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ABSTRACT  
In the framework of Fracture Mechanics, this Master Thesis aims to analyze the behaviour of Hybrid 

Reinforced Concrete (HRC) structural elements, in which the reinforcing secondary phase consists in a 

combination of ordinary steel rebars and short discontinuous fibres.  

Analogously to the case of Fibre Reinforced Concrete (FRC) members, experimental campaigns suggest to 

subdivide the flexural behaviour of HRC beams into three different stages. Considering a notched HRC 

element subjected to bending the related applied load versus deflection diagram starts with a linear elastic 

branch (Stage I), up to the initiation of the fracturing process. Then, the post-cracking regime of the composite 

takes place, which depends on the amount of ordinary steel rebars and of reinforcing fibres. In the first part of 

this regime (Stage II), both fibres and steel rebars provide their contribution in terms of closing action against 

crack propagation. Finally, the toughening contribution of the fibres gradually decreases with the crack 

propagation, leading to a final plastic plateau (Stage III), which depends only on the amount of traditional steel 

rebars. 

As reported in Chapter 2, the Bridged Crack Model is proposed as a Fracture Mechanics approach able to 

describe the evolution of the crack propagation process at the notched (or critical) cross-section of HRC 

members subjected to monotonically increasing flexural loading. The model assumes an elastic-perfectly 

brittle behaviour of the concrete matrix, whose toughening contribution is described by the concrete fracture 

toughness, KIC. On the other hand, appropriate constitutive laws describe the toughening contribution of the 

reinforcing secondary phase, which relates to the yielding of the steel rebars and to the slippage of the steel 

fibres, respectively. The numerical model has been extended in order to simultaneously consider the effect of 

these two different bridging mechanisms, as described in Chapter 3.   

In Chapter 4, parametric sets of numerical simulations are presented, showing that the abovementioned post-

cracking regimes are actually governed by  three scale-dependent dimensionless numbers: (i) two 

reinforcement dimensionless numbers, 𝑁Pb and 𝑁Pf, which are directly related to the steel area percentage, ρ,  

and to the fibre volume fraction, Vf, respectively; (ii) the dimensionless number,  𝑁w, which depends on the 

fibre embedment length, wc. The focus of the present analysis is on the combination of these three 

dimensionless numbers, which provides the minimum reinforcement condition, i.e., the minimum percentage 

steel area, ρmin, or minimum fibre volume fraction, Vf,min, required to obtain a stable post-cracking response, 

together with its scale-dependence.  

Finally, in Chapter 5 the model is validated on the basis of different experimental campaigns reported in the 

scientific literature, in which flexural tests were carried out on HRC beams. It is shown that the identification 

of the mechanical properties of the composite leads to an effective superposition between experimental data 

and numerical predictions, thus promoting the model as an effective tool to predict the flexural behaviour of 

HRC structural members together with the minimum reinforcement condition. 
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1 Introduction  

Recent developments in concrete technology revealed the advantages in the structural performance of the 

material by including fibres in the concrete mixture or in a Reinforced Concrete (RC) element. In this 

perspective, the Fibre Reinforced Concrete (FRC) and Hybrid Reinforced Concrete (HRC) were developed 

since the mid-twentieth century, particularly in the last 30 years (Carpinteri, 1981; Carpinteri, 1984; Carpinteri 

and Bosco, 1991a; Carpinteri and Bosco 1991b; Altun et al. 2007; Jones, Austin and Robins, 2008; Carpinteri 

et al, 2015; Accornero, Rubino and Carpinteri, 2019; Fantilli and Gorino,2020). HRC element can be generally 

defined as a cementitious composite made of two main components: the cementitious matrix and the 

reinforcement, which is in turn can be made of fibres and steel rebars. The cementitious matrix may itself be 

considered a composite with several components (aggregate, additive, water), but it will be assumed to 

represent, in this context, the first main component of the HRC composite. The secondary phase of the 

composite is the reinforcement, made of short discontinuous fibres, that are randomly oriented and distributed 

within the volume of the composite, and of steel rebars. Both the fibres, the rebars and the matrix work together, 

providing the synergism required to make an effective composite. The constituents are characterized by 

enormous variability. High Strength Concrete, High Performance Concrete and many others special 

cementitious matrices are available with modern technologies.  Fibres also can be really different, both for 

material and geometry. They can be made of steel, polymeric materials as well as inorganic materials such as 

carbon, glass and natural materials (CNR, 2006). Moreover, the fibres shape can be undeformed (straight), 

with a round or flat section; or characterized by a deformed profile, such as cramped along the length or with 

hooked end. The bars can be made of steel, plastic, glass and other inorganic materials and their shape is typical 

undeformed; they can vary their diameter or their yield strength. Moreover, the surface of the bars can be 

smooth or may have ribs to improve adhesion. This work is focused on composites with steel fibres and with 

steel rebars, but the concepts relating to mechanical and geometric parameters could also be extended to other 

materials.  

The experimental research on the flexural behaviour of the HRC specimens points out three different stages 

into a typical load-deflection curve. The diagram starts with a linear elastic branch (Stage I), up to the initiation 

of the fracturing process. Then, the post-cracking regime of the composite takes place, which depends on the 

amount of ordinary steel rebars and of reinforcing fibres. In the first part of this regime (Stage II), both fibres 

and steel rebars provide their contribution in terms of closing action against crack propagation.  Depending on 

several conditions, including the fibre volume continent (Vf) and the steel area percentage (ρ), the element 

could exhibit a different behaviour in the second stage, such as brittle, perfectly plastic or hardening. Increasing 

the amount of reinforcement (both bars and fibres), there is a ductile-to-brittle transition, which suggests the 

definition of the minimum reinforcement condition required to guarantee a stable post-cracking response. 

Finally, the toughening contribution of the fibres gradually decreases with the crack propagation, leading to a 

final plastic plateau (Stage III), which depends only on the amount of traditional steel rebars. 
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The fundamental role of the secondary phase is that of providing crack control and improving the fracture 

toughness of the composite, by means of a bridging action affecting the matrix macro- and microcracks. 

However, several parameters have to be taken into account in the design of the so called minimum 

reinforcement: fibres and bars geometric and mechanical characteristics, concrete mechanical properties, fibre 

volume fraction, steel area percentage, position of the bars and geometrical characteristic of the structural 

element. Experimental tests are thus necessaries, both on the three individual main components and on the 

composite mixture.  

The purpose of this work is to interpret the aforementioned stages in the framework of Fracture Mechanics. 

Following this purpose, the Bridged Crack Model is proposed to reproduce analytically the flexural response, 

providing the identification of the constituent materials. The application of Buckingham’s 𝜋 Theorem confirm 

the presence of three scale-dependent dimensionless parameters, which synthetically describe the post-

cracking response of the composite. 

Moreover, the flexural behaviour of different specimens made of the same materials vary according to 

specimen size. This phenomenon, known as size effect, depends on the fact that the dimensionless parameters 

mentioned above, which synthetically describe the flexural response, are scale-dependent. 

In the case of modern high technology composite materials, such as Fibre Reinforced Concrete or Hybrid 

Reinforced Concrete, there are two alternative nonlinear models that are used to analyse the failure process: 

the Bridged Crack Model and the Cohesive Crack Model. They were presented in a dimensionless formulation 

by Carpinteri et al. (1996) and an experimental campaign demonstrated that correctly choosing the 

characteristic parameter of the two models, both of them lead to similar structural behaviour. 

The Cohesive Crack Model, in accordance with the model proposed by Barenblatt (1962) for the analysis of 

brittle heterogeneus materials and then by Dugdale (1962) for the analysis of ductile materials, has been 

originally proposed by Hillerborg et al (1976) with the name of Fictitious Crack Model. 

The key differences between these two models regard the material’s basic assumption, the crack tip stress field 

and the corresponding crack propagation conditions. These lead to the two different options of the model, 

which will be called bridging option and cohesive option. In the bridging option the composite is theoretically 

simulated as a bi-phase material. A singular stress field is assumed at the crack-tip and the crack starts 

propagating when the crack tip stress intensity factor reaches the matrix fracture toughness. In the cohesive 

option, on the other hand, the composite material is assumed to be homogeneous. A finite stress field is 

assumed in the crack tip vicinity, and consequently the crack starts propagating when the total crack tip stress 

intensity factor becomes equal to zero. 

In conclusion, it will be clear how, by means of Bridged Crack Model, it is possible to interpret the tests and 

predict the mechanical behaviour of the structural element, by varying the design parameters. 
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2 The Bridged Crack Model  

2.1 Introduction 

As mentioned in the previous chapter, two nonlinear models can be used to analyse the failure process: the 

Bridged Crack Model and the Cohesive Crack Model. In this work it will be analyzed the Bridged Crack Model 

This model is a nonlinear fracture mechanics model which simulates the bridging zone and the bridging 

mechanisms of the material through a crack and a continuous or discontinuous distribution of closing tractions, 

directly applied into the crack faces. Different versions of this model have been formulated for the analysis of 

composites with uniformly distributed reinforcements (Marshall et al., 1985; Jenq and Shah, 1985; Cox and 

Marshall, 1991; Ballarini and Muju, 1993). Moreover, bridged -crack models have been proposed for the 

analysis of the overall behavior of brittle-matrix composites with localized reinforcements, such as bars, wires, 

and riveted or bonded stiffeners (Carpinteri, 1984; Desayi and Ganesan, 1986; Bosco and Carpinteri, 1992; 

Carpinteri and Massabò, 1994). 

Within the Bridged Crack Model, the composite is interpreted as a bi-phase material, in which the brittle matrix 

and the reinforcement (both fibres and bars) represent the primary and secondary phase of the mixture, 

respectively. Thus, the mechanical behaviour of the two distinct phases is differently characterized, including 

the related contributions in terms of toughening mechanism. The behaviour of the matrix is assumed as elastic-

perfectly brittle and it is characterized by Young’s modulus, E, and fracture toughness, KIC. On the other hand, 

The Bridged Crack Model replaces the secondary-phase bridging action by means of concentrated forces 

directly applied into the crack faces; as far as fibres are concerned the bridging mechanism of the secondary 

phase is described by a cohesive softening constitutive law, which takes into account the progressive slippage 

of the fibre from the matrix. Instead, the bar’s contribution is described by an elastic-perfectly plastic 

constitutive law, which takes into account the yielding of the bar, but not the possible slipping of the same. 

