear mainly because the internal structure of the operational
amplifier is a network of transistors, that present capacitive effect as their working principle.
These capacitors will interact with other capacitive terms, such as the one in the retroaction of
the neuron. Considering the fact that these capacitors are generally of the order of few pF , the
capacitor of the neuron should not be reduced too much, so that the capacitive effect dominating
the dynamics, i.e. the slowest one, is the one associated to the integration of the neuron.
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Reducing the Parasitic Currents and voltages

Another reason why one should not reduce too much the voltages of the system comes from
the domain of the parasitic currents and voltages present in operational amplifier based circuits.
The reason why reducing the maximum voltage to the order of tens of millivolts is a bad choice
can be understood by considering a more precise static model of the operational amplifier. In

Figure 7.16: Operational amplifier model including the offset terms.

Fig.7.16 and in Fig.6.5 are respectively reported the static and dynamic model for the operational
amplifier. First of all the currents entering in the device cannot be neglected because the input
resistance is not rigorously infinite. To take this into account, the resistance and any other current
leakage can be substituted with current generators, in which the input currents are decoupled
into a bias term Ibias = (i++ i−)/2 and an offset term Io f f = |i+− i−|. Additionally, an offset
voltage is added. This takes into account the voltage value vd must overcome before a change
in it is appreciable at the output. Let us now use this information to deepen the quantities that
are expected to appear in the device. Previously it was highlighted that the current associated to
the bias term is Ik =

bkvo
R . Considering the choices done so far and the fact that |b| ≤ ωabs, it is

possible to obtain
|Ik| ≤ 10−4Sωabsvo (7.13)

by selecting vo = 100mV , this becomes |Ik| ≤ 10−5ωabsA and in the aforementioned MNIST case,
|Ik| ≤ 3µA. From this, it is possible to understand a reason why the characteristic voltage should
not be taken too low. Let us start from considering the offset voltage. This is an unpredictable
quantity, the value of which is determined by the internal properties of the device. Therefore,
it would be desirable to have the effects of the voltages in the system to be dominating over
this one. To make an example, let us consider the operational amplifier family TL081. The
worst case offset voltage is |V wc

o f f set | = 5mV , imposing to take the highest possible reference
voltage for the system. In addition to this, the offset current and the bias currents have a node in
common with the bias term. In the worst case |Iwc

bias|= |I
wc
o f f set |= 5nA, but for some operational

amplifiers they could raise up to 500nA. Naturally, the best operational amplifier must be selected
so as to minimize these quantities, but to remain general in the discussion, it is clear that the
characteristic voltage should be selected as the highest voltage not changing the memristive
state, in order to avoid the bias and offset quantities to become detrimental. In the following the
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focus is put on the model presented in Fig.6.4. In particular, the input resistance is chosen to
be almost ideal. Since its value generally varies from 107Ω to 1012Ω, it was set to the highest
possible value, that in dimensionless units reads R(a)

d = 1012/Ro. In this way the discussion can
be limited to the output non-idealities. For what concerns the gain, the worst case is generally
around K = 10V /mV = 104 while good values can reach 106. The last quantity to be considered
is the output resistance. In the ideal behavior it is considered to be zero. However, in some
operational amplifier it can be around 150Ω, that despite being relatively small with respect to
other resistances, may be not negligible in terms of performances. Therefore, the adimensional
resistance R(a)

out =
Rout
Ro

is considered, ranging from zero to R(a)
o = 0.015 or higher.

The last quantities to be commented are the resistances in the inverting amplifier. The circuit was
investigated under the strong assumption that the electrical quantities overcome the offsets in the
circuit. In order to guarantee this, let us try to optimize the resistances to obtain this behavior.
With respect to the model of the operational amplifier in Fig.6.4, let us impose the input voltage
of the inverting amplifier to vanish, in order to determine the output contributions due to the
offsets. The output voltage due to the offsets are partially induced by the currents flowing in the

parallel of two equal resistors V (i)
u |o f f =

R
2

(
Ib +

Io f f set
2

)
and partially due to the offset voltage

V (v)
u |o f f =Vo f f

(
1+ R

R

)
= 2Vo f f . This implies that the offset voltage cannot be limited. In fact,

the two resistances must be equal to have an inverting amplifier. Hence, this also fixes the gain
of the amplifier at the non-inverting node, where the offset voltage is present. For this reason,
the only thing that can be done is to limit the contribution of the offset current, and this yields
the requirement V (i)

u |o f f �V (v)
u |o f f , yielding the condition

R�
4Vo f f

Ib +
Io f f set

2

(7.14)

Using the worst case values Io f f ∼ Ib ∼ 500nA and the typical offset voltage of around 1mV , one
obtains R < 5.3kΩ. Considering the fact that extreme conditions were considered, which are
almost impossible to be obtained, R = 1kΩ is considered to be a good value but also R < 5.3kΩ
could be a safe choice, considering the highly pessimistic worst case values selected. In terms of
dimensionless quantities, R = 1kΩ corresponds to R(a) = 0.1.

7.3.3 Operational Amplifier based network and non idealities

As mentioned before, the input resistance was imposed to be Rd = 1012Ω, i.e. R(a)
d = 108. The

state neuron was defined as the block represented in Fig.7.17 and its integration capability was
tested when initializing the voltage drop across the capacitor First, the ideal conditions were
imposed, choosing K = 106 and Ro = 0Ω. The capacitor was initialized so that the voltage drop
from the output of the integrator to the virtual ground was fixed to 1.5vo. This is different with
respect to what done in the behavioral circuit. In fact, in that case the voltage at the node not
connected to ground was the state variable while here the state variable is the negation of the
same quantity. In Fig.7.18 the essential variables are reported: they are the state variable and its
filtered version, both when passing through the saturating voltage follower and when inverted.

For each pair of values a DC sweep analysis was performed, varying the input voltage
from −1.5vo to 0.5vo. Then, the positive output was plotted as a function of −Vin/vo since,
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Figure 7.17: Hard sigmoid based neuron implementation using operational amplifiers.

Figure 7.18: Verification of the proper functioning of the neuron primitives defined using the
operational amplifiers.

as mentioned before, this is the actual state variable of the system. As it is possible to evince,
the variation of the gain factor introduces a variation of the slope around the bias value and a
smoothing of the saturation. On the other hand, the increase of the output resistance has an
evident consequence on the saturation value, since what saturates is the fK(vd) voltage controlled
source. The presence of the output resistance imposes a non negligible drop across it, inducing
a lowering of the output voltage of the operational amplifier. The need for the inverting block
introduces an additional non-ideality. This results in a further drop of the voltage, so that the
saturation value will be further decreased.

Interestingly, in order to see considerable effects at the output of the activation function one
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Figure 7.19: Negative out-
put of the state neuron: Ro =
0Ω and varying K.

Figure 7.20: Negative out-
put of the state neuron: Ro =
100Ω and varying K.

Figure 7.21: Negative out-
put of the state neuron: Ro =
200Ω and varying K.

Figure 7.22: Positive output
of the state neuron: Ro = 0Ω
and varying K.

Figure 7.23: Positive output
of the state neuron: Ro =
100Ω and varying K.

Figure 7.24: Positive output
of the state neuron: Ro =
200Ω and varying K.

must use ridiculously bad amplifiers and high resistance values. Naturally one should pay atten-
tion to the possibly detrimental consequences when considering deep networks, but intuitively
the non idealities are just slightly modifying the activation function. Since a multiplicative factor
can be easily embedded in the vo value, it is reasonable to assume that this non-ideality could be
easily be accounted for.

