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 Abstract 

 

 This thesis aims to clarify the defect classification of roller bearings. The first 

chapter gives an introduction on bearings. The main test done at Politecnico di Torino is 

briefly explained on the second chapter. The basic matrices formation which are used for 

further final models matrices is presented in chapter three. On chapter four different 

models and their different factors are completely defined. Data preparation for machine 

learning process such as train and test data sets are fully described in chapter five. 

Machine learning process and all the pertaining results are presented in chapter six. The 

concept of feature selection is fully described in chapter seven. In chapter eight the 

conclusion is presented. At the end the extra information is presented in four separated 

appendices. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

1.1. General Definition 

 

 Bearings are components used to 

facilitate the rotational movement of 

machine parts so as to reduce friction 

between rotary and fixed parts as well as 

preventing parts from getting defected 

and damaged. 

 The classification of rolling 

bearings will be based on different issues 

for instance, working conditions, 

operations, etc.  but  the  most  significant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

one depends on the type of the rolling 

elements. From this perspective a 

bearing could be divided into two 

different types, Ball Bearing for which 

the rolling element is spherical, and 

Roller Bearing for which the rolling 

element is cylindrical. However, each 

type contains many different subsets, the 

main aim is to know the general 

difference between the two classes. 

 

 

Chapter One 
 

Introduction 



2 
 

 

1.2. History of Bearings1 

 

 40 BC: Wooden type of ball 

bearing to support a table, Roman Nemi 

ships, Italy.  

 15th century: Maiden use of ball 

bearing in aerospace illustrated in the 

drawings of a helicopter by Leonardo da 

Vinci.  

 17th century: First description of 

caged bearings by Galileo.  

 Mid 1740: Invention of first 

caged roller bearing by John Harrison.  

 1794: The first modern type of 

ball bearing by a British inventor, Philip 

Vaughan.  

 1869: The first type of radial ball 

bearing by a French bicycle mechanic, 

Jules Suriray. It was used in the winner 

bicycle of the world’s first race in Paris-

Rouen.   

 1883: The creation of an 

independent bearing industry by 

Friedrich Fischer, the founder of FAG.   

 1898: The invention of tapered 

roller bearing by Henry Timken.  

 1907: The modern self-aligning 

ball bearing by Sven Wingquist of SKF. 

 1934: The invention of wire race 

bearing by Erich Franke. 

 1972: Invention of V-grooved 

bearing guide wheels, a linear motion 

bearing, by Bud Wisecarver. 

 Early 1980’s: The invention of 

first bi-material plain bearing by Robert 

Schroeder. 

                                                             
1 From https://www.kginternational.com/ 

1.3. Applications and Concerns 

 

 Today, both ball and roller 

bearings are widely used in different 

fields of industry. From home appliances, 

dental industry, to more complicated 

fields such as automobile industries, 

aerospace and etc. 

 Bearings like all other types of 

mechanical components have a lifetime 

range, which depends on different 

factors. For instance, working 

conditions, existence of abrasive 

particles, erosive and corrosive 

environments, humidity, maintenance 

etc. 

 For different situations there will 

be different concerns about how to 

optimize this lifetime by considering the 

conditions in which the bearings are 

working. 

 To ease this concern, firstly the 

conditions should be defined and 

studied, then by considering the data, a 

proper solution must be defined in order 

to identify the obstacle. Having found the 

problem, it is easy to deal with and 

eliminate that to optimize the bearing 

lifetime. This will lead to cost and time 

savings which are the most important 

factors in different industries. 

 

 

  

 

 

 



 

 

3 

1.4. Dataset 

 

 This research is done based on 

the article published on Mechanical 

Systems and Signal Processing journal2. 

 Article name: The Politecnico di 

Torino rolling bearing test rig: 

Description and analysis of open 

access data. 

 Article authors: Alessandro 

Paolo Daga, Alessandro Fasana, 

Stefano Marchesiello, Luigi Garibaldi3. 

 The research has been taken 

place and the test has been conducted in 

the Dynamic and Identification 

Research Group (DIRG) of the 

Department of Mechanical and 

Aerospace Engineering at Politecnico 

di Torino. 

 The main article by PoliTo works 

on two main different tests, Variable 

Speed and Load test and Endurance 

test. 

 However, on this thesis only the 

data of Variable Speed and Load test is 

used. 

 The complementary information 

is available on: 

ftp://ftp.polito.it/people/DIRG_Bearing

Data/ 

 

 

 

 

                                                             
2 https://www.journals.elsevier.com/mechanical-
systems-and-signal-processing 

1.5. Scope 

 

 This research aims to identify the 

characterization of roller bearings by 

means of the data introduced before. 

 To clarify, if a new data set is 

provided this research helps us to 

identify either the type of working 

condition or the class of defect by means 

of Machine Learning Classification 

methods.  

 To give some extra explanation, 

for instance, if a company as a client 

provides a set of data and asks to find the 

working condition or the defect class of 

the bearing, it could be possible to create 

a model to make an acceptable guess. 

 To do so, firstly, it is needed to 

explain some parts of the main test and 

how data are interpreted. Telling about 

the different matrices which are 

extracted in the lab. Also giving some 

information about the layout of the test 

hardware. 

 Secondly, providing information 

about the classification of data is useful 

to give a better insight of the test. 

 Thirdly, defining new pieces of 

data, for having a better understanding 

about the model is needed. 

 To achieve such goal, some 

methods of Machine Learning is applied 

so the next step is introducing the 

methods which are carried out to make 

the models. 

3 E-mail addresses: alessandro.daga@polito.it (A.P. 
Daga), alessandro.fasana@polito.it (A. Fasana), 
stefano.marchesiello@polito.it (S. Marchesiello), 
luigi.garibaldi@polito.it (L. Garibaldi). 

ftp://ftp.polito.it/people/DIRG_BearingData/
ftp://ftp.polito.it/people/DIRG_BearingData/
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 Then the configuration of train 

and test matrices are defined. 

 Finally, when the creation of 

model is finished the comparison of 

different situations is shown. 

 The application which is used to 

figure out the model is MATLAB4 by 

MathWorks®. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             
4 https://www.mathworks.com/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 In this chapter the main test done 

in Politecnico di Torino is briefly 

explained to vividly clarify the machine 

learning procedure. All the data 

provided in this chapter are from (the 

complete information could be found 

on): 

ftp://ftp.polito.it/people/DIRG_Bearing

Data/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1. Test Hardware Setup 

 

 In this section two different 

pieces of hardware, i.e. test rig and 

sensors as well as the acquisition system 

are described. 

 

2.1.1. Test Rig 

 The test rig consists of different 

parts as follows: (Figure 2.1) 

Spindle: which guarantees the 

rotation of the shaft. The spindle 

Chapter Two 
 

Main Test Explanation 

ftp://ftp.polito.it/people/DIRG_BearingData/
ftp://ftp.polito.it/people/DIRG_BearingData/
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is fixed to a rigid support which 

rests on a massive steel base 

plate.  

 Shaft: on which three bearings 

are mounted. The applicable force 

is exerted to the shaft. The shaft is 

hollow and bearings on the shaft 

are lubricated from inside.  

Bearings: the outer rings of two 

identical bearings B1 and B3 are 

fixed on two supports and the 

inner rings are attached to the 

shaft. The inner ring of bearing 

B2 is attached to the shaft also. 

However, the outer ring is in 

connection with the force 

applying system. (Table 2.1) 

Sledge and Static Load Cell: the 

force applying system that are 

connected to the outer ring of B2 

and have the role of load exertion.  

 

 2.1.2. Sensors 

 In this test two identical 

accelerometers are used and mounted 

on two positions A1 and A2 as it is 

illustrated in (Figure 2.1 – b) in the way that 

A1 is located on the support of the 

damaged bearing B1 which undergoes 

the test and A2 is on the support of the 

larger bearing B2 which is the position of 

external load application.  

 

 

 

 

Figure 2.1 - a) Overall view of the test rig 

 

Figure 2.1 - b) Accelerometers positions and the 
reference system 

 

Figure 2.1 - c) Shaft and its three roller bearings 

 

 

 
Pitch 

Diameter 
D (mm) 

Roller 
Diameter 

d (mm) 

Contact Angle 
Φ (○) 

Rolling 
Elements 

Z 

B1 & B3 40.5 9.0 0 10 

B2 54.0 8.0 0 16 

Table 2.1 - Properties of roller bearings 
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 Accelerometers are the triaxial 

IEPE type: 

Frequency range: 1-12000 Hz 

(amplitude ±5%, phase ±10○) 

Nominal resonant frequency: 55 

kHz 

Nominal sensitivity: 1 mV/ms-2 

 The radial force on the second 

bearing is measured by means of the 

static load cell with the sensitivity of 

0.499 mV/N. (Figure 2.2) 

 

2.1.3. Acquisition 

 The acquisition is achieved by 

means of OR38 signal analyzer, an OROS 

production, which has the accuracy on 

the input channel: phase ±0.02○, 

amplitude ±0.02dB, frequency ±0.005%. 

 The analogue to digital 

transformation is done by means of a 24 

bits delta-sigma convertor. The range of 

each channel is set between minimum 

(±17 mV) and maximum (±40 mV) to 

avoid saturation of channels. 

 In this test six channels are 

defined based on two accelerometers 

located on A1 and A2. Each 

accelerometer measures data in three 

dimensions x, y and z. (Table 2.2) 

  

 

 

Figure 2.2 - a) The triaxial IEPE accelerometer 

 

 

Figure 2.2 - b) Calibration curve of the static load cell 

 

 

 

 

 

 
Channel 

1 
Channel 

2 
Channel 

3 
Channel 

4 
Channel 

5 
Channel 

6 

Direction Axial, x Radial, y Radial, z Axial, x Radial, y Radial, z 

Accelerometer 
No. 

A1 A1 A1 A2 A2 A2 

Channel label x1 y1 z1 x2 y2 z2 

Table 2.2 - Direction of the measured accelerations 
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2.2. Description of the Variable 
Speed and Load Test 

 

 For this test there are seven 

different classes based on defects. The 

class 0A is for undamaged case in which 

there is no defect (i.e. healthy condition). 

The defects are produced by a Rockwell 

tool in three defect sizes of 450, 250 and 

150 μm on the inner ring respectively for 

1A, 2A and 3A and three defect sizes of 

450, 250 and 150 μm on the roller 

respectively for 4A, 5A and 6A. (Table 2.3) 

 In each class there are different 

working conditions based on two factors, 

speed and load. There are four different 

loads 0, 1000, 1400 and 1800 N and five 

different rotational speeds 100, 200, 

300, 400 and 500 Hz. (Table 2.4) 

  

 

 

 

 

 

 

 

 

 

 Due to power limitations of the 

spindle controller, it is not possible to 

have 1800 N for 400 Hz and also 1400 

and 1800 N for 500 Hz. 

 Having considered all the aspects, 

there are 17 different working condition 

for each class of defect. 

 For this test the sampling 

frequency is fs = 51200 Hz and the record 

duration is T = 10 s. The number of 

acquisition points will be fs × T = 512000. 