Under these assumptions, the singular crack-tip stress field is uniquely characterized by a global stress-

intensity factor, KI. In agreement with the LEFM, the failure process is governed by the stress-intensity factor 

at the crack tip and the criterion for crack growth is reached when KI = KIC.  

The analytical formulation derives from a model formerly proposed by Carpinteri (1984) for composites with 

localized reinforcements. The nonlinear integral problem, describing the evolution of crack propagation in a 

composite section under monotonic bending, is solved through the verification of both equilibrium and 

kinematic compatibility.  

This discontinuous model was able to describe the behaviour of element with localized reinforcement, such as 

bars, wires, fibres and riveted or bonded stiffeners. However, when the number of localized reinforcements 

becomes sufficiently high, the global results of discontinuous and continuous models are convergent (A. 

Carpinteri et al., 1997). 

In this Chapter is presented a discontinuous model for RC, FRC and HRC beams under monotonic bending, 

which is the base of the numerical algorithm. The novelty, in comparison to previous versions of the model, is 
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the possibility of being able to analyze HRC elements, in which the fibres and bars contribute together to the 

bridging action on the crack. 
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2.2 Fundamentals 

2.2.1 Basic Assumption 

As briefly introduced in the previous section, the Bridged Crack Model is able to describe the flexural 

behaviour of a hybrid reinforced concrete beams, characterized by a rectangular cross section, an edge crack, 

and subjected to an applied bending moment, M. The geometry of the model is shown in Figure 2.1, where b 

and h are the section thickness and the section depth, respectively; a is the initial crack depth; and hi, i = 1, … 

n defines the position of the generic reinforcement. A normalized crack depth and a normalized position of 

generic reinforcement can be defined as: 

𝜉 =
𝑎

ℎ
 (2.1) 

𝜁𝑖 =
ℎ𝑖

ℎ
 (2.2) 

The number of fibres for each section is n, uniformly distributed in the ligament, with generic position hi. The 

m < n fibres crossing the crack are considered as active, whose bridging action is represented by the m reclosing 

forces, Fi, i = 1, … m. The total number of fibres crossing the mid-span cross section is assumed as a 

deterministic quantity, calculated as: 

𝑛 = 𝛼𝑉f

𝑏ℎ

𝐴f
 (2.3) 

where Af is the cross-sectional area of the single fibre, Vf is the fibre volume ratio and α is the orientation 

factor. The latter is generally found by investigating the specimen fracture surfaces (manual counting, X-ray 

analysis), and calculated as the ratio between the actual number of fibres with respect to the theoretical one. 

 

Figure 2.1 Theoretical scheme of the discontinuous model 

Within the Bridged Crack Model, the fracture process zone of HRC beams is considered sufficiently small, 

since it is confined to the interspace between two subsequent fibre reinforcements. Under these circumstances, 
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the concepts of Linear Elastic Fracture Mechanics are fully applicable:  the concrete matrix is assumed linear 

elastic-perfectly brittle, both in traction and in compression, characterized by the Young’s modulus, 𝐸, and its 

fracture toughness, 𝐾IC. The fibres are considered as uniformly distributed in the matrix, their orientation is 

assumed orthogonal with respect to the faces of the crack and the embedded length is considered the same for 

all the fibres. In Figure 2.2 it is showed the difference between the fibre distribution assumed in the model, 

and the actual one. Further developments of the model could randomize the position and orientation of the 

fibre, considering these quantities as stochastic variables. 

 

Figure 2.2 From real to model fibre distribution. 

The bridging action depends by the position and orientation of the fibres. Considering the model distribution, 

instead, the bridging action is related only to the crack opening displacement along the crack faces at the fibre 

level, 𝑤𝑖; there is no more reclosing force when the crack opening displacement is equal to the embedded 

length. The relationship among the reclosing force and 𝑤𝑖, namely slippage constitutive law or bridging law, 

can be obtained from experimental tests or micromechanical models and will be discuss in the paragraph 2.2.4.  

Instead, for what concern the reinforcement bars, their position is known, they are positioned at a distance 

equal to the concrete cover from the bottom edge of the cross section.  
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2.2.2 Stress Intensity Factor 

The model assumes the crack propagation condition in according to LEFM, Eq. (2.4), considering only the 

Mode I opening, that occurs when the stress-intensity factor, KI, reaches its critical value, KIC: 

𝐾I = 𝐾IC (2.4) 

The value of the stress intensity factor at the crack tip is obtained, by means of the superposition principle, 

taking into account the two opposite contributes, due to bending moment and to the reclosing forces: 

𝐾I = 𝐾IM − ∑ 𝐾I𝑖

𝑚

𝑖=1

 (2.5) 

 

As regard the first contribute, considering a simply cracked bended strip, represented in Figure 2.3, Tada et al. 

(1985) found the following expression: 

𝐾IM =
𝑀

ℎ1.5𝑏
𝑌M(𝜉) (2.6)  

 

Figure 2.3 Simply cracked bended strip. 

Considering the same geometry, the stress intensity factor due to a concentrated force, applied on the crack 

face (Figure 2.4), is given by:  

𝐾IF =
𝐹

ℎ0.5𝑏
𝑌F(𝜉, 𝜁) (2.7)

It is possible to find the fracturing moment, by means of the Eq. (2.4), substituting the expressions of the stress 

intensity factor reported in Eq. (2.6) and Eq. (2.7). The scalar product of vectors is used for the summation, so 

the crack propagation condition becomes: 

𝐾I =
𝑀

ℎ1.5𝑏
𝑌M −

{𝑌F}T{𝐹}

ℎ1.5𝑏
(2.8) 
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The value of the fracture moment is: 

𝑀F =
ℎ1.5𝑏

𝑌M
(𝐾IC +

{𝑌F}𝑇{𝐹}

ℎ
1
2𝑏

) =
ℎ1.5𝑏

𝑌M
𝐾IC +

ℎ

𝑌M

{𝑌F}T{𝐹} = 𝑅1 + 𝑅2{𝑌F}T{𝐹} (2.9) 

where 𝑅1 and 𝑅2 are used to reduce the expression of the fracture moment. 

 

 

Figure 2.4 Simply cracked strip with concentrated forces. 

 

In Eq. (2.10) and Eq. (2.11), two shape functions, 𝑌M and 𝑌F:  

𝑌M(𝜉) = {
6(1.99𝜉0.5 − 2.47𝜉1.5 + 12.97𝜉2.5 − 23.17𝜉3.5 + 24.8𝜉4.5)        𝜉 ≤ 0.6

3.99(1 − 𝜉)−1.5                                                                                         𝜉 > 0.6
(2.10) 

𝑌F(𝜉, 𝜁) =
2

√𝜋𝜉

1

(1 − 𝜉)1.5√1 − (
𝜁i
𝜉

)
2

 

𝐺(𝜉, 𝜁i) (2.11)
 

𝐺(𝜉, 𝜁i) = 𝑔1(𝜉) + 𝑔2(𝜉)
𝜁i

𝜉
+ 𝑔3(𝜉) (

𝜁i

𝜉
)

2

+ 𝑔4(𝜉) (
𝜁i

𝜉
)

3

 (2.12) 

𝑔1(𝜉) = 0.46 + 3.06𝜉 + 0.84(1 − 𝜉)5 + 0.66𝜉2(1 − 𝜉)2  (2.13) 

𝑔2(𝜉) = −3.52𝜉2  (2.14) 

𝑔3(𝜉) = 6.17 − 28.22𝜉 + 34.54𝜉2 − 14.39𝜉3 − (1 − 𝜉)1.5 − 5.88(1 − 𝜉)5 − 2.64𝜉2(1 − 𝜉)2 (2.15) 

𝑔4(𝜉) = −6.63 + 25.16𝜉 − 31.04𝜉2 + 14.41𝜉3 + 2(1 − 𝜉)1.5 + 5.04(1 − 𝜉)5 + 1.98𝜉2(1 − 𝜉)2𝑡 (2.16) 

It is worth noting that the shape function related to the bending moment, Eq. (2.10), is a function of the 

normalized crack depth. On the other hand, the shape function introduced for the concentrated force, Eq. (2.11), 

depends also on the normalized reinforcement position, and it provides a singularity for 𝜉 = 𝜁𝑖 (this singularity 

will be discussed in the next chapter).  
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2.2.3 Compatibility equation 

The compatibility conditions are applied to solve the statically indeterminate problem, i.e., to evaluate the 

bridging forces, for a given crack depth, depending on the applied bending moment. The crack opening 

displacements vector is defined as: 

{𝑤} = {𝑤1, … , 𝑤m}T (2.17) 

 

where 𝑤𝑖 is the crack opening displacement at the level of the i-th fibre, obtained by applying the superposition 

principle on the two opposite contributes. The vector of the reactions of the 𝑚 active fibres is defined as: 

{𝐹} = {𝐹1, … , 𝐹m}T (2.18) 

The vector of the local compliance due to the bending moment is defined as: 

 

{𝜆M} = {𝜆1M, … , 𝜆mM}T (2.19) 

The mathematical problem consists in the determination of the crack opening displacements and the 

reinforcement actions, for each reinforcement level. By using the superposition principle, these quantities can 

be described by the following relationship: 

{𝑤} = {𝜆M}𝑀 − [𝜆]{𝐹} (2.20) 

where the minus sign is due to the crack-closure action exerted by the active reinforcement; [𝜆] is the m x m 

matrix of the local compliances due to the bridging action, and it is symmetric for Betti’s theorem.  

Eq. (2.18) describe a linear system of m equations, and 2m unknowns, i.e., the bridging forces Fi, and the 

corresponding crack opening displacements, wi. The solution of the system requires other m conditions. The 

m missing conditions are given by the constitutive laws introduced above. i.e. by a link between the force and 

the accompanying opening at the level of each reinforcement. 

