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Abstract

In decision making under risk, probability of each outcome is known by
all decision-makers. This is the case for instance, when one wants to choose
between equestrian bets. There is a gain associated with each horses and an
odds. This odds represents the horse’s probability of winning. Historically,
theoretical models assumed that decision makers were rational and therefore
sought to maximize gain over the different bets. However, experiences have
shown that human decision-maker deviates from rational choices. Different
explanations have been proposed. First, a utility function was introduced
which led to the so called "expected utility theory." A utility is assigned to
each outcome depending on the subject. This explained risk aversion ie the
preference of a sure gain over a risky gain even if statically, the risky gain is more
advantageous. However, the theory fails to explain some behavior as the change
in preferences when outcomes are reversed (changed sign). While, later prospect
theory did. It is based on the fact that decision-makers tended to overestimate
probabilities close to 0 and underestimate the one close to 1. Therefore, the
brain does not use probabilities but rather distorted probabilities. Recently,
based on that idea, Maloney gave a functional form for distorted probabilities.
They used it in a new kind of model for decision making. Concretely, the brain
constructs a noisy internal representation of outcomes. This phase is called
coding. Then, from these internal representations, the brain makes a decision.
Maloney examined coding for probabilities and not for outcomes. In this master
thesis, we continue Maloney’s work, focusing on decoding and building a model
describing decoding of probabilities. We assumed that the subject makes his
decision by maximizing his expected gain. We managed to derive an expression
for the indifference point ie the probability for which the subject doesn’t have
any preference between the two prospects, under the assumptions of rational
limit and optimal coding. This means that the noise that perturbs the internal
representation of the probability tends to zero. And the optimal coding refers
to the fact that the subject will code only a specific interval of probabilities
which contains the rational indifference point (the rational point with a noise
for the internal representation equals to zero). That expression depends on the
prior parameters, therefore we were able to understand the effect of a change in
mean and width prior on the indifference point. We also managed to derive an
expression for the probability of choosing the sure prospect when the subject is
faced to one sure prospect and one risky. From that expression, we were able
to understand for which range of the prior parameters, the subject will be risk
averse. This fact tells us also that perceptual bias can account for risk aversion
and risk seeking. And we finally manage to get an expression for the distorted
probability measured by Maloney. That expression is different from the one



they tried to construct and above all is derived from general considerations not
by putting together ad-hoc ingredients.
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Chapter 1

Introduction

1.1 Contextual setting

Let’s consider a prospect represented as follows: (x1, p1; x2, p2; ...; xn, pn)
where n ∈ N, the xi ∈ R are the different possible outcomes or payoffs, and the
pi ∈ [0,1] their associated probabilities. The normalization of the pi is set to 1,
and usually, the possible null xi are not noted. Another way of representing

the prospect, easier to visualize, is in the form of a matrix:
A

x1 ... xn
p1 ... pn

B
.

Both notations are represented in the literature. I will keep the last one. A
simple example of such a prospect would be a throw of a fair coin: there is a
probability 0.5 to win 10 €, and a probability 0.5 to loose 5 € or equivalently

to win −5 €. One has therefore the following representation:
A

10 −5
0.5 0.5

B
. Let’s

now consider the case where one has to choose between two prospects. This
task is commonly called decision making under risk. Under risk means that
the probability of each outcome is known by the decision maker. It is often
encountered in the insurance context. For instance, a decision-maker considers
the possibility of purchasing an insurance on his car. Let w be the wealth of the
decision-maker, −z the cost of repairing his car, p the probability of paying for
the accident, −y the cost of the insurance. Either the decision maker leaves his

car uninsured. This may correspond to the following prospect:
A

w − z w
p 1 − p

B
.

Or he purchases a regular insurance. In which case, he gives monthly money

to the insurer. This is called a sure prospect:
A

w − y
1

B
. It is now well known

that decision-makers don’t act rationally, have cognitive bias. Indeed, they
have to make fast and frugal choices that are constrained by limited resources
such as time, money, food, knowledge or computational effort [1]. In particular,
it is pertinent to notice that several interpretations of a concrete situation
(from the psychological point of view) can lead to different preferences. For
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Introduction

instance, one may say that the decision-maker perceives the outcomes as gain
or losses rather than final states. Therefore the decision-maker should choose
between theses two prospects:

A
−z 0
p 1 − p

B
and

A
−y
1

B
. These two ways of

representing prospects can lead experimentally to different preferences. The
interested reader will find some clues for a reflection on the representation of
outcomes in prospects in this paper [2] written by two researchers in psychology.

A decision problem like the previous one is sometimes recast as the problem
of choosing among two stochastic variables A, B. The latter takes the values
of the outcomes of their associated prospects. Let FA and FB be respectively
their cumulative distribution. Such distributions are commonly called lotteries
or gambles. Following the last example, the decision-maker has to make

a choice between the two gambles: ∀x ∈ R, FA(x) =


0, if x < −z

p, if − z ≤ x < 0
1, if 0 ≤ x

and FB(x) =
0, if x < −y

1, if − y ≤ x
. One can now identify the random variable

to the prospect and speak about the expectation value of a prospect. Then

E[A] = E
CA

−z 0
p 1 − p

BD
= −zp. Be aware that, in the literature, people

often interchange the terms "prospect," "probability distribution" and "random
variable," for purposes of simplifying sentences.

1.2 History of the study of cognitive biases in
decision-making under risk tasks

These last 400 years, a lot of work has been made in trying to build a theory
of preferences and particularly in decision making under risk. As a first step,
one may think that the brain just computes the expected value of each prospect
as if he acts rationally. The choice of the decision-maker would be the prospect
with the higher expected value. There is nevertheless a serious objection to
that idea formulated under the name of St Petersburg game. Concretely, people
were asked how much they would pay for the following game: if tails comes out
of the first toss of a fair coin, they receive one dollar and stop the game, and if
head comes out, they receive two dollars and stay in the game; if tails comes
out of the second toss of the coin, they receive nothing and stop the game, and
if head comes out, they receive four dollars and stay in the game; if tails comes
out of the third toss of the coin, they receive nothing and stop the game, and if
head comes out, they receive height dollars and stay in the game; and so on ad
infinitum. One can translate this game in terms of prospect. Considering that
decision-makers perceive outcomes as final states, the matrix representation

2



Introduction

of the prospect associated to this game is as follow:
A

1 2 22 23 ...
1
2

1
22

1
23

1
24 ...

B
. His

expected value reads q∞
n=1 2n−1 1

2n = +∞. Nevertheless, even if the expected
gain is infinite, people always answer a finite number.

In 1738, Bernoulli resolved the paradox by assuming a logarithmic utility
function of wealth [3]. Intuitively, the utility represents the satisfaction that
consumers receive for having an outcome. It is therefore a function from the
set of the outcomes of a prospect to R. For clarity, let’s write the expected

utility of a prospect. Given a utility function U , a prospect
A

x y
p 1 − p

B
associated with the random variable A, one calls expected utility of A and
denotes E[U(A)] the following quantity: U(x)p + U(y)(1 − p). Back to the
St Petersburg game, the expectation of the prospect is therefore equals toq∞
n=1 log(2n−1) 1

2n = log(2) < ∞.
Moreover, it is interesting to notice that the logarithm is a concave function.

Therefore, from the Jensen inequality, one can say that the utility of the ex-
pected value of a gamble is greater or equal than the expected value of the utility
of the gamble. As the utility of the expected value can be seen as a sure prospect,
a decision-maker characterized by a concave utility function, between a sure gain
and a prospect, choose the sure gain. This decision-maker is therefore called
risk averter. Similarly, a person with a convex utility function is called risk
taker. There exist different and not necessarily equivalent ways of defining risk.
See for more informations, the work of Stiglitz and Rotschild in 1970 [4]. All
of these ideas are the beginnings of a expected utility theory under risk (EUTR).

In 1947, von Neumann and Morgenstern came up with an axiomatization
of the EUTR [5] (see Appendix A.1.1). These axioms are widely believed
to represent the essence of rational behaviour under risk. Briefly, a rigorous
mathematical framework is set up for building a utility function U and ordering
probability distributions (and so prospects). The fundamental theorem derived
(also called von Neumann Morgenstern (VNM) theorem) states that there exists
a function U from the set of outcomes to [0,1], such that for all P1, P2 in the
set of distributions defined on a bounded interval, P1 is preferred to P2 if and
only if EP1 [U ] > EP2 [U ]. This result can be generalised to distributions defined
over unbounded intervals. This is a theorem, the equivalence is established
from the axioms. Now, one can forget the axioms and see this equivalence
as a definition for the statement " P1 is preferred to P2." Therefore, given
two prospects, one can build a utility function, compute the expected utility
values of the two prospects and compare them in order to find which one of
the two prospects should be preferred by a decision-maker who’s been asked to
choose between the two. There was a lot of discussion afterwards about the
axioms, see the works of Machina (axiom of independence ie the third axiom)
[6], Aumann (axiom of completeness ie the first axiom) [7], Hausman (axioms
of completeness and transitivity ie the second axiom) [8], Herstein and Milnor
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(all axioms) [9] among others.