By considering six channels the final 

matrix for each working condition is 

512000×6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class Name Defect 
Defect Size 

(μm) 

0A NO defect (Healthy) --- 

1A Defect on the inner ring 450 

2A Defect on the inner ring 250 

3A Defect on the inner ring 150 

4A Defect on the roller 450 

5A Defect on the roller 250 

6A Defect on the roller 150 

Table 2.3 - Different classes definition 

Table 2.4 – Different working conditions definition 

 
Nominal Speed (Hz) 

100 200 300 400 500 

Nominal 
Load (N) 

0 1 5 9 13 16 

1000 2 6 10 14 17 

1400 3 7 11 15 --- 

1800 4 8 12 --- --- 



 

 

 

 

 

 

 

 

 

 

 

 

 As it was shown in the previous 

chapter, the dataset for each working 

condition is presented in the form of a 

512000×6 matrix (Figure 3.1).  

 The rows represent acquisition 

points and the columns are the channels 

and the whole test is done in 10s. 

 It is worth mentioning that for 

seven classes of defect from 0A to 6A and 

different working conditions from 1 to 

17 (both classes and working conditions 

were explained in the previous chapter 

Table – 2.3 and Table – 2.4), there are 119 

different matrices of 512000×6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter Three 
 

Basic Matrices Definition 

Figure 3.1 - Main data set matrix 
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3.1. Main Matrix Summarization 

 

 Now to have a better 

performance, each matrix is summarized 

to chunks. In this paper two different 

types of chunks are considered for data 

summarization.  

 These two types of chunks are 

considered to have a better comparison 

between 100 and 200 data point 

matrices when they are used to form the 

train and test matrices in machine 

learning procedure (Figure 3.2). 

 

3.1.1. 100 Chunks – 0.1s 

 If a record duration of T=10s is 

divided into 100 chunks, each chunk is 

equal to 0.1s. From previous chapter it is 

known that the sampling frequency is 

equal to fs=51200 Hz. It means in each 

second 51200 acquisition points are 

recorded. 

 Now for each chunk of 0.1s the 

number of acquisition points are 5120. 

Each set of 5120×6 acquisition points is 

converted to 1×6 set of numbers called 

data points. It means that each data point 

should be obtained from the data 

pertaining to each chunk’s 5120 

acquisition points.  

 This results in a final matrix of 

100×6. Each matrix represents a 

working condition data summarized 

from 512000 acquisition points to 100 

final data points. 

 

3.1.2. 200 Chunks – 0.05s 

 If a record duration of T=10s is 

divided into 200 chunks, each chunk is 

equal to 0.05s. From previous chapter it 

is known that the sampling frequency is 

equal to fs=51200 Hz. It means in each 

second 51200 acquisition points are 

recorded. 

 Now for each chunk of 0.05s the 

number of acquisition points are 2560. 

Each set of 2560×6 acquisition points is 

converted to 1×6 set of numbers called 

data points. It means that each data point 

should be obtained from the data 

pertaining to each chunk’s 2560 

acquisition points. 

 This results in a final matrix of 

200×6. Each matrix represents a 

working condition data summarized 

from 512000 acquisition points to 200 

final data points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 - a) Matrix 100x6 - chunk 0.1s 

Figure 3.2 - b) Matrix 200x6 - chunk 0.05s 



 

 

 

 

 

 

 

 

 

 

 

 

 In this chapter the different 

models are defined based on different 

features. Features are added gradually to 

see what difference they make on the 

accuracy of the machine learning 

methods. 

 As it was introduced in the 

previous chapter, all the models are 

made based on the summarized 

matrices, both for 100 and 200 data 

points. 

 Models are created based on 

different criteria. Apart from different 

chunks     and     different     features,     the  

 

 

 

 

 

 

 

 

 

 

 

 

 

working conditions and classes of 

defects are also important in forming the 

models. 

 To emphasize, it must be said that 

the models introduced and made in this 

chapter are the reference for upcoming 

machine learning analysis and they are 

not used directly in analysis procedure. 

 In the upcoming sections the 

different criteria in models creation are 

introduced and explained in details. 
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4.1.  Chunks 

 In this section the first criterion of 

model creation, which is chunk, is 

introduced in two divisions: 

 100 chunks – 0.1s 

 200 chunks – 0.05s 

 

 

4.2.  Features 

 

 In this section the second 

criterion of model creation, which is 

feature, is introduced in four divisions as 

follows: 

 

4.2.1. Mean  

 The first feature is Mean of the 

data. To form the first type of matrix for 

each working condition, the Mean value 

of each chunk’s acquisition points should 

be calculated. Each set of acquisition 

points form a 1×6 data point. The Mean 

value data point forms the columns of 

one to six. At last there would be two 

types of matrices a 100×6 for 100 chunks 

of 0.1s and a 200×6 for 200 chunks of 

0.05s. (Figure 4.1) 

 

4.2.2. Mean and RMS  

 The second feature is RMS of the 

data. To form the second type of matrix 

for each working condition, the Mean 

and RMS values of each chunk’s 

acquisition points should be calculated. 

Each set of acquisition points form a 

1×12 data point. The Mean value data 

point forms the columns of one to six and 

the RMS value data point forms the 

columns of seven to twelve. At last there 

would be two types of matrices a 100×12 

for 100 chunks of 0.1s and a 200×12 for 

200 chunks of 0.05s. (Figure 4.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 - a) Mean matrix - 100 chunks 

Figure 4.1 - b) Mean matrix - 200 chunks 

Figure 4.2 - a) Mean and RMS matrix - 100 chunks 

Figure 4.2 - b) Mean and RMS matrix - 200 chunks 
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4.2.3. Mean, RMS and Kurtosis  

 The third feature is Kurtosis of the 

data. To form the third type of matrix for 

each working condition, the Mean, RMS 

and Kurtosis values of each chunk’s 

acquisition points should be calculated. 

Each set of acquisition points form a 

1×18 data point. The Mean value data 

point forms the columns of one to six, the 

RMS value data point forms the columns 

of seven to twelve and the Kurtosis value 

data point forms the columns of thirteen 

to eighteen. At last there would be two 

types of matrices a 100×18 for 100 

chunks of 0.1s and a 200×18 for 200 

chunks of 0.05s. (Figure 4.3) 

 

4.2.4. Mean, RMS, Kurtosis and 
Skewness 

 The fourth feature is Skewness of 

the data. To form the fourth type of 

matrix for each working condition, the 

Mean, RMS, Kurtosis and Skewness values 

of each chunk’s acquisition points should 

be calculated. Each set of acquisition 

points form a 1×24 data point. The Mean 

value data point forms the columns of 

one to six, the RMS value data point 

forms the columns of seven to twelve, the 

Kurtosis value data point forms the 

columns of thirteen to eighteen and the 

Skewness value data point forms the 

columns of nineteen to twenty-four. At 

last there would be two types of matrices 

a 100×24 for 100 chunks of 0.1s and a 

200×24 for 200 chunks of 0.05s. (Figure 

4.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 - a) Mean, RMS and Kurtosis matrix - 100 
chunks 

Figure 3.3 - b) Mean, RMS and Kurtosis matrix - 200 
chunks 

Figure 4.4 - a) Mean, RMS, Kurtosis and Skewness matrix 
- 100 chunks 

Figure 4.4 - b) Mean, RMS, Kurtosis and Skewness matrix 
- 200 chunks 
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4.3.  Approaches 

 

 In this section the third criterion 

of model creation, which is approach, is 

introduced in four divisions as follows: 

 

4.3.1. Same Working Condition 

 The first approach is Same 

Working Condition. It means that both 

speed and load are known but the class 

of defect is unknown. In this part the 

matrix is formed out of seven different 

matrices from classes 0A to 6A. The final 

matrix for 100 data points has 700 rows 

in which the first 100 rows of matrix are 

dedicated to class matrix 0A and the last 

100 rows are for class matrix 6A. Also 

the final matrix for 200 data points has 

1400 rows in which the first 200 rows of 

matrix are dedicated to class matrix 0A 

and the last 200 rows are for class matrix 

6A. (Figure 4.5) 

 

4.3.2. Same Class of Defect 

 The second approach is Same 

Class of defect. It means that the class of 

defect is known but both speed and load 

are unknown. In this part the matrix is 

formed out of seventeen different 

matrices from working conditions 1 to 

17. The final matrix for 100 data points 

has 1700 rows in which the first 100 

rows of matrix are dedicated to working 

condition matrix 1 and the last 100 rows 

are for working condition matrix 17. 

Also the final matrix for 200 data points 

has 3400 rows in which the first 200 

rows of matrix are dedicated to working 

condition matrix 1 and the last 200 rows 

are for working condition matrix 17. 
(Figure 4.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 - Same working conditions final matrices 

Figure 4.5 - Same class of defect final matrices 
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4.3.3. Same Load 

 The third approach is Same Load. 

It means that just the applied load is 

known but both speed and class of defect 

are unknown. In this part the matrix 

formation depends on the exerted load. 

For each class of defect there are four 

different loads of 0, 1000, 1400 and 

1800 N. For 0 and 1000 N there are five 

different conditions, for 1400 N there 

are four different conditions and for 

1800 N there are three different 

conditions. The final matrix for 100 data 

points has: 

 3500 rows (for 0 and 1000 N) in 

which the first 500 rows of 

matrix are dedicated to class 

matrices 0A and the last 500 

rows are for class matrices 6A. 

 2800 rows (for 1400 N) in which 

the first 400 rows of matrix are 

dedicated to class matrices 0A 

and the last 400 rows are for 

class matrices 6A. 

 2100 rows (for 1800 N) in which 

the first 300 rows of matrix are 

dedicated to class matrices 0A 

and the last 300 rows are for 

class matrices 6A. 

Also the final matrix for 200 data points 

has: 

 7000 rows (for 0 and 1000 N) in 

which the first 1000 rows of 

matrix are dedicated to class 

matrices 0A and the last 1000 

rows are for class matrices 6A. 

 5600 rows (for 1400 N) in which 

the first 800 rows of matrix are 

dedicated to class matrices 0A 

and the last 800 rows are for 

class matrices 6A. 

 4200 rows (for 1800 N) in which 

the first 600 rows of matrix are 

dedicated to class matrices 0A 

and the last 600 rows are for 

class matrices 6A. (Figure 4.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 – a)  Same load  final matrices (0 and 1000 N) 

Figure 4.7 - b) Same load final matrices (1400 N) 

Figure 4.7 - c) Same load final matrices (1800 N) 
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4.3.4. Same Speed 

 The fourth approach is Same 

Speed. It means that just the applied 

speed is known but both load and class of 

defect are unknown. In this part the 

matrix formation depends on the exerted 

speed. For each class of defect there are 

five different speeds of 100, 200, 300, 

400 and 500 Hz. For 100, 200 and 300 

Hz there are four different conditions, 

for 400 Hz there are three different 

conditions and for 500 Hz there are two 

different conditions. The final matrix for 

100 data points has: 

 2800 rows (for 100, 200 and 

300 Hz) in which the first 400 

rows of matrix are dedicated to 

class matrices 0A and the last 

400 rows are for class matrices 

6A. 

 2100 rows (for 400 Hz) in which 

the first 300 rows of matrix are 

dedicated to class matrices 0A 

and the last 300 rows are for 

class matrices 6A. 

