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Abstract 

Infantile-onset ascending hereditary spastic paralysis (IAHSP) is rare neurodegenerative 

disease characterized by onset of spasticity to lower limbs within the second year of life and 

progression towards spastic tetraparesis. This disorder is associated with mutations at the 

Amyotrophic Lateral Sclerosis type 2 (ALS2) gene, which encodes for Alsin, a protein 

composed by 1657 amino acids organized in multiple domains. Several studies on transgenic 

mice have highlighted its crucial role in vesicular trafficking, neuronal development, and 

homeostasis by virtue of its ability to interact with two guanosine triphosphatases, Rac1 and 

Rab5. In particular, evidence suggest that Rac1 can bind Alsin central region, composed by two 

structured domains i.e. a Dbl Homology (DH) domain followed by a Pleckstrin Homology (PH) 

domain. In vitro experiments have shown that this interaction is necessary for the subsequent 

activation of Rab5 through Alsin C-terminal region, leading to the maturation and fusion of 

different types of vesicles. However, as far as we know, the three-dimensional structure of Alsin 

protein and its relationship with specific functions are still unknown. Computational Molecular 

Modelling is an elective tool to study nanoscale level biological systems, both allowing to 

model the 3D structure and the dynamics of proteins. In this work, the first homology model of 

Alsin DH/PH domain was developed and studied through Molecular Dynamics both in presence 

and in absence of its binding partner, Rac1. As a proof of the results robustness, the employed 

experimental setup was first validated replicating MD studies on homologues DH/PH domains 

reported in literature.  Regarding Alsin DH/PH essential dynamics, it consisted in a collective 

motion of PH region independently of Rac1 interaction. Due to different conformations of DH 

domain, the presence of Rac1 seems to stabilize an open state of the protein, while absence of 

its binding partner results in closed conformations. Furthermore, Rac1 interaction was able to 

reduce the fluctuations in the second conserved region of DH motif, which may be involved in 

the formation of a homodimer. Moreover, the dynamics of DH/PH was described through a 

Markov State Model to study the pathways linking the open and closed states. In conclusion, 

this work provided the first all atom model for DH/PH domain of Alsin protein, moreover, MD 

investigations suggested underlying molecular mechanisms in the signal transduction between 

Rac1 and Alsin, providing the basis for a deeper understanding of the whole structure-function 

relationship for the Alsin protein.
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1 Introduction 

Hereditary Spastic Paraplegia (HSP) is a group of hereditary neurological disorders 

characterized primarily by a progressive and severe weakness and muscle tightness (spasticity) 

in the lower limbs [1], [2]. HSPs are usually divided into pure and complex forms, the latter 

being characterized by the presence of additional symptoms, including neuropathy, 

parkinsonism and cognitive impairment [1], [2]. Advances in sequencing technologies have 

revealed that HSPs are among the most genetically varied disorders, with mutations at more 

than 80 genetic loci and different possible transmission modes, such as X-linked, maternal 

linked, autosomal-dominant and autosomal-recessive. Due to these mutations, aberrant proteins 

are expressed leading to the degeneration of corticospinal axons controlling lower motor 

neurons [1], [2]. However, especially in pure forms, neuronal death is typically low. The 

functions of many proteins involved in the pathogenesis of HSPs are related to intracellular 

trafficking, biogenesis and/or distribution of membrane compartments, the regulation of 

signalling pathways important for axon homeostasis, shaping and positioning of organelles and 

signalling complexes (motor proteins), and axon myelination. Interestingly, only few HSPs 

proteins are associated directly with mitochondrial functions, whose impairment is an hallmark 

of neurodegenerative diseases [1], [2]. 

Infantile-onset ascending hereditary spastic paralysis (IAHSP) is a pure form of HSP inherited 

in an autosomal recessive manner [3]. It is characterized by the onset of spasticity to lower 

limbs within the second year of life, involvement of the upper limbs by the seventh to eighth 

year of life, wheelchair dependence starting from the second decade of life and progression 

towards pseudobulbar syndrome and spastic tetraparesis. Finally, cognitive functions are 

preserved [3]. This disorder is associated with mutations at the Amyotrophic Lateral Sclerosis 

type 2 (ALS2) gene, which encodes for Alsin protein, composed by 1657 amino acids organized 

in multiple domains [4]. Evidences revealed that Alsin plays a fundamental role in vesicular 

trafficking and neuronal homeostasis by means of its ability to interact with two guanosine 

triphosphatases, Rac1 and Rab5 [5]–[7]. In particular, in vitro studies suggest that its central 

region, composed by a Dbl Homology (DH) domain followed by a Pleckstrin Homology (PH) 

domain, can bind to Rac1. Moreover, this interaction has been demonstrated to be necessary 

for the following activation of Rab5 by the C-terminal region of Alsin [4], [7]. However, as far 

as we know, the physiological structure of this protein and its relationship with specific 

functions are still unknown. 
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Computational techniques have exponentially grown by virtue of remarkable improvements in 

computer hardware and software. In particular, Molecular Modelling is becoming an elective 

tool to study nanoscale level biological systems. Indeed, it is currently used to model the 3D 

structure of proteins starting from their amino acid sequence and to study their dynamics [8], 

[9]. With the aim of designing potential therapies for IAHSP disease, a proper understanding 

of Alsin biological functions at the molecular level is crucial. Therefore, the aim of this M.Sc. 

thesis is to develop a 3D model of Alsin DH/PH domain and study the effect of Rac1 interaction 

on its dynamics in order to relate biological and molecular evidences. 

The work is organized as follows: 

Chapter 1 is the present introduction, where the framework and the aim of the thesis are 

presented. 

Chapter 2 provides a biological background about IAHSP disease, Alsin role in vesicular 

trafficking, and the effect of mutations on neurons. To a better understanding of Alsin biological 

functions, a paragraph will be dedicated to the description of guanosine triphosphatases and 

related proteins. Finally, a general description of DH/PH domains, their functions in different 

proteins, and previous computational studies on them will be provided. 

Chapter 3 is a description of the methods employed in the present work. Molecular Modelling 

with a theoretical description of Molecular mechanics, Homology Modelling, and Molecular 

Dynamics. Then Markov State Models and Transition Path Theory will be presented. 

Chapter 4 is the replica of previous results from literature on the DH/PH domain of a different 

protein. The work presented in this chapter will provide a validated experimental setup to be 

exploited in the analysis of Alsin. 

Chapter 5 focuses on the construction of Alsin homology model and the analysis of its 

dynamics, both alone and in presence of Rac1. The effect of the interaction with the GTPase on 

DH/PH domain mechanical properties and conformations will be discussed, focusing on the 

relationship between the results and the evidence from previous literature. 

Chapter 6 summarizes the results from chapter 4 and 5 and presents the future perspectives of 

this work. 
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2 Biological background 

2.1 IAHSP: from macroscopic features to molecules 

IAHSP is a rare autosomal recessive neurodegenerative disorder associated with mutations in 

the ALS2 gene, locus 2q33.1, which encodes for Alsin protein [6], [10], [11]. It is a pure form 

of HSP in which clinical presentation is rather homogeneous, with the onset of spasticity to the 

lower limbs within the second year of life. While some children are initially able to walk 

independently and then lose their ability, others never learn how to walk. The disease rapidly 

progresses leading to upper limbs involvement, severe spastic tetraparesis, and pseudobulbar 

syndrome, a condition in which the patient, unable to control facial muscles, has speaking and 

swallowing difficulties; sometimes, the pseudobulbar syndrome is also characterized by sudden 

and uncontrollable episodes of laughing or crying. Wheelchair dependence usually occurs 

during the second decade of life and some patients lose bladder and sphincter control in 

advanced stages, but cognitive functions are preserved and long-term survival is compatible 

with the disease [3], [10]. Magnetic resonance images are normal in children, however, older 

patients are characterized by cortical atrophy in motor areas and T2-weighted punctuate 

hyperintensities in the corticospinal pathways of the posterior arms of the internal capsule and 

brain stem. Moreover, FLAIR-weighted or T2-weighted hyperintensities of periventricular 

areas and spinal cervical atrophy, typical of other HSPs, are common. Nerve conduction 

velocities are normal and there is no sign of denervation, as shown by electromyography, but 

motor evoked potentials reveal severe impairments of the corticospinal tract, consistent with 

the degeneration of upper motor neurons. Somatosensory evoked potentials are normal in 

children, but not in older patients [3], [10]. It was observed that families with identical 

homozygous ALS2 variants demonstrate phenotypic variability, both intra- and interfamilial, 

suggesting that environmental and epigenetic factors may play a role in the disease [10]. The 

diagnosis is done through the identification of biallelic pathogenic variants in ALS2 gene on 

molecular genetic testing, that include single-gene testing and multigene panels including both 

ALS2 and other genes of interest. 

The ALS2 gene, composed by 34 exons, is located on the long arm of chromosome 2q33. 

Alternative splicing of its transcripts generates two variants, a short form of 396 amino acids 

and a long form of 1657 amino acids, ubiquitously expressed in human tissues, especially in 

the spinal cord and the brain [12]. The long-form of Alsin is a 184-kDa protein composed of 

five main structured domains: starting from the N-terminus, there is a regulator of chromosome 
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condensation 1 (RCC1)-like domain (RLD), a Dbl homology (DH) domain, a pleckstrin 

homology (PH) domain, eight consecutive Membrane Occupation and Recognition Nexus 

(MORN) motifs and, finally, a vacuolar protein sorting 9 (VPS9) domain [4]. The short form 

of Alsin only encodes for a part of the RLD (Figure 1). Mutations can occur in different protein 

domains and be of a different type, such as frameshift, missense or nonsense, leading to the 

expression of different types of aberrant proteins. However, the analysis of such mutations and 

the resulting phenotypes could not find a direct correlation between symptoms and mutation 

site and/or type [13]. It is, therefore, necessary to investigate the molecular functions of this 

protein to understand how mutations could interfere with them, leading to upper motor neurons 

degeneration. 

 

Figure 1. Schematic representation of Alsin domains in both the long and the short form. 

 

2.2 GTPases and related proteins 

To better understand the biological functions of Alsin, an introduction to guanosine 

triphosphatases (GTPases) is necessary. They are proteins capable of hydrolyse guanosine 

triphosphate (GTP) and with a high affinity for both guanosine diphosphate (GDP) and GTP 

[14]. They act as molecular switches, cycling between an inactive GDP-bound state and an 

active GTP-bound state. GTPases are classified based on functional, structural, and sequence 

similarity between them, but a first distinction can be made between trimeric and monomeric 

(also referred as small) GTPases. In particular, Ras superfamily of small GTPases can be 

divided into five branches [14]:  

▪ ADPribosylation factor (Arf),  

▪ Ras sarcoma (Ras), 

▪ Ras homologous (Rho),  

▪ Ras-like nuclear (Ran),  



5 
 

▪ Ras-like proteins in brain (Rab).  

Arf proteins are involved in vesicular transport regulation, while Ran GTPases are important in 

the nucleocytoplasmic transport of both proteins and RNA. Ras family of proteins is known for 

its role in oncogenesis, since they activate in response to various extracellular stimuli and 

consequently control signalling networks that regulate cell differentiation, proliferation, and 

survival. Rho GTPases are known as key regulators of actin cytoskeleton reorganization in 

response to extracellular stimuli. As a consequence, these proteins have been associated to cell-

cell and cell-matrix interactions, regulation of endocytosis and exocytosis, cell movement, and 

cell-shape. The most studied members of this family, composed by approximately twenty 

members, are Cdc42, RhoA, and Rac1. Finally, Rab family is the largest group of proteins in 

Ras superfamily. Its 61 members are involved in the regulation of intracellular vesicular 

transport, as they facilitate vesicle formation, fusion, release, and transport to the acceptor 

compartment. These proteins are located in specific intracellular compartments depending on 

their functions in different vesicular transport processes; for instance, Rab5 is sited in early 

endosomes and regulates the transport from the plasma membrane to early endosomes of 

clathrin-coated vesicles [14]. The main branches of Ras superfamily and their functions are 

summarized in Table 1. 

Table 1. Summary of Ras superfamiliy groups and their main functions 

Family Functions N° genes Examples 

Arf Vesicular transport regulation 27 Arf1, Arf6 

Ras Cell differentiation and proliferation 36 Ras, Rheb 

Rho Actin cytoskeleton reorganization 20 Rac1, RhoA 

Ran Nuclear transport 1 Ran 

Rab Intracellular vesicular transport 61 Rab5, Rab7 

 

Given the high affinity towards both GDP and GTP, the low GDP/GTP exchange activity, and 

the low GTP hydrolysis rate, the GTPase cycle is regulated by guanine-nucleotide exchange 

factors (GEFs) and GTPase-activating proteins (GAPs). A GEF protein is a positive regulatory 

protein that speeds up the intrinsic GDP/GTP exchange activity of GTPases, although this is 

not an active process since GEFs only facilitate the replacement nucleotides. Two main factors 
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favours the GTP-bound state: first, the much higher cytosolic concentration of GTP than GDP 

and, second, the fact that GTPases in the active GTP-bound state have lower affinity towards 

GEF proteins than in the inactive GDP-bound state. Therefore, the exchange of GDP with GTP 

is more probable [14], [15]. However, the low hydrolysis rate of GTPases not only limits the 

efficiency of signal transduction but maintains for an excessive time the active state of these 

proteins. For this reason, GAPs stabilize the hydrolytic machinery of GTPases, accelerating 

GTP hydrolysis and making signalling processes more dynamics and efficient. Both GEFs and 

GAPs can be multidomain proteins with specific regulatory sites for protein or lipid 

interactions. For instance, phosphatidylinositol phosphates (PIPs) are a family of phospholipids 

present in cell membrane involved in the recruitment of different proteins at this level [14], 

[15]. Finally, effectors are proteins with higher affinity for GTP-bound GTPases that transduce 

their signalling to achieve specific biological functions and cellular response (Figure 2). 

 

Figure 2. Representation of the GTPase cycle. An inactive GDP-bound GTPase can change its 
functional state thanks to the action of a GEF, which facilitates the release of GDP and, therefore, its 
exchange with GTP. On the other side, GTPases can be inactivated by a GAP, which accelerates its 
hydrolytic activity. The transduction of a signal carried by an active GTPase to effector protein leads 
to the activation of specific pathways and biological responses. 

All GTPases are characterized by a G domain containing GTP-binding pocket and the 

hydrolytic machinery. In particular, two conserved loop-like regions, called switch I and switch 

II, are characterized by conformational changes between GDP- and GTP-bound state (Figure 

3). Moreover, they are involved in interactions with binding partners, so that sequence 

differences are related to the selectivity of small GTPases [15].  
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Figure 3. Crystal structure of GTP-bound Rac1 (PDB: 3TH5). Rac1 and GTP are coloured in cyan and 
purple, respectively. Switch I and II are highlighted in red and green [16]. 

2.3 Alsin and vesicular trafficking 

Alsin contains three putative GEF domains: the N-terminal RLD, the central DH/PH domain 

and the C-terminal VPS9. The former is homologous to the protein RCC1, which acts as a GEF 

for Ran. However, Alsin has shown no GEF activity towards Ran suggesting, together with its 

cytoplasmic localization, that this domain has different functions [17]. The DH/PH motif is a 

common feature of different proteins known as GEFs for Rho GTPases. Therefore, the 

enhanced levels of active Rac1 in cells after the overexpression of ALS2 gene have suggested 

that Alsin acts itself as a GEF towards Rac1 [18]. Subsequent in vitro and in vivo studies have 

demonstrated that Alsin DH/PH interacts specifically with Rac1, but this interaction is not 

sufficient to activate it. Thus, it has been proposed that Alsin can act as a Rac1 effector rather 

than a Rac1 GEF [7]. Finally, the VPS9 domain was found to act as a GEF towards Rab5, 

leading to the enlargement of early endosomes. These findings are consistent with the 

subcellular localization of Alsin long form, which is located both in the cytosol and at early 

endosomes-level [5], [7], [18]. 