XOR problem

In order to verify the applicability of this device, the here defined network was used to do
inference. The chosen problem was the XOR classification, solved using the 2×5×1 network.
The network was used directly to do inference, varying progressively the degree of non ideality.
In particular, the gain factor was ranged from K = 1 to K = 106 while the output resistance was
varied from 0Ω to 600Ω, collecting each time the accuracy of the network. The interesting thing
about the XOR function is that the prediction is binary. Therefore, once the output node has
converged to the value y∞, the prediction is encoded in the quantity g(y). The truth class can be
obtained by computing the inverse 1−g(y) and by comparing the two, in order to determine if
the output is closer to a zero or to a 1. For this reason, if the network fails while doing inference
it must be due to a detrimental alteration of the vector field in which the system evolves. The
influence of the non idealities on the activation function are propagated via the mutual interaction
of the nodes, and can lead to wrong predictions of the network. However, one should notice
that the errors start to appear only for extremely non ideal cases. Considering that in a normal
operational amplifier the output resistance is generally equal to 150Ω at worst and that a gain
factor equal to 104 is generally considered the lowest achievable value, the network seems to be
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Ro[Ω] K = 106 K = 105 K = 104 K = 103 K = 102 K = 101 K = 100

0 1 1 1 1 1 0.525 0.525
50 1 1 1 1 1 0.525 0.525

150 1 1 1 1 1 0.525 0.525
300 - - 1 1 1 0.525 0.525
450 - 1 1 1 0.865 0.525 0.525
600 1 1 1 0.995 0.78 0.525 0.495

Table 7.2: Performances of the hardware implementation of the hard sigmoid when used to do
inference on the XOR problem.

stable to these non idealities. More precisely, a network trained on the XOR problem with an
ideal hard sigmoid is not affected neither by the output resistance nor by the gain factor. The
problem of this conclusion, however, is that it relies on the assumption that the power supply
of the operational amplifier is such that V+

al −V−al = 1V . In particular, the idea is to exploit the
saturation capability of this device to implement the non linearity, which is the main quantity
affected by the non idealities. This allows to understand the importance of finding an alternative
to the operational amplifier for the implementation of the activation function. In fact, this would
allow to decouple the circuit from the aforementioned non-idealities. This is to say that the
detrimental effects primarily originated from the fact that they directly enter in the alteration of
the activation function. It becomes therefore clear the need for alternatives for removing the
effect of the non-idealities.

7.3.4 The Retention Problem

One major issue when it comes to the choice of dimensional parameters is the amplitude of the
voltage drops across the memristors. Luckily, the voltage drop across a memristor is always
bounded by the non-linear function, that was imposed to be the hard sigmoid. As previously
mentioned, the dimensional version of the non-linear function is ϕ(vk) = vog(vk/vo), so that
ϕ(vk) ∈ [0,vo]. This brings us to the first compatibility constraint introduced by the hard
sigmoid activation function on the architecture. The parameters of the RNN to be defined
should not vary in time, since the model should be non-volatile. It would therefore be desirable
if the voltage drop at their end did not introduce substantial variations. The problem of this
requirement is that the vast majority of the resistive switching devices is capable of keeping
memory of a memconductance value only if not stimulated with voltages higher than around
100mV . This suggests that the characteristic voltage should be imposed to be vo = 100mV , so
that the voltage drop can be limited by exploiting the saturation capability of the operational
amplifier. Unfortunately, this is in contrast with the physical realization of a real operational
amplifier, that requires power supplies of at least 1V to be properly working. This is clearly not
compatible with the multistate retention of practically any memristive device currently available.
The easiest way to circumvent the problem is to get rid of the multistate feature and use the
device as a binarized memory, as already done in the Spiking neural network community [77].
In Fig.7.25 it is reported the new way in which the resistive switching materials should be used
for storing the weights. Each memristor is either in the High Resistance State (HRS) or in the
Low Resistance State (LRS). In this way, Nm devices will allow for Nm + 1 conductance states.
When using the classical crossbars and the multistate memristors, the simplest thing to do is to
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Figure 7.25: On the left the usual implementation of the synaptic weights, based on the assump-
tion that the resistance value can be tuned at will. On the right the implementation of a multistate
conductance block as the parallel of binary weights.

assign a positive value to one memristor and negative one to the other. In this new approach, this
would lead to an overwhelming number of devices required. Therefore, the same memristors
are used both in case of positive and negative weight and their sign is memorized as the switch
that should be conducting. The true advantage of creating the multistate by putting in parallel
more than one binary weight is the fact that the retention of the HRS and LRS in the ReRAMs is
considerably higher than the one of the multistates [35]. Moreover, the memristors remain in the
corresponding state up to voltage values of the order of 1V . Therefore, this is the only way to go
when dealing with saturating operational amplifiers for the definition of the activation function.
One might criticize the fact that this would introduce a too drastic increase of space with respect
to the double crossbar solution. Despite the correctness of this observation, one should also
note that the numerical simulations that currently simulate the RNN work exploiting binary
weights. Implementing these networks on a crossbar in which each node can store more than
one weight would introduce two advances. First of all a considerable increase in compactness.
Secondly the possibility to reduce a matrix vector multiplication, which is O(N2) to a O(1)
parallel in memory operation. Despite their power, recurrent neural networks are not particularly
popular also due to the long simulation times required by them for a single simulation, which is
of the order of O(N2T ), with T the simulation time. If the use of operational amplifier based
neurons does not allow to store multiple bits in the same memristive device, only one of the two
advantages is lost. It could still be possible to use an amount of memory comparable with the one
currently used by a Von Neumann architecture with the great advantage in terms of computational
speed, that is the major limitation to the simulation of RNNs. An hardware implementation,
however area demanding, would still reduce the computational time from O(N2T ) to O(T ),
considerably increasing the applicability of RNNs. The way in which a single crossbar can be
converted to this new version is reported in Fig.7.26, where each dot corresponds to a binary
ReRAM. This should not be considered as the definitive solution to the multistate retention.
Any advancement on this property would be dramatically beneficial in terms of area integration.
Nonetheless, this solution is compatible with this future update and should be preferable in an
early implementation, considering the fact that it would still work effectively as an AI hardware
accelerator.
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Figure 7.26: Schematic representation of an hardware accelerator for RNN systems using binary
weights.

7.4 Conclusions
This chapter aims at discussing the first details related to the hardware implementation. First,
the Additive model is mapped to a well defined system of Kirchhoff’s current laws, introducing
in this way the characteristic quantities of the network. Then, two preliminary versions of
the implementation are discussed. The first one is purely behavioral and its aim is mainly to
introduce the desired architecture with ideal primitives. The functioning of the network is verified
both on the classification and on the reconstruction task. Later, a possible implementation for
the hard sigmoid and for the neuron are discussed. In both the blocks the implementation is
based on operational amplifiers and the choice of the electronic components is discussed. In
particular, if the maximum weight learned in the numerical simulation is ωmax and the maximum
programmable conductance is Glrs, the characteristic resistance reads

Ro
.
=

ωmax

Glrs
(7.15)

Additionally, in order to guarantee to work with time constants compatible with the working
mechanisms of the operational amplifier, it is argued that the time constant should be fixed once
and for all to 1ms, from which the characteristic capacitance reads

Co
.
=

τo

Ro
(7.16)

In all the cases it is required to use operational amplifiers in their inverting configuration and it is
shown that the corresponding resistances should be chosen to be

R≤ 5.3kΩ (7.17)

Finally, for what concerns the characteristic voltage its choice must be dictated by the properties
of the circuit. In the case of operational amplifier based system, the choice is naturally the
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absolute value of the power supply. The use of operational amplifier automatically induce the
presence of non-idealities and, according to the proposed analysis, the main ones are argued to
be related to a variation in the saturation value of the amplifier. This could be accounted for by
properly re-defining the characteristic voltage. Nonetheless, this implementation is ultimately
not compatible with the resistive switching devices considered due to the too high voltage values
required by the operational amplifier to properly work, with respect to the ones that would avoid
a re-programming of the memristive devices. Moreover, it is noticed that an alternative way to
avoid the reprogramming could be to go back to binary weights, momentarily abandoning the
multi-state potentiality of the memristors. this is inspired by the work done in the Spiking neural
network community. The reason why this could be interesting is that the RNN community needs
efficient hardware for speeding up the calculation and a binary-based implementation of the
multi-states would still guarantee a considerable acceleration of the simulations done on RNN.
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Chapter 8

Diodes-based networks

In this chapter, a network implementation based on the hard tanh activation function is proposed.
This is based on two anti-parallel diodes, analogous to the ones described by Kendall et al. [60].
The starting point is a brief description of the activation function, using the input node of the
Bengio-Scellier network as a working table. Next, attention is drawn to the state neuron, showing
how the encoding of the diode in the previously described leaky integrator can be beneficial in
terms of time. Finally, the results obtained in the inference phase on the XOR and on the MNIST
problem are discussed.