 1400 rows (for 500 Hz) in which 

the first 200 rows of matrix are 

dedicated to class matrices 0A 

and the last 200 rows are for 

class matrices 6A. 

Also the final matrix for 200 data points 

has: 

 5600 rows (for 100, 200 and 

300 Hz) in which the first 800 

rows of matrix are dedicated to 

class matrices 0A and the last 

800 rows are for class matrices 

6A. 

 4200 rows (for 400 Hz) in which 

the first 600 rows of matrix are 

dedicated to class matrices 0A 

and the last 600 rows are for 

class matrices 6A. 

 2800 rows (for 500 Hz) in which 

the first 400 rows of matrix are 

dedicated to class matrices 0A 

and the last 400 rows are for 

class matrices 6A. (Figure 4.8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 - a) Same speed final matrices (100,200 and 300 Hz) 

Figure 4.8 - b) Same speed final matrices (400 Hz) 

Figure 4.7 - c) Same speed final matrices (500 Hz) 
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4.4.  Models 

 

 Having explained the model 

factors, now this is time to introduce the 

models. The general format of models is 

as follows: 

 

X_y_nnn 

 

 X: indicates the model name 

based on different features. For four 

models X is defined as follows: 

M: this model has only one 

feature and that is Mean. 

Obviously as it was represented 

before, this model is six-

dimensional (the final matrix has 

six columns).  

MR: this model has two features 

Mean and RMS. Obviously as it 

was represented before, this 

model is twelve-dimensional (the 

final matrix has twelve columns).  

MRK: this model has three 

features Mean, RMS and Kurtosis. 

Obviously as it was represented 

before, this model is eighteen-

dimensional (the final matrix has 

eighteen columns).  

MRKS: this model has four 

features Mean, RMS, Kurtosis and 

Skewness. Obviously as it was 

represented before, this model is 

twenty-four-dimensional (the 

final matrix has twenty-four 

columns).  

 

 y: this factor indicates the 

approaches discussed in previous 

sections. y is defined as follows: 

W7: same working condition 

C17: same class of defect 

L35: same load (0 and 1000 N) 

L28: same load (1400 N) 

L21: same load (1800 N) 

S28: same speed (100, 200 and 

300 Hz) 

S21: same speed (400 Hz) 

S14: same speed (500 Hz) 

 

 nnn: this factor is a three-digit 

number indicating the number of data 

points: 

100: for 100 chunks of 0.1s 

200: for 200 chunks of 0.05s 

 

 For instance, MRK_W7_100 

introduces the model with three features 

of Mean, RMS and Kurtosis, for the Same 

Working Condition approach which is 

defined by 100 data points. The final 

matrix is 700×18.  

 Another example could be 

MRKS_L28_200 introduces the model 

with four features of Mean, RMS, Kurtosis 

and Skewness, for the Same Load 

approach (1400 N) which is defined by 

200 data points. The final matrix is 

5600×24. 

 Full 32 different models are listed 

in Appendix A.  
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4.5.  Models Selection 

 

 The approaches to be discussed 

are: 

Same working condition: 

 7 (200 Hz – 1400 N) 

Same class of defect: 

 2A (defect on inner ring - 250μm) 

Same load: 

 1800 N 

Same speed: 

 400 Hz 

 

 

4.6.  Dimensionality Reduction 

 

 Based on the models introduced 

in the previous section, the dimensions 

of final matrices vary from six to twenty-

four. This means that it is not possible to 

illustrate the data in a two or three 

dimensional space.  

 On the other hand, it is needed to 

know how different clusters of data 

points are located with respect to the 

others.  

 The reason of dimensionality 

reduction is to find that how different 

working conditions in a model’s final 

matrix are independently preserved. 

More the clusters are separated, better 

results of classification performance by 

means of machine learning. As it will be 

seen in the upcoming parts, the clusters 

                                                             
1 https://en.wikipedia.org/ 

generally get more separated while new 

features are added to the models. 

 This better separation leads in a 

higher prediction performance and 

lower misclassification error while 

classification procedure is done. 

 Both prediction performance and 

misclassification error is completely 

explained in chapter six. 

 To ease this concern, some 

dimensionality reduction methods are 

used. These methods keep maximum 

possible data with lowest amount of data 

loss to make it achievable to have the 

data in two or three dimensions. 

Afterwards, it is obvious the data could 

be plotted to have a better 

understanding of clusters’ positions. 

 One of the best dimensionality 

reduction methods which is simple to 

understand is principal component 

analysis (PCA).  In upcoming section this 

method is briefly explained.  

 

4.6.1. Principal Component Analysis 
(PCA)1 

 

 As it was mentioned before 

Principal Component Analysis is a method 

for dimensionality reduction and is used 

when the data set is high-dimensional. 

 The principal components of a 

data set in a q-dimensional space are a 

set of q direction vectors where the ith 

vector is the direction of the best fitting 

line that keeps the highest possible data 

as well as being orthogonal to the 

previous i - 1 vectors. The best fitting line 

is so that minimizes the average squared 
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distance of data to the line. Principal 

component analysis computes the 

principal components of a data set and 

executes a basis change. Most of the time 

the maximum data possible is kept 

within first few components and the rest 

could be ignored without losing a lot of 

vital information. Another definition for 

the direction line is so that maximizes 

the variance of data projection. From a 

mathematical point of view principal 

components are eigenvectors of the 

data’s covariance matrix or simply they 

can be achieved by Singular Value 

Decomposition (SVD) of the data matrix.  

  

4.6.2. PCA Description and Comments 

 

 As it was mentioned the reason of 

dimensionality reduction is to find that 

how different clusters of data points as 

representatives of different working 

conditions in a model’s final matrix are 

independently preserved. Better the 

clusters are separated, the clusters are 

separated, higher accuracy of 

classification performance.  

 In the upcoming parts some PCA 

figures are depicted and discussed. 

 To avoid over explanation only 

models of 200 chunks and only two 

models with least and most number of 

features (i.e. M and MRKS) are discussed 

in this chapter. 

 

○ Approach W (Same Working 

Condition): 

 

 For the first comparison the Same 

Working Condition approach is 

discussed. As it is obvious for model M 

the ranges of PCs vary slightly and two 

couples of clusters are almost located in 

the same regions. This matter could 

affect the classification procedure by 

considering the wrong data points of 

each cluster clearly results in 

misclassification error. However, in 

MRKS model clusters are almost 

completely separated from each other in 

ranges of PCs over three times larger in 

comparison with the previous model M. 

 

○ Approach S (Same Speed) 

 

 As the second comparison the 

Same Speed approach is selected. As it is 

obvious for model M again the ranges of 

PCs vary slightly and twenty-one 

clusters are located in a region with 

length of sixteen and width of almost 

four. While on the other hand, in MRKS 

model clusters are almost completely 

separated from each other in ranges of 

PCs pretty much larger (almost 200 and 

60 for length and width respectively) in 

comparison with the previous model M. 

  

 Having a larger area for cluster 

would undoubtedly help to have a better 

performance on classification. 

 In the upcoming pages, the PCA 

results as figures are illustrated. The 

differences between two different 

models (M and MRKS) for two 

approaches (Same Working Condition 

and Same Speed) show the improvement 

in clusters’ separation which leads to the 

least misclassification error. 
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M_W7_200: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MRKS_W7_200: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 - a) Same working condition - Mean 

Figure 4.8 - b) Same working condition – Mean, RMS, Kurtosis, Skewness 
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M_S21_200: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MRKS_S21_200: 

 

 

 

 

 

 

 

 

 

Figure 4.9 - a) Same speed - Mean 

Figure 4.9 - b) Same speed – Mean, RMS, Kurtosis, Skewness 
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 For all models with different 

criteria such as chunk and approaches, 

this improvement can be seen by adding 

different features. 

 It is conspicuous that the higher 

number of features (i.e. higher 

dimensions) would lead to a better 

machine learning classification 

procedure. 

 Here only two approaches are 

discussed as examples. Full different 

models’ PCA illustrations for different 

approaches, chunks and features are 

depicted in Appendix B.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 In this chapter the models are 

prepared for Machine Learning 

procedure. The train and test data 

creation is completely figured out as well 

as clarifying the models to be used and 

also presenting the algorithms to be 

applied on the data.  

 Before data preparation is 

completely interpreted, it is worth 

explaining machine learning briefly. 

 

                                                             
1 https://www.ibm.com/cloud/learn/machine-
learning 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Machine Learning1 

 

 It is a subset of Artificial 

Intelligence (AI) focusing on model 

creation by means of learning from a 

data set and developing its accuracy 

without being programed for. 

 The aim is training the algorithms 

with the primary data set to find patterns 

based on which the new set of data is 

used to make predictions. 

Chapter Five 
 

Data Preparation for Machine Learning 
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5.1.1. Machine Learning Methods 

 

 Based on methods, machine 

learning is divided into two main 

categories, Supervised Learning and 

Unsupervised Learning. 

Supervised Learning is trained 

based on a label as the 

supervision indicator. It means 

the data is classified based on 

labeled data. For instance, 

Regression and Classification in 

general are two main types of 

supervised learning. 

Unsupervised Learning is 

trained based on unlabeled data. 

This method uses data to find 

meaningful features to create 

classes and also labels itself. As an 

example, Clustering is a general 

category for unsupervised 

learning. 

 

5.1.2. Machine Learning Steps 

 

 First step is training data set 

preparation. The model will learn the 

pattern to predict the new data based on 

the training data and its validation. 

 Second step is to choose a proper 

algorithm to train the model. 

 Third step is training and creating 

the model based on the chosen algorithm 

and the training data. 

 Fourth and the last step is to 

create test data set in order to examine 

and improve the model.  

 

 

5.1.3. Machine Learning Algorithms 

 

 For different methods there are 

several different algorithms. The most 

important ones are as follows: 

 

Regression: 

 Linear Regression 

 Lasso Regression 

 Logistic Regression 

 Multivariate Regression 

 Multiple Regression 

 

Classification: 

 Naïve-Bayes Classifier  

 K-Nearest Neighbors Classifier 

 Decision Tree Classifier 

 Support Vector Machines (SVM) 

 Discriminant analysis Classifier 

 

Clustering: 

 K-Means Clustering 

 Mean-Shift Clustering 

 Density-Based Spatial Clustering 

 Expectation-Maximization  

 Hierarchical Clustering 

 Neural Networks  

 

 In this thesis, while the aim is to 

classify the data and make a model for 

predicting the future data, the 

Classification is used which is a subset of 

Supervised Learning method. 

 In chapter six the classification 

procedure is fully explained. 
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5.2. Train and Test Matrices Initial 
Creation 

 

 Each data set which is used in 

machine learning process is better to be 

divided into two main categories one 

bigger part with more data points for 

Train and Validation of the model and a 

smaller set of data for Test. 

 Usually 70-80 percent of the data 

is used for train and validation, and the 

rest is dedicated to test data. 