Parallel to these discussions on the EUTR, another way of ordering prospects
emerged with the stochastic dominance. Haddar and Russell are at the origin
of the definition of first stochastic dominance [10]. One can define a partial
order among the set of gambles. This partial order may be interpreted as
preferences among gambles. Let F and G be two cumulative distributions.
One can say that F first-order stochastically dominates G when : (1) ∀x
F (x) ≤ G(x) and (2) it exists an interval not empty where for all x inside that
interval, F (x) < G(x). Moreover, just recalling the other formulation of the
expected value of a random variable in term of the cumulative1, one can show
an implication between expected utility and first order stochastic dominance
(FSD) [11]. Let U be the utility function of a decision-maker. If U is strictly
increasing, piecewise differentiable and cumulative F first-order stochastically
dominates cumulative G, then EF [U ] > EG[U ].

Although EUTR is a powerful tool for the analysis of decision under risk,
it has long been known that decision-maker behavior, in both experimental
and market settings, deviates from the predictions of EUTR. The most famous
violations are the Allais paradox [12] (see Appendix A.1.2), the common ratio
effect (see Appendix A.1.3)2 . These violations of EUTR predictions were
largely disregarded until the late 1970s, when a variety of alternatives to, and
generalizations of, EUTR began to appear, most notably prospect theory of
Kahneman and Tversky [2]. The central idea was that decision-makers tend
to overweight low-probability events and underweight large-probability events.
That idea was already present in some psychological papers [13]. They therefore
replace probabilities p with weighting function π(p) where it was assumed that
π mapped the unit interval onto itself in such a way that π(p) > p for small
p, while π(p) < p for p near 1. The graph of π is therefore an inverse S-shape
(Fig. 1.1). And now, the expectation utility of a gamble involves the weight.

Therefore as an example, the expected utility of this prospect
A

x y
p 1 − p

B
is

U(x)π(p)+U(y)π(1−p). It is important to notice that π(p) is not a probability
measure. Nevertheless, the most important problem of prospect theory was
that, since probability weights did not sum to one, the theory gave rise to
violations of stochastic dominance, in the strong sense that one would prefer a
prospect obviously not preferable (see Appendix A.1.4).

1Let X be a real, continuous random variable and P [X] be the probability distribution
associated, E [X] =

s
R dx P [X > x].

2The explanation of these violations of EUTR are quiet important to know and to keep in
mind. They are explained in the appendix rather than the introduction because it’s technical.
So if you are not familiar with, please have a look to the appendix.

4



Introduction

Dozens of generalized EU models appeared in the 1980s and early 1990s.
The most important are: the Rank dependent model by Quiggin [14] which in
turn gave birth to the Cumulative Prospect Theory [15] (awarded of the Nobel
Memorial Prize in Economic Sciences in 2002), the betweenness models by Chew
[16] and the regret-theoretic approaches by Loomes and Sugden [17]. Briefly,
Quiggin proposed to make weighting function dependent on the rank-order
of the outcomes which resolved the main problem of stochastic dominance.
Chew chose a weighting function based on outcomes and probabilities. The
motivation was mostly technical rather than intuitive. One can define the
regret as the difference between the utility of a made decision and the one of
the optimal decision. Rather than evaluating prospects in terms of a summary
statistic like expected utility, Loomes and Sugden proposed that when facing a
decision, decision-makers might anticipate regret and thus incorporate in their
choice their desire to eliminate or reduce regret.

Three principal analytical expressions for the weighting functions have
been found. They accommodate the common ratio effect and the common
consequence effect (other name of the Allais paradox). The one from Tversky
and Kahneman (1992) [15] was intuited rather than derived from a set of axioms,
it reads: π(p) = pβ

(pβ+(1−p)β)
1
β
, where β is a free parameter. The one from Prelec

(1998) [18] was derived from a set of axioms. It reads: π(p) = e−δ(− ln(p))γ ,
where δ and γ are free parameters. The main interest of the one of Tversky and
Kahneman is that it has only one parameter, so it’s easy to fit experimental
data. The one from Lattimore, Baker and Witte is also an intuited function
[19]. It reads: π(p) = δpγ

δpγ+(1−p)γ , where γ and δ are free parameters.
A simple demonstration for the last expression is proposed by the two researchers
in psychology Gonzales and Wu [20]. Let’s consider two features of any
weighting probability. One feature involves the degree of curvature of the
weighting function (see Fig. 1.1 for a representation and see Appendix A.1.5
for more quantitative definitions). It can be interpreted as discriminability
between probabilities or prospects. For instance, a child of 4 years old has
a step function for weighting function [21]. Therefore, he can’t discriminate
between 0.4 and 0.7. Whereas, an adult can, so has more discriminability.
Another feature involves the elevation of the weighting function, which can be
interpreted as attractiveness to prospect (see Appendix A.1.5) (see Fig. 1.1).
As an example, a decision-maker who knows all soccer players and nothing in
politics will think that he’s more likely to win a sport bet than a political bet.
Therefore his weighting function for the prospect associated to the sport bet
will be more elevated than the one for the prospect associated to the political
bet. In psychology, this attitude is called "illusion of control".
Briefly, these two psychological properties of the weighting function are logically
independent, then it should be possible to model π with two parameters such

5
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Figure 1.1: Left: Two weighting functions that differ primarily in curvature
— π1 is relatively linear and π2 is almost a step function. Right: Two weighting
functions that differ primarily in elevation — π1 is over π2 (adapted from [20]).

that one parameter represents curvature (discriminability) (γ) and the other
parameter represents elevation (attractiveness) (θ). One way to do that is
to change interval, to go for instance from [0,1] to R thanks to the log-odds
function [22] or logit function [23] (two different names for the same function).
The log-odds function is very common in the scientific literature. The same
type of non linear function is found in the well-known Weber–Fechner law [24]
and in neuroscience with the rethinal mapping which is the mapping of visual
input from the retina to neurons [25]. Therefore, it makes sense to use it as
follows:

λ(π(p)) = γλ(p) + θ (1.1)

where λ(p) = ln
1

p
1−p

2
is the log-odds function or logit function.

Then setting δ = eθ leads to:

π(p) = δpγ

δpγ + (1 − p)γ . (1.2)

One should remark that the change of scale does not preserve totally the
independence of parameters. Indeed, in the probability scale, by continuity
of the weighting function, one has π(0) = 0, π(1) = 1. This can be seen as
boundary conditions. And therefore, given two different values of δ, varying γ
will not have completely the same impact on the weighting function. The two
parameters are no more completely independent.

Then Zhang and Maloney, with the linear log-odds model (LLO model),
generalized the work of Lattimore, Baker and Witte to a variety of cognitive,
perceptual, and motor tasks, not just decision-making [26]. They prefer to
use the more general expression "distorted probability" rather than "weighting

6
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function." They used a two parameters model with a slope parameter (ω), and
an intercept parameter (p0) (see Fig.: 1.2). This family of distortion functions
is defined by the implicit equation:

λ(π(p)) = ωλ(p) + (1 − ω)λ(p0). (1.3)

Figure 1.2: S-shaped distortions of frequency estimates: (A) Esti-
mated relative frequencies of occurrence of letters in English text plotted versus
actual relative frequency from Attneave (1953) [27]. (B) Subjective probability
of winning a gamble (decision weight) plotted versus objective probability from
Tversky and Kahneman (1992) [15]. R2 denotes the proportion of variance
accounted by the fit. (adapted from [26])

The parameter ω is the slope of the linear transformation and the remaining
parameter p0 is the fixed point of the distorted probability, the value of p which
is mapped to itself (π(p0) = p0). Therefore, p0 is also called crossover point.
One can also show, directly from Eq. 1.3, that πÍ(p0) = ω (see Fig.: 1.3). This
family of distorted probabilities fits better experimental data3 than all previous
weighting functions. They also understood that ω and p0 are not determined
by the type of task and that ω is inversely proportional to the logarithm of
the numerosity. For judgement of relative frequency, the numerosity is just the
sample size. For prospect, the numerosity is the mean size of the outcomes.
Therefore, ω decreases with increasing numerosity.

