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1. Introduction 
 
The specialized branch of applied mechanics that deals with the study of behaviour and the 
diagnosis of rotating structures is rotodynamic. 
A rotor is a body suspended through a set of cylindrical hinges or bearings that allows it to rotate 
freely around an axis fixed in space. 
Rotodynamic has been deeply studied in the last century and the correct functioning of a rotor 
represented a complex engineering problem due to the numerous difficulties deriving from the need 
to satisfy the various specifications for the different operating conditions. 
Rotational motion is employed to achieve translation, to store energy, to transfer power from one 
point to another and to obtain kinetic energy from other kinds of energy. Rotors used in machines 
and mechanisms provide numerous advantages as regards efficiency, wear, and easy adjustments. 
However, the rotational movements are accompanied by "mechanical side effects". 
In fact, due to several factors contributing to energy transfer, the rotor rotation can be accompanied 
by various vibration modes that depend on the structure of the rotor and its unbalance. 
One of the most important works regarding the rotodynamic is undoubtedly that of Jeffcott where 
the behaviour of a shaft simply supported and with the presence of damping was analysed. 
Therefore, he obtained a model that is characterised simply by a synchronous whirl, which 
represents the only stationary solution. 
Starting from the model proposed by Jeffcott, in this thesis work we proposed the study of a vertical 
axis magnetic rotor usable as kinetic energy accumulator. 
In the first part the structure of the rotor is analysed in all its components. The rotor has been called 
"magnetic rotor" because the bearings used are permanent magnets. In fact, in the second chapter 
the magnetic behaviour and the characteristics on the dynamics and stability of the system are 
studied. 
In the following chapters, the mathematical model of the rotor was analysed. In the first instance, 
we focused on a linear behaviour of the system through modal and motion analysis. In the second 
phase we proceeded to the study of a non-linear system with modal analysis. 
It was also decided to pay attention to the case in which the rotor was unbalanced through a 
dynamic and modal analysis of the system. At the present time, finite elements are widely used to 
compute critical speeds and unbalance responses. 
Finally, we proceeded with a frequency analysis of the system to be able to clearly identify the 
critical speeds to be analysed in a future experimental analysis. 
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2. Magnetic rotor 
 
Following the ISO definition, a rotor is a body suspended through a set of cylindrical hinges or 
bearings that allow it to rotate freely about an axis fixed in space, while the part of the machine that 
does not rotate is called stator. 
The rotor of our interest is a vertical magnetic rotor as shown in Figure 2.1. 
Some simplifications that allow the linearization of the mathematical model of rotors can be made. 
In the undeformed configuration, the rotor has, a well-defined and fixed rotation axis (vertical axis), 
which coincides with one of the barycentric principal axes of inertia if the rotor is perfectly 
balanced. This is possible because an unbalanced rotor has only small differences compared to an 
ideal condition. Also, the displacement of the rotation axis from its nominal position due to 
deformations or perturbations of the system is reduced. 
Another assumption made is that of axial symmetry, so the dynamic study of an axis-symmetrical 
rotor is greatly simplified. 
 

 
 

Figure 2.1 – Model of vertical magnetic rotor. 
 
The typical behaviour of a rotor can be simplified through some fundamental aspects: 
 

➢ the rotor shafts do not "vibrate", it spins and whirl; 
➢ the rotor supports undergo vibrations; 
➢ due to the rotation, the centre of the disk moves on a trajectory whose amplitude depends on 

the speed; 
➢ as the speed of rotation increases there is an increase in the amplitude of the vibration. The 

maximum speed peak is called critical; 
➢ if the amplitude of the vibration is excessive, catastrophic failures can occur. 

 
The most important elements of the rotor under study are: 
 

• the shaft, 
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• the hubs, 
• magnetic bearings, 
• sapphire. 

 
The stator structure is composed by polytetrafluoroethylene (PTFE known as Teflon) elements. The 
choice to use this material is due to the diamagnetic behaviour of Teflon, in fact the magnetic 
susceptibility is negative and so it tends to exclude a magnetic field from its interior. 
Another important feature is the possibility to change the rotating mass based on the number of 
hubs on the shaft. 
 
2.1 Rotor components 
 
2.1.1 Shaft 
 
Figure 2.1.1.1 shows the vertical rotor shaft. The shaft is made of aluminium alloy and can be 
considered as a rigid body. It has not a homogeneous distribution of the mass due to the presence of 
a flange, a useful support for the brass hubs. 
Aluminium has been chosen because of its paramagnetic characteristic, meaning that they are 
weakly attracted to a magnet: this effect is thousands of times weaker than in ferromagnetic 
materials. 
 

 
 

Figure 2.1.1.1 – Rotor shaft. 
 
2.1.2 Brass hubs 
 
The mass of the rotor assembly is represented by the brass hubs (Figure 2.1.2.1) which are 
positioned in abutment with the shaft flange. If the number of hubs is increased, the mass and the 
moment of inertia of the entire rotor increased, too. Furthermore, the centre of the mass is displaced 
according to a fixed Cartesian reference. 
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Figure 2.1.2.1 – Brass hub. 
 
2.1.3 Magnetic bearings 
 
In this rotor model there are neodymium magnets. This type of magnets are permanent magnets 
made from an alloy of neodymium, iron and boron and they are the strongest type of permanent 
magnet commercially available. 
These elements have strong anisotropic characteristics which allow to obtain a residual magnetic 
induction three or four times stronger than that obtainable by the traditional permanent magnets [2]. 
Moreover, they have a silvery-white colour, they are fragile, and they are easily damaged. 
The neodymium magnets are graded according to their maximum energy product, which relates to 
the magnetic flux output per unit volume. They are classified by letter N followed by two numbers. 
 

 
 

Figure 2.1.3.1 – Stator and rotor magnets. 
 
2.1.4 Sapphire 
 
Another important element of rotor is the sapphire. This is used as thrust bearing along a vertical 
axis because the magnetic forces reduce the weight force contribution without eliminating it. 
The sapphire has been chosen as material because it has a high hardness (9 on the Mohs scale). 
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Figure 2.1.4.1 – Sapphire. 
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2.2 Possible configurations 
 
The vertical magnetic rotor, which are analysed, has five different possible configurations based on 
the number of hubs and the number of permanent magnets mounted on the shaft. 
By increasing the number of magnets, the forces exchanged between the stator and rotor are higher, 
with a minimum reduction of the rotor unit mass. 
 
2.2.1 Case 1 – Rotor without hubs 
 
Figure 2.2.1.2 shows a section of shaft with an only magnet. Here, in the place of the permanent 
magnets, there are Teflon spacers that are replaced by magnets in the other configurations. 
 

 
 

Figure 2.2.1.1 – Rotor without hubs with 1 magnet (in the upper left corner), 2 magnets (in the 
upper right corner), 3 magnets (in the lower left corner) and 4 magnets (in the lower right corner). 

 

 
 

Figure 2.2.1.2 – Section of rotor with a magnet. 
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In Table 2.2.1.1 the most important characteristics of the rotor without hubs are listed. The centre of 
the mass is the same for all the cases with different number of magnets, while the moments of 
inertia change because a different mass with the increase of magnets. 
 

Table 2.2.1.1 – Characteristics of the rotor without hubs. 
 

Number of 
magnets Mass [kg] 

Centre of mass [m] 
Moments of inertia [kg m2] 

X Y Z 

1 0.567 0 0 -0.0087 

31.196 10−  0 0 
0 31.196 10−  0 
0 0 30.151 10−  

2 0.567 0 0 -0.0087 

31.193 10−  0 0 
0 31.193 10−  0 
0 0 30.151 10−  

3 0.566 0 0 -0.0087 

31.191 10−  0 0 
0 31.191 10−  0 
0 0 30.151 10−  

4 0.565 0 0 -0.0087 

31.190 10−  0 0 
0 31.190 10−  0 
0 0 30.151 10−  

 
2.2.2 Case 2 – Rotor with a hubs 
 
Figure 2.2.2.1 shows the four possible cases when there is only one hub on the shaft. The hub is into 
contact with the shaft flange and it is anchored to the flange with parallel pins hardened. 
 

 
 
Figure 2.2.2.1 – Rotor with a hub with 1 magnet (in the upper left corner), 2 magnets (in the upper 

right corner), 3 magnets (in the lower left corner) and 4 magnets (in the lower right corner). 
 
Adding new elements on the rotor group, has repercussions with increasing mass and about the 
moments of inertia. 
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Table 2.2.2.1 – Characteristics of the rotor with a hub. 
 

Number of 
magnets Mass [kg] 

Centre of mass [m] 
Moments of inertia [kg m2] 

X Y Z 

1 1.630 0 0 -0.024 

32.246 10−  0 0 
0 32.246 10−  0 
0 0 31.745 10−  

2 1.629 0 0 -0.024 

32.243 10−  0 0 
0 32.243 10−  0 
0 0 31.744 10−  

3 1.628 0 0 -0.024 

32.241 10−  0 0 
0 32.241 10−  0 
0 0 31.744 10−  

4 1.627 0 0 -0.024 

32.238 10−  0 0 
0 32.238 10−  0 
0 0 31.744 10−  

 
2.2.3 Case 3 – Rotor with two hubs 
 
Similarly, to the cases analysed above, we proceed with the study of the characteristics of the rotor 
group with two hubs. 
 

 
 

Figure 2.2.3.1 – Rotor with two hubs with 1 magnet (in the upper left corner), 2 magnets (in the 
upper right corner), 3 magnets (in the lower left corner) and 4 magnets (in the lower right corner). 

 
Table 2.2.3.1 – Characteristics of the rotor with two hubs. 

 
Number of 

magnets Mass [kg] 
Centre of mass [m] 

Moments of inertia [kg m2] 
X Y Z 

1 2.686 0 0 -0.02 33.162 10−  0 0 
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0 33.162 10−  0 
0 0 33.333 10−  

2 2.685 0 0 -0.02 

33.159 10−  0 0 
0 33.159 10−  0 
0 0 33.333 10−  

3 2.685 0 0 -0.02 

33.157 10−  0 0 
0 33.157 10−  0 
0 0 33.332 10−  

4 2.684 0 0 -0.02 

33.155 10−  0 0 
0 33.155 10−  0 
0 0 33.332 10−  

 
2.2.4 Case 4 – Rotor with three hubs 
 

 
 

Figure 2.2.4.1 – Rotor with three hubs with 1 magnet (in the upper left corner), 2 magnets (in the 
upper right corner), 3 magnets (in the lower left corner) and 4 magnets (in the lower right corner). 

 
Table 2.2.4.1 – Characteristics of the rotor with three hubs. 

 
Number of 

magnets Mass [kg] 
Centre of mass [m] 

Moments of inertia [kg m2] 
X Y Z 

1 3.743 0 0 -0.012 

34.546 10−  0 0 
0 34.546 10−  0 
0 0 34.921 10−  

2 3.742 0 0 -0.012 

34.543 10−  0 0 
0 34.543 10−  0 
0 0 34.921 10−  

3 3.741 0 0 -0.012 
34.541 10−  0 0 

0 34.541 10−  0 
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0 0 34.921 10−  

4 3.741 0 0 -0.012 

34.539 10−  0 0 
0 34.539 10−  0 
0 0 34.921 10−  

 
2.2.5 Case 5 – Rotor with four hubs 
 

 
 

Figure 2.2.5.1 – Rotor with four hubs with 1 magnet (in the upper left corner), 2 magnets (in the 
upper right corner), 3 magnets (in the lower left corner) and 4 magnets (in the lower right corner). 