8.1 Diode and Input of the Bengio-Scellier Model

The diode is a non-linear component whose I-V characteristic reads

iD = Io

(
e

vD
ηVT −1

)
(8.1)

Fig.8.1 shows the circuital symbol and the I-V plot of the Default diode model implemented
in ngSpice. The red dashed line corresponds to the piecewise approximation of the diode:
the current is assumed to be zero up to the voltage Vγ , starting from which the diode behaves
as a voltage generator at the voltage Vγ ' 0.7V . Following what done by Kendall et al. [60],

Figure 8.1: Diode: circuit symbol and I-V
characteristic.

Figure 8.2: Kendall activation function on a
simple network.
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two anti-parallel diodes are used for the activation function (see Fig.8.2). As later shown, this
corresponds to an implementation of the hard hyperbolic tangent. In fact, the KCL at the node
shared by the two diodes reads

vin− vo

Rin
= 2Io sinh

vo

ηVT
+

vo

Rout
(8.2)

where Rin is the resistance of the real voltage source present at the input and Rout corresponds to
the parallel of the memristive connections with the post-synaptic neurons. For what concerns
Rout , this resistor is generally higher than 1kΩ and, consequently, much higher than a reasonable
value for Rin, that was taken to be equal to Rin = 50Ω. Therefore, the Kirchhoff’s current law
becomes

vin− vo ' 2RinIo sinh
vo

ηVT
(8.3)

This is a trascendental equation and an exact analytical solution cannot be found. Nonetheless,
it is ameanable for a graphical solution, that is sketched in Fig.8.3. Once again, the piecewise

Figure 8.3: Graphical solution of the KCL
for the Kendall activation function.

Figure 8.4: Diodes base implementation of
the hyperbolic tangent.

approximation of the diode-related quantities is represented in dashed red. In this way, it is clear
that a good approximation for the solution is

vo = ϕ(vin) = min(Vγ ,max(−Vγ ,vin)) =

= Vγ min(1,max(−1,vin/Vγ)) =

= Vγg(vin/Vγ) = Vγg(uin)

Where g(·) is the hard hyperbolic tangent considered in the previous chapters while the natural
choice for the characteristic voltage now becomes Vγ . Just as it was previously done for the hard
sigmoid, not only ϕ(vk) is to be provided but also −ϕ(vk). For the inversion of the signal the
solution adopted was the inverting configuration of the operational amplifier, just as presented in
Fig.7.15.
Before proceeding, it is worth to make a remark on the adopted terminology, in light of the
simulation results of the previous chapters. Rigorously, the hard functions are defined as

g(x;σ↑,σ↓)
.
= min(σ↑,max(x,σ↓)) (8.4)
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In the previous chapters it was shown that, if a rigorously hard function can do regression,
also its continuous and differentiable equivalent can do the same. Additionally, any analogue
implementation of an activation function, however close to the desired one, must be continuous
and differentiable. For this reason, when in the following hard functions are considered, the
reader should know that we are referring to a function whose first derivative is well defined on
the whole domain.

8.1.1 State Neuron

This section is aimed at discussing the implementation of the state neuron characterized by
the hard hyperbolic tangent. One possibility would be to do the same thing done for the input
node on the network proposed in Fig.7.12. This would imply to introduce at the output of the
integrator the block of the hard-tanh, composed of a 50Ω resistance followed by two anti-parallel
diodes, connected to ground. In this way, the node shared by the diodes and the resistance would
be forced to saturate any time its voltage value tried to exit from the interval [−Vγ ,Vγ ]. The
proof of this is exactly equal to the one done for the input node, with the only difference that
the voltage source is now time dependent. It is worth noting that the voltage at the output of the
integrator is always the state voltage with inverted sign. Therefore, thanks to the odd parity of
the hard-tanh, the node of the diode corresponds to −ϕ(vk). The positive version of the same
quantity can be obtained by means of the same inverting amplifier defined for the hard-sigmoid.
As usual, the capacitor was charged in order to guarantee a dynamics exploring both the linear

Figure 8.5: Testing the functioning of the
neuron block with the Kendall activation func-
tion at the output.

Figure 8.6: Testing the functioning of the
neuron block with the Kendall activation func-
tion in the feedback loop.

region and the saturation ones. The correct functioning of the activation function block can be
observed in Fig.8.5. At this point, one possibility to go further would be to modify the code and
to test the correct functioning of the network. Nonetheless, this network, as well as all of the
networks considered so far, has one striking feature: the evolution of the state variable proceeds
even after the saturation of the corresponding rate. This is unnecessary because the way the rest
of the network perceives that voltage is only as its rate equivalent. For this reason, one might
point out that the real state variable of the system is ϕ(vk), ant it would be desirable to remove
the unnecessary evolution of the vk outside the saturation region. In order to achieve this the
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anti-parallel diodes were embedded in the integrator, as shown in Fig.8.7, that from now on is
named the Non-Linear Leaky Integrator. The associated characteristic trajectory is reported in
Fig.8.5. In the next section the validity of this circuital solution is mathematically motivated, in
light of the working principles of the parametric model.

Figure 8.7: Non-linear Leaky integrator: Neuron block built up embedding the Kendall-like
activation function in the feedback loop of the operational amplifier.

8.1.2 Rate as the state variable in hard functions
The advantage of the circuital solution reported in Fig.8.7 is both in terms of area and of
simulation time. The gain in terms of area is due to the fact that, in the alternative, the 50Ω
resistor cannot be removed. Doing this would be the equivalent of introducing two voltage
sources in parallel, that is not feasible. The 50Ω resistor allows both the operational amplifier and
the diodes to fix their value at the corresponding node, hosting the remaining voltage difference.
On the contrary, the anti parallel diodes in the loop of the amplifier are connected to virtual
ground and contribute to the definition of the output node. For this reason, no resistance is needed.
In addition to this an operational amplifier has been substituted with two diodes, implying a
dramatic reduction of the needed area. Another considerable advantage of this solution is in
terms of simulation time. Forcing the voltage to be directly bounded in the only interval in which
its change can be appreciable allows to speed up the convergence time, as reported in Fig.8.6. To
understand this, let us write the Kirchhoff’s current law for the generic node k of this system:

Co
dvk

dt
= − vk

Ro
−Ak−2Io sinh

vk

ηVT
(8.5)
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this corresponds to the introduction of an attractive exponential field in the region outside the
hyper-cube [−Vγ ,Vγ ]⊗Ns . In fact, if the voltage triest to exit from the boundaries, the dynamical
system becomes vk >Vγ →Co

dvk
dt '−Ioe

vk
ηVT

vk <−Vγ →Co
dvk
dt ' Ioe−

vk
ηVT

(8.6)

In words, whenever the capacitor stores a charge that corresponds to a voltage outside the allowed
range, one of the two diodes switch on, exponentially depleting the capacitor of the excess charge.
In terms of dynamical systems this corresponds to the introduction of an exponentially strong
attracting velocity vector field. This allows to substitute the dynamical system in Eq.8.5 with the
following one

Co
dϕ(vk)

dt
= −ϕ(vk)

Ro
−Ak (8.7)

with the only caution of restating that, in analogue electronics, almost any function is a continuous
and differentiable version of the ideal one. The hard functions have the extremely useful property
that they are linear in within the boundaries of the saturation region. Therefore, the value at each
edge corresponds to value of the edge itself. In formulas:

g(u) =


σ↓ u≤ σ↓
u u ∈ [σ↓,σ↑]
σ↑ u≥ σ↑

(8.8)

The first reason why this is useful is that the voltage at the capacitor reads

Co
dϕ(vk)

dt
=Coϕ

′(vk)
dvk

dt
=

{
0 if vk = voσ↓∨ vk = voσ↑
Co

dvk
dt if vk ∈ [voσ↓;voσ↑]

(8.9)

Therefore, in the region where the rate is not saturated, the dynamical system reads

Co
dvk

dt
= − vk

Ro
+

Nu

∑
j=1

Gk jϕ(v j)+ Ik (8.10)

Since the evolution in the linear region is the same and the real state variable of the system in
ϕ(vk), this system has the same learning capability as the Additive model, and its hardware
implementation comes at the advantage of removing not informative dynamics.