In 2017, Khaw, Li and Woodford, came up with the foundations of a
quantitative model of the mental representation of a simple lottery choice
problem which can explain risk aversion without the use of a utility function (or
equivalently the utility function is considered as linear) [28]. It is based on the
idea that the brain can only produce judgments based on the noisy information
provided to it by sensory receptors. In the model, internal representation

3They reused experimental data from different groups of researchers. You can see an
example in Fig.: 1.2. Experimental data are represented with black dots.
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Figure 1.3: Demonstration of the effects of varying the parameters ω
and p0: Left: p0 fixed at 0.4 and ω varied between 0.2 and 1.8. Note that the
line at ω = 1 overlaps with the diagonal line, i.e., no distortion of probability.
Right: ω fixed at 0.6 and p0 varied between 0.1 and 0.9. (adapted from [26])

of outcomes in prospects are considered noisy. The mental representation of
numbers (used for non symbolic calculations like calculations with quantities)
can indeed be represented by a quantity proportional to the logarithm of the
numerical value encoded, plus a random error. As an example an outcome "30"
will be encoded by a constant times the logarithm of "30" plus some noise (for
more details see [29]). The logarithm is a simple concave function that just
expresses the fact that people better distinguish two small quantities rather
than two big quantities. And the noise stands for the degree of imprecision of
the mental representation. However, the probabilities of the lotteries, are not
taken noisy. They prefer to leave it for future work. And from these mental
representations, the brain produces judgment. He does it optimally in the sens
that the action is a solution of a maximisation problem (the subject has to
maximize his proper wealth).
To be as clear as possible, let’s consider the case where a decision-maker has to
choose one of the two following prospects:A

x y
p 1 − p

B
or

A
z
1

B
(1.4)

We repeat the task for many values of x, y, z and p. It is possible that the
decision-maker is asked to choose between the same two prospects several times.
Therefore, one can think about x, y, z and p as stimulus, and random variables.
They are taken from prior distributions depending on the prospects shown
to the subject. Let P[x]4 be the prior distribution for x, and let’s use similar
notation for the other random variables y and z. One argues that there are

4One uses the notation P for distribution instead of using p() not to be confused with the
p in prospects.
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two phases during the decision process. The first is the coding phase, the
second, the decoding phase. During coding, the brain, constructs noisy internal
representations for x, y and z denoting respectively rx, ry, rz. In mathematical
terms, rx is taken from the distribution P[rx | x]. One therefore can write:
rx = x̄(x) + Ôx where x̄(x) is the expected value of rx which should depend
on x, and Ôx is the noise. One uses similar notation for the two other random
variables. During decoding, given the internal representations, an optimal
decision is taken according to the objective of maximizing the mathematical
expectation of the subject’s wealth. See the scheme 1.1 for an illustration.

Stimulus Internal representation Decision
x
y
z

Coding rx
ry
rz

Decoding 0
1

Table 1.1: Model synthesis scheme, the risky prospect is associated with the
number 0, and the sure prospect with 1

Let’s have a look to the decoding phase and state some interesting facts.
Mathematically, maximizing his expected wealth can be stated as follows:
(there are more general ways as explained in the article from Khaw, Li and
Woodford but this one is intuitive)

• the subject chooses the risky prospect if and only if E[px + (1 − p)y |
rx, ry] > E[z | rz],

• the subject chooses the sure prospect if and only if E[px + (1 − p)y |
rx, ry] < E[z | rz].

Equivalently, assuming random variables are independent, the subject chooses
the risky prospect if and only if pE[x | rx] + (1 − p)E[y | ry] > E[z | rz]. And
denoting by x̂ = E[x | rx] (with analogous notation for y and z), one can
rewrite the previous inequality as px̂ + (1 − p)ŷ > ẑ. Therefore, one can view
x̂, ŷ and ẑ as estimation of the stimulus, and based on these estimates, the
subject make a decision. This is is synthesised in the scheme 1.2. What is also
important to point out is that x̂ is solution of the minimisation of the mean
squared error problem (the same for y and z):

x̂(rx) = min
x̂

Ú
R

dx (x̂(rx) − x)2 P[x | rx].

Therefore the brain can be seen as a device that optimally perform the action
of choosing one prospect, optimally in the sens that the action comes from
both the maximisation of the perceived wealth computed from the estimates
of the stimuli and the minimisation of the mean squared error between the
estimates and the true stimuli.
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Noisy internal
representation of

the stimulus
Optimally

estimated stimulus Optimal decision

rx ∈ R
ry ∈ R
rz ∈ R

x̂(rx) ∈ R
ŷ(ry) ∈ R
ẑ(rz) ∈ R

• risky if px̂(rx)+(1−p)ŷ(ry) > ẑ(rz)

• sure otherwise

Table 1.2: Decoding of x, y, z.

Nevertheless, even with an optimal estimation, the subject can make an error
which is quantified by the bias (that can be computed explicitly in the model
and measured experimentally):

bias(x) =
Ú
R

dx̂ (x̂ − x)P[x̂ | x]. (1.5)

If bias(x) = 0, then the decision-maker is rational. If bias(x) /= 0, then the
decision-maker is not rational and will make a judgement from a perceptual bias.
A fulfilled objective of this work is therefore to provide a possible explanation
of how a perceptual bias can occur in the brain and what role this bias plays
in decision making under risk.

1.3 Goal of the work
Based on the same ideas of noisy mental representation of quantities, Zhang

and Maloney are currently working on an improved version of their LLO model:
the bounded log-odds model (BLO model) [30]. It deals with the coding part in
different tasks involving the estimation or use of probability. The general goal
is therefore to build a general model of decision making under risk mainly from
the work of Khaw, Li and Woodford and the one from Zhang and Maloney.
This model should deal with coding and decoding, where the noisy variables are
outcomes and probabilities. This model should finally offers an explanation for
the paradoxes stated in prospect theory. But precisely, for this master thesis,
the goal will be to do the decoding part for a decision task under risk between
a risky prospect with two outcomes and a sure prospect, considering only the
probability as a noisy random variable.

10



Chapter 2

Methods

2.1 BLO model
Zhang and Maloney are working on coding of probabilities (see Table 2.1).

Their model is called bounded log-odds model (BLO model).

2.1.1 Two types of task
They considered two types of task: judgement of relative frequencies (JRF)

task and decision making under risk (DMR) task. In JRF task, subjects were
asked to estimate the proportion of black dots on a grey panel on which white
and black dots were drawn. Here, two types of uncertainty are combined.

• There is an uncertainty in estimating the number of black dots. Let us
call N the number of black dots estimated by the subject, and N0 the
total number of dots (black and white). In different trials that have the
same number of dots in the visual stimulus, the value of N fluctuates.

• Once the value of N has been chosen (or equivalently the fraction,probability,
N/N0), the brain records a noisy version of it.

In DMR task, subjects were asked to choose among two prospects the one
that would maximize their gain. Either sure prospects or risky prospects with
two outcomes were shown like the two following prospects:A

z
1

B
and

A
x y
p 1 − p

B
. (2.1)

where x, y, z ∈ R, and p ∈ [0,1]. Here, since the probability is already given,
the only source of uncertainty comes from the internal representation of the
probability.

11
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Stimulus Internal representation

p ∈ [0,1] Coding L∈ R

Table 2.1: Model synthesis scheme

2.1.2 Coding steps
The steps are illustrated in Fig. 2.1 and explained below:

• Let p be either the proportion of black dots for JRF task or the probability
of the highest outcome in a prospect for DMR task. This p is taken from
a prior probability P[p]. Some p are represented as short vertical lines in
the first step in Fig. 2.1.

• Then, we pass from probability space to log-odds space threw the mapping:
λ(p) = ln

1
p

1−p

2
.

• For the third step is called bounding step. Zhang and Maloney argue
that subjects are constrained by the resources it might take to find or
compute the estimated probability or the optimal gain. They included
this idea in their model saying the brain codes only a part of the log-odds
scale from ∆− to ∆+, and that the smaller the interval, the more precisely
the probabilities are coded. This last point is described in the model
by the fifth and seventh steps. Let ∆ be the half length of the interval:
∆ = ∆+−∆−

2 . The points on that scale are now identified by Λ(p). Λ is
called the bounded log-odds function. One has:

Λ(p) =


∆+ if λ(p) > ∆+

λ(p) otherwise
∆− if λ(p) < ∆−

. (2.2)

• The fourth step is called "anchoring." The interval is shifted and compressed
according to the transformation: ωpΛ(p) + (1 − ωp)Λ0, where ∀p ∈ [0,1],
ωp ∈ [0,1], Λ0 ∈ R. p → ωp is a non linear function of p. This function
is determined thanks to what is called variance compensation. For JRF
task, it integrates the uncertainty in the estimation of the frequency as
explained in 2.1.1. See the next subsection 2.1.3 for more information. Let
ω+ be ωp evaluated in p equals 1

1+e−∆+ . Let us denote c+ = ω+∆+ + (1 −
ω+)Λ0 and c− = ω−∆− + (1 − ω−)Λ0.