Alsin functions are related to the modulation of macropinosomes and early endosomes fusion 

and trafficking, especially in neurons [5]. An endosome is a vesicular structure involved in 

intracellular sorting and degradative pathways. It is possible to identify three main types of 

endosomes: early endosomes, late endosomes and recycling endosomes [19]. Focusing on the 

first two of them, early endosomes are tubular structures, usually colocalized with Rab5, that 

represent the first vesicles to fuse with endocytic material. They then mature to late endosomes, 

enlarged spherical structures usually associated with Rab7. Once these vesicles dissociate from 

Rab5 and Rab7, they can fuse with lysosomes leading to the degradation of their content [20]. 
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Macropinosomes are different endocytic structures, involved only in degradative pathways, that 

forms due to complex signalling involving membrane ruffling, a Rac1-regulated process. In 

particular, it consists in the formation of membrane protrusions enriched with newly 

polymerized actin filaments. When the membrane protrusion collapses back, a large vesicle, 

i.e. a macropinosome, forms and then fuse with early/late endosomes [21]. Furthermore, Alsin 

also colocalizes with autophagosomes and/or hybrid structures formed by the fusion of 

autophagosomes and endosomes, i.e. amphisomes. Indeed, it has been demonstrated that Alsin 

overexpression enhances amphisomes formation through the activation of Rab5 [22]. As 

macropinosomes, autophagosomes are vesicles designated to degradative pathways, but they 

are part of the intracellular degradative system. In particular, in neurons all these vesicles need 

to be backpropagated to the cell body in order to fuse with lysosomes and break down their 

content. A schematic representation of this process is shown in Figure 4. 

 

Figure 4. Vesicular trafficking and retrograde transport in neurons. Alsin biological functions are 
related to vesicular trafficking, especially in neurons where impairments of autophagy-endolysosomal 
system is associated with disturbed axon homeostasis and neurodegeneration. Indeed, degradation of 
vesicular cargos in lysosomes require the maturation of late endosomes, their backpropagation to the 
perikaryon and fusion to lysosomes. Alsin plays a crucial role in the formation of early endosomes, their 
fusion with autophagosomes, and their enlargement. 

Of note, impairments the autophagy-endolysosomal pathways are associated with different 

neurodegenerative diseases since they disturb neuronal homeostasis and may lead to the 

accumulation of misfolded and/or aggregated proteins [23]. Moreover, macropinosomes 

trafficking is deemed crucial for axon outgrowth, process that requires a continuous supply of 

plasma and recycling of membrane proteins. In particular, the activation of Rac1-dependent 

pathways have demonstrated to facilitate axon outgrowth [7]. Hence, Rac1-induced activation 

of Alsin may be linked to neuron development and homeostasis [24]. 
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2.4 Alsin and neuron degeneration 

2.4.1 Tetramerization and subcellular localization 

The C-terminal region of Alsin, spanning the MORN motifs and VPS9 domain, has shown the 

ability to dimerize in an antiparallel fashion and that this self-interaction, mediated by a.a. 1280-

1335, is crucial for Rab5 activation in vivo, although not essential for Rab5 binding [25]. 

Moreover, an interaction between the N-terminal RLD and C-terminal region of Alsin (residues 

1018-1657) is responsible for its sequestering in cytoplasm: the expression of proteins lacking 

RLD showed an increased endosomal localization of Alsin. However, deletion of RLD is not 

sufficient to fully relocalize Alsin from cytoplasm to early endosomes, suggesting that this 

translocation is triggered by an upstream activator. In particular, in vitro studies have 

demonstrated that Rac1 alters the subcellular localization of Alsin through its interaction with 

the DH/PH domain [7]. In a recent study, it has been observed that Alsin is able to further 

interact through the DH/PH domain, forming in this way a tetrameric complex necessary for its 

relocalization from the cytoplasm to the membrane and early endosomes. Since other DH 

domains are known to form homophilic dimers, it seems reasonable that this interaction is 

mediated by the sole DH domain (see section 2.5). On the other side, RLD is not necessary to 

form a proper oligomeric complex although retaining the ability to interact with Alsin C-

terminal region [4]. 

Therefore, in absence of stimuli, Alsin is normally sequestered in cytoplasm due to a self-

interaction between the RLD and C-terminal region. When Rac1 is activated by an upstream 

GEF, it binds to the DH/PH domain leading to a conformational change, tetramerization 

through DH domain and a.a. 1280-1335 (Figure 5), and relocalization to membrane ruffles. 

After Rac1 signalling, RLD is thought to have a role in ruffle localization due to its affinity to 

different PIPs, especially phosphatidylinositol-3-phosphate [PI(3)P] which is an important 

signalling lipid with a role in macropinosomes maturation and trafficking. At ruffles level, Alsin 

acts as a Rab5 GEF, inducing the fusion of the newly-formed macropinosomes with endosomes, 

their enlargement and maturation [4], [7], [26]. 
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Figure 5. Tetramerization of Alsin due to Rac1 signalling. Alsin is thought to be sequestered in the 
cytoplasm in a closed form due to the interaction of its N-terminus and C-terminus. The interaction with 
Rac1 triggers a conformational change and the formation of an active tetramer, due to the dimerization 
through DH domains and C-terminal regions. 

Alsin tetramerization is crucial for a proper relocalization of the protein to membrane ruffles 

and, consequently, Rab5 activation. Indeed, missense mutations in VPS9 domain correspond to 

lower molecular weight complexes, while mutations in RLD and PH domain lead to higher 

molecular weight structures All these aberrations do not allow a proper transition from the 

cytoplasm to cell membrane, although there is evidence that altered RLDs do not show 

decreased affinity to PI(3)P [4]. Moreover, evolutionary conserved residues associated with 

GEF activity of DH domain are not essential for Alsin transition to cell membrane [7]. This 

evidence is in agreement with Alsin being a Rac1 effector rather than GEF. However, it is not 

known whether missense mutations in the region responsible for dimerization (see section 2.5) 

inhibit ruffle relocalization. 

2.4.2 Effects of Alsin loss in neurons 

Several studies were made to investigate the effect of Alsin absence in mice, but no clinical 

manifestation of ALS2-related pathologies was obtained. However, significant alterations were 

observed in neurons derived from Alsin-knockout (KO) mice. First, axonal growth in 

hippocampal neurons was slowed demonstrating the crucial role of this protein in the neuronal 

development [24]. Detailed analysis of corticospinal motor neurons (CSMN) revealed signs of 

axonal degenerations, such as presence of membranous debris and collapsed synaptic vesicles. 

Moreover, an increased presence of autophagocytic vesicles containing broken mitochondria 

was detected selectively inside the apical dendrites of CSMN, but there was no significant loss 
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of these cells during time. This may represent a major problem since most of CSMN cortical 

inputs converge at apical dendrite level. As for mitochondria, major defects were present in the 

Golgi apparatus, which is fundamental in the control of secretory pathway, the post-

translational modification of proteins, and intracellular vesicular transport [12]. Thus, loss of 

Alsin seems to affect selectively neurons of the corticospinal tract inducing common signs of 

neuronal degeneration.  

The interaction between endosomal machinery and mitochondria is known to be important for 

cell homeostasis, repair, and apoptosis. Recently, the recruitment of Rab5-positive early 

endosomes to mitochondria was observed under oxidative stress condition, inhibiting 

cytochrome c release and, hence, increasing cell viability. Interestingly, Alsin was required for 

Rab5 translocation to mitochondria and localized at this level only under stress-induced 

condition. Indeed, Rab5 recruitment to mitochondria was severely reduced in ALS2-KO spinal 

motor neurons, suggesting a protective role of Alsin against oxidative stress [27]. 

Interestingly, Alsin can selectively bind to mutant superoxide dismutase (SOD1) through its 

entire DH/PH domain, while the deletion of DH or PH domains suppresses this function [18]. 

Moreover, it was proved that overexpression of ALS2 in transgenic mice carrying mutation on 

SOD1 gene decreases ROS production, demonstrating Alsin role in pro-inflammatory 

signalling regulation [18], [28]. Protection against excessive oxidative stress is particularly 

important in non-divisible cells like neurons, for whom the damage is cumulative. Transgenic 

ALS2-KO mice were shown to be more sensitive to cell death due to oxidative stress, meaning 

that the loss of Alsin predisposes rodents to oxidative stress but is not enough to induce neuronal 

degeneration [29]. 

Together with augmented oxidative stress, protein aggregation and disfunctions in cell 

clearance pathways are common features of neurodegenerative diseases. It was observed that 

loss of Alsin prevents the fusion between endosomes and autophagosomes, obstructing the 

autophagy-dependent protein degradation [22]. Interestingly, a recent study showed the 

presence of granular misfolded SOD1 inclusion in motor neurons of the spinal cord in a patient 

with ALS2 mutation [30]. Rab5 activation is, indeed, a crucial step for the retrograde axonal 

transport of vesicles to the cell body, where they can fuse with lysosomes and proceed with the 

degradation of their cargos. This mechanism is essential for neuronal survival and its 

impairments may lead to increased susceptibility to neuronal defects [31]. 
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2.5 The DH/PH domain 

The DH/PH motifs, found in many proteins, are characteristics of the Dbl family of Rho GEF: 

in this structure, the DH domain is responsible for the GEF activity while the PH domain 

regulates the exchange factor activity and the interaction with plasma membrane and actin 

filaments of the cytoskeleton [32].  

DH domains are usually composed of 11 α-helices folded into an elongated, flattened α-helix 

bundle; however, some of them can combine to form a bundle of six major α-helices (α1-6) 

[33]–[35]. Three conserved regions are known: conserved region 1 (CR1), conserved region 2 

(CR2), and conserved region 3 (CR3), that corresponds to great part of α1, α2, and α5 helices, 

respectively. CR1 and CR3, together with a part of α6, constitute the Rho GTPase interacting 

pocket, located near the centre of one surface. CR2, instead, is exposed on the opposite surface. 

PH domains are small domains present in various proteins composed by two anti-parallel β-

sheets followed by a C-terminal amphipathic helix (Figure 6). Since the loops connecting the 

β-strands may have different lengths, it can be difficult to identify this domain [33], [36]–[38]. 

 

Figure 6. DH/PH domain of TIAM1 (PDB: 1FOE). The first, second, and third conserved regions in 
DH domain are represented in red, blue, and purple. PH domain is coloured in orange [39]. 

Alsin has been predicted to fold in a DH/PH like domain in its central region (residues 691-

1010). As we have previously mentioned, the interaction of Rac1 with the DH/PH domain of 

Alsin has been identified as the trigger of oligomerization and relocalization of the protein. For 

this reason, here we focus on the description of this region, its main features and its functions 

on other proteins.  
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The DH domain of Alsin (residues 691-895) is composed by 206 amino acids while the PH 

domain by 86 (residues 925-1010). 

Since Alsin DH/PH domain demonstrated not to act as a Rac1 GEF despite being predicted 

with the same structure of Dbl family, the functions of proteins containing one or both motifs 

have been investigated to understand the specific role of these regions. The DH domain is 

characteristic of proteins with known Rho GEF properties. Among them, ARHGEF6 and 

VAV2 play an important role in lamellipodia assembly, angiogenesis, and cell migration 

modulating Rho GTPases activity. On the other side ARHGEF10 has a role in myelination of 

peripheral nerves [40]. In protein ECT2, the PH domain folds back to inhibit the DH region 

catalytic activity thanks to the presence of a flexible disordered linker. The interaction of an 

active RhoA with the PH motif induces a conformational change and allows DH region to bind 

a second RhoA [41]. Notably, some proteins are characterized by the presence of two 

consecutive PH domains, as for FARP2. This Rac1 GEF is involved in neurite outgrowth and 

is allosterically auto inhibited by the PH motifs. After the phosphorylation-mediated activation, 

they move away to expose Rac1 binding surface [42]. The NET1 protein is a RhoA GEF that 

moves from the cytoplasm to cell membrane after Rac1 signalling. It seems that this process 

does not require neither the catalytic activity of DH domain nor the presence of PH region [43]. 

In particular, this process may be similar to the one following the interaction between Rac1 and 

Alsin. Hence, DH-containing proteins are associated with actin microfilaments dynamics, 

which is crucial in the formation of macropinosomes and endosomes, cell spreading and 

migration, neurite outgrowth, and lamellipodia formation. Although Alsin is not a GEF, as a 

downstream effector of Rac1 it is reasonable its involvement in similar processes.  

As mentioned before, the presence of a PH domain is not a sole feature of Dbl family. In most 

proteins containing this motif, it is crucial for PIPs binding and membrane relocalization, 

allowing the protein to transfer a signal from the cytoplasm to the membrane. Typically, PIPs 

binding site is located near the loop between first two strands, which contains positively charged 

residues able to interact electrostatically with the negatively charged phosphoinositide head 

group [42]. In particular, TBC1 domain family member 2A is a Rac1 effector that moves to the 

membrane and activates Rab7. This transition is triggered by Rac1 binding to a coiled coil 

region near the PH domain [44]. The ACAP1 protein is involved in membrane remodelling and, 

to this purpose, dimerize through its BAR domain. In this way the PH domains are exposed and 

can interact with the membrane [45]. In a similar way, myotubularin-related protein 5 is able to 

form homodimers and eterodimers via interactions mediated by a coiled coil region that 
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precedes the PH domain [46]. The unconventional myosin-X is a protein containing an N-

terminal motor region that is inhibited by the C-terminal PH/FERM domains. 

Phosphatidylinositol (3,4,5)-trisphosphate binding to PH domain stops this inhibition and 

allows the formation of an active dimer, exposing the tail region responsible for the 

dimerization [47]. This mechanism of autoinhibition of one active domain by the other terminal 

of the protein may be similar in Alsin. Indeed, it has been proposed that Rac1 activation may 

induce a conformational change of the protein, moving RLD away from VPS9, and allowing 

tetramerization [4]. Another example of autoinhibition is that of Rac-alpha serine/threonine-

protein kinase: it is inactive due to intramolecular interactions of PH and kinase domains, but 

the interaction of the former with 3-phosphinositides induces a conformational change, moving 

PH region and allowing the activation of the protein [48]. Finally, Src kinase-associated 

phosphoprotein 2 is able to form a homodimer through the N-terminal region preceding PH 

domain; this dimerization, together with PH domain binding to PIPs, seems to control the 

functions of the protein [49]. 

Taken together, these information about DH and PH domains suggest that PH region is usually 

not involved in protein-protein interactions. However, it often plays a crucial role in the 

conformational changes associated to signalling processes. On the other hand, some Rho GEFs 

can form homophilic dimers through the sole DH domain and their dimerization is correlated 

with the GEF activity in vivo. In particular, the surface of Rho GEFs opposite to the one 

interested by the GTPase interaction is involved and specific biological essays demonstrated 

the CR2 to be crucial in the dimerization [36]. This evidence is consistent with the 

crystallographic structure showing the DH/PH domain of TIAM1 bound with Rac1. Here, the 

protein forms a dimer interacting through the surface opposite to Rac1 binding pocket (Figure 

7)  [39]. Moreover, the 3D structure of this dimer is compatible with the proposed tetrameric 

structure of Alsin [4]. Finally, it was demonstrated that dimerization of Dbl’s big sister (Dbs), 

a protein characterized by the DH/PH motif and Rho GEF activity, is sufficient to trigger the 

membrane relocalization by coupling multiple PH domains [50].  
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Figure 7. First and sixth chains of TIAM1 crystal structure (PDB: 1FOE [39]). The conformation of the 
dimer obtained during the crystalization of the protein in presence of Rac1 is compatible with the 
arrangement of the probable Alsin tetramer. 

2.6 Computational modelling  

It is now established that the functions of a protein largely depend on its 3D structure [51], 

therefore homology modelling is widely used to build atomistic models of proteins starting 

from their amino acid sequences. These informations can be exploited through Molecular 

Dynamics, which is emerging as an elective tool to study biological systems at the nanoscale 

level and relate macroscopic behaviour to its microscopic properties [8], [9]. 

Some studies have been carried out about the dynamics of the DH/PH domain in Rho GEF 

proteins. The analysis of several members of this family, both in their free form and bound to 

RhoA (a Rho GTPase), showed that the essential dynamics of the domain is characterized by a 

collective motion of the terminal part of α6 helix and the whole PH region, independently of 

the functional state. Consistently with these results, the same region expresses a great fraction 

of the overall flexibility in the DH/PH domain. Moreover, these studies highlighted the 

interaction of RhoA with CR1 and CR3 but also with PH domain, confirming its regulatory role 

in the catalytic activity of this family of proteins [34], [52].   
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3 Materials and Methods 

The term Molecular Modelling refers to a set of tools that can be used to study the properties 

of molecular structures at a given condition by representing and simulating their behaviour [53]. 

The broad applications of Molecular Modelling can vary from material science to biology and 

involve different fields of expertise, such as physics, chemistry, engineering, and biology. 

Given the complexity and the high number of particles forming the systems of interest, an 

analytical treatment is almost impossible. Therefore, Molecular Modelling is now strictly 

related to numerical methods and computer modelling. In particular, macroscopic properties of 

complex systems, like biological ones, can be described ignoring the electrons behaviour and 

analysing only the motion of atoms nuclei, which is the approach of Molecular Mechanics. 