 
Table 2.2.5.1 – Characteristics of the rotor with four hubs. 

 
Number of 

magnets Mass [kg] 
Centre of mass [m] 

Moments of inertia [kg m2] 
X Y Z 

1 4.799 0 0 -0.004 

36.655 10−  0 0 
0 36.655 10−  0 
0 0 36.509 10−  

2 4.799 0 0 -0.004 

36.652 10−  0 0 
0 36.652 10−  0 
0 0 36.509 10−  

3 4.798 0 0 -0.004 

36.650 10−  0 0 
0 36.650 10−  0 
0 0 36.509 10−  

4 4.797 0 0 -0.004 

36.648 10−  0 0 
0 36.648 10−  0 
0 0 36.509 10−  

 
2.3 Chosen configuration 
 
Among many possible configurations, it is decided to place four hubs and four magnets on the 
vertical rotor because the goal to achieve is to maximize the level of energy to be stored. 
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Figure 2.3.1 – Rotor with four hubs with four magnets. 
 

Table 2.3.1 – Characteristics of the rotor in chosen configuration. 
 

Number of 
magnets Mass [kg] 

Centre of mass [m] 
Moments of inertia [kg m2] 

X Y Z 

4 4.798 0 0 -0.004 

36.657 10−  0 0 
0 36.657 10−  0 
0 0 36.509 10−  
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3. Simulation of the interaction between permanent magnets 
 
Permanent magnets are widely used for the realization of technological components that require 
enhanced magnetic characteristics. In this thesis work, the magnets are used as bearings and 
therefore it is inherent to evaluate the magneto-elastic force developed between stator rings and 
rotor rings. 
Permanent magnets are unique in their ability to deliver magnetic flux into the airgap of a magnetic 
circuit without any continuous expenditure of energy. The flux density may be uniform or 
nonuniform, steady or time varying. Magnet applications can also be classified by their influence on 
the magnet or by the physical effect that is being exploited. 
Spatially nonuniform fields offer another series of potentially useful effects. 
Through the knowledge of the local distribution of the magnetic field, it is possible to evaluate 
magneto-mechanical couplings between similar-shaped permanent magnets. The local magnetic 
force of a volume unit results: 
 
 = F M B  (3.1) 
 
whereas the volume unit momentum is 
 
 = T M B  (3.2) 
 
where M is residual magnetization vector and B is magnetic flux density vector. 
 

 
 

Figure 3.1 – Free body scheme of two magnets. 
 
Applying the equations of the magnetic interaction are calculated the forces and the torques on the 
magnet 2 due to the magnetic field generated by the magnet 1 (Equations 3.3 and 3.4); 
 
 1 2 2 1 1 2→ =  = − F M B M B  (3.3) 
 
 1 2 2 1 1 2→ =  = − T M B M B  (3.4) 
 
 1 2 2 1 1 2,2 ,1vol vol

dvol dvol→ =  = −  F M B M B  (3.5) 

 
 1 2 2 1 1 2,2 ,1vol vol

dvol dvol→ =  = −  T M B M B  (3.6) 
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For simplicity, let's examine a generic parallelepiped-shaped magnet sketched in Figure 3.2. This 
magnet has dimensions 2a, 2b, 2c and residual magnetic induction 0µ= rB M , where 

7
0 4 10 Hµ

m
 −=    is the magnetic permeability of vacuum and M is the residual magnetization, 

arranged along the z axis. 
 

 
 

Figure 3.2 – Geometric characteristics of the permanent magnet 
 
The magnetic interaction forces are evaluated along the three main directions: 
 

 ,1 ,1 ,1
1 2, ,2 ,2 ,2

x x x
x x y z

B B B
F M M M

x y z→

   
= + + 

   
 (3.7) 

 

 ,1 ,1 ,1
1 2, ,2 ,2 ,2

y y y
y x y z

B B B
F M M M

x y z→

   
= + + 

   
 (3.8) 

 

 ,1 ,1 ,1
1 2, ,2 ,2 ,2

z z z
z x y z

B B B
F M M M

x y z→

   
= + + 

   
 (3.9) 

 
 1 2, ,2 ,1 ,2 ,1x y z z yT M B M B→ = −  (3.10) 
 
 1 2, ,2 ,1 ,2 ,1y z x x zT M B M B→ = −  (3.11) 
 
 1 2, ,2 ,1 ,2 ,1z x y y xT M B M B→ = −  (3.12) 
 
These forces can be compared to elastic forces and therefore only the linear component is able to 
evaluate the rigidity through equations 3.13, 3.14 and 3.15. 
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 x
xx

dFK
dx

= −  (3.13) 

 

 y
yy

dF
K

dy
= −  (3.14) 

 

 z
zz

dFK
dz

= −  (3.15) 

 
These parameters are important for evaluating the stability or instability of an axis because it is well 
known that stable passive magnetic levitation is impossible except for a few cases: such result is 
commonly referred to as the Earnshaw’s theorem, even if the original paper by S. Earnshaw dealt 
with the equilibrium of systems of particles governed by inverse square law forces [3] and the proof 
of instability was extended to a ferromagnetic or paramagnetic body in a magnetic field only about 
a century later by W. Braunbeck [4][5]. 
The above equations have been implemented in Matlab to obtain the trend of forces, torques and 
stiffness as a function of the displacement of one of the two magnets. 
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3.1 Case 1 – Interaction between two prisms 
 
Simulation features: 

• two prismatic magnets, 
• moving a manet along the z axis, 
• offset in the x and y directions. 

 

 
 

Figure 3.1.1 – Initial configuration case 1. 
 

 
 

Figure 3.1.2 – Final configuration case 1. 
 

Table 3.1.1 – Properties of the material and the geometric characteristics. 
 

Characteristic Property Value 

Geometry 
2a, size along x [mm] 20 
2b, size along y [mm] 20 

2c, height along z, magnetization axis [mm] 10 
Material Br, residual magnetic induction [T] 1.2 
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Figure 3.1.3 – Forces, stiffnesses and torques in case1. 
 
The two prismatic magnets have a positive pitch both in the x direction and in the y direction. In 
this case, the magnet 2 is moved along the z direction, maintaining the two constant misalignments. 
Considering the configuration in which the two magnets are at the same height, corresponding to 
the position 0=z . The force along the z direction will be zero, while the forces along the x and y 
directions will both be positive, i.e. the magnet 2 will tend to move away from the magnet 1. 
 
3.2 Case 2 – Interaction between two cylindrical magnets 
 
Similarly, to what has been studied in the previous paragraph, the force formulas, stiffnesses and 
torques were implemented through Matlab. 
 
Simulation features: 

• two prismatic magnets, 
• moving a manet along the z axis, 
• offset in the x and y directions. 
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Figure 3.2.1 – Initial configuration case 2. 
 

 
 

Figure 3.2.2 – Final configuration case 2. 
 

Table 3.2.1 – Properties of the material and the geometric characteristics. 
 

Characteristic Property Value 

Geometry , diametrical size [mm] 22.6 
2c, height along z, magnetization axis [mm] 10 

Material Br, residual magnetic induction [T] 1.2 
 

In this case, the same offset values and the same value of displacement of the magnet 2 have 
been of the previous case assigned. 
Furthermore, the diameter of the cylinder has been obtained in such a way that the same volume 
of the parallelepiped has the same height. This feature is very important as it allows us to obtain 
the strengths, stiffnesses and torques equal to those obtained in Case 1. 
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Figure 3.2.3 – Forces, stiffnesses and torques in case 2. 
 
The trend of forces, stiffnesses and torques is the same for two different geometries and this allows 
us to assert that the quantities examined do not depend on the geometry of the treated body. 
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4. Interaction between prismatic magnetic rings 
 
Considering the equality of the results obtained between two magnets of different shapes, we can 
hypothesize to calculate the interaction between circular magnetic rings such as that between rings 
of prismatic shape. The geometric characteristics of the magnetic rings can be found in Table 4.1. 
 

Table 4.1 – Properties of the material and geometric characteristics of the circular magnetic rings. 
 

Characteristic Property Value 

Geometry1 – Stator rings  2h, height along z, magnetization axis [mm] 2 
ext.-int, diametrical size [mm] 37-32 

Geometry 2 – Rotor rings 2h, height along z, magnetization axis [mm] 2 
ext.-int, diametrical size [mm] 29.5-24.5 

Material Br, residual magnetic induction [T] 1.2 
 
The analogy with the prismatic rings can only be applied if the magnets have the same volume and 
height. We will obtain therefore the geometrical characteristics reported in Table 4.2. 
 
Table 4.2 – Properties of the material and geometric characteristics of the prismatic magnetic rings. 
 

Characteristic Property Value 

Geometry1 – Stator rings 
2c, height along z, magnetization axis [mm] 2 

2aext-2aint, size along x [mm] 32.8-28.4 
2bext-2bint, size along y [mm] 32.8-28.4 

Geometry 2 – Rotor rings 
2h, height along z, magnetization axis [mm] 2 

2aext-2aint, size along x [mm] 26.1-21.7 
2bext-2bint, size along y [mm] 26.1-21.7 

Material Br, residual magnetic induction [T] 1.2 
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4.1 Case 1 – Simulation of two magnets with axial displacement 
 
4.1.1 Magneti con asse di magnetizzazione nello stesso verso 
 
Simulation features: 

• prismatic magnetic rings, 
• stator magnet moved along the z axis, 
• no offset. 

 

 

 
 

Figure 4.1.1.1 – Initial configuration between two prismatic magnetic rings. 
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Figure 4.1.1.2 – Forces, stiffnesses and torques of magnetic interaction between two rings. 
 
4.1.2 Analysis of the possible work areas 
 
One of the peculiar characteristics of the magnetic rotor planned, is the presence of the minimum 
contribution of the weight force on the vertical axis. This is made possible by applying two axial 
forces in an opposite direction to the weight force acting on the rotor magnets generated by the 
magnetic fields of the stator magnets. 
For this reason, the negative traits of the curve (the areas in red) will be excluded because they 
produce axial forces that agree with the weight force. 
 

 
 

Figure 4.1.2.1 – Work areas in case 1. 
 
The stability of the system also places limits on the positioning of the stator rings with respect to the 
rotor rings. Moreover, in order to obtain a considerable reduction of the vertical component, it is 
necessary to work in axial instability and radial stability. 
To analyse instability, we use the Earnshaw theorem [2] where: 
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 2 0B =  (4.1) 
 

 
22 2

2 2 2 0yx zBB B
x y z

 
+ + =

  
 (4.2) 

 
This equation can be rewritten as the sum of the stiffness along the three main directions. 
 