 In this paper the portion is 

divided to 75 percent for train and 

validation and the rest 25 percent for 

test. It means for each subset of four data 

points, three are dedicated to train 

matrix and the fourth one is allocated to 

test matrix. (Figure 5.1) 

 

5.2.1. Train and Test Matrices Creation 
for chunks of 0.1s   

 

 As it was mentioned before for 

each working condition with chunks of 

0.1s there are 100 data points. To create 

train and test matrices there are 25 

subsets of four data points. It means that 

the train matrix contains 75 rows and the 

test matrix has 25 rows. Each train 

matrix is validated by means of 10-fold 

cross validation. Having created the 

model, the test data is used as the 

model’s new input to predict the 

different classes of data. 

 

 

 

5.2.2. Train and Test Matrices Creation 
for chunks of 0.05s   

 

 For each working condition with 

chunks of 0.05s there are 200 data 

points. To create train and test matrices 

there are 50 subsets of four data points. 

It means that the train matrix contains 

150 rows and the test matrix has 50 

rows. Each train matrix is validated by 

means of 10-fold cross validation. Having 

created the model, the test data is used 

as the model’s new input to predict the 

different classes of data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 - a) Train and Test Matrices for 100 chunks 

Figure 5.2 - b) Train and Test Matrices for 200 chunks 



2
6

 
 

 

5.3. Validation2 

 

 In machine learning, validation 

technique is used to find how perfectly a 

model reacts to new data set. In two 

ways it could be helpful: 

▪  To find out which algorithm or 

parameters are needed to use. 

▪  To avoid overfitting. 

 There are two main methods for 

validation. Holdout validation and K-fold 

Cross-Validation. 

 

5.3.1. Holdout Validation 

 

 This method is used when the 

data set is divided into two groups of 

train and validation. Almost 70-80 

percent for train and the rest for 

validation.  

 

5.3.2. K-Fold Cross-Validation 

 

 This method is used when the 

data set is divided into k groups. One 

group for validation and k-1 for train. 

This is repeated for k times and the 

average is the outcome. 

 

 In this thesis cross-validation is 

preferred, because it provides the chance 

to train data on multiple train and 

validation parts. The number of folds is 

considered 10. 

                                                             
2 https://explore.mathworks.com/ 
https://medium.com/ 

5.4. Train and Test Matrices for 
Different Models 

 

 In this section the train and test 

matrices formations are discussed for 

different models with different chunks 

and approaches. 

 As it was mentioned before, four 

approaches to be discussed are: 

 W7 (200 Hz – 1400 N) 

 C17 (2A) 

 L21 (1800N) 

 S21 (400 Hz) 

 And also it was mentioned that 

the dimensions for:  

 M is six 

 MR is twelve 

 MRK is eighteen 

 MRKS is twenty-four 

 

5.4.1. Label Vector 

 

 To prepare the data for machine 

learning process, each set of data is 

needed to be introduced by a set of 

labels. 

 To create label vector for 

different models the number of different 

working condition in each final matrix is 

important. Each working condition is 

labeled by a positive integer number 

starting from one. For instance, 

approach W7 is labelled one to seven, 

approach C17 is labelled one to 

seventeen, and approach L21 & S21 are 

labelled one to twenty-one. 

https://explore.mathworks.com/
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5.4.2. Train matrices 

  

 As mentioned before train matrix 

for 100 data points has 75 rows and for 

200 data points has 150 rows. (75 

percent of data for train and validation) 

 For different approaches the 

matrices are like: 

 

W7: this approach is for same 

working condition and the final 

matrix has 525 rows for 100 

chunks and 1050 rows for 200 

chunks. (Figure 5.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C17: this approach is for same 

class of defect and the final matrix 

has 1275 rows for 100 chunks 

and 2550 rows for 200 chunks. 
(Figure 5.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 - Train matrices for same working condition - 
100 and 200 chunks 

Figure 5.3 - Train matrices for same class of defect - 100 
and 200 chunks 
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L21 & S21: this approach is for 

same load and same speed and 

the final matrix has 1575 rows for 

100 chunks and 3150 rows for 

200 chunks. (Figure 5.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Based on the models, the final 

matrices are like: 

 

M: the final matrix to be used as 

the machine learning model 

creation input has six dimensions. 

 

For example, M_W7_100 is 

6×525 or another one such as 

M_L21_200 is 6×3150. 

 

MR: the final matrix to be used as 

the machine learning model 

creation input has twelve 

dimensions. 

 

For instance, MR_C17_200 is 

12×2550 or another one such as 

MR_S21_100 is 12×1575. 

 

MRK: the final matrix to be used 

as the machine learning model 

creation input has eighteen 

dimensions. 

 

As an example, MRK_C17_100 is 

18×1275 or another one such as 

MRK_S21_200 is 18×3150. 

 

MRKS: the final matrix to be used 

as the machine learning model 

creation input has twenty-four 

dimensions. 

 

To give an example, 

MRKS_W7_200 is 24×1050 or 

another one such as 

MRKS_L21_100 is 24×1575. 

 

 

Figure 5.4 - Train matrices for same load & same speed - 
100 and 200 chunks 
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5.4.3. Test matrices 

 

 As mentioned before test matrix 

for 100 data points has 25 rows and for 

200 data points has 50 rows. (25 percent 

of data for test) 

 For different approaches the 

matrices are like: 

 

W7: this approach is for same 

working condition and the final 

matrix has 175 rows for 100 

chunks and 350 rows for 200 

chunks. (Figure 5.5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C17: this approach is for same 

class of defect and the final matrix 

has 425 rows for 100 chunks and 

850 rows for 200 chunks. (Figure 

5.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 - Test matrices for same working condition - 
100 and 200 chunks 

Figure 5.6 - Test matrices for same class of defect - 100 
and 200 chunks 
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L21 & S21: this approach is for 

same load and same speed and 

the final matrix has 525 rows for 

100 chunks and 1050 rows for 

200 chunks. (Figure 5.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Having created the machine 

learning model, it is time to examine its 

precision in predicting the classes by 

means of test matrices. 

M: the final matrix to be used has 

six dimensions. 

 

For example, M_W7_100 is 

6×175 or another one such as 

M_L21_200 is 6×1050. 

 

MR: the final matrix to be used 

has twelve dimensions. 

 

For instance, MR_C17_200 is 

12×850 or another one such as 

MR_S21_100 is 12×525. 

 

MRK: the final matrix to be used 

has eighteen dimensions. 

 

As an example, MRK_C17_100 is 

18×425 or another one such as 

MRK_S21_200 is 18×1050. 

 

MRKS: the final matrix to be used 

has twenty-four dimensions. 

 

To give an example, 

MRKS_W7_200 is 24×350 or 

another one such as 

MRKS_L21_100 is 24×525. 

 

  

 

 

 

 

Figure 5.7 - Test matrices for same load & same speed - 
100 and 200 chunks 



 

 

 

 

 

 

 

 

 

 

 

 

 In this chapter the machine 

learning process results are provided. 

But before presenting the results it is 

useful to give some information about 

the algorithms to be used in this process. 

 As it was mentioned in the 

previous chapter the machine learning is 

divided in two categories based on 

methods, supervised and unsupervised. 

 Because of being labeled, our data 

is considered as supervised learning 

type. The field of supervision is related to 

classes so the algorithms to be discussed 

are those pertaining to classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Prior to the introduced classifiers 

there are five important ones that are: 

Naïve-Bayes Classifier  

K-Nearest Neighbors Classifier 

Decision Tree Classifier 

Support Vector Machines (SVM) 

Discriminant analysis Classifier 

 

 In the following section these 

classifiers are briefly explained. 

 

Chapter Six 
 

Machine Learning Process Results 
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6.1. Classification Algorithms 

 

6.1.1. Naïve-Bayes   

 

 These classifiers are a group of 

probabilistic classifiers based on Bayes’ 

theorem with strong independence 

among features. In other words, Naïve 

Bayes classifier presumes that the 

presence of a unique feature is not 

related to presence of any other features. 

 Apart from its simplicity, Naïve 

Bayes is efficiently useful for large data 

sets and outperforms many other highly 

sophisticated methods. 

 

6.1.2. K-Nearest Neighbors 

 

 This algorithm is a non-

parametric classification method in 

which the input is made out of k closest 

training examples and the output is 

classified by means of its k nearest 

neighbors. 

 A useful technique for 

classification could be considering 

weights for neighbors’ contribution in 

the way that the nearer neighbors have 

effect more than average in comparing to 

the further neighbors.  

 

6.1.3. Decision Tree 

 

 This classifier uses a decision tree 

in order to go from observations to 

target results. 

 In these classifiers, leaves are 

class labels, however, branches 

represent features result in class labels. 

 

6.1.4. Support Vector Machines (SVM) 

 

 This classifier is one of the most 

powerful prediction algorithms which is 

a non-probabilistic linear classifier. SVM 

trains the data to groups of points in 

space in order to maximize the distance 

between two categories. Then new 

examples are brought into the same 

space and assigned to a category based 

on the position they are placed. 

 Apart from the linear 

classification, SVM can perform a non-

linear classification by means of kernel 

trick for high-dimensional space. 

 

6.1.5. Discriminant Analysis 

 

 This classifier is used to find a 

combination of features which 

categorizes the data into two or more 

classes. Each group must have a score on 

predictor measures as well as a score on 

group measures. This acts in distributing 

data into classes of the same type. 

 This classification algorithm has 

two main forms, linear and quadratic, 

using linear and quadratic decision 

surfaces respectively. Quadratic form is 

the more general type of the linear one. 
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6.2. Train and Validation of 
Machine Learning Models 

 

 In this section the procedure and 

results of different models with different 

approaches and different chunks are 

explained1. 

 By assuming that the precision 

(not compulsorily accuracy) of models 

with more data points (200 chunks) is 

higher (because of the larger number of 

train and test data points), in this section 

just the 200-chunk models are discussed. 

 Another assumption is that the 

models with lowest and highest number 

of features are discussed. (i.e. M with six 

dimensions and MRKS with twenty-four 

dimensions) 

 To clarify, from 32 possible 

models, only eight are going to be 

studied. 

 To have a better understanding of 

different models charts and figures, it is 

worth introducing each group number 

(each matrix) in each model. 