• The fifth step is the scaling or mapping to the Thurstone scale or interval.
Each point on the precedent step is multiplied by τ ∈ R∗

+ to be mapped
to the Thurstone scale. In that way, the smaller the coding interval,
the more precisely the probabilities are coded. This can be seen as a
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microscope. The more you zoom in, the more precisely you can see but
the smaller the size of the area being viewed. See the figure 2.2 for another
pictorial representation of that idea. Let Ψ be the half length of the
Thrustone scale. One has: Ψ = τω∆. See the next subsection 2.1.3 for
more information. Let us denote Λω(p) a point on this scale. One has:
Λω(p) = τ [ωpΛ(p) + (1 − ωp)Λ0].

• The last step is the perturbation by some Gaussian noise Ôλ with mean
Λω(p) and variance σ2

π. One denotes L a point on this scale. One has:
L = Λω(p) + Ôλ. L is the so called internal representation of p.

One can notice that fixing τ and ∆ in the model is equivalent as fixing Ψ and
∆.

Figure 2.1: Scheme of the six coding steps. On the left-hand side is written
the name of the step, in the middle are drawn illustrations of the steps, on
the right-hand side, is written the literal expression of the small vertical lines
drawn in the middle of the figure. (adapted from [31])

2.1.3 Three main assumptions
The model is based on three main assumptions:

• log-odds representation (second line in Fig. 2.1),

• representation on a bounded Thurstone scale (the fifth step in Fig.
2.1),

13
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• variance compensation (the anchoring step in Fig. 2.1).

About the second assumption: the Thurstone scale [32] is a convenient
mathematical structure in which information can be encoded and retrieved but
now contaminated by Gaussian noise (with mean 0 and variance σ2

π). It can
model fallible memory [33]. In Fig. 2.1, one Gaussian curve drawn in the sixth
step, symbolizes the encoding uncertainty induced by the Thurstone scale. As
you can see in Fig. 2.2, there is a tension between the two limitations (density
of encoded probability and size of the noise σπ): the greater the log-odds
range that needs to be encoded, the greater the density of the magnitudes
along the Thurstone scale, and the greater the chances of confusion of nearby
codes and vice versa. The challenge is to choose a transformation that is most
beneficial to the organism or efficient for the organism. Intuitively, if the brain
maximizes the transmitted information between the stimulus and the internal
representation, over ∆− and ∆+, then it maximizes the mutual information
between p and L. This is also known as efficient coding hypothesis [34] or
maximization of the information channel capacity [35]. It is important to notice
that σπ is independent of any control by the subject, while ∆ can be modified
by the subject to optimize processing of probabilities.

Figure 2.2: Left: Scheme of the coding steps in the case where ∆ is small
enough so that the Gaussian curves do not get tangled up in the sixth step.
Right: Scheme of the coding steps in the case where ∆ is big enough so that
the Gaussian curves get tangled up in the sixth step.

The third assumption is technical. It concerns the choice of a functional
form for ωp, and the need to account for other sources of uncertainty (other
than the Gaussian noise in the Thurstone scale). For JRF task (see subsection
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2.1.1 for the comments on the different types of uncertainty), the other type
of uncertainty is in the estimation of black dots N . Zhang and Maloney
argue that the variance of N will locally change the internal representation
of the estimation of the probability. The mathematical principle behind this
transformation is called minimization of the variance of a cue combination (see
[36], [37], [38] for more information). For DMR task, there is no other source
of uncertainty. Therefore one can keep ωp constant and equals to 1. It is also
relevant to point out that one can fix Ψ to 1 because it doesn’t contain any
physics inside and it will then simplify the interpretation of the mathematical
expressions. Finally, ∀p, Λω(p) = τΛ(p) = Λ(p)

∆ . As you can see, it is also
possible to think of all that model as simply first a distortion of the probability
ie a mapping from [0,1] to R, and then a perturbation by some noise that
depend on the space. That noise should be dependant on some constrain so
that it obeys the idea of the subject codes better some particular region of the
space and less others. This perspective is left to a future work.

2.2 Setting up the decoding problem
We consider the following decision task with x > z > y:

A
x y
p 1 − p

B
or

A
z
1

B
. (2.3)

Internal representation Response

L ∈ R Decoding 0
1

Table 2.2: Decoding scheme, the risky prospect is associated with the number
0, and the sure prospect with 1.

The subject performs the decision task in order to maximize his or her monetary
gain. Let g(L) be the decision function which takes the value 0 if the risky
prospect is chosen and 1 if the sure prospect is chosen. The subject wants
to maximize over all the decision functions, his average gain. Let’s write the
average gain:

G =
Ú 1

0
dp
Ú +∞

−∞
dL [[xp + y(1 − p)][1 − g(L)] + zg(L)]P[L | p]P[p]. (2.4)

You can see that if g(L) = 1, then G = z (this makes sense because the sure
prospect has been chosen). If g(L) = 0, then G =

s 1
0 dp [xp + y(1 − p)]P[p]

which is the average gain of the risky prospect. One is going to use a gaussian
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prior in log odds scale (that way, the computation is feasible). Therefore,
∀p ∈ [0,1], the prior reads:

P[p] = 1√
2πσ2

e− (λ(p)−µ)2

2σ2
1

p(1 − p) , (2.5)

or equivalently:
P[λ] = 1√

2πσ2
e− (λ−µ)2

2σ2 . (2.6)

The internal representation L of a probability p is corrupted by some Gaussian
noise. The L are taken from the following distribution (called likelihood):

P[L | p] = 1ñ
2πσ2

π

e
−

(L− Λ(p)
∆ )2

2σ2
π , (2.7)

where:

Λ(p) =


∆+ if λ(p) > ∆+

λ(p) otherwise
∆− if λ(p) < ∆−

. (2.8)

In order to define the problem correctly, the decision function must be parametrized
correctly. To do that, let’s notice:

max
g

G[g] =
Ú +∞

−∞
dL max

; Ú 1

0
dp [xp + y(1 − p)]P[L | p]P[p] ,

Ú 1

0
dp zP[L | p]P[p]

<
.

(2.9)
Then, one can plot I1(L) =

s 1
0 dp [xp + y(1 − p)]P[L | p]P[p] and I2(L) =s 1

0 dp zP[L | p]P[p], for specific values of the parameters. One can see, that
a change of maximum between I1 and I2 occurs only once. This is also the
case also for other sets of parameters. We don’t show the plots here because
intuitively, it is obvious. Therefore, one can parametrize g as a threshold
function:

g(L) =
0, if L > θ

∆
1, otherwise

. (2.10)

Then, one can set the problem as follows: for which value of θ denoted θ∗, one
has:

dG

dθ
(θ∗) = 0. (2.11)

To write dG
dθ (θ∗), one starts to rewrite G using the definition of the decision

function to make the integrals over L on ] − ∞, θ
∆ ] (see Appendix B.1 for all
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the details). Then, one uses the Leibniz integral rule1 to derive the gain with
respect to θ. Let us denote θ∗ the solution of the problem 2.10. One has:
dG
dθ (θ∗) = z−y

∆
s 1

0 dp P[L = θ∗

∆ | p]P[p] + y−x
∆
s 1
0 dp p P[L = θ∗

∆ | p]P[p]. Then, one
makes a change of variable to go from probability space to log-odds space and
uses the definition of Λ. This splits each of the two integrals into three other
integrals. An then putting the terms together, one finally gets:

0 = I1(θ∗) + I2(θ∗) + I3(θ∗), (2.12)

where:

I1(θ∗) = e
−

(θ∗−∆+)2

2σ2
πσ

2

2πσσπ∆

(z − y)
Ú +∞

∆+
dλ e− (λ−µ)2

2σ2 + (y − x)
Ú +∞

∆+
dλ

e− (λ−µ)2

2σ2

1 + e−λ

 ,

(2.13)

I2(θ∗) = e
−

(θ∗−∆−)2

2σ2
πσ

2

2πσσπ∆

(z − y)
Ú ∆−

−∞
dλ e− (λ−µ)2

2σ2 + (y − x)
Ú ∆−

−∞
dλ

e− (λ−µ)2

2σ2

1 + e−λ

 ,

(2.14)

I3(θ∗) = z − y

2πσσπ∆

Ú ∆+

∆−
dλ e

− (θ∗−λ)2

2σ2
π∆2 e− (λ−µ)2

2σ2 + y − x

2πσσπ∆

Ú ∆+

∆−
dλ

e
− (θ∗−λ)2

2σ2
π∆2

1 + e−λ e− (λ−µ)2

2σ2 .

