

Master’s Degree Thesis

Mechanical Engineering

Rolling Bearing Damage Characterization
A Machine Learning Approach

Milad Rahmani Tootkaboni
Student Number: S257786

Supervisor: (Politecnico di Torino)

Professor Alessandro Fasana

Advisors: (University of Massachusetts Dartmouth)

Professor Mazdak Pour A Tootkaboni
Professor Arghavan Louhghalam

Academic Year: 2020/21

Contact Info:

Supervisor: (Politecnico di Torino)

Alessadnro Fasana (Full Professor)

Department of Mechanical and Aerospace Engineering (DIMEAS)

 +39 0110903397 / 3397
 alessandro.fasana@polito.it

 Corso Duca Degli Abruzzi 24, 10129, Turin, ITALY

Advisors: (University of Massachusetts Dartmouth)

Mazdak Pour A Tootkaboni (Associate Professor)

Department of Civil and Environmental Engineering

 +1 508-999-8465
 mtootkaboni@umassd.edu

 285 Old Westport Road – Dartmouth, MA 02747-2300, USA

Arghavan Louhghalam (Associate Professor)

Department of Civil and Environmental Engineering

 +1 508-999-8491
 arghavan.louhghalam@umassd.edu

 285 Old Westport Road – Dartmouth, MA 02747-2300, USA

 Acknowledgements

 This is written to acknowledge all the professors helped me on working on my

thesis, guided me professionally and invested their time to clarify all the vague points.

 I would like to thank professor Alessandro Fasana as the supervisor given me the

chance to cover my thesis with a fabulous topic under his supervision and also providing

me a marvelous data set. I highly appreciate professors Mazdak Pour A Tootkaboni and

Arghavan Louhghalam from University of Massachusetts Dartmouth as the advisors for

accepting me to derive benefits from their outstanding knowledge.

 I would like to dedicate this thesis to my beloved parents who have

been always caring to me and given me the chance to be a better human

being.

Table of Contents

Chapter One (Introduction) . .1

 1.1. General Definition . .1

 1.2. History of Bearings . 2

 1.3. Application and Concerns . .2

 1.4. Dataset . 3

 1.5. Scope . 3

Chapter Two (Main Test Explanation) . .5

 2.1. Test Hardware Setup . .5

 2.1.1. Test Rig . .5

 2.1.2. Sensors . .6

 2.1.3. Acquisition . .7

 2.2. Description of Variable Speed and Load Test 8

Chapter Three (Basic Matrices Definition)9

 3.1. Main Matrix Summarization . .10

 3.1.1. 100 Chunks – 0.1s . .10

 3.1.2. 200 Chunks – 0.05s . .10

Chapter Four (Models Definition) . 11

 4.1. Chunks . .12

 4.2. Features . .12

 4.2.1. Mean . .12

 4.2.2. Mean and RMS . .12

 4.2.3. Mean, RMS and Kurtosis . .13

 4.2.4. Mean, RMS, Kurtosis and Skewness . 13

 4.3. Approaches . .14

 4.3.1. Same Working Condition . .14

 4.3.2. Same Class of Defect . 14

 4.3.3. Same Load . 15

 4.3.4. Same Speed . .16

 4.4. Models . .17

 4.5. Models Selection . 18

 4.6. Dimensionality Reduction . .18

 4.6.1. Principal Component Analysis (PCA) 18

 4.6.2. PCA Description and Comments . 19

Chapter Five (Data Preparation for Machine Learning)23

 5.1. Machine Learning . 23

 5.1.1. Machine Learning methods . 24

 5.1.2. Machine Learning Steps . 24

 5.1.3. Machine Learning Algorithms . .24

 5.2. Train and Test Matrices Initial Creation . .25

 5.2.1. Train and Test Matrices Creation for Chunks of 0.1s25

 5.2.2. Train and Test Matrices Creation for Chunks of 0.05s25

 5.3. Validation . 26

 5.4.1. Holdout validation . 26

 5.4.2. K-Fold Cross-Validation . 26

 5.4. Train and Test Matrices for Different Models 26

 5.4.1. Label Vector . 26

 5.4.2. Train Matrices . 27

 5.4.3. Test Matrices . .29

Chapter Six (Machine Learning Process Results) 31

 6.1. Classification Algorithms . .32

 6.1.1. Naïve-Bayes . .32

 6.1.2. K-Nearest Neighbors . 32

 6.1.3. Decision Tree . .32

 6.1.4. Support Vector Machines (SVM) . 32

 6.1.5. Discriminant Analysis . 32

 6.2. Train and Validation of Machine Learning Methods 33

 6.3. Algorithms Selection Based on Train Accuracies and Results34

 6.3.1. Naïve-Bayes . .34

 6.3.2. K-Nearest Neighbors . 34

 6.3.3. Decision Tree . .34

 6.3.4. Support Vector Machines (SVM) . 34

 6.3.5. Discriminant Analysis . 34

 6.4. Data Interpretation . . .35

 6.3.1. Confusion Matrix . .35

 6.3.2. Classification Learner App . 35

 6.5. Test Results .40

 6.5.1. Prediction Performance .40

 6.5.2. Misclassification Error .40

 6.5.3. Test Prediction . 40

Chapter Seven (Feature Selection) . .45

 7.1. Feature Selection Methods . 46

 7.1.1. Filter Methods .46

 7.1.2. Wrapper Methods .46

 7.1.3. Embedded Methods . 46

 7.1.4. Differences Between Filter Methods and Wrapper Methods 46

 7.2. Methods to be used . 47

 7.2.1. Chi-Square .47

 7.2.2. Maximum Relevance Minimum Redundancy (MRMR)47

 7.3. Models For Feature Selection .47

Chapter Eight (Conclusion) . .53

Appendix A . 55

Appendix B .57

Appendix C . 75

Appendix D . .93

Appendix E . .103

 Abstract

 This thesis aims to clarify the defect classification of roller bearings. The first

chapter gives an introduction on bearings. The main test done at Politecnico di Torino is

briefly explained on the second chapter. The basic matrices formation which are used for

further final models matrices is presented in chapter three. On chapter four different

models and their different factors are completely defined. Data preparation for machine

learning process such as train and test data sets are fully described in chapter five.

Machine learning process and all the pertaining results are presented in chapter six. The

concept of feature selection is fully described in chapter seven. In chapter eight the

conclusion is presented. At the end the extra information is presented in four separated

appendices.

1.1. General Definition

 Bearings are components used to

facilitate the rotational movement of

machine parts so as to reduce friction

between rotary and fixed parts as well as

preventing parts from getting defected

and damaged.

 The classification of rolling

bearings will be based on different issues

for instance, working conditions,

operations, etc. but the most significant

one depends on the type of the rolling

elements. From this perspective a

bearing could be divided into two

different types, Ball Bearing for which

the rolling element is spherical, and

Roller Bearing for which the rolling

element is cylindrical. However, each

type contains many different subsets, the

main aim is to know the general

difference between the two classes.

Chapter One

Introduction

2

1.2. History of Bearings1

 40 BC: Wooden type of ball

bearing to support a table, Roman Nemi

ships, Italy.

 15th century: Maiden use of ball

bearing in aerospace illustrated in the

drawings of a helicopter by Leonardo da

Vinci.

 17th century: First description of

caged bearings by Galileo.

 Mid 1740: Invention of first

caged roller bearing by John Harrison.

 1794: The first modern type of

ball bearing by a British inventor, Philip

Vaughan.

 1869: The first type of radial ball

bearing by a French bicycle mechanic,

Jules Suriray. It was used in the winner

bicycle of the world’s first race in Paris-

Rouen.

 1883: The creation of an

independent bearing industry by

Friedrich Fischer, the founder of FAG.

 1898: The invention of tapered

roller bearing by Henry Timken.

 1907: The modern self-aligning

ball bearing by Sven Wingquist of SKF.

 1934: The invention of wire race

bearing by Erich Franke.

 1972: Invention of V-grooved

bearing guide wheels, a linear motion

bearing, by Bud Wisecarver.

 Early 1980’s: The invention of

first bi-material plain bearing by Robert

Schroeder.

1 From https://www.kginternational.com/

1.3. Applications and Concerns

 Today, both ball and roller

bearings are widely used in different

fields of industry. From home appliances,

dental industry, to more complicated

fields such as automobile industries,

aerospace and etc.

 Bearings like all other types of

mechanical components have a lifetime

range, which depends on different

factors. For instance, working

conditions, existence of abrasive

particles, erosive and corrosive

environments, humidity, maintenance

etc.

 For different situations there will

be different concerns about how to

optimize this lifetime by considering the

conditions in which the bearings are

working.

 To ease this concern, firstly the

conditions should be defined and

studied, then by considering the data, a

proper solution must be defined in order

to identify the obstacle. Having found the

problem, it is easy to deal with and

eliminate that to optimize the bearing

lifetime. This will lead to cost and time

savings which are the most important

factors in different industries.

3

1.4. Dataset

 This research is done based on

the article published on Mechanical

Systems and Signal Processing journal2.

 Article name: The Politecnico di

Torino rolling bearing test rig:

Description and analysis of open

access data.

 Article authors: Alessandro

Paolo Daga, Alessandro Fasana,

Stefano Marchesiello, Luigi Garibaldi3.

 The research has been taken

place and the test has been conducted in

the Dynamic and Identification

Research Group (DIRG) of the

Department of Mechanical and

Aerospace Engineering at Politecnico

di Torino.

 The main article by PoliTo works

on two main different tests, Variable

Speed and Load test and Endurance

test.

 However, on this thesis only the

data of Variable Speed and Load test is

used.

 The complementary information

is available on:

ftp://ftp.polito.it/people/DIRG_Bearing

Data/

2 https://www.journals.elsevier.com/mechanical-
systems-and-signal-processing

1.5. Scope

 This research aims to identify the

characterization of roller bearings by

means of the data introduced before.

 To clarify, if a new data set is

provided this research helps us to

identify either the type of working

condition or the class of defect by means

of Machine Learning Classification

methods.

 To give some extra explanation,

for instance, if a company as a client

provides a set of data and asks to find the

working condition or the defect class of

the bearing, it could be possible to create

a model to make an acceptable guess.

 To do so, firstly, it is needed to

explain some parts of the main test and

how data are interpreted. Telling about

the different matrices which are

extracted in the lab. Also giving some

information about the layout of the test

hardware.

 Secondly, providing information

about the classification of data is useful

to give a better insight of the test.

 Thirdly, defining new pieces of

data, for having a better understanding

about the model is needed.

 To achieve such goal, some

methods of Machine Learning is applied

so the next step is introducing the

methods which are carried out to make

the models.

3 E-mail addresses: alessandro.daga@polito.it (A.P.
Daga), alessandro.fasana@polito.it (A. Fasana),
stefano.marchesiello@polito.it (S. Marchesiello),
luigi.garibaldi@polito.it (L. Garibaldi).

ftp://ftp.polito.it/people/DIRG_BearingData/
ftp://ftp.polito.it/people/DIRG_BearingData/

4

 Then the configuration of train

and test matrices are defined.