 0xx yy zzk k k+ + =  (4.3) 
 
It is possible to notice how the stability condition occurs with stiffnesses less than zero. Therefore, 
the axial instability zones can be identified in those in which the stiffness along the vertical axis is 
positive and therefore the other stiffnesses are negative. 
This reduces the possible areas in which to position the stator (in the green areas there is axial 
stability). 
 

 
 

Figure 4.1.2.2 – Zone of the possible positioning of the rotor ring. 
 
With the use of only one magnet, there are no limitations due to the space requirements and 
therefore almost all the path available on the stator could be used. 
In conclusion, it is possible to position the stator only in the white part of the graph in Figure 
4.1.2.3, i.e. in a range between [-1.45 ÷ 0] mm. 
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Figure 4.1.2.3 – Positioning areas of stator ring. 
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4.2 Case 2 - Simulation of four magnets with axial displacement 
 
4.2.1 Magnets with magnetizing axis in the same direction 
 
Simulation features: 

• prismatic magnetic rings, 
• stator magnet moved along the z axis, 
• no offset. 

 

 

 
 

Figure 4.2.1.1 – Initial configuration between two rotor rings and two stator rings. 
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Figure 4.2.1.2 – Forces, stiffnesses and torques for case 2. 
 
 
4.2.2 Magnets with magnetizing axis with alternating direction 
 
Simulation features: 

• prismatic magnetic rings, 
• stator magnet moved along the z axis, 
• no offset. 
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Figure 4.2.2.1 – Initial configuration between two rotor rings and two stator rings. 
 

 

 
 

Figure 4.2.2.2 – Forces, stiffnesses and torques with rings with alternating magnetization axis. 
 
4.2.3 Analysis of the possible work areas 
 
Similarly, to what has been seen previously, the position of the stator rings is chosen following 
three limitations. 
To minimize the weight force only the positive forces are considered as shown in Figure 4.2.3.1 
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Figure 4.2.3.1 – Work areas in the case of two rings with a residual magnetic induction vector 
agreement (left) and alternating discordant (right). 

 
It was decided to work in areas where there is an axial instability and for this reason the areas with 
negative stiffness (green areas in Figure 4.2.3.2) are not considered. 
 

 
 
Figure 4.2.3.2 – Zones where it is possible to position the rotor in the case of rings with the vector 

residual magnetic induction agreement (left) and alternating discord (right). 
 
With the configuration of two stator and rotor rings, there are no geometric limitations. Therefore, 
the optimal zones where to place the stator rings are given by the overlapping of the two previous 
graphs. Therefore, we obtain the graph in Figure 4.2.3.3 where the blank areas are the only ones 
usable. 
There are different working ranges for the different orientation of the magnetic rings. If the magnets 
are all arranged with the residual magnetization vector in the same direction, there is a zone 
between [-2.35 ÷ 0] mm; while if the magnets arranged in alternate direction there are two ranges 
between [-1.24 ÷ 0] mm and [3.94 ÷ 10] mm where there is only a small contribution of axial force. 
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Figure 4.2.3.3 – Positioning zones of the stator ring in two cases under examination. 
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4.3 Case 3 - Simulation of six magnets with axial displacement 
 
4.3.1 Magnets with magnetizing axis in the same direction 
 
Simulation features: 

• prismatic magnetic rings, 
• stator magnet moved along the z axis, 
• no offset. 

 

 

 
 

Figure 4.3.1.1 – Initial configuration between three rotor rings and three stator rings. 
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Figure 4.3.1.2 – Forces, stiffnesses and torques. 
 
4.3.2 Magnets with magnetizing axis with alternating direction 
 
Simulation features: 

• prismatic magnetic rings, 
• stator magnet moved along the z axis, 
• no offset. 
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Figure 4.3.2.1 – Initial configuration between three rotor rings and three stator rings. 
 

 

 
 

Figure 4.3.2.2 – Forces, stiffnesses and torques. 
 
 
4.3.3 Analysis of the possible work areas 
 
We proceed with the analysis of the optimal point where it’s possible to position the stator rings 
respect to the rotor rings in order to obtain the optimal combination between strength and stiffness. 
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As discussed above there are some limitations. It was decided not to consider axial forces down (red 
zone Figure 4.3.3.1). 
 

 
 

Figure 4.3.3.1 – Work zones in the case of three rings with a residual magnetic induction vector 
agreement (left) and alternating discordant (right). 

 
The graph in Figure 4.3.3.2 did not take into consideration the areas in which the relative position 
between the two magnets led to axial stability. 
 

 
 

Figure 4.3.3.2 – Areas of possible to positioning in the case of rings with the vector residual 
magnetic induction agreement (left) and alternating discord (right). 

 
By overlapping the zones where the presence of the magnetic stator rings is not possible, only the 
white areas in Figure 4.3.3.3 are obtained. 
In the event that the rings are all positioned with a residual magnetization vector in the same 
direction, we obtain a range between [-3.24 ÷ 0] mm; while if the magnets are arranged alternately, 
we obtain three different ranges: [-5.87 ÷ -4.85] mm, [-1.13 ÷ 0] mm and between [3.4 ÷ 4.85] mm. 
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Figure 4.3.3.3 – Positioning zones of the stator ring in two cases under examination. 
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4.4 Case 4 - Simulation of eight magnets with axial displacement 
 
4.4.1 Magnets with magnetizing axis in the same direction 
 
Simulation features: 

• prismatic magnetic rings, 
• stator magnet moved along the z axis, 
• no offset. 

 

 

 
 

Figure 4.1.1.1 – Initial configuration of magnets with magnetization axis in the same direction. 
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Figure 4.4.1.2 – Forces, stiffnesses and torques. 
 
In this case the interaction between four stator magnets and four rotor magnets with the 
magnetization axis along the z axis is simulated and all in the same direction. The rotor magnets are 
fixed while the stator magnets are moved vertically within ± 10 mm. 
The forces, stiffness and torque are those that the rotor magnets feel due to the magnetic field of the 
stator magnets. 
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4.4.2 Magnets with magnetizing axis with alternating direction 
 
Simulation features: 

• prismatic magnetic rings, 
• stator magnet moved along the z axis, 
• no offset. 

 

 

 
 

Figure 4.4.2.1 – Initial configuration of magnets with magnets with a reciprocating magnetization 
axis. 
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Figure 4.4.2.2 – Forces, stiffnesses and torques. 
 
The forces, stiffnesses and torques are those that the rotor magnets feel due to the magnetic field of 
the stator magnets. Analysing the graphic of the forces we can see that through the opposition of the 
residual induction between adjacent magnets, peaks of higher forces are obtained. This behaviour is 
typical of permanent magnets since the forces depend on the Br gradient and therefore the 
discontinuities along one direction. 
Also, in this case the value of the pairs when the dimension in z is changed is zero. 
 
4.4.3 Analysis of the possible work areas 
 
After examining the forces and stiffness of the magnets in the two configurations, we proceed to the 
analysis of the possible work zones. 
Since it is attempted to obtain a magnetic rotor with a minimum contribution of the weight force, 
the two axial forces are directed in opposite direction to the weight force acting on the rotor 
magnets generated by the magnetic fields of the stator magnets. 
For this reason, we consider the negative traits of the curve (the red areas) to be excluded because 
they produce axial forces that agree with the weight force. 
 

 
 

Figure 4.4.3.1 – Work zones in the case of rings with a residual magnetic induction vector 
agreement (left) and alternating discordant (right). 
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The second condition necessary to reduce the contribution of the weight force is the axial instability 
of the rotor. According to the Earnshaw theorem [2], an axial instability corresponds to a positive 
stiffness. 
This reduces the possible positions in which to position the stator (the green areas have axial 
stability and therefore must be excluded). 
 

 
 

Figure 4.4.3.2 – Areas of possible to positioning in the case of rings with the vector residual 
magnetic induction agreement (left) and alternating discord (right). 

 
A final limitation of where to place the stator rings is given by the dimensions of the built 
prototype. 
 

 
 

Figure 4.4.3.3 – Areas of a possible positioning of the stator in the two cases examined. 
 
Considering all the various limitations discussed, the areas in which it is possible to position the 
stator rings with respect to the rotor rings are shown in Figure 4.4.3.4. 
In the case where the residual magnetic induction vectors are all in the same direction we obtain a 
range where it is possible to position the stator rings between [-3.88 ÷ 0] mm; while in the case in 
which it is decided to arrange the magnets with the alternation of the direction of the residual 
magnetic induction, we obtain two very small ranges. The first is between [-5.37 ÷ -4.33] mm while 
the other is between [-1.09 ÷ 0] mm. 
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Figure 4.4.3.4 – Positioning zones of the stator ring in two cases under examination. 
 
To understand where to place the stator rings respecting the rotor rings, the weight force exerted by 
the rotor assembly on the thrust bearing must be analysed. 
The rotor assembly has a weight of 4.8 kg and exerts a downwardly directed downward force of 
about 47 N. In order to achieve a reduction in weight force, the two forces generated by the two 
rotor-stator couplings are used. We also suppose that these forces are equal. 
Table 4.4.3.1 compares the probable positioning of the stator rings for the various cases studied. 
 

Table 4.4.3.1 – Comparison between the forced developed for the different ranges. 
 

Number of 
magnets Br orientation Range [mm] Optimal force developed [N] 

1 Indifferent direction -1.45 ÷ 0  11.3 

2 
Same direction -2.35 ÷ 0 21.2 

Alternating direction -1.24 ÷ 0 26 
3.94 ÷ 10 6.4 

3 

Same direction -3.24 ÷ 0 22 

Alternating direction 
-5.87 ÷ -4.85 7.9 

-1.13 ÷ 0 33.4 
3.4 ÷ 4.85 19.8 

4 
Same direction -3.88 ÷ 0 21.7 

Alternating direction -5.37 ÷ -4.33 22.5 
-1.09 ÷ 0 28.6 

 
The choice of the number of magnets is not influenced by the maximum stiffness value. In fact, as 
the number of magnets increases, at first there is an increase in stiffness to then reach a stall value. 
However, we can see an increase in the radial stability zone. 



 

 44 / 117 

 
4.5 Choice configuration 
 

 
 

4.5.1 – Strength of the forces as the vertical stiffness changes. 
 
In Figure 4.5.1 we can see how the axial force varies with increasing stiffness. In the case of our 
interest, we will consider only the first quadrant, where both the force and the axial stiffness are 
positive. 
In order to have easier positioning chances, it has been decided to assemble all the rings with the 
residual magnetic induction vectors in the same direction by positioning the stator rings one 
millimetre under the rotor rings. This configuration was chosen as a compromise between the high 
magnetic upward force enough to reduce the weight force and a positive axial stiffness, index of 
axial instability. 
Furthermore, it was decided to use a different number of magnets between the upper part (2 
magnets) and the lower one (4 magnets) of the rotor because of the dimensions that reduced the 
areas of possible positioning of the rings. Table 4.5.1 shows the characteristics of the selected 
configuration. 
 

Table 4.5.1 – Forces and stiffness of magnetic groups. 
 

