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Abstract

The purpose of the present thesis is focused on the design of a Model Predictive Control
approach, able to generate a feasible trajectory for a 4 steering wheel electric Unmanned
Ground Vehicle in the Agriculture 4.0 scenario. A priori knowledge of the environment
and static obstacles therein (i.e. vine rows) is given by a processed point-cloud map of
a vineyard, provided by UAV recognitions. Based on this information, the problem of
generating a feasible trajectory (guidance) and tracking it (control) are addressed by a
suitable GNC system.

In literature it is possible to find a high amount of guidance and control strategies.
About control strategies, it is possible to find approaches that depends on the application.
Commonly control strategies are PID, LQR and H-inf usually for linear systems, Feedback
linearization and Sliding mode for nonlinear systems. Recently have been developed new
advanced control strategies derived by the contribution of fields outside control, as Model
Predictive Control, Fuzzy logic, Neural Networks and Data-Driven.
Instead, about guidance strategies, a survey [5] comes to our help, listing lots of different
methods. One of the most famous is the Rapidly-Expanding Random Tree (RRT), applied
for the first time by LaValle in [1] and in [2], which adopts a stochastic search. Another
method mentioned is Model Predictive Control, already listed in the control strategies.
The MPC is a well known approach in controls, but in guidance, its standard formulation
it is not a global optimal method, but it finds an optimal solution over a finite time horizon,
and does not cover the entire path to generate. In order to cover the remaining path it is
used to add a suitable cost-to-go in the problem, also called terminal cost, alongside a
terminal constraint.
A complete guidance and navigation system using MPC, can be found in the proposed
papers [9] and [10], which is used for lance change in automated highway driving context.
Another approach based on Mixed-Integer Linear Programming for path planning is shown
in [11].
It has been choosen the Model Predictive Control strategy to develop our GNC system,
trying to pass over the problem of finding a global optimal solution, and providing a
feasible trajectory.

This thesis is organized as follow: in part I are introduced the context of the thesis,
an overview of possible system models for modelling the 4-steering wheel UGV, the
optimization theory and a MPC overview; in part II it is are described the two design
approaches; in part III are described the implementation of each approach and their results,
drawing conclusions.
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Chapter 1

Thesis Framework

1.1 AgriTech: Robotics in Agriculture

Agricultural technology or in short Agritech, stands for the use of new technologies in
agriculture fields. As mentioned on the report launched during the World Government
Summit, called ”Agriculture 4.0 – The Future Of Farming Technology” [3], the new
challenges to face are Demographics, Scarcity of natural resources, Climate change, and
Food waste. As a consequence, future agriculture will have to make wide use of cutting-
edge technologies, based on automated robotic systems, big data analysis and IoT (Internet
of Things). This new wave of techonological improvement has been called Agritech, since
it is a dramatic change in the way the agriculture has been conceived until now. Using
these techonlogies, reduce the required time and cost in production, increasing the quality
and efficiency, avoiding the waste of resources. Several applications have been already
implemented in agricolture such as seeding, grove supervision, chemical applications,
weed control, harvesting, end so on. Even if the agricultural environment is not structured
as well as the other economic sectors, the flexibility of robots allows them to be exploited,
taking into account the complexity of the tasks and the environments. This makes it so
that this is a field in constant development and day after day new researches add new
opportunities of growth.
Here we focus on automated robotic systems, in particular on automation of motion, which
implies the use of unmanned aerial and ground vehicles. So as to take part in this initiative,
the Dipartimento di Scienze Agrarie, Forestali, Alimentari (DISAFA) of University of
Turin, in partnership with Politecnico di Torino and the Institute of Electronics, Computer
and Telecommunication Engineering of National Research Council of Italy (CNR-IEIIT),
has developed a four wheel steering unmanned ground vehicle.
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Thesis Framework

1.2 Case study: Four-Wheel Steering Electric Unmanned
Ground Vehicle

The unmanned ground vehicle under study is shown in in fig. 1.1, with parameters in tab.
1.1. It has 4 steering wheels with two Ackermann steering mechanisms (ASM), respectively
for the front and rear axes, allowing the UGV to steer in small spaces. Furthermore, the
UGV can move with a crab-wise motion, letting the UGV moving in a straight line, on a
different direction other than its longitudinal axis.
The greatest advantage of a four wheel steering vehicle consists in reaching higher steering
angles with respect to the common two wheel steering one, letting it to reduce the turning
radius. This is a very common condition in Agritech, where ground vehicles are expected
to moves in narrow spaces, which may be vineyard, characterized by linear and long paths,
and greenhouse, which path is most of time irregular and narrow. Both cases are shown in
fig. 1.2, where it can be noticed that our UGV fits well the first case, while for the second
it may be more suitable using UGV of smaller dimensions.