8.1.3 Inference
This subsection presents the results of the most relevant simulations performed in ngSpice on
the diode-based network. Differently from the previous networks, the dimensionless description
was abandoned in favor of a more realistic choice of the electronic quantities.
As a starting point the network was tested on the XOR binary classification task. The previously
trained hard-tanh based network was used to define the architecture. In order to perform the
dimensioning of the components, the maximum absolute value of the weights was first considered
ωabs = 1.9561. From this, using the dynamic range of the reference ReRAM, the characteristic
resistance was fixed to Ro = ωabs/32µS = 61.127kΩ. With the aim of fixing the time constant
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to τo = 1ms the capacitor was then fixed to Co = 16.359nF . Finally, the characteristic voltage
was taken as vo = Vγ ' 0.7V while the resistor in the inverting amplifier was imposed to be
Rinv = 6.1127kΩ. The network was tested on 200 data for different values of the gain factor of
the amplifier and of the output resistance. Each simulation was performed on a simulation time
of ∆t = 2ms. The network was tested on 200 data for different values of the gain factor of the
amplifier and of the output resistance. The results of the simulations can be observed in Tab.8.1.
Interestingly, output resistances of the order of the kΩ were needed to observe an appreciable

Ro[Ω] K = 106 K = 105 K = 104 K = 103 K = 102 K = 101 K = 100

0 1 1 1 1 1 1 1
150 1 1 1 1 1 1 1

Table 8.1: Evaluation of the performances of the diodes based network for doing inference with
the XOR problem.

worsening of the performances and, therefore, the network can be safely considered to be robust
to non idealities and it is possible to focus on testing the MNIST architecture.
The dimensioning procedure was repeated for the hard-tanh based network trained in Chapter 5.
In this case the maximum absolute value of the weights was found to be ωabs = 0.485, yielding
the characteristic resistance Ro = ωabs/32µS = 15.158kΩ. Once again the time constant was
fixed to τo = 1ms, corresponding to the capacitor Co = 65.973nF . Due to the presence of the
diodes, the characteristic voltage was set to vo = Vγ ' 0.7V and the resistor in the inverting
amplifier to Rinv = 1.516kΩ. Each simulation was performed on a simulation time of ∆t = 2ms.
Performing inference on 100 random data, it was possible to achieve an accuracy of 98%. The
integer and normalized versions of the confusion matrix can be found in Fig.8.8 and in Fig.8.9,
respectively.

Figure 8.8: MNIST: Confusion Matrix of
the inference performed with the diode-based
network.

Figure 8.9: MNIST: Normalized Confusion
Matrix of the inference performed with the
diode-based network.
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8.2 Exploiting the low forward voltage of the Schottky diode
The introduction of the diodes in place of the saturating operational amplifiers has several
advantages with respect to the hard sigmoid function. Nonetheless, also in this case, the
characteristic voltage is sufficiently high to modify the value of the mem-conductance or, in any
case, to enter in the non-linear regime of the memristor. It would therefore be desirable to further
reduce the characteristic voltage, in order to minimize the source of these non-linearities. In the
previous sections it was shown that, when working with diodes, the characteristic voltage is to be
chosen as vo = Vγ , i.e. the forward voltage of the diode. For the preliminary analysis a normal
p-n diode was used, characterized by the typical value Vγ ' 0.7V . Since this parameter is the one
dictating the saturation voltage dropping at the extremes of the memristor, it would be desirable
to reduce the saturation value to a quantity that not only does not re-program the memristor, but
also that is approximately linear. To develop on this point let us consider the Stanford model

ik j = Gk jVSA sinh
ϕ(v j)

VSA
(8.11)

Where a reasonable value for VSA could be VSA = 0.6V , accordingly to fits done on experimental
data [73]. In the previous section the diodes-based network was shown to be robust to non-
idealities when simulated in ngSpice. In other terms the behavior of the purely numerical
network is almost equivalent to the one of the simulated circuit. On the other hand, this
simulation is unbearably time demanding. Therefore, in order to take into account the Stanford
model, it is reasonably safe to go back to the MATLAB implementation and to synthetically
introduce its dimensionless equivalent. To do so, the a-dimensional synaptic current must be
chosen to be

Ak j = (RoGk j)
VSA

Vγ

sinh
ϕ(v j)/Vγ

VSA/Vγ

=

=Wk juSA sinh
g(u j)

uSA

In order to have the linearity, it would be desirable to have the term uSA = VSA/Vγ as large
as possible, to guarantee Ak j 'Wk jg(u j). This would correspond to choose a diode with the
smallest possible Vγ . In these terms, the Schottky diode has the extremely appealing property that
the typical forward voltage for these devices is around 150−450mV . Accordingly to what seen
in the introductory chapter, a reasonable assumption is Vγ ' 0.2V . Therefore, the a-dimensional
uSA becomes uSA = 3. Considering what said before about the voltage the memristor can bear to
remain in linearity, the substitution of the semiconductor diode, characterized by Vγ = 0.6−0.7V
with a Schottky diode could allow, in principle, the implementation of the network in hardware
while avoiding a re-programming of the memristors and keeping them in linearity throughout
the evolution of the dynamical system. The schematic of this circuit is reported in Fig.8.10. In
order to numerically sustain these reasonings, two numericale simulations were compared. In
the first one the network was trained with the usual Additive model, while using as activation
function the hard hyperbolic tangent. The hyperparameters used were the same of Chapter 5
but, this time, the simulation was performed for 6000 training data in order to create a target
accuracy. Afterward, the Additive Model was altered by introducing the non-linearity of the
Stanford model. This was achieved by performing the following substitutions{

Wmkg(uk)→WmkuSA sinh g(uk)
uSA

bk→ bkuSA sinh 1
uSA

(8.12)
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Figure 8.10: Non-linear Leaky integrator: Neuron block built up embedding the Kendall-like
activation function in the feedback loop of the operational amplifier with the use of Shottky
diodes.

corresponding to a proper introduction of the Stanford-ASU non-linearity in the a-dimensional
simulation. Both the networks were trained for 10 epochs on 6000 training data, testing them on
1000 test data and updating the result each 20 data. The learning rate was fixed to 0.005 and the
clamping factor to 0.1. In Tab.8.2 it is possible to compare the results of the two simulations.
Apparently, despite the distortion in the velocity field EP can learn the classification with the

case ACCtrain ACCtest Jtrain Jtest

linear 0.926 0.886 0.23572 0.36953
Stanford 0.925 0.891 0.25131 0.36264

Table 8.2: Comparison numerical training of the MNIST classifier: Linear Additive model and
non-Linear version inspired by the Stanford model.

same accuracy as the exacly linear case, provided that the characteristic voltage of the circuit
and the VSA of the Stanford model are in the ratio previously discussed

8.3 Conclusions
In this chapter the network is modified so as to introduce in it the activation function defined by
Kendall et al. [60]. The first step is to show that it can be used to estimate the hard hyperbolic tan-
gent and the network primitives are based on it. Then, it is proposed an implementation in which
the activation function is embedded in the feedback loop of the integrator configuration, obtaining
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in this way a non-linear integrator. This technological solution would imply a considerable
reduction of area required for the integration, due to the substitution of an operational amplifier,
in the voltage follower configuration, with two anti-parallel diodes. Finally, the network is
tested via its capability to do inference. In this way it is possible to verify that this technological
implementation is well suited for the analogue integration of the dynamical system. Finally, the
use of Schottky diodes is proposed to achieve the desired compatibility of the network with the
existing resistive-switching devices in terms of linearity and of stability to the electrical stress
induced by the dynamical evolution. The diode-based network is also interesting because it
allows to remove non informative dynamics, consequently speeding up the dynamical evolution.