 

W7 model: 

1: 0A – 200 Hz – 1400 N  

2: 1A – 200 Hz – 1400 N  

3: 2A – 200 Hz – 1400 N  

4: 3A – 200 Hz – 1400 N  

5: 4A – 200 Hz – 1400 N  

6: 5A – 200 Hz – 1400 N  

7: 6A – 200 Hz – 1400 N  

 

 

 

                                                             
1 Results of full models are listed in Appendix D. 

C17 model: 

1: 2A – 100 Hz – 0 N 

2: 2A – 100 Hz – 1000 N 

3: 2A – 100 Hz – 1400 N 

4: 2A – 100 Hz – 1800 N 

5: 2A – 200 Hz – 0 N 

6: 2A – 200 Hz – 1000 N 

7: 2A – 200 Hz – 1400 N 

8: 2A – 200 Hz – 1800 N 

9: 2A – 300 Hz – 0 N 

10: 2A – 300 Hz – 1000 N 

11: 2A – 300 Hz – 1400 N 

12: 2A – 300 Hz – 1800 N 

13: 2A – 400 Hz – 0 N 

14: 2A – 400 Hz – 1000 N 

15: 2A – 400 Hz – 1400 N 

16: 2A – 500 Hz – 0 N 

17: 2A – 500 Hz – 1000 N 

 

L21 model: 

1:  0A – 100 Hz – 1800 N 

2:  0A – 200 Hz – 1800 N 

3:  0A – 300 Hz – 1800 N 

4:  1A – 100 Hz – 1800 N 

5:  1A – 200 Hz – 1800 N 

6:  1A – 300 Hz – 1800 N 

7:  2A – 100 Hz – 1800 N 

8:  2A – 200 Hz – 1800 N 

9:  2A – 300 Hz – 1800 N 

10:  3A – 100 Hz – 1800 N 

11:  3A – 200 Hz – 1800 N 

12:  3A – 300 Hz – 1800 N 

13:  4A – 100 Hz – 1800 N 

14:  4A – 200 Hz – 1800 N 

15:  4A – 300 Hz – 1800 N 

16:  5A – 100 Hz – 1800 N 

17:  5A – 200 Hz – 1800 N 

18:  5A – 300 Hz – 1800 N 

19:  6A – 100 Hz – 1800 N 

20:  6A – 200 Hz – 1800 N 

21:  6A – 300 Hz – 1800 N 
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S21 model: 

1:  0A – 400 Hz – 0 N 

2:  0A – 400 Hz – 1000 N 

3:  0A – 400 Hz – 1400 N 

4:  1A – 400 Hz – 0 N 

5:  1A – 400 Hz – 1000 N 

6:  1A – 400 Hz – 1400 N 

7:  2A – 400 Hz – 0 N 

8:  2A – 400 Hz – 1000 N 

9:  2A – 400 Hz – 1400 N 

10:  3A – 400 Hz – 0 N 

11:  3A – 400 Hz – 1000 N 

12:  3A – 400 Hz – 1400 N 

13:  4A – 400 Hz – 0 N 

14:  4A – 400 Hz – 1000 N 

15:  4A – 400 Hz – 1400 N 

16:  5A – 400 Hz – 0 N 

17:  5A – 400 Hz – 1000 N 

18:  5A – 400 Hz – 1400 N 

19:  6A – 400 Hz – 0 N 

20:  6A – 400 Hz – 1000 N 

21:  6A – 400 Hz – 1400 N 

 

 All validations are done based on 

Cross Validation technique with 10-folds. 

 

 

6.3. Algorithms Selection Based on 
Train Accuracies and Results 

 

 Having trained the models, the 

subsets of each algorithm accuracies are 

compared to choose the best and the 

worst for discussion. 

 

6.3.1. Naïve-Bayes   

  

 Both Gaussian and Kernel Naïve 

Bayes have acceptable performances. 

6.3.2. K-Nearest Neighbors 

 

 Like previous algorithm, all the 

subsets of this algorithm have almost the 

same and accepted performance except 

Coarse KNN which has a moderate 

accuracy. 

 

6.3.3. Decision Tree 

 

 Both Fine and Medium Tree 

subsets have very good performances, 

however, the worst subset among all 

algorithms is the Coarse Tree. 

 

6.3.4. Support Vector Machines (SVM) 

 

 All subsets of SVM have great 

performances in general and one of two 

best subsets among all algorithms is 

Medium Gaussian SVM. 

 

6.3.5. Discriminant analysis 

 

 Both Linear and Quadratic 

Discriminant have great performances 

and the second best subset among all 

algorithms is Quadratic Discriminant. 

 

 Four algorithms are: Coarse Tree 

(weak), Coarse KNN (moderate), 

Quadratic Discriminant and Medium 

Gaussian SVM (powerful). 
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6.4. Data Interpretation 

 

 In this chapter, the data related to 

the machine learning procedure and 

different algorithms’ train accuracies are 

given in the form of confusion matrix. 

 

6.4.1. Confusion Matrix2 

 

 In supervised learning method of 

machine learning, data could be 

provided in some special tables which 

allow a visual representation of an 

algorithm’s performance. In such 

matrices the rows show the actual class 

while the columns are representatives 

for predicted classes. 

 In confusion matrix there could 

be four different outcomes, based on 

either the class is predicted correctly or 

not. 

 

True Positive (TP): dedicated to 

the portion for which the data is 

correctly accepted. 

 

True Negative (TN): dedicated 

to the portion for which the data 

is correctly rejected. 

 

False Positive (FP): dedicated to 

the portion for which the 

predicted class is wrongly 

accepted. 

 

                                                             
2 https://en.wikipedia.org/ 

False Positive (FN): dedicated to 

the portion for which the 

predicted class is wrongly 

rejected. 

 

 If any of these outcomes 

calculated in the form of percentages 

other than numbers, they are presented 

in the rate forms as TPR, TNR, FPR and 

FNR. 

 

6.4.2. Classification Learner App 

 

 For having a better visual 

presentation for different models’ 

confusion matrices the Classification 

Learner App from MATLAB is used. 

 

 To have a comparison between 

different models, two models with 

lowest and highest dimensions (M and 

MRKS) are discussed for the Same Speed 

approach and 200 chunks. 

 As it can be seen, the train 

accuracy of different models from 

weakest to the best are illustrated and it 

is vividly clear that the performance of 

machine learning procedure for MRKS 

model is notably higher in general. 

 

 Full confusion matrices of M and 

MRKS models for different approaches 

and 200 chunks are depicted in 

Appendix C. 
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M_S21_200 

Coarse Tree (Train Accuracy: 23.6%) 

 

Coarse KNN (Train Accuracy: 65.3%) 

Figure 6.1 – a) Coarse tree confusion matrix 

Figure 6.1 – b) Coarse KNN confusion matrix 
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M_S21_200 

Quadratic Discriminant (Train Accuracy: 90.9%) 

 

Medium Gaussian SVM (Train Accuracy: 90.3%) 

Figure 6.1 – c) Quadratic discriminant confusion matrix 

Figure 6.1 – d) Medium Gaussian SVM confusion matrix 
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MRKS_S21_200 

Coarse Tree (Train Accuracy: 23.8%) 

 

Coarse KNN (Train Accuracy: 90.3%) 

Figure 6.2 – a) Coarse tree confusion matrix 

Figure 6.2 – b) Coarse KNN confusion matrix 
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MRKS_S21_200 

Quadratic Discriminant (Train Accuracy: 100.0%) 

 

Medium Gaussian SVM (Train Accuracy: 99.9%) 

Figure 6.2 – c) Quadratic discriminant confusion matrix 

Figure 6.2 – d) Medium Gaussian SVM confusion matrix 
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6.5. Test Results 

 

 Having created the models, it is 

time to estimate their performances by 

inducing the test data into prediction 

function and find out how well the 

models are working. 

 Before presenting the result, it is 

noteworthy to mention two definitions. 

 By considering each test matrix 

source, the matrix classification label is 

known. By comparing the results with 

the original label vectors there could be 

two possible options, first the class is 

predicted wrongly and second it is 

predicted correctly. 

 

6.5.1. Prediction Performance 

  

 If the test data is predicted 

correctly regarding the classification 

label vector, the outcome of correct 

items shows the performance of the 

model. Higher number of correct 

predicted items shows a better model. 

 

6.5.2. Misclassification Error 

  

 If the test data is predicted 

wrongly regarding the classification 

label vector, the outcome of incorrect 

items shows the misclassification error 

of the model. Lower number of incorrect 

predicted items shows a better model. 

 

 

 

6.5.3. Test Prediction 

 

 Having trained the data and 

exported the created model, then it is 

time to predict the outcome of the test 

data. The model can be called 

TrainedModel and used in the prediction 

function.  

 The total test matrix is 

introduced as TTest. Also a label vector q 

is created for each TTest matrix with the 

same procedure explained for train data 

by considering that the size of these label 

vectors comparing to train data label 

vectors are one third due to the 

percentages explained for train and test 

data creation (75 percent for train and 

25 percent for test). 

 

P=TrainedModel.predictFcn(TTest) 

 

 The outcome of prediction 

function is called P, it will have the same 

size as q. Vector q as the reference and 

vector P as the predicted data are going 

to be compared with each other. 

 The number of correct items are 

considered for the Prediction 

Performance and also the wrong items 

show the Misclassification Error. 

 The result of different models for 

different algorithms are provided in the 

upcoming tables. 
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M_W7_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 71.3 81.0 98.4 99.0 

Prediction 
Performance 

71.43 82.57 96.57 97.43 

Misclassification 
Error 

28.57 17.43 3.43 2.57 

MRKS_W7_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 71.4 99.8 100.0 100.0 

Prediction 
Performance 

71.43 100.00 100.00 100.00 

Misclassification 
Error 

28.57 0.00 0.00 0.00 

Table 6.1 - Same working condition 

M_C17_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 26.3 79.8 88.3 88.5 

Prediction 
Performance 

25.88 80.71 87.18 89.41 

Misclassification 
Error 

74.12 19.29 12.82 10.59 

MRKS_C17_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 29.4 84.4 98.6 97.7 

Prediction 
Performance 

29.41 83.29 97.65 97.53 

Misclassification 
Error 

70.59 16.71 2.35 2.47 

Table 6.2 - Same class of defect 
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M_L21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 74.3 97.0 96.8 

Prediction 
Performance 

23.81 76.00 97.05 97.24 

Misclassification 
Error 

76.19 24.00 2.95 2.76 

MRKS_L21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 97.2 100.0 100.0 

Prediction 
Performance 

23.81 98.19 100.0 99.90 

Misclassification 
Error 

76.19 1.81 0.00 0.10 

Table 6.3 - Same load 

M_S21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.6 65.3 90.9 90.3 

Prediction 
Performance 

23.43 65.81 91.05 91.05 

Misclassification 
Error 

76.57 34.19 8.95 8.95 

MRKS_S21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 90.3 100.0 99.9 

Prediction 
Performance 

23.81 91.90 100.00 100.00 

Misclassification 
Error 

76.19 8.10 0.00 0.00 

Table 6.4 - Same speed 
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 As it can be seen, in general 

models with higher number of features 

present a better predictions and higher 

performances in comparison with the 

lower dimensional models. 

 Also prediction of same working 

condition, because of having known load 

and speed from different classes of 

defect is more accurate than the same 

class of defect. 

 Accuracy of same load and same 

speed are also the equal in general and 

there is not a highly remarkable 

difference between them. 

 Based on algorithms, quadratic 

discriminant and medium Gaussian SVM 

are presenting an almost similar great 

performance, however, coarse KNN is 

operating moderately. The worst 

algorithm is coarse tree which has the 

highest accuracy for the models with 

lower number of predictors. It shows by 

growing the number of predictors the 

accuracy of this algorithm falls 

drastically. 

 Full machine learning results of 

32 different models are tabulated in 

Appendix D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



 

 

 

 

 

 

 

 

 

 

 

 

 In this chapter the matter of 

feature selection is discussed. However, 

in statistics feature selection is applied 

for high dimensional datasets, here as a 

comparative complementary part is 

explained and discussed. 