Figure 1.1: UGV
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1.2 – Case study: Four-Wheel Steering Electric Unmanned Ground Vehicle

Quantity Value Description
𝑚 800𝑘𝑔 mass
𝑙f 0 75𝑚 front axis length
𝑙r 0 75𝑚 rear axis length
𝐿 1 5𝑚 UGV length
𝑊 1𝑚 UGV width
𝐼z 112𝑘𝑔/𝑚3 inertia

𝑣max 2 13𝑚/𝑠 maximum velocity
𝛿max 46° maximum steering angle
𝛿max 107°/𝑠 maximum steering rateo
𝑅w 0 254𝑚 wheel radius
𝑊w 0 203𝑚 wheel width

𝐶f, 𝐶r 10000𝑁/𝑟𝑎𝑑 cornering stiffness

Table 1.1: UGV parameters

In aerospace, the process of design a system able to control the motion of a vehicle is
called GNC (Guidance, Navigation and Control) [4], where:

• Guidance is the process of determination of a feasible trajectory

• Navigation is the process of determination of the vehicle state at a certain instant

• Control is the process of application of forces to the vehicle needed to perform the
desired trajectory

This thesis deals only with Guidance and Control parts, then in the determination of a
feasible trajectory from the inital position to a final goal, and the application of the suitable
forces to perform that trajectory, meanwhile Navigation is not addressed directly, but we
expected that UGV mounts a set of sensors that allows us to obtain information about its
state at each instant of time.
For both Guidance and Control it has been chosen to use the Model Predictive Control
approach in this thesis, which, even if it is well-known in control, in guidance it needs
some improvement in order to overcome problems related infeasibility over the complete
track. The strength of this approach consists in solving an optimization problem taking
into account a prediction of a complex MIMO (Multiple Input Multiple Output) system,
physical and design constraints, and the possibility to trade-off between user specified
optimization parameters.
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Thesis Framework

(a)

(b)

Figure 1.2: Agritech environments: a) Vineyard; b) Greenhouse;
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Chapter 2

Reference frames and Coordinate
systems

In this chapter it is given a description of the reference frames and the coordinate systems
used in this thesis, since in the design, models can be expresseed in different coordinate
systems.

Figure 2.1: Global, body and track frames
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Reference frames and Coordinate systems

It is considered a moving body frame B in a plane with respect to an inertial global
frame O, and a Frenet frame F.

• Global frame 𝑂( ̂𝑖, ̂𝑗) defined as an inertial frame.

• Body frame 𝐵( ̂𝑖′, ̂𝑗′) defined with the exes fixed to the body.

• Frenet frame 𝐹( ̂𝑡, �̂�) defined by projecting the body to the track, with the axes tangent
and normal to the curve.

The position of the body can be defined in cartesian coordinates (𝑥, 𝑦) or curvilinear
coordiantes (𝑠, 𝑒𝑦).

2.1 Inertial-Frenet-Body transfrom

2.1.1 Rotation matrix
Rotation matrix between the inertial frame O, body frame B and Frenet frame F:

𝑅𝑂
𝐵(𝜓) = [cos 𝜓 − sin 𝜓

sin 𝜓 cos 𝜓 ]

𝑅𝑂
𝐹 (𝜓𝑑) = [cos 𝜓𝑑 − sin 𝜓𝑑

sin 𝜓𝑑 cos 𝜓𝑑
]

𝑅𝐹
𝐵(𝑒𝜓) = [cos 𝑒𝜓 − sin 𝑒𝜓

sin 𝑒𝜓 cos 𝑒𝜓
]

(2.1)

2.1.2 Curvilinear coordinates
The body can be expressed in curvilinear coordinates (𝑠, 𝑒𝑦), which can be defined with
respect to the Frenet frame F:

⃗𝑠 = ⃗𝑟𝐹
𝑂𝐹

⃗𝑒𝑦 = ⃗𝑟𝐹
𝐹𝐵

(2.2)

According to the figure 2.2, the curvilinear abscissa 𝑠 can be expressed in polar coordinates

𝑠 = 𝜌𝜃 (2.3)

where: 𝜌 ∶ curve radius
𝑐𝑐 = 1/𝜌 ∶ curvature
𝜃 ∶ angle travelled

The angle travelled 𝜃, taking into account the rotation direction, can be expressed as:

𝜃 = 𝜃0 + 𝜃′ = 𝜃0 − (90° − 𝜓𝑑) (2.4)

8



2.1 – Inertial-Frenet-Body transfrom

Figure 2.2: Angles relation

where 𝜃0 is an offset of the starting point to a specific position on the horizonal inertial axis.