(2.15)
.

2.3 An interesting case
It is possible to solve Eq. 2.12 numerically. However, in some limiting case,

an analytical expression for θ∗ can be derived. Let us consider the case where
the subject tends to be rational or equivalently the coding part is optimal and
σπ goes to 0.

Let us explain a bit. Let us denote p0 the probability such that the two
prospects are rationally equivalent. In log-odds space, that value is equal to
ln
1
z−y
x−z

2
. It is called the indifference point in log odds space. It corresponds to

θ∗ with σπ = 0. Therefore σπ goes to 0 is called the rational limit.
If we suppose that the coding part is optimal then θ∗ is well coded. That is to
say: ∆− and ∆+ are chosen (by the brain taking into account the noise) so that

1It is just derivative with integrals, nothing more.
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they frame p0 or θ∗ with σπ small enough. Quantitatively, one can assume:

∆− + α∆σπ < θ∗ < ∆+ − α∆σπ, (2.16)

where α is an integer which controls the distance of θ∗ to the borders. One can
rewrite these inequalities in the following form:

--- θ∗−∆+

∆σπ

--- > α and
--- θ∗−∆−

∆σπ

--- > α

and θ∗ ∈ [∆−, ∆+]. One can choose α = 3, to be sure that θ∗ is far from the
borders. (Far from the borders, it’s easier to get an analytical solution, and
it’s better for the understanding of the system).
Then using the optimal coding hypothesis, one can discard I2(θ∗) and I3(θ∗) in
the equation 2.12. Therefore the equation that must be solve can be written:

0 = z − y

2πσσπ∆

Ú ∆+

∆−
dλ e

− (θ∗−λ)2

2σ2
π∆2 e− (λ−µ)2

2σ2 + y − x

2πσσπ∆

Ú ∆+

∆−
dλ

e
− (θ∗−λ)2

2σ2
π∆2

1 + e−λ e− (λ−µ)2

2σ2 .

(2.17)
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Results

3.1 Solution of Eq. 2.17

One wants to solve, in the limit σπ goes to 0, the equation:

0 = z − y

2πσσπ∆

Ú ∆+

∆−
dλ e

− (θ∗−λ)2

2σ2
π∆2 e− (λ−µ)2

2σ2 + y − x

2πσσπ∆

Ú ∆+

∆−
dλ

e
− (θ∗−λ)2

2σ2
π∆2

1 + e−λ e− (λ−µ)2

2σ2 .

(3.1)
Let us rewrite this equation in a better form rewriting the product of the two
Gaussians as the product of one Gaussian that does not depend on λ and
another that depends on λ. Explicitly, it is possible to show that: for all a, b, c
and d,

(λ − a)2

2b
+ (λ − c)2

2d
= (a − c)2

2(b + d) +

1
λ − bc+ad

b+d

22

2 bd
b+d

. (3.2)

Therefore Eq. 3.1 can be rewritten as follows:

0 = z − y

2πσσπ∆e
− (µ−θ∗)2

2(σ2+σ2
π∆2)

Ú ∆+

∆−
dλ exp

−

A
λ − θ∗+µ(σπ∆

σ )2

1+(σπ∆
σ )2

B2

2 σ2
π∆2

1+(σπ∆
σ )2



+ y − x

2πσσπ∆e
− (µ−θ∗)2

2(σ2+σ2
π∆2)

Ú ∆+

∆−
dλ exp

−

A
λ − θ∗+µ(σπ∆

σ )2

1+(σπ∆
σ )2

B2

2 σ2
π∆2

1+(σπ∆
σ )2

− ln
1
1 + e−λ

2
 .

(3.3)
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Then by simplifying the exponential, one gets:

0 = z − y

2πσσπ∆

Ú ∆+

∆−
dλ exp

−

A
λ − θ∗+µ(σπ∆

σ )2

1+(σπ∆
σ )2

B2

2 σ2
π∆2

1+(σπ∆
σ )2



+ y − x

2πσσπ∆

Ú ∆+

∆−
dλ exp

−

A
λ − θ∗+µ(σπ∆

σ )2

1+(σπ∆
σ )2

B2

2 σ2
π∆2

1+(σπ∆
σ )2

− ln
1
1 + e−λ

2
 .

(3.4)

3.1.1 General picture
We want to solve the previous equation in the rational limit: σπ goes to 0.

We are looking for θ∗ in the form a + bσ2
π (where σπ goes to 0, it is the rational

limit). There is no therm of order one in σπ, because only powers of degree
two appear in the equations (then the taylor expansion consists only of even
powers of σπ).
Let’s denote:

I1 = 1
2πσσπ∆

Ú ∆+

∆−
dλ exp

−

A
λ − θ∗+µ(σπ∆

σ )2

1+(σπ∆
σ )2

B2

2 σ2
π∆2

1+(σπ∆
σ )2

 , (3.5)

I2 = 1
2πσσπ∆

Ú ∆+

∆−
dλ exp

−

A
λ − θ∗+µ(σπ∆

σ )2

1+(σπ∆
σ )2

B2

2 σ2
π∆2

1+(σπ∆
σ )2

− ln
1
1 + e−λ

2
 . (3.6)

We are going to expand I1 and I2 up to second order in σπ.

3.1.2 Expression for I1

We assume that:

• first the Gaussian is contained inside the interval [∆−, ∆+] ie quantitatively:
θ∗+µ(σπ∆

σ )2

1+(σπ∆
σ )2 ∈ [∆−, ∆+],

• the width is sufficiently small ie quantitatively: σπ∆ñ
1+(σπ∆

σ )2
¹ ∆.
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We can then rewrite I1 by replacing ∆− by −∞ and ∆+ by +∞. We are
then left with a simple Gaussian integral. We will have to check the first
assumption a posteriori. And we can say in advance that it is closed to the
efficient coding hypothesis. And by neglecting the first and second order in
σπ, it is exactly the efficient coding hypothesis. The second assumption is
implied by the rational limit. Therefore, one gets:

I1 ≈ 1
2πσσπ∆

√
2π

σσπ∆ñ
σ2 + σ2

π∆2

≈ 1√
2π

1
σ

1 − 1
2

A
σπ∆

σ

B2
 .

(3.7)

The last step is obtained expanding to second order in σπ.

3.1.3 Expression for I2

Saddle point approximation

We are going to use the saddle point method to compute the integral, being
careful to use a + bσ2

π instead of θ∗. (Be aware that a saddle point method
corresponds to a second order expansion in σπ, so it’s ok for us).
Let’s denote A = 1

σ2
π
, and

h(λ) =

A
λ − a+bσ2

π+µ(σπ∆
σ )2

1+(σπ∆
σ )2

B2

2 ∆2

1+(σπ∆
σ )2

+ σ2
π ln

1
1 + e−λ

2
. (3.8)

We can rewrite the integral like this:

I2 = 1
2πσσπ∆

Ú ∆+

∆−
dλ e−Ah(λ). (3.9)

Basically, we will expand h(λ) around his minimum. Let’s denote λ∗ =
argmax {e−Ah(λ)}. Then, one has up to second order in σπ:

I2 ≈ e−Ah(λ∗)
√

2πσ∆

 1ñ
hÍÍ(λ∗)

+ 5
24A

hÍÍÍ(λ∗)2ñ
hÍÍ(λ∗)7

− 1
8A

hÍÍÍÍ(λ∗)ñ
hÍÍ(λ∗)5

 . (3.10)

For all the detailed explanation of saddle point approximation, you can have a
look to [39] and to the appendix C.1.1. We will then expand that expression
up to second order in σπ. The two last terms in the last equation are higher
order in σ2

π so we can discard them and we are left with that expression:

I2 ≈ e−Ah(λ∗)

√
2πσ∆

ñ
hÍÍ(λ∗)

. (3.11)
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Computation of λ∗

We have to solve:
hÍ(λ∗) = 0, (3.12)

that is to say:

0 =
λ∗ − (a+bσ2

π)σ2+µσ2
π∆2

σ2+σ2
π∆2

σ2∆2

σ2+σ2
π∆2

− σ2
π

1 + eλ∗ . (3.13)

This is a transcendental equation. So, one way is to look for an approximate
solution in the rational limit (σπ goes to 0). A smarter way of proceeding is to
look for a solution of the form:

λ∗ = (a + bσ2
π)σ2 + µσ2

π∆2

σ2 + σ2
π∆2 + σ2∆2

σ2 + σ2
π∆2 λ1, (3.14)

where λ1 is to be determined. Now the unknown is λ1. The equation is still
transcendental but we can just add the hypothesis that λ1 must be independent
of σπ not to have too high order.
Then, the equation reduces to:

λ1 + λ1e
λ∗ − σ2

π = 0. (3.15)

λ1 must be of order σ2
π, we can therefore expand the exponential to order 0.