3.1 Molecular Mechanics  

Molecular Mechanics (MM) describes a system by means of the nuclei position, introducing a 

simplification that allowed to simulate systems of thousands of atoms. Indeed, this method is 

based on the Born-Oppenheimer approximation, which assumes that electron clouds 

instantaneously adjust after a change in the nuclear configuration since the electrons have a 

much lower mass than nuclei. Moreover, the latter are approximated as particles following the 

classical laws of Newton. Therefore, this approach is not able to represent events related to the 

description of electron density clouds, such as formation or disruption of covalent bonds. 

However, MM allows to consider a small number of cases to develop and test parameters, 

collected in what is known as force field, that can be used to describe the potential energy 

surface in a broad range of applications. 

In MM, the potential energy surface, described as a function of the atomic positions, is the sum 

of two terms describing the intra- and inter-molecular forces contributions. Therefore, the 

potential energy 𝒱(𝑟𝑁) can be written as a function of the position 𝑟 of the 𝑁 particles in the 

system: 

 𝒱(𝑟𝑁) = 𝒱𝑏𝑜𝑛𝑑(𝑟𝑁) + 𝒱𝑛𝑜𝑛−𝑏𝑜𝑛𝑑(𝑟𝑁) (1) 

The contribution given at the energy by intra-molecular interactions, also known as bond 

interactions, can be of three main types: bond stretching between two particles, angle bending 

between three particles, and bond torsion between four particles. 
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 𝒱𝑏𝑜𝑛𝑑(𝑟𝑁) = ∑ 𝒱𝑏𝑜𝑛𝑑𝑠(𝑟𝑁)

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝒱𝑎𝑛𝑔𝑙𝑒𝑠(𝑟𝑁)

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝒱𝑡𝑜𝑟𝑠𝑖𝑜𝑛(𝑟𝑁)

𝑡𝑜𝑟𝑠𝑖𝑜𝑛

 (2) 

Different models have been proposed to describe each term contributing to the bond potential 

energy function. The most common and simplest way to model the energy associated to the 

stretching of a covalent bound between two atoms is Hook’s law. This formulation depends on 

two parameters: k, the stretching constant of the bond expressed in kcal mol-1 Å-2, and l0, the 

reference bond length between the two particles interacting (Figure 8 A). Through this 

expression, a penalty to the potential energy functions is applied when bond length deviate from 

the reference l0. 

 𝒱𝑏𝑜𝑛𝑑𝑠(𝑙) =
𝑘𝑖

2
(𝑙𝑖 − 𝑙𝑖,0)

2
 (3) 

The Hook’s law has also been used to model as a harmonic potential the angles term, which 

accounts for the energy associated to the valence angle. It is defined as the angle formed by 

three atoms i-j-k where i and k are both bonded to j (Figure 8 B). Therefore, two parameters are 

used to describe the angles term: h, the force constant expressed in kcal mol-1 deg-2, and θ0, the 

reference value of the valence angle. Compared to the energy required to stretch or compress a 

bond, lower energy is required to distort an angle. 

 𝒱𝑎𝑛𝑔𝑙𝑒𝑠(𝜃) =
ℎ𝑖

2
(𝜃𝑖 − 𝜃𝑖,0)

2
 (4) 

The torsional or dihedral term is defined between four atoms and refers to the rotation of a bond 

(Figure 8 C). It usually follows a sinusoidal law depending on three parameters: Vn is the barrier 

term and is related to the energy necessary to perform a rotation; n is the multiplicity and gives 

the number of minima encountered in a 360° rotation; γ is the phase factor and defines the 

position of the function minima. 

 𝒱𝑡𝑜𝑟𝑠𝑖𝑜𝑛(𝜙) =
𝑉𝑛

2
(1 + cos(𝑛𝜙 − 𝛾)) (5) 
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Figure 8. Bond interactions.  (A) Bond length between atoms i and j. (B) Bond angle between atoms i, 
j, and k. (C) Torsion angle between atoms i, j, k, and l. Source: 
cbio.bmt.tue.nl/pumma/index.php/Theory/Potentials. 

The inter-molecular or non-bond interactions are the way independent particles interact without 

having any specific bound or relationship between atoms. The energy associated to this kind of 

interactions is commonly proportional to a reverse power of the distance between atoms. 

Among the non-bond interactions, we can distinguish the electrostatic force and the van der 

Waals force. The former is related to the presence of unequal distribution of charges in the 

molecules due to the presence of species with different electronegativity. This phenomenon is 

usually modelled by the presence of different point charges, called partial or net atomic charges, 

localized at the nuclei centres. Then, the contribution of this type of interactions to the potential 

energy function is defined through the Coulomb law: the energy associated to two atoms with 

net atomic charges qi and qj at a distance rij is 

 𝒱𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐(𝑟𝑖𝑗) =
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
 (6) 

where 𝜀0 is the dielectric constant. The van der Waals force is repulsive and grows 

exponentially at short distances, is attractive at longer distances and becomes nearly nil starting 

from few nanometres. The most common mathematical description of this function is the 

Lennard-Jones 12-6, which depends on two parameters specific for a pair of atom types 

interacting: the well depth ε and the collision diameter σ (Figure 9). 

 𝒱𝑣𝑑𝑊(𝑟𝑖𝑗) = 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] (7) 
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Figure 9. Potential energy of van der Waals interaction modelled with Lennard-Jones 12-6 potential. 
In this example, 𝜀𝑖𝑗 = 1.5 and 𝜎𝑖𝑗 = 1 nm. 

Therefore, the inter-molecular contribution to the potential energy function can be expressed as 

 𝒱𝑛𝑜𝑛−𝑏𝑜𝑛𝑑(𝑟𝑁) = ∑ ∑ 𝒱𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐(𝑟𝑖𝑗)

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

+ ∑ ∑ 𝒱𝑣𝑑𝑊(𝑟𝑖𝑗)

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

 (8) 

Non-bond interaction calculations are extremely expensive since their number grows with the 

second power of the number of particles N. Different methods have been proposed to reduce 

the computational effort, such as ignoring the non-bond interactions for particles whose 

distance is over a certain cut-off, potential switch, and particle mesh Ewald. 

During a simulation only a finite number of particles can be considered, therefore the system is 

usually inserted in a box of different possible shapes (e.g. cubic, truncated octahedron, and 

dodecahedron). However, boundary conditions are crucial during the simulations because they 

strongly influence the properties of the entire system. To avoid edge effects, periodic boundary 

conditions are usually applied, i.e. the box is replicated in all directions so that particles on one 

side of the box see the periodic repetitions of particles of the other side of the box. Moreover, 

if a particle moves out of the simulation box, a replica enters from the other side to maintain 

constant the total number of particles inside the box. As a consequence, an upper limit to the 

cut-off value is necessary to avoid artifacts and respect the minimum image convention, i.e. to 

impede an interaction of a particle with itself (Figure 10). 
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Figure 10. Representation of the periodic boundary conditions for a cubic box. The cut-off radius to 
respect the minimum image convention is showed [54]. 

The potential energy function describes a multidimensional surface of 3N cartesian coordinates, 

where N is the total number of particles in the system. The representation of this surface is 

almost impossible and feasible only for few cases. MM is interested in the minima of this 

surface since they correspond to stable arrangements of atoms. Therefore, potential energy 

minimization is a crucial step in Molecular Modelling, both as an integral part of techniques 

and as a way to prepare the system before other kinds of calculations, such as Molecular 

Dynamics. Indeed, it allows to avoid unstable interactions in the initial configuration of the 

systems that would produce high forces at the very beginning of a simulation. The different 

methods proposed to find a local minimum of the potential energy surface can be divided in 

derivative and non-derivative methods. Among the latter there are simplex and sequential 

univariate methods, while the former can be further classified in methods of the first order and 

of the second order. The first group is based on computing the gradient of the potential energy, 

since its direction is related to the position of the minimum. Some known methods of the first 

order are steepest descend, conjugate gradients minimization, and line search in one dimension. 

The methods of the second group exploit the information of the second derivative about the 

curvature of the potential energy function. Among them, there are Newton-Raphson method and 

Broyden-Fletcher-Goldfarb-Shann method. None of this method in always preferrable to the 

others, but the choice should be made according to the desired accuracy, storage capability, 

robustness, and the possibility to compute the second derivative. 
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3.2 Homology Modelling 

A central issue in computational Molecular Modelling is obtaining reliable 3D all atom protein 

structures to be used as input in simulations. Despite the great number of experimental 

structures now available (e.g. in the Protein Data Bank [55]), techniques like X-ray 

crystallography and cryo-EM are time-consuming and expensive. Moreover, many protein 

structures have not been resolved yet or are difficult to obtain. To overcome these problems, 

Homology Modelling can be used to build atomic-resolution models of a protein (target) 

starting from its amino acid sequence and one or more experimental structures of homologous 

proteins (templates), i.e. proteins sharing a significant amino acid sequence identity with the 

target. Indeed, it is known that proteins with sufficiently high sequence identity (e.g. more than 

40%) tend to have similar tertiary structures [56]. 

Given a protein to be modelled by homology, the first step is to identify homologous proteins 

with known 3D structures. Then, one or more of them should be selected as templates, usually 

choosing within the same family of the target and with the best possible resolution. Once the 

template has been identified, it is necessary to perform sequence alignment, i.e. a bioinformatics 

technique used to obtain the optimal alignment between two or more DNA, RNA, or protein 

sequences. To improve the correlation between computed sequence alignments and biological 

similarities, several algorithms and scoring schemes have been proposed. The latter are also 

crucial to define the similarity between two protein sequences, since a mismatch may have 

completely different biological outcome depending on the involved amino acids. For instance, 

a substitution of polar residue with a hydrophobic one may be more adverse than the 

substitution between to polar amino acids. 

After the alignment, an initial model is built following the template and starting from the regions 

without gaps. While single amino acids deletions are acceptable to build the model, larger 

missing regions should be treated either using ab initio techniques, which try to model small 

sequences without any template, or searching a different template for the specific part. Once 

the folds corresponding to gaps are inserted, the model is refined using MM techniques to obtain 

a low energy conformation. The final model should be further analysed to assess is quality, such 

as investigating the presence of amino acids in the inaccessible regions of the Ramachandran 

plot. Moreover, Molecular Dynamics simulations are usually performed to fully equilibrate the 

obtained structure and analyse its stability. 
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Among many different tools for Homology Modelling, I-Tasser has been ranked among the top 

methods in the Critical Assessment of protein Structure Prediction (CASP) since 2006. Its 

methodology is composed by four main steps and exploits different tools (Figure 11). In the 

first stage of prediction, the target sequence is compared to a nonredundant sequence database 

to build a sequence profile and infer the secondary structure through PSIPRED. These data are 

used by LOMETS to search suitable templates in the PDB library. In the second stage, 

continuous fragments from template structures and unaligned regions built through ab initio 

modelling are combined together. The structural assembly is done through a modified replica-

exchange Monte Carlo simulation with specific restraints, from which low energy 

conformations are obtained and clustered by SPICKER. Cluster centroids are obtained 

averaging the 3D coordinates of the cluster members. In the third stage, the fragment assembly 

simulation is performed again starting from the selected centroids to remove steric clashed and 

refine the structures. The decoys are clustered and the centroids are used by REMO to generate 

the final model. Finally, in the fourth stage the target model is compared to the matching 

proteins in PDB library to obtain information about model quality and structural similarities 

[57]. 

 

 

Figure 11. Schematic representation of I-Tasser methodology for protein structure prediction [57]. 
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3.3 Molecular Dynamics 

Despite providing tools to describe the mechanics of molecular systems and to find an energy 

minimum, MM and energy minimization can predict the properties only of quite simple 

systems. Indeed, only when all minima configurations are known it is possible to exploit 

statistical mechanics to obtain the thermodynamic properties of the system. Therefore, to obtain 

representative configurations of the system of interest other tools are needed, such as simulation 

techniques that can model its time-dependent behaviour. The most common simulation 

technique is Molecular Dynamics (MD), which solves Newton’s equations for all the particles 

to obtain a trajectory in terms of positions and velocities. 

The phase space of a system containing N atoms is a 6N dimensional space where a single 

configuration of the system is represented as a point defined by its 3N positions and 3N 

momenta. Every point in the phase space characterizes a microstate of the system, while a 

collection of microstates with the same macroscopic properties, e.g. temperature or pressure, is 

called a macrostate. A statistical ensemble is defined as a collection of points in the phase space 

that share the same macrostate. In MD the main statistical ensembles are: 

▪ The micro-canonical ensemble (NVE), which describes an isolated system 

characterized by a fixed number of particles (N), assigned volume (V) and constant 

energy (E); 

▪ The canonical ensemble (NVT), which describes a closed system with fixed number of 

particles (N), assigned volume (V), and coupled with a thermostat to maintain a constant 

temperature (T); 

▪ The isothemal-isobaric ensemble (NPT), which describe a closed system with fixed 

number of particles (N) coupled both with a thermostat and a barostat to maintain 

constant temperature (T) and pressure (P); 

▪ The grand-canonical ensemble (µVT), which describes an open system with fixed 

chemical potential (µ), volume (V), and temperature (T). 

When analysing a system, one macroscopic property, that we can call A, is usually of interest. 

The value of A depends on the microstate of the system, therefore it is a function of the momenta 

pN and positions rN of all particles. The ensemble average of A can be obtained integrating over 

all possible microstates of the statistical ensemble. 
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 〈𝐴〉 = ∬ 𝐴(𝒑𝑁 , 𝒓𝑁)𝜌(𝒑𝑁 , 𝒓𝑁) 𝑑𝒑𝑁𝑑𝒓𝑁 (9) 

The function ρ(pN,rN) is the probability density of the ensemble and its formulation depends on 

the type of statistical ensemble. In case of a canonical ensemble, defining with H the 

Hamiltonian, kB the Boltzmann’s constant, and Q the partition function, the probability density 

has the form of the Boltzmann distribution. 

 𝜌(𝒑𝑁 , 𝒓𝑁) =
1

𝑄
𝑒

−
𝐻(𝒑𝑁,𝒓𝑵)

𝑘𝐵𝑇 ;      𝑄 =
1

𝑁!
∬ 𝑒

−
𝐻(𝒑𝑁,𝒓𝑁)

𝑘𝐵𝑇  𝑑𝒑𝑁𝑑𝒓𝑁 (10) 

Hence, the partition function relates the microscopic state of a system with its macroscopic 

properties. The correct estimation of the ensemble average can be obtained only if all the 

possible states are known, but a complete sampling of the phase space is not feasible in a finite 

time. However, this problem can be overcome assuming the ergodic hypothesis, which states 

that an ensemble average can be replaced by a time average if the property of interest has been 

sampled for long enough.  

 〈𝐴〉𝑒𝑛𝑠𝑒𝑚𝑏𝑒 = 〈𝐴〉𝑡𝑖𝑚𝑒 = lim
𝜏→∞

1

𝜏
∫ 𝐴(𝒑𝑁(𝑡), 𝒓𝑁(𝑡)) 𝑑𝑡

𝜏

𝑡=0

 (11) 

where pN(t) and rN(t) are the instantaneous momenta and position at time t, respectively. Since 

MD allows to obtain a trajectory of the systems in terms of M samples, numerical integration 

over a sufficiently long simulation, such that the phase space is correctly sampled, gives an 

estimation of the average of the property of interest. 

 〈𝐴〉𝑡𝑖𝑚𝑒 ≈
1

𝑀
∑ 𝐴(𝒑𝑁, 𝒓𝑁)

𝑀

𝑖=1

 (12) 

In MD, the trajectory of particles is obtained in terms of positions and velocities solving 

Newton’s equations of motion. This method is deterministic since, given an initial configuration 

of the system, each step depends only on the previous one. In particular, the acceleration a of 

each particle is obtained from the derivative of the potential energy function 𝒱 with respect to 

its position r: 

 𝑎 =
𝑑2𝑟

𝑑𝑡2
= −

1

𝑚

𝑑𝒱

𝑑𝑟
 (13) 

Due to the complexity of the potential energy surface, there is no analytical solution for this 

problem. Thus, the equations of motion are integrated using finite difference method and 

dividing the integration in small stages separated by a fixed time-step δt. The choice of this 
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parameter is crucial since too small time-steps increase the computational effort needed to 

explore a sufficient fraction of phase space, while too large time-steps may lead to instability 

and failure of the simulation. A suitable trade-off is represented by a δt ten times smaller than 

the fastest oscillation within the system, which is related to hydrogens in all atom simulations. 