 Finally, when the creation of

model is finished the comparison of

different situations is shown.

 The application which is used to

figure out the model is MATLAB4 by

MathWorks®.

4 https://www.mathworks.com/

 In this chapter the main test done

in Politecnico di Torino is briefly

explained to vividly clarify the machine

learning procedure. All the data

provided in this chapter are from (the

complete information could be found

on):

ftp://ftp.polito.it/people/DIRG_Bearing

Data/

2.1. Test Hardware Setup

 In this section two different

pieces of hardware, i.e. test rig and

sensors as well as the acquisition system

are described.

2.1.1. Test Rig

 The test rig consists of different

parts as follows: (Figure 2.1)

Spindle: which guarantees the

rotation of the shaft. The spindle

Chapter Two

Main Test Explanation

ftp://ftp.polito.it/people/DIRG_BearingData/
ftp://ftp.polito.it/people/DIRG_BearingData/

6

is fixed to a rigid support which

rests on a massive steel base

plate.

 Shaft: on which three bearings

are mounted. The applicable force

is exerted to the shaft. The shaft is

hollow and bearings on the shaft

are lubricated from inside.

Bearings: the outer rings of two

identical bearings B1 and B3 are

fixed on two supports and the

inner rings are attached to the

shaft. The inner ring of bearing

B2 is attached to the shaft also.

However, the outer ring is in

connection with the force

applying system. (Table 2.1)

Sledge and Static Load Cell: the

force applying system that are

connected to the outer ring of B2

and have the role of load exertion.

 2.1.2. Sensors

 In this test two identical

accelerometers are used and mounted

on two positions A1 and A2 as it is

illustrated in (Figure 2.1 – b) in the way that

A1 is located on the support of the

damaged bearing B1 which undergoes

the test and A2 is on the support of the

larger bearing B2 which is the position of

external load application.

Figure 2.1 - a) Overall view of the test rig

Figure 2.1 - b) Accelerometers positions and the
reference system

Figure 2.1 - c) Shaft and its three roller bearings

Pitch

Diameter
D (mm)

Roller
Diameter

d (mm)

Contact Angle
Φ (○)

Rolling
Elements

Z

B1 & B3 40.5 9.0 0 10

B2 54.0 8.0 0 16

Table 2.1 - Properties of roller bearings

7

 Accelerometers are the triaxial

IEPE type:

Frequency range: 1-12000 Hz

(amplitude ±5%, phase ±10○)

Nominal resonant frequency: 55

kHz

Nominal sensitivity: 1 mV/ms-2

 The radial force on the second

bearing is measured by means of the

static load cell with the sensitivity of

0.499 mV/N. (Figure 2.2)

2.1.3. Acquisition

 The acquisition is achieved by

means of OR38 signal analyzer, an OROS

production, which has the accuracy on

the input channel: phase ±0.02○,

amplitude ±0.02dB, frequency ±0.005%.

 The analogue to digital

transformation is done by means of a 24

bits delta-sigma convertor. The range of

each channel is set between minimum

(±17 mV) and maximum (±40 mV) to

avoid saturation of channels.

 In this test six channels are

defined based on two accelerometers

located on A1 and A2. Each

accelerometer measures data in three

dimensions x, y and z. (Table 2.2)

Figure 2.2 - a) The triaxial IEPE accelerometer

Figure 2.2 - b) Calibration curve of the static load cell

Channel

1
Channel

2
Channel

3
Channel

4
Channel

5
Channel

6

Direction Axial, x Radial, y Radial, z Axial, x Radial, y Radial, z

Accelerometer
No.

A1 A1 A1 A2 A2 A2

Channel label x1 y1 z1 x2 y2 z2

Table 2.2 - Direction of the measured accelerations

8

2.2. Description of the Variable
Speed and Load Test

 For this test there are seven

different classes based on defects. The

class 0A is for undamaged case in which

there is no defect (i.e. healthy condition).

The defects are produced by a Rockwell

tool in three defect sizes of 450, 250 and

150 μm on the inner ring respectively for

1A, 2A and 3A and three defect sizes of

450, 250 and 150 μm on the roller

respectively for 4A, 5A and 6A. (Table 2.3)

 In each class there are different

working conditions based on two factors,

speed and load. There are four different

loads 0, 1000, 1400 and 1800 N and five

different rotational speeds 100, 200,

300, 400 and 500 Hz. (Table 2.4)

 Due to power limitations of the

spindle controller, it is not possible to

have 1800 N for 400 Hz and also 1400

and 1800 N for 500 Hz.

 Having considered all the aspects,

there are 17 different working condition

for each class of defect.

 For this test the sampling

frequency is fs = 51200 Hz and the record

duration is T = 10 s. The number of

acquisition points will be fs × T = 512000.

By considering six channels the final

matrix for each working condition is

512000×6.

Class Name Defect
Defect Size

(μm)

0A NO defect (Healthy) ---

1A Defect on the inner ring 450

2A Defect on the inner ring 250

3A Defect on the inner ring 150

4A Defect on the roller 450

5A Defect on the roller 250

6A Defect on the roller 150

Table 2.3 - Different classes definition

Table 2.4 – Different working conditions definition

Nominal Speed (Hz)

100 200 300 400 500

Nominal
Load (N)

0 1 5 9 13 16

1000 2 6 10 14 17

1400 3 7 11 15 ---

1800 4 8 12 --- ---

 As it was shown in the previous

chapter, the dataset for each working

condition is presented in the form of a

512000×6 matrix (Figure 3.1).

 The rows represent acquisition

points and the columns are the channels

and the whole test is done in 10s.

 It is worth mentioning that for

seven classes of defect from 0A to 6A and

different working conditions from 1 to

17 (both classes and working conditions

were explained in the previous chapter

Table – 2.3 and Table – 2.4), there are 119

different matrices of 512000×6.

Chapter Three

Basic Matrices Definition

Figure 3.1 - Main data set matrix

1
0

3.1. Main Matrix Summarization

 Now to have a better

performance, each matrix is summarized

to chunks. In this paper two different

types of chunks are considered for data

summarization.

 These two types of chunks are

considered to have a better comparison

between 100 and 200 data point

matrices when they are used to form the

train and test matrices in machine

learning procedure (Figure 3.2).

3.1.1. 100 Chunks – 0.1s

 If a record duration of T=10s is

divided into 100 chunks, each chunk is

equal to 0.1s. From previous chapter it is

known that the sampling frequency is

equal to fs=51200 Hz. It means in each

second 51200 acquisition points are

recorded.

 Now for each chunk of 0.1s the

number of acquisition points are 5120.

Each set of 5120×6 acquisition points is

converted to 1×6 set of numbers called

data points. It means that each data point

should be obtained from the data

pertaining to each chunk’s 5120

acquisition points.

 This results in a final matrix of

100×6. Each matrix represents a

working condition data summarized

from 512000 acquisition points to 100

final data points.

3.1.2. 200 Chunks – 0.05s

 If a record duration of T=10s is

divided into 200 chunks, each chunk is

equal to 0.05s. From previous chapter it

is known that the sampling frequency is

equal to fs=51200 Hz. It means in each

second 51200 acquisition points are

recorded.

 Now for each chunk of 0.05s the

number of acquisition points are 2560.

Each set of 2560×6 acquisition points is

converted to 1×6 set of numbers called

data points. It means that each data point

should be obtained from the data

pertaining to each chunk’s 2560

acquisition points.

 This results in a final matrix of

200×6. Each matrix represents a

working condition data summarized

from 512000 acquisition points to 200

final data points.

Figure 3.2 - a) Matrix 100x6 - chunk 0.1s

Figure 3.2 - b) Matrix 200x6 - chunk 0.05s

 In this chapter the different

models are defined based on different

features. Features are added gradually to

see what difference they make on the

accuracy of the machine learning

methods.

 As it was introduced in the

previous chapter, all the models are

made based on the summarized

matrices, both for 100 and 200 data

points.

 Models are created based on

different criteria. Apart from different

chunks and different features, the

working conditions and classes of

defects are also important in forming the

models.

 To emphasize, it must be said that

the models introduced and made in this

chapter are the reference for upcoming

machine learning analysis and they are

not used directly in analysis procedure.

 In the upcoming sections the

different criteria in models creation are

introduced and explained in details.

Chapter Four

Models Definition

1
2

4.1. Chunks

 In this section the first criterion of

model creation, which is chunk, is

introduced in two divisions:

 100 chunks – 0.1s

 200 chunks – 0.05s

4.2. Features

 In this section the second

criterion of model creation, which is

feature, is introduced in four divisions as

follows:

4.2.1. Mean

 The first feature is Mean of the

data. To form the first type of matrix for

each working condition, the Mean value

of each chunk’s acquisition points should

be calculated. Each set of acquisition

points form a 1×6 data point. The Mean

value data point forms the columns of

one to six. At last there would be two

types of matrices a 100×6 for 100 chunks

of 0.1s and a 200×6 for 200 chunks of

0.05s. (Figure 4.1)

4.2.2. Mean and RMS

 The second feature is RMS of the

data. To form the second type of matrix

for each working condition, the Mean

and RMS values of each chunk’s

acquisition points should be calculated.

Each set of acquisition points form a

1×12 data point. The Mean value data

point forms the columns of one to six and

the RMS value data point forms the

columns of seven to twelve. At last there

would be two types of matrices a 100×12

for 100 chunks of 0.1s and a 200×12 for

200 chunks of 0.05s. (Figure 4.2)

Figure 4.1 - a) Mean matrix - 100 chunks

Figure 4.1 - b) Mean matrix - 200 chunks

Figure 4.2 - a) Mean and RMS matrix - 100 chunks

Figure 4.2 - b) Mean and RMS matrix - 200 chunks

1
3

4.2.3. Mean, RMS and Kurtosis

 The third feature is Kurtosis of the

data. To form the third type of matrix for

each working condition, the Mean, RMS

and Kurtosis values of each chunk’s

acquisition points should be calculated.