Then, one has:

λ1 + λ1e
a − σ2

π ≈ 0. (3.16)

Therefore, one gets:

λ1 = 1
1 + ea

. (3.17)

And finally, one has:

λ∗ ≈ (a + bσ2
π)σ2 + µσ2

π∆2

σ2 + σ2
π∆2 + σ2σ2

π∆2

σ2 + σ2
π∆2

1
1 + ea

. (3.18)

Expanding that expression up to second order in σπ leads to the same expression
the standard method would provide (with the standard method, you just
suppose λ∗ of the form c + dσ2

π and you expand everything in the rational
limit).
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Expression for I2

Now, one can do properly all the expansions:

e−h(λ∗) ≈ ea

1 + ea
+ ea [−2a∆2 − 2a∆2ea + 2∆2µ + 2∆2µea + 2bσ2 + ∆2σ2 + 2beaσ2]

2 (1 + ea)3

3
σπ
σ

42
,

(3.19)

1
σσπ∆

1ñ
hÍÍ (λ∗)

≈ 1
σ

1 −
A

1
2 + σ2ea

2 (1 + ea)2

BA
∆σπ

σ

B2
 . (3.20)

Finally, one gets:

I2 ≈ 1√
2πσ

ea

1 + ea

1 +
3

σπ∆

σ

42
−1

2 +
µ − a + b

1
σ
∆

22

1 + ea
+ σ2

2
1 − ea

(1 + ea)2


 .

(3.21)

3.1.4 Solution of Eq. 3.1 in closed form
Now, the equation reads:

0 = (z−y)
1 − 1

2

A
σπ∆

σ

B2
+ y − x

1 + e−a

1 +
A

σπ∆
σ

B2
−1

2 +
µ − a + b

1
σ
∆

22

1 + ea
+ σ2

2
1 − ea

(1 + ea)2


 .

(3.22)
We can now identify each term of the expansion, which leads to:

a = ln
3

z − y

x − z

4

b =
A

∆
σ

B2 C
ln
3

z − y

x − z

4
− µ + σ2 z − x+y

2
x − y

D
.

(3.23)

Finally, one gets:

θ∗ = ln
3

z − y

x − z

4
+ (σπ∆)2 z − x+y

2
x − y

+
A

σπ∆
σ

B2 5
ln
3

z − y

x − z

4
− µ

6
. (3.24)

3.2 Comments on Eq. 3.24
First, let us denote p0 the probability such that the two prospects are

rationally equivalent. It satisfies the following equation:

xp0 + y(1 − p0) = z. (3.25)
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We have p0 = z−y
x−y . In log-odds space, that value denoted λ0 is equal to ln

1
z−y
x−z

2
.

It is called the indifference point in log-odds space. It corresponds to θ∗ with
σπ = 0.

Then about the first order in σ2
π term, one can see that if ∆ (the half length

of the encoding interval), decreases, then θ∗ becomes closer to θr rational (the
one for σπ = 0). This refers to the microscope picture. The smaller ∆ is, the
better the coding is.
Intuitively, assuming z > x+y

2 and µ close to 0.5 , if z increases and gets closer
to x, people have impression that more winning sure prospect are shown, and
so θ∗ should increase.
One can also see that if σ goes to infinity (as if the prior was uniform), we
retrieve the expression found in case of a uniform prior.
Intuitively, assuming µ ¹ λ0, if µ decreases and moves away from λ0, then
more winning sure prospect are shown and so people will have the impression
that all the winning prospects are the sure prospect, and so θ∗ should increase.
So, the µ-dependence in the expression of θ∗ seems correct.

3.3 Risk Aversion
Let’s compute the probability of choosing a sure prospect among all the

pairs of prospects shown. One has:

P[sure] =
Ú 1

0
dp P[sure | p] P[p], (3.26)

with:

P[sure | p] = P
C
L <

θ∗

∆ | p

D
=
Ú θ∗

∆

−∞
dL

e
−

(L− Λ(p)
∆ )2

2σ2
π

√
2πσπ

. (3.27)

One can rewrite it as follows:

P[sure | p] =
Ú θ∗

−∞
du

e
− (u−Λ(p))2

2σ2
π∆2

√
2πσπ∆

. (3.28)

On fig. 3.1, that quantity is plotted for σπ equals to 0 (the rational limit), and
σπ not equals to 0. The shift of threshold is called a bias for the indifference
point (due to the noisy representation of the probability). The passage from a
step function to a sigmoid accounts for the variability in choices for the same
subject and so for a group of people (due to the noise).
And, we have:

P[sure] =
Ú θ∗

∆

−∞
dL

Ú 1

0

dp

p(1 − p)
e

−
(L− Λ(p)

∆ )2

2σ2
π

√
2πσπ

e− (λ(p)−µ)2

2σ2

√
2πσ

. (3.29)
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Figure 3.1: The curves are obtained with ∆+ = 10, ∆− = −10, x = 40,
y = 10, z = 26, µ = 0.1, σ = 1, σπ = 0.1.

Figure 3.2: The curves are obtained with ∆+ = 10, ∆− = −10, x = 40,
y = 10, z = 26, µ = 0.1, σ = 1, σπ = 0.1.

It is possible to write an expression in closed form for the probability of choosing
the sure prospect. It is in the same spirit of the computation of θ∗. You can
have a look to appendix C.2 for more details. One has:

P[sure] ≈ 1
2

1 + erf


σ2

1+ σ2
σ2
π∆2

z−x+y
2

x−y + ln
1
z−y
x−z

2
− µ

√
2σ 1ñ

1+(σπ∆
σ )2


 . (3.30)

Let us denote P[surer] the expression of P[sure] in the rational limit. We then
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see that:

∀µ < λ0 + (σπ∆)2 z − x+y
2

x − y
, P [sure] > P [surer] . (3.31)

On fig. 3.2, we tried to determine the dependence on µ of risk aversion. You see
that for all µ below some threshold, the probability of choosing a sure prospect
is above the probability of choosing a sure prospect being rational, and so there
is risk aversion.

3.4 Distorted probability
We can go one step further finding an analytical expression for the distorted

probability π(p) mentioned in the introduction. Let us remind you what is the
distorted probability and how is it measured. Let us consider a risky prospect
where the subject can win x euros with a probability p and 0 with a probability
1 − p. (We place ourselves in the situation where y = 0 as it is often the case
in the experiments conducted). Given a risky prospect and a sure one, there
is rational equivalence between the two prospects when their average payoff
is equal ie when p = c

x
. Given p and x fixed, the value of c denoted c∗ such

that there is equivalence between the two prospects is called the certainty
equivalence. In other terms, it is the amount of money for which the subject
does not prefer one prospect over the other. Now if I vary p, this c∗ also varies.
Now, if we measure experimentally the certainty equivalence given p, and plot
c∗

x
as a function of p, we don’t get the identity at all as would be the case if

subjects were rational but a curve which has an inverse s shape. This curve is
called distorted probability.
Analytically, the certainty equivalent is the amount c∗ such that the probability
of choosing the sure prospect is equal to the probability of choosing the risky
prospect, is equal to 1

2 :

P[sure | p] = P[risky | p] = 1
2 . (3.32)

From the previous section, one has:

P[sure | p] = 1
2

C
1 + erf

A
r∗
p − λ

∆√
2σπ

BD
. (3.33)

Therefore, solving the equation, one gets r∗
p = λ

∆ . r∗
p can here be seen as a

function on c∗. As this function is strictly monotonous, there exists an inverse.
So, by doing an expansion of the inverse function around σπ equals to 0, one
gets an anlytical expression of the certainty equivalent. Indeed, let us assume
that:

c∗ = c0 + σπc1 + σ2
πc2. (3.34)
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Furthermore, r∗
p(r∗−1

p ) = r∗
p(c0 + σπc1 + σ2

πc2) = λ
∆ . By doing all the expansions,

one gets:
c0 = x

1 + e−λ ,

c1 = 0,

c2 = ∆2xp(p − 1)
p − 1

2 +
ln
1

p
1−p

2
− µ

σ2

 .