 Based on recent developments, it 

is not unusual to work with high 

dimensional datasets varying from 

hundreds of features up to tens of 

thousands. Working with a lot of features 

may sometimes ends in an accurate 

calculation but undoubtedly it will have 

some drawbacks as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 To explain more, sometimes the 

high number of features cause a high cost 

of computation and also may lead to less 

accurate models and results. It becomes 

important to choose some more 

important features to simultaneously 

reduce the costs of evaluation as well as 

keeping the redundant features out in 

order to have the optimum accuracy. 

 This could be done by means of 

features selection algorithms. However, 

statistically this thesis dataset is not very 

high dimensional. 
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7.1. Feature Selection Methods1 

 

 In machine learning, there could 

be two ways to think about features 

selection. 

 First it could be based on 

supervised or unsupervised methods. 

The supervised techniques use target 

variables, however, the unsupervised 

ignore them. 

 The second way is based on three 

different algorithms: Filter Methods, 

Wrapper Methods and Embedded 

Methods. 

 

7.1.1. Filter Methods 

 

 Filter methods are used for pre 

training step. The selection takes place 

based on the importance of features for 

their correlation with the outcome 

rather than being dependent on the 

machine learning algorithms. 

 These methods could be used for 

both classification and regression and 

both categorical and continuous features 

could be studied. 

 

 7.1.2. Wrapper Methods 

 

 These methods are used to create 

a subset of features and training the 

model then by considering the 

inferences of the model some features 

are added or removed from the subset. 

The problem of wrapper methods is that 

                                                             
1 https://machinelearningmastery.com/ 
https://www.analyticsvidhya.com/ 

these methods are bound to research 

and are computationally expensive. 

 

7.1.3. Embedded Methods 

 

 These methods are combinations 

of filter and wrapper methods. These 

methods have their own built-in 

algorithms for feature selection. 

 

 Both wrapper and embedded 

methods are mostly used for regression 

and mostly applicable for continuous 

features. 

 

7.1.4. Differences Between Filter 
Methods and Wrapper Methods 

 

 Filter methods find the relevance of 
features by considering their correlation 
with dependent variable, however, wrapper 
methods measure the convenience of a 
feature subset. 

 Filter methods are much faster and 
also wrapper methods are computationally 
highly expensive. 

 Statistical methods are used for 
filter methods while cross validation is used 
for wrapper methods. 

 Wrapper methods are more likely to 
experience overfitting comparing to the 
filter methods. 

 

 

 

https://machinelearningmastery.com/
https://www.analyticsvidhya.com/
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7.2. Methods to be used2 

 

 In this paper two algorithms of 

filter method are briefly explained, used 

and the results are discussed. 

 

7.2.1. Chi-Square 

 

 In statistics chi-square is used to 

find the independence of two items. If we 

have two variables one as observed and 

the other as expected, chi-square will 

specify that how these two variables 

affect each other and cause deviation. 

 If we consider the independent 

features as predictors and dependent 

ones as responses, in feature selection 

the goal is to find the features with 

highest dependence on response. 

  When the observed and expected 

counts are very close to each other, the 

features are considered independent 

and the chi-square value is smaller. To 

clarify, higher the chi-square value, more 

dependence of feature on the response. 

 

7.2.2. Maximum Relevance Minimum 
Redundancy (MRMR) 

 

 This algorithm has become 

widely popular after being used by Uber 

engineers. 

 Maximum relevance minimum 

redundancy (MRMR) is called so because 

at each level of iteration the feature 

which has the maximum relevance with 

respect to target and the minimum 

                                                             
2 https://towardsdatascience.com/ 

redundancy with respect to the previous 

iterations is aimed to be selected. 

 

 

7.3. Models for Feature Selection 

 

 The highest dimensions of 

datasets are dedicated to MRKS (with 

twenty-four) models. The feature 

selection methods are applied on these 

models.  

 To have a comparison between 

the featured models and the models with 

lowest dimensions M (with six) six best 

features are selected to create a new sub 

model of MRKS. 

 The new matrices are formed out 

of MRKS models by considering the 

order of features after applying the 

feature selection methods. The best six 

features make the six columns of the new 

six dimensional matrices respectively. 

 In the upcoming pages, four 

approaches are considered as well as 

four machine learning algorithms and 

also the best model MRKS the worst 

model M and two featured models of chi-

square and MRMR derived from MRKS 

model. 

 The train accuracies, prediction 

performances and also the 

misclassification errors are reported as 

follows: 

 

 

 

 

https://towardsdatascience.com/
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M_W7_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 71.3 81.0 98.4 99.0 

Prediction 
Performance 

71.43 82.57 96.57 97.43 

Misclassification 
Error 

28.57 17.43 3.43 2.57 

MRKS_W7_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 71.4 99.8 100.0 100.0 

Prediction 
Performance 

71.43 100.00 100.00 100.00 

Misclassification 
Error 

28.57 0.00 0.00 0.00 

Chi-Square Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 71.4 98.3 100.0 100.0 

Prediction 
Performance 

87.14 96.38 96.67 96.67 

Misclassification 
Error 

12.86 3.62 3.33 3.33 

MRMR Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 71.2 97.0 100.0 100.0 

Prediction 
Performance 

87.14 95.62 96.67 96.57 

Misclassification 
Error 

12.86 4.38 3.33 3.43 

Table 7.1 - Same working condition 
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M_C17_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 26.3 79.8 88.3 88.5 

Prediction 
Performance 

25.88 80.71 87.18 89.41 

Misclassification 
Error 

74.12 19.29 12.82 10.59 

MRKS_C17_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 29.4 84.4 98.6 97.7 

Prediction 
Performance 

29.41 83.29 97.65 97.53 

Misclassification 
Error 

70.59 16.71 2.35 2.47 

Chi-Square Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 26.3 79.1 88.3 88.7 

Prediction 
Performance 

25.88 80.71 87.18 89.41 

Misclassification 
Error 

74.12 19.29 12.82 10.59 

MRMR Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 29.4 62.9 91.6 88.4 

Prediction 
Performance 

29.41 63.18 91.41 89.76 

Misclassification 
Error 

70.59 36.82 8.59 10.24 

Table 7.2 - Same class of defect 
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M_L21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 74.3 97.0 96.8 

Prediction 
Performance 

23.81 76.00 97.05 97.24 

Misclassification 
Error 

76.19 24.00 2.95 2.76 

MRKS_L21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 97.2 100.0 100.0 

Prediction 
Performance 

23.81 98.19 100.0 99.90 

Misclassification 
Error 

76.19 1.81 0.00 0.10 

Chi-Square Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 74.3 97.0 96.8 

Prediction 
Performance 

23.81 76.00 97.05 97.24 

Misclassification 
Error 

76.19 24.00 2.95 2.76 

MRMR Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 80.2 99.7 99.0 

Prediction 
Performance 

23.81 80.00 99.71 99.14 

Misclassification 
Error 

76.19 20.00 0.29 0.86 

Table 7.3 - Same load 
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M_S21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.6 65.3 90.9 90.3 

Prediction 
Performance 

23.43 65.81 91.05 91.05 

Misclassification 
Error 

76.57 34.19 8.95 8.95 

MRKS_S21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 90.3 100.0 99.9 

Prediction 
Performance 

23.81 91.90 100.00 100.00 

Misclassification 
Error 

76.19 8.10 0.00 0.00 

Chi-Square Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.6 65.2 90.8 90.4 

Prediction 
Performance 

23.43 65.81 91.05 91.05 

Misclassification 
Error 

76.57 34.19 8.95 8.95 

MRMR Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 75.1 95.5 94.5 

Prediction 
Performance 

23.81 75.90 96.86 95.33 

Misclassification 
Error 

76.19 24.10 3.14 4.67 

Table 7.4 - Same speed 
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 As it is obvious the tables are 

representing the data related to the 

lowest dimensional model M, the highest 

dimensional model MRKS, and two 

feature selection methods which are 

formed based on the MRKS model 

features. At last the dimensionality of M 

model, chi-square and MRMR are the 

same (six dimensional) 

 For each model three items of 

train accuracy, prediction performance 

and misclassification error are reported 

explicitly for all four machine learning 

algorithms discussed in the previous 

chapter, coarse tree (weakest), coarse 

KNN (moderate), quadratic discriminant 

and medium Gaussian SVM (two 

strongest). 

 Except the first approach and that 

is same working condition for which 

both feature selection methods chi-

square and MRMR show better 

performances in comparison with the 

lowest dimensional model M, for the 

other approaches the chi-square method 

almost has the same performance as the 

model M, however, the performance of 

MRMR method is better than the model. 

 This shows that by means of 

applying MRMR method it could be 

reachable to have a model with the 

calculation simplicity of M model which 

leads to a lower computational costs, 

however, the accuracy and performance 

are way better than the simple model. 

 Full machine learning results of 

eight different models and their 

pertaining feature selection models are 

tabulated in Appendix D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 In this final chapter it is 

concluded that this work aims to help 

classification in different situations. 

 The data used for this paper is 

based on the research done in 

Politecnico di Torino and the details 

could be found at: 

 

ftp://ftp.polito.it/people/DIRG_BearingData/. 
 

 At the beginning the test is 

shortly explained and also the main data 

is introduced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Having introduced the main data, 

different elements of models are 

explained and model creation is clarified. 

 The models are made based on 

three different elements, Chunks, 

Approaches and Features. 

 Chunks are based on two 

divisions, 100 chunks of 0.1s and 200 

chunks of 0.05s. Approaches are based 

on four categories of same working 

condition, same class of defect, same load 

and same speed. Features are based on 

four different categories of mean, RMS, 

Chapter Eight 
 

Conclusion 
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kurtosis and skewness. Models are made 

based on combination of these features. 

 Finally, there will be 32 different 

models which are used in this paper. 

These models are listed in Appendix A. 

 For having a better visual 

understanding of how clusters of 

different working conditions are 

positioned in comparison with the other 

ones in different models, there should be 

illustrations but for this aim at most 

three dimensions are allowed. However, 

the models are at least six dimensional. 

To ease this problem a new method of 

dimensionality reduction is introduced 

which maintain the highest data possible 

with lowest data loss. PCA is the method 

used for dimensionality reduction and 

full illustrations are depicted in 

Appendix B. 

 Having created the models, it is 

time to go through the data preparation 

for machine learning procedure. For 

different models there are different sizes 

of final matrices, but, all the train and test 

matrices are made based on 75 percent 

and 25 percent of main final matrix data 

points respectively. 

 After data preparation, different 

methods and algorithms of machine 

learning are explained. Supervised and 

unsupervised learning are discussed, 

and classification which is a subset of 

supervised learning is selected for 

machine learning process. 

 Different algorithm of 

classification is introduced such as 

Decision Tree, Naïve Bayes, Discriminant 

Analysis, K-Nearest Neighbors and 

Support Vector Machines (SVM). The 

validation of train matrices is based on 

Cross-Validation 10 fold.  

 To avoid excess of data only eight 

comparative models out of 32 possible 

ones are discussed in machine learning 

section. Models with lowest and highest 

dimensions M and MRKS and only for 

chunks of 0.05s which means 200 data 

points are selected. The full list of all 32 

models with their all machine learning 

results are tabulated in Appendix C. 