Previously, considering a rigid-perfectly plastic behavior for the reinforcements, the crack resulted to be closed 

until the ultimate force FP,i, is reached. Now, with the introduction of a new elastic-perfectly plastic constitutive 

laws for the reinforcements (these will be described in the next paragraph), the reactions are determined with 

an iterative process until the convergence is reached. 

We can recognize the bars that are active, nb and the fibres that are still bridging the crack faces, nf,c , from 

those whose bridging effect is exhausted, nf,s: in all cases, the condition m = nb+ nf,c + nf,s must be satisfied. In 

matrix form they can be portioned as follows:  

{

𝑤b

𝑤f,c
𝑤f,s

} = {

𝜆Mb

𝜆Mf,c

𝜆Mf,s

} 𝑀 − [

𝜆bb 𝜆bf,c 𝜆bf,s

𝜆f,cb 𝜆f,cf,c 𝜆f,cf,s

𝜆f,sb 𝜆f,sf,c 𝜆f,sf,s

] {

𝐹b

𝐹f,c

𝐹f,s

} (2.21) 
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Unlike in the previous case, we have both kinematic and static unknowns, since both crack opening 

displacements, wi, and bridging forces, Fi, must be determined. Again, the problem requires m=(b+f,c+f,s) as 

an additional condition, which consists in: 

𝑏:     𝐹i = 𝐹(𝑤i) (2.22𝑎) 

𝑓, 𝑐:  𝐹i = 𝐹(𝑤i) (2.22𝑏) 

𝑓, 𝑠:  𝐹i = 0 (2.22𝑐) 

                                  

where F(wi) is the force of the i-th fiber, evaluated by the slippage constitutive law adopted for the reinforcing 

phase. The expressions of the Eq. 2.22 will be discussed in the next paragraph. 
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2.2.4 Constitutive Laws 

Fibres and reinforcement bars represent the secondary phase of the HRC composite material. The mechanical 

and geometrical properties of the reinforcement are fundamental to provide the synergism with the concrete 

matrix, which make the material an effective composite. The bars are usually straight and they could vary their 

diameter or yielding resistance. The fibres are variable, both for material and geometry. They can be made of 

steel, polymeric materials as well as inorganic materials such as carbon, glass and natural materials (CNR, 

2006). Moreover, the shape of the fibre can be undeformed (straight), with a round or flat section; there are 

also fibers with deformed profile, such as twisted or with hooked end. In Figure 2.5 different types of fibres 

are showed. 

 

Figure 2.5 Different type of fibres (Figure from Naaman, 2008). 

Fibre pull-out tests measure the force required to pull out a fibre, embedded in a matrix, when it is subjected 

to uniaxial tension. These tests can be carried out applying the tensile force in one side or in double side; they 

can be also performed on a single fibre or in a multiple configuration. 

This work is focused on steel fibres, particularly on the straight and the hooked-end ones (Figure 2.6).  
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Figure 2.6 Different geometric shape of steel fibres (Figure from Abdallah, 2018). 

A scheme of the slippage phenomenon, occurring during a typical pull-out test, is represented in Figure 2.7, 

where a fibre, embedded for a length l in a cementitious matrix, is subjected to a tensile force P. Once 

debonding occurs along the entire embedded length of the fibre, a progressive slippage of the fibre into the 

matrix occurred, with the consequent distribution of tangential stresses, mobilized at the fibre-matrix interface. 

 

Figure 2.7 Free-body diagram of an element of fibre (data from Naaman et al., 1991b). 
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Figure 2.8 Pull-out behaviour of straight fibre (Stages 1-3). 
(Figure from Abdallah, 2018). 

More complex mechanisms are exhibit in pull-out tests by deformed shape of fibre (Figure 2.6). The hooked-

end type is the most commonly employed, because these fibres are able to further enhance the energy 

absorption during the pull-out process. For this type of geometry, indeed, the pull-out mechanism provides 

other two additional stages, due to the development of two plastic hinges (PH1 and PH2) correspondingly to 

the end deformed region (Figure 2.9). 

 

Figure 2.9 Pull-out behaviour of hooked-end fibre (Stages 1-5). 
 (Figure from Abdallah, 2018). 

The difference between the two typical pull-out responses can be evaluated in Figure 2.10. The curves show 

the same elastic range, after which the straight fibre experiences the exponential decay, as previously 

described. On the contrary, the hooked-end fibre reaches a higher value of the pull-out force, due to the 

mechanical anchorage of the fibre end. After this maximum, the pull-out load starts to decrease due to the 

progressive mobilization of the PH1. When the first plastic hinge has straightened the fibre, it is placed in the 

straight part of the channel. Further straightening under PH2 is recognize in the slight increase in pull-out load 
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at Stage 4 (Abdallah, 2018). Finally, when both the hooked-end are straightened, the fibre has reached the 

straight configuration, and the same exponential decay is found.   

 

Figure 2.10 Pull-out response of straight fibre (Stages 1-3) and hooked-end fibre (Stages 1-5). 

Moreover, the influence of fibre orientation and matrix strength, for hooked-end type, is extensively 

investigated by Robins et al. (2002) and Cunha et al. (2010). The results of the experimental researches suggest 

that: (i) increasing the matrix strength, and the embedded length, the critical value of the pull-out force 

increases; (ii) the embedded length must be greater than the hooked length to guarantee the employment of the 

mechanical anchorage; (iii) an inclination of 10-20 degrees provides the maximum value of energy absorption. 

Despite this, the inclination of the fibres is not taken into account in the model. 

In order to define an analytical bridging-law, both for straight and hooked-end steel fibres, the experimental 

results obtained by Abdallah et al. (2019) are analysed.  

 

 

Figure 2.11 Pull-out tests on straight steel fibre results. (Abdallah, 2019). 
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In all the tests, can be recognized three different stages: 

1. Elastic range 

2. Partial debonding stage 

3. Fully debonded and frictional pull-out stage 

The average of the results is normalized: the load respect to the maximum pull-out force, FP = 110 N, the slip 

respect to the fibre embedded length, wc = 30 mm. This normalization provides the so-called slippage law per 

“unit embedded length” of the fiber. By the graphical analysis of the normalized experimental data, the 

function in Figure 2.14 is thus obtained. The corresponding analytical formulation is defined as follow:  

1. For 0 <
𝑤i

𝑤c
< 2 × 10−3  

𝐹i

𝐹P
=

𝑤i
𝑤c

2 × 10−3
 (2.23) 

 

 

2. For 2 × 10−3  <
𝑤i

𝑤c
< 1 

𝐹i

𝐹P
= 𝑒

−5.204(
𝑤i
𝑤c

)
(2.24) 

  

3. For  
𝑤i

𝑤c
≥ 1 

𝐹i

𝐹P
= 0  (2.25) 

 . 

 

Figure 2.12 Normalized pull-out curve of straight steel fibre adopted in the Bridged Crack model. 
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The pull-out of straight fibre is reproduced using an exponential decay law after the peak load. 

The same procedure is conducted for the hooked-end steel fibres; experimental pull-out tests results (Abdallah, 

2019) are represented in Figure 2.15.  

  

 

Figure 2.13 Pull-out tests on hooked-end steel fibre results. (Abdallah,2019) 

Also in this case, the experimental curves show the typical phases connected to the hooked-end fibre geometry. 

Particularly, it is remarkable the effect of the two plastic hinges correspondently to the c-d, and e-f curve’s 

range. By the graphical analysis of the normalized experimental data, the function in Figure 2.16 is thus 

obtained. The corresponding analytical formulation is defined as follow:  

 

1. For 0 <
𝑤i

𝑤c
< 0.03 

𝐹i

𝐹P
=

𝑤i
𝑤c

0.03
 (2.26) 

 

2. 0.03 <
𝑤i

𝑤c
≤ 0.05   

𝐹i

𝐹P
= 1 (2.27) 

  

3. For 0.05 <
𝑤i

𝑤c
< 0.1 
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𝐹i

𝐹P
= 1 − 4 (

𝑤i

𝑤c
− 0.05) (2.28) 

 

4. For 0.1 ≤
𝑤i

𝑤c
≤ 0.15 

𝐹i

𝐹P
= 0.8 (2.29) 

 

5. For 0.15 <
𝑤i

𝑤c
≤ 0.18 

𝐹i

𝐹P
= 1 − 13.33 (

𝑤i

𝑤c
− 0.15) (2.30) 

6. For 0.18 <
𝑤i

𝑤c
< 1 

𝐹i

𝐹P
= 0.4 ∙ 𝑒

−5.204(
𝑤i
𝑤c

−0.18)
 (2.31) 

 

7. For 
𝑤i

𝑤c
≥ 1  

 

𝐹i = 0 (2.32) 

  

 

Figure 2.14 Normalized pull-out curve of hooked-end steel fibres adopted in the Bridged Crack Model. 

The pull-out response of the hooked-end is analytically reproduced taking into account the experimental 

peculiarity: the effect of the plastic hinges is considered through the insertion of the two plateaus.  
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These two constitutive slippage laws are currently implemented in the algorithm of the Bridged Crack Model, 

since steel straight and hooked-end steel fibres are the most commonly employed in practical applications. 

Instead for what concern the reinforcement steel rebars, an elastic-perfectly plastic constitutive law was used. 

There is a first elastic stage where the reaction grows linearly with the crack opening displacement. The value 

FP is reached when wi = wy and after this point there is the perfectly plastic stage, in which the reaction remains 

constant without a decay after the peak load. The value of wy is identified by the analysis of the experimental 

campaigns and depends by several aspect: Bar’s diameter, adhesion phenomena between concrete and bars, 

bar’s length and concrete strength. Moreover, the model does not consider the possible rupture (breakage) of 

the reinforcement bars. If necessary, it should be taken into account by estimating a value wc, at which the 

action of the bar suddenly ceases. The corresponding analytical formulation is defined as follow: 

 

1. For 0 < 𝑤i < 𝑤y 

𝐹i

𝐹P
=

𝑤i

𝑤y
 (2.33) 

2. For 𝑤i ≥ 𝑤y 

𝐹i

𝐹P
= 1 (2.34) 

 

 

Figure 2.15 Normalized constitutive law of steel bars adopted in the Bridged Crack Model. 
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2.2.5 Moment rotation response and dimensionless number 

For a given crack depth, 𝑎, and a given applied bending moment, 𝑀, the related bridging forces have been 

evaluated. Also the localized rotation of the cracked cross section can be calculated. In matrix form: 

  

𝜑 = 𝜆MM𝑀 − {𝜆M}T{𝐹} (2.35) 

 

When the fracture moment is achieved the crack depth increases, and the same calculations, regarding fracture 

moment and localized rotation are required for each crack advancement.  