(3.35)

And finally, one obtains:

π(p) = p + (σπ∆)2xp(p − 1)
p − 1

2 +
ln
1

p
1−p

2
− µ

σ2

 . (3.36)

From that expression, we see that when σπ goes to 0, then π(p) goes to p, which
is consistent with the rational limit taken. We also see that for µ = 0, there is
a fixed point at p = 1

2 (see fig. 3.3).

Figure 3.3: The curves are obtained with ∆+ = 2, ∆− = −2, x = 10, y = 0.

One can also try to find an expression for the crossover point p0 ie the point
p different from 0 and 1 such that π(p) = p. An analytical expression in the
limit µ goes to 0 can be found:

p0 ≈ 1

1 + e
− µ

1+σ2
4

. (3.37)

In the logodds space, p0 is proportional to µ. The value of the crossover point
increases with µ and decreases with σ. We can also get an expression for the
slope of π(p) at the crossover point in the limit µ goes to 0:

πÍ(p0) ≈ 1 − (σπ∆)2

4 x
5
1 + 4

σ2

6
. (3.38)
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From that expression, we see that in the rational limit, the slope is equal to
1. And a slight perturbation in σπ decreases the slope. Therefore, our model
accounts for overweighting of small probabilities and underweighting of high
probabilities. This analytical expressions are interesting and important because
they can help us to design some experiments, and then easily compare the
theory to the experiment.
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Chapter 4

Conclusion/Discussion

We explored the decoding part of a decision task under risk between one
risky prospect with two outcomes and one sure prospect. We used a Gaussian
in log-odds space prior. We managed to find an expression for θ∗ within the
limit σπ goes to 0, and the hypothesis of optimal coding that is to say θ∗ is
frame by ∆+ and ∆−. We noticed that the model was able to account for risk
aversion for values of µ bigger than λ0 + (σπ∆)2 z−x+y

2
x−y , and risk seeking for

values of µ less than λ0 + (σπ∆)2 z−x+y
2

x−y . We also managed to get an expression
for the distorted probability. Then, one should try to see if this model fit
better the data than all the others. Nevertheless, we can’t say something about
the Allai’s paradox and the common ratio effect. Indeed, we should do the
decoding work for two risky prospects with two and three outcomes. Moreover,
we could study the effect of non symmetric prior on θ∗ and so risk aversion,
and the effect of the prior width on risk aversion. Moreover, we could lay the
groundwork for a more general and pretty version of the model:

• First, one can discuss the use of efficient coding hypothesis for the model.
Zhang and Maloney noticed that it wasn’t entirely consistent with the
experimental data. One might think that the bounded rational decision-
maker would rather maximize his expected monetary gain minus a certain
cost modelling the metabolic cost for the brain to compute the optimal
decision. This maximization would be on ∆ and on the form of the noise.
We should indeed also use a noise depending on λ (the unit scale in the
log-odds scale). This way of looking at the problem is already present
in statistical physics where one usually have to minimize a free energy.
Parallels between decision making theory and statistical physics have
already been noted and formalized [40]. We could even think to a more
general framework in which, instead of using ∆+, ∆− and the Thurstone
scale, we use a non uniform noise over the whole log-odds space. And
therefore, we should maximise the gain minus some constant which plays
the role of the temperature time the mutual information between L the
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internal representation and the stimulus probability. Some efforts have
already been made in that direction by mathematicians in case of a very
simple gain function [41].

• Second, if p is given explicitly to the subject, then the only source of
uncertainty comes from the noisy internal representation of the probability.
But if instead the subject has to first estimate the probabilities (in an
estimation of relative frequencies task for instance), the value of p may
also be uncertain. Therefore, instead of choosing an ad-hoc functional
form for ω as Zhang and Maloney did, one may introduce p̃ = p + Ôp̃ where
Ôp̃ is some noise.

• Third, one may use a sigmoid for the bounded log-odds function rather
than a piecewise function. That sigmoid should be chosen making the
computation of θ∗ easier.
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Appendix A

Introduction

A.1 History of the study of cognitive biases in
decision-making under risk tasks

A.1.1 EUTR’s axioms
Let R be the set of rewards (outcomes). Let P be the set of all probability

distributions on R.
We use the following notations (the same as the ones in the DeGroot book
[42]): ∀P1, P2 ∈ P ,

P1 ≺∗ P2: P2 is preferred to P1;

P1 ∼∗ P2: P1 is equivalent to P2;

P1 °∗ P2: P1 is not preferred to P2.

Here are the four axioms:

Axiom 1: (Completeness)
∀P1, P2 ∈ P, exactly one of the following holds : P1 ≺∗ P2, P1 ∼∗ P2, or
P2 ≺∗ P1;

Axiom 2: (Transitivity)
∀P1, P2, P3 ∈ P, if P1 ≺∗ P2 and P2 ≺∗ P3, then P1 ≺∗ P3, and similarly
for ∼∗;

Axiom 3: (Independence)
∀P1, P2 ∈ P , P1 ≺∗ P2 implies that ∀P3 ∈ P , ∀α ∈]0,1[, αP1+(1−α)P3 <
αP2 + (1 − α)P3;

Axiom 4: (Continuity)
∀P1, P2, P3 ∈ P, P1 ≺∗ P2 ≺∗ P3 implies that ∃α ∈]0,1[, ∃β ∈]0,1[, αP1 +
(1 − α)P3 ≺∗ P2 and P2 ≺∗ βP1 + (1 − β)P3.
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Now, let’s recall some basic rules for manipulating probability distributions. Let

P1 be the probability distribution associated with the prospect
A

x y
p1 1 − p1

B

and P2 the probability distribution associated with that one
A

x y
p2 1 − p2

B
.

One uses the following notation to represent P1: P1 =
C

x y
p1 1 − p1

D
. And

similarly for P2, one has: P2 =
C

x y
p2 1 − p2

D
. Linear combination of probability

distributions is defined as follows:

∀α ∈ [0,1], αP1+(1−α)P2 =
C

x y
αp1 + (1 − α)p2 α(1 − p1) + (1 − α)(1 − p2)

D
.

(A.1)
One can verify that the normalization is conserved.

A.1.2 Allais paradox

It is taken from [2]. Let’s consider two decision problems. In each one,
people have to choose between two prospects. Below each prospect is written
the percentage of persons who chose the corresponding prospect, and above,
the distribution associated with:

• first decision problem:
P1A

2500 2400 0
0.33 0.66 0.01

B
[18%]

or
P2A

2400
1

B
[82%]

,

• second decision problem:
P3A

2500 0
0.33 0.67

B
[83%]

or
P4A

2400 0
0.34 0.66

B
[17%]

.

According to EUTR (especially the VNM Theorem), P1 °∗ P2 ⇔ EP1 [U ] −
EP2 [U ] < 0 ⇔ EP3 [U ] − EP4 [U ] < 0 ⇔ P3 °∗ P4
According to the percentages, P1 °∗ P2 and P4 °∗ P3. We have therefore a
contradiction.
This paradox is sometimes also called "common consequence effect." As an
explanation for that terminology, you can go from the first problem to the
second erasing from prospect P1 and P2 the common consequence "2400," and
readjusting the probability weights for the outcomes 0 and 2400.
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A.1.3 Common ratio effect (with a sure gain)
It is taken from [2]. Let’s consider two decision problems. In each one,

people have to choose between two prospects:

• first decision problem:
P1A

4000 0
0.8 0.2

B
[20%]

or
P2A

3000
1

B
[80%]

,

• second decision problem:
P3A

4000 0
0.2 0.8

B
[65%]

or
P4A

3000 0
0.25 0.75

B
[35%]

.

Let P be the distribution associated to the prospect
A

0
1

B
.

According to EUTR (especially the axiom of independence with α = 1
4),

P1 °∗ P2 ⇔ 1
4P1 +

1
1 − 1

4

2
P °∗ 1

4P2 +
1
1 − 1

4

2
P ⇔ P3 °∗ P4

According to the percentages, P1 °∗ P2 and P4 °∗ P3. We have therefore a
contradiction.

A.1.4 Violation of stochastic dominance
Let’s consider a decision task between the two prospects:

P1A
100 80 0
0.65 0.3 0.05

B
or

P2A
100 80 0
0.25 0.7 0.05

B
. (A.2)

Obviously, any individual would choose the first prospect to maximize his mon-
etary gain. As a remark: using the cumulative representation of the prospect,
you can see geometrically directly that P1 first order stochastically dominates
P2. One then see that FSD is intuitively the same concept as obviously preferred.