Each set of acquisition points form a

1×18 data point. The Mean value data

point forms the columns of one to six, the

RMS value data point forms the columns

of seven to twelve and the Kurtosis value

data point forms the columns of thirteen

to eighteen. At last there would be two

types of matrices a 100×18 for 100

chunks of 0.1s and a 200×18 for 200

chunks of 0.05s. (Figure 4.3)

4.2.4. Mean, RMS, Kurtosis and
Skewness

 The fourth feature is Skewness of

the data. To form the fourth type of

matrix for each working condition, the

Mean, RMS, Kurtosis and Skewness values

of each chunk’s acquisition points should

be calculated. Each set of acquisition

points form a 1×24 data point. The Mean

value data point forms the columns of

one to six, the RMS value data point

forms the columns of seven to twelve, the

Kurtosis value data point forms the

columns of thirteen to eighteen and the

Skewness value data point forms the

columns of nineteen to twenty-four. At

last there would be two types of matrices

a 100×24 for 100 chunks of 0.1s and a

200×24 for 200 chunks of 0.05s. (Figure

4.4)

Figure 4.3 - a) Mean, RMS and Kurtosis matrix - 100
chunks

Figure 3.3 - b) Mean, RMS and Kurtosis matrix - 200
chunks

Figure 4.4 - a) Mean, RMS, Kurtosis and Skewness matrix
- 100 chunks

Figure 4.4 - b) Mean, RMS, Kurtosis and Skewness matrix
- 200 chunks

1
4

4.3. Approaches

 In this section the third criterion

of model creation, which is approach, is

introduced in four divisions as follows:

4.3.1. Same Working Condition

 The first approach is Same

Working Condition. It means that both

speed and load are known but the class

of defect is unknown. In this part the

matrix is formed out of seven different

matrices from classes 0A to 6A. The final

matrix for 100 data points has 700 rows

in which the first 100 rows of matrix are

dedicated to class matrix 0A and the last

100 rows are for class matrix 6A. Also

the final matrix for 200 data points has

1400 rows in which the first 200 rows of

matrix are dedicated to class matrix 0A

and the last 200 rows are for class matrix

6A. (Figure 4.5)

4.3.2. Same Class of Defect

 The second approach is Same

Class of defect. It means that the class of

defect is known but both speed and load

are unknown. In this part the matrix is

formed out of seventeen different

matrices from working conditions 1 to

17. The final matrix for 100 data points

has 1700 rows in which the first 100

rows of matrix are dedicated to working

condition matrix 1 and the last 100 rows

are for working condition matrix 17.

Also the final matrix for 200 data points

has 3400 rows in which the first 200

rows of matrix are dedicated to working

condition matrix 1 and the last 200 rows

are for working condition matrix 17.
(Figure 4.6)

Figure 4.4 - Same working conditions final matrices

Figure 4.5 - Same class of defect final matrices

1
5

4.3.3. Same Load

 The third approach is Same Load.

It means that just the applied load is

known but both speed and class of defect

are unknown. In this part the matrix

formation depends on the exerted load.

For each class of defect there are four

different loads of 0, 1000, 1400 and

1800 N. For 0 and 1000 N there are five

different conditions, for 1400 N there

are four different conditions and for

1800 N there are three different

conditions. The final matrix for 100 data

points has:

 3500 rows (for 0 and 1000 N) in

which the first 500 rows of

matrix are dedicated to class

matrices 0A and the last 500

rows are for class matrices 6A.

 2800 rows (for 1400 N) in which

the first 400 rows of matrix are

dedicated to class matrices 0A

and the last 400 rows are for

class matrices 6A.

 2100 rows (for 1800 N) in which

the first 300 rows of matrix are

dedicated to class matrices 0A

and the last 300 rows are for

class matrices 6A.

Also the final matrix for 200 data points

has:

 7000 rows (for 0 and 1000 N) in

which the first 1000 rows of

matrix are dedicated to class

matrices 0A and the last 1000

rows are for class matrices 6A.

 5600 rows (for 1400 N) in which

the first 800 rows of matrix are

dedicated to class matrices 0A

and the last 800 rows are for

class matrices 6A.

 4200 rows (for 1800 N) in which

the first 600 rows of matrix are

dedicated to class matrices 0A

and the last 600 rows are for

class matrices 6A. (Figure 4.7)

Figure 4.6 – a) Same load final matrices (0 and 1000 N)

Figure 4.7 - b) Same load final matrices (1400 N)

Figure 4.7 - c) Same load final matrices (1800 N)

1
6

4.3.4. Same Speed

 The fourth approach is Same

Speed. It means that just the applied

speed is known but both load and class of

defect are unknown. In this part the

matrix formation depends on the exerted

speed. For each class of defect there are

five different speeds of 100, 200, 300,

400 and 500 Hz. For 100, 200 and 300

Hz there are four different conditions,

for 400 Hz there are three different

conditions and for 500 Hz there are two

different conditions. The final matrix for

100 data points has:

 2800 rows (for 100, 200 and

300 Hz) in which the first 400

rows of matrix are dedicated to

class matrices 0A and the last

400 rows are for class matrices

6A.

 2100 rows (for 400 Hz) in which

the first 300 rows of matrix are

dedicated to class matrices 0A

and the last 300 rows are for

class matrices 6A.

 1400 rows (for 500 Hz) in which

the first 200 rows of matrix are

dedicated to class matrices 0A

and the last 200 rows are for

class matrices 6A.

Also the final matrix for 200 data points

has:

 5600 rows (for 100, 200 and

300 Hz) in which the first 800

rows of matrix are dedicated to

class matrices 0A and the last

800 rows are for class matrices

6A.

 4200 rows (for 400 Hz) in which

the first 600 rows of matrix are

dedicated to class matrices 0A

and the last 600 rows are for

class matrices 6A.

 2800 rows (for 500 Hz) in which

the first 400 rows of matrix are

dedicated to class matrices 0A

and the last 400 rows are for

class matrices 6A. (Figure 4.8)

Figure 4.8 - a) Same speed final matrices (100,200 and 300 Hz)

Figure 4.8 - b) Same speed final matrices (400 Hz)

Figure 4.7 - c) Same speed final matrices (500 Hz)

1
7

4.4. Models

 Having explained the model

factors, now this is time to introduce the

models. The general format of models is

as follows:

X_y_nnn

 X: indicates the model name

based on different features. For four

models X is defined as follows:

M: this model has only one

feature and that is Mean.

Obviously as it was represented

before, this model is six-

dimensional (the final matrix has

six columns).

MR: this model has two features

Mean and RMS. Obviously as it

was represented before, this

model is twelve-dimensional (the

final matrix has twelve columns).

MRK: this model has three

features Mean, RMS and Kurtosis.

Obviously as it was represented

before, this model is eighteen-

dimensional (the final matrix has

eighteen columns).

MRKS: this model has four

features Mean, RMS, Kurtosis and

Skewness. Obviously as it was

represented before, this model is

twenty-four-dimensional (the

final matrix has twenty-four

columns).

 y: this factor indicates the

approaches discussed in previous

sections. y is defined as follows:

W7: same working condition

C17: same class of defect

L35: same load (0 and 1000 N)

L28: same load (1400 N)

L21: same load (1800 N)

S28: same speed (100, 200 and

300 Hz)

S21: same speed (400 Hz)

S14: same speed (500 Hz)

 nnn: this factor is a three-digit

number indicating the number of data

points:

100: for 100 chunks of 0.1s

200: for 200 chunks of 0.05s

 For instance, MRK_W7_100

introduces the model with three features

of Mean, RMS and Kurtosis, for the Same

Working Condition approach which is

defined by 100 data points. The final

matrix is 700×18.

 Another example could be

MRKS_L28_200 introduces the model

with four features of Mean, RMS, Kurtosis

and Skewness, for the Same Load

approach (1400 N) which is defined by

200 data points. The final matrix is

5600×24.

 Full 32 different models are listed

in Appendix A.

1
8

4.5. Models Selection

 The approaches to be discussed

are:

Same working condition:

 7 (200 Hz – 1400 N)

Same class of defect:

 2A (defect on inner ring - 250μm)

Same load:

 1800 N

Same speed:

 400 Hz

4.6. Dimensionality Reduction

 Based on the models introduced

in the previous section, the dimensions

of final matrices vary from six to twenty-

four. This means that it is not possible to

illustrate the data in a two or three

dimensional space.

 On the other hand, it is needed to

know how different clusters of data

points are located with respect to the

others.

 The reason of dimensionality

reduction is to find that how different

working conditions in a model’s final

matrix are independently preserved.

More the clusters are separated, better

results of classification performance by

means of machine learning. As it will be

seen in the upcoming parts, the clusters

1 https://en.wikipedia.org/

generally get more separated while new

features are added to the models.

 This better separation leads in a

higher prediction performance and

lower misclassification error while

classification procedure is done.

 Both prediction performance and

misclassification error is completely

explained in chapter six.

 To ease this concern, some

dimensionality reduction methods are

used. These methods keep maximum

possible data with lowest amount of data

loss to make it achievable to have the

data in two or three dimensions.

Afterwards, it is obvious the data could

be plotted to have a better

understanding of clusters’ positions.

 One of the best dimensionality

reduction methods which is simple to

understand is principal component

analysis (PCA). In upcoming section this

method is briefly explained.

4.6.1. Principal Component Analysis
(PCA)1

 As it was mentioned before

Principal Component Analysis is a method

for dimensionality reduction and is used

when the data set is high-dimensional.

 The principal components of a

data set in a q-dimensional space are a

set of q direction vectors where the ith

vector is the direction of the best fitting

line that keeps the highest possible data

as well as being orthogonal to the

previous i - 1 vectors. The best fitting line

is so that minimizes the average squared

1
9

distance of data to the line. Principal

component analysis computes the

principal components of a data set and

executes a basis change. Most of the time

the maximum data possible is kept

within first few components and the rest

could be ignored without losing a lot of

vital information. Another definition for

the direction line is so that maximizes

the variance of data projection. From a

mathematical point of view principal

components are eigenvectors of the

data’s covariance matrix or simply they

can be achieved by Singular Value

Decomposition (SVD) of the data matrix.

4.6.2. PCA Description and Comments

 As it was mentioned the reason of

dimensionality reduction is to find that

how different clusters of data points as

representatives of different working

conditions in a model’s final matrix are

independently preserved. Better the

clusters are separated, the clusters are

separated, higher accuracy of

classification performance.

 In the upcoming parts some PCA

figures are depicted and discussed.

 To avoid over explanation only

models of 200 chunks and only two

models with least and most number of

features (i.e. M and MRKS) are discussed

in this chapter.

○ Approach W (Same Working

Condition):

 For the first comparison the Same

Working Condition approach is

discussed. As it is obvious for model M

the ranges of PCs vary slightly and two

couples of clusters are almost located in

the same regions. This matter could

affect the classification procedure by

considering the wrong data points of

each cluster clearly results in

misclassification error. However, in

MRKS model clusters are almost

completely separated from each other in

ranges of PCs over three times larger in

comparison with the previous model M.

○ Approach S (Same Speed)

 As the second comparison the

Same Speed approach is selected. As it is

obvious for model M again the ranges of

PCs vary slightly and twenty-one

clusters are located in a region with

length of sixteen and width of almost

four. While on the other hand, in MRKS

model clusters are almost completely

separated from each other in ranges of

PCs pretty much larger (almost 200 and

60 for length and width respectively) in

comparison with the previous model M.

 Having a larger area for cluster

would undoubtedly help to have a better

performance on classification.

 In the upcoming pages, the PCA

results as figures are illustrated. The

differences between two different

models (M and MRKS) for two

approaches (Same Working Condition

and Same Speed) show the improvement

in clusters’ separation which leads to the

least misclassification error.