In a generic implementation scheme, initial atomic positions are derived from literature (e.g. 

Protein Data Bank) or from Homology Modelling, while starting velocities are assigned 

according to a Maxwell-Boltzmann distribution at a specified temperature. Before starting the 

simulation, temperature and pressure of the system are equilibrated while holding atomic 

positions fixed. Then, for as many steps as desired, the potential energy function is built 

exploiting the parameters of the selected force field and integration algorithms are used to 

obtain positions and velocities at the next step. 

3.4 Principal Component Analysis  

Due to the complexity of molecular systems, Molecular Dynamics trajectories are characterized 

by a large dimensionality. A reduction of degrees of freedom is often necessary to analyse 

simulation data and achieve greater interpretability. Principal Component Analysis (PCA) is a 

common technique used to dimensionality reduction purpose. It is a statistical procedure used 

to obtain from a set of variables a lower number of linearly uncorrelated features, called 

principal components (PCs), that are orthogonal direction of maximal variance. 

The first step of this technique is the definition of the covariance matrix S of the atomic 

positions. The variance 𝜎𝑣
2 of the data along a direction v can be written as: 

 𝜎𝑣
2 = 𝑣𝑇𝑆𝑣 (14) 

Therefore, for Rayleigh variational representation, the direction 𝑣1 of maximal variance 𝜎1
2 is 

defined as 

 𝜎1
2 = max

|𝑣1|=1
𝑣1

𝑇𝑆𝑣1 (15) 

Thus, the first PC is the first eigenvector of the covariance matrix and the variance along it 

corresponds with the first eigenvalue. Through the diagonalization of the covariance matrix, 

3N orthonormal eigenvectors (ej), corresponding to the PCs, and the corresponding eigenvalues 

(𝜎𝑗
2) are obtained. The higher is the eigenvalue, the higher are the atomic fluctuations along the 

corresponding direction. Since the sum of all eigenvalues corresponds to the total variance of 
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the data, it is also possible to estimate the fraction of variance that is explained by the first m 

PCs, where usually m ≪ 3N. In this way, it is possible to select a proper number of components 

to describe almost the totality of the trajectory of interest. 

3.5 Markov State Models 

While traditional MD is now an accepted tool to investigate molecular processes from a 

structural point of view and to relate them with experimental results, it is usually incapable of 

identifying different states and their kinetic relationship from the trajectories. One useful 

method to handle this problem is to build a Markov State Model (MSM), which consists in a 

network model of various states and the transfer constants between them [58]. In particular, if 

we consider a system in which 𝑛 discrete states can be found, a MSM models the kinetics of 

the system through an 𝑛 × 𝑛 transition probability matrix estimated from MD trajectories. An 

essential feature of MSMs applied to MD is that they replace the view of single trajectories with 

an ensemble view of the dynamics. Moreover, trajectories used to estimate the model need to 

be long enough to reach only a local equilibrium rather than a global equilibrium, which may 

require orders of magnitude longer simulations [59].  

3.5.1 Analysis of a continuous dynamics 

To better understand the how a MSM is built from simulation data, it is necessary to describe 

first the ideal case of a continuous system. Consider a continuous state space Ω and a dynamical 

process 𝑥(𝑡); three main assumptions are made [59]: 

1. 𝑥(𝑡) is a Markov process in the state space Ω, which means that the instantaneous 

change of the system depends only on 𝑥(𝑡) and does not require the knowledge of 

previous history. Consequently, the probability density to pass from 𝑥 ∈ Ω at time 𝑡 to 

𝐴 ⊆ Ω at time 𝑡 + 𝜏 can be expressed as 

 𝑝(𝑥, 𝐴; 𝜏) = 𝑃{𝑥(𝑡 + 𝜏) ∈ 𝐴 | 𝑥(𝑡) = 𝑥} =  ∫ 𝑝(𝑥, 𝑦; 𝜏)𝑑𝑦
 

𝑦∈𝐴

 (16) 

2. 𝑥(𝑡) is ergodic, i.e. the state space does not have any dynamically disconnected states 

and all states will be visited for 𝑡 → ∞. The amount of time that the system spends in 

each state is given by the stationary density 𝜇(𝑥), which corresponds to the equilibrium 

probability density for a given thermodynamic ensemble. 
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3. 𝑥(𝑡) is reversible and, at the equilibrium, the number of transitions from x to y per time 

is equal to the number of transition from y to x. This assumption of detailed balance can 

be mathematically expressed as  

 𝜇(𝑥) 𝑝(𝑥, 𝑦; 𝜏) = 𝜇(𝑦) 𝑝(𝑦, 𝑥; 𝜏) (17) 

This condition is a direct consequence of the second law of thermodynamics, since if it 

is not fulfilled there would be a set of states traversed in one direction with higher 

probability; if so, this preference of direction could be used to produce work from pure 

thermal energy. 

If we consider an ensemble of molecular systems distributes in the state space at time t, its 

probability density 𝑝𝑡(𝑥) is different from the stationary density. If we wait a certain amount 

of time 𝜏, this probability will change and become more similar to 𝜇(𝑥) since each system will 

undergo a transition according to the transition probability density 𝑝(𝑥, 𝑦; 𝜏). This phenomenon 

can be modelled through the propagator 𝒬(𝜏): 

 𝑝𝑡+𝜏(𝑥) = 𝒬(𝜏) ∘ 𝑝𝑡(𝑥) = ∫ 𝑝(𝑦, 𝑥; 𝜏) 𝑝𝑡(𝑦) 𝑑𝑦
 

𝑦∈Ω

 (18) 

The same relationship can be described in the space of 𝜇-weighted densities with the transfer 

operator 𝒯(𝜏): 

 𝑢𝑡+𝜏(𝑥) = 𝒯(𝜏) ∘ 𝑢𝑡(𝑥) =
1

𝜇(𝑥)
 ∫ 𝑝(𝑦, 𝑥; 𝜏)𝜇(𝑦) 𝑢𝑡(𝑦) 𝑑𝑦

 

𝑦∈Ω

 (19) 

Both operators fulfil the Chapman-Kolmogorov equation, i.e. they can be used to extend the 

dynamics for arbitrary long times. In case of the transfer operator, if [𝒯(𝜏)]𝑘 is the k-fold 

application of 𝒯(𝜏), the Chapman-Kolmogorov equation is 

 𝑢𝑡+𝑘𝜏(𝑥) = [𝒯(𝜏)]𝑘 ∘ 𝑢𝑡(𝑥) (20) 

Both the propagator 𝒬 and the transfer operator 𝒯 are characterized by eigenfunctions and 

associated eigenvalues, that are contained in the interval [-1,1] if the dynamics is reversible. 

 𝒬(𝜏) ∘ 𝜙𝑖(𝑥) = 𝜆𝑖𝜙𝑖(𝑥);   𝒯(𝜏) ∘ 𝜓𝑖(𝑥) = 𝜆𝑖𝜓𝑖(𝑥);  𝜙𝑖(𝑥) = 𝜇(𝑥)𝜓𝑖(𝑥) (21) 

It is possible to observe a certain number m of dominant eigenvalues, associated to the first m 

slowest dynamical processes, while the remaining 𝜆𝑖 < 𝜆𝑚 describe the fast processes that are 

usually not of interest. Thus, the dynamics can be described as the superposition of slow and 
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fast processes, where the latter tend to decay faster increasing the timescale of analysis [59]. In 

particular, there is one eigenvalue with the greatest norm 𝜆1 = 1 whose associated 

eigenfunctions are the stationary distribution 𝜇(𝑥) or a constant function, considering the 

propagator or the transfer operator, respectively. Regarding the remaining dominant 

eigenvalues, the closer they are to 1 the slower is the associated dynamical process, such that it 

is possible to obtain an implied timescale for each of them: 

 𝑡𝑖 = −
𝜏

ln 𝜆𝑖
 (22) 

Finally, the first m eigenfunctions of the transfer operator can be used to describe the transitions 

that characterize each dynamical processes according to their sign (Figure 12). For instance, in 

a system with four metastable states, if the i-th eigenfunction is positive in states A and B and 

negative in states C and D, it means that the i-th dynamical process is a transition between states 

A+B and C+D. 

 

Figure 12. Eigenvalues and eigenfunctions of the transfer operator in an example system [59]. (A) 
Representation of the eigenvalues. It is possible to observe a remarkable gap between the first four 
eigenvalues and the following ones, meaning that there are three dominant slow processes describing 
the system. (B) Representation of the right eigenfunctions corresponding to the slowest processes. Each 
eigenfunction describes the transition between the states in which it is positive and negative. 

3.5.2 Discretization of state space 

In a real analysis, the state space is not continuous but should be discretized to obtain a 

computationally feasible description of the dynamics. Therefore, the transfer operator is 

approximated by a reversible transition matrix and the eigenfunctions 𝜙(𝑥) and 𝜓(𝑥) 

correspond to its left and right eigenvectors, respectively. A MSM then is a partitioning of the 

state space together with a transition matrix describing the jump processes between these 

discrete states in which the observed trajectories are projected. Consequently, the information 
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about where the original continuous process would be within a discrete space is lost and the 

jump process is no longer Markovian (Figure 13). The systematic discretization error that is 

introduced should be kept small enough to accurately describe the kinetics even for large and 

complex systems. Usually, the mentioned discretization is a simple partitioning with sharp 

boundaries in n states 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑛}. 

 

Figure 13. Example of discretization of the state space [59]. The real continuous trajectory (dashed 
line) is projected onto discrete states, so that the result is a jump process between them. 

To represent the dynamics of the system, the degrees of freedom are usually reduced such as 

ignoring velocities or using specific coordinated defined by the analyst (featurization). After 

the discretization, the stationary probability to be in state i is given by the relation: 

 𝜋𝑖 = ∫ 𝜇(𝑥) 𝑑𝑥
 

𝑥∈𝑆𝑖

 (23) 

As mentioned before, the transfer operator is approximated by a matrix 𝑻(𝜏) ∈ ℝ𝑛×𝑛 such that 

the element 𝑻𝑖𝑗(𝜏) represents the probability for the system to be in state j at time 𝑡 + 𝜏 given 

that at time 𝑡 it was in state i, where 𝜏 is called the lag time of the model. An important feature 

is that to estimate the transition matrix the necessary dynamical information extends only over 

the lag time, i.e. no information about the global equilibrium is needed. If 𝒑(𝑡) is a column 

vector containing the probabilities for the system to be in each of the n states at time t, we can 

obtain the same probabilities at time 𝑡 + 𝜏 through the transition matrix: 

 𝒑𝑇(𝑡 + 𝜏) = 𝒑𝑇(𝑡) 𝑻(𝜏) (24) 

To model the system kinetics at time scales longer that 𝜏, remembering that the transfer operator 

satisfies equation (20), we can use the expression: 
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 𝒑𝑇(𝑡 + 𝑘𝜏) ≈ 𝒑𝑇(𝑡) 𝑻𝑘(𝜏) (25) 

This is only an approximation due to the discretization error, which depends on the 

discretization that has been chosen. In the analysis of molecular systems, the loss of information 

is due to both the discretization into a finite number of states and the reduction of coordinates 

used to describe the system itself. However, the finer is the discretization the smaller is the 

error, which should reduce increasing the lag time since we are less often imposing a local 

equilibrium into a discrete state [59]. 

3.5.3 Estimation and validation of the model 

Suppose a trajectory generated at equilibrium conditions with N configurations stored every Δ𝑡 

and a discretization in m states. The information of the trajectory can be stored as the sequence 

of the discrete states 𝑠1, 𝑠2, … , 𝑠𝑁. It is important to underline that the trajectories can be of 

different length and restricted to different local equilibrium states, provided that the time 

resolution is the same. The first step is to choose a lag time 𝜏, which should be an integer 

multiple of the data time resolution Δ𝑡. A common procedure to estimate the lag time is 

observing the value of the implied timescale of the slowest process at increasing lag times: a 

proper 𝜏 corresponds to the point where the curve reaches a plateau. Then, it is possible to 

define a count matrix 𝑪 from the observed trajectories: the element 𝐶𝑖𝑗(𝜏) is the number of 

times in which the system was in state i at time t and in state j at time 𝑡 + 𝜏. In case of multiple 

trajectories, the single count matrices are simply added up. If 𝜒𝑖(𝑥𝑡) is the probability for the 

system to be in state i at time t, each element of the count matrix can be written as 

 𝐶𝑖𝑗(𝜏) = 𝐶𝑖𝑗(𝑎Δ𝑡) = ∑ 𝜒𝑖(𝑥𝑘)𝜒𝑗(𝑥𝑘+𝑎)

𝑁−𝑎

𝑘=1

 (26) 

There are two main approaches to compute this matrix from data: 

1. Subsampling of the trajectories at lag time to obtain statistically independent transition 

counts and a more robust estimation of the transition matrix. However, this approach 

may lead to a remarkable leakage of data and numerical problems; 

2. Using a sliding window to count at lag time to avoid ignoring much of the data. 

However, nearby transitions, e.g. 𝑡 → 𝑡 + 𝜏 and 𝑡 + Δ𝑡 → 𝑡 + Δ𝑡 + 𝜏, are not 

statistically independent and the obtained model is only asymptotically correct. The bias 

introduced through this method also depends on the time resolution of the observed 

trajectory, since decreasing Δ𝑡 the nearby transitions increase their correlation. 
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In case of an infinite long trajectory, the element 𝑇𝑖𝑗 of the transition matrix can be obtained by 

the number of i-to-j transitions divided by the total number of transitions from state i. 

 𝑇𝑖𝑗(𝜏) =
𝐶𝑖𝑗(𝜏)

𝐶𝑖𝑗(𝜏)
 (27) 

However, in the real case of finite trajectories a different approach to estimate the transition 

matrix which is more consistent with the observed data should be defined. To simplify the 

notations, in the following analysis the dependence on lag time of transition and count matrices 

is omitted. Supposing to have considered statistically independent transitions when building the 

count matrix, the probability that a transition matrix 𝑻 would have generated the observed 

trajectories, i.e. the likelihood, is the product of the individual jump probabilities.  

 𝑝(𝑪|𝑻) = ∏ 𝑇
𝑖𝑗

𝐶𝑖𝑗

𝑛

𝑖,𝑗=1

 (28) 

From the Bayes’ theorem, the posterior probability of the transition matrix is proportional to 

the product of the likelihood and the prior probability of the transition matrix itself, before 

having observed any data: 

 𝑝(𝑻|𝑪) ∝ 𝑝(𝑻) 𝑝(𝑪|𝑻) = 𝑝(𝑻) ∏ 𝑇
𝑖𝑗

𝐶𝑖𝑗

𝑛

𝑖,𝑗=1

 (29) 

The prior probability is crucial in the estimation of the transition matrix, therefore it should be 

chosen to obtain posterior distributions that lead to physically meaningful solutions. This is of 

particular importance when little observations are available, otherwise it should be sufficiently 

“weak” to give more emphasis on the observations. Usually, for computational simplicity, 

conjugate priors are usually chosen, i.e. functions that allow to obtain posteriors with the same 

functional form as the likelihood. 

 𝑝(𝑻|𝑪) = ∏ 𝑇
𝑖𝑗

𝐶𝑖𝑗+𝐶𝑖𝑗
𝑝𝑟𝑖𝑜𝑟

𝑛

𝑖,𝑗=1

= ∏ 𝑇
𝑖𝑗

𝐶𝑖𝑗
𝑡𝑜𝑡

𝑛

𝑖,𝑗=1

 (30) 

In the Bayesian approach, it is possible to estimate the transition matrix as the one that 

maximizes the posterior probability, which means using the so-called maximum a posteriori 

estimator. In this case, this approach leads to an asymptotically unbiased estimation of the 

transition matrix. 
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 𝑇𝑖𝑗 =
𝐶𝑖𝑗

𝑡𝑜𝑡

𝐶𝑖
𝑡𝑜𝑡 (31) 

If no information about a prior distribution of the transition matrix is known, which corresponds 

to using a constant function as prior, maximizing the posterior is the same as maximizing the 

likelihood. This approach is named maximum-likelihood estimation and may lead to a 

significant bias in case of limited data. The obtained matrix expresses the transition probabilities 

between the n states. However, the number states chosen during the discretization is usually 

very high and much greater than the real number m of metastable states. For instance, two small 

states that are strongly connected and characterized by a high probability to observe a jump 

between them can be considered a unique state. To cluster together the initial states and found 

the m metastable states, algorithms like Perron Cluster Cluster Analysis (PCCA) can be used 

[58], [60]. 