Let’s now use prospect theory. One can recall that in prospect theory U(0) = 0.
Let’s choose a decision maker whose utility function satisfies U(80) = 0.95 ∗
U(100) (this is consistent with the fact that U is increasing), and whose
weighting function satisfies π(0.65) = 0.55, π(0.3) = 0.38, π(0.25) = 0.36,
π(0.7) = 0.59 (this is consistent with the property of subcertainty of π ie
π(p) + π(pÍ) + π(1 − p − pÍ) < 1 and the S-shape of π). Then, EP1 [U ] =
0.911 ∗ U(100), and EP2 [U ] = 0.9205 ∗ U(100). Therefore P1 °∗ P2. FSD is
therefore violated.
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A.1.5 Discriminability and attractiveness
Given q1, q2 ∈ [0,1] such that q1 < q2, and π1, π2 two weighting functions,

one says that π1 exhibits a higher discriminability than π2 within the interval
[q1, q2] whenever : ∀Ô > 0, ∀p ∈ [0,1] such that p ∈ [q1, q2] and p + Ô ∈ [q1, q2],
one has π1(p + Ô) − π1(p) > π2(p + Ô) − π2(p). In other words the variations
within [q1, q2] of π1 are bigger than the ones of π2.

Let π1 and π2 be two weighting functions associated with individual number
one and number two respectively. One says that individual number one finds
betting on the chance domain [0,1] more attractive than individual number
two if ∀p ∈ [0,1], π1(p) ≥ π2(p) and ∃p ∈ [0,1], π1(p) > π2(p).
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Appendix B

Methods

B.1 Setting up the decoding problem

G = y + (x − y)
Ú 1

0
dp p P[p] + (z − y)

Ú 1

0
dp
Ú +∞

−∞
dL g(L)P[L | p]P[p]+

(y − x)
Ú 1

0
dp
Ú +∞

−∞
dL p g(L)P[L | p]P[p] (B.1)

G = y + (x − y)
Ú 1

0
dp p P[p] + (z − y)

Ú 1

0
dp
Ú θ

∆

−∞
dL P[L | p]P[p]+

(y − x)
Ú 1

0
dp
Ú θ

∆

−∞
dL p P[L | p]P[p] (B.2)

The first two terms are constant with respect to θ so we don’t care of them.

dG

dθ
= z − y

∆

Ú 1

0
dp P[L = θ

∆ | p]P[p] + y − x

∆

Ú 1

0
dp p P[L = θ

∆ | p]P[p]

= e
−

(θ−∆+)2

2σ2
πσ

2

2πσσπ∆

(z − y)
Ú +∞

∆+
dλ e− (λ−µ)2

2σ2 + (y − x)
Ú +∞

∆+
dλ

e− (λ−µ)2

2σ2

1 + e−λ



+ e
−

(θ−∆−)2

2σ2
πσ

2

2πσσπ∆

(z − y)
Ú ∆−

−∞
dλ e− (λ−µ)2

2σ2 + (y − x)
Ú ∆−

−∞
dλ

e− (λ−µ)2

2σ2

1 + e−λ



+ z − y

2πσσπ∆

Ú ∆+

∆−
dλ e

− (θ−λ)2

2σ2
π∆2 e− (λ−µ)2

2σ2 + y − x

2πσσπ∆

Ú ∆+

∆−
dλ

e
− (θ−λ)2

2σ2
π∆2

1 + e−λ e− (λ−µ)2

2σ2

(B.3)
For the last step wee just used the definition of Λ(p) to split the integrals, and
made the change of variable λ = ln

1
p

1−p

2
.
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Appendix C

Results

C.1 Solution of eq. 2.17

C.1.1 Expression for I2

We would like to have an expansion of an integral of the form I2 =
1

2πσσπ∆
s∆+

∆− dλ e−Ah(λ) when A goes to infinity. Let us first expand h(λ) around
λ∗ (the maximum of the integrand which is assumed to belong to the interval
[∆−, ∆+]):

h(λ) = h(λ∗)+ (λ − λ∗)2

2 hÍÍ(λ∗)+ (λ − λ∗)3

6 hÍÍÍ(λ∗)+ (λ − λ∗)4

24 hÍÍÍÍ(λ∗). (C.1)

Let us now make a change of variable to deal with an integral between −∞
and +∞: u

.= (λ − λ∗)
√

A. Therefore, one has:

Ah(λ) Ä Ah(λ∗) + u2

2 hÍÍ(λ∗) + u3

6
√

A
hÍÍÍ(λ∗) + u4

24A
hÍÍÍÍ(λ∗). (C.2)

It follows:

e−Ah(λ) Ä e−Ah(λ∗)e−u2
2 h

ÍÍ(λ∗)e
− u3

6
√
A
hÍÍÍ(λ∗)

e− u4
24Ah

ÍÍÍÍ(λ∗)

Ä e−Ah(λ∗)e−u2
2 h

ÍÍ(λ∗)
C
1 − u3

6
√

A
hÍÍÍ(λ∗) + u6hÍÍÍ(λ∗)2 − 3u4hÍÍÍÍ(λ∗)

72A

D
(C.3)

For the last steps, we made an expansion for A goes to infinity. Finally, one
has keeping in mind that the integration boundaries will be approximate to
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infinity:

I2 Ä e−Ah(λ∗)

2πσ∆

Ú (∆+−λ∗)
√
A

(∆−−λ∗)
√
A

du e−u2
2 h

ÍÍ(λ∗)

+ 1
72A

e−Ah(λ∗)

2πσ∆

C
hÍÍÍ(λ∗)2

Ú (∆+−λ∗)
√
A

(∆−−λ∗)
√
A

du u6e−u2
2 h

ÍÍ(λ∗) − 3hÍÍÍÍ(λ∗)
Ú (∆+−λ∗)

√
A

(∆−−λ∗)
√
A

du u4e−u2
2 h

ÍÍ(λ∗)
D

Ä e−Ah(λ∗)

2πσ∆

Ú +∞

−∞
du e−u2

2 h
ÍÍ(λ∗)

+ 1
72A

e−Ah(λ∗)

2πσ∆

5
hÍÍÍ(λ∗)2

Ú +∞

−∞
du u6e−u2

2 h
ÍÍ(λ∗) − 3hÍÍÍÍ(λ∗)

Ú +∞

−∞
du u4e−u2

2 h
ÍÍ(λ∗)

6

= e−Ah(λ∗)
√

2πσ∆

 1ñ
hÍÍ(λ∗)

+ 5
24A

hÍÍÍ(λ∗)2ñ
hÍÍ(λ∗)7

− 1
8A

hÍÍÍÍ(λ∗)ñ
hÍÍ(λ∗)5

 .

(C.4)

C.2 Risk aversion
We want to compute:

P[sure] =
Ú θ∗

∆

−∞
dL

Ú 1

0

dp

p(1 − p)
e

−
(L− Λ(p)

∆ )2

2σ2
π

√
2πσπ

e− (λ(p)−µ)2

2σ2

√
2πσ

. (C.5)

Let us focus on the convolution term first. One has:

P[L] =
Ú 1

0
dp P[L | p] P[p]

=
Ú +∞

−∞
dλ

e
−

(L− Λ
∆)2

2σ2
π

√
2πσπ

e− (λ−µ)2

2σ2

√
2πσ

= e
−

1
L− ∆+

∆

22

2σ2
π

2πσσπ

Ú +∞

∆+
dλ e− (λ−µ)2

2σ2

+ e
−

1
L− ∆−

∆

22

2σ2
π

2πσσπ

Ú ∆−

−∞
dλ e− (λ−µ)2

2σ2

+ 1
2πσσπ

Ú ∆+

∆−
dλ e

−
(L− λ

∆)2

2σ2
π e− (λ−µ)2

2σ2

(C.6)

The last integral is a convolution. Using the efficient coding hypothesis, one
can remove the boundary terms. As previously, we can rewrite the product of
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two Gaussians in two Gaussians, one of which is independent of λ:

P[L] ≈ e

−
(L− µ

∆)2

2( σ∆)2
è

1+(σπ∆
σ )2

é
2πσσπ

Ú ∆+

∆−
dλ exp

−

1
λ − µ(σπ∆)2+σ2L∆

σ2+(σπ∆)2

22

2 (σπ∆)2

1+(σπ∆
σ )2

 . (C.7)

Using the efficient coding hypothesis once again and the rational limit hy-
pothesis, one can use the saddle point method to compute the integral. We
get:

P[L] ≈ ∆
σ

√
2π

e

−
(L− µ

∆)2

2( σ∆)2
è

1+(σπ∆
σ )2

é
ò

1 +
1
σπ∆
σ
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And finally, one has:
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