2
0

M_W7_200:

MRKS_W7_200:

Figure 4.8 - a) Same working condition - Mean

Figure 4.8 - b) Same working condition – Mean, RMS, Kurtosis, Skewness

2
1

M_S21_200:

MRKS_S21_200:

Figure 4.9 - a) Same speed - Mean

Figure 4.9 - b) Same speed – Mean, RMS, Kurtosis, Skewness

2
2

 For all models with different

criteria such as chunk and approaches,

this improvement can be seen by adding

different features.

 It is conspicuous that the higher

number of features (i.e. higher

dimensions) would lead to a better

machine learning classification

procedure.

 Here only two approaches are

discussed as examples. Full different

models’ PCA illustrations for different

approaches, chunks and features are

depicted in Appendix B.

 In this chapter the models are

prepared for Machine Learning

procedure. The train and test data

creation is completely figured out as well

as clarifying the models to be used and

also presenting the algorithms to be

applied on the data.

 Before data preparation is

completely interpreted, it is worth

explaining machine learning briefly.

1 https://www.ibm.com/cloud/learn/machine-
learning

5.1. Machine Learning1

 It is a subset of Artificial

Intelligence (AI) focusing on model

creation by means of learning from a

data set and developing its accuracy

without being programed for.

 The aim is training the algorithms

with the primary data set to find patterns

based on which the new set of data is

used to make predictions.

Chapter Five

Data Preparation for Machine Learning

2
4

5.1.1. Machine Learning Methods

 Based on methods, machine

learning is divided into two main

categories, Supervised Learning and

Unsupervised Learning.

Supervised Learning is trained

based on a label as the

supervision indicator. It means

the data is classified based on

labeled data. For instance,

Regression and Classification in

general are two main types of

supervised learning.

Unsupervised Learning is

trained based on unlabeled data.

This method uses data to find

meaningful features to create

classes and also labels itself. As an

example, Clustering is a general

category for unsupervised

learning.

5.1.2. Machine Learning Steps

 First step is training data set

preparation. The model will learn the

pattern to predict the new data based on

the training data and its validation.

 Second step is to choose a proper

algorithm to train the model.

 Third step is training and creating

the model based on the chosen algorithm

and the training data.

 Fourth and the last step is to

create test data set in order to examine

and improve the model.

5.1.3. Machine Learning Algorithms

 For different methods there are

several different algorithms. The most

important ones are as follows:

Regression:

 Linear Regression

 Lasso Regression

 Logistic Regression

 Multivariate Regression

 Multiple Regression

Classification:

 Naïve-Bayes Classifier

 K-Nearest Neighbors Classifier

 Decision Tree Classifier

 Support Vector Machines (SVM)

 Discriminant analysis Classifier

Clustering:

 K-Means Clustering

 Mean-Shift Clustering

 Density-Based Spatial Clustering

 Expectation-Maximization

 Hierarchical Clustering

 Neural Networks

 In this thesis, while the aim is to

classify the data and make a model for

predicting the future data, the

Classification is used which is a subset of

Supervised Learning method.

 In chapter six the classification

procedure is fully explained.

2
5

5.2. Train and Test Matrices Initial
Creation

 Each data set which is used in

machine learning process is better to be

divided into two main categories one

bigger part with more data points for

Train and Validation of the model and a

smaller set of data for Test.

 Usually 70-80 percent of the data

is used for train and validation, and the

rest is dedicated to test data.

 In this paper the portion is

divided to 75 percent for train and

validation and the rest 25 percent for

test. It means for each subset of four data

points, three are dedicated to train

matrix and the fourth one is allocated to

test matrix. (Figure 5.1)

5.2.1. Train and Test Matrices Creation
for chunks of 0.1s

 As it was mentioned before for

each working condition with chunks of

0.1s there are 100 data points. To create

train and test matrices there are 25

subsets of four data points. It means that

the train matrix contains 75 rows and the

test matrix has 25 rows. Each train

matrix is validated by means of 10-fold

cross validation. Having created the

model, the test data is used as the

model’s new input to predict the

different classes of data.

5.2.2. Train and Test Matrices Creation
for chunks of 0.05s

 For each working condition with

chunks of 0.05s there are 200 data

points. To create train and test matrices

there are 50 subsets of four data points.

It means that the train matrix contains

150 rows and the test matrix has 50

rows. Each train matrix is validated by

means of 10-fold cross validation. Having

created the model, the test data is used

as the model’s new input to predict the

different classes of data.

Figure 5.1 - a) Train and Test Matrices for 100 chunks

Figure 5.2 - b) Train and Test Matrices for 200 chunks

2
6

5.3. Validation2

 In machine learning, validation

technique is used to find how perfectly a

model reacts to new data set. In two

ways it could be helpful:

▪ To find out which algorithm or

parameters are needed to use.

▪ To avoid overfitting.

 There are two main methods for

validation. Holdout validation and K-fold

Cross-Validation.

5.3.1. Holdout Validation

 This method is used when the

data set is divided into two groups of

train and validation. Almost 70-80

percent for train and the rest for

validation.

5.3.2. K-Fold Cross-Validation

 This method is used when the

data set is divided into k groups. One

group for validation and k-1 for train.

This is repeated for k times and the

average is the outcome.

 In this thesis cross-validation is

preferred, because it provides the chance

to train data on multiple train and

validation parts. The number of folds is

considered 10.

2 https://explore.mathworks.com/
https://medium.com/

5.4. Train and Test Matrices for
Different Models

 In this section the train and test

matrices formations are discussed for

different models with different chunks

and approaches.

 As it was mentioned before, four

approaches to be discussed are:

 W7 (200 Hz – 1400 N)

 C17 (2A)

 L21 (1800N)

 S21 (400 Hz)

 And also it was mentioned that

the dimensions for:

 M is six

 MR is twelve

 MRK is eighteen

 MRKS is twenty-four

5.4.1. Label Vector

 To prepare the data for machine

learning process, each set of data is

needed to be introduced by a set of

labels.

 To create label vector for

different models the number of different

working condition in each final matrix is

important. Each working condition is

labeled by a positive integer number

starting from one. For instance,

approach W7 is labelled one to seven,

approach C17 is labelled one to

seventeen, and approach L21 & S21 are

labelled one to twenty-one.

https://explore.mathworks.com/

2
7

5.4.2. Train matrices

 As mentioned before train matrix

for 100 data points has 75 rows and for

200 data points has 150 rows. (75

percent of data for train and validation)

 For different approaches the

matrices are like:

W7: this approach is for same

working condition and the final

matrix has 525 rows for 100

chunks and 1050 rows for 200

chunks. (Figure 5.2)

C17: this approach is for same

class of defect and the final matrix

has 1275 rows for 100 chunks

and 2550 rows for 200 chunks.
(Figure 5.3)

Figure 5.2 - Train matrices for same working condition -
100 and 200 chunks

Figure 5.3 - Train matrices for same class of defect - 100
and 200 chunks

2
8

L21 & S21: this approach is for

same load and same speed and

the final matrix has 1575 rows for

100 chunks and 3150 rows for

200 chunks. (Figure 5.4)

 Based on the models, the final

matrices are like:

M: the final matrix to be used as

the machine learning model

creation input has six dimensions.

For example, M_W7_100 is

6×525 or another one such as

M_L21_200 is 6×3150.

MR: the final matrix to be used as

the machine learning model

creation input has twelve

dimensions.

For instance, MR_C17_200 is

12×2550 or another one such as

MR_S21_100 is 12×1575.

MRK: the final matrix to be used

as the machine learning model

creation input has eighteen

dimensions.

As an example, MRK_C17_100 is

18×1275 or another one such as

MRK_S21_200 is 18×3150.

MRKS: the final matrix to be used

as the machine learning model

creation input has twenty-four

dimensions.

To give an example,

MRKS_W7_200 is 24×1050 or

another one such as

MRKS_L21_100 is 24×1575.

Figure 5.4 - Train matrices for same load & same speed -
100 and 200 chunks

2
9

5.4.3. Test matrices

 As mentioned before test matrix

for 100 data points has 25 rows and for

200 data points has 50 rows. (25 percent

of data for test)

 For different approaches the

matrices are like:

W7: this approach is for same

working condition and the final

matrix has 175 rows for 100

chunks and 350 rows for 200

chunks. (Figure 5.5)

C17: this approach is for same

class of defect and the final matrix

has 425 rows for 100 chunks and

850 rows for 200 chunks. (Figure

5.6)

Figure 5.5 - Test matrices for same working condition -
100 and 200 chunks

Figure 5.6 - Test matrices for same class of defect - 100
and 200 chunks

3
0

L21 & S21: this approach is for

same load and same speed and

the final matrix has 525 rows for

100 chunks and 1050 rows for

200 chunks. (Figure 5.7)

 Having created the machine

learning model, it is time to examine its

precision in predicting the classes by

means of test matrices.

M: the final matrix to be used has

six dimensions.

For example, M_W7_100 is

6×175 or another one such as

M_L21_200 is 6×1050.

MR: the final matrix to be used

has twelve dimensions.

For instance, MR_C17_200 is

12×850 or another one such as

MR_S21_100 is 12×525.

MRK: the final matrix to be used

has eighteen dimensions.

As an example, MRK_C17_100 is

18×425 or another one such as

MRK_S21_200 is 18×1050.

MRKS: the final matrix to be used

has twenty-four dimensions.

To give an example,

MRKS_W7_200 is 24×350 or

another one such as

MRKS_L21_100 is 24×525.

Figure 5.7 - Test matrices for same load & same speed -
100 and 200 chunks

 In this chapter the machine

learning process results are provided.

But before presenting the results it is

useful to give some information about

the algorithms to be used in this process.

 As it was mentioned in the

previous chapter the machine learning is

divided in two categories based on

methods, supervised and unsupervised.

 Because of being labeled, our data

is considered as supervised learning

type. The field of supervision is related to

classes so the algorithms to be discussed

are those pertaining to classification.

 Prior to the introduced classifiers

there are five important ones that are:

Naïve-Bayes Classifier

K-Nearest Neighbors Classifier

Decision Tree Classifier

Support Vector Machines (SVM)

Discriminant analysis Classifier

 In the following section these

classifiers are briefly explained.

Chapter Six

Machine Learning Process Results

3
2

6.1. Classification Algorithms

6.1.1. Naïve-Bayes

 These classifiers are a group of

probabilistic classifiers based on Bayes’

theorem with strong independence

among features. In other words, Naïve

Bayes classifier presumes that the

presence of a unique feature is not

related to presence of any other features.

 Apart from its simplicity, Naïve

Bayes is efficiently useful for large data

sets and outperforms many other highly

sophisticated methods.

6.1.2. K-Nearest Neighbors

 This algorithm is a non-

parametric classification method in

which the input is made out of k closest

training examples and the output is

classified by means of its k nearest

neighbors.

 A useful technique for

classification could be considering

weights for neighbors’ contribution in

the way that the nearer neighbors have

effect more than average in comparing to

the further neighbors.

6.1.3. Decision Tree

 This classifier uses a decision tree

in order to go from observations to

target results.