In this way the Crack Length Control Scheme (CLCS) allows to describe the sectional response in terms of 

moment vs localized rotation. From these results, it is also possible to evaluate the load vs deflection response 

of the beam, taking into account also the elastic displacement of the beam midspan.  

The conversion from 𝑀 − 𝜑 to 𝑃 − 𝛿 response, for three-point bending test (TPBT) and four-point bending 

test (FPBT), is developed starting from the simple schemes of Figures 2.16 and 2.17.  

 

Figure 2.16  Evaluation of the beam displacement in case of three-point bending test. 
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      (a) Test with loaded point deflection control               (b) Test with midspan deflection control   

 

Figure 2.17 Determination of the beam displacement in case of four-point bending test.  

For each crack length, the localized rotation of the notched cross-section can be calculated with Eq. 2.35 

On the other hand, the global behaviour of the structural element, which is usually described in terms of the 

applied load vs mid-span deflection diagram, depends on the loading scheme. For instance, in the case of a 

three-point bending (TPB) test (fig. 2.16), the applied load, P, can be related to the internal bending moment 

as: 

𝑃 =
4𝑀

𝑆
 (2.36) 

The consequent total deflection of the beam element can be calculated taking into account both the contribution 

related to the damage localized in the mid-span cross-section and that related to the elastic deformation 

occurring in the remaining part of the beam. The former can be modelled as a non-linear hinge, whereas the 

latter refers to the elastic beam theory, as schematically represented in Fig. 2.16. During the crack propagation 

process, the first contribution becomes dominant, leading to a rigid-body motion of the two halves of the 

specimen rotating around the mid-span hinge. The application of the superposition principle leads to: 

𝛿 = 𝛿el + 𝛿𝜙 =
𝑃𝑆3

48𝐸𝐼
+

𝜙𝑆

4
 (2.37) 

where 𝑆 is the beam span, 𝐼 the inertia of the cross section, and 𝐸 the Young’s Modulus. 

Similar considerations can be drawn for the four-point bending test controlled by the loaded point deflection, 

Figure 2.17 scheme (a). The application points of the forces divide the beam span into three equal parts; with 

this supposition, the value of the load and the corresponding deflection is computed: 

𝑃 =
6𝑀

𝑆
 (2.38) 

𝛿 = 𝛿el + 𝛿𝜙 =
23𝑃𝑆3

1296𝐸𝐼
+

𝜙𝑆

4
=

23𝑀𝑆2

216𝐸𝐼
+

𝜙𝑆

4
 (2.39) 
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From a global point of view, the post-cracking regime is found to be governed by three dimensionless numbers, 

NPb, NPf and Nw, defined as follows: 

𝑁Pb = 𝜌
𝜎y

𝐾IC
 ℎ0.5 (2.40) 

 

𝑁Pf =
∑ 𝐹P,i

𝑛
𝑖=1

𝐾IC𝑏ℎ0.5
= 𝑉𝑓

𝛼 𝛽 𝜎s,max

𝐾IC
 ℎ0.5 = 𝑉𝑓

�̅�s,max

𝐾IC
 ℎ0.5 (2.41) 

                 

𝑁w =  
𝐸𝑤c

𝐾ICℎ0.5
(2.42) 

                                                       

The bars reinforcement brittleness number, NPb, depends on the yield strength of the bars fy, on the steel 

percentage area ρ, on the fracture toughness KIC, and on the beam depth h.  

The fibres reinforcement brittleness number, NPf, depends on the fibre volume fraction, Vf, on the maximum 

value of the generalized tensile stress acting within the reinforcing fibre, �̅�s,max ─in which the parameters of 

fibres distribution, α and β, are included─, on the matrix fracture toughness, KIC, and on the beam depth, h. On 

the other hand, the pull-out brittleness number Nw depends on the matrix Young’s modulus, E, on the 

equivalent embedded length of the fibre, wc, on the matrix fracture toughness, KIC, and on the beam depth, h. 

It is worth stress again that these three dimensionless numbers are scale-dependent. 
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3 Numerical Algorithm  
3.1 Crack Length Control Scheme (CLCS) 

The algorithm of the Bridged Crack Model is implemented in MATLAB language.  

The initialization requires input parameters, which can be divided into the following groups: 

• Beam geometry 

➢ 𝑏 → section thickness 

➢ ℎ → section depth 

➢ 𝑎0→ initial crack depth (or 𝜉0 → normalized initial crack depth) 

➢ 𝐿 → beam length 

➢ 𝑆 → beam span  

 

• Steel bar geometry 

➢ 𝑑b→ bar diameter  

➢ 𝑛b→ number of bars  

 

• Fibre geometry 

➢ 𝑑f→ fibre diameter  

➢ 𝑙f→ fibre length 

➢ 𝑉f→ fibre volume fraction 

➢ 𝜌 → fibre specific weight 

➢ 𝑐1→ position of the first fiber (or 𝜁min→ normalized position) 

➢ 𝑐n→ position of the last fiber (or 𝜁max→ normalized position) 

➢ 𝑤c→ average embedded length of the fiber 

 

• Concrete mechanical properties 

➢ 𝐸 → matrix Young’s modulus 

➢ 𝐾IC → matrix fracture toughness 

➢ 𝑓ck → matrix characteristic cylindrical compression strength  

  



 
 

30 
 

• Steel bar material 

➢ 𝑓y → bar yielding strength  

➢ 𝑤y → opening crack displacement at which the bar is yielded.  

 

• Fibre material 

➢ 𝑓u → fibre ultimate tensile strength  

➢ 𝜎s → fibre slippage strength  

 

• Process control 

➢ 𝑎max→ final crack depth (or 𝜉max→ normalized final crack depth) 

➢ 𝛥𝜉 → normalized crack depth increment at each calculation step 

➢ 𝑛 → number of fibres modelling 

➢ 𝑡𝑜𝑙𝑙 → iteration tolerance 

The actual number of fibres is evaluated through the Eq. (2.3). However, it can be really high, affecting the 

computation time. To avoid this problem, the input data include the fibres number; the numerical code is able 

to define an equivalent bridging force in order to guarantee the equivalence between the two distributions. The 

effect of different numbers of fibres modelling regards the local phenomenon, whereas the global response 

remains unchanged. 

As seen in Chapter 2, the fibres are considered evenly spaced in the entire ligament, between 𝑐1 and 𝑐𝑛 (Figure 

2.1). The constitutive law is defined, on the basis of the type of reinforcement. For straight and hooked-end 

steel fibres and for steel rebars the bridging laws implemented are illustrated in section 2.2.4. 

After the input data initialization, at each k-th step the crack depth is increased as follow: 

𝜉(𝑘+1) = 𝜉(𝑘) + ∆𝜉 (3.1) 

 

where the apex (k) indicates the generic calculation step. 

The fibre is defined active if: 

𝜁i < 𝜉(𝑘) (3.2) 
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The algorithm is based on the following steps: 

1. Data initialization; 

2. Actual crack depth. At the first step it is assumed equal to a0; 

3. Compute the m active fibres; 

4. Compute compliances; 

5. Initialize 𝑛c and 𝑛f. At the first step, it is assumed 𝑛c = 𝑚, 𝑛f = 0; 

6. Initialize {𝑤old}. At the first step, it is assumed {𝑤𝑜𝑙𝑑} = 0. 

7. Computed the m bridging actions {𝐹} 

7.1. loop entering conditions: 

If 𝐹i > 𝐹P or 𝐹i < −𝐹P, → 𝐹i = 𝐹P; 

Update 𝑛c and 𝑛f, and return to step 7. 

8. Compute the 𝑚 crack opening displacements {𝑤}, with Eq. (2.21). 

8.1. loop entering condition:  

If  𝑤i < 𝑤old,i(1 − 𝑡𝑜𝑙𝑙) 𝑜𝑟 𝑤i > 𝑤old,i(1 + 𝑡𝑜𝑙𝑙) 

If 𝐹i ≠ 𝐹(𝑤i) , → 𝐹i = 𝐹(𝑤i); 

Update 𝑛c , 𝑛f, 𝐹i 

Save 𝑤old,i = 𝑤i and return to step 3. 

 

9. Compute localized rotation of the cracked cross-section, 𝜑, with Eq. (2.35); 

10. Compute crack propagation moment, 𝑀F, with Eq. (2.9); 

11. Save results: 𝑀F,{𝑤},{𝐹},𝜑 

12. Update crack depth, 𝜉(k+1) = 𝜉(𝑘) + 𝛥𝜉 and return to step 2 if 𝜉(k+1) < 𝜉max. 

13. Computation of TPBT or FPBT force and the corresponding deflection, with Eq. from (2.36) to (2.39) 

The process is thus controlled by increasing the crack length (Crack Length Control Scheme). Using this 

technique, the discontinuous phenomena characterizing the post-cracking response, i.e., snap-back and snap-

through instabilities are described by the model, as extensively discussed by Carpinteri and Accornero (2019). 
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3.2 Numerical errors 

The predicted response is affected by distance between the crack tip and the closest active fibre. This issue is 

due to the shape function 𝑌F(𝜉, 𝜁𝑖)  (Eq. 2.9), that provides a singularity for 𝜉 = 𝜁𝑖. In order to avoid this 

problem, the following conditions are imposed in the numerical code: 

𝛥𝜉 = 0.005 (3.3) 

𝜉 − 𝜁𝑖 > 0.05𝛥𝜉 (3.4) 

Typical examples of numerical problems related to the crack depth increment, 𝛥𝜉, are shown in Figure 3.1 and 

Figure 3.2. The curves are obtained imposing the same mechanical and geometrical parameters, but different 

values of 𝛥𝜉. Particularly, in the first case (Figure 3.3), the peak is the consequence of a too low 𝛥𝜉 (0.0005). 