Deriving the equation above:

𝑑
𝑑𝑡

(𝜃) = 𝑑
𝑑𝑡

(𝜃0 − (90° − 𝜓𝑑)) = 𝑑
𝑑𝑡

(𝜓𝑑) (2.5)

which proves the relation of the angle travelled along the curve 𝜃 and the angle with respect
to the tangent to the curve itself.

Deriving the curvilinear abscissa in polare coordinates in 2.3 with respect to the time,
considering a constant curvature:

⃗ ̇𝑠 = 𝑑
𝑑𝑡

(𝜌𝜃) ̂𝑡 = 𝜌 𝑑
𝑑𝑡

(𝜃) ̂𝑡 = 𝜌𝜔𝑑 ̂𝑡 (2.6)

then the angular velocity:

𝜔𝑑 = ̇𝑠
𝜌

= ̇𝑠𝑐𝑐 (2.7)

It is defined the deviation 𝑒𝜓 from the body heading to the curve (desired) heading, is:

𝑒𝜓 = 𝜓 − 𝜓𝑑 (2.8)

2.1.3 Body with respect to the global frame
The position of the body frame B with respect the global frame O is:

⃗𝑟𝑂
𝑂𝐵 = [𝑥𝐵

𝑦𝐵
] = [𝑟𝑂𝐵 cos 𝜃𝐵

𝑟𝑂𝐵 sin 𝜃𝐵
] (2.9)

9



Reference frames and Coordinate systems

The velocity of the body in its reference frame ⃗𝑣𝐵
𝐵, can be expressed in the global frame O

as:
⃗𝑣𝑂
𝐵 = 𝑅𝑂

𝐵(𝜓) ⃗𝑣𝐵
𝐵 ⇒ ⃗𝑣𝐵

𝐵 = 𝑅𝐵
𝑂(𝜓) ⃗𝑣𝑂

𝐵 (2.10)
The acceleration of the body in its reference frame ⃗𝑎𝐵

𝐵, can be expressed in the global
frame O, deriving the equation above:

⃗𝑎𝑂
𝐵 = 𝑑

𝑑𝑡
( ⃗𝑣𝑂

𝐵) = 𝑑
𝑑𝑡

(𝑅𝑂
𝐵(𝜓) ⃗𝑣𝐵

𝐵) = �̇�𝑂
𝐵(𝜓) ⃗𝑣𝐵

𝐵 + 𝑅𝑂
𝐵(𝜓) ⃗̇𝑣

𝐵
𝐵

= �⃗�𝑂
𝐵 × 𝑅𝑂

𝐵(𝜓) ⃗𝑣𝐵
𝐵 + 𝑅𝑂

𝐵(𝜓) ⃗̇𝑣
𝐵
𝐵 = 𝑅𝑂

𝐵(𝜓)(�⃗�𝑂
𝐵 × ⃗𝑣𝐵

𝐵 + ⃗̇𝑣
𝐵
𝐵)

⇒𝑅𝐵
𝑂 ⃗𝑎𝑂

𝐵 = �⃗�𝑂
𝐵 × ⃗𝑣𝐵

𝐵 + ⃗̇𝑣
𝐵
𝐵

(2.11)

then:
⃗𝑎𝐵
𝐵 = �⃗�𝑂

𝐵 × ⃗𝑣𝐵
𝐵 + ⃗̇𝑣

𝐵
𝐵 (2.12)

where: ⃗𝑎𝐵
𝐵 = 𝑅𝐵

𝑂 ⃗𝑎𝑂
𝐵

2.1.4 Frenet frame
The position of the Frenet frame F with respect the global frame O is:

⃗𝑟𝑂
𝑂𝐹 = [𝑥𝐹

𝑦𝐹
] = [𝑟𝑂𝐹 cos 𝜃𝐹

𝑟𝑂𝐹 sin 𝜃𝐹
] (2.13)

The velocity of the body in its reference frame ⃗𝑣𝐵
𝐵, can be expressed in the Frenet frame F

as:
⃗𝑣𝐹
𝐵 = 𝑅𝐹

𝐵(𝑒𝜓) ⃗𝑣𝐵
𝐵 ⇒ ⃗𝑣𝐵

𝐵 = 𝑅𝐵
𝐹 (𝑒𝜓) ⃗𝑣𝐹

𝐵 (2.14)