 In these classifiers, leaves are

class labels, however, branches

represent features result in class labels.

6.1.4. Support Vector Machines (SVM)

 This classifier is one of the most

powerful prediction algorithms which is

a non-probabilistic linear classifier. SVM

trains the data to groups of points in

space in order to maximize the distance

between two categories. Then new

examples are brought into the same

space and assigned to a category based

on the position they are placed.

 Apart from the linear

classification, SVM can perform a non-

linear classification by means of kernel

trick for high-dimensional space.

6.1.5. Discriminant Analysis

 This classifier is used to find a

combination of features which

categorizes the data into two or more

classes. Each group must have a score on

predictor measures as well as a score on

group measures. This acts in distributing

data into classes of the same type.

 This classification algorithm has

two main forms, linear and quadratic,

using linear and quadratic decision

surfaces respectively. Quadratic form is

the more general type of the linear one.

3
3

6.2. Train and Validation of
Machine Learning Models

 In this section the procedure and

results of different models with different

approaches and different chunks are

explained1.

 By assuming that the precision

(not compulsorily accuracy) of models

with more data points (200 chunks) is

higher (because of the larger number of

train and test data points), in this section

just the 200-chunk models are discussed.

 Another assumption is that the

models with lowest and highest number

of features are discussed. (i.e. M with six

dimensions and MRKS with twenty-four

dimensions)

 To clarify, from 32 possible

models, only eight are going to be

studied.

 To have a better understanding of

different models charts and figures, it is

worth introducing each group number

(each matrix) in each model.

W7 model:

1: 0A – 200 Hz – 1400 N

2: 1A – 200 Hz – 1400 N

3: 2A – 200 Hz – 1400 N

4: 3A – 200 Hz – 1400 N

5: 4A – 200 Hz – 1400 N

6: 5A – 200 Hz – 1400 N

7: 6A – 200 Hz – 1400 N

1 Results of full models are listed in Appendix D.

C17 model:

1: 2A – 100 Hz – 0 N

2: 2A – 100 Hz – 1000 N

3: 2A – 100 Hz – 1400 N

4: 2A – 100 Hz – 1800 N

5: 2A – 200 Hz – 0 N

6: 2A – 200 Hz – 1000 N

7: 2A – 200 Hz – 1400 N

8: 2A – 200 Hz – 1800 N

9: 2A – 300 Hz – 0 N

10: 2A – 300 Hz – 1000 N

11: 2A – 300 Hz – 1400 N

12: 2A – 300 Hz – 1800 N

13: 2A – 400 Hz – 0 N

14: 2A – 400 Hz – 1000 N

15: 2A – 400 Hz – 1400 N

16: 2A – 500 Hz – 0 N

17: 2A – 500 Hz – 1000 N

L21 model:

1: 0A – 100 Hz – 1800 N

2: 0A – 200 Hz – 1800 N

3: 0A – 300 Hz – 1800 N

4: 1A – 100 Hz – 1800 N

5: 1A – 200 Hz – 1800 N

6: 1A – 300 Hz – 1800 N

7: 2A – 100 Hz – 1800 N

8: 2A – 200 Hz – 1800 N

9: 2A – 300 Hz – 1800 N

10: 3A – 100 Hz – 1800 N

11: 3A – 200 Hz – 1800 N

12: 3A – 300 Hz – 1800 N

13: 4A – 100 Hz – 1800 N

14: 4A – 200 Hz – 1800 N

15: 4A – 300 Hz – 1800 N

16: 5A – 100 Hz – 1800 N

17: 5A – 200 Hz – 1800 N

18: 5A – 300 Hz – 1800 N

19: 6A – 100 Hz – 1800 N

20: 6A – 200 Hz – 1800 N

21: 6A – 300 Hz – 1800 N

3
4

S21 model:

1: 0A – 400 Hz – 0 N

2: 0A – 400 Hz – 1000 N

3: 0A – 400 Hz – 1400 N

4: 1A – 400 Hz – 0 N

5: 1A – 400 Hz – 1000 N

6: 1A – 400 Hz – 1400 N

7: 2A – 400 Hz – 0 N

8: 2A – 400 Hz – 1000 N

9: 2A – 400 Hz – 1400 N

10: 3A – 400 Hz – 0 N

11: 3A – 400 Hz – 1000 N

12: 3A – 400 Hz – 1400 N

13: 4A – 400 Hz – 0 N

14: 4A – 400 Hz – 1000 N

15: 4A – 400 Hz – 1400 N

16: 5A – 400 Hz – 0 N

17: 5A – 400 Hz – 1000 N

18: 5A – 400 Hz – 1400 N

19: 6A – 400 Hz – 0 N

20: 6A – 400 Hz – 1000 N

21: 6A – 400 Hz – 1400 N

 All validations are done based on

Cross Validation technique with 10-folds.

6.3. Algorithms Selection Based on
Train Accuracies and Results

 Having trained the models, the

subsets of each algorithm accuracies are

compared to choose the best and the

worst for discussion.

6.3.1. Naïve-Bayes

 Both Gaussian and Kernel Naïve

Bayes have acceptable performances.

6.3.2. K-Nearest Neighbors

 Like previous algorithm, all the

subsets of this algorithm have almost the

same and accepted performance except

Coarse KNN which has a moderate

accuracy.

6.3.3. Decision Tree

 Both Fine and Medium Tree

subsets have very good performances,

however, the worst subset among all

algorithms is the Coarse Tree.

6.3.4. Support Vector Machines (SVM)

 All subsets of SVM have great

performances in general and one of two

best subsets among all algorithms is

Medium Gaussian SVM.

6.3.5. Discriminant analysis

 Both Linear and Quadratic

Discriminant have great performances

and the second best subset among all

algorithms is Quadratic Discriminant.

 Four algorithms are: Coarse Tree

(weak), Coarse KNN (moderate),

Quadratic Discriminant and Medium

Gaussian SVM (powerful).

3
5

6.4. Data Interpretation

 In this chapter, the data related to

the machine learning procedure and

different algorithms’ train accuracies are

given in the form of confusion matrix.

6.4.1. Confusion Matrix2

 In supervised learning method of

machine learning, data could be

provided in some special tables which

allow a visual representation of an

algorithm’s performance. In such

matrices the rows show the actual class

while the columns are representatives

for predicted classes.

 In confusion matrix there could

be four different outcomes, based on

either the class is predicted correctly or

not.

True Positive (TP): dedicated to

the portion for which the data is

correctly accepted.

True Negative (TN): dedicated

to the portion for which the data

is correctly rejected.

False Positive (FP): dedicated to

the portion for which the

predicted class is wrongly

accepted.

2 https://en.wikipedia.org/

False Positive (FN): dedicated to

the portion for which the

predicted class is wrongly

rejected.

 If any of these outcomes

calculated in the form of percentages

other than numbers, they are presented

in the rate forms as TPR, TNR, FPR and

FNR.

6.4.2. Classification Learner App

 For having a better visual

presentation for different models’

confusion matrices the Classification

Learner App from MATLAB is used.

 To have a comparison between

different models, two models with

lowest and highest dimensions (M and

MRKS) are discussed for the Same Speed

approach and 200 chunks.

 As it can be seen, the train

accuracy of different models from

weakest to the best are illustrated and it

is vividly clear that the performance of

machine learning procedure for MRKS

model is notably higher in general.

 Full confusion matrices of M and

MRKS models for different approaches

and 200 chunks are depicted in

Appendix C.

3
6

M_S21_200

Coarse Tree (Train Accuracy: 23.6%)

Coarse KNN (Train Accuracy: 65.3%)

Figure 6.1 – a) Coarse tree confusion matrix

Figure 6.1 – b) Coarse KNN confusion matrix

3
7

M_S21_200

Quadratic Discriminant (Train Accuracy: 90.9%)

Medium Gaussian SVM (Train Accuracy: 90.3%)

Figure 6.1 – c) Quadratic discriminant confusion matrix

Figure 6.1 – d) Medium Gaussian SVM confusion matrix

3
8

MRKS_S21_200

Coarse Tree (Train Accuracy: 23.8%)

Coarse KNN (Train Accuracy: 90.3%)

Figure 6.2 – a) Coarse tree confusion matrix

Figure 6.2 – b) Coarse KNN confusion matrix

3
9

MRKS_S21_200

Quadratic Discriminant (Train Accuracy: 100.0%)

Medium Gaussian SVM (Train Accuracy: 99.9%)

Figure 6.2 – c) Quadratic discriminant confusion matrix

Figure 6.2 – d) Medium Gaussian SVM confusion matrix

4
0

6.5. Test Results

 Having created the models, it is

time to estimate their performances by

inducing the test data into prediction

function and find out how well the

models are working.

 Before presenting the result, it is

noteworthy to mention two definitions.

 By considering each test matrix

source, the matrix classification label is

known. By comparing the results with

the original label vectors there could be

two possible options, first the class is

predicted wrongly and second it is

predicted correctly.

6.5.1. Prediction Performance

 If the test data is predicted

correctly regarding the classification

label vector, the outcome of correct

items shows the performance of the

model. Higher number of correct

predicted items shows a better model.

6.5.2. Misclassification Error

 If the test data is predicted

wrongly regarding the classification

label vector, the outcome of incorrect

items shows the misclassification error

of the model. Lower number of incorrect

predicted items shows a better model.

6.5.3. Test Prediction

 Having trained the data and

exported the created model, then it is

time to predict the outcome of the test

data. The model can be called

TrainedModel and used in the prediction

function.

 The total test matrix is

introduced as TTest. Also a label vector q

is created for each TTest matrix with the

same procedure explained for train data

by considering that the size of these label

vectors comparing to train data label

vectors are one third due to the

percentages explained for train and test

data creation (75 percent for train and

25 percent for test).

P=TrainedModel.predictFcn(TTest)

 The outcome of prediction

function is called P, it will have the same

size as q. Vector q as the reference and

vector P as the predicted data are going

to be compared with each other.

 The number of correct items are

considered for the Prediction

Performance and also the wrong items

show the Misclassification Error.

 The result of different models for

different algorithms are provided in the

upcoming tables.

4
1

M_W7_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 71.3 81.0 98.4 99.0

Prediction
Performance

71.43 82.57 96.57 97.43

Misclassification
Error

28.57 17.43 3.43 2.57

MRKS_W7_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 71.4 99.8 100.0 100.0

Prediction
Performance

71.43 100.00 100.00 100.00

Misclassification
Error

28.57 0.00 0.00 0.00

Table 6.1 - Same working condition

M_C17_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 26.3 79.8 88.3 88.5

Prediction
Performance

25.88 80.71 87.18 89.41

Misclassification
Error

74.12 19.29 12.82 10.59

MRKS_C17_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 29.4 84.4 98.6 97.7

Prediction
Performance

29.41 83.29 97.65 97.53

Misclassification
Error

70.59 16.71 2.35 2.47

Table 6.2 - Same class of defect

4
2

M_L21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 74.3 97.0 96.8

Prediction
Performance

23.81 76.00 97.05 97.24

Misclassification
Error

76.19 24.00 2.95 2.76

MRKS_L21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 97.2 100.0 100.0

Prediction
Performance

23.81 98.19 100.0 99.90

Misclassification
Error

76.19 1.81 0.00 0.10

Table 6.3 - Same load

M_S21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.6 65.3 90.9 90.3

Prediction
Performance

23.43 65.81 91.05 91.05

Misclassification
Error

76.57 34.19 8.95 8.95

MRKS_S21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 90.3 100.0 99.9

Prediction
Performance

23.81 91.90 100.00 100.00

Misclassification
Error

76.19 8.10 0.00 0.00

Table 6.4 - Same speed

4
3

 As it can be seen, in general

models with higher number of features

present a better predictions and higher

performances in comparison with the

lower dimensional models.