109



Chapter 9

Stochasticity and Quantized
networks

So far, all of the systems considered worked at machine precision. This is to say that it was
implicitly assumed that the decimal digits can be precisely controlled up to the sixteenth decimal
digit. Nonetheless, when one wants to test an algorithm on a real device, this is certainly not the
case. As seen in the introductory chapter on the hardware part, among the other possibilities the
conductance can be imposed by means of pulses. Alternatively, it might be set working on the
current compliance or with the stop voltage. In any case, to a given programming parameter α

a mean conductance Ḡ(α) can be associated, but the real value observed is a random variable
G(α) = Ḡ(α) + ζ (t,T,α) where, in the most general case, the random fluctuation is a non
trivial function of temperature, time and of the programming. Since the update presents this
limitation, one generally identifies the stable conductance states in such a way that the stochastic
fluctuation falls in within a given interval of conductance. This solution allows to have a better
control on the value programmed and the larger is the interval of each quantized state the more
controllable will be the programming. In this chapter this concept is discussed using the MATLAB
codes developed, by adapting Equilibrium propagation to noisy and quantized networks.

9.0.1 Random velocity field

The presence of random fluctuations in the value of the programmed memristor was already
discussed in chapter 6 . In this section it is investigated the effect of a random component on the
stability of the dynamical system. In particular, random fluctuations are simplistically modelled
as gaussian random numbers. Despite the fact that this assumption has been done in the past
[78], it might not always be optimal for modelling the actual behavior.
Let us consider a-dimensional variables and let us express the variability as a function of a
normal gaussian variable ξ ∼N (µ = 0,σ2 = 1). If we define ζ w = νξ , this will have zero
mean and standard deviation ν: ζ w ∼N (µ = 0,σ2 = ν2). Then, considering the Additive
model, each single synaptic weight Wi j will have a random component ζ w

i j , as well as each bias
term: bi = b̄i + ζ b

i . Additionally, each of them will be related to a normal random variable as
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ζi = νξ . In this way

duk

dt
= −uk +

Nu

∑
n=1

Wkng(un)+ bk =

= −uk +
Nu

∑
n=1

W̄kng(un)+ b̄k +
Nu

∑
n=1

ζ
w
kng(un)+ ζ

b
k

= −uk +
Nu

∑
n=1

W̄kng(un)+ b̄k + ζk(u)

Therefore, the additional term does not only introduce a new bias term, competing with bk in
defining the average point of the state space toward which the system should converge. But
also completely unjustified correlations and anti-correlation between the different units appear.
To understand the gravity of the term let us perform a worst case analysis of the noise term.
Gaussian random variables have the property that a linear combination of normally distributed
random variables

ζ =
N

∑
i=1

aiζi ζi ∼N (0,1) (9.1)

is a gaussian random varible with zero mean and variance which is the sum of the coefficients:
ζ ∼N (0,∑N

i=1 ai). Therefore, each point of the space is perturbed by a term which is

ζk(u) =
Nu

∑
n=1

ζ
w
kng(un)+ ζ

b
k =

≤
Nu

∑
n=1

ζ
w
kn + ζ

b
k ∼N (0,σ2 = (Nu + 1)ν2)

So in the worst case, corresponding to an entire region of the state space where the activation
functions saturate, the dynamics occur under the influence of a field having an intensity that
cannot be predicted and whose variance scales linearly with the number of nodes. The potential
gravity of this can be understood by considering that, when dealing with the MNIST data-set,
the total number of nodes was Nu = 196 ·128 ·10 = 250880. By considering a generic inference
trajectory with the trained model (see Fig.9.1), it is possible to see that in this case only a few
state values enter in the worst case saturation region but the vast majority remains at a nonzero
value. Therefore, the variance might be lower but in any case almost all the nodes will give a
non negligible random contribution. In order to appreciate the importance of this problem let
us consider the XOR problem. The system was let free to evolve by fixing the noise level ν to
0, 0.1 and 0.3. The trajectories were initialized at four points in space: [0,0,0], [0,1,0], [1,0,1]
and [1,1,1]. In all the cases the system was allowed to evolve and the effect of the random
component was observed. In all the cases, a low noise level ν = 0.1 introduces some distortion
with respect to the case with no noise, but the equilibrium points are not drastically changed. On
the other hand, when considering a noise level ν = 0.3, the distortion starts to induce detrimental
effects in the dynamics. In both the cases (1,0) and (0,1) only some starting point guarantees the
convergence to the desired equilibrium, while in the (1,1) case all the trajectory are completely
governed by the stochastic term. This behavior is most likely due to the fact that the more input
terms are equal to zero the smaller will be the number of random contributions of the synaptic
weights appearing as a random force field. Therefore, while in the (0,0) case no qualitative
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Figure 9.1: MNIST classificator: Trajectories of the neurons in the state space given a random
initialization condition.

change in the dynamics is observed, when both the inputs are set to 1 the random contribution
will be maximally varying and the likelihood that this effect will induce detrimental degradation
is extremely high.

9.0.2 Quantization of the weights
The impossibility of precisely programming in the continuum imposes some restrictions on
the amount of information that can be stored in a single weight. In fact, in order to guarantee
an external control on the value programmed, it is necessary to identify states of quantized
conductance. The idea behind this concept is schematically represented in Fig.9.3 and in Fig.9.4.
The red dotted line corresponds to a purely numerical approach, in which given a conductance
value in the continuum it is exactly the value programmed, up the the machine precision. As
soon as one introduces quantized intervals, the situations becomes the one in the black stair
function. The Q(x) values are the values that it is safe to program within a reasonable accuracy.
In total there are Nlevels levels. The nature of the conductances imposes a further constraint.
Even if the updates could in principle span the whole real axis, the conductances will have a
maximum Gmax and a minimum Gmin possible value. Therefore, any update above and below
that value will be forced to saturate. Considering these constraints, from one state to the other
there will be an interval of ∆ = Gmax−Gmin

Nlevels−1 conductance values. In Fig.9.4 it is reported the real
programming process expected for the hardware implementation. Once computed the update,
the new conductance value to be programmed Gnew is found. One then identifies to which
quantization interval this value belongs to, and the corresponding quantized value Ḡ. This value
is associated to a programming parameter α , such as the number of pulses npulses to be sent to
the device. Therefore, after reset this programming is performed. This process corresponds to a
sampling of a conductance value from the probability distribution defined by the properties of
the memristive device. In this perspective, Fig.9.3 corresponds to the case in which the states
are so much far apart that the variance of the memconductance is negligible with respect to
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Figure 9.2: Random fields in the XOR classificator when increasing the noise level. The red
curve corresponds to ν = 0, the blue one to ν = 0.1 and the black one to ν = 0.3.

the quantization interval. The number of states that can be programmed strongly depends on
the nature of the device. Given a resistive switching device and the accuracy desired for the
programming it is clear that the number of quantization values will be fixed accordingly. the
following section discusses the effect of quantization on previously defined networks.