2.1.5 Body with respect to the Frenet frame
The position of the body can be expressed as:

⃗𝑟𝑂
𝑂𝐵 = ⃗𝑟𝑂

𝑂𝐹 + ⃗𝑟𝑂
𝐹𝐵 = ⃗𝑟𝑂

𝑂𝐹 + 𝑅𝑂
𝐹 (𝜓𝑑) ⃗𝑟𝐹

𝐹𝐵 (2.15)

According to [13], deriving the equation above with respect the time:
𝑑
𝑑𝑡

( ⃗𝑟𝑂
𝑂𝐵) = 𝑑

𝑑𝑡
( ⃗𝑟𝑂

𝑂𝐹) + 𝑑
𝑑𝑡

(𝑅𝑂
𝐹 (𝜓𝑑) ⃗𝑟𝐹

𝐹𝐵)

⇒ ⃗𝑣𝑂
𝐵 = 𝑑

𝑑𝑡
( ⃗𝑟𝑂

𝑂𝐹) + �̇�𝑂
𝐹 (𝜓𝑑) ⃗𝑟𝐹

𝐹𝐵 + 𝑅𝑂
𝐹 (𝜓𝑑) ⃗̇𝑟

𝐹
𝐹𝐵

⇒ ⃗𝑣𝑂
𝐵 = ⃗̇𝑟

𝑂
𝑂𝐹 + �⃗�𝑂

𝐹 × 𝑅𝑂
𝐹 (𝜓𝑑) ⃗𝑟𝐹

𝐹𝐵 + 𝑅𝑂
𝐹 (𝜓𝑑) ⃗̇𝑟

𝐹
𝐹𝐵

⇒𝑅𝐹
𝑂(𝜓𝑑) ⃗𝑣𝑂

𝐵 = 𝑅𝐹
𝑂(𝜓𝑑) ⃗̇𝑟

𝑂
𝑂𝐹 + �⃗�𝑂

𝐹 × ⃗𝑟𝐹
𝐹𝐵 + ⃗̇𝑟

𝐹
𝐹𝐵

⇒𝑅𝐹
𝑂(𝜓𝑑)𝑅𝑂

𝐵(𝜓) ⃗𝑣𝐵
𝐵 = ⃗̇𝑟

𝐹
𝑂𝐹 + �⃗�𝑂

𝐹 × ⃗𝑟𝐹
𝐹𝐵 + ⃗̇𝑟

𝐹
𝐹𝐵

⇒𝑅𝐹
𝐵(𝑒𝜓) ⃗𝑣𝐵

𝐵 = ⃗̇𝑟
𝐹
𝑂𝐹 + �⃗�𝑂

𝐹 × ⃗𝑟𝐹
𝐹𝐵 + ⃗̇𝑟

𝐹
𝐹𝐵

(2.16)
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2.1 – Inertial-Frenet-Body transfrom

where: 𝑅𝐹
𝐵(𝑒𝜓) = 𝑅𝐹

𝑂(𝜓𝑑)𝑅𝑂
𝐵(𝜓)

⃗̇𝑟
𝐹
𝑂𝐹 = ̇𝑠 ̂𝑡
⃗̇𝑟
𝐹
𝐹𝐵 = ̇𝑒𝑦�̂�

Passing from the cartesian coordinates to the curvilinear coordinates, using the trans-
formation in 2.2:

𝑅𝐹
𝐵(𝑒𝜓) ⃗𝑣𝐵

𝐵 = ⃗̇𝑠 + �⃗�𝑑 × ⃗𝑒𝑦 + ⃗̇𝑒𝑦

⇒𝑅𝐹
𝐵(𝑒𝜓) ⃗𝑣𝐵

𝐵 = ̇𝑠 ̂𝑡 + ̇𝑠𝑐𝑐�̂� × 𝑒𝑦�̂� + ̇𝑒𝑦�̂�
⇒𝑅𝐹

𝐵(𝑒𝜓) ⃗𝑣𝐵
𝐵 = ̇𝑠 ̂𝑡 + ̇𝑠𝑒𝑦𝑐𝑐(− ̂𝑡) + ̇𝑒𝑦�̂�

⇒𝑅𝐹
𝐵(𝑒𝜓) ⃗𝑣𝐵

𝐵 = ̇𝑠(1 − 𝑒𝑦𝑐𝑐) ̂𝑡 + ̇𝑒𝑦�̂�

(2.17)

which can be decompoed in the Frenet frame axes:

[ ̇𝑠
̇𝑒𝑦
] = 𝑅𝐹

𝐵(𝑒𝜓) [𝑣𝑥
𝑣𝑦

] [
1

1−𝑐𝑐𝑒𝑦

0
] (2.18)

while the deviation angle velocity:

⃗ ̇𝑒𝜓 = 𝑑
𝑑𝑡

(𝜓 − 𝜓𝑑)�̂� = �⃗� − �⃗�𝑑 = �⃗� − ̇𝑠𝑐𝑐�̂� (2.19)
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Chapter 3

System Modeling

A system model is an important part of the MPC for prediction, which consists in a set of
kinematics/dynamics equations that governs the system. In general it is spent a quite large
amount of time building a suitable system model, but we can say that holds the following
rule: the simplest model that gives accurate enough prediction.