 Also prediction of same working

condition, because of having known load

and speed from different classes of

defect is more accurate than the same

class of defect.

 Accuracy of same load and same

speed are also the equal in general and

there is not a highly remarkable

difference between them.

 Based on algorithms, quadratic

discriminant and medium Gaussian SVM

are presenting an almost similar great

performance, however, coarse KNN is

operating moderately. The worst

algorithm is coarse tree which has the

highest accuracy for the models with

lower number of predictors. It shows by

growing the number of predictors the

accuracy of this algorithm falls

drastically.

 Full machine learning results of

32 different models are tabulated in

Appendix D.

 In this chapter the matter of

feature selection is discussed. However,

in statistics feature selection is applied

for high dimensional datasets, here as a

comparative complementary part is

explained and discussed.

 Based on recent developments, it

is not unusual to work with high

dimensional datasets varying from

hundreds of features up to tens of

thousands. Working with a lot of features

may sometimes ends in an accurate

calculation but undoubtedly it will have

some drawbacks as well.

 To explain more, sometimes the

high number of features cause a high cost

of computation and also may lead to less

accurate models and results. It becomes

important to choose some more

important features to simultaneously

reduce the costs of evaluation as well as

keeping the redundant features out in

order to have the optimum accuracy.

 This could be done by means of

features selection algorithms. However,

statistically this thesis dataset is not very

high dimensional.

Chapter Seven

Feature Selection

4
6

7.1. Feature Selection Methods1

 In machine learning, there could

be two ways to think about features

selection.

 First it could be based on

supervised or unsupervised methods.

The supervised techniques use target

variables, however, the unsupervised

ignore them.

 The second way is based on three

different algorithms: Filter Methods,

Wrapper Methods and Embedded

Methods.

7.1.1. Filter Methods

 Filter methods are used for pre

training step. The selection takes place

based on the importance of features for

their correlation with the outcome

rather than being dependent on the

machine learning algorithms.

 These methods could be used for

both classification and regression and

both categorical and continuous features

could be studied.

 7.1.2. Wrapper Methods

 These methods are used to create

a subset of features and training the

model then by considering the

inferences of the model some features

are added or removed from the subset.

The problem of wrapper methods is that

1 https://machinelearningmastery.com/
https://www.analyticsvidhya.com/

these methods are bound to research

and are computationally expensive.

7.1.3. Embedded Methods

 These methods are combinations

of filter and wrapper methods. These

methods have their own built-in

algorithms for feature selection.

 Both wrapper and embedded

methods are mostly used for regression

and mostly applicable for continuous

features.

7.1.4. Differences Between Filter
Methods and Wrapper Methods

 Filter methods find the relevance of
features by considering their correlation
with dependent variable, however, wrapper
methods measure the convenience of a
feature subset.

 Filter methods are much faster and
also wrapper methods are computationally
highly expensive.

 Statistical methods are used for
filter methods while cross validation is used
for wrapper methods.

 Wrapper methods are more likely to
experience overfitting comparing to the
filter methods.

https://machinelearningmastery.com/
https://www.analyticsvidhya.com/

4
7

7.2. Methods to be used2

 In this paper two algorithms of

filter method are briefly explained, used

and the results are discussed.

7.2.1. Chi-Square

 In statistics chi-square is used to

find the independence of two items. If we

have two variables one as observed and

the other as expected, chi-square will

specify that how these two variables

affect each other and cause deviation.

 If we consider the independent

features as predictors and dependent

ones as responses, in feature selection

the goal is to find the features with

highest dependence on response.

 When the observed and expected

counts are very close to each other, the

features are considered independent

and the chi-square value is smaller. To

clarify, higher the chi-square value, more

dependence of feature on the response.

7.2.2. Maximum Relevance Minimum
Redundancy (MRMR)

 This algorithm has become

widely popular after being used by Uber

engineers.

 Maximum relevance minimum

redundancy (MRMR) is called so because

at each level of iteration the feature

which has the maximum relevance with

respect to target and the minimum

2 https://towardsdatascience.com/

redundancy with respect to the previous

iterations is aimed to be selected.

7.3. Models for Feature Selection

 The highest dimensions of

datasets are dedicated to MRKS (with

twenty-four) models. The feature

selection methods are applied on these

models.

 To have a comparison between

the featured models and the models with

lowest dimensions M (with six) six best

features are selected to create a new sub

model of MRKS.

 The new matrices are formed out

of MRKS models by considering the

order of features after applying the

feature selection methods. The best six

features make the six columns of the new

six dimensional matrices respectively.

 In the upcoming pages, four

approaches are considered as well as

four machine learning algorithms and

also the best model MRKS the worst

model M and two featured models of chi-

square and MRMR derived from MRKS

model.

 The train accuracies, prediction

performances and also the

misclassification errors are reported as

follows:

https://towardsdatascience.com/

4
8

M_W7_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 71.3 81.0 98.4 99.0

Prediction
Performance

71.43 82.57 96.57 97.43

Misclassification
Error

28.57 17.43 3.43 2.57

MRKS_W7_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 71.4 99.8 100.0 100.0

Prediction
Performance

71.43 100.00 100.00 100.00

Misclassification
Error

28.57 0.00 0.00 0.00

Chi-Square Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 71.4 98.3 100.0 100.0

Prediction
Performance

87.14 96.38 96.67 96.67

Misclassification
Error

12.86 3.62 3.33 3.33

MRMR Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 71.2 97.0 100.0 100.0

Prediction
Performance

87.14 95.62 96.67 96.57

Misclassification
Error

12.86 4.38 3.33 3.43

Table 7.1 - Same working condition

4
9

M_C17_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 26.3 79.8 88.3 88.5

Prediction
Performance

25.88 80.71 87.18 89.41

Misclassification
Error

74.12 19.29 12.82 10.59

MRKS_C17_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 29.4 84.4 98.6 97.7

Prediction
Performance

29.41 83.29 97.65 97.53

Misclassification
Error

70.59 16.71 2.35 2.47

Chi-Square Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 26.3 79.1 88.3 88.7

Prediction
Performance

25.88 80.71 87.18 89.41

Misclassification
Error

74.12 19.29 12.82 10.59

MRMR Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 29.4 62.9 91.6 88.4

Prediction
Performance

29.41 63.18 91.41 89.76

Misclassification
Error

70.59 36.82 8.59 10.24

Table 7.2 - Same class of defect

5
0

M_L21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 74.3 97.0 96.8

Prediction
Performance

23.81 76.00 97.05 97.24

Misclassification
Error

76.19 24.00 2.95 2.76

MRKS_L21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 97.2 100.0 100.0

Prediction
Performance

23.81 98.19 100.0 99.90

Misclassification
Error

76.19 1.81 0.00 0.10

Chi-Square Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 74.3 97.0 96.8

Prediction
Performance

23.81 76.00 97.05 97.24

Misclassification
Error

76.19 24.00 2.95 2.76

MRMR Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 80.2 99.7 99.0

Prediction
Performance

23.81 80.00 99.71 99.14

Misclassification
Error

76.19 20.00 0.29 0.86

Table 7.3 - Same load

5
1

M_S21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.6 65.3 90.9 90.3

Prediction
Performance

23.43 65.81 91.05 91.05

Misclassification
Error

76.57 34.19 8.95 8.95

MRKS_S21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 90.3 100.0 99.9

Prediction
Performance

23.81 91.90 100.00 100.00

Misclassification
Error

76.19 8.10 0.00 0.00

Chi-Square Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.6 65.2 90.8 90.4

Prediction
Performance

23.43 65.81 91.05 91.05

Misclassification
Error

76.57 34.19 8.95 8.95

MRMR Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 75.1 95.5 94.5

Prediction
Performance

23.81 75.90 96.86 95.33

Misclassification
Error

76.19 24.10 3.14 4.67

Table 7.4 - Same speed

5
2

 As it is obvious the tables are

representing the data related to the

lowest dimensional model M, the highest

dimensional model MRKS, and two

feature selection methods which are

formed based on the MRKS model

features. At last the dimensionality of M

model, chi-square and MRMR are the

same (six dimensional)

 For each model three items of

train accuracy, prediction performance

and misclassification error are reported

explicitly for all four machine learning

algorithms discussed in the previous

chapter, coarse tree (weakest), coarse

KNN (moderate), quadratic discriminant

and medium Gaussian SVM (two

strongest).

 Except the first approach and that

is same working condition for which

both feature selection methods chi-

square and MRMR show better

performances in comparison with the

lowest dimensional model M, for the

other approaches the chi-square method

almost has the same performance as the

model M, however, the performance of

MRMR method is better than the model.

 This shows that by means of

applying MRMR method it could be

reachable to have a model with the

calculation simplicity of M model which

leads to a lower computational costs,

however, the accuracy and performance

are way better than the simple model.

 Full machine learning results of

eight different models and their

pertaining feature selection models are

tabulated in Appendix D.

 In this final chapter it is

concluded that this work aims to help

classification in different situations.

 The data used for this paper is

based on the research done in

Politecnico di Torino and the details

could be found at:

ftp://ftp.polito.it/people/DIRG_BearingData/.

 At the beginning the test is

shortly explained and also the main data

is introduced.

 Having introduced the main data,

different elements of models are

explained and model creation is clarified.

 The models are made based on

three different elements, Chunks,

Approaches and Features.

 Chunks are based on two

divisions, 100 chunks of 0.1s and 200

chunks of 0.05s. Approaches are based

on four categories of same working

condition, same class of defect, same load

and same speed. Features are based on

four different categories of mean, RMS,

Chapter Eight

Conclusion

5
4

kurtosis and skewness. Models are made

based on combination of these features.

 Finally, there will be 32 different

models which are used in this paper.

These models are listed in Appendix A.

 For having a better visual

understanding of how clusters of

different working conditions are

positioned in comparison with the other

ones in different models, there should be

illustrations but for this aim at most

three dimensions are allowed. However,

the models are at least six dimensional.

To ease this problem a new method of

dimensionality reduction is introduced

which maintain the highest data possible

with lowest data loss. PCA is the method

used for dimensionality reduction and

full illustrations are depicted in

Appendix B.