9.0.3 Motivation
This quantization might seem artificial and poorly supported by the Bengio and Scellier theory.
Nonetheless, it can be qualitatively motivated in a fashion similar to the one they used for
defining the asymmetric Equilibrium propagation algorithm. In the formulation considered so
far, Equilibrium Propagation has been used to evaluate the left hand side of the dynamical system
in the parameters space and to estimate the weight update

dθ

dt
= − ∂J

∂θ
→ ∆θ = −η

∂J
∂θ

(9.2)

113



Stochasticity and Quantized networks

Figure 9.3: Quantization procedure: a contin-
uous value is mapped into a quantized state.

Figure 9.4: Quantization procedure: a ran-
dom fluctuation is added to the quantization.

When imposing a quantization, all the quantities defined so far will remain the same, the only
difference being that only a limited portion of the parameters space can now be explored. In fact
it is not possible anymore to explore this space in the continuum, but only at discrete values of
it. This is not a problem if the discrete values are the one relevant for encoding the information.
In fact, the evolution of the network will still allow to evaluate the ideal weight update. In
the quantized update this quantity identifies the direction in which to move, even if the exact
value is not allowed. To prove this concept it is better to use networks on which an overall
analytical understanding is available, i.e. the AND function. As previously discussed, only two
values are needed for the weights: 0.5 and -0.25. Therefore, the network was trained for two
epochs, imposing Wmin = −0.25, Wmax = 0.5 and Nlevels = 2. This time, the learning rate and
the clamping factor require some attention. Since the mini batch size is set to 1 in this simple
problem, the updates of the weights reads{

∆Wi j = η [g(sβ

θ ,i)g(s
β

θ , j)−g(s0
θ ,i)g(s

0
θ , j)]

∆bi = η [g(sβ

θ ,i)−g(s0
θ ,i)]

(9.3)

Let us reason in terms of extremes. If the states were binarized, we would have g(s) = σ ∈
{σ↑ = 1,σ↓ = 0}. Considering the bias at node i, an update must be done every time the clamped
solution and the free solution differs, i.e. when one of the variables is 0 and the other one is a 1.
However, this automatically implies that ∆bi can only take three values: ±η and 0. In turns, this
implies that it is no longer possible to vary the learning rate arbitrarily, since a too small value
would imply the impossibility to learn anything. Therefore, when the mini batch size is fixed to
1 the learning rate must be chosen satisfying

η ≥ ∆ =
Wmax−Wmin

Nlevels−1
(9.4)

Where it must be greater or equal since, in general, it is not guaranteed that the only case
in which a correction is worth to be done is the case in which the two equilibriums have
oppositely converged. On the contrary there might be a nearby quantized parameter increasing
the performances of the network. The same reasoning holds for the weights update. In any
case, the lower the learning rate the more the free and clamped solution must be different from
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each other in order to introduce a variation. It is therefore to be expected that, when choosing
η = ∆ the clamping factor should be high, so as to drive the variables to the correct value,
consequently inducing a big adjustment where needed. When this happens, the identification
of the algorithm with EP might be debatable. Considering the comparison done by Bengio and
Scellier themselves with other learning theories, a high value of the β might be interpreted as a
transition from Bengio-Scellier learning to Contrastive Hebbian learning, in which the updates
read {

∆Wi j = η [g(s∞
θ ,i)g(s

∞
θ , j)−g(s0

θ ,i)g(s
0
θ , j)]

∆bi = η [g(s∞
θ ,i)−g(s0

θ ,i)]
(9.5)

In the case of the AND function it was imposed η = ∆ = 0.75 and a good β value was found to
be 0.75. In Fig.9.5 it is possible to see how 100% accuracy can be achieved after just one epoch
and the parameters were correctly found to be W13 =W23 =W31 =W32 = 0.5 and b = −0.25.
Before to proceed, it is worth introducing some similar reasonings for the case of batch size

Figure 9.5: Performances of the quantized version of the AND function.

higher than one. In that case the update reads{
∆Wi j = η ∑

Nbatch
k=1 [g(sβ ,k

θ ,i )g(s
β ,k
θ , j)−g(s0,k

θ ,i)g(s
0,k
θ , j)]

∆bi = η ∑
Nbatch
k=1 [g(sβ ,k

θ ,i )−g(s0,k
θ ,i)]

(9.6)

also in this case the worst case is introduced as

η ≥ ∆
Nbatch

=
Wmax−Wmin

Nbatch(Nlevels−1)
(9.7)

However, it is essential to observe that in this case choosing the learning rate to be the minimum
one would correspond to update the weights only if the model was totally wrong on all the
batch data, and the error was exactly the same. This is a very selective condition and imposing
this would probably imply a considerable difficulty in learning. Therefore, it could be safer to
consider η ≥ ∆/(2Nlevels), corresponding to the limit condition in which in half of the iterations
the two phases converge to the same value and half of the time they converge to opposite values,
but always in the same direction. However it still remains quite restrictive and one needs to be
careful in the tuning of this parameter.

9.0.4 Modified Equilibrium Propagation
Equilibrium Propagation has a strict constraint on its parameters, i.e. the weight matrix must
be symmetric. This information is essential to be remarked because a not careful update of the
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parameters would induce a fast divergence of the matrix from a symmetric one to an asymmetric
one. To understand this statement, let us follow the algorithm in a mini-batch. Firstly, both the
EP phases are performed for each data in the minibatch, summing up the different contributions.
This is done under the assumption that some sort of digital circuitry can be used to store these
quantities {

∆Wi j = η ∑
Nbatch
k=1 [g(sβ ,k

θ ,i )g(s
β ,k
θ , j)−g(s0,k

θ ,i)g(s
0,k
θ , j)]

∆bi = η ∑
Nbatch
k=1 [g(sβ ,k

θ ,i )−g(s0,k
θ ,i)]

(9.8)

At this point the matrix of the updates is perfectly symmetric, while the W matrix will be not, due
to the presence of a random noise. Since a digital processing of the quantities will be necessary
in any case, before to do the update it is worth map the matrix into a symmetric quantity. To this
aim the matrix is substituted with its symmetric part

W →W s =
1
2
(W t +W ) (9.9)

Then, having at disposal a fixed number of quantized levels Nlevels in between a minimum value
ωmin and a maximum value ωmax, the quantization operation described in Fig.9.3 can be written
as

W̄ = Q(W s +∆W,ωmin,ωmax,Nlevels) (9.10)

This matrix will be characterized by only Nlevels values and will be symmetric. This corresponds
to the quantity that is desired to be programmed in the memristor. Given the Look Up Table
it is possible to determine the α-parameter needed for programming each entry of the matrix
and, once performed the programming, the new weight matrix is W = W̄ + ζw This matrix will
be used for performing the evolution steps during the next mini batch. It is worth stressing the
importance of the symmetrization procedure on the weight matrix. In case of an asymmetric
weight matrix, it would be impossible to define an energy function and the Bengio-Scellier
theorem would not be valid. Performing the update in this way seems the only possible way to
limit the divergence of the model from unexpected behaviors.
Finally, since also the bias is a non-volatile quantity defining the model, also this quantity was
modelled with a memristor, and also in this case there will be a random update. The difference
in this case is that no symmetrization procedure is required on this quantity. The average value
will therefore be

b̄ = Q(b+∆b,ωmin,ωmax,Nlevels) (9.11)

and the actually programmed value is b = b̄+ζb. In terms of the gaussian noise, this implies that
if the standard deviation is lower than one third of the width of the intervall, then the solution
will be extremely stable, since it will only induce a contained fluctuation around the optimal
value programmable.