Number of 
magnets Br orientation Optimal force 

developed [N] 
Axial stiffness 

[N/m] 
Radial stiffness 

[N/m] 
2 Same direction 21.2 41.54 10  -7707 
4 Same direction 21.7 41.63 10  -8159 
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5. Radial displacement 
 
After choosing the positioning dimension of the stator rings, it was decided to analyse the behaviour 
of the forces, stiffnesses and torques to a displacement along the y axis. This study will produce 
completely analogous results to that of circular magnetic rings moved in any radial direction. 
 
5.1 Lower bearing 
 
For the lower bearing, the chosen configuration has four stator magnets and four rotor magnets. The 
direction of the displacement on which to evaluate the forces and magnetic torques is indifferent 
due to the axial symmetry of the rotor. 
 
Simulation features: 

• prismatic magnetic rings, 
• stator magnet moved along the y axis, 
• offset of 1 mm. 

 

 

 
 

5.1.1 – Initial configuration with movement of the rotor magnets along y. 
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5.1.2 – Forces, stiffnesses and torques for a radial displacement. 
 
Due to the small displacement imposed on the rotor magnets, the characteristic of the axial force is 
almost flat, a positive feature since there are no high peaks of forces when the two magnets come 
into contact. 
 
5.2 Upper bearing 
 
Similarly, to what was done for the lower bearing, the forces and torques obtained from a radial 
displacement of the rotor magnets for the upper bearing are analysed. 
 
Simulation features: 

• prismatic magnetic rings, 
• stator magnet moved along the y axis, 
• offset of 1 mm. 
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Figure 5.2.1 – Initial configuration with movement of the rotor magnets along y. 
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Figure 5.2.2 – Forces, stiffnesses and torques for a radial displacement. 
 
Considering the study just carried out, it was decided to place the stator rings 1 mm below the rotor 
rings and with the residual magnetization vectors all oriented in the same direction. This decision 
guarantees a good radial stability and a great axial instability, exploited for the reduction of the 
weight force acting on the thrust bearing.  
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6. Equations of motion – Linear behaviour 
 
The study of the behaviour of a system that is under the action of dynamic forces is crucial for the 
identification of its dynamic characteristics. 
In the case of linear dynamic system, the following must be analysed: 

• natural frequencies; 
• deformed modal corresponding to the natural frequencies. 

These can be determined both from damping model and from model without damping: in the first 
case we have complex modal deformations, while in the second case real modal deformations. 
The equations of motion of a rotor can be obtained by the Lagrange approach or the Eulerian 
approach. The two methods are equivalent, and we arrive at a system of n equations in n degrees of 
freedom. 
What most characterizes the analysis of the rotors compared to other no-rotating dynamical systems 
is the presence of the gyroscopic effects. So, the matrix equation of the dynamics of a rotor must 
consider these effects by introducing a gyroscopic matrix that multiplies the velocity vector. 
The matrix equation becomes: 
 
 ( )+ + + =Mx C G x Kx F  (6.1) 
 
where: 

• M is the mass matrix ( )n n ; 

• C is the damping matrix ( )n n ; 

• G is the gyroscopic matrix ( )n n ; 

• K is the stiffness matrix ( )n n ; 

• F is the external forces matrix ( )1n  
• x,x,x  are respectively the generalized displacements, the velocities and accelerations of the 

only active degrees of freedom. 
 
In this case, the generical vector q has six component (n=6) that correspond at six degrees of 
freedom. The first three elements are the displacements along the axes, while the other elements are 
the three main rotations. 
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For the evaluation of natural frequencies and modal deformations the homogeneous equation 
associated with the dynamic system equation without damping must be considered 
 
 ( ) 0+ + + =Mx C G x Kx  (6.3) 
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and then look for the eigenvalues of the associate matrix. To this aim, let assume that solutions can 
be expressed in the form: 
 
 est= 0x x  (6.4) 
 
where: 
 
 s i = +  (6.5) 
 
are the complex frequencies of the system that can be computed as the eigenvalues of the matrix 
associated to the dynamic equations.  
In particular, the imaginary and real part of s represent respectively: 

➢ the whirl frequency Im( )s = , which corresponds to the natural frequencies of the free 
motion; 

➢ the decay rate Re( )s = , which corresponds to the rate at which the amplitude decreases 
(or increases) in time. 

To further simplify the modal analysis of the magnetic rotor, it is decided to analyse the gyroscopic 
matrix in a later stage and then the equation of motion is reduced: 
 
 0+ + =Mx Cx Kx  (6.6) 
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6.1 Modal analysis without damping 
 
To further simplify the modal analysis of the magnetic rotor, it is decided to analyse the gyroscopic 
matrix in a later stage and as first analysis we consider the un-damped system represented by the 
equation: 
 
 0+ =Mx Kx  (6.1.1) 
 
The modal analysis of the rotor without damping, defined by the equation 2.3, is evaluated using 
LUPOS. The LUPOS model is an m-file that contains all the elements necessary to create the 
model. This software runs in the MATLAB environment, and we can set analysis options using a 
graphical interface. 
The first step in creating a model in Lupos is the definition of the geometry to be analysed. For this 
reason, the matrix containing the positions of the nodes taken all along the vertical axis of the rotor 
is inserted. The geometry of the shaft can be simplified as a succession of cylinders with faces 
adjacent to one another. For this reason, there will be a new node at each change of the orthogonal 
section to the axis. The point of contact between the shaft and the thrust ball was chosen as the first 
node. 
 

 

 
 

Figure 6.1.1 – Nodes position on the shaft. 
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As can be seen in the Figure 6.1.1, the number of nodes used is enough to determine the position in 
which the hubs and the magnets will be positioned. 
Beyond the geometry of the shaft, the hubs and the rotor magnets have been modelled and new 
nodes have been added to it, similarly to what has just been seen. 
The nodes used to determine the geometry of the hubs and magnets will be constrained with some 
nodes of the shaft to obtain a rigid joint. 
The second matrix used in LUPOS generates the geometries through the rod elements. 
The rod element is defined as a circular or elliptical tube between two nodes. The cross-section of 
the element can be solid or annular. 
Here the Timoshenko approach is used, as the model considers the shear deformation and the 
rotational bending effects, making it suitable for the description of the rotor under examination. 
With the modelling of all the elements the complete geometry in Figure 6.1.2 was obtained which 
will be analysed in LUPOS. 
 

 
 

Figure 6.1.2 – Rotor geometry in LUPOS. 
 
6.1.1 Mass matrix 
 
The mass matrix can take two forms: a lumped matrix mass that assumes values different from zero 
on the main diagonal only and the other consistent which uses a method consistent with the internal 
displacement field assumed. 
In the present case a lumped mass matrix is used where the point mass is in one of the nodes of the 
model, with rotational and translational inertia properties. 
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The mass matrix has been obtained through the LUPOS analysis. This matrix is a 6x6 and as you 
can see in the Figure 6.1.1.1 the most relevant elements are those along the diagonal. 
The off-diagonal elements are machine zeros. 
 

 
 

Figure 6.1.1.1 – Distribution of the mass matrix. 
 
6.1.2 Stiffness matrix 
 
Similarly, to what was done for the mass matrix, the stiffness matrix was generated. Generally, it is 
not a diagonal matrix, although it usually has a band structure. In this case is a 6x6 matrix and as 
you can see in the Figure 6.1.2.1, the element 3,3k  are greater than the others. This represents the 
rigidity along the z axis and is much greater than that in the other directions because. 
 

 
 

Figure 6.1.2.1 – Distribution of the stiffness matrix. 
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6.1.3 Rotor modes 
 
The approach is based on the modal analysis generally focused on the most important low order 
methods, but in no way limited in principle to these modalities. 
In classical mechanics a "mode" is a description of movement. There are various types of modes, 
such as the "principal", "bending" or "torsional" or "coupled" modes. 
For the study of the rotor, we will not consider the flexural and torsional modes of the shaft because 
is treated as a rigid body. 
All describe a particular manner of movement. The modes, associated with the natural frequencies 
of the system, are the most important features of all mechanical vibratory systems. 
At natural frequency, a vibrating system moves in "principal" or "natural" mode of free vibration. 
The modal analysis will be performed at zero rotation speed and only at a later time will we take 
into account the gyroscopic component. 
 

6.1.3.1 Mode 1 
 
The first mode found is the null frequency, as can be seen in the Figure 6.1.3.1.1. Since the rotor 
has not damping (Equation 2.5), the first critical speed corresponds to the natural frequency. This 
mode produces a rotation of the rotor along the z axis. 
 

 
 

Figure 6.1.3.1.1 – First mode. 
 

6.1.3.2 Mode 2 end mode 3 
 
It is of interest to point out that a rigid shaft on flexible supports can undergo different modes, 
known as rigid body modes. 
In Figure 6.1.3.2.1, the second and the third mode are shown. These two modes are called bounce 
modes and they correspond to a cylindrical whirl for which the deflection at each bearing is in phase 
are paired and develop orthogonal to each other. We both get them for a frequency of 9.114 Hz. 
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Figure 6.1.3.2.1 – Mode 2 and mode 3. 
 

6.1.3.3 Mode 4 and mode 5 
 
In Figure 6.1.3.3.1 shows the pitch mode, which is characterised by a conical whirl, for which the 
deflection at each bearing is 180 degrees out of phase. 
 

 
 

Figure 6.1.3.3.1 – Mode 4 and mode 5. 
 
Remembering that the system is axially symmetrical (both the rotor and the stator), there are two 
modes, connected with the mainly conical vortex, but since there are not conditions of symmetry 
between the upper and inferior magnetic bearings it is not possible to have modes conical. We both 
get them for a frequency of 14.39 Hz. 
 

6.1.3.4 Mode 6 
 
The last way found with the fem analysis is a 229.8 Hz (Figure 6.1.3.4.1) and represents an 
oscillating shift along the rotation axis. 
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Figure 6.1.3.4.1 – Mode 6. 
 
6.1.4 Simulation model 
 
With the mass matrix and with the matrix of stiffness obtained with the fem analysis in LUPOS, we 
have moved to the simulation of the magnetic rotor in Simulink. 
To implement the equation 2.1, it is necessary to define the gyroscopic matrix. 
 

6.1.4.5 Gyroscopic matrix 
 
The gyroscopic matrix contains the polar moments of inertial, and hence conservative, terms that, in 
the case of rotodynamic, are strictly linked with the gyroscopic moments acting on the rotating parts 
of the machine. If the equation is written with reference to a no inertial frame, terms linked with 
Coriolis acceleration also are present in the gyroscopic matrix. 
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6.1.4.6 Numerical analyses 
 
The system of equations 2.5 can be solved only after establishing initial conventions for speeds and 
displacements (Table 6.1.4.6.1). 
 

Table 6.1.4.6.1 – Initial conditions. 
 

Initial condition Value  
0zr  314 [rad/s] 

x0 45 10−  [m] 
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To make the model as realistic as possible, it was assumed a resistant torque in the air rotation 
direction equal to 0.001 Nm. 
  

 
 

Figure 6.1.4.6.1 – Model of equation 2.5 without damping. 
 