 At last the subject of feature 

selection is introduced for sake of 

simplicity, and avoiding computational 

costs. For this aim three different 

methods are explained which are Filter 

Methods, Wrapper Methods and 

Embedded Methods. Finally, two 

algorithms of filter methods are selected 

for feature selection process they are 

Chi-Square and MRMR.  

 Having completed the feature 

selection models, they are trained and 

tested with the same procedures of 

machine learning to find out how feature 

selection affects the results. 

 To avoid excess of data only four 

models out of eight possible ones are 

discussed in feature selection section. 

MRKS models and only for chunks of 

0.05s which means 200 data points are 

selected. The full list of all eight models 

with their all machine learning results 

are tabulated in Appendix D. 

 

 This thesis shows it is possible to 

guess either the class of defect or the 

working condition even if only speed or 

load is known by means of the data 

provided by the client. 
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1. Same Working Condition 

 

M_W7_100 

M_W7_200 

MR_W7_100 

MR_W7_200 

MRK_W7_100 

MRK_W7_200 

MRKS_W7_100 

MRKS_W7_200 

 

2. Same Class of Defect 

 

M_C17_100 

M_ C17_200 

MR_ C17_100 

MR_ C17_200 

MRK_ C17_100 

MRK_ C17_200 

MRKS_ C17_100 

MRKS_ C17_200 

 

3. Same Load 

 

M_L21_100 

M_ L21_200 

MR_ L21_100 

MR_ L21_200 

MRK_ L21_100 

MRK_ L21_200 

MRKS_ L21_100 

MRKS_ L21_200 

 

 

 

 

 

4. Same Speed 

 

M_ S21_100 

M_ S21_200 

MR_ S21_100 

MR_ S21_200 

MRK_ S21_100 

MRK_ S21_200 

MRKS_ S21_100 

MRKS_ S21_200 
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M_W7_100: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M_W7_200: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Same Working Condition - Mean - 100 Chunks 

Same Working Condition - Mean - 200 Chunks 
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MR_W7_100: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MR_W7_200: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Same Working Condition - Mean, RMS - 100 Chunks 

Same Working Condition - Mean, RMS - 200 Chunks 
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MRK_W7_100: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MRK_W7_200: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Same Working Condition - Mean, RMS, Kurtosis - 100 Chunks 

Same Working Condition - Mean, RMS, Kurtosis - 200 Chunks 
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MRKS_W7_100: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MRKS_W7_200: 

 

 

Same Working Condition - Mean, RMS, Kurtosis, Skewness - 100 Chunks 

Same Working Condition - Mean, RMS, Kurtosis, Skewness - 200 Chunks 
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M_C17_100: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M_C17_200: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Same Class of Defect - Mean - 100 Chunks 

Same Class of Defect - Mean - 200 Chunks 
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MR_C17_100: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MR_C17_200: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Same Class of Defect - Mean, RMS - 100 Chunks 

Same Class of Defect - Mean, RMS - 200 Chunks 
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MRK_C17_100: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MRK_C17_200: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Same Class of Defect - Mean, RMS, Kurtosis - 100 Chunks 

Same Class of Defect - Mean, RMS, Kurtosis - 200 Chunks 
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MRKS_C17_100: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MRKS_C17_200: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Same Class of Defect - Mean, RMS, Kurtosis, Skewness - 100 Chunks 

Same Class of Defect - Mean, RMS, Kurtosis, Skewness - 200 Chunks 
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M_L21_100: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M_L21_200: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Same Load - Mean - 100 Chunks 

Same Load - Mean - 200 Chunks 
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MR_L21_100: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MR_L21_200: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Same Load - Mean, RMS - 100 Chunks 

Same Load - Mean, RMS - 200 Chunks 
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MRK_L21_100: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MRK_L21_200: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Same Load - Mean, RMS, Kurtosis - 100 Chunks 

Same Load - Mean, RMS, Kurtosis - 200 Chunks 
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MRKS_L21_100: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MRKS_L21_200: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Same Load - Mean, RMS, Kurtosis, Skewness - 100 Chunks 

Same Load - Mean, RMS, Kurtosis, Skewness - 200 Chunks 
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M_S21_100: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M_S21_200: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Same Speed - Mean - 100 Chunks 

Same Speed - Mean - 200 Chunks 
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MR_S21_100: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MR_S21_200: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Same Speed - Mean, RMS - 100 Chunks 

Same Speed - Mean, RMS - 200 Chunks 
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MRK_S21_100: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MRK_S21_200: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Same Speed - Mean, RMS, Kurtosis - 100 Chunks 

Same Speed - Mean, RMS, Kurtosis - 200 Chunks 
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MRKS_S21_100: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MRKS_S21_200: 

 

 

 

 

 

 

 

 

 

Same Speed - Mean, RMS, Kurtosis, Skewness - 100 Chunks 

Same Speed - Mean, RMS, Kurtosis, Skewness - 200 Chunks 



 



 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C 
 

Models with lowest and highest dimensions (M & MRKS) 
Confusion Matrices – 200 chunks 
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Figure 1 – a) Coarse tree confusion matrix 

Figure 1 – b) Coarse KNN confusion matrix 

M_W7_200 

Coarse Tree (Train Accuracy: 71.3%) 

 

Coarse KNN (Train Accuracy: 81.0%) 
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M_W7_200 

Quadratic Discriminant (Train Accuracy: 98.4%) 

 

Medium Gaussian SVM (Train Accuracy: 99.0%) 

Figure 1 – c) Quadratic discriminant confusion matrix 

Figure 1 – d) Medium Gaussian SVM confusion matrix 
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MRKS_W7_200 

Coarse Tree (Train Accuracy: 71.4%) 

 

Coarse KNN (Train Accuracy: 99.8%) 

Figure 2 – a) Coarse tree confusion matrix 

Figure 2 – b) Coarse KNN confusion matrix 
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MRKS_W7_200 

Quadratic Discriminant (Train Accuracy: 100.0%) 

 

 

Medium Gaussian SVM (Train Accuracy: 100.0%) 

 

Figure 2 – c) Quadratic discriminant confusion matrix 

Figure 2 – d) Medium Gaussian SVM confusion matrix 
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M_C17_200 

Coarse Tree (Train Accuracy: 26.3%) 

 

Coarse KNN (Train Accuracy: 79.8%) 

Figure 3 – a) Coarse tree confusion matrix 

Figure 3 – b) Coarse KNN confusion matrix 
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M_C17_200 

Quadratic Discriminant (Train Accuracy: 88.3%) 

 

Medium Gaussian SVM (Train Accuracy: 88.5%) 

Figure 3 – c) Quadratic discriminant confusion matrix 

Figure 3 – d) Medium Gaussian SVM confusion matrix 
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MRKS_C17_200 

Coarse Tree (Train Accuracy: 29.4%) 

 

Coarse KNN (Train Accuracy: 84.4%) 

Figure 4 – a) Coarse tree confusion matrix 

Figure 4 – b) Coarse KNN confusion matrix 
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MRKS_C17_200 

Quadratic Discriminant (Train Accuracy: 98.6%) 

 

Medium Gaussian SVM (Train Accuracy: 97.7%) 

Figure 4 – c) Quadratic discriminant confusion matrix 

Figure 4 – d) Medium Gaussian SVM confusion matrix 
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M_L21_200 

Coarse Tree (Train Accuracy: 23.8%) 

 

Coarse KNN (Train Accuracy: 74.3%) 

Figure 5 – a) Coarse tree confusion matrix 

Figure 5 – b) Coarse KNN confusion matrix 
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M_L21_200 

Quadratic Discriminant (Train Accuracy: 97.0%) 

 

Medium Gaussian SVM (Train Accuracy: 96.8%) 

Figure 5 – c) Quadratic discriminant confusion matrix 

Figure 5 – d) Medium Gaussian SVM confusion matrix 
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MRKS_L21_200 

Coarse Tree (Train Accuracy: 23.8%) 

 

Coarse KNN (Train Accuracy: 97.2%) 

Figure 6 – a) Coarse tree confusion matrix 

Figure 6 – b) Coarse KNN confusion matrix 



 

 

8
7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MRKS_L21_200 

Quadratic Discriminant (Train Accuracy: 100.0%) 

 

Medium Gaussian SVM (Train Accuracy: 100.0%) 

Figure 6 – c) Quadratic discriminant confusion matrix 

Figure 6 – d) Medium Gaussian SVM confusion matrix 
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M_S21_200 

Coarse Tree (Train Accuracy: 23.6%) 

 

Coarse KNN (Train Accuracy: 65.3%) 

Figure 7 – a) Coarse tree confusion matrix 

Figure 7 – b) Coarse KNN confusion matrix 
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M_S21_200 

Quadratic Discriminant (Train Accuracy: 90.9%) 

 

Medium Gaussian SVM (Train Accuracy: 90.3%) 

Figure 7 – c) Quadratic discriminant confusion matrix 

Figure 7 – d) Medium Gaussian SVM confusion matrix 
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MRKS_S21_200 

Coarse Tree (Train Accuracy: 23.8%) 

 

Coarse KNN (Train Accuracy: 90.3%) 

Figure 8 – a) Coarse tree confusion matrix 

Figure 8 – b) Coarse KNN confusion matrix 
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MRKS_S21_200 

Quadratic Discriminant (Train Accuracy: 100.0%) 

 

Medium Gaussian SVM (Train Accuracy: 99.9%) 

Figure 8 – c) Quadratic discriminant confusion matrix 

Figure 8 – d) Medium Gaussian SVM confusion matrix 



 



 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix D 
 

Machine Learning Results 
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M_W7_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 67.2 73.9 98.9 99.2 

Prediction 
Performance 

65.71 77.71 97.71 97.71 

Misclassification 
Error 

34.29 22.29 2.29 2.29 

M_W7_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 71.3 81.0 98.4 99.0 

Prediction 
Performance 

71.43 82.57 96.57 97.43 

Misclassification 
Error 

28.57 17.43 3.43 2.57 

MR_W7_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 69.3 99.2 100.0 100.0 

Prediction 
Performance 

71.43 99.43 100.00 100.00 

Misclassification 
Error 

28.57 0.57 0.00 0.00 

MR_W7_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 71.4 99.9 100.0 100.0 

Prediction 
Performance 

71.43 100.00 100.00 100.00 

Misclassification 
Error 

28.57 0.00 0.00 0.00 
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MRK_W7_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 69.5 99.2 100.0 100.0 

Prediction 
Performance 

71.43 100.00 100.00 100.00 

Misclassification 
Error 

28.57 0.00 0.00 0.00 

MRK_W7_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 71.4 100.0 100.0 100.0 

Prediction 
Performance 

71.43 100.00 100.00 100.00 

Misclassification 
Error 

28.57 0.00 0.00 0.00 

MRKS_W7_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 69.5 99.0 100.0 100.0 

Prediction 
Performance 

57.14 100.00 100.00 100.00 

Misclassification 
Error 

42.86 0.00 0.00 0.00 

MRKS_W7_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 71.4 99.8 100.0 100.0 

Prediction 
Performance 

71.43 100.00 100.00 100.00 

Misclassification 
Error 

28.57 0.00 0.00 0.00 
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M_C17_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 24.8 79.2 90.4 91.1 