9.1 MNIST classification
This section is a collection of the main results obtained in the context of the MNIST classification
with quantized and noisy networks. The first network investigated is a layered structure and
its performances are investigated while varying the quantization interval. In the final part it is
also discussed the possibility to perform the quantization on the one layer Feature Engineered
network.
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9.1.1 Multilayer network

The first structure analyzed was a layered one, in which the 196 nodes are fully connected to
125 hidden node, in turn connected to the 10 output nodes. The network was first trained for 10
epochs, without quantization or random terms. The number of training data considered has been
reduced to 6000. Both the learning rate and the clamping factors have been fixed to 0.1. The
accuracy achieved in this continuum case is 93% and, in Fig.9.6, it is possible to observe the
distribution of their values in the trained network. From this information the minimum value of

Figure 9.6: Distribution of the weights in the
trained hard sigmoid based MNIST network.

Figure 9.7: Accuracy as a function of the
quantization interval.

the weights is approximately Wmin = −0.3 while the maximum value is Wmax = 0.3. Afterward,
the number of quantized states was varied and in Fig.9.7 it can be observed the decrease in
accuracy induced by the lower amount of information that can be encoded in each weight. The
continuum case was labelled as ∆ = 0 and it was used to determine a reasonable interval for
the weights. It is worth pointing out that both the learning rate and the clamping factor were

∆ 0 0.001 0.0018 0.005 0.01 0.025 0.05
Nlevels ∞ 601 331 121 61 25 13

acc 93% 92.9% 92.6% 91% 89.6% 78.6% 27.7%

Table 9.1: Accuracy of the trained MNIST classificator when reducing the number of quantizaed
states.

blindly kept fixed, while these quantities must necessarily vary according to what previously
said. For this reason, when the levels are reduced, the system becomes progressively more rigid
to changes and it will be progressively harder to perform an update. As a proof of concept of
this the number of levels was fixed to 11, corresponding to requiring the memristor to have 5
non-zero states. Considering the small amount of weight values having modulus higher than 0.2,
the pruning was further increased by fixing ωmin = −0.2 and ωmax = 0.2. The training phase
was performed on 3000 data, raising the clamping factor to β = 1 and forcing the learning rate
to vary. For each value a simulation was run for 10 epochs, This results in an improvement of
the performances as it can be observed in Tab.9.2. Nonetheless it is still not possible to reach
performances comparable with the ones achieved in the continuum. This might be due to the
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η acctest acctrain
0.01 11% 13.4%
0.05 69.2% 76%
0.1 77% 84%
0.5 47% 42%

Table 9.2: Accuracy of the trained MNIST classificator when increasing the learning rate at
fixed number Nlevels = 11 of quantized states.

previously mentioned reduced capacity of the network in terms of information content. In order
to improve the accuracy of the model while keeping fixed the number of quantized levels to 11,
the only remaining degree of freedom is the number of nodes in the hidden layer. Therefore,
this hyper-parameter was increased, achieving the improvement in the performances reported in
Tab.9.3 This shows that, as expected, in quantized networks it becomes necessary to increase

Nh acctest acctrain
125 77% 84%
150 78.4% 85%
200 81.6% 88.6%
300 82% 85%

Table 9.3: Accuracy of the trained MNIST classificator when increasing the number of hidden
nodes at fixed number Nlevels = 11 of quantized states.

the number of parameters to cope with the reduction in the information storage capability of the
network. This brings us back to the analysis done on the feature engineering process. In Chapter
5 it was discussed a Feature Engineering approach to project the data-set in a higher dimensional
space containing information of the correlation of the pixels and it was suggested that this
approach might be particularly suitable for preliminary tests with real hardware realizations. It is
thus reasonable to verify the effect of training these networks when the weights are quantized.
The selected network was the one built up from the first 15 principal components, yielding 421
input nodes and 4220 parameters. As a consequence of the complete change in the architecture,
the hyperparameters are naturally to be changed and the optimized ones were β = 0.75 and
η = 0.05. With the aim of comparing the performances with the previous architecture, also in
this case 11 levels were used for the weights and the interval was taken to be [−0.2,0.2]. Indeed,
the "continuum" training verified this interval to be reasonable also for the features engineered
network. The accuracy on the test set was 84.2% while the accuracy on the training set reached
87.8%. This accuracy is higher than the one obtained when considering 300 hidden nodes,
reaffirming the interest in the proposed Feature Engineering approach.

9.2 Conclusions
This chapter presents some preliminary considerations and simulations on the quantized version
of Equilibrium Propagation. The need for quantization is primarily dictated by the non-idealities
of the resistive-switching devices, that force to take into account the possible presence of
variations in the programmed value of the model parameters. First, the random variations are
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shown to enter in the dynamical system as position dependent random velocity fields of the
state space. Then, it is described the quantized version of Equilibrium Propagation, stressing
the importance of the symmetrization procedure so as to ensure a reasonable symmetry in the
weight matrix. Additionally, the increase in the quantization is noticed to induce a progressive
reduction of the update rate, due to the need for stronger update signals to modify the state. As a
consequence, the quantization is argued to require an additional tuning of the hyperparameters,
so as to compensate for the higher resistance of the model to learning.
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Chapter 10

Conclusions

This work is aimed at investigating a Recurrent Neural Network model, named Additive Model,
from an implementation-oriented point of view. Recurrent neural networks are extremely
powerful supervised machine learning models. However, they have the disadvantage that both
training and testing are extremely demanding in terms of computation times. In fact, given a
network of Nu neurons, the processing of a piece of data requires the integration of a dynamic
system whose number of variables is of the order of Nu. In the absence of other computational
costs, the system would require a time T to reach convergence. However, a numerical simulation
requires the calculation of matrix-vector multiplications, that bring the total computational cost
to be of the order of O(N2

u T ). The use of crossbars made of resistive switching components to
model synapses, i.e. the parameters of the model, could theoretically bring the computational
cost to O(T ). In addition, it would be extremely beneficial to find a way to reduce the integration
time to a minimum. Having said that, two things are needed to create a recurrent neural network
in hardware: an efficient algorithm to optimise the parameters and a compact realisation of the
network building blocks. The first part of this work is devoted to algorithmic aspects and the
supervised learning approaches investigated are based on the Equilibrium Propagation algorithm,
devised by Bengio and Scellier. Instead, in the second part some circuit solutions are proposed
together with their simulation in ngSpice.

10.1 Learning Algorithms
The main objective of the algorithmic analysis is to develop a framework for training RNNs with
different types of Equilibrium Propagation. In concrete terms, the main objectives were to verify
the applicability of EP to various supervised machine learning problems and to obtain networks
to be simulated in hardware at a later stage. However, additional results were obtained in the
process, which are commented on below.

10.1.1 Update rules
In the literature there are two types of EP, classified according to the symmetry of the synaptic
weight matrix: the symmetrical version and the Scellier extension to asymmetrical matrices.
The symmetrical version [1] is rigorously proved, but symmetry is a constraint that could
detrimentally limit the potential of the model. On the other hand, the asymmetric version [5] is
potentially more general, but the update rule was derived by means of a heuristic approach, thus
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leaving open an interesting branch of research devoted to formally prove the mechanisms behind
its effectiveness or identifying new algorithmic solutions. The contribution of this study to this
open question is to propose a new asymmetric update rule from the asymmetric version and
Bengio’s experimental observations. Again, the proposed update rule is obtained by combining
logical deductions with Bengio’s experimental observations. However, the proposed update
rule has an additional term, compatible with Scellier’s deduction, which corresponds to the first
derivative of the rate of the post-synaptic neuron. In this context, an initial benefit of using
so-called hard functions for introducing non-linearity into the network is also seen: in first
approximation this derivative term can be evaluated in a simple way with a threshold function
that is either 0 or 1. This is the first reason why either the hard hyperbolic tangent or the hard
sigmoid has been used throughout the work.