With the simulation model we want to analyse the various aspects of the rotor at the decrease of the 
rotation speed. Since there is no damping and for this reason the rotation speed will be linear as 
shown in the Figure 6.1.4.6.2. 
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Figure 6.1.4.6.2 – Speed trend. 
 
Among the parameters in analysis are the displacements and rotations of the centre of mass of the 
rotor in the three main directions. The Figure 6.1.4.6.3 shows the displacement over time of the 
centre of mass along the rotation axis. This oscillatory trend will grow over time due to the lack of 
damping, but since the displacements are infinitely small, we can consider the position of the rotor 
along z constant. 
 

 
 

Figure 6.1.4.6.3 – Movement along the rotation axis. 
 
It is also interesting to analyse the trajectory of the rotor in the XY plane when an imbalance of half 
millimetre is given in one of the two directions. In the Figure 6.1.4.6.4 it can be deduced the typical 
trajectory where the rotor goes from one end to the other. 
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Figure 6.1.4.6.4 – Displacement x-y. 
 
This movement will continue over a very long period because there is not a damping. 
During the decay of the rotation speed, small rotary oscillations can be noticed that occur in the 
other two main directions. This behaviour of the rotor is shown in the Figure 6.1.4.6.5 where there 
are the two temporal trends of the rotations and the interaction of one with the other. 
 

 
 

Figure 6.1.4.6.5 – Rotations in x and y directions. 
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6.2 Modal analysis with damping 
 
Also considering the presence of viscous damping supports, we proceed to the study of dynamic 
analysis in the most complete form represented by the equation 2.1. 
 
6.2.1 Damping matrix 
 
The damping matrix of the system can be obtained by applying in the nodes that correspond to the 
magnetic bearings the viscous dampers and in this way the main elements are positioned on the 
diagonal. This way of evaluating the damping of the system is clearly an approximation that can, in 
many cases, be very rough. However, it is often used in practice because there are no simple 
alternatives. 
 

 
 

Figure 6.2.1.1 – Distribution of the damping matrix 
 
As can be seen in the Figure 6.2.1.1, the damping elements have been added that simulate the 
damping behaviour of magnetic bearings and one that simulates air damping. 
 
6.2.2 Rotor modes 
 
Similarly, to what was done for the case without damping, we proceed to modal analysis of the 
rotor and using LUPOS again. Twelve modes of vibrating at six different frequencies have been 
found. 
Since that the damping of the system is lower than the critical damping, the system is said 
underdamped and leads to pair of complex-conjugate solutions. 
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Figure 6.2.2.1 – Representation of the modes in the plane complex. 
 

6.2.2.1 Rigid mode 
 
The first and the last modes of vibration found are those represented in Figure 6.2.2.1.1 at 0 Hz and 
correspond to the rigid rotation of the rotor on its own axis. These are the overdamped mode. 
 

 
 

Figure 6.2.2.1.1 –Rotation modes. 
 

6.2.2.2 Cylindrical whirl 
 
At the critical frequency of 9.114 Hz there are four modes, i.e. two different pairs. These modes are 
called cylindrical because they describe this figure in space (Figure 6.2.2.2.). 
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Figure 6.2.2.2.1 – Bounce modes. 
 
Also, in this case the two different pairs develop in orthogonal directions between them (Figure 
6.2.2.2.2) and moreover the critical frequency of these modes is slightly increased due to the 
damping. 
 

 
 

Figure 6.2.2.2.2– Bounce modes in XY plane. 
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6.2.2.3 Conical whirl 
 
Similarly, to what has been said for the cylindrical modes, there are two couples of the modes at a 
frequency of 14.39 Hz (Figure 6.2.2.3.1). The modes found are conical and develop in two different 
orthogonal directions (Figure 6.2.2.3.2). 
 

 

 
 

Figure 6.2.2.3.1 – Conical modes. 
 

 
 

Figure 6.2.2.3.2 – Conical modes in XY plane. 
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6.2.2.4 Underdamped modes 
 
At high speeds of rotation, we can encounter two different ways which represent an under-damping 
of the rotor. These occur at a frequency of 229.8 Hz. 
 

 
 

Figure 6.2.2.4.1 – Shaking modes. 
 
As seen previously, they correspond to a shaking of the rotor in the direction of rotation speed. 
The Table 6.2.2.4.1 shows the critical speeds and frequencies for each mode. 
 

Table 6.2.2.4.1 – Critical speeds. 
 

Modes Ω [rad/s] fn [Hz] 
1 0 0 
2 57.26 9.114 
3 57.26 9.114 
4 57.26 9.114 
5 57.26 9.114 
6 90.42 14.39 
7 90.42 14.39 
8 90.42 14.39 
9 90.42 14.39 
10 1443.88 229.8 
11 1443.88 229.8 
12 0 0 
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6.2.3 Numerical integration of linear equation of motion 
 
As seen above with the mass matrix, with stiffness matrix, with damping matrix and with that of 
gyroscopic, defined in the paragraph 6.1.4.5, obtained with the fem analysis in LUPOS, we have 
moved to the simulation of the magnetic rotor in Simulink. 
 

 
 

Figure 6.2.3.1 – Model of equation 2.5 with damping. 
 
With the same boundary conditions as in the non-damped case, we want to analyse the various 
aspects of the rotor as the rotational speed decreases. In this case the reduction of the rotation speed 
has an exponential trend as shown in Figure 6.2.3.2. 
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Figure 6.2.3.2 – Speed trend. 
 
If we analyse the time displacement of the centre of mass along the rotation axis as can be seen in 
this case (Figure 6.2.3.3), the oscillatory tendency will decrease over time due to damping. The 
displacements are infinitely small and therefore we can consider the position of the rotor along z 
constant. 
 

 
 

Figure 6.2.3.3 – Displacement of the centre of mass over time. 
 
With the addition of damping, the trajectory of the rotor in the XY plane produces the typical 
trajectory in which the rotor goes from one end to the other, but as the Figure 6.2.3.4 shows, the 
number of displacements is much smaller than in the case without damping and therefore the rotor 
is destined to stabilize. Furthermore, the figure shows the trajectory in three different moments. In 
green the trajectory is at the beginning of the simulation and the movement of the rotor can be 
noticed from one position to the other with a minimum rotational component. As time passes and 
the speed decreases, the figure shows the typical flower petals trajectory. 
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Figure 6.2.3.4 – Displacement x-y. 
 
With the damping of the system, the small rotating oscillations that occur in the other two main 
directions are reduced over time as shown in Figure 6.2.3.5. 
 

 
 

Figure 6.2.3.5 – Rotation rx-ry. 
 
At 156 seconds we can see the maximum peak of rotation in both directions. This value is found in 
correspondence with one of the modes of vibration. In fact, at 156 seconds the rotor has a rotation 
speed of about 61.3 rad / s corresponding to 9.114 Hz. 
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6.3 Campbell diagram 
 
Usually, the dynamic study of rotors is performed under the assumption that the angular velocity 
about the axis of rotation, usually referred to as spin speed, is constant, at least in its average value. 
Because the natural frequencies of a rotor can depend on the spin speed, the dynamic behaviour of 
such systems is usually summarized by a plot of the natural frequencies as functions of the 
rotational speed, obtaining what is generally known as a Campbell diagram. 
The cylindrical whirl is not possible to see it because with respect to the centre of mass it 
corresponds to a rotation. Furthermore, this is supported by the graph in the Figure 6.3.1. 
This represents the Campbell diagram where it is a plot of the real and imaginary part of 
eigenvalues s versus the rotor speed Ω. 
With the analysis of these two parts, it is possible to analyse the stability of the rotor and to identify 
forward whirl and backward whirl motion, which correspond to the case of precession having the 
same sign or opposite sign respect to the rotor spin velocity ω respectively. 
Stability depends on the sign of the real part of s if: 

• σ ≤ 0 – rotor is stable; 
• σ > 0 – rotor is unstable. 

 

 
 
Figure 6.3.1 – Real (left) and imaginary (right) parts of the complex whirl frequency as functions of 

the spin speed in nondimensional form. 
 

 
 

Figure 6.3.2 – Imaginary parts of the complex whirl frequency and spin speed. 
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It is interesting to note how the line representing the course of angular velocity crosses the diagram 
in a single curve at the point corresponding to a rotation speed equal to 57.26 rad / s and this will be 
the only visible vibrational mode. (Figure 6.3.2). 
It is interesting to note how the vibrating modes change their frequency as the rotor speed increases. 
 

 
 

Figure 6.3.3 – Whirl frequency and spin speed. 
 
Through the implementation of LUPOS with the gyroscopic model, we were able to easily notice 
the phenomenon of veering between two different pairs of modes. This phenomenon is due to a 
strong coupling between modes 1 and 2 and those 5 and 6, whereas the speed of rotation increases 
the modes feel the presence of the others and interact by exchanging that is, the cylindrical ones 
become conical and vice versa. 
 

 
 

Figure 6.3.4 – Veering phenomena. 
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Mode 1 and 2 which at low rotation speeds correspond to two cylindrical modes (Figure 6.3.5), at 
speeds greater than 90 rpm they become conical modes (Figure 6.3.6). 
 

 
 

Figure 6.3.5 – Mode 1 and mode 2 at 70 rpm (cylindrical mode). 
 

 

 
 

 
Figure 6.3.6 – Mode 1 and mode 2 at 110 rpm (conical mode). 

 
On the contrary, modes 5 and 6 at low speeds correspond to conical modes (Figure 6.3.7) which at 
high-speed turn becoming cylindrical (Figure 6.3.8). 
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Figure 6.3.7 – Mode 5 and mode 6 at 70 rpm (conical mode). 
 

 
 

Figure 6.3.8 – Mode 5 and mode 6 at 110 rpm (cylindrical mode). 
 
It is interesting to note that modes 3 and 4 have no interaction with the others although they have a 
conical whirl and therefore remain so as the rotor speed increases. 
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7. Equations of motion – Linear behaviour 
 
The real world is, however, generally non-linear, and the use of linear models is always a source of 
approximation. 
The behaviour of a non-linear system can be qualitatively different from that of the corresponding 
linearized system, and therefore the behaviour in the large can differ significantly from the 
behaviour in the small. 
In this second phase, to obtain the real behaviour of the rotor motion, these forces have been 
considered with a non-linear behaviour. 
The equation of the matrix becomes: 
 
 ( )+ + + + =nlMx C G x Kx F F  (7.1) 
 
where: 

• M is the mass matrix ( )n n ; 

• C is the damping matrix ( )n n ; 

• G is the gyroscopic matrix ( )n n ; 

• K is the stiffness matrix ( )n n ; 

• nlF  is the non-linear forces matrix ( )1n ; 

• F is the external forces matrix ( )1n ; 
• x,x,x  are respectively the generalized displacements, the velocities and accelerations of the 

only active degrees of freedom. 
 
7.1 Non-linear forces and torques 
 
7.1.1 Lower magnetic bearings 
 
By applying the laws of magnetic interaction, the forces and torques exchanged between the stator 
magnets and the rotor ones along the three directions have been calculated. 
The modulus of forces depends on the relative distance between the centres of the two groups of 
magnets. Therefore, after having established the value of this distance along the rotor's axis of 
rotation, it has passed to the evaluation of the forces in the plane. 
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Figure 7.1.1.1 – Force along the x axis. 
 