It is possible to distinguish two types of models: kinematic models and dynamic models.
The first are mainly used in low-speed conditions, where forces and inertia does not affect
too much the vehicle; while the second keep into account forces and their effects.
In this chapter is given a description of the most common models used to represent a
physics of a car. These models are commonly expressed in the so-called State-Space
representation [6], which is a set of differential equations:

{ ̇𝑥(𝑡) = 𝑑
𝑑𝑡𝑥(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) state equation

𝑦(𝑡) = ℎ(𝑥(𝑡)) output equation
(3.1)

where: 𝑥(𝑡) ∶ state
𝑢(𝑡) ∶ input
𝑦(𝑡) ∶ output

In other words, a system behaviour can be described by a function of its states and
inputs.

13



System Modeling

3.1 Point mass kinematic

The point-mass linear kinematic [9] is the easiest way to represent a moving object in the
space, which is expressed by this set of equations:

⎧{{
⎨{{⎩

�̇� = 𝑉𝑥
̇𝑌 = 𝑉𝑦
̇𝑉𝑥 = 𝑢1
̇𝑉𝑦 = 𝑢2

(3.2)

where: 𝑋, 𝑌 ∶ coordinates with respect to the inertial frame
𝑉𝑥, 𝑉𝑦 ∶ longitudinal and lateral velocity in inertial frame

3.2 Bicycle kinematics

Figure 3.1: Bicycle kinematic

The kinematic model of a bicycle [12] is the simplest bycicle model, expressed by the

14



3.3 – Bicycle dynamics

following set of equations:

�̇�(𝑡) = 𝑣 cos(𝜓 + 𝛽) = 𝑉𝑥 cos(𝜓) − 𝑉𝑦 sin(𝜓)
̇𝑌 (𝑡) = 𝑣 sin(𝜓 + 𝛽) = 𝑉𝑥 sin(𝜓) + 𝑉𝑦 cos(𝜓)

̇𝜓(𝑡) = 𝑣 cos(𝛽)
𝑙𝑓 + 𝑙𝑟

(tan(𝛿𝑓) + tan(𝛿𝑟))
(3.3)

where: 𝑋, 𝑌 ∶ coordinates with respect to the inertial frame
𝑉𝑥, 𝑉𝑦 ∶ longitudinal and lateral velocity with respect to the inertial frame
𝑣 ∶ velocity in body frame
𝛿𝑓, 𝛿𝑟 ∶ front and rear steering angles
𝜓 ∶ heading with respect to the inertial frame
𝛽 = arctan ( 𝑙𝑓 tan(𝛿𝑟)+𝑙𝑟 tan(𝛿𝑓)

𝑙𝑓+𝑙𝑟
) ∶ slip angle

which is a nonlinear system of the form:

̇𝜉(𝑡) = 𝑓(𝜉(𝑡), 𝑢(𝑡)) (3.4)

where: 𝜉(𝑡) = [𝑋 𝑌 𝜓]𝑇 state
𝑢(𝑡) = [𝛿𝑓 𝛿𝑟 𝑣]𝑇 input

3.3 Bicycle dynamics
The bycicle dynamics described in [12] and [15], is one of the most used models, since it
is rich enough to integrate the relevant physical aspects of a car, but still not to complex as
a full car model.

3.3.1 Equation of motion
From equations 2.12, the acceleration of the body in its own frame B, is:

⃗𝑎𝐵 = �⃗�𝑧 × ⃗𝑣𝐵 + ⃗̇𝑣𝐵 = 𝜔𝑧�̂� × (𝑣𝑥 ̂𝑖 + 𝑣𝑦 ̂𝑗) + ( ̇𝑣𝑥 ̂𝑖 + ̇𝑣𝑦 ̂𝑗)
= 𝜔𝑧𝑣𝑥 ̂𝑗 + 𝜔𝑧𝑣𝑦(− ̂𝑖) + ( ̇𝑣𝑥 ̂𝑖 + ̇𝑣𝑦 ̂𝑗)
= ( ̇𝑣𝑥 − 𝜔𝑧𝑣𝑦) ̂𝑖 + ( ̇𝑣𝑦 + 𝜔𝑧𝑣𝑥) ̂𝑗