On the other hand, the second picture is found using a too high 𝛥𝜉 value (0.05), so the peak is too low that 

cannot be recognizable. A more realistic solution is obtained when the value of Eq. (3.3) is adopted, and the 

corresponding result is shown in Figure 3.3. 

 

Figure 3.1 Load deflection curve obtained with a value of =0.0005. 
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Figure 3.2 Load deflection curve using the value of  =0.05. 

 

 

Figure 3.3 Load deflection curve using the value of =0.005. 
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3.3 Number of fibres 

Another input parameter that influences the predicted 𝑀 − 𝜑  response is the number of fibres, n.  Using a low 

number of n, the reaction generated by the fictitious fibres is considerably greater than that which occurs in 

the real fibres. This, combined with the fact that shape function 𝑌F(𝜉, 𝜁𝑖) (Eq. 2.11) returns high values if the 

edge of the crack is very close to one of the fictitious fibres, can lead to local high load peaks when the opening 

crack crosses one of the fibres, even if the global response remains the same. Especially, the post cracking 

response deviates from the real one, showing an abnormal peak, as is shown in Figure 3.4. these aspects can 

be improved by increasing the number of fibres, n, approaching the theoretical number of fibers predicted by 

Eq. 2.3.  

 

Figure 3.4 Load deflection curve using a low number of fibres, n = 10 
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Figure 3.5 Load deflection curve using an high number of fibres, n = 200 

 

Figure 3.6 Load deflection curve using an intermediate number of fibres, n = 40 
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4 Dimensional Analysis and Numerical Simulations 

4.1 Buckingham’s 𝝅 Theorem 

Dimensional analysis concepts can be used to define the functional dependence between physical quantities 

that are relevant for a certain phenomenon under investigation. The Buckingham’s 𝜋 theorem (Buckingham, 

1915) states that the functional dependence between a certain number of variables can be reduced to obtain a 

set of dimensionless groups (Pi groups), which describe synthetically the physical phenomenon. The form of 

the functional dependence is still unknown, and it has to be defined by means of experimental tests.  

The application of the 𝜋 Theorem requires the definition of the variables involved in the phenomenon. Among 

these, the output parameter, 𝑞0, is a function of a number of variables: 

𝑞0 = 𝑓(𝑞1, 𝑞2, … 𝑞n; 𝑠1, 𝑠2, … 𝑠m; 𝑟1, 𝑟2, … 𝑟k) (4.1) 

where 𝑞i are quantities with independent physical dimension; the dimensions of parameters 𝑠i can be, instead, 

expressed as products of powers of the dimensions of the parameters 𝑞i. The 𝑟i quantities are dimensionless. 

The product of 𝑛 dimensionally independent are considered: 

𝑞1
𝛼10𝑞2

𝛼20 … 𝑞𝑛
𝛼𝑛0 = ∏ 𝑞i

𝛼𝑖0

𝑛

i=1

 (4.2) 

to make dimensionless the output parameter, with a suitable choice of 𝛼i0. By this way, all the 𝑠i quantities 

can be transformed in dimensionless variables, as follow: 

𝑞0

𝑞1
𝛼10𝑞2

𝛼20 … 𝑞n
𝛼𝑛0 = �̃� (

𝑠1

𝑞1
𝛼11𝑞2

𝛼21 … 𝑞n
𝛼n1

 ,
𝑠2

𝑞1
𝛼12𝑞2

𝛼22 … 𝑞n
𝛼n2

 , … ,
𝑠m

𝑞1
𝛼1m𝑞2

𝛼2m … 𝑞n
𝛼nm

; 𝑟1, 𝑟2, … , 𝑟k) (4.3) 

These dimensionless groups are called 𝛱1, 𝛱2, 𝛱3,…,𝛱m; the functional relationship can thus be reduced to 

the much more compact form: 

Π0 = �̃�(Π1, Π2, Π3, … , Πm; 𝑟1, 𝑟2, … , 𝑟𝑘) = 0 (4.4) 

In this section, the Buckingham’s 𝜋 theorem is applied to describe the flexural behaviour of a HRC beam, in 

the framework of the Bridged Crack Model. 

The crack propagation phenomenon in the mid-span cross section is assumed to be governed by the following 

physical variables, listed together with their physical dimensions:  

➢ Beam geometry 

• ℎ [𝐿], beam depth; 

• 𝑏 [𝐿], beam thickness; 
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• 𝑎0 [𝐿], initial crack depth.  

➢ Matrix properties 

• 𝐾IC [𝐹][𝐿]−1.5, matrix fracture toughness; 

• 𝐸 [𝐹][𝐿]−2, matrix Young’s modulus; 

➢ Bar properties 

• 𝜌 [−], reinforcement percentage; 

• 𝜎y[𝐹][𝐿]−2, steel yielding strength; 

➢ Fibre characteristic 

• 𝜎s [𝐹][𝐿]−2, fibre slippage strength; 

• 𝑉f [−], fibre volume ratio    

• 𝑤c [𝐿], average embedded length of the fibres; 

• 𝑛 [−], the exponent of bridging law decay;   

• 𝛼, 𝛽 [−], fibre distribution coefficients; 

➢ 𝑀F [𝐹][𝐿], crack propagation moment; 

➢ 𝜑 [−], localized rotation;  

 

 

𝐹(𝑀F, 𝜑, 𝐾IC, 𝜎s, 𝑉f, 𝜎y, 𝐸, 𝑤c, 𝜌, 𝛼, 𝛽, 𝑛, ℎ, 𝑏, 𝑎0, ) = 0 (4.5) 

The fundamental physical dimensions involved in the problem are force [F] and length [L]. In this respect, if 

KIC and h are assumed as independent variables, the application of Buckingham’s Theorem leads to the 

following formulation: 

Π (
MF

𝐾IC𝑏ℎ1.5
 , 𝜑 ,

𝜎𝑠ℎ0.5

𝐾IC
, 𝑉f,

𝜎𝑦

𝐾IC
ℎ0.5 ,

𝐸ℎ0.5

𝐾IC
 ,

𝑤c

ℎ
 , 𝜌, 𝛼, 𝛽 , 𝑛,

𝑏

ℎ
,
𝑎0

ℎ
) = 0 (4.6)  

in which just dimensionless quantities are involved. 

Π (
MF

𝐾IC𝑏ℎ1.5
 , 𝜑 

𝐸ℎ0.5

𝐾IC
; 𝜌 

𝜎y

𝐾IC
ℎ0.5, 𝑉f

𝜎s

𝐾IC
 ℎ0.5,

𝐸𝑤c

𝐾ICℎ0.5
 ;

𝑏

ℎ
,
𝑎0

ℎ
) = 0 (4.7) 

Then, considering a fixed geometrical properties, a further reduction in the involved parameters can be 

obtained: 

Π (
MF

𝐾IC𝑏ℎ1.5
 , 𝜑 

𝐸ℎ0.5

𝐾IC
; 𝑁Pb, 𝑁Pf, 𝑁w ) = 0 (4.8) 



 
 

39 
 

in which the dependence of the MF-Φ response on the three dimensionless numbers, NPf, NPb and Nw, is found. 

The first one, the bars reinforcement brittleness number, 𝑁Pb , shows this expression:  

𝑁Pb = 𝜌 
𝜎y

𝐾IC
ℎ0.5 (4.9) 

The second dimensionless parameter, the fibre reinforcement brittleness number, has the following expression: 

𝑁Pf = 𝑉f

𝜎s

𝐾IC
 ℎ0.5 (4.10) 

And the sum of this parameter gives us the total reinforcement brittleness number: 

𝑁Ptot = 𝑁Pb + 𝑁Pf (4.11) 

The pull-out brittleness number has the following expression: 

𝑁w =
𝐸𝑤c

𝐾ICℎ0.5
 (4.11) 

which depends on the equivalent embedded length of the fiber.   

These three parameters affect the post-cracking behaviour of the composite. More precisely, 𝑁Pb and 

𝑁Pf mainly affect the so called stage II of the post-cracking phase, which can range from catastrophic to strain 

hardening. By increasing, 𝑁Ptot, called also reinforcement brittleness number, it is possible to identify the 

critical value of  𝑁Ptot , 𝑁PC, which correspond to the minimum reinforcement condition. This condition can 

be achieved in three cases: 

• Only with fibre reinforcement (𝑁Pf = 𝑁PC;  𝑁Pb = 0); 

• Only with bar reinforcement (𝑁Pf = 0; 𝑁Pb = 𝑁PC); 

• With a combination of fibre and bar reinforcement (𝑁Pf ≠ 0;  𝑁Pb ≠ 0; 𝑁Pf + 𝑁Pb = 𝑁PC). 
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4.2 Influence of 𝑵𝐏𝐛 on the flexural response 

To understand the role of the bars reinforcement brittleness number, several TPBT numerical simulations are 

conducted. In each figure, the effect of 𝑁Pb (ranging from 0 to 1) is evaluated for a specific combination of 

𝑁Pf and 𝑁w. Their value is chosen from: 

•  𝑁Pf = [0.3; 0.9; 1.5] 

• 𝑁w = [406; 1219; 2437] 

Geometrical and mechanical properties assumed for the prismatic specimen are summarized in Table 4.1. The 

slippage constitutive law of hooked-end fibre and the elastic-perfectly plastic law for bars are considered.   