 Having created the models, it is

time to go through the data preparation

for machine learning procedure. For

different models there are different sizes

of final matrices, but, all the train and test

matrices are made based on 75 percent

and 25 percent of main final matrix data

points respectively.

 After data preparation, different

methods and algorithms of machine

learning are explained. Supervised and

unsupervised learning are discussed,

and classification which is a subset of

supervised learning is selected for

machine learning process.

 Different algorithm of

classification is introduced such as

Decision Tree, Naïve Bayes, Discriminant

Analysis, K-Nearest Neighbors and

Support Vector Machines (SVM). The

validation of train matrices is based on

Cross-Validation 10 fold.

 To avoid excess of data only eight

comparative models out of 32 possible

ones are discussed in machine learning

section. Models with lowest and highest

dimensions M and MRKS and only for

chunks of 0.05s which means 200 data

points are selected. The full list of all 32

models with their all machine learning

results are tabulated in Appendix C.

 At last the subject of feature

selection is introduced for sake of

simplicity, and avoiding computational

costs. For this aim three different

methods are explained which are Filter

Methods, Wrapper Methods and

Embedded Methods. Finally, two

algorithms of filter methods are selected

for feature selection process they are

Chi-Square and MRMR.

 Having completed the feature

selection models, they are trained and

tested with the same procedures of

machine learning to find out how feature

selection affects the results.

 To avoid excess of data only four

models out of eight possible ones are

discussed in feature selection section.

MRKS models and only for chunks of

0.05s which means 200 data points are

selected. The full list of all eight models

with their all machine learning results

are tabulated in Appendix D.

 This thesis shows it is possible to

guess either the class of defect or the

working condition even if only speed or

load is known by means of the data

provided by the client.

Appendix A

Models

5
6

1. Same Working Condition

M_W7_100

M_W7_200

MR_W7_100

MR_W7_200

MRK_W7_100

MRK_W7_200

MRKS_W7_100

MRKS_W7_200

2. Same Class of Defect

M_C17_100

M_ C17_200

MR_ C17_100

MR_ C17_200

MRK_ C17_100

MRK_ C17_200

MRKS_ C17_100

MRKS_ C17_200

3. Same Load

M_L21_100

M_ L21_200

MR_ L21_100

MR_ L21_200

MRK_ L21_100

MRK_ L21_200

MRKS_ L21_100

MRKS_ L21_200

4. Same Speed

M_ S21_100

M_ S21_200

MR_ S21_100

MR_ S21_200

MRK_ S21_100

MRK_ S21_200

MRKS_ S21_100

MRKS_ S21_200

Appendix B

PCA Results

5
8

M_W7_100:

M_W7_200:

Same Working Condition - Mean - 100 Chunks

Same Working Condition - Mean - 200 Chunks

5
9

MR_W7_100:

MR_W7_200:

Same Working Condition - Mean, RMS - 100 Chunks

Same Working Condition - Mean, RMS - 200 Chunks

6
0

MRK_W7_100:

MRK_W7_200:

Same Working Condition - Mean, RMS, Kurtosis - 100 Chunks

Same Working Condition - Mean, RMS, Kurtosis - 200 Chunks

6
1

MRKS_W7_100:

MRKS_W7_200:

Same Working Condition - Mean, RMS, Kurtosis, Skewness - 100 Chunks

Same Working Condition - Mean, RMS, Kurtosis, Skewness - 200 Chunks

6
2

M_C17_100:

M_C17_200:

Same Class of Defect - Mean - 100 Chunks

Same Class of Defect - Mean - 200 Chunks

6
3

MR_C17_100:

MR_C17_200:

Same Class of Defect - Mean, RMS - 100 Chunks

Same Class of Defect - Mean, RMS - 200 Chunks

6
4

MRK_C17_100:

MRK_C17_200:

Same Class of Defect - Mean, RMS, Kurtosis - 100 Chunks

Same Class of Defect - Mean, RMS, Kurtosis - 200 Chunks

6
5

MRKS_C17_100:

MRKS_C17_200:

Same Class of Defect - Mean, RMS, Kurtosis, Skewness - 100 Chunks

Same Class of Defect - Mean, RMS, Kurtosis, Skewness - 200 Chunks

6
6

M_L21_100:

M_L21_200:

Same Load - Mean - 100 Chunks

Same Load - Mean - 200 Chunks

6
7

MR_L21_100:

MR_L21_200:

Same Load - Mean, RMS - 100 Chunks

Same Load - Mean, RMS - 200 Chunks

6
8

MRK_L21_100:

MRK_L21_200:

Same Load - Mean, RMS, Kurtosis - 100 Chunks

Same Load - Mean, RMS, Kurtosis - 200 Chunks

6
9

MRKS_L21_100:

MRKS_L21_200:

Same Load - Mean, RMS, Kurtosis, Skewness - 100 Chunks

Same Load - Mean, RMS, Kurtosis, Skewness - 200 Chunks

7
0

M_S21_100:

M_S21_200:

Same Speed - Mean - 100 Chunks

Same Speed - Mean - 200 Chunks

7
1

MR_S21_100:

MR_S21_200:

Same Speed - Mean, RMS - 100 Chunks

Same Speed - Mean, RMS - 200 Chunks

7
2

MRK_S21_100:

MRK_S21_200:

Same Speed - Mean, RMS, Kurtosis - 100 Chunks

Same Speed - Mean, RMS, Kurtosis - 200 Chunks

7
3

MRKS_S21_100:

MRKS_S21_200:

Same Speed - Mean, RMS, Kurtosis, Skewness - 100 Chunks

Same Speed - Mean, RMS, Kurtosis, Skewness - 200 Chunks

Appendix C

Models with lowest and highest dimensions (M & MRKS)
Confusion Matrices – 200 chunks

7
6

Figure 1 – a) Coarse tree confusion matrix

Figure 1 – b) Coarse KNN confusion matrix

M_W7_200

Coarse Tree (Train Accuracy: 71.3%)

Coarse KNN (Train Accuracy: 81.0%)

7
7

M_W7_200

Quadratic Discriminant (Train Accuracy: 98.4%)

Medium Gaussian SVM (Train Accuracy: 99.0%)

Figure 1 – c) Quadratic discriminant confusion matrix

Figure 1 – d) Medium Gaussian SVM confusion matrix

7
8

MRKS_W7_200

Coarse Tree (Train Accuracy: 71.4%)

Coarse KNN (Train Accuracy: 99.8%)

Figure 2 – a) Coarse tree confusion matrix

Figure 2 – b) Coarse KNN confusion matrix

7
9

MRKS_W7_200

Quadratic Discriminant (Train Accuracy: 100.0%)

Medium Gaussian SVM (Train Accuracy: 100.0%)

Figure 2 – c) Quadratic discriminant confusion matrix

Figure 2 – d) Medium Gaussian SVM confusion matrix

8
0

M_C17_200

Coarse Tree (Train Accuracy: 26.3%)

Coarse KNN (Train Accuracy: 79.8%)

Figure 3 – a) Coarse tree confusion matrix

Figure 3 – b) Coarse KNN confusion matrix

8
1

M_C17_200

Quadratic Discriminant (Train Accuracy: 88.3%)

Medium Gaussian SVM (Train Accuracy: 88.5%)

Figure 3 – c) Quadratic discriminant confusion matrix

Figure 3 – d) Medium Gaussian SVM confusion matrix

8
2

MRKS_C17_200

Coarse Tree (Train Accuracy: 29.4%)

Coarse KNN (Train Accuracy: 84.4%)

Figure 4 – a) Coarse tree confusion matrix

Figure 4 – b) Coarse KNN confusion matrix

8
3

MRKS_C17_200

Quadratic Discriminant (Train Accuracy: 98.6%)

Medium Gaussian SVM (Train Accuracy: 97.7%)

Figure 4 – c) Quadratic discriminant confusion matrix

Figure 4 – d) Medium Gaussian SVM confusion matrix

8
4

M_L21_200

Coarse Tree (Train Accuracy: 23.8%)

Coarse KNN (Train Accuracy: 74.3%)

Figure 5 – a) Coarse tree confusion matrix

Figure 5 – b) Coarse KNN confusion matrix

8
5

M_L21_200

Quadratic Discriminant (Train Accuracy: 97.0%)

Medium Gaussian SVM (Train Accuracy: 96.8%)

Figure 5 – c) Quadratic discriminant confusion matrix

Figure 5 – d) Medium Gaussian SVM confusion matrix

8
6

MRKS_L21_200

Coarse Tree (Train Accuracy: 23.8%)

Coarse KNN (Train Accuracy: 97.2%)

Figure 6 – a) Coarse tree confusion matrix

Figure 6 – b) Coarse KNN confusion matrix

8
7

MRKS_L21_200

Quadratic Discriminant (Train Accuracy: 100.0%)

Medium Gaussian SVM (Train Accuracy: 100.0%)

Figure 6 – c) Quadratic discriminant confusion matrix

Figure 6 – d) Medium Gaussian SVM confusion matrix

8
8

M_S21_200

Coarse Tree (Train Accuracy: 23.6%)

Coarse KNN (Train Accuracy: 65.3%)

Figure 7 – a) Coarse tree confusion matrix

Figure 7 – b) Coarse KNN confusion matrix

8
9

M_S21_200

Quadratic Discriminant (Train Accuracy: 90.9%)

Medium Gaussian SVM (Train Accuracy: 90.3%)

Figure 7 – c) Quadratic discriminant confusion matrix

Figure 7 – d) Medium Gaussian SVM confusion matrix

9
0

MRKS_S21_200

Coarse Tree (Train Accuracy: 23.8%)

Coarse KNN (Train Accuracy: 90.3%)

Figure 8 – a) Coarse tree confusion matrix

Figure 8 – b) Coarse KNN confusion matrix

9
1

MRKS_S21_200

Quadratic Discriminant (Train Accuracy: 100.0%)

Medium Gaussian SVM (Train Accuracy: 99.9%)

Figure 8 – c) Quadratic discriminant confusion matrix

Figure 8 – d) Medium Gaussian SVM confusion matrix

Appendix D

Machine Learning Results

9
4

M_W7_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 67.2 73.9 98.9 99.2

Prediction
Performance

65.71 77.71 97.71 97.71

Misclassification
Error

34.29 22.29 2.29 2.29

M_W7_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 71.3 81.0 98.4 99.0

Prediction
Performance

71.43 82.57 96.57 97.43

Misclassification
Error

28.57 17.43 3.43 2.57

MR_W7_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 69.3 99.2 100.0 100.0

Prediction
Performance

71.43 99.43 100.00 100.00

Misclassification
Error

28.57 0.57 0.00 0.00

MR_W7_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 71.4 99.9 100.0 100.0

Prediction
Performance

71.43 100.00 100.00 100.00

Misclassification
Error

28.57 0.00 0.00 0.00

9
5

MRK_W7_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 69.5 99.2 100.0 100.0

Prediction
Performance

71.43 100.00 100.00 100.00

Misclassification
Error

28.57 0.00 0.00 0.00

MRK_W7_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 71.4 100.0 100.0 100.0