 
 

Figure 7.1.1.2 – Force along the y axis. 
 
In the case of our interest, due to the axial symmetry of the magnetic rotor, the forces evaluated 
along one of the two main directions will be equal to the force evaluated along any generic 
direction. So, as you can see in the Figure 7.1.1.3 the strength module will be the same at any point 
that is at the same distance from the centre. 
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Figure 7.1.1.3 – Radial force of lower bearing. 
 
Analysing the component of the magnetic interaction forces obtained along the vertical axis, this is 
also dependent on the relative position of the magnets in the plane. With the approach of the rotor 
rings to the stator ones, the modulus of the upward thrust force increases. 
 

 
 

Figure 7.1.1.4 – Force along the z axis. 
 
Similarly, to what we have seen for the forces, also the torques in the three main directions depend 
on the relative position of the two centres of the magnetic groups. The more the two centres will be 
distant from each other, the greater the modulus of the torque in the direction orthogonal to the 
displacement occurred. In fact, as shown in the Figure 7.1.1.5 and Figure 7.1.1.6 the module of the 
pair xT  grows at a distance in two centres in the y direction and vice versa. 
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Figure 7.1.1.5 – Torque along the x axis. 
 

 
 

Figure 7.1.1.6 – Torque along the y axis. 
 
The Figure 7.1.1.7 also shows the pairs along the vertical axis. As can be seen, these do not depend 
on the displacement of the centres of the magnets in the plane and are all null. 
 

 
 

Figure 7.1.1.7 – Torque along the z axis. 
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7.1.1.1 Fit a polynomial surface 
 
In order to consider, the non-linearity of the magnetic forces in the rotor bearings, we proceeded 
with a non-linear regression. 
As a first approach a generic formulation of the force was considered with a polynomial of the fifth 
order of the equation 7.2 that is represented by the surface in Figure 7.1.1.1.1. 
 

 

2 2 3 2
0,0 1,0 0,1 2,0 1,1 0,2 3,0 2,1

2 3 4 3 2 2 3 4
1,2 0,3 4,0 3,1 2,2 1,3 0,4

5 4 3 2 2 3 4 5
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k x k x y k x y k x y k xy k y

= +  +  +  +  +  +  +  +

+  +  +  +  +  +  +  +

+  +  +  +  +  + 

 (7.2) 

 

 
 

Figure 7.1.1.1.1 – Fit a polynomial surface. 
 
The stiffness coefficients found in the Table 7.1.1.1.1 are those related to odd order terms. The 
coefficient of the stiffness of the term of the first order is the same one found considering the 
linearized magnetic force, while the other coefficients are those that underline the dependence of 
the magnetic force both on the distance in x and on the distance in y. 
 

Table 7.1.1.1.1 – Coefficients of force along x direction. 
 

Stiffness coefficients 
0,0k  178.13 10−−   3,1k  -0.00029 

1,0k  -8141 2,2k  0.00038 
0,1k  134.881 10−  1,3k  55.025 10−  

2,0k  95.233 10−  0,4k  0.00228 
1,1k  101.014 10−  5,0k  142.152 10  

0,2k  91.598 10−−   4,1k  2.37 
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3,0k  81.246 10  3,2k  132.946 10  

2,1k  62.207 10−−   2,3k  0.1869 

1,2k  73.393 10  1,4k  134.353 10  
0,3k  61.317 10−−   0,5k  1.023 

4,0k  -0.00632   
 
Through the generalized polynomial, we could note the dependence of magnetic forces only on the 
odd order terms and for this reason we formulated the equation 7.3 that represents the polynomial 
with which the fitting will be performed. It is constituted by all the possible combinations of terms 
in x, y and ( )2 2 2x y = +  which represent the distance between the two magnetic groups. 
The first subscript represents the degree of the term x, the second subscript the degree of the term y, 
while the third that of ρ. 
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 (7.3) 

 

 
 

Figure 7.1.1.1.2 – Fitting with a new surface polynomial. 
 
Since with this formulation there is the redundancy of some terms, the polynomial with which the 
curve fitting has been done contains only the terms present in Table 7.1.1.1.2 
 

Table 7.1.1.1.2 – Coefficients of generic force. 
 

Stiffness coefficients 
100k  -8148 211k  0 

010k  92.299 10−−   121k  0 
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101k  82.237 10  102k  0 
011k  0.00224 031k  129.52 10−  
301k  0 

012k  129.52 10−  
 
The goodness of the fit can be assessed through four parameters: 
 

• The sim of squares due to error (SSE); 
• R-square; 
• Adjusted R-square; 
• Root mean squared error (RMSE). 

 
The SSE is a statistical measure of the total deviation of the response values from the fit to the 
response values. A value closer to 0 indicates that the model has a smaller random error component, 
and that the fit will be more useful for prediction. 
R-square is the square of the correlation between the response values and the expected response 
values. R-square can take on any value between 0 and 1, with a value closer to 1 indicating that a 
greater proportion of variance is accounted for by the model. 
This statistic uses the R-square statistic defined above, and adjusts it based on the residual degrees 
of freedom. The adjusted R-square statistic can take on any value less than or equal to 1, with a 
value closer to 1 indicating a better fit. 
This statistic is also known as the fit standard error and the standard error of the regression. It is an 
estimate of the standard deviation of the random component in the data. Just as with SSE, an RMSE 
value closer to 0 indicates a fit that is more useful for prediction. 
The Table 7.1.1.1.3 shows the values of the fitting performed. 
 

Table 7.1.1.1.3 – Fitting of radial force. 
 

Goodness of fit 
SSE 0.723 

R-square 0.9999 
Adjusted R-square 0.9999 

RMSE 0.0410 
 
The polynomial of the equation 3.1 is used to determine the rigidity coefficients of forces along y. 
These coefficients must be equal to those obtained for xF  in the x direction due to the radial 
symmetry of the rotor. 
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Figure 7.1.1.1.3 – Fitting with a surface polynomial of forces along y. 
 

Table 7.1.1.1.4 – Coefficients of generic force. 
 

Stiffness coefficients 
100k  91.735 10−−   211k  0 

010k  -7963 121k  0 

101k  0.00169 102k  208.755 10−  
011k  -0.00430 031k  0 
301k  208.755 10−  012k  0 

 
Comparing Table 7.1.1.1.2 with Table 7.1.1.1.4 the coefficients representing the stiffness along the 
chosen direction are not equal. For this reason, we evaluate the absolute and relative error between 
the forces in the two main directions of the plane. 
As can be seen in the Figure 7.1.1.1.4, the two surfaces representing radial forces in two different 
directions are slightly different. This causes the diversity of the stiffness coefficients. Since the error 
is still very small, it was decided to use the coefficients found with the fitting on the values of the 
forces along the x direction. 
 



 

 80 / 117 

 
 

Figure 7.1.1.1.4 – Absolute and relative error between the forces in two directions. 
 
Similarly, to what was done for the exchanged forces of the magnets in the radial direction, we 
proceeded with a non-linear regression. 
In a first approach the complete polynomial was used in the equation. Here it was possible to notice 
the strong dependence of the axial force with an even order terms of the distance between the two 
centres of the magnets (Table 7.1.1.1.5). 

 
 

Figure 7.1.1.1.5 – Force along the z axis. 
 

Table 7.1.1.1.5 – Coefficients of force along z direction. 
 

Stiffness coefficients 
0,0k  21.64 3,1k  0.00898 

1,0k  111.546 10−−   2,2k  102.857 10−   
0,1k  128.584 10−−   1,3k  0.00862 

2,0k  63.248 10  0,4k  111.473 10−   
1,1k  97.666 10−−   5,0k  0.8648 
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0,2k  63.285 10  4,1k  -53.08 

3,0k  69.405 10−  3,2k  -33.43 

2,1k  55.132 10−  2,3k  -14.65 

1,2k  54.149 10−  1,4k  -17.96 
0,3k  51.145 10−  0,5k  -0.3459 

4,0k  111.206 10−     
 
Subsequently, for easier calculation and better data processing, the simplified polynomial in the 
equation 7.4 will be used to perform the regression. 
 
 ( )2 2 2 2

000 110 200 020 001( , )zF x y k k xy k x k y k x y= +  +  +  + +  (7.4) 
 
Not considering the coefficients that produce a redundancy in the results we get the values in the 
Table 7.1.1.1.6, while in the Table 7.1.1.1.7 you can see the goodness of the fitting. 
 

Table 7.1.1.1.6 – Coefficients of force along z direction. 
 

Stiffness coefficients 

000k  21.67 

110k  -122.2 

001k  63.131 10  
 

Table 7.1.1.1.7 – Fitting of radial axial force. 
 

Goodness of fit 
SSE 0.3474 

R-square 0.9996 
Adjusted R-square 0.9996 

RMSE 0.02813 
 
For the analysis of the transmitted torques the polynomial of equation 7.5 was used, completely 
analogous to that used for the non-linear regression of radial forces, obtaining the surfaces in Figure 
7.1.1.1.6. 
Comparing Table 7.1.1.1.8 and Table 7.1.1.1.9, we can see the equalities of the analogous 
coefficients, due to the perfect radial symmetry of the rotor. This is also demonstrated by the 
goodness of the fit in the Table 7.1.1.1.10. 
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Figure 7.1.1.1.6 – Torques in radial directions. 
 

Table 7.1.1.1.8 – Coefficients for torque along x direction. 
 

Stiffness coefficients 
100k  166.694 10−  211k  0 

010k  11.31 121k  0 

101k  101.98 10−  102k  168.478 10−−   
011k  53.602 10  031k  0 
301k  168.478 10−−   012k  0 

 
Table 7.1.1.1.9 – Coefficients for torque along y direction. 

 
Stiffness coefficients 

100k  -11.24 211k  0 

010k  173.667 10−−   121k  0 

101k  51.159 10−−   102k  0 
011k  226.394 10−   031k  291.236 10−  
301k  0 012k  291.236 10−  

 
Table 7.1.1.1.10 – Goodness of fit for radial torques. 

 
Goodness of fit 

SSE 68.9582 10−  
R-square 0.9996 

Adjusted R-square 0.9996 
RMSE 41.4418 10−  
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7.1.2 Upper magnetic bearings 
 
Applying a method like that of the lower magnetic bearing, we analyse first the forces and the pairs 
of magnetic origin of the upper bearing. 
For this reason, two rotor magnets and two stator magnets were used, with the first ones positioned 
along the vertical axis at 1 mm above the stator ones. 
Even if the number of magnets is lower, the magnetic interaction forces between the magnets are of 
the same order of magnitudes as can be seen in the Figure 7.1.2.1 and Figure 7.1.2.2. 
 

 
 

Figure 7.1.2.1– Force along the x axis. 
 

 
 

Figure 7.1.2.2 – Force along the y axis. 
 



 

 84 / 117 

 
 

Figure 7.1.2.3 – Radial force of upper bearing. 
 