Beam thickness b [mm] 150 

Beam depth h [mm] 150 

Notch depth a0 [mm] 7.5 

Dimensionless notch depth a0/h [/] 0.05 

Beam span S [mm] 500 

Beam length L [mm] 550 

Young’s modulus E [MPa] 31500 

Fracture toughness KIC [kg/cm1.5] 23 

Concrete compressive strength fcm [MPa] 38 

Fibre diameter df [mm] 0.75 

Fibre length lf [mm] 35 

Fibre tensile strength fu [MPa] 1100 

Number of fibres modelling n [/] 40 
 

Table 4.1 Geometrical and mechanical properties of the HRC specimen 
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Figure 4.1 Influence of NPb on flexural response 

 

Figure 4.2 Influence of NPb on flexural response 

 

Figure 4.3 Influence of NPb on flexural response 
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Figure 4.4 Influence of NPb on flexural response 

 

Figure 4.5 Influence of NPb on flexural response 

 

Figure 4.6 Influence of NPb on flexural response 
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Figure 4.7 Influence of NPb on flexural response 

 

Figure 4.8 Influence of NPb on flexural response 

 

Figure 4.9 Influence of NPb on flexural response 
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As the graphs show, the bars reinforcement brittleness number mainly influences the level of the plastic 

plateau. In the fig 4.1, 4.2 and 4.3 it is noted how by increasing the value of 𝑁Pb, the minimum reinforcement 

condition can be reached even with low values of 𝑁Pf and 𝑁w 
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4.3 Influence of 𝑵𝐏𝐟 on the flexural response 

To understand the role of the fibre reinforcement brittleness number, several TPBT numerical simulations are 

conducted. In each figure, the effect of 𝑁Pf (ranging from 0 to 1.5) is evaluated for a specific combination of 

𝑁Pb and 𝑁w. their value is choses from: 

•  𝑁Pb = [0.2; 0.6; 1.0]; 

• 𝑁w = [406; 1219; 2437]. 

Geometrical and mechanical properties assumed for the prismatic specimen are summarized in Table 4.2. The 

slippage constitutive law of hooked-end fibre and the elastic-perfectly plastic law for bars are considered.   

Beam thickness b [mm] 150 

Beam depth h [mm] 150 

Notch depth a0 [mm] 7.5 

Dimensionless notch depth a0/h [/] 0.05 

Beam span S [mm] 500 

Beam length L [mm] 550 

Young’s modulus E [MPa] 31500 

Fracture toughness KIC [kg/cm1.5] 23 

Concrete compressive strength fcm [MPa] 38 

Fibre diameter df [mm] 0.75 

Fibre length lf [mm] 35 

Fibre tensile strength fu [MPa] 1100 

Number of fibres modelling n [/] 40 
 

Table 4.2 Geometrical and mechanical properties of the HRC specimen 
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Figure 4.10 Influence of NPf on flexural response 

 

Figure 4.11Influence of NPf on flexural response 

 

Figure 4.12 Influence of NPf on flexural response 



 
 

47 
 

 

Figure 4.13 Influence of NPf on flexural response 

 

Figure 4.14 Influence of NPf on flexural response 

 

Figure 4.15 Influence of NPf on flexural response 
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Figure 4.16 Influence of NPf on flexural response 

 

Figure 4.17 Influence of NPf on flexural response 

 

Figure 4.18 Influence of NPf on flexural response 
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The value of 𝑁Pf influences in particular the immediately post-cracking response. Fig. 4.10, 4.11 and 4.12 

show how, by increasing 𝑁Pf , there is a ductile-to-brittle transition regarding the Stage II of the response, even 

if the content of bars reinforcement is not sufficient to guarantee an hardening response. In all cases, the 

contribution of the fibres tends to vanish with the complete disconnection of the cracked cross-section, 

regardless of the value of 𝑁Pf. 
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4.4 Influence of 𝑵𝐰 on the flexural response 

To understand the role of the pull-out brittleness number, several TPBT numerical simulations are conducted. 

In each figure, the effect of 𝑁w (ranging from 203 to 2437) is evaluated for a specific combination of 𝑁Pb and 

𝑁Pf. Their value is choses from:  

•  𝑁Pb = [0.2; 0.6; 1.0]; 

• 𝑁Pf = [0.3; 0.9; 1.5]. 

Geometrical and mechanical properties assumed for the prismatic specimen are summarized in Table 4.3. The 

slippage constitutive law of hooked-end fibre and the elastic-perfectly plastic law for bars are considered.   

Beam thickness b [mm] 150 

Beam depth h [mm] 150 

Notch depth a0 [mm] 7.5 

Dimensionless notch depth a0/h [/] 0.05 

Beam span S [mm] 500 

Beam length L [mm] 550 

Young’s modulus E [MPa] 31500 

Fracture toughness KIC [kg/cm1.5] 23 

Concrete compressive strength fcm [MPa] 38 

Fibre diameter df [mm] 0.75 

Fibre length lf [mm] 35 

Fibre tensile strength fu [MPa] 1100 

Number of fibres modelling n [/] 40 
 

Table 4.3 Geometrical and mechanical properties of the HRC specimen 
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Figure 4.19 Influence of Nw on flexural response 

 

Figure 4.20 Influence of Nw on flexural response 

 

Figure 4.21 Influence of Nw on flexural response 
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Figure 4.22 Influence of Nw on flexural response 

 

Figure 4.23 Influence of Nw on flexural response 

 

Figure 4.24 Influence of Nw on flexural response 
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Figure 4.25 Influence of Nw on flexural response 

 

Figure 4.26 Influence of Nw on flexural response 

 

Figure 4.27 Influence of Nw on flexural response 
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The value of Nw influences the fibre’s contribution; with a low value of 𝑁w the effect of the fibres vanished 

quickly and the response of the element tends to the plastic plateau due to the bars reinforcement. Moreover, 

Nw becomes particularly relevant when the content of bars is low, as can be seen from the fig.4.19, 4.20 and 

4.21. 
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4.5 Minimum reinforcement condition 

By means of the Bridged Crack Model, the minimum reinforcement condition has been extensively discussed 

by assuming a rigid-perfectly plastic constitutive law to describe the yielding mechanism of the reinforcing 

layers (Carpinteri, 1984). The critical value of the brittleness number, NPC, which governs the ductile-to-brittle 

transition, makes it possible to evaluate the minimum steel percentage that guarantees a stable post-peak 

response, as a function of the relative initial crack depth, a0/h, and of the relative position of the reinforcement 

layer, c0/h (c0 being the thickness of the concrete cover). 

Subsequently, a similar analysis was performed in the case of FRC elements, and it was shown that increasing 

the fibre volume ratio led to a brittle-ductile transition of the element's behaviour (Carpinteri, 1996). This 

transition is governed by two dimensionless numbers: the fibre reinforcement brittleness number, 𝑁Pf, and the 

pull-out brittleness number, 𝑁w 

On the other hand, the present numerical analysis shows that, to fully describe the post-cracking regime of the 

HRC cross-section, all these dimensionless parameter must be taken into account. 

From Eq. 4.10, the critical value of the reinforcement brittleness number 𝑁𝑃𝐶 , can be reached with different 

combination of 𝑁Pb and 𝑁Pf. So, for a different values of a0/h and c0/h, the condition of minimum reinforcement 

is investigated. The results are shown in fig. 4.28 and 4.30. Instead, fig. 4.29 and 4.31 show how, by increasing 

the bar content (and therefore 𝑁Pb ), the minimum reinforcement condition can also be achieved using a lower 

fibre content than is necessary for an FRC element and vice versa for an RC element. 

 

Figure 4.28 Minimum reinforcement condition, NPf – NPb diagram 
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Figure 4.29 Minimum reinforcement condition, NPtot – NPb diagram 

 

 

Figure 4.30 Minimum reinforcement condition, NPf – NPb diagram 



 
 

57 
 

 

 

Figure 4.31 Minimum reinforcement condition, NPtot – NPb diagram 

As is shown in figure 4.28 and 4.30 the minimum reinforcement condition was investigated for a different 

combination of 𝑁Pb and 𝑁Pf. The two values can be connected with good approximation using a linear 

correlation, described by the following expression:  

For   𝜉 = 0.05;  𝜁 = 0.10:  

   𝑁Pb = −0.49𝑁Pf + 0.45 (4.12) 

For   𝜉 = 0.10;  𝜁 = 0.11: 

   𝑁Pb = −0.49𝑁Pf + 0.32 (4.12) 

 

The two expressions have a similar angular coefficient, while the known term is equal to the value of  𝑁PC that 

occurs in the presence of only reinforcement bars (that depends by a0/h and c0/h), that is, when: 

𝑁Pf = 0; 𝑁Pb = 𝑁PC 
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59 
 

5 Experimental results 
5.1 Introduction 

The design of HRC members requires wide experimental campaigns. Experimental tests are fundamental to 

define the mechanical properties of the constituent materials, and to provide the so-called mix design of the 

composite. Once these parameters have been defined it’s possible use the bridged crack model to search for 

the minimum reinforcement condition. 

This argument has been extensively discussed in the past, in the case of ordinary reinforced concrete beams 

and fibre reinforced concrete beam. In the first case (RC beams) the minimum reinforcement condition is 

uniquely described by the reinforcement brittleness number, 𝑁Pb (Bosco and Carpinteri, 1990). The latter, in 

case of yielding bridging mechanism of the steel rebars, is a function of steel yielding stress, concrete fracture 

toughness, steel area percentage, and beam depth, making possible the evaluation of the size effects on the 

phenomenon.  

Subsequently, the definition of the minimum reinforcement condition was extended to FRC structural 

elements. As discussed in the previous section, another geometrical property has to be considered in the 

dimensional analysis: the embedded length of the fibre, 𝑤c. Thus, there are finally two dimensionless 

parameters to describe completely the flexural response: 𝑁w and 𝑁Pf. Reinforcement geometry, its resistance 

and finally its volume ratio can be thus defined on the basis of these dimensionless parameters, keeping also 

the effect of the size variation among test specimen and structural element.  

In this work, the discussion about the minimum reinforcement condition is extended to HRC structural 

elements. The simultaneous presence of bars and fibres means that the response of the HRC element has aspects 

common to those of the FRC and RC ones. Therefore, in this case, the flexural response is briefly described 

by all three parameters previously seen: 𝑁Pb, 𝑁Pf and 𝑁w 

In this Chapter three experimental campaigns, conducted by other Authors, are analysed. The main features 

characterizing each work are the matrix concrete composition, the fibre type and the amount of reinforcing 

fibres, the bars type and the range of steel percentage considered, the presence or absence of the initial notch, 

and finally the test setup. For each work, these main features are described. Then, the results of recognizing of 

material properties are summarized.  