Prediction
Performance

71.43 100.00 100.00 100.00

Misclassification
Error

28.57 0.00 0.00 0.00

MRKS_W7_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 69.5 99.0 100.0 100.0

Prediction
Performance

57.14 100.00 100.00 100.00

Misclassification
Error

42.86 0.00 0.00 0.00

MRKS_W7_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 71.4 99.8 100.0 100.0

Prediction
Performance

71.43 100.00 100.00 100.00

Misclassification
Error

28.57 0.00 0.00 0.00

9
6

M_C17_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 24.8 79.2 90.4 91.1

Prediction
Performance

23.53 81.88 91.29 91.76

Misclassification
Error

76.47 18.12 8.71 8.24

M_C17_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 26.3 79.8 88.3 88.5

Prediction
Performance

25.88 80.71 87.18 89.41

Misclassification
Error

74.12 19.29 12.82 10.59

MR_C17_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 27.5 85.4 99.5 99.1

Prediction
Performance

29.41 86.59 99.76 100.00

Misclassification
Error

70.59 13.41 0.24 0.00

MR_C17_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 29.4 87.9 98.9 98.8

Prediction
Performance

29.41 88.94 98.35 98.24

Misclassification
Error

70.59 11.06 1.65 1.76

9
7

MRK_C17_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 27.8 82.7 99.5 97.9

Prediction
Performance

29.41 84.24 99.53 99.06

Misclassification
Error

70.59 15.76 0.47 0.94

MRK_C17_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 29.4 83.2 98.6 97.4

Prediction
Performance

29.41 83.29 98.00 97.18

Misclassification
Error

70.59 16.71 2.00 2.82

MRKS_C17_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 27.8 85.5 98.6 98.2

Prediction
Performance

23.53 84.94 98.82 98.71

Misclassification
Error

76.47 15.06 1.18 1.29

MRKS_C17_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 29.4 84.4 98.6 97.7

Prediction
Performance

29.41 83.29 97.65 97.53

Misclassification
Error

70.59 16.71 2.35 2.47

9
8

M_L21_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 22.5 68.3 99.0 99.0

Prediction
Performance

23.81 67.62 99.24 99.05

Misclassification
Error

76.19 32.38 0.76 0.95

M_L21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 74.3 97.0 96.8

Prediction
Performance

23.81 76.00 97.05 97.24

Misclassification
Error

76.19 24.00 2.95 2.76

MR_L21_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 22.5 97.0 100.0 100.0

Prediction
Performance

23.81 97.52 100.00 100.00

Misclassification
Error

76.19 2.48 0.00 0.00

MR_L21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 98.1 100.0 100.0

Prediction
Performance

23.81 98.76 100.00 100.00

Misclassification
Error

76.19 1.24 0.00 0.00

9
9

MRK_L21_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 22.2 96.1 100.0 99.9

Prediction
Performance

23.81 97.14 100.00 100.00

Misclassification
Error

76.19 2.86 0.00 0.00

MRK_L21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 97.4 100.0 99.9

Prediction
Performance

23.81 97.81 100.00 99.90

Misclassification
Error

76.19 2.19 0.00 0.10

MRKS_L21_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 22.2 96.3 100.0 99.9

Prediction
Performance

11.90 96.48 100.0 99.90

Misclassification
Error

88.10 3.52 0.00 0.10

MRKS_L21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 97.2 100.0 100.0

Prediction
Performance

23.81 98.19 100.0 99.90

Misclassification
Error

76.19 1.81 0.00 0.10

1
0

0

M_S21_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 22.2 60.5 92.1 91.8

Prediction
Performance

23.81 62.48 92.57 93.14

Misclassification
Error

76.19 37.52 7.43 6.86

M_S21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.6 65.3 90.9 90.3

Prediction
Performance

23.43 65.81 91.05 91.05

Misclassification
Error

76.57 34.19 8.95 8.95

MR_S21_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 22.2 85.7 100.0 100.0

Prediction
Performance

23.81 88.19 100.00 100.00

Misclassification
Error

76.19 11.81 0.00 0.00

MR_S21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 91.4 100.0 100.0

Prediction
Performance

23.81 94.86 100.00 100.00

Misclassification
Error

76.19 5.14 0.00 0.00

1
0

1

MRK_S21_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 22.2 88.8 100.0 99.9

Prediction
Performance

23.81 93.14 100.00 100.00

Misclassification
Error

76.19 6.86 0.00 0.00

MRK_S21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 90.6 100.0 99.9

Prediction
Performance

23.81 90.19 100.00 100.00

Misclassification
Error

76.19 9.81 0.00 0.00

MRKS_S21_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 22.2 91.7 100.0 99.9

Prediction
Performance

23.81 92.29 100.00 99.90

Misclassification
Error

76.19 7.71 0.00 0.10

MRKS_S21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 90.3 100.0 99.9

Prediction
Performance

23.81 91.90 100.00 100.00

Misclassification
Error

76.19 8.10 0.00 0.00

Appendix E

Features Selection Results

1
0

4

M_W7_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 67.2 73.9 98.9 99.2

Prediction
Performance

65.71 77.71 97.71 97.71

Misclassification
Error

34.29 22.29 2.29 2.29

MRKS_W7_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 69.5 99.0 100.0 100.0

Prediction
Performance

57.14 100.00 100.00 100.00

Misclassification
Error

42.86 0.00 0.00 0.00

Chi-Square Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 69.3 96.0 100.0 100.0

Prediction
Performance

71.43 97.71 100.00 100.00

Misclassification
Error

28.57 2.29 0.00 0.00

MRMR Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 69.5 86.7 100.0 100.0

Prediction
Performance

71.43 88.00 100.00 100.00

Misclassification
Error

28.57 12.00 0.00 0.00

1
0

5

M_W7_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 71.3 81.0 98.4 99.0

Prediction
Performance

71.43 82.57 96.57 97.43

Misclassification
Error

28.57 17.43 3.43 2.57

MRKS_W7_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 71.4 99.8 100.0 100.0

Prediction
Performance

71.43 100.00 100.00 100.00

Misclassification
Error

28.57 0.00 0.00 0.00

Chi-Square Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 71.4 98.3 100.0 100.0

Prediction
Performance

87.14 96.38 96.67 96.67

Misclassification
Error

12.86 3.62 3.33 3.33

MRMR Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 71.2 97.0 100.0 100.0

Prediction
Performance

87.14 95.62 96.67 96.57

Misclassification
Error

12.86 4.38 3.33 3.43

1
0

6

M_C17_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 24.8 79.2 90.4 91.1

Prediction
Performance

23.53 81.88 91.29 91.76

Misclassification
Error

76.47 18.12 8.71 8.24

MRKS_C17_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 27.8 85.5 98.6 98.2

Prediction
Performance

23.53 84.94 98.82 98.71

Misclassification
Error

76.47 15.06 1.18 1.29

Chi-Square Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 25.0 78.8 90.0 91.0

Prediction
Performance

23.53 81.88 91.29 91.76

Misclassification
Error

76.47 18.12 8.71 8.24

MRMR Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 27.5 65.6 96.1 91.8

Prediction
Performance

29.41 63.76 96.24 90.82

Misclassification
Error

70.59 36.24 3.76 9.18

1
0

7

M_C17_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 26.3 79.8 88.3 88.5

Prediction
Performance

25.88 80.71 87.18 89.41

Misclassification
Error

74.12 19.29 12.82 10.59

MRKS_C17_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 29.4 84.4 98.6 97.7

Prediction
Performance

29.41 83.29 97.65 97.53

Misclassification
Error

70.59 16.71 2.35 2.47

Chi-Square Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 26.3 79.1 88.3 88.7

Prediction
Performance

25.88 80.71 87.18 89.41

Misclassification
Error

74.12 19.29 12.82 10.59

MRMR Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 29.4 62.9 91.6 88.4

Prediction
Performance

29.41 63.18 91.41 89.76

Misclassification
Error

70.59 36.82 8.59 10.24

1
0

8

M_L21_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 22.5 68.3 99.0 99.0

Prediction
Performance

23.81 67.62 99.24 99.05

Misclassification
Error

76.19 32.38 0.76 0.95

MRKS_L21_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 22.2 96.3 100.0 99.9

Prediction
Performance

11.90 96.48 100.0 99.90

Misclassification
Error

88.10 3.52 0.00 0.10

Chi-Square Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 22.5 68.5 98.9 98.9

Prediction
Performance

23.81 67.62 99.24 99.05

Misclassification
Error

76.19 32.38 0.76 0.95

MRMR Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 22.2 80.4 99.3 98.6

Prediction
Performance

23.81 82.29 98.86 95.24

Misclassification
Error

76.19 17.71 1.14 4.76

1
0

9

M_L21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 74.3 97.0 96.8

Prediction
Performance

23.81 76.00 97.05 97.24

Misclassification
Error

76.19 24.00 2.95 2.76

MRKS_L21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 97.2 100.0 100.0

Prediction
Performance

23.81 98.19 100.0 99.90

Misclassification
Error

76.19 1.81 0.00 0.10

Chi-Square Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 74.3 97.0 96.8

Prediction
Performance

23.81 76.00 97.05 97.24

Misclassification
Error

76.19 24.00 2.95 2.76

MRMR Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 80.2 99.7 99.0

Prediction
Performance

23.81 80.00 99.71 99.14

Misclassification
Error

76.19 20.00 0.29 0.86

1
1

0

M_S21_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 22.2 60.5 92.1 91.8

Prediction
Performance

23.81 62.48 92.57 93.14

Misclassification
Error

76.19 37.52 7.43 6.86

MRKS_S21_100 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 22.2 91.7 100.0 99.9

Prediction
Performance

23.81 92.29 100.00 99.90

Misclassification
Error

76.19 7.71 0.00 0.10

Chi-Square Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 22.2 60.8 91.8 91.8

Prediction
Performance

23.81 62.48 92.57 93.14

Misclassification
Error

76.19 37.52 7.43 6.86

MRMR Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 22.5 66.9 92.3 90.2

Prediction
Performance

23.81 69.90 95.43 94.48

Misclassification
Error

76.19 30.10 4.57 5.52

1
1

1

M_S21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.6 65.3 90.9 90.3

Prediction
Performance

23.43 65.81 91.05 91.05

Misclassification
Error

76.57 34.19 8.95 8.95

MRKS_S21_200 Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 90.3 100.0 99.9

Prediction
Performance

23.81 91.90 100.00 100.00

Misclassification
Error

76.19 8.10 0.00 0.00

Chi-Square Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.6 65.2 90.8 90.4

Prediction
Performance

23.43 65.81 91.05 91.05

Misclassification
Error

76.57 34.19 8.95 8.95

MRMR Coarse Tree Coarse KNN
Quadratic

Discriminant

Medium
Gaussian

SVM

Train Accuracy 23.8 75.1 95.5 94.5

Prediction
Performance

23.81 75.90 96.86 95.33

Misclassification
Error

76.19 24.10 3.14 4.67