(3.5)

then:

⃗𝑎𝐵 = [𝑎𝑥
𝑎𝑦

] = [ ̇𝑣𝑥 − 𝜔𝑧𝑣𝑦
̇𝑣𝑦 + 𝜔𝑧𝑣𝑥

] (3.6)

15



System Modeling

Figure 3.2: Bicycle dynamics

According to the equilibrium principle, expressed in dynamics, it is obtained the set of
equation:

𝑚( ̇𝑣𝑥 − 𝜔𝑧𝑣𝑦) = 𝐹𝑥𝑓 + 𝐹𝑥𝑟

𝑚( ̇𝑣𝑦 + 𝜔𝑧𝑣𝑥) = 𝐹𝑦𝑓 + 𝐹𝑦𝑟

𝐼𝑧�̇�𝑧 = 𝑙𝑓𝐹𝑦𝑓 − 𝑙𝑟𝐹𝑦𝑟

(3.7)

then:
̇𝑣𝑥 = 1

𝑚
(𝐹𝑥𝑓 + 𝐹𝑥𝑟) + 𝜔𝑧𝑣𝑦

̇𝑣𝑦 = 1
𝑚

(𝐹𝑦𝑓 + 𝐹𝑦𝑟) − 𝜔𝑧𝑣𝑥

�̇�𝑧 = 1
𝐼𝑧

(𝑙𝑓𝐹𝑦𝑓 − 𝑙𝑟𝐹𝑦𝑟)

(3.8)

where: 𝑚 ∶ mass
𝑙𝑓, 𝑙𝑟 ∶ front and rear wheel distance from the center of mass
𝐹𝑥𝑓, 𝐹𝑥𝑟 ∶ forces on x body axis of front (f) and rear (r) wheel
𝐹𝑦𝑓, 𝐹𝑦𝑟 ∶ forces on y body axis of front (f) and rear (r) wheel

in which the forces can be decomposed in the tire-fixed frame:

{𝐹𝑥,𝑖 = 𝐹𝑙,𝑖𝑐𝑜𝑠(𝛿𝑖) − 𝐹𝑠,𝑖𝑠𝑖𝑛(𝛿𝑖)
𝐹𝑦,𝑖 = 𝐹𝑙,𝑖𝑠𝑖𝑛(𝛿𝑖) + 𝐹𝑠,𝑖𝑐𝑜𝑠(𝛿𝑖)

(3.9)
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3.3 – Bicycle dynamics

where: 𝐹𝑙,𝑖 = {𝐹𝑙𝑓, 𝐹𝑙𝑟} ∶ force on longitudinal axis of front (f) and rear (r) wheel
𝐹𝑠,𝑖 = {𝐹𝑠𝑓, 𝐹𝑠𝑟} ∶ force on perpendicular axis of front (f) and rear (r) wheel
𝛿𝑖 = {𝛿𝑓, 𝛿𝑟} ∶ front (f) and rear (r) wheel steering angles

3.3.2 State Space equation
Replacing the equations 3.9 into 3.8, it is obtained the complete formulation:

̇𝑣𝑥 = 1
𝑚

(𝐹𝑙𝑓 cos(𝛿𝑓) − 𝐹𝑠𝑓 sin(𝛿𝑓) + 𝐹𝑙𝑟 cos(𝛿𝑟) − 𝐹𝑠𝑟 sin(𝛿𝑟)) + 𝜔𝑧𝑣𝑦

̇𝑣𝑦 = 1
𝑚

(𝐹𝑙𝑓 sin(𝛿𝑓) + 𝐹𝑠𝑓 cos(𝛿𝑓) + 𝐹𝑙𝑟 sin(𝛿𝑟) + 𝐹𝑠𝑟 cos(𝛿𝑟)) − 𝜔𝑧𝑣𝑥

�̇�𝑧 = 1
𝐼𝑧

(𝑙𝑓(𝐹𝑙𝑓 sin(𝛿𝑓) + 𝐹𝑠𝑓 cos(𝛿𝑓)) − 𝑙𝑟(𝐹𝑙𝑟 sin(𝛿𝑟) + 𝐹𝑠𝑟 cos(𝛿𝑟)))

(3.10)

Figure 3.3: Sideslip angle

Sideslip angle The sideslip angle is defined in [12] as:

𝛼∗ = 𝛿∗ − 𝜃∗ (3.11)

where: 𝜃∗ = arctan (𝑣𝑥∗
𝑣𝑦∗

)
𝑣𝑥∗, 𝑣𝑦∗ ∶ longitudinal and lateral wheel velocities in fixed body-frame

While 𝑣𝑥∗ coincides with the CoM longitudinal velocity, the 𝑣𝑦∗ is the sum of the CoM
lateral velocity and the tangential velocity of the wheel respect to the CoM due to the
angular velocity, then:

𝑣𝑥𝑓 = 𝑣𝑥𝑟 = 𝑣𝑥

𝑣𝑦𝑓 = 𝑣𝑦 + 𝑙𝑓𝜔𝑧

𝑣𝑦𝑟 = 𝑣𝑦 − 𝑙𝑟𝜔𝑧

(3.12)
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where: 𝑣𝑥𝑓, 𝑣𝑦𝑓 ∶ front wheel velocities in fixed body-frame
𝑣𝑥𝑟, 𝑣𝑦𝑟 ∶ rear wheel velocities in fixed body-frame

Replacing the equation above in the first one, it is obtained the sideslip angle of the
front and the rear wheel:

𝛼𝑓 = 𝛿𝑓 − arctan (
𝑣𝑦 + 𝑙𝑓𝜔𝑧

𝑣𝑥
)

𝛼𝑟 = 𝛿𝑟 − arctan (
𝑣𝑦 − 𝑙𝑟𝜔𝑧

𝑣𝑥
)

(3.13)

3.4 Tire’s linear dynamic
For small sideslip angles, the wheel lateral force can be well approximated proportional to
the sideslip angle itself [15]:

𝐹𝑠𝑖 = 𝐶𝑖(𝐹𝑧, 𝜇)𝛼𝑖 (3.14)

𝐶𝑖 is the wheel ”Cornering stiffness”, depending on the normal force acting on the wheel
and the friction coefficient with the surface.
Here, an estimate of this coefficient has been done evaluating the dynamic evolution of
the dynamic system model, with different values of the cornering stiffness, until a realistic
behaviour has been achieved.
Since it directly affects the wheel lateral forces, it is worthy to notice that small values of
it, make difficult to steer, while too high values generate excessively high lateral forces,
which are not realistic.
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Chapter 4

Optimization

4.1 Introduction
Optimization is the other foundamental part of the MPC, for obtaining the optimal input
to apply to the system.
Optimization, as exposed in [7], consists in minimizing an objective function 𝑓(𝑥), through
a decision variable 𝑥, subjected to constraints 𝑔(𝑥), ℎ(𝑥), which can be expressed In the
standard form:

min
𝑥

𝑓(𝑥)

s.t. 𝑔(𝑥) ⩽ 0
ℎ(𝑥) = 0

(4.1)

Objective function The objective function is called also cost/loss function since it
implies a penalization of the terms involved, which represent some performance indices.
The penalty is often expressed as the 𝑙2𝑛𝑜𝑟𝑚 which is always convex and can be interpreted
in penalizing the energy dissipation.
The performance indices depend on what we want to control. Most of the time, these
indices are in opposition from each other, then it is performed a trade-off between tracking
a reference and input effort, then between stability and performance.

Decision variable The decision variable or minimizer is the solution of the optimization
problem. If a solution exists, the problem is feasible, and the values that minimizes the
objective function is the solution, which results in an optimal value. Feasibility and
optimality are the main issues of an optimization problems.

Constraints The constraints can be related to the system model or to some design
parameters. Usually, physics constraints are hard constraints, since they cannot be violated;
while design constraints are often soft constraints where their violation is allowed within
some defined tolerances.
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Optimization

4.2 Optimization Programs
The first distinction in optimization problems is between Convex and Non-Convex prob-
lems. Convex problems are special case of the Non-Convex ones, where the local optimum
is unique and corresponde to the global optimum. Convex optimization problems can
be often reformulated according a family of optimization programs the most common of
which are:

• Linear Programs (LP)
min

𝑥
𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝐴𝑒𝑞𝑥 = 𝑏𝑒𝑞

(4.2)

• Quadratic Programs (QP)

min
𝑥

1
2

𝑥𝑇𝐻𝑥 + 𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝐴𝑒𝑞𝑥 = 𝑏𝑒𝑞

(4.3)

• Second-Order Cone Program (SOCP)

min
𝑥

𝑐𝑇𝑥

s.t. 𝐹0 +
𝑚

∑
𝑖=1

𝑥𝑖𝐹𝑖 ⪰ 0
(4.4)
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Chapter 5

Model Predictive Control

5.1 MPC Introduction
Model Predictive Control is a control approach, containing different implementations,
based on specific key principles [8]:

• Prediction: predict the system future behavior.