Usually, we are also interested in the uncertainty of the estimation and, consequently, of the 

properties obtained from the transition matrix. In this case one commonly used method is the 

Markov chain Monte Carlo sampling of transition matrices, also known as Bayesian MSM. 

This approach consists in obtaining a certain number of matrices from the posterior distribution 

and use them to estimate also confidence intervals or standard deviations [61]. Notably, no 

assumption is made on the functional form of the posterior distribution. This uncertainty 

estimation is also important to validate the obtained model through the Chapman-Kolmogorov 

test. It basically tests whether the chosen discretization and lag time have led to a model that 

satisfies the approximation of the Chapman-Kolmogorov equation within statistical 

uncertainty: 

 [𝑇(𝜏)]𝑘 ≈ 𝑇(𝑘𝜏) (32) 

where [𝑇(𝜏)]𝑘 is the k-fold application of the transition matrix estimated from data and 𝑇(𝑘𝜏) 

is the transition matrix estimated at a longer lag time 𝑘𝜏 from the same data. Here, the statistical 

error due to limited sampling could be evaluated through a number of techniques, e.g. the 

Bayesian estimation [62]. In practice, the model to test is propagated at a longer timescale 𝑘𝜏  

through equation (24) and the obtained probabilities are compared with the elements of 

transition matrices computed at 𝑘𝜏 in such a way to obtain a confidence interval: if the 

propagated probabilities lie in it, the test is passed. In a simplified version, only the self-

transition probabilities are tested. In case of unsuccessful validation, the parameter used to build 

the MSM should be changed, e.g. the lag time. If this tuning does not solve the problems, new 
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coordinates should be used to describe the system or new MD data should be produced. The 

main steps involved in the estimation of an MSM are summarized in Figure 14. 

 

Figure 14. Flow chart representing the main steps involved in the estimation of an MSM from MD 
trajectories. 

3.5.4 Transition Path Theory 

In recent years, the continuous increase in the number of application of MSM has led to the 

need of new methods to analyse them, especially in case of large state spaces and complex 

networks. In this context, the framework of transition path theory (TPT) has been exploited to 

describe the statistical properties of transitions between the states defined by an MSM. 
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Basically, the idea is to consider two states of interest and find the typical mechanism by which 

the system jumps from the first to the second [63]. 

To better understand how is possible to find the most probable path connecting two states of a 

MSM, some initial definitions are necessary. If A is the starting state and B the ending state, a 

reaction event is an oscillations from A to B and the way this transition happens is of interest. 

In this framework, it is possible to introduce the concepts of last-exit-before-entrance time 𝑡𝐴, 

i.e. the time at which the systems last exit from state A before entering in state B, and first-

entrance-after-exit time 𝑡𝐵, i.e. the time at which the system enters for the first time in state B 

on its way from state A. Therefore, the n-th reaction event starts at 𝑡𝑛
𝐴, ends at 𝑡𝑛

𝐵, and can be 

described by the ordered sequence of states visited during the transition from A to B. This latter 

is usually named as reactive trajectory. Finally, the distribution of reactive trajectories gives the 

probability that the system is at time t in state i and that is reactive: 

 𝑚𝑅 = {𝑚𝑖
𝑅}𝑖∈𝑆;           𝑚𝑖

𝑅 = 𝑝(𝑥(𝑡) = 𝑖 ∩  𝑡 ∈ 𝑅) (33) 

where S in the state space and R is the set of reactive times {𝑡𝑛
𝐴,  𝑡𝑛

𝐵}. Note that this quantity 

does not depend on time since t is fixed in the previous expression. Intuitively, this distribution 

can be thought as the product of the probability that, during the transition, the system arrived 

from A and the probability that it will reach B rather than A. To obtain a mathematical 

expression of this distribution, the concepts of foreward and backward committors have been 

introduced: 

▪ The i-th element of the forward committor 𝑞+ represents the probability that the process 

starting in state i will reach B rather than A; 

▪ The i-th element of the backward committor 𝑞− is the probability that the transition of 

system coming from state i started from A rather than from B. 

It is possible to write those probabilities as: 

 𝑞𝑖
+ = 𝑝(𝑡𝐵

+ < 𝑡𝐴
+ | 𝑥(0) = 𝑖);          𝑞𝑖

− = 𝑝(𝑡𝐵
− > 𝑡𝐴

− | �̅�(0) = 𝑖) (34) 

where 𝑡𝐴
+ and 𝑡𝐵

+ are the first time entering in state A and B, 𝑡𝐴
− and 𝑡𝐵

− are the last exit time 

from state A and B, 𝑥 and �̅� are the process and the time-reversed process. Therefore, ff 𝜋𝑖 is 

the stationary probability for state i, 𝑚𝑅 can be obtained through the following relationship 

[63]: 
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 𝑚𝑖
𝑅 = 𝜋𝑖𝑞𝑖

+𝑞𝑖
−,          𝑖 ∈ 𝑆 (35) 

The committors are also useful to define an important quantity in transition path theory, called 

probability current of reactive trajectories 𝑓𝐴𝐵, which is the average rate at which reactive 

trajectories flow from one state to another. Precisely, it is a matrix in which the element (i, j) is 

the limit for 𝑠 → 0+ of the number 𝑁𝑠
𝑖𝑗 of reactive trajectories jumping from state i to j in an 

interval long s divided by s. It is possible to prove that: 

 𝑓𝑖𝑗
𝐴𝐵 = lim

𝑠→0+

𝑁𝑠
𝑖𝑗

𝑠
= {

𝜋𝑖𝑞𝑖
−𝑇𝑖𝑗𝑞𝑗

+          𝑖 ≠ 𝑗

0                           𝑖 = 𝑗
 (36) 

where 𝑇𝑖𝑗 is the transition matrix of the MSM. 

Since the process is supposed to be reversible, transitions from state i to j and from state j to i 

can be observed at the same time. Therefore, one is usually interested in the effective current or 

net flux 𝑓+, which is the net average number per time unit of reactive trajectories jumping from 

state i to j while moving from A to B. 

 𝑓𝑖𝑗
+ = max(𝑓𝑖𝑗

𝐴𝐵 − 𝑓𝑗𝑖
𝐴𝐵, 0) (37) 

Now, it is possible to imagine modelling the system as described by the MSM with a graph, 

where the nodes represent the states and the edges are weighted by the elements of the net flux 

matrix (Figure 15). The graph contains multiple reactive pathways connecting the starting node 

A and the final node B. In each of them, the system has to move along edges associated with 

different effective currents. The edge with the minimum flux is referred as the bottleneck of the 

reaction pathway since it represents the slowest transition.  

 

Figure 15. Graph representation of a five-state MSM. The starting and ending nodes of the transition 
are A and B, while states 1, 2, and 3 are intermediates. The width of the arrows represents the net flux 
between the states. Bottlenecks are marked with an asterisk. The most probable pathway, with the 
highest-flux bottleneck, is 𝐴 → 1 → 3 → 2 → 𝐵. 
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Once we have built the graph, it is straightforward to define the best transition pathway as the 

one characterized by the bottleneck with the maximum net flux [63]. In this way, it is possible 

to characterize the most probable pathways that characterize a complex system and to simplify 

the understanding of its dynamics.  
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4 Replica of previous results on a RhoGEF oncoprotein 

4.1 Introduction 

Ras homologue (Rho) are a family of proteins in the Ras superfamily of GTPase. These proteins 

are involved in many cellular functions, mainly in the dynamics of actin cytoskeleton and, 

consequently, in vesicles formation, membrane trafficking, and cell spreading [14]. The activity 

of small GTPases is regulated by GPTase-activating proteins and guanine-nucleotide exchange 

factors (GEF). The function of the latter is transiently stabilizing the nucleotide-free 

conformation of GTPases to allow the exchange between GDP and GTP inside the catalytic 

pocket [14], [15]. The most common structure of Rho GEF is characterized by a DH domain 

followed by a PH domain. The dynamics of such proteins have been analysed to investigate the 

relationship between their structure, its evolutionary-driven deformations, and their biological 

functions. The main functional specialization of this family of Rho GEF was discovered to be 

the autoinhibition by PH domain. Indeed, the collective motion of PH region was different 

between proteins in which the Rho GTPase binding surface is masked by the PH motif itself 

and the ones where this function is missing or carried out by other domains [52].  

Rho guanine nucleotide exchange factor 12 (ARHGEF12), also known as leukaemia associated 

Rho GEF (LARG), is a Rho GEF whose in-frame fusion with MLL gene has been associated 

with acute myeloid leukaemia [64]. This protein is characterized by multiple domains and acts 

as an exchange factor for RhoA GTPase through its DH/PH region. LARG has been shown to 

mediate the activation of RhoA signalling by G𝛼-coupled receptors [65] and its enforced 

expression has been related to reduced cell proliferation and migration in breast and colorectal 

cancer [66]. Therefore, ARHGEF12 has been proposed as a potential tumour suppressor gene. 

The dynamics and mechanical properties of LARG have been studied both in its free state and 

in presence of RhoA [34]. With the aim of finding a robust experimental setup to exploit in the 

analysis of Alsin DH/PH domain, the same systems were studied and our results were compared 

to the ones obtained from literature. At the same time, the main regions involved in the 

interaction of LARG with RhoA are investigated to carry out a successive comparative analysis 

with Alsin. In this way, it will be possible to characterize at a molecular level the different 

functions of ARHGEF12, a RhoGEF, and Alsin, a Rac1 effector. 
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4.2 Materials and Methods 

4.2.1 Molecular Dynamics 

The structures of ARHGEF12 alone (PDB: 1TXD) and bound to RhoA (PDB: 1X86) were 

retrieved from the Protein Data Bank [67]. For consistency with previous literature residue have 

been numberd according to UniProt entry Q9NZN5. Two MD simulations were performed, one 

for the protein without the GTPase (UnBnd system) and one for the protein bound to RhoA 

(Bnd system), using GROMACS 2020.4 [68]. AMBER ff99SB-ILDN force field was used to 

define the topology [69]. Both systems were configured in GROMACS in a cubic box with 

periodic boundary conditions setting a minimum distance of 1 nm between the protein and the 

box edge. Then, they were solvated in explicit TIP3P water [70] and, subsequently, an 

appropriate number of Na+ and Cl- were added to reach a physiological concentration of 0.15 

M and to neutralize the charge. The energy minimization was performed through the steepest 

descend method for 2000 steps before equilibrating the systems. To this purpose, the following 

procedure was performed in both of them. An initial simulation of 500 ps in NVT ensemble 

and a following one of 500 ps in NPT ensemble were carried out restraining C-alpha carbons 

positions. The NVT simulation was performed with position restraints at a reference 

temperature of 300 K using the modified Berendsen thermostat [71] with 𝜏 = 0.1 ps. The NPT 

simulation was carried out at 1.0 bar under position restraints using the Berendsen barostat with 

isotropic coupling and 𝜏 = 1.0 ps. Finally, an MD simulation in NPT ensemble was produced 

for 260 ns. The equation of motion was integrated with the leap frog algorithm using a time 

step of 2 fs. Electrostatic interactions were treated with particle mesh Ewald method, , short-

range cut-off at 1.2 nm and a switching of the potential starting at 1.0 nm. Van der Waals 

interaction were treated with a cut-off at 1.2 nm and a switching of the potential starting at 1.0 

nm. The Visual Molecular Dynamics (VMD) engine was used for the visual inspection of 

systems and trajectories [72]. 

4.2.2 Analysis 

The stability of each system was evaluated computing the root-mean-square deviation (RMSD) 

from the iniziato configuration of C-alphas atomic positions throughout the trajectory. Since 

the dynamics of the protein has been previously described as characterized by a collective 

motion of PH domain, the RMSD was also evaluated on the C-alphas of the sole DH region 

(residues 766-996). From the visual inspection of RMSD plots (Figure S1), last 240 ns of each 

trajectory was used in the following analysis. The flexibility of the protein was evaluated 
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computing the root-mean-square fluctuation (RMSF) during the last 240 ns and fitting the 

structures on the C-alphas of the DH domain. 

To identify the residues of ARHGEF12 involved in the interaction with RhoA, the probability 

to be in contact with RhoA was computed in the Bnd system for each amino acid. The contact 

probability was computed sampling the MD trajectory every 250 ps with the following 

procedure [73]. For each sample snapshot, the distances between the atoms of one ARHGEF12 

residue and the atoms of RhoA were computed: the residue was in contact if at least one of the 

residue-residue distances was lower than a threshold of 0.3 nm. The number of snapshots in 

which a residue was in contact divided by the total number of snapshots was the contact 

probability for that residue. 

Previously, the force constant per residue profile was investigated in the same protein to infer 

its mechanical properties at the single residue level. This is a measure of the fluctuations of the 

mean distance of each residue from the rest of the structure and its higher values has been 

associated with protein functional sites [74], [75]. The calculation of force constants was 

implemented according to the formula: 

 𝑘𝑖 =
3𝑘𝐵𝑇

〈(𝑑𝑖 − 〈𝑑𝑖〉)2〉
 (38) 

where 𝑑𝑖 is the mean distance of the i-th residue from the rest of the structure, 𝑘𝐵is the 

Boltzmann’s constant, 𝑇 is the temperature of the system, and the operator 〈 〉 stands for the 

average over the simulation. The distances were defined between the C-alphas of the amino 

acids and computed on representative snapshots extracted every 50 ps. The force constants were 

computed independently for the DH domain (residues 766-996) and the following region 

(residues 997-1126), comprising PH domain and the linker region. 

Principal component analysis (PCA) was performed in both systems to analyse whether the 

presence of RhoA alters the essential dynamics of the RhoGEF. The covariance matrix was 

built on the C-alphas using the ones of DH domain for least square fit as done before [34]. 

GROMACS built-in tools have been used to compute RMSD, RMSF, and to perform PCA, 

while the calculation of contact probabilities and force constants was implemented using python 

libraries and custom scripts [76], [77]. 
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4.2.3 Plots and Figures 

Three-dimensional representations of the proteins were rendered in VMD. The principal 

directions were depicted through porcupine plots obtained from a custom made VMD script. In 

the porcupine plots, each C-alpha is associated to a segment oriented along the principal 

direction. The length of such segments is proportional to the amplitude of fluctuations along 

the represented direction. Data plots for RMSD, RMSF, force constants, and contact probability 

were generated using matplotlib library [78]. 

4.3 Results 

Results will be compared to previous literature on a similar system [34]. 

4.3.1 RhoA interaction and mechanical properties 

The DH domain of LARG, as the one of other RhoGEF proteins, is characterized by six main 

𝛼-helices (𝛼1-𝛼6) organized in an oblong bundle. Within this structure, the three conserved 

regions are located respectively on 𝛼1, 𝛼2, and 𝛼5; while CR1 and CR3 form the GTPase 

binding surface, CR2 is exposed in the opposite side of the domain. The PH region is made of 

seven 𝛽-strands organized in an antiparallel way and followed by a C-terminal helix. The region 

connecting these two domains is characterized by multiple random coil sections (Figure 16). 

 

Figure 16. Crystal structures of LARG [67]. (A) UnBnd state (PDB: 1TXD). Helices 𝛼1, 𝛼2, 𝛼3, 𝛼4, 
𝛼5, and 𝛼6 of DH domain are coloured in red, green, yellow, purple, blue, and orange, respectively. 
(B) Bnd state (PDB: 1X86). DH domain, PH domain, and RhoA are coloured in blue, orange, and grey, 
respectively. 
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Four main regions were involved in the interaction between LARG and the GTPase (Figure 

17). Helices 𝛼1 and 𝛼5, corresponding to CR1 and CR3, were characterized by a high 

probability to be in contact with RhoA, supporting previous findings that those regions are 

crucial in the GEF activity of this family of proteins. Moreover, the central part of the helix 𝛼6 

interacted with RhoA through almost all the dynamics suggesting its role in the regulation of 

the GTPase catalytic activity. Finally, there were some residues in helices 𝛼3 and 𝛼4 and in the 

non-structured region between 𝛼4 and 𝛼5 with a high contact probability, therefore these 

regions may have an auxiliary function in RhoA binding. Notably, PH domain did not show 

amino acids with a significant probability to be involved in the interaction despite being close 

to RhoA in the starting configuration. 

 

Figure 17. Contact probability for each residue of LARG. The secondary structure of DH and PH 
domains is highlighted to emphasize 𝛼-helices (green) and 𝛽-strands (yellow). 