10.1.2 Reconstruction
The first supervised machine learning problem considered corresponds to reconstructing damaged
patterns and is termed Reconstruction for short. The additive model is shown to be effective
with different types of networks, which differ from each other in their architecture and the way
in which the input is inserted. First, the Grossberg-Hopfield Model is described. In this case
a neuron is defined for each pixel, the network is fully connected and the input is entered as
a bias term. This also allows to shed light on the type of information that the Additive Model
learns, which is based on the correlation between different nodes in the network. In addition,
the applicability of all three EP-like update rules is verified. It is subsequently shown that
the Grossberg-Hopfield network can be regarded as a special case of an architecture named
Bengio-Scellier network. In the latter, the inputs correspond to clamped neurons, the output
neurons are connected to the input neurons and/or, if necessary, to a network of hidden nodes
that increase the computational capabilities of the model. As an example of the latter network, a
recurrent denoising autoencoder is defined and it is used to solve the reconstruction problem.

10.1.3 Classification
The second supervised machine learning problem considered corresponds to classifying images.
The Bengio-Scellier network is the most naturally suited to solving this problem. In fact, it is suf-
ficient to introduce an output node for each class and define a hidden network complex enough to
"raise" the correct output given a certain input. Classification problems of increasing complexity
are considered: a binary classification of a linearly separable data-set, a binary classification
of a non-linearly separable data-set and a classification into ten classes of handwritten digits.
The usefulness of the first two is mainly to verify the correctness of the framework developed
and to gain insight into the mechanisms of inference and learning in simple networks. On the
other hand, the last is the most common benchmark in AI and is needed to test the applicability
of the Additive Model to problems closer to real-world applications. In addition to verifying
the possibility of solving this problem using both hard hyperbolic tangent and hard sigmoid,
some hardware implementation-oriented considerations are made. Firstly, it is discussed that
using the analogue network in the learning phase would require a side circuitry to perform the
weight update during the learning phase. It is reasonable to assume that it is preferable to limit
the number of updates to the essential minimum. Therefore, it is shown to what extent the
performances of the network remain acceptable by increasing the number of data processed
before performing the update, in jargon the mini batch size. In order to achieve satisfactory
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accuracy, it is necessary to introduce a hidden layer. However, if one tried to solve this problem
with the Additive Model by means of linear separation, i.e. using a one layer network, one
would obtain an accuracy of the order of 80%. The introduction of a hidden layer looses this
linear information and forces the use of an extremely large number of parameters. Therefore,
this work proposes as an alternative approach to augment the starting features with non-linear
features, engineered in line with the type of information that the network is expected to learn.
Since the information learned by the model has been shown to be related to the correlation
between variables, non-linear features containing this information may be ideal, allowing the
network to focus on higher moments. For this reason, a general approach is proposed to introduce
correlation information in a controlled way, i.e. choosing the amount of non-linear information to
be introduced and consequently improving accuracy. This approach is based on the hierarchy in
the data that can be obtained by means of PCA, which is based on the solution of the eigenvalue
problem of the correlation matrix. With the new features, accuracies comparable to the state
of the art can be achieved, while drastically reducing the number of parameters in the model.
Such approaches could also be useful in academia, since large-scale integration of memristive
crossbars is a subject of research and the number of synaptic weights available to many research
groups is rather limited.

10.2 Hardware
One extremely advantageous thing about the Additive Model is that its circuit implementation
is relatively simple and has been studied in the past under the name of standard circuital
interpretation.

10.2.1 Analogue Networks

The differential equations used in the Learning Algorithms part are mapped into the corresponding
circuit equations, explicitly introducing characteristic dimensional quantities to be defined by the
choice of circuit components. Ultimately, processing a data with the Additive Model corresponds
to solving a nonlinear dynamical system. Therefore, the objective is to define circuit quantities
equivalent to those appearing in the numerical simulations and, having done so, processing a data
corresponds to letting the circuit evolve to convergence. Three circuit solutions are introduced
and for each of them the network is defined using the parameters optimised in the Learning
Algorithms part. Afterwards, the circuit simulation is used to verify the correct hardware
integration, possibly even in the presence of non-idealities to test the robustness of the solution.
The first circuit considered is purely behavioral in the sense that the architecture is defined using
ideal primitives. This makes it possible to automate the definition of the circuit from the sole
knowledge of the weight matrix and the bias vector. To proceed, it is necessary to introduce
an implementation of the neuron and, following what done by Zoppo, Marrone and Corinto
in [63], the choice done in this work is to use an operational amplifier in the leaky integrator
configuration. The operational amplifier is an active component whose output should saturate
outside the range defined by the supply voltage. Therefore, the second proposed circuit solution
uses this property to model the hard sigmoid activation function. The model used for the amplifier
is an extremely general amplifier model and, interestingly, the networks considered is shown to
be quite stable to variations in parameters such as output resistance and voltage gain. However,
this solution makes it necessary to use the supply voltage of the circuit as the characteristic
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voltage, and this identifies the order of magnitude of the voltages which will fall on the resistive
switching devices. Since a voltage at the ends of resistive switching devices exceeding a few
hundred millivolts induces undesired changes in the conductance state, this presents concerns in
terms of compatibility with a properly functioning circuit. To solve this problem, a final circuit is
introduced, which compactly implements the hard tanh activation function. It is mathematically
justified that the introduction of two anti-parallel diodes in the leaky integrator feedback allows
the hard tanh to be implemented in a very compact manner. In addition, this solution has the
advantage of limiting the dynamics within a range defined by the diode’s forward voltage, which
is in the order of hundreds of millivolts. Moreover, the presence of the diodes in parallel with
the capacitor of the integrator allows to remove unnecessary dynamics, consequently speeding
up the integration time. The functioning of the network is tested for the inference task on the
handwritten digits classification problem. In addition, the use of Schottky diodes makes it
possible to reduce the reference voltage to around 200mV , which is widely compatible with
the retention of many ReRAMs in the literature. Once verified that the hardware simulation
perfectly reproduced the numerical result, a more realistic model is introduced for resistive
switching devices. Since no appreciable difference is seen between the circuit simulation and the
corresponding MATLAB simulation, the simulations were done with the dimensionless models
in the MATLAB code. This choice is mainly related to computational cost reasons. Using the
ASU-Stanford model it is discussed that for typical parameters of ReRAMs the Additive Model
in the presence of the non-idealities of ReRAMs achieves performances comparable to those
obtained with ideal synapses, further confirming the possibility of implementing this network in
hardware. As part of this process, a number of precautions are identified as necessary in order to
choose the right circuit components.

10.2.2 Stochasticity and quantized networks

Up to this point, the networks were modelled with weights obtained in the MATLAB frame-
work. However, when switching to analogue networks, the accuracy that the weights can be
programmed to is heavily penalised. For this reason, if one wants to numerically model the
programming that takes place experimentally, one can only speak of a desired programming
value and a fluctuation around it. The effect of detrimental uncontrolled random fluctuations
is discussed and it is highlighted the importance of introducing a quantization in the weights,
because a network already quantized in the numerical code is more likely to be reproducible in
hardware. While describing the extension of Equilibrium Propagation to quantized networks
the main precautions to be taken are discussed. Additionally, the main challenges related to
quantized networks are highlighted using as a working table the digits classification problem.
Finally, once verified that the quantization implies the need for increasing the number of nodes
in the network, it is verified that the Feature Engineered one layer network yields promising
accuracies even when quantized. Once again its reduced number of parameters makes this
solution extremely appealing from an experimental realization point of view.

10.3 Future works
Due to the limited time available for the experience many results need for a more in depth
analysis. First of all the proposed update rule needs to be further analysed, with the aim of
formalizing the logical deductions and assumptions into rigorous proofs. Additionally, also the

123



Conclusions

feature engineering approach proposed would require some additional mathematical analysis and
extensions. The features that can be designed with PCA are limited and, working with higher
statistical quantities rather than the correlation it might be possible to further increase the benefits
of this approach. Finally, on the hardware side an actual experimental realization needs to be
done, in order to verify the correct functioning of the diodes based network.
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