Also, in this case, the magnetic interaction forces along the rotation axis are function of the distance 
in the plane between the two magnets (Figure 7.1.2.4). 
 

 
 

Figure 7.1.2.4 – Force along the z axis. 
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Figure 7.1.2.5 – Torque of upper bearing. 
 

 
 

Figure 7.1.2.6 – Torque of upper bearing. 
 

7.1.2.2 Fit a polynomial surface 
 
We proceed to the non-linear regression of the forces using the surface polynomial of equation 3.2 
which is represented in the Figure 7.1.2.2.1. 
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Figure 7.1.2.2.1 – Force along the x axis. 
 
The stiffness coefficients obtained are shown in the Table 7.1.2.2.1. 
 

Table 7.1.2.2.1 – Coefficients for forces along x direction. 
 

Stiffness coefficients 
100k  -7554 211k  0 

010k  104.47 10−  121k  0 

101k  -0.0037 102k  0 
011k  -0.00044 031k  209.089 10−−   
301k  0 

012k  209.089 10−−   
 

Table 7.1.2.2.2 – Fitting of radial axial force. 
 

Goodness of fit 
SSE 1.116 

R-square 0.9999 
Adjusted R-square 0.9999 

RMSE 0.0509 
 
Also, for the upper bearing considering its radial symmetry and we expect the same stiffness 
coefficients for a force in any other direction in the plane. 
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Figure 7.1.2.2.2 – Force along the y axis. 
 
The Table 7.1.2.2.3 shows the values of the stiffness coefficients and comparing them with those of 
the Table 7.1.2.2.1 we can see that these are similar. In this case the minimum variation is caused 
by a difference in the values of the magnetic forces and for this reason in the subsequent 
implementations the coefficients obtained from the xF  fitting will be used. 
 

Table 7.1.2.2.3 – Coefficients for forces along y direction. 
 

Stiffness coefficients 
100k  98.45 10−  211k  0 

010k  -7577 121k  0 

101k  0.00123 102k  202.037 10−  
011k  -0.00426 031k  0 
301k  202.037 10−  012k  0 

 
Table 7.1.2.2.4 – Fitting of radial axial force. 

 
Goodness of fit 

SSE 1.359 
R-square 0.9999 

Adjusted R-square 0.9999 
RMSE 0.0559 

 
The polynomial in equation 3.3 was used to fit the magnetic forces in the vertical direction. The 
stiffness coefficients are shown in the Table 7.1.2.2.5. 
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Figure 7.1.2.2.3 – Force along the z axis. 
 

Table 7.1.2.2.5 – Coefficients for force along z direction. 
 

Stiffness coefficients 

000k  21.19 

110k  56.43 

001k  63.439 10  
 

Table 7.1.2.2.6 – Fitting of vertical force. 
 

Goodness of fit 
SSE 0.3813 

R-square 0.9997 
Adjusted R-square 0.9997 

RMSE 0.02947 
 
Using the polynomial in equation 3.4, it was decided to interpolate the surface represented the pairs 
with the only coefficients shown in Table 7.1.2.2.7 and Table 7.1.2.2.8 so that there was only one 
contribution for each variable in the same order of magnitude. 
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Figure 7.1.2.2.4 – Torques in radial directions. 
 

Table 7.1.2.2.7 – Coefficients for torque along x direction. 
 

Stiffness coefficients 
100k  58.963 10−  211k  0 

010k  11.08 121k  0 

101k  -88.99 102k  64.221 10−  
011k  54.079 10  031k  0 
301k  64.221 10−  012k  0 

 
Table 7.1.2.2.8 – Coefficients for torque along y direction. 

 
Stiffness coefficients 

100k  -11.05 211k  0 

010k  163.353 10−−   121k  0 

101k  51.14 10−−   102k  0 
011k  224.896 10−−   031k  291.917 10−  
301k  0 012k  291.917 10−  

 
Table 7.1.2.2.9 – Goodness of fit for radial torques. 

 
Goodness of fit 

SSE 51.0442 10−  
R-square 0.9995 

Adjusted R-square 0.9995 
RMSE 41.5565 10−  
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7.2 Non-linear Simulink model 
 
The numerical investigation of the rotor trajectories is done through the solution of the nonlinear 
equations of motion (2.2) with a numerical integration procedure involving a variable step solver 
(ode45) in Simulink. 
 

 
 

Figure 7.2.1 – Model of equation 2.2. 
 
The new model is built starting from the linear one with the addition of a new block representing 
the non-linear part of the magnetic forces and the forces exchanging at the point of contact, as can 
be seen in the Figure 7.2.2. 
Mass and stiffness matrices are the same as in the linear case, both obtained from the fem analysis 
with Lupos, while the damping matrix is set to zero due to the introduced viscous damping. 
The following model introduces the transformation matrix useful for evaluating the forces and 
couples of magnetic interactions in the centre of mass. 
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The same initial conditions of the linear case are imposed (Table 7.2.1) except for the torque 
resistant to rotation because the resistive forces proportional to the speed at the point of contact are 
considered both in the radial direction and in the rotation. 
 

Table 7.2.1 – Initial conditions. 
 

Initial condition Value  
0zr  314 [rad/s] 

x0 45 10−  [m] 
 

 
 

Figure 7.2.2 – Model of non-linear forces and torques. 
 
With the new Simulink model, it is possible to analyse all the various aspects of rotor dynamics as 
the speed decreases (Figure 7.2.3). As in the non-linear case, the velocity trend is a decreasing 
exponential. 
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Figure 7.2.3 – Speed trend. 
 
If we analyse the displacement of the centre of mass along the rotation axis (Figure 7.2.4) we will 
notice how the rotor will tend to move downwards due to a static offset for the weight force. 
 

 
 

Figure 7.2.4 – Displacement of the centre of mass. 
 
The Figure 7.2.5 and Figure 7.2.6 show the rotor displacements in the two radial directions as time 
and rotation speed change. The analysis is done in three different time periods to then represent the 
different type of trajectory in the XY plane. 
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Figure 7.2.5 – Shifts according to time and speed. 
 
The trajectory at the beginning of the simulation is shown in green. The rotor is at high speed and 
due to the initial displacement, the linear alignment moves from the stability point. Over time, the 
speed decreases and the rotor begin to describe the typical trajectory of the flower petals as can be 
seen in the magenta trajectory. In the last part of the simulation, the rotor continues to move around 
the equilibrium position with increasingly circular trajectories. 
 

 
 

Figure 7.2.6 – Centre of mass trajectory. 
 
Similarly, to what was done for the displacements, the small rotations along the two main directions 
were evaluated in the Figure 7.2.7. Analysing the behaviour of the system in three different 
moments and therefore at three different speeds, it is in the initial phase, and therefore at high 
speeds, the rotations are very small. 
This behaviour is reversed with the progressive reduction of rotation speed. 
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Figure 7.2.7– Rotations according to time and speed. 
 

 
 

Figure 7.2.8 – Rotation rx-ry. 
 
The Campbell diagram can be plotted only in the case of linear systems, because only in this case 
does the very concept of natural frequencies apply. However, in the case of nonlinear systems, the 
Campbell diagram of the linearized system may yield important information on the behaviour of the 
system. 
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8. Non-linear model with three different initial displacements 
 
The numerical model used for dynamic analysis is influenced by the initial conditions chosen. 
Given the same speed set by the electric motor, it was decided to analyse the behaviour of the rotor 
with three different initial shifts. 
The initial condition on the displacement does not influence the speed of rotation, in fact in Figure 
8.1 it can be seen how we have the same decreasing trend in the three cases. 
 

 
 

Figure 8.1 – Speed trend. 
 
The differences of the three cases are visible in the Figure 8.2 and Figure 8.3 that represent 
translations and rotations along the main axes. When the rotor is turned over at high speeds, the 
displacements over time are along the same dimension but with different amplitudes. With the 
progressive reduction of the speed, the rotor will have displacements no longer along the axis 
considered at the same time instant. 
 

 
 

Figure 8.2 – Comparison of movements. 
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The same is true for rotations. At high speeds, only an increasing value of the rotation is the initial 
displacement increases. By reducing the speed, the rotor will have a rotation along the axis 
considered more and more with a time delay. 
 

 
 

Figure 8.3 – Comparison of rotations. 
 



 

 97 / 117 

 
9. Comparison between linear and non-linear model 
 
To verify the correctness of a linear approach for the dynamic analysis of a rotor with magnetic 
bearings, we compare the results obtained from the two numerical models having the same initial 
conditions: 

• initial speed rotation: Ω=314 rad/s; 
• initial displacement along the x axis: 4

0 5 10x −=  m; 
• null damping matrix; 
• contact point resistance forces proportional to speed. The coefficients for damping are:  

o 43 10x
N sc m

− =   

o 43 10y
N sc m

− =   

o 43 10rz
N sc rad

− =  . 

As we can see in Figure 9.1, the non-linear contribution of the magnetic forces does not influence 
the descending trend of the rotor’s speed of rotation. 
 

 
 

Figure 9.1 – Speed trends. 
 
The different between the two model is visible with the displacements. Figure 9.2 shows the rotor 
displacements in the radial direction for three different moments of the simulation. In the initial 
phase, when the rotor is at high speed, the displacements for the two cases under consideration are 
the same. After 100 seconds, we can see how the displacements between linear and nonlinear case 
are similar with a slight phase shift. 
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Figure 9.2 – Displacements in the time. 
 
Analysing the rotations along the two main directions, it can be seen how the trend is similar in the 
first part of simulation (Figure 9.3). Subsequently, the trend of the rotations obtained between the 
two models presents a small phase shift until reaching a trend in opposition to do in the last 
simulative part. 
 

 
 

Figure 9.3 – Rotations according to time. 
 
In the Figure 9.4 we make a comparison between the linear and nonlinear component of the 
magnetic forces and torques. Although the linearized forces are larger than the non-linear 
contribution, these must be considered for the dynamic analysis of a real rotor because they are only 
two order of magnitude smaller. 
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Figure 9.4 – Confrontation between forces. 
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10. Unbalance model 
 
In real life, the centre of mass cannot be exactly coincident with the centre of the cross section of 
the shaft. The distance between the two points may be small, but the presence of the eccentricity (e) 
causes a static unbalance that can strongly affect the behaviour of the system. 
The problem of an unbalanced system is addressed by solving the dynamic equation 10.1. 
 
 ( )+ + + + =nlMx C G x Kx F F  (10.1) 
 
The mass matrix obtained by the fem analysis in LUPOS is analogous to that obtained for a 
balanced rotor. The most important terms are those on the main diagonal with the increase in the 
overall mass. Due to an unbalance due to the addition of mass in one point of the rotor, the 
moments of inertia have changed. The polar moment of inertia is decreased, while transversal the 
moments of inertia are no longer equal. 
 

 
 

Figure 10.1 
 
It is important to note that the off-diagonal terms have increased a lot. 
The modal analysis of the system was performed by using LUPOS obtaining ten complex 
conjugated underdamped modes and two overdamped modes. The modes are coupled together at 
five different natural frequencies. 
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Figure 10.2 – Shaking modes. 
 