By applying this procedure to the experimental 𝑃 − 𝛿 curves of the FRC elements it was possible to identify 

the parameters relating to the concrete matrix and to the reinforcing fibres (𝜎s , 𝑤c). The fracture toughness, 

𝐾IC,  is directly connected to the first cracking moment. On the other hand, by analyzing the post-cracking 

regime of the composite, fibre slippage strength, 𝜎s, and its embedded length, 𝑤c, are estimated. Particularly, 

the embedded length governs mainly the softening branch, in which the slippage phenomenon is prevalent. It 

is worth notice that the matrix properties are uniquely defined, whereas the bridging force and the fibre 

embedded length depends on the fibre distribution. Subsequently, considering the average of the three 

parameters, the same procedure was repeated on the experimental 𝑃 − 𝛿 curves of the HRC elements in order 
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to estimate the mechanical parameters of the bars, namely the crack opening corresponding to the yielding of 

the bar, 𝑤y,  and the yield strength, 𝜎y.  

Thus, on the bases of these five estimated parameters, the dimensionless quantities 𝑁Pb, 𝑁Pf and 𝑁w are 

computed and the numerical 𝑃 − 𝛿 curves were reproduced again, which showed a good correspondence with 

the experimental ones. The same procedure is repeated for each experimental curve.  

.  
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5.2 Comparison with experimental data 

5.2.1 Holschemacher et al. experimental work 

In the experimental campaign carried out by Holschemacher et al. (2010), the influence of geometry and tensile 

strength of fibres, as well as the effects of different reinforcement ratios was investigated. The  fibre contents 

were 0, 20, 40 and 60 Kg\m3 for two different type of fibres (F1 type and F2 type). Instead, the steel bars 

reinforcement percentages were 0.00, 0.25 and 1.00% for a total of 24 tested specimens.  To determine the 

fracture parameters of the HRC composite, unnotched beams were tested under four point loading according 

to the German regulations for SFRC on small beams (15 × 15 × 70 𝑐𝑚). In the following, the main variables 

of the experimental campaign, including the results, are summarized. 

 

• MATERIALS 

 

➢ Matrix 

The matrix mixture presents a compressive strength of 86 Mpa. 

➢ Fibre 

Two type of Steel hooked-end Fibres (SF) were used. Their mechanical and geometrical properties are reported 

in Table 5.1. 

 F1 F2 

Fibre diameter df [mm] 1 1 

Fibre length lf [mm] 50 50 

Fibre aspect ratio λ [-] 50 50 

Fibre tensile strength fu  [MPa] 1100 1900 
Table 5.1 Fibre mechanical and geometrical properties.  
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•  TEST SETUP 

Casting of the specimens, their curing and the experimental setup were chosen according to the German 

regulations. Accordingly, the beams were loaded orthogonal to the casting direction. The load was controlled 

using a displacement method with a rate of 0.2 mm/min. The deflection was recorded by two LVDTs (one of 

each side of the beam). Eighteen small beams (15 × 15 × 70 𝑐𝑚)  were casted for each fibre content. Among 

them 12 were with two different steel bar reinforcement ratios (six with 0.25% and six with 1.0%) and six 

beams without steel reinforcement. The distance between the bottom edge of the reinforcing steel and the 

concrete surface was 2 cm. Longitudinal tensile reinforcement had hooks at the beam ends to ensure adequate 

anchorage. The hardened properties of the mixture were tested 28 days after casting. The specimens are u-

notched, so during the modelling will be considered a fictitious initial notch of: 

𝑎0

ℎ
= 0.05 = 7.5 𝑚𝑚 

And the bar’s concrete cover is equal to 20 mm, so: 

𝑐0

ℎ
= 0.13 = 20 𝑚𝑚 

 A scheme of the test setup is shown in Fig. 5.1. 

 

Figure 5.1 FPBT setup on specimen, Holschemacher (2010) 

  



 
 

63 
 

• IDENTIFICATION 

➢ Part 1 (FRC) 

For each experimental 𝑃 − 𝛿 curves of the FRC elements, a best fitting procedure was applied in order to 

defining the average values of 𝐾IC,  𝜎s, and  𝑤c. 

 

Figure 5.2 Best fitting for curves A, respectively with 20,40 and 60 kg/m3 of fibre content 
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Figure 5.3 Best fitting for curves D, respectively with 20,40 and 60 kg/m3 of fibre content 
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The identifying parameters are collected in Table 5.2 and 5.3. 

 

ID KIC σs Kwc 

20 A 38.5 454 0.31 
40 A 40.2 403 0.22 
60 A 42.6 361 0.22 
AVG 40.4 406 0.25 

Table 5.2 Average value of mechanical parameters 

On the hand, for fibre-type F2: 

ID KIC σs Kwc 

20 D 40.3 525 0.50 
40 D 40.2 437 0.21 
60 D 40.2 350 0.27 
AVG 40.2 437 0.33 

Table 5.3 Average value of mechanical parameters 
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➢ Part 2 (HRC) 

For each experimental 𝑃 − 𝛿 curves of the HRC elements, a best fitting procedure was applied in order to 

defining the average values of 𝜎y, and  𝑤y 

 

Figure 5.4 Best fitting for curves B (bar reinforcement 2Φ6), respectively with 20,40 and 60 kg/m3 of fibre content 
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Figure 5.5 Best fitting for curves C ( bar reinforcement 2Φ12), respectively with 20,40 and 60 kg/m3 of fibre content 
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Figure 5.6 Best fitting for curves E (bar reinforcement 2Φ6), respectively with 20,40 and 60 kg/m3 of fibre content 
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Figure 5.7 Best fitting for curves F (bar reinforcement 2Φ12), respectively with 20,40 and 60 kg/m3 of fibre content 
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The identifying parameters are collected in Table from 5.4 to 5.7: 

 

ID wy  σy 

20 B 0.7 730 
40 B 1 730 
60 B 1 640 
AVG 0.9 700 

                                                           Table 5.4 Average value of mechanical parameters 

 

ID wy  σy 

20 C 0.8 560 
40 C 0.9 550 
60 C 0.9 550 
AVG 0.87 553 

                                                           Table 5.5 Average value of mechanical parameters 

 

ID wy  σy 

20 E 0.6 670 
40 E 0.5 630 
60 E 0.7 550 
AVG 0.6 616 

                                                           Table 5.6 Average value of mechanical parameters 

 

ID wy  σy 

20 F 0.7 550 
40 F 0.7 530 
60 F 0.6 510 
AVG 0.67 530 

                                                           Table 5.7 Average value of mechanical parameters 
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• PREDICTION 

using the average parameters obtained from the best fitting procedure, the 𝑃 − 𝛿 experimental curves of the 

HRC elements were reproduced and are showed in following figures. 

 

Figure 5.8 Predictions for curves B (bar reinforcement 2Φ6), respectively with 20,40 and 60 kg/m3 of fibre content 
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Figure 5.9 Predictions for curves C (bar reinforcement 2Φ12), respectively with 20,40 and 60 kg/m3 of fibre content 
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Figure 5.10 Predictions for curves E (bar reinforcement 2Φ6), respectively with 20,40 and 60 kg/m3 of fibre content 
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Figure 5.11 Predictions for curves F (bar reinforcement 2Φ12), respectively with 20,40 and 60 kg/m3 of fibre content 
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5.2.2 Mobasher et al. experimental work 

In the experimental campaign conducted by Mobasher et al. (2015), the influences of geometry and tensile 

strength of fibres as well as the effects of different reinforcement ratios were investigated. The fibre contents 

were 25, 50 and 60 Kg\m3. Normal strength concrete used fibre type RC 65/60 BN at 25 and 50 Kg\m3 while 

HSC used fibre type RC 80/60 BP at 60 Kg\m3. Instead, the steel bars reinforcement percentages used were 

0.00, 0.25, 0.56 and 1.00% for a total of 12 beams studied. All beams had a cross section of 0.20x0.20 m, with 

two different span lengths of 1.0 and 2.0 m.  To determine the fracture parameters of the HRC composite, un-

notched beams were tested under four point loading according to full scale beam test from Brite/Euram project 

BRPR-CT98_0813.  

In the following, the main variables of the experimental campaign, including the results, are summarized. 

 

• MATERIALS 

 

➢ Matrix 

There are two different mixtures of concrete used in this work: a normal (NSC) and an high strength concrete 

(HSC). Normal strength concrete used fibre type RC 65/60 BN at 25 and 50 Kg\m3 while HSC used fibre type 

RC 80/60 BP at 60 Kg\m3. 

➢ Fibre 

Steel hooked-end Fibres (SF) were used. Their mechanical and geometrical properties, and their volume ratio 

are reported in Tables 5.9. 

  

Fibre diameter df [mm] 0.75 

Fibre length lf [mm] 35 

Fibre aspect ratio λ [-] 47 

Fibre tensile strength fu  [MPa] 1100 
Table 5.8 Fibre mechanical and geometrical properties. 
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Table 5.10 provides the details of the 12 beam series. 

 

Table 5.9 details of beam series 
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• TEST SETUP 

Normal strength concrete reinforced with fibre type RC 65/60 BN at 25 and 50 Kg\m3 while HSC used fibre 

type RC 80/60 BP at 60 Kg\m3. All beams had a cross section of 0.20x0.20 m, with two different span lengths 

of 1.0 and 2.0 m and tested under four point bending set up with a constant spacing between the two point 

loads at 0.2 m. the first half of the series (B1-B6) contains no rebar and the other half contained two rebars of 

size 8, 12 and 16 mm. Steel parameters were Young’s modulus of 200 GPa and a concrete cover of 15 mm. 

The specimens are unnotched, so during the modelling will be considered a fictitious initial notch of: 

𝑎0

ℎ
= 0.05 = 10 𝑚𝑚 

And the bar’s concrete cover is equal to 15 mm, so: 

𝑐0

ℎ
= 0.075 = 15 𝑚𝑚 

 A scheme of the test setup is shown in Fig. 5.12. 