Prediction 
Performance 

23.53 81.88 91.29 91.76 

Misclassification 
Error 

76.47 18.12 8.71 8.24 

M_C17_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 26.3 79.8 88.3 88.5 

Prediction 
Performance 

25.88 80.71 87.18 89.41 

Misclassification 
Error 

74.12 19.29 12.82 10.59 

MR_C17_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 27.5 85.4 99.5 99.1 

Prediction 
Performance 

29.41 86.59 99.76 100.00 

Misclassification 
Error 

70.59 13.41 0.24 0.00 

MR_C17_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 29.4 87.9 98.9 98.8 

Prediction 
Performance 

29.41 88.94 98.35 98.24 

Misclassification 
Error 

70.59 11.06 1.65 1.76 
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MRK_C17_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 27.8 82.7 99.5 97.9 

Prediction 
Performance 

29.41 84.24 99.53 99.06 

Misclassification 
Error 

70.59 15.76 0.47 0.94 

MRK_C17_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 29.4 83.2 98.6 97.4 

Prediction 
Performance 

29.41 83.29 98.00 97.18 

Misclassification 
Error 

70.59 16.71 2.00 2.82 

MRKS_C17_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 27.8 85.5 98.6 98.2 

Prediction 
Performance 

23.53 84.94 98.82 98.71 

Misclassification 
Error 

76.47 15.06 1.18 1.29 

MRKS_C17_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 29.4 84.4 98.6 97.7 

Prediction 
Performance 

29.41 83.29 97.65 97.53 

Misclassification 
Error 

70.59 16.71 2.35 2.47 
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M_L21_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 22.5 68.3 99.0 99.0 

Prediction 
Performance 

23.81 67.62 99.24 99.05 

Misclassification 
Error 

76.19 32.38 0.76 0.95 

M_L21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 74.3 97.0 96.8 

Prediction 
Performance 

23.81 76.00 97.05 97.24 

Misclassification 
Error 

76.19 24.00 2.95 2.76 

MR_L21_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 22.5 97.0 100.0 100.0 

Prediction 
Performance 

23.81 97.52 100.00 100.00 

Misclassification 
Error 

76.19 2.48 0.00 0.00 

MR_L21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 98.1 100.0 100.0 

Prediction 
Performance 

23.81 98.76 100.00 100.00 

Misclassification 
Error 

76.19 1.24 0.00 0.00 
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MRK_L21_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 22.2 96.1 100.0 99.9 

Prediction 
Performance 

23.81 97.14 100.00 100.00 

Misclassification 
Error 

76.19 2.86 0.00 0.00 

MRK_L21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 97.4 100.0 99.9 

Prediction 
Performance 

23.81 97.81 100.00 99.90 

Misclassification 
Error 

76.19 2.19 0.00 0.10 

MRKS_L21_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 22.2 96.3 100.0 99.9 

Prediction 
Performance 

11.90 96.48 100.0 99.90 

Misclassification 
Error 

88.10 3.52 0.00 0.10 

MRKS_L21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 97.2 100.0 100.0 

Prediction 
Performance 

23.81 98.19 100.0 99.90 

Misclassification 
Error 

76.19 1.81 0.00 0.10 
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M_S21_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 22.2 60.5 92.1 91.8 

Prediction 
Performance 

23.81 62.48 92.57 93.14 

Misclassification 
Error 

76.19 37.52 7.43 6.86 

M_S21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.6 65.3 90.9 90.3 

Prediction 
Performance 

23.43 65.81 91.05 91.05 

Misclassification 
Error 

76.57 34.19 8.95 8.95 

MR_S21_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 22.2 85.7 100.0 100.0 

Prediction 
Performance 

23.81 88.19 100.00 100.00 

Misclassification 
Error 

76.19 11.81 0.00 0.00 

MR_S21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 91.4 100.0 100.0 

Prediction 
Performance 

23.81 94.86 100.00 100.00 

Misclassification 
Error 

76.19 5.14 0.00 0.00 
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MRK_S21_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 22.2 88.8 100.0 99.9 

Prediction 
Performance 

23.81 93.14 100.00 100.00 

Misclassification 
Error 

76.19 6.86 0.00 0.00 

MRK_S21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 90.6 100.0 99.9 

Prediction 
Performance 

23.81 90.19 100.00 100.00 

Misclassification 
Error 

76.19 9.81 0.00 0.00 

MRKS_S21_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 22.2 91.7 100.0 99.9 

Prediction 
Performance 

23.81 92.29 100.00 99.90 

Misclassification 
Error 

76.19 7.71 0.00 0.10 

MRKS_S21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 90.3 100.0 99.9 

Prediction 
Performance 

23.81 91.90 100.00 100.00 

Misclassification 
Error 

76.19 8.10 0.00 0.00 



 



 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix E 
 

Features Selection Results 
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M_W7_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 67.2 73.9 98.9 99.2 

Prediction 
Performance 

65.71 77.71 97.71 97.71 

Misclassification 
Error 

34.29 22.29 2.29 2.29 

MRKS_W7_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 69.5 99.0 100.0 100.0 

Prediction 
Performance 

57.14 100.00 100.00 100.00 

Misclassification 
Error 

42.86 0.00 0.00 0.00 

Chi-Square Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 69.3 96.0 100.0 100.0 

Prediction 
Performance 

71.43 97.71 100.00 100.00 

Misclassification 
Error 

28.57 2.29 0.00 0.00 

MRMR Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 69.5 86.7 100.0 100.0 

Prediction 
Performance 

71.43 88.00 100.00 100.00 

Misclassification 
Error 

28.57 12.00 0.00 0.00 
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M_W7_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 71.3 81.0 98.4 99.0 

Prediction 
Performance 

71.43 82.57 96.57 97.43 

Misclassification 
Error 

28.57 17.43 3.43 2.57 

MRKS_W7_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 71.4 99.8 100.0 100.0 

Prediction 
Performance 

71.43 100.00 100.00 100.00 

Misclassification 
Error 

28.57 0.00 0.00 0.00 

Chi-Square Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 71.4 98.3 100.0 100.0 

Prediction 
Performance 

87.14 96.38 96.67 96.67 

Misclassification 
Error 

12.86 3.62 3.33 3.33 

MRMR Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 71.2 97.0 100.0 100.0 

Prediction 
Performance 

87.14 95.62 96.67 96.57 

Misclassification 
Error 

12.86 4.38 3.33 3.43 
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M_C17_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 24.8 79.2 90.4 91.1 

Prediction 
Performance 

23.53 81.88 91.29 91.76 

Misclassification 
Error 

76.47 18.12 8.71 8.24 

MRKS_C17_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 27.8 85.5 98.6 98.2 

Prediction 
Performance 

23.53 84.94 98.82 98.71 

Misclassification 
Error 

76.47 15.06 1.18 1.29 

Chi-Square Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 25.0 78.8 90.0 91.0 

Prediction 
Performance 

23.53 81.88 91.29 91.76 

Misclassification 
Error 

76.47 18.12 8.71 8.24 

MRMR Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 27.5 65.6 96.1 91.8 

Prediction 
Performance 

29.41 63.76 96.24 90.82 

Misclassification 
Error 

70.59 36.24 3.76 9.18 
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M_C17_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 26.3 79.8 88.3 88.5 

Prediction 
Performance 

25.88 80.71 87.18 89.41 

Misclassification 
Error 

74.12 19.29 12.82 10.59 

MRKS_C17_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 29.4 84.4 98.6 97.7 

Prediction 
Performance 

29.41 83.29 97.65 97.53 

Misclassification 
Error 

70.59 16.71 2.35 2.47 

Chi-Square Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 26.3 79.1 88.3 88.7 

Prediction 
Performance 

25.88 80.71 87.18 89.41 

Misclassification 
Error 

74.12 19.29 12.82 10.59 

MRMR Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 29.4 62.9 91.6 88.4 

Prediction 
Performance 

29.41 63.18 91.41 89.76 

Misclassification 
Error 

70.59 36.82 8.59 10.24 
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M_L21_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 22.5 68.3 99.0 99.0 

Prediction 
Performance 

23.81 67.62 99.24 99.05 

Misclassification 
Error 

76.19 32.38 0.76 0.95 

MRKS_L21_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 22.2 96.3 100.0 99.9 

Prediction 
Performance 

11.90 96.48 100.0 99.90 

Misclassification 
Error 

88.10 3.52 0.00 0.10 

Chi-Square Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 22.5 68.5 98.9 98.9 

Prediction 
Performance 

23.81 67.62 99.24 99.05 

Misclassification 
Error 

76.19 32.38 0.76 0.95 

MRMR Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 22.2 80.4 99.3 98.6 

Prediction 
Performance 

23.81 82.29 98.86 95.24 

Misclassification 
Error 

76.19 17.71 1.14 4.76 
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M_L21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 74.3 97.0 96.8 

Prediction 
Performance 

23.81 76.00 97.05 97.24 

Misclassification 
Error 

76.19 24.00 2.95 2.76 

MRKS_L21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 97.2 100.0 100.0 

Prediction 
Performance 

23.81 98.19 100.0 99.90 

Misclassification 
Error 

76.19 1.81 0.00 0.10 

Chi-Square Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 74.3 97.0 96.8 

Prediction 
Performance 

23.81 76.00 97.05 97.24 

Misclassification 
Error 

76.19 24.00 2.95 2.76 

MRMR Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 80.2 99.7 99.0 

Prediction 
Performance 

23.81 80.00 99.71 99.14 

Misclassification 
Error 

76.19 20.00 0.29 0.86 
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M_S21_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 22.2 60.5 92.1 91.8 

Prediction 
Performance 

23.81 62.48 92.57 93.14 

Misclassification 
Error 

76.19 37.52 7.43 6.86 

MRKS_S21_100 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 22.2 91.7 100.0 99.9 

Prediction 
Performance 

23.81 92.29 100.00 99.90 

Misclassification 
Error 

76.19 7.71 0.00 0.10 

Chi-Square Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 22.2 60.8 91.8 91.8 

Prediction 
Performance 

23.81 62.48 92.57 93.14 

Misclassification 
Error 

76.19 37.52 7.43 6.86 

MRMR Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 22.5 66.9 92.3 90.2 

Prediction 
Performance 

23.81 69.90 95.43 94.48 

Misclassification 
Error 

76.19 30.10 4.57 5.52 
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M_S21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.6 65.3 90.9 90.3 

Prediction 
Performance 

23.43 65.81 91.05 91.05 

Misclassification 
Error 

76.57 34.19 8.95 8.95 

MRKS_S21_200 Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 90.3 100.0 99.9 

Prediction 
Performance 

23.81 91.90 100.00 100.00 

Misclassification 
Error 

76.19 8.10 0.00 0.00 

Chi-Square Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.6 65.2 90.8 90.4 

Prediction 
Performance 

23.43 65.81 91.05 91.05 

Misclassification 
Error 

76.57 34.19 8.95 8.95 

MRMR Coarse Tree Coarse KNN 
Quadratic 

Discriminant 

Medium 
Gaussian 

SVM 

Train Accuracy 23.8 75.1 95.5 94.5 

Prediction 
Performance 

23.81 75.90 96.86 95.33 

Misclassification 
Error 

76.19 24.10 3.14 4.67 



 