The system has four cylindrical and four conical modes. With the unbalanced system the cylindrical 
modes do not all manifest themselves at the same natural frequency, but at two different 
frequencies. 
For a given frequency there are two modes that identify a cylindrical vibratory movement along a 
direction, while we can observe the motion along the direction orthogonal to the first with the new 
two different modes. 
 

 

 
 

Figure 10.3 – Bounce modes. 
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A similar discourse can be made regarding conical modes. As can be seen in the figure, the conical 
whirls in the two different main directions occur at two different natural frequencies. 

 

 
 

Figure 10.4 – Conical modes. 
 
The two overdamped modes are those that have a negative real part and a very small imaginary part. 
These two modes can be identified in the two zero-frequency rotations. 
 

 
 

Figure 10.5 – Rotation modes. 
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The Table 10.1 shows the critical speeds and frequencies for each mode. 
 

Table 10.1 – Critical speeds. 
 

Modes Ω [rad/s] fn [Hz] 
1 1404.3 223.5 
2 1404.3 223.5 
3 55.512 8.835 
4 55.512 8.835 
5 55.575 8.845 
6 55.575 8.845 
7 88.28 14.05 
8 88.25 14.05 
9 89.66 14.27 
10 89.66 14.27 
11 0 0 
12 0 0 
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10.1 Model M, C, G, K 
 
The numerical investigation of the rotor trajectories is done through the solution of the nonlinear 
equations of motion (2.2) with a numerical integration procedure involving a variable step solver 
(ode45) in Simulink. 
 

 
 

Figure 10.1.1 – Model of equation 2.2. 
 
The new model is built starting from the linear one with the addition of a new block representing 
the non-linear part of the magnetic forces and the forces exchanging at the point of contact, as can 
be seen in the Figure 10.1.1. 
Mass and stiffness matrices are the same as in the linear case, both obtained from the fem analysis 
with Lupos, while the damping matrix is set to zero due to the introduced viscous damping. 
The following model introduces the transformation matrix useful for evaluating the forces and 
couples of magnetic interactions in the centre of mass. 
The same initial conditions of the linear case are imposed (Table 10.1.2) except for the torque 
resistant to rotation because the resistive forces proportional to the speed at the point of contact are 
considered both in the radial direction and in the rotation. 
 

Table 10.1.1 – Initial conditions. 
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Initial condition Value  

0zr  314 [rad/s] 
x0 45 10−  [m] 

 

 
 

Figure 10.1.2 – Model of non-linear forces and torques. 
 
With the new Simulink model, it is possible to analyse all the various aspects of rotor dynamics as 
the speed decreases (Figure 10.1.3). As in the balance rotor, the velocity trend is a decreasing 
exponential. 
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Figure 10.1.3 – Speed trend. 
 
If we analyse the displacement of the centre of mass along the rotation axis (Figure 10.1.4) we will 
notice how the rotor will tend to move downwards due to a static offset for the weight force. 
 

 
 

Figure 10.1.4 – Displacement of the centre of mass. 
 
The Figure 10.1.5 and Figure 10.1.6 show the rotor displacements in the two radial directions as 
time and rotation speed change. The analysis is done in three different time periods to then 
represent the different type of trajectory in the XY plane. 
It is interesting to note that at low speeds, the rotor reduces the displacement in the direction in 
which the initial imbalance has been given to increase it in the orthogonal direction. 
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Figure 10.1.5– Shifts according to time and speed. 
 
The trajectory at the beginning of the simulation is shown in green. The rotor is at high speed and 
due to the initial displacement, the linear alignment moves from the stability point. Over time, the 
speed decreases and the rotor begin to describe the typical trajectory of the flower petals as can be 
seen in the magenta trajectory. At low speeds the rotor continues to move around the equilibrium 
point with elliptical trajectories. 
 

 
 

Figure 10.1.6 – Centre of mass trajectory. 
 
Similarly, to what was done for the displacements, the small rotations along the two main directions 
were evaluated in the Figure 10.1.7. Analysing the rotations during the simulation time, it can be 
seen how, for the rotation along x, there is immediately an angle increase and then have a reduction 
in the final part of the simulation, when the speed is low. Rotations along y have opposite behaviour 
in the simulation end. 
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Figure 10.1.7 – Rotations according to time and speed. 
 

 
 

Figure 10.1.8 – Rotation rx-ry. 
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11. Time – frequency analysis 
 
Very often the analysis of a signal over time is not enough to show some characteristics of the 
dynamic system, for this reason it is flanked by the analysis in the frequency field. 
The equations of rotor motion can be written in a more compact form by defining a set of complex 
coordinates. 
 
 ( )+ + + =C C CMx C G x Kx F  (11.1) 
 

C C Cx ,x ,x  are respectively the generalized displacements, the velocities and accelerations of the 
only active degrees of freedom and have the following form: 
 

 
y x

z

x iy
z

r ir
r

+ 
 
 

=  
− 

  

Cx  (11.2) 

 
From the results obtained in real field we can plot the displacements and rotations in the complex 
field (Figure 11.1). 
 

 
 

Figure 11.1 – Displacements and rotations in complex coordinates. 
 
The displacements along the vertical axis and the small rotations around it will be the same as the 
real field. Complex coordinate analysis is useful for time frequency analysis of the system. 
Through the decomposition into "Fourier transform" it is possible to approximate any function over 
time by adding sum of harmonic functions. If the functions are not periodic, they should be 
considered as functions having a period tending to infinity. 
In this way it is possible to highlight how many and which harmonics a signal contains and which 
oscillation amplitudes these harmonics possess. 
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Figure 11.2 – Same measure but different point of view. 
 
With this type of analysis, we can know which are the main harmonics of a signal that excites a 
system. 
As mentioned, the signals we analyze are not continuous functions in the time domain but discrete; 
in other words, instead of a function (t)f = , we have a finite set of its samples ( )kf N t=   where: 

• t  is delta time sample, 
• N is the number of samples. 

The number of samples is given by the ratio between the total time of the signal (T) and the delta 
time. 
For frequency analysis, other parameters depending on the first are necessary: 

• 1
sf t
=


 frequency sample, 

• 1 1sff
N N t T

 = = =


 frequency resolution, 

• 
2

s
b

ff = frequency bandwidth (Nyquist theorem). 

The Fourier analysis is formally applied to signals of infinitely large duration and therefore also the 
duration of the samples representing the signal in discrete form must be theoretically of infinite 
length. 
This hypothesis is obviously not feasible since the sequence of the samples will necessarily have a 
beginning and an end, and therefore the number of available samples will be a finite number. 
This leads me to an error called leakage. 
For the frequency analysis of the magnetic rotor, we have chosen as the sampling time the average 
value between two successive time instants. So, we got the following parameters in Table 11.1. 
 

Table 11.1 – Initial parameters for time-frequency analysis. 
 

Parameters Value 
t  [s] 310−  

N 500001 
sf  [Hz] 1000 
f  [Hz] 0.002 
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To limit the effect of leakage, we can proceed to the windowing operation. This operation consists 
in applying a window to the temporal history to be analyzed, which aims to impose a periodicity on 
the signal, canceling the extremes and keeping the signal as unchanged as possible in its central 
part. 
When we have sufficiently long acquisitions, another way to analyze its frequency content is to 
consider the signal as consisting of a succession of time windows of shorter duration, frames, of 
which the analysis is performed, and the results are mediated. In other words, we consider a 
temporal history consisting of N samples of a signal, in which there are k samples (chosen 
arbitrarily) which constitute the temporal sub-story. Everyone will be windowed to reduce the 
leakage error. 
 

 
 

Figure 11.3 – Measurement in the frequency domain. 
 
As you can see in Figure 11.3, at the frequency of 9.114 Hz and at the frequency of 14.39 Hz there 
are the two natural frequencies of the magnetic rotor. 
Through spectrograms it is possible to understand how the frequency content of a signal evolves 
over time. For this type of analysis, it is of primary importance to set the parameters optimally, that 
is to look for the best compromise between the frequency resolution f , the resolution in the time 

t , the calculation times and the waste of sampled data. 
Increasing the size of the time windows (large t ) the frequency resolution improves (small f ) as 
it allows to identify the frequency more precisely. However, this has some disadvantages: at the 
beginning and at the end of the signal it is not possible to associate a frequency content. 
Furthermore, it can erroneously associate to an instant of time some frequencies that may have 
manifested themselves decidedly before or after, that is it samples harmonics that are not there. 
As can be seen in the Figure 11.4, the frequency information appears in a range between ,i FFTt  and 

f,FFTt This depends on the sampling frequency and the number of frames for each time point. 
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Figure 11.4 – Time frequency analysis with 182k =  and 99% overlap. 
 
Assumed 182k = and with 1000sf = Hz, we get the time interval of the content in frequency. 
 

 ,
1 131
2i FFT i

s

kt t s
f

= + =  (11.3) 

 

 f,
1 368.9
2FFT f

s

kt t s
f

= − =  (11.4) 

 
The Figure 11.5 shows the two frequencies to which the system representing two of the modes 
found through the modal analysis. 

The time frame size is 1 262.14
s

t k s
f

 =  = . The frequency resolution is 0.0038f Hz =  while the 

temporal one is 1(1 ) 2.621
s

T overlap k s
f

 = −   =  
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Figure 11.5 – Time frequency analysis with 182k =  and 99% overlap between 0 Hz and 40 Hz. 
 
Decreasing the size of the frame to 152k =  samples, you get 0.0305f Hz = , 32.768t s = and 

0.327T s = .In this way it is possible to better highlight the constant frequency part as can be seen 
in the Figure 11.6. All this however goes to the detriment of the frequency resolution which results 
quadrupled. 
 

 
 

Figure 11.6 – Time frequency analysis with 152k =  and 99% overlap. 
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Figure 11.7– Time frequency analysis with 152k =  and 99% overlap between 0 Hz and 40 Hz. 
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Conclusions 
 
The thesis project is based on the creation of a model of a vertical rotor supported by magnetic 
bearings and its numerical analysis of the linear and non-linear behaviour of magnetic forces. 
In a first part the configuration was studied, paying attention to the linear forces exchanged between 
the rotor and stator magnets in order to minimize the contribution of the weight force and therefore 
of the friction. 
In the second part the magnetic rotor in LUPOS was modelled which allowed us to carry out a 
modal analysis and therefore identify the natural frequencies. 
Using a Simulink model, a dynamic rotor model was implemented which allowed us to plot the 
typical petal trajectory of a rotor. This analysis was further enriched by also considering the non-
linear contribution of the magnetic rings perhaps exchanged between rotor and stator. 
The choice of which type of approach to use for the analysis depends very much on the type of 
study you will want to perform. 
With the same initial conditions, if we want to study the decay of speed, we will not notice any 
difference between a linear and non-linear study of the forces (this is very important as the rotor 
will be used as an accumulator of kinetic energy). 
However, for a correct dynamic analysis and on the trajectory, it is advisable to implement the 
linear model of magnetic forces with the non-linear contribution. 
These results will have to be confirmed by an experimental study. 
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