Previously, the mechanical profile of this protein was investigated. Independently of the 

functional state, the higher values of the force constants were located within the structured 

regions. Moreover, the peaks of the profiles corresponded to highly conserved residues within 

DH/PH domains. Finally, the presence of RhoA increased on average the mechanical rigidity 

of the protein. The same analysis was performed to investigate whether the different 

experimental setup could have had an influence on the dynamics of LARG. The force contstants 

obtained from our MD simulations were comparable to the ones from literature, both in the 

unbound (Figure 18) and in the bound (Figure 19) state. Moreover, in line with the previous 

findings, the mechanical profile of UnBnd and Bnd systems was similar.  
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Figure 18. Comparison between the mechanical profile of UnBnd LARG from previous literature (A) 
and from our MD simulations (B). The secondary structure of DH and PH domain is highlighted to 
emphasize 𝛼-helices and 𝛽-strands. (A) Helices and strands are coloured in blue and yellow, 
respectively. (B) Helices and strands are coloured in green and yellow, respectively. 

Independently of RhoA presence, the residues with the highest force constants were located in 

the helix 𝛼5. Here, the interaction with RhoA induced a remarkable increase of rigidity in the 

Bnd system, especially evident in the N-terminus of the region. The same effect could be 

observed within helix 𝛼1, except for the C-terminus where the values were comparable in the 

two functional states of LARG. The presence of RhoA did not cause significant differences 

within the last part of helix 𝛼3, while induced only a slight reduction in the fluctuations of helix 

𝛼4. Moreover, helix 𝛼6 was characterized by low force constant values with no difference 

between the Bnd and UnBnd states despite interacting with RhoA. Therefore, the greatest 

change in the mechanical profile of the protein when it bound RhoA was represented by an 

increase of force constants within CR1 and CR3, which are crucial for the GEF activity of 

ARHGEF12. Despite showing some different values, on average the profile was similar to the 

one previously obtained and the main alterations due to the interaction were located in the same 

structured regions.  
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Figure 19. Comparison between the mechanical profile of Bnd LARG from previous literature (A) and 
from our MD simulations (B). The secondary structure of DH and PH domain is highlighted to 
emphasize 𝛼-helices and 𝛽-strands. (A) Helices and strands are coloured in blue and yellow, 
respectively. (B) Helices and strands are coloured in green and yellow, respectively. 

The flexibility of LARG in the two states was initially evaluated through the RMSF on C-

alphas. To compute this measure, protein structures were fitted on the C-alphas of the DH 

domain as was done previously in literature [34], [52]. The analysis on a similar system had 

revealed that the most flexible part of the protein is located mainly in the region following DH 

domain, with peaks corresponding to the loops connecting the 𝛽-strands of PH domain and the 

one linking DH and PH domains. Moreover, the fluctuations of the protein in two functional 

states were comparable with only a slightly increased mobility of free ARHGEF12. According 

to the results on these systems, the RMSF profile revealed that the two functional states have 

comparable flexibilities, but the Bnd system showed slightly greater fluctuations. In both cases, 

the essential motion resides in PH domain and the linker region, with the involvement of the 

last residues of helix 𝛼6. Moreover, it was possible to observe a reduction in the motion of helix 

𝛼4 and the subsequent loop in the Bnd system, in agreement with the previous findings of its 
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interaction with RhoA. Despite small differences, the flexibility profiles of these systems were 

similar to the ones previously obtained, meaning that the different experimental setup had not 

influenced LARG dynamics, independent of the functional state (Figure 20). 

 

 

Figure 20. Comparison between the flexibility profile of free and bound LARG from literature and from 
MD simulations. The secondary structure of DH and PH domains is highlighted to emphasise 𝛼-helices 
and 𝛽-strands. (A) RMSF of bound and unbound LARG from literature, where helices and strands are 
coloured in blue and yellow, respectively. (B) RMSF of bound and unbound LARG from MD simulations, 
where helices and strands are coloured in green and yellow, respectively. 

4.3.2 Analysis of the dynamics 

To understand the essential dynamics that characterizes RhoGEFs, PCA has been applied to 

MD trajectories of several RhoGEF oncoproteins characterized by the DH/PH structure. These 

analysis had shown that, in all functional states, more than 80% of the total variance was 

represented by the first two principal components (Figure S2), which describe a collective 
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motion of PH domain and the terminal region of helix 𝛼6. Moreover, there was a significant 

overlap between these two directions between the bound and unbound states of the same protein 

[52]. Here, PCA has been used to investigate whether such collective motions were detectable 

also in these systems. 

In agreement with the previous findings, the first two principal components (PC1 and PC2) 

explained almost the totality of the variance. In both functional states, PC1 and PC2 represented 

two different rotational motions of PH domain, together with the linker region and the last 

residues of DH domain (Figure 21). As previously observed, there was a remarkable overlap 

between the principal components of the two functional states. However, these results showed 

that, while in the UnBnd system PH domain moved closer to RhoA binding surface, in the Bnd 

system the dynamics followed the same directions but in the opposite way. 

 

Figure 21. Comparison between the principal components of UnBnd and Bnd LARG from literature 
(top) and MD simulations (bottom). 
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4.4 Discussion 

In this chapter, the dynamics of a known RhoGEF protein has been analysed in its free and 

RhoA-bound form and the results have been compared to previous findings on similar systems 

[34]. The close affinity of the obtained results with earlier literature provided a strong proof 

that the employed experimental setup was able to model the dynamics of proteins characterized 

by the DH/PH motif. Indeed, the mechanical profile of LARG has been reproduced and force 

constants values were similar to the ones previously obtained (Figure 18, Figure 19). The 

presence of RhoA increased on average the mechanical rigidity of the protein, especially in the 

regions involved in the interaction and in the loop connecting the DH and PH domains. 

Moreover, the C-terminal part of helix 𝛼6 was characterized by low rigidity independent of the 

functional state of LARG. In agreement with previous literature, the essential dynamics of this 

protein was a collective motion of PH domain, the region linking DH and PH regions, and the 

last part of helix 𝛼6 (Figure 20). The amount of fluctuation was similar in the bound and 

unbound states, meaning that the flexibility of the protein was not altered by the presence of its 

ligand partner. While previously slightly greater flexibility has been observed for free LARG, 

in the studied systems the PH domain was lightly more mobile in the bound form. Finally, it 

was possible to observe increased fluctuations in the region around helix 𝛼4 in absence of 

RhoA. Moreover, the PCA has showed that the essential dynamics could be described through 

two different roto-transational motions of PH domain (Figure 21). In fact, around 80% of the 

total variance could be expressed by the two first principal components (Figure S2). Notably, 

these directions were not altered by the presence of RhoA. However, the versus of motion in 

the Bnd system was opposite to the one in UnBnd system, while this difference was not 

observed before.  

The information about regions involved in the interaction with RhoA given by the 

crystallographic structure is only partial. Indeed, the arrangement of proteins in a crystal may 

differ from the one in solution [79] and the dynamic information of the interaction is lost. 

Therefore, the probability for each residue of ARHGEF12 to be in contact with RhoA was 

investigated throughout the MD simulation (Figure 17). Despite being close in the initial 

configuration, the probability of having a contact between residues in PH domain and RhoA 

were very limited. The residues with highest probability to interact with the GTPase were 

located in CR1 and CR3, in agreement with their role in the GEF activity of this family of 

proteins. Besides, helices 𝛼3 and 𝛼4 might have had a role in stabilizing the interaction of RhoA 

with ARHGEF12 due to the presence of residues with high contact probability. 



47 
 

To conclude, the differences between the obtained results and the previous ones are contained 

within the range of variability of the employed methods. Moreover, the evidences were 

reproduced faithfully carrying out only one MD simulation instead of three, as done previously. 

Hence, the close similarity represented a validation of the employed experimental setup and the 

proof that it could be exploited for further analysis on Alsin DH/PH domain in order to 

strengthen the obtained results. 
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5 Analysis of Alsin dynamics 

5.1 Introduction 

IAHSP is a rare neurodegenerative disorder characterized by the onset of spasticity to the lower 

limbs within the second year of life and the progression towards tetraparesis [3]. The cause of 

this disease has been identified in the mutation of ALS2 gene, which encodes for Alsin protein 

[3], [4]. Its ability to interact with two GTPases, Rac1 and Rab5, is at the basis of its crucial 

role in vesicular trafficking, especially in neurons. In particular, Rac1 binding with DH/PH 

domain triggers the tetramerization and relocalization from the cytoplasm to the membrane, 

where Alsin acts as a Rab5 GEF [7]. Several studies have been carried out to investigate the 

physiological functions of this protein and how its mutation or loss leads to different forms of 

HSP [1], [2], [4], [12], [22], [24], [27], [29]. At the same time, the knowledge of the molecular 

mechanisms underlying Alsin biological functions and the nanoscale effect of mutations is 

crucial to design potential therapeutic strategies. However, an experimental structure of this 

protein has not been developed yet. To date, RLD is the only domain that has been modelled 

[4], [17], while none of Alsin regions has been studied exploiting MD tools.  

The interaction between Rac1 and DH/PH domain is the first event of the pathways leading to 

the formation of early endosomes through Rab5 activation [7]. Indeed, Rac1 triggers a 

conformational transition of Alsin from a closed state, where RLD and the C-terminal region 

interact with each other, to an open state, in which it is able to form a tetramer [4]. Interestingly, 

the DH/PH motif is characteristic of a family of Rho GEF, but Alsin was demonstrated to be 

an effector rather than GEF [7]. Previously, the dynamics of homologous domains from other 

proteins has been investigated, showing that it consists essentially of a collective motion of PH 

domain and the last residues of DH domain [34], [52]. Given the fundamental role of this region 

in Alsin biological functions and its different role from the one of similar motifs, the aim of this 

work is to exploit homology modelling tools to build an atomistic model of Alsin DH/PH 

domain and characterize its dynamics, both alone and in presence of Rac1. To strengthen the 

results, the employed experimental setup has been tailored and validated replicating previous 

findings on LARG, a known Rho GEF oncoprotein [64], [66]. Moreover, a crystallographic 

structure showing this protein bound to its ligand partner, RhoA, has been used to model Alsin 

interaction with Rac1 [67]. First of all, Alsin dynamic has been compared to the one of LARG 

to understand the molecular basis of their different biological functions. Then, the 

conformations of Alsin DH/PH region were analysed both in presence and in absence of Rac1 
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to characterize the effect of such interaction at the nanoscale level. Finally, the dynamic of free 

Alsin was described through a Markov State Model to study the main states in which it could 

be found and discover the kinetics relationships between them. The results will provide an 

overall description of Alsin DH/PH domain possible conformations, both bound with Rac1 and 

alone. Furthermore, the molecular mechanism underlying the signal transduction between Rac1 

and Alsin will be reported.  

5.2 Materials and Methods 

5.2.1 Homology Modelling 

The three-dimensional structure of Alsin DH/PH domain was modelled starting from its amino 

acid sequence since no experimental structure is available. The amino acid sequence of human 

Alsin DH/PH domain (residues 686-1010) was downloaded from NCBI database. Then, the 

homology model was built giving it as input to the I-Tasser suite [57], [80], [81]. Among the 

output models, the one with the highest C-score was retained. The C-score is a parameter 

between -5 and 2 computed by I-Tasser considering the results of the different steps followed 

to develop the model itself. It is used to establish the level of confidence of the obtained 

structure, where higher values correspond to higher quality. From this score, I-Tasser also 

estimates the TM-score, which measures the structural similarity between two proteins, and the 

RMSD between the predicted model and the native structure. The secondary structure of the 

homology model was analysed through the STRIDE software package. The quality of the model 

was also evaluated in MOE [82] through the visualization of the Ramachandran plot, which 

represents the distribution of phi and psi angles pairs and the allowed regions. The percentage 

of residues lying in not allowed regions were compared to those of the templates used by I-

Tasser during the construction of the model. Finally, for each template, the identity and 

similarity scores relative to Alsin were computed using MOE with the following procedure: the 

crystal structures of the templates were retrieved from Protein Data Bank, their sequences were 

aligned with the one of Alsin DH/PH domain, the amino acids outside the region covered by 

Alsin residues were deleted, and then the scores were computed dividing by the length of Alsin 

sequence. BLOSUM-62 score matrix was used to perform the alignment and compute the 

similarity scores. 

5.2.2 Molecular Dynamics 

Two systems were analysed, free Alsin DH/PH domain (AlsinUnBnd) and Alsin DH/PH domain 

bound to Rac1 (AlsinBnd). To obtain the initial configuration of AlsinUnBnd, the protonation state 
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of the homology model was adjusted at a physiological pH of 7.4 using MOE. The initial 

configuration of the AlsinBnd was obtained superimposing the homology model and Rac1 (PDB: 

3TH5 [83]) to LARG and RhoA (PDB: 1X86 [67]), respectively. The nucleotide and 

magnesium ion were removed from Rac1 as they were not present in previously analysed 

systems [34]. Then, the protonation state was adjusted according to a physiological pH of 7.4 

and, to avoid steric clashes due to superimposition, the energy minimized using MOE. Two 

MD simulations were performed for each system using GROMACS 2020.4 [68] and AMBER 

ff99SB-ILDN force field to define the topology [69]. The following procedure has been 

employed for both systems. Protein was inserted in a cubic box with periodic boundary 

conditions defined setting a minimum distance of 1 nm between the protein and the box edge. 

Then, it was solvated in explicit TIP3P water [70] and, subsequently, an appropriate number of 

Na+ and Cl- were added to reach a physiological concentration of 0.15 M and to neutralize the 

charge. The energy minimization was performed through the steepest descend method for 2000 

steps. Then, two replicas were obtained from each system as follows. An initial simulation of 

500 ps in NVT ensemble and a following one of 500 ps in NPT ensemble were carried out, both 

of them under position restraints. The NVT simulation was performed at a reference 

temperature of 300 K using the modified Berendsen thermostat [71] with 𝜏 = 0.1 ps. The NPT 

simulation was carried out at 1.0 bar using the Berendsen barostat with isotropic coupling and 

𝜏 = 1.0 ps. Finally, a MD simulation in NPT ensemble was produced for 500 ns. The equation 

of motion was integrated with the leap frog algorithm using a time step of 2 fs. Electrostatic 

interactions were treated with particle mesh Ewald method, short-range cut-off at 1.2 nm and a 

switching of the potential starting at 1.0 nm. Van der Waals interaction were treated with a cut-

off at 1.2 nm and a switching of the potential starting at 1.0 nm. 

To better explore the state space in the free form of Alsin, four additional MD simulations, each 

one 100 ns long, were performed with the same procedure described before. The initial 

configurations were extracted from the trajectories of AlsinUnBnd replicas. From now on, the two 

500 ns long trajectories will be called “long replicas”, while these four “short replicas”. 

With the aim of studying the transition from the bound to the unbound states, the structure of 

the sole DH/PH domain was extracted at 260 ns of the first long replica of AlsinBnd. Then, it 

was used to produce a new trajectory of 260 ns with the same experimental setup described 

before. In the following analysis, the trajectories before and after Rac1 removal will be called 

AlsinRac1 and AlsinnoRac1. 
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The Visual Molecular Dynamics (VMD) engine was used for the visual inspection of systems 

and trajectories [72]. 

5.2.3 Analysis 

The stability of each system was evaluated through the root-mean-square deviation (RMSD) 

from the initial configuration of C-alphas atomic positions during the trajectory. Since 

previously it has been observed that the essential dynamics of DH/PH domains in other proteins 

is characterized by a collective motion of PH domain, the RMSD was computed also to the C-

alphas of the sole DH domain (residues 686-895). From the visual inspection of RMSD plots 

(Figure S3), last 450 ns of each long trajectory was considered in the following analysis. As for 

the short trajectories, the last 90 ns were used in the analysis. The RMSF, force constants, and 

contact probability were computed as described in the previous chapter (see section 4.2.2) for 

each long replica, then the results were averaged. To compute the mechanical properties at 

residue level, DH domain (residues 686-895) and the following region (residues 896-1010), 

comprising PH domain and the non-structured linker, were considered independently. 