 

Figure 5.12 FPBT setup on specimen, Mobasher (2015) 
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➢ Part 1 (FRC) 

For each experimental 𝑃 − 𝛿 curves of the FRC elements, a best fitting procedure was applied in order to 

defining the average values of 𝐾IC,  𝜎s, and  𝑤c. 

 

Figure 5.13 Best fitting for curves B1, B3 and B5, respectively with 25, 50 and 60 kg/m3 of fibre content 
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Figure 5.14 Best fitting for curves B2, B4 and B6, respectively with 25, 50 and 60 kg/m3 of fibre content 
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ID σs Kwc 

B1 385 0.20 
B3 190 0.40 
B5 320 0.38 
B2 150 0.30 
B4 240 0.30 
B6 251 0.36 

AVG 256 0.32 
Table 5.10 Average value of mechanical parameters 

 

ID KIC AVG 

B1 20.1 18.3 
B3 20.1 
B2 15.9 
B4 17.2 
B5 27.9 25.7 
B6 23.4 

Table 5.11 Average value of fracture toughness 
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➢ Part 2 (HRC) 

For each experimental 𝑃 − 𝛿 curves of the HRC elements, a best fitting procedure was applied in order to 

defining the average values of 𝜎y, and  𝑤y 

 

 

Figure 5.15 Best fitting for curves B7, B9 and B11 , respectively with 25,50 and 60 kg/m3 of fibre content 
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Figure 5.16 Best fitting for curves B8, B10 and B12 , respectively with 25,50 and 60 kg/m3 of fibre content 
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The identifying parameters are collected in Tables 5.12 and 5.13: 

ID wy  σy 

B7 1.1 520 
B9 2 450 
B11 2.1 490 

AVG 1.7 487 
                                                           Table 5.12 Average value of mechanical parameters 

 

ID wy  σy 

B8 1.9 380 
B10 2.4 360 
B12 2.6 430 

AVG 2.3 390 
                                                           Table 5.13 Average value of mechanical parameters 
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• PREDICTION 

using the average parameters obtained from the best fitting procedure, the 𝑃 − 𝛿 experimental curves of the 

HRC elements were reproduced and are showed in following figures. 

 

Figure 5.17 Predictions for curves B7(2Φ8), B9(2Φ12), B11(2Φ16), respectively with 25,50 and 60 kg/m3 of fibre content 
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Figure 5.18 Predictions for curves B8(2Φ8), B10(2Φ12), B12(2Φ16), respectively with 25,50 and 60 kg/m3 of fibre content 
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5.2.3 Fantilli et al. experimental work 

In the experimental campaign conducted by Fantilli et al. (2020), the influence of geometry and tensile strength 

of fibres as well as the effects of different reinforcement ratios was investigated. The fibre contents were 0.00, 

0.50 and 0.75% for two different type of fibres (Type 1 and Type2). Instead, the steel bars reinforcement 

percentages used was 0.00 and 0.12%; for each combination were tested 3 beams for a total of 24 beams 

studied.  To determine the fracture parameters of the HRC composite, unnotched beams were tested under 

three point loading using an MTS testing machine.  

In the following, the main variables of the experimental campaign, including the results, are summarized. 

 

• MATERIALS 

 

➢ Matrix 

The matrix mixture presents a compressive strength of 50 Mpa. 
 

➢ Fibre 

Two type of Steel hooked-end Fibres (SF) were used. Their mechanical and geometrical properties, and their 

volume ratio are reported in Tables 5.14. 

 Type 1 Type 2 

Fibre diameter df [mm] 0.38 0.71 

Fibre length lf [mm] 30 60 

Fibre aspect ratio λ [-] 79 84 

Fibre tensile strength fu  [MPa] 3070 2600 
Table 5.14 Fibre mechanical and geometrical properties. 

.  
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•  TEST SETUP 

The beams were tested in three-point bending test by using an MTS testing machine. As linear supports (at 

distance of 600 mm), and for the application of load as well, steel cylinders were used. A load cell of 100 kN 

was used to apply the load P, and two LVDT’s measured the midspan deflection δ on the two sides of the beam 

(depurated by the support settlements). The bending test were performed under displacement control, at the 

velocity of 0.08 mm per minute up to the maximum load. Afterword, the velocity increased to 0.20 mm per 

minute. 

Six small beams (15 × 15 × 70 𝑐𝑚)  were casted for each fibre content. Among them three were with steel 

bar reinforcement ratios of 0.12% and six beams without steel reinforcement. The distance between the bottom 

edge of the reinforcing steel and the concrete surface was 1.5 cm. The hardened properties of the mixture were 

tested 28 days after casting. The specimens are unnotched, so during the modelling will be considered a 

fictitious initial notch of: 
𝑎0

ℎ
= 0.05 = 7.5 𝑚𝑚 

And the bar’s concrete cover is equal to 15 mm, so: 

𝑐0

ℎ
= 0.10 = 15 𝑚𝑚 

 A scheme of the test setup is shown in Fig. 5.19. 

 

Figure 5.19 FPBT setup on specimen, Fantilli (2020) 
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• IDENTIFICATION 

➢ Part 1 (FRC) 

For each experimental 𝑃 − 𝛿 curves of the FRC elements, a best fitting procedure was applied in order to 

defining the average values of 𝐾IC,  𝜎s, and  𝑤c. 

 

 

Figure 5.20 Best fitting for curves serie BP 
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Figure 5.21 Best fitting for curves serie CP 
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Figure 5.22 Best fitting for curves serie EP 
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Figure 5.23 Best fitting for curves serie FP 
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The identifying parameters are collected in Tables 5.15 and 5.16: 
 

ID KIC σs Kwc 

BP1 21.4 270 0.50 
BP2 25.5 398 0.50 
BP3 24.5 326 0.50 
CP1 27.6 229 0.50 
CP2 32.8 289 0.43 
CP3 30.1 315 0.5 
AVG 27.0 305 0.49 

Table 5.15 Average value of mechanical parameters 

 
 

ID KIC σs Kwc 

EP1 28.8 425 0.38 
EP2 24.1 385 0.35 
EP3 - - - 
FP1 33.8 300 0.50 
FP2 33.8 159 0.46 
FP3 36.2 466 0.31 

AVG 31.3 347 0.40 
Table 5.16 Average value of mechanical parameters 
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➢ Part 2 (HRC) 

For each experimental 𝑃 − 𝛿 curves of the HRC elements, a best fitting procedure was applied in order to 

defining the average values of 𝜎y, and  𝑤y 

 

 

Figure 5.24 Best fitting for curves serie BR 
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Figure 5.25 Best fitting for curves serie CR 
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Figure 5.26 Best fitting for curves serie ER 

  



 
 

97 
 

 

Figure 5.27 Best fitting for curves serie FR 
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The identifying parameters are collected in Tables from 5.17 and 5.20: 

 

ID wy  σy 

BR1 0.8 670 
BR2 0.8 700 
BR3 0.8 710 
AVG 0.8 693 

                                                           Table 5.17 Average value of mechanical parameters 

 

ID wy  σy 

CR1 1.1 700 
CR2 0.8 790 
CR3 0.6 700 
AVG 0.8 730 

                                                          Table 5.18 Average value of mechanical parameters 

 

ID wy  σy 

ER1 0.7 450 
ER2 0.4 900 
ER3 0.8 590 
AVG 0.6 647 

                                                            Table 5.19 Average value of mechanical parameters 

 

ID wy  σy 

FR1 0.7 690 
FR2 0.6 - 
FR3 0.8 630 
AVG 0.7 652 

                                                           Table 5.20 Average value of mechanical parameters 
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• PREDICTION 

using the average parameters obtained from the best fitting procedure, the 𝑃 − 𝛿 experimental curves of the 

HRC elements were reproduced and are showed in following figures. 

 

Figure 5.28 Predictions for curve BR (bar reinforcement 1Φ6) 

 

 

Figure 5.29 Predictions for curve CR (bar reinforcement 1Φ6) 
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Figure 5.30 Predictions for curve ER (bar reinforcement 1Φ6) 

 

Figure 5.31 Predictions for curve FR (bar reinforcement 1Φ6) 

  



 
 

101 
 

6 Conclusions 

The aim of this work was to enable the Bridged Crack Model to analyse the behaviour of HRC elements. The 

model assumes the crack propagation condition in according to LEFM, considering only the Mode I opening, 

that occurs when the stress-intensity factor, KI, reaches its critical value, KIC. 

This was possible due to the implementation of two already existing constitutive laws within the algorithm. In 

addition, three scale-dependent dimensionless numbers have been defined, which synthetically describe the 

response of the HRC element. 

The first one, the bars reinforcement brittleness number, 𝑁Pb , shows this expression:  

𝑁Pb = 𝜌 
𝜎y

𝐾IC
ℎ0.5  

The second dimensionless parameter, the fibre reinforcement brittleness number, has the following expression: 

𝑁Pf = 𝑉f

𝜎s

𝐾IC
 ℎ0.5  

The last dimensionless parameter is the pull-out brittleness number and has the following expression: 

𝑁w =
𝐸𝑤c

𝐾ICℎ0.5
  

The influence of these parameters on the flexural response was widely discussed by means of numerical 

analyses. The bars reinforcement brittleness number defines the final plastic plateau; increasing the value of 

𝑁Pb, the minimum reinforcement condition can be reached even with low values of 𝑁Pf and 𝑁w. 

The value of 𝑁Pf influences in particular the post-cracking response; by increasing 𝑁Pf , there is a ductile-to-

brittle transition regarding the Stage II of the response, even if the content of bars reinforcement is not sufficient 

to guarantee an hardening response. 

The value of Nw influences the fibre’s contribution; with a low value of 𝑁w the effect of the fibres vanishes 

quickly and the response of the element tends to the plastic plateau due to the bars reinforcement 

Finally, the comparison with the experimental campaigns reported in the literature confirmed the effectiveness 

of the model is able in reproducing the experimental responses experimentally verified.  
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