The position of PH domain with respect to DH region in the bound and unbound states has been 

investigated to understand the effect of Rac1 in the conformations of Alsin DH/PH domain. To 

this purpose, two coordinates were defined using a DH-based reference system. Identifying as 

x and y axis the first and second principal directions of the DH domain, the z axis is the one 

perpendicular to plane xy. 𝛼𝑥𝑦 has been defined as the angle in plane xy between the straight 

line parallel to the x axis passing through DH domain (residue 686-864) centre of mass and the 

segment linking the latter to PH domain (residues 914-1010) centre of mass. Since the motion 

of last helix in DH region is involved in PH dynamics in other proteins, it was not considered 

when computing the centre of mass to avoid possible changes in its position due to PH 

fluctuations. Then, the coordinate 𝑑𝑧 was defined as the distance along z axis between the 

centres of mass of DH and PH domains, such that if 𝑑𝑧 is positive the latter is above the DH 

region centre of mass, and therefore closer to Rac1-binding surface. Figure 22 shows a graphical 

representation of the employed coordinates. 
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Figure 22. Coordinates used to describe the relative position between DH and PH domains. Centred of 
mass of DH and PH domains are represented as red and blue spheres, respectively. (A) 𝛼𝑥𝑦 is the angle 
in plane xy between x axis and the segment bridging the centres of mass. (B) 𝑑𝑧 is the distance measured 
along z axis between the two centres of mass. In this figure, the distance is negative because PH centre 
of mass is under DH centre of mass, i.e. has greater z coordinate. 

In the analysis of PH-DH relative position, the short replicas were considered in order to obtain 

a wider sampling of the state space. To compute the potential mean force (PMF) along these 

two directions, the probability 𝑝(𝛼𝑥𝑦, 𝑑𝑧) of the system to be in the point (𝛼𝑥𝑦, 𝑑𝑧) was 

obtained from the bidimensional histogram 𝐻(𝛼𝑥𝑦 , 𝑑𝑧) of AlsinUnBnd and AlsinBnd ensembles 

as: 

 𝑝(𝛼𝑥𝑦, 𝑑𝑧) =
𝐻(𝛼𝑥𝑦, 𝑑𝑧)

∑ ∑ 𝐻(𝛼𝑥𝑦, 𝑑𝑧)𝑑𝑧𝛼𝑥𝑦

 (39) 

where bins of 1° and 0.1 nm were used to discretize the state space along 𝛼𝑥𝑦 and 𝑑𝑧 directions, 

respectively. Boltzmann inversion was then performed to obtain the PMF along the two 

coordinates: 

 𝑃𝑀𝐹(𝛼𝑥𝑦, 𝑑𝑧) = −𝑘𝐵𝑇 ln 𝑝(𝛼𝑥𝑦, 𝑑𝑧) (40) 

where 𝑘𝐵 is the Boltzmann’s constant and 𝑇 is the temperature. 

To evaluate the effect of the interaction between Rac1 and helix 𝛼6 (residues 865-895) on its 

straightness, the curvature of 𝛼6 axis on plane xz was analysed as follow [84]. Representative 

snapshots were extracted every 50 ps for both long and short replicas. For each snapshot, the x 
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and z coordinates of the alpha carbons were picked, then the centres of mass of successive 

groups of four C-alphas were considered as points of helix axis. Therefore, the i-th sample of 

the axis is obtained selecting from the i-th to the (i+3)-th alpha carbons and computing their 

centre of mass. The obtained points were interpolated, using the x coordinate as independent 

variable, with a second-degree polynomial function 𝑐(𝑥) which was then evaluated in 100 

points to approximate the helix axis (Figure 23). 

 

Figure 23. Approximation of the helix axis. Successive groups of four atoms are considered and the 
centre of mass is computed for each of them. Then, the axis is represented by a second-degree 
polynomial function 𝑐(𝑥) obtained through the interpolation of the obtained points. 

Finally, the curvature 𝜅(𝑥) and the integral of curvature 𝐼𝜅 were computed as: 

 𝜅(𝑥) =
|𝑐′′(𝑥)|

(1 + 𝑐′(𝑥)2)3/2 
          𝐼𝜅 = ∫ 𝜅(𝑥) 𝑑𝑥 (41) 

The integral was numerically solved using the composite trapezoidal rule. Higher values of 

integral of curvature are related to higher deviations from the straightness of helix axis. 

To analyse the effect of Rac1 interaction on helix 𝛼3 position and, therefore, on the region 

between it and helix 𝛼5 (𝛼3-5), two quantities were computed extracting representative 

snapshots every 50 ps for both long and short replicas. The first one is the distance along z axis 

between DH domain centre of mass, without considering the helix 𝛼6 as in the previous 

analysis, and the region of helix 𝛼3 in contact with Rac1 (residues 788-793), such that positive 

values indicate 𝛼3 being over DH centre of mass. The second one is the distance between the 

centres of mass of 𝛼3-5 (residues 796-816) and PH domain. As for the comparison between 
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AlsinRac1 and AlsinnoRac1, the last 100 ns of their trajectories were considered in the analysis of 

𝛼3 position and 𝛼3-5 distance from PH region. 

The conformational dynamics of AlsinUnBnd was investigated through a Markov State Model 

(MSM) to discover the kinetic relationships between the main accessible states. The state space 

was described in terms of DH-PH relative position through the previous mentioned coordinates, 

which were computed every 10 ps for both long and short replicas [58]. To finely discretize the 

space state, data were divided into 1000 clusters using K-centres algorithm. Sliding window 

method and maximum-likelihood estimation were used to obtain the count matrix and the 

transition matrix, respectively. The optimal lag time was chosen analysing the largest implied 

timescale at lag times between 0.5 ns and 17.5 ns. Then, to better understand the obtained 

model, the microstates were divided into a smaller number of states using the Robust Perron 

Cluster Cluster analysis (PCCA+) algorithm [60]. The number of states was chosen observing 

the distribution of the slowest ten implied timescales at the chosen lag time. A new MSM was 

estimated using the clusterization obtained from PCCA+ and, then, was validated through a 

Chapman-Kolmogorov test performed as follows. If [𝑇(𝜏)]𝑘 is the k-fold application of the 

transition matrix of the model to validate, i.e. the matrix multiplied by itself k times, and 𝑇(𝑘𝜏) 

the transition matrix at the greater lag time 𝑘𝜏, the approximation (32) was tested estimating 

𝑇(𝑘𝜏) through a Markov chain Monte Carlo sampling of 100 transition matrices from 2 

independent Markov chains. In particular, for a given lag time the mean of the obtained 

distribution was used as transition matrix and the standard deviation was taken as a measure of 

statistical uncertainty [59], [61], [62]. The test was performed for k > 2 and k𝜏 < 50 ns to avoid 

excessive under sampling of short trajectories. Finally, transition path theory was applied to the 

validated model to identify the most probable transition pathways characterizing free Alsin 

DH/PH domain. Once the initial and final states of interest were chosen, the net flux matrix was 

computed. Then, it was used to find the most probable pathway from the starting to the final 

state through the Dijkstra algorithm, which finds the path characterized by the bottleneck with 

the highest flux. 

GROMACS built-in tools were used to compute RMSD and RMSF. Contact probabilities, force 

constants, the coordinates defined to describe the system, and PMF were obtained using python 

libraries and custom made scripts [76], [77]. MSMBuilder libraries were used to build the MSM 

and perform transition path theory [85]. 
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5.2.4 Plots and figures 

Three-dimensional representations of the proteins were rendered in VMD. Ramachandran plots 

were generated in MOE, while all other data plots using matplotlib library [78]. The network 

representation of the transition matrix was obtained through PyEMMA libraries [86]. 

5.3 Results 

5.3.1 Homology model of Alsin DH/PH domain 

The homology model of Alsin DH/PH domain was built by I-Tasser using 16 templates. The 

best model was characterized by a C-score of 0.66, an estimated TM-score of 0.80 ± 0.09, and 

an estimated RMSD of 5.0 ± 3.2 Å. On average, the sequence identity and similarity between 

the templates and Alsin were 12.5% and 28.2%. The quality of the structure was also 

investigated by observing its Ramachandran plot (Figure 24), computing the percentage of 

residues lying in not-allowed regions, and comparing this value with the average on the 

templates. The percentage of Ramachandran outliers in Alsin homology model and the average 

on the chosen templates were 1.5% and 0.8%, respectively. Therefore, from the analysis of the 

torsional angles, the quality of Alsin model is in line with the crystallographic structures of the 

templates. The PDB identification codes, identities, similarities, and percentages of 

Ramachandran outliers of the templates are listed in Table 2. 

 

Figure 24. Ramachandran plot of Alsin DH/PH homology model. Residues in the core regions, residues 
in allowed regions, and outliers are coloured in green, yellow, and red, respectively. 
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Table 2. Information about the templates used to build Alsin homology model. 

PDB Identity (%) Similarity (%) Ramachandran outliers (%) 

1FOE [39] 16.9 29.2 2.5 

1KI1 [87] 12.9 29.2 3.3 

1NTY [88] 10.5 26.5 0.0 

1XCG [89] 14.2 28.3 1.5 

1X86 [67] 13.5 29.8 0.3 

2DFK [90] 10.2 27.7 0.6 

2PZ1 [91] 11.4 30.5 2.4 

2RGN [92] 10.5 25.8 0.3 

2Z0Q [93] 13.2 28.9 0.0 

3MPX [94] 10.5 22.5 0.0 

3ODO [95] 14.2 28.9 0.9 

4D0N [96] 12.0 31.1 0.0 

4GZU [42] 11.4 24.6 0.0 

4XH9 [97] 12.9 28.9 0.3 

4YON [35] 14.8 32.3 0.0 

6D8Z [98] 11.1 26.5 0.0 

 

As in other proteins, the DH domain of Alsin is characterized by six main 𝛼-helices (𝛼1-𝛼6) 

organized in an oblong bundle. While helices 𝛼1 and 𝛼5 are exposed on the same side of the 

domain, probably forming the Rac1-binding region as in other proteins, helix 𝛼2 is exposed in 

the opposite surface, which is involved in dimerization of other DH domains and, most likely, 

Alsin itself. The third helix of DH region exposes its N-terminus and C-terminus at the 

dimerization and Rac1-binding surfaces, respectively. Finally, the helix 𝛼6 is located on one 

side of the domain and is connected by a random coil region to the PH domain. The latter is 

composed by six antiparallel 𝛽-strands followed by one 𝛼-helix and is organized in a globular 

structure (Figure 25). Therefore, the structure of Alsin DH/PH domain is characterized by the 

same motifs of other Rho GEF proteins. 
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Figure 25. Homology model of Alsin DH/PH domain. The helices 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, and 𝛼6 of DH 
domain are coloured in red, green, yellow, purple, blue, and orange, respectively. PH domain is 
coloured in cyan. 

To identify the conserved regions in Alsin DH/PH domain, its amino acid sequence was aligned 

in MOE with BLOSUM-62 score matrix with the ones of the 16 templates used to build the 

model. Then, the residues forming the conserved regions of TIAM1 [39] were used to locate 

them in Alsin (Figure S4). CR1 and CR3 were characterized by a higher number of conserved 

residues among the analysed proteins, while no amino acid was totally conserved in CR2. The 

secondary structure of the model, analysed through STRIDE software package, the residues 

composing helices and strands, and the conserved regions are showed in Figure 26. 
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Figure 26. Definition of secondary structure for Alsin DH/PH domain. Helices are represented by green 
rectangles, coils by black lines, and strands by yellow arrows. The conserved regions CR1, CR2, and 
CR3 are highlighted in red, blue, and purple, respectively. 

5.3.2 Rac1 interaction and mechanical properties 

The initial configuration of AlsinBnd was modelled using the crystallographic structure of 

RhoA-bound LARG (Figure S5). The RMSD at the end of the superimposition were 1.98 Å 

between the DH/PH domains and 2.36 Å between the GTPases. The regions involved in the 

interaction of Alsin with Rac1 have been investigated computing the probability of each residue 

to be in contact with the GTPase (Figure 27). The amino acids with a contact probability greater 

than 0.9 were located in helices 𝛼3, 𝛼5, and 𝛼6 indicating that these are the main structures 

forming the Rac1-binding surface. Moreover, probabilities around 0.5 were found for three 

loops, the one immediately C-terminal to helix 𝛼3 (l1), the one between helices 𝛼4 and 𝛼5 (l2) 

and, in PH domain, the portion C-terminal to strand 𝛽3 (l3). Notably, helix 𝛼1 was not involved 

in significant interactions with Rac1 unlike LARG despite the starting configuration of AlsinBnd 

system was obtained from the crystallographic structure of RhoA-bound LARG (see section 

4.3.1). Thus, between the conserved regions that are responsible for the interaction with Rho 

GTPase, only Alsin CR3 interacted with Rac1.  

 

Figure 27. Alsin-Rac1 contact probability. The secondary structure of Alsin is highlighted to show 
helices (green) and strands (yellow). 

The mechanical properties at the single residue level of AlsinBnd and AlsinUnBnd were inferred 

computing the force constants and then were compared to analyse the effect of Rac1 interaction 

on Alsin. Consistently with similar domains, the highest values were located in the structured 

regions, the presence of Rac1 increases on average the rigidity of the domain, and the greatest 

force constants were obtained in the first part of helix 𝛼5, independently of the state (Figure 

28). As for LARG (see section 4.3.1), the most evident effect of Rac1 interaction was the 

increased mechanical rigidity within the first half of helix 𝛼5. On the other hand, it was possible 

to observe only little changes in the mechanical profile of the first helix. Despite producing a 
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contained increase in the force constants within its first half, the presence of Rac1 slightly 

increased the fluctuations of following residues. Moreover, the second half of helix 𝛼6 and the 

region around helix 𝛼4 were characterized by higher force constants in presence of Rac1. 

Limited differences could be observed within PH domain, where in absence of Rac1 the rigidity 

of strand 𝛽4 is lower while that of strand 𝛽6 is higher. Finally, in the bound state the mechanical 

properties within helix 𝛼2 and the first part of 𝛼3 were increased even though these regions did 

not interact with Rac1. Therefore, in presence of Rac1 Alsin seems to increase the mechanical 

rigidity of residues exposed at the putative surface of dimerization. 

 

Figure 28. Mechanical profile of Alsin DH/PH domain in the UnBnd and Bnd states. Residues forming 
helices and strands are coloured in green and yellow, respectively. 

The regions that characterize Alsin dynamics have been investigated through RMSF computed 

on C-alphas (Figure 29). As for LARG, the greatest fluctuations were located within PH domain 

both in presence and in absence of its binding partner (see section 4.3.1). However, in presence 

of Rac1 the flexibility of helix 𝛼6 was reduced indicating that the last residues of DH domain 

were less involved in the collective motion of PH region. On the other hand, the coiled coil 

linker between the two domains contributed more to the dynamics in AlsinBnd than in AlsinUnBnd. 

Moreover, unlike LARG, it is possible to identify a region characterized by higher fluctuations 

between helices 𝛼3 and 𝛼5 (𝛼3-5), with two peaks located before and after 𝛼4. Here, the 

flexibility is reduced in presence of Rac1. Finally, in the bound state the fluctuations within 

loop l3 were reduced with respect to the unbound state. 
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Figure 29. RMSF of free and Rac1-bound Alsin. Helices and strands are represented in green and 
yellow, respectively. 

5.3.3 Effect of Rac1 interaction on PH dynamics 

Since the essential dynamics of Alsin is a collective motion of PH domain with respect to DH 

domain, further investigations have been made to characterize their relative position in the 

bound and unbound states. To this purpose, the PMF along the two chosen coordinates, 𝛼𝑥𝑦 

and 𝑑𝑧, was analysed (Figure 30). It was possible to observe that only in absence of Rac1 angles 

lower than 120° or distances lower than -2 nm were accessible. On the other hand, positive 

distances were obtained almost only in AlsinBnd with the only exception of the region 

(𝛼𝑥𝑦 ≈ 125°; 𝑑𝑧 ≈ 0), in which the free energy profile of the two states is similar. The overall 

ability to explore different DH-PH relative position is higher in AlsinUnBnd, where the minima 

are well connected. On the other hand, in presence of Rac1 the minima are narrower and two 

low connected regions, characterized by positive and negative 𝑑𝑧, are explored. According to 

the definition of the two coordinates, the PMF showed that, in absence of Rac1, more closed 

conformations were explored by the domain, i.e. the positions assumed by PH domain tended 

to move Alsin C-terminus closer to the N-terminus. On the other side, the presence of Rac1 

seemed to stabilize a more linear and open conformation of the domain. 
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Figure 30. PMF along 𝛼𝑥𝑦 and 𝑑𝑧 for (A) AlsinUnBnd and (B) AlsinBnd. 

The effect of the interaction between Rac1 and helix 𝛼6 has been investigated through the 

analysis of the helix axis curvature. The average curvature integral was significantly higher in 

AlsinUnBnd (1.06 ± 0.34) than in AlsinBnd (0.22 ± 0.17) meaning that the presence of Rac1 

stabilized a straighter conformation of 𝛼6 (Figure 31 A). Moreover, the curvature integral in 

the UnBnd state tended to be higher in those conformations characterized by lower values of 

𝛼𝑥𝑦 or 𝑑𝑧, i.e. within regions in which the domain is in a closed state (Figure 31 B). At the same 

time, low values of curvature integral for AlsinUnBnd were obtained in two regions, the one 

partially overlapping with AlsinBnd and the one characterized by 𝛼𝑥𝑦 ∈ [115°, 120°] and 𝑑𝑧 ∈

[−1, 0]. Notably, the deepest minimum of the UnBnd state, in which the domain is closed, was 

characterized by some of the lowest values of curvature integral, while the one of the Bnd state 

by values approximatively nil. Therefore, through its action on the last helix of DH domain 

(Figure 31 C, D), Rac1 was able to alter the dynamics of PH domain. 
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Figure 31. Analysis of helix 𝛼6 curvature. (A) Bar diagram showing the average curvature in the two 
states, where the error bars represent the standard deviation of the distribution. (B) Representation of 
the curvature integral value depending on the position of the protein in the 𝛼𝑥𝑦-𝑑𝑧 plane. Each point is 
a snapshots of the trajectories and is coloured according to the level of curvature of helix 𝛼6 (C) 
Representative snapshot of AlsinUnBnd where 𝛼6 is highlighted in red. (D) Representative snapshot of 
AlsinBnd where 𝛼6 is highlighted in red. 

Finally, the effect of Rac1 in the position of helix 𝛼3 has been described in terms of distance 

along the z axis between its residues that were in contact with Rac1 and DH domain centre of 

mass (Figure 32 A). It was possible to observe greater fluctuations of this measure in AlsinUnBnd 

than AlsinBnd throughout the dynamics. Moreover, the average distance was negative in the 

UnBnd state (-0.05 ± 0.16 nm), while positive in the Bnd state (0.19 ± 0.06 nm). The result of 

such Rac1-induced displacement has been described through the distance between 𝛼3-5 and 

PH domain (Figure 32 B). It was possible to observe a remarkable difference between the two 

states, with lower values in presence of Rac1 (2.74 ± 0.20 nm) than in case of free Alsin (3.90 

± 0.54 nm). Thus, the interaction with Rac1 stabilized the position of helix 𝛼3 above DH 

domain centre of mass and, as a result, the region 𝛼3-5 moved closer to PH domain (Figure 32 

C, D). 
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Figure 32. Analysis of the effect of Rac1-𝛼3 interaction. (A) Bar diagram showing the average DH-𝛼3 
distances, where the error bars represent the standard deviation of the distribution. (B) Bar diagram 
showing the average PH-𝛼3-5 distances, where the error bars represent the standard deviation of the 
distribution. (C) Representative snapshot of AlsinUnBnd where 𝛼3-5 and PH are highlighted in red. (D) 
Representative snapshot of AlsinBnd where 𝛼3-5 and PH are highlighted in red. 

To investigate further the role of 𝛼3-5 in the stabilization of PH domain position, the same 

quantities were compared between AlsinRac1 and AlsinnoRac1 systems. While in the former the 

last residues of helix 𝛼3 were above DH domain centre of mass (0.24 ± 0.04 nm), in the latter 

they were almost at the same level (0.03 ± 0.04 nm). As a consequence of this displacement, 

the distance between 𝛼3-5 and PH region was slightly increased from 2.83 ± 0.12 nm to 3.19 ± 

0.11 nm. It is worth mentioning that, after Rac1 removal, the sole thermal energy was not able 

to alter the position of PH domain, which remained stuck in an open conformation. Therefore, 

the increased distance was due to a displacement of 𝛼3-5 and helix 𝛼3. 

5.3.4 Markov State Model of free Alsin 

The dynamics of free Alsin was characterized through a MSM built describing the state space 

in terms of 𝛼𝑥𝑦 and 𝑑𝑧. From the analysis of the largest implied timescales at increasing lag 

times, the lag time to build the MSM was set to 9 ns. The number of states determined through 
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PCCA+ algorithm was set to 5 according to the values of the first 10 implied timescales at 9 ns. 

The same lag time was used to build the MSM from the 5-state discretization (Figure S6). The 

model was validated through the Chapman-Kolmogorov test (Figure S7). In Figure 33 are 

depicted the location of the obtained states in the 𝛼𝑥𝑦-𝑑𝑧 plane and a graphical representation 

of the transition matrix. State 3 corresponded to the region in which the free energy profile of 

AlsinUnBnd and AlsinBnd were partially overlapped. It was characterized by a high probability to 

jump in state 1, while transitions from and to state 2 are less probable. State 1 was quite stable 

and communicated with all other states, with higher probabilities of jumping to state 2 or 0. In 

the former the protein was closed on the side of DH domain, while the latter was the least stable 

state with a high transition probability towards state 4. The last state was quite stable and 

characterized by the protein being closed from the bottom of DH domain. 

 

Figure 33. AlsinUnBnd states from MSM analysis. (A) Location of the five states on the 𝛼𝑥𝑦-𝑑𝑧 plane. The 
colours represent the free energy as in Figure 30. (B) Graphical representation of the transition matrix, 
where transition probabilities were rounded at the second decimal and probabilities lower than 0.005 
were not considered. The arrow labels are the jump probabilities between states, the dimension of each 
sphere is proportional to the self-transition probabilities, and the arrow width is proportional to the 
probability to observe a jump between the states. 

From the analysis of the right eigenvectors, it was possible to identify the four dynamical 

processes between the states. The slowest one, with an implied timescale of 260 ns, was the 

transition between states (0, 4) and (1, 2, 3). The second slowest process described the transition 

between states 2 and (1, 3) and had an implied timescale of 43 ns. The third one was the jump 

process between states (0, 1), 2, and 3, while the fastest process characterized the transition 

between states 0, 1, and 3. The latter were associates with 26 ns and 19 ns as timescales, 
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respectively. A summary of the description of the four dynamical processes is reported in Table 

3. Therefore, protein closure hiding the putative dimerization surface was the slowest process, 

while closure by the side of DH domain was faster.  

Table 3. Timescales and transitions that characterize the four dynamical process between the obtained 
states. 

N° process Transitions Timescale (ns) 

1 (0,4) ↔ (1,2,3) 260 

2 2 ↔ (1,3) 43 

3 3 ↔ (0,1) ↔ 2 26 

4 0 ↔ 1 ↔ 3 19 

 

Transition path theory was applied to discover the most probable pathway associated to the 

transition between the most open conformations, represented by state 3, and the more closed 

ones, represented by states 2 and 4. The pathway connecting states 3 and 2 was 3 → 1 → 2, 

while the one connecting states 3 and 4 was 3 → 1 → 0 → 4. States 0 and 1 were also present 

in the most probable pathway from 2 to 4 and vice versa (Figure 34).  
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Figure 34. Representation of the most probable transition pathways of AlsinUnBnd between the open to 
the closed states. 

5.4 Discussion 

The availability of 3D atomistic models of Alsin is crucial to understand the molecular 

mechanisms at the basis of its biological functions. Indeed, the first step towards the treatment 

of ALS2-related pathologies such as IAHSP is a proper comprehension of the protein 

physiological behaviour. In this work, we focused on Alsin DH/PH domain and developed its 

first all atom model through I-Tasser suite using 16 templates from RCSB database. The quality 

of the model was confirmed both by the confidence scores predicted by the employed software, 

especially the TM-score, and the analysis of the Ramachandran plot (Figure 24). The overall 

identity scores of the employed templates (Table 2) were generally too low to build a reliable 

homology model, however it should be considered that they were computed using the complete 

amino acid sequence while I-Tasser builds the model assembling fragments from different 

templates. 
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The alignment of Alsin amino acid sequence with the templates (Figure S4) allowed us to locate 

the three conserved regions within the first, second, and fifth helices, in agreement with DH/PH 

domains of other proteins [33], [36], [38], [39]. It should be noticed the presence of a highly 

conserved histidine in CR2. Indeed, studies in the forefather of DH domains, i.e. the proto-

oncogene Dbl, have highlighted the crucial role of an histidine located in the second conserved 

region in the DH-mediated dimerization [36]. Therefore, H752 in Alsin may play an important 

role in the Rac1-induced tetramerization. 

Since the interaction between Alsin DH domain and Rac1 is known to trigger tetramerization, 

relocalization at membrane level, and activation of Rab5 through the C-terminal VPS9 domain 

[4], the effect of such interaction on the dynamics of Alsin DH/PH domain has been studied. 

Previous analysis on LARG was exploited not only to develop a robust experimental setup but 

also to identify differences that may be associated with the different role of these two proteins 

in the GTPase cycle. The main regions involved in Alsin-Rac1 interactions were helices 𝛼3, 

𝛼5, and 𝛼6, while lower contact probabilities were found for loops l1, l2, and l3 (Figure 27). 

Therefore, Rac1 bound also to non structured regions even though they may have only a 

secondary role. Indeed, while in the second replica of AlsinBnd the interaction between l3 and 

Rac1 was direct, in the first trajectory it was mediated by l1. The first conserved region was in 

contact with the GTPase in the simulations of LARG (see section 4.3.1), but the same evidence 

was not found in AlsinBnd, despite the RMSD between the initial configurations was around 2 

Å. Since CR1 has been described as crucial for the transforming activity of Rho GEF family of 

proteins [38], these evidences may explain the different biological function of Alsin. One effect 

of such interaction was the increased rigidity of the protein within not only two of the regions 

in contact with Rac1, 𝛼5 and 𝛼6, but also 𝛼2 and the first half of 𝛼3 (Figure 28). The latter are 

exposed on the surface opposite to the one interacting with Rac1, which was found to be 

involved in the dimerization of other DH domains [36]. Therefore, the mechanical properties 

of Alsin were locally altered by the interaction with Rac1, stabilizing the putative site of 

dimerization. Finally, fluctuation in the last residues of helix 𝛼6 and in region 𝛼3-5 are reduced, 

suggesting their involvement in the Rac1-driven conformational dynamics (Figure 29).  

Previously, it has been proved that Alsin is sequestered in the cytoplasm due to an interaction 

between RLD and its C-terminus before Rac1 binding [7]. After Rac1 signalling, the protein 

moves to an open conformation and tetramerizes [4]. The role of Rac1-driven conformational 

dynamics of DH/PH domain in this signal transduction process has been investigated. The 

presence of Rac1 stabilized an open and linear conformation where, at most, PH domain could 
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slightly move above DH centre of mass, near to Rac1 (Figure 30). This movement should not 

be thought as a transition towards a closed conformation since the presence of Rac1 itself may 

sterically interfere with the interaction between RLD and Alsin C-terminus. Conversely, in 

absence of Rac1 different DH-PH relative positions were found and a wider area of the state 

space was explored. In particular, the regions with low 𝛼𝑥𝑦 are compatible with an interaction 

between RLD and C-terminus on the side of DH, while the ones with low 𝑑𝑧 may promote an 

interaction from the bottom of DH, hiding in this way the putative dimerization surface.  

The dynamics of AlsinUnBnd was modelled through an MSM to describe the transitions between 

its different conformations. One open state was found in the region where the PMF of AlsinBnd 

and AlsinUnBnd partially overlapped, while two closed states were detected (Figure 33). In one 

of them, the N- and C-termina of the protein might interact by the side of DH domain, while in 

the second by the bottom of the domain, hiding the putative dimerization surface. Notably, the 

latter corresponded with the deepest minimum of the free energy profile. Therefore, in the most 

stable conformation of AlsinUnBnd, the interaction between RLD and the C-terminus may 

prevent its tetramerization by hiding the dimerization site within DH domain. The closed and 

open conformations were connected mainly by one intermediate state, which allowed 

transitions both between the two closed states and from the open to the closed ones (Figure 34). 

Thus, due to the sole thermal energy, Alsin DH/PH domain may arrange in a conformation that 

is more similar to the ones observed in presence of Rac1. 

In particular, two main regions within DH domain were characterized by different 

conformations in AlsinUnBnd and AlsinBnd. One of them was helix 𝛼6, i.e. the one linked to PH 

domain, whose curvature was higher in absence of Rac1 and, particularly, in the closed states 

(Figure 31 A, B). Since this helix was involved in the interaction with Rac1, it is possible that 

its bending is correlated to not only PH motion, but also the propensity of Rac1 and DH domain 

to bind together. Indeed, it is well known that during their interaction the proteins are not rigid 

bodies but undergo conformational changes to reach the most favourable arrangement [99]. The 

second region analysed was 𝛼3-5, which was closer to PH domain in AlsinBnd than AlsinUnBnd 

(Figure 32 A). Hence, it is possible that an interaction between 𝛼3-5 and PH domain plays a 

role in the stabilization of Alsin open conformation. 

To summarize, the present study highlights that free Alsin DH/PH domain exists mainly in a 

closed state, where the interaction between RLD and C-terminus may hide the putative 

dimerization surface. In these conformations, the helix 𝛼6 is bended such that its interaction 
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with Rac1 might be unlikely. When, due to thermal energy, PH domain moves to reach a more 

open state and helix 𝛼6 curvature decreases, DH domain may more prone to bind Rac1. Such 

interaction, together with the one between 𝛼3-5 and PH, stabilizes a linear conformation of 

DH/PH domain, where RLD and the C-terminus should be distanced. In this way, the second 

conserved region and the C-terminus are exposed and can potentially self-interact, leading to 

the formation of a tetramer. At the same time, dimerization through DH domain may be 

favoured by Rac1 interaction since it reduces the fluctuations within the residues that mediate 

such process.  
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6 Conclusions 

IAHSP has been associated with mutations at the gene encoding for Alsin protein and, to date, 

there is no cure but it is only possible to treat its manifestations. Indeed, due to the complex 

nature of this disease and the limited knowledge about the mechanisms leading to a premature 

neuronal degeneration, the development of specific therapeutic strategies is difficult. Therefore, 

the understanding of nanoscale phenomena involved in Alsin-mediated physiological and 

pathological pathways is crucial to speed up the process of drug discovery. In this framework, 

the first step is represented by the development of Alsin 3D structure and the analysis of its 

dynamics. 

This M.Sc. thesis focuses on Alsin DH/PH domain and its binding partner Rac1, since their 

interaction is the first event within Alsin-mediated pathways. Due to the lack of an experimental 

molecular structure, the first goal was the construction of a high-quality homology model. Then, 

to study the dynamics of this domain and obtain robust results, the employed experimental setup 

was tailored and validated reproducing previous findings from literature on a homologous 

domains. The analysis on Alsin DH/PH region, both with and without Rac1, revealed that its 

CR1 is not involved in the interaction with its binding partner, unlike other Rho GEF proteins. 

This evidence suggests the molecular basis of its different biological function. Moreover, the 

mechanism by which Rac1 may trigger the dimerization through DH region has been 

investigated. While stabilizing a more open and linear conformation of the whole domain by 

changing the DH-PH relative position, the interaction with Rac1 caused a local increase in the 

mechanical properties within the putative dimerization site. Therefore, the presence of Rac1 

moves away Alsin N- and C-termina, exposes the dimerization site, and reduces the fluctuation 

of residues within this region. At the same time, the dynamics of free Alsin was analysed 

through a Markov State Model, suggesting in this way the possible pathways linking the closed 

and open states of the domain. 

These results represent an important starting point for further analysis, such as the study of the 

dimerization both using computational and experimental methodologies. Moreover, different 

computational analysis on the developed model might provide useful information to 

experimentally resolve Alsin structure.  
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8 Supplementary information 

 

Figure S1. RMSD plots for the UnBnd and Bnd states of LARG. 

 

Figure S2. (A) Comparison of the eigenvalues of the covariance matrix. (B) Percentage of the total 
variance explained by the principal components. 
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Figure S3. RMSD plots of (A) protein C-alphas and (B) DH domain C-alphas from the initial 
configuration. 

 

Figure S4. Alignment of Alsin and the 16 templates used by I-Tasser to build the homology model. The 
templates residues that were not aligned with Alsin sequence are not included. Residues are coloured 
according to the identity percentage over the 17 sequences. The three conserved regions are highlighted 
in red, blue, and orange. 
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Figure S5. Initial configuration of AlsinBnd, obtained superimposing Alsin and Rac1 to LARG and RhoA, 
respectively. DH domain, PH domain, and Rac1 are represented in blue, orange, and grey, respectively. 

 

Figure S6. Implied timescales plot using the discretization in (A) 1000 clusters from K-Centers and (B) 
5 states obtained through PCCA+. 
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Figure S7. Chapman-Kolmogorov test of the Markov State Model. Only self-transition probabilities are 
represented. The black line represents the transition probability estimated propagating the MSM, red 
points and error bars represent the mean and standard deviation of the transition probability at 
multiples of the lag time estimates through the Bayesian approach. 
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