• Optimization: solve an optimization problem.

• Receding horizon: apply only the first solution of the optimization problem and shift
forward the horizon.

Figure 5.1: MPC block scheme
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Model Predictive Control

Taking as reference the fig. 5.1, it is possible to outline its algorithm, in fact at each
sampling time k, the MPC:

1. performs a prediction of the future behavior of the system over a time horizon 𝑁𝑝,
through a model of the system and its past states and inputs:

𝑥(𝑖 + 1|𝑘) = 𝑓(𝑥(𝑖|𝑘), 𝑢(𝑖|𝑘)) (5.1)

2. obtains an optimal control sequence by solving an optimization problem over a finite
prediction horizon 𝑁𝑝:

min
𝑢𝑘

𝑁𝑝−1

∑
𝑖=0

𝑙(𝑥(𝑡), 𝑢(𝑡))

s.t. system model
design constraints

(5.2)

3. applies only the first term of the input sequence to the system and shifting forward
the time horizon, according to receding horizon principle, and obtain the resulting
state which is used as initial state for the new prediction:

𝑢𝑘 = 𝑢∗(0|𝑘) ∈ 𝑈 ∗
𝑘 (5.3)

5.2 MPC Formulations

5.2.1 Standard formulation
The classic MPC is formulated according the following assumptions:

• linear system model (LTI)

• no uncertainties affects the system model

• no disturbances affects the real system

The prediction model is a LTI system usually in state-space representation in discrete time
domain:

{ ̇𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)
𝑦(𝑡) = 𝐶𝑥(𝑡)

→ {𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘
𝑦𝑘 = 𝐶𝑥𝑘

(5.4)

The optimization problem consist in minimizing a quadratic cost (square loss) subject to
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5.2 – MPC Formulations

linear constraints

min
𝑈𝑘

𝑁𝑝−1

∑
𝑖=0

(∥𝑦𝑖|𝑘 − 𝑦𝑟𝑖|𝑘
∥
2

𝑄
+ ∥𝑢𝑖|𝑘∥

2

𝑅
)

s.t. 𝑥𝑖+1|𝑘 = 𝐴𝑥𝑖|𝑘 + 𝐵𝑢𝑖|𝑘

𝑥𝑘 = 𝑥0|𝑘

𝑥𝑚𝑖𝑛 ⩽ 𝑥𝑖|𝑘 ⩽ 𝑥𝑚𝑎𝑥

𝑢𝑚𝑖𝑛 ⩽ 𝑢𝑖|𝑘 ⩽ 𝑢𝑚𝑎𝑥

Δ𝑢𝑚𝑖𝑛 ⩽ Δ𝑢𝑖|𝑘 ⩽ Δ𝑢𝑚𝑎𝑥

(5.5)

which can be always reformulated as QP:

min
𝑈𝑘

𝑁𝑝−1

∑
𝑖=0

𝑈𝑇
𝑘 𝐻𝑈𝑘 + 2𝑓𝑇𝑈𝑘 + 𝑔

s.t. 𝐴𝑖𝑛𝑒𝑞𝑈𝑘 = 𝑏𝑖𝑛𝑒𝑞

(5.6)

The solution is the optimal control input sequence:

𝑈 ∗
𝑘 = [𝑢∗

0|𝑘 𝑢∗
1|𝑘 ⋯ 𝑢∗

𝑁𝑝−1|𝑘]
𝑇

(5.7)

from which is applied only the first input to the system:

𝑢∗
𝑘 = 𝑢∗

0|𝑘 (5.8)

Observation 1 MPC performance degrade easily as the nonlinearities and disturbances
affect the system.

5.2.2 Nonlinearities formulation
Most of systems (if not all) are nonlinear, then many strategies are been developed to deal
with nonlinearities:

• Adaptive MPC: the system model is linear, but the system matrices are parameter
dependant, constant in prediction.

– LPV MPC (Linear Parameter Varying MPC): It is on considering a set of finite
operative points, around which linearizing the system.

– SL MPC (Successive Linearization MPC): It is based on linearizing online the
system at each iteration according to a varying operative point (current/equilib-
rium state).

• LTV MPC (Linear Time Varying MPC): the system model is linear, but the system
matrices are time dependant.
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• NMPC (Nonlinear MPC): the system model is nonlinear, implying the loss of con-
vexity.

• Hybrid MPC: the plant is coupled with a controller requiring logic actions, which
involves in integer constraints.

5.2.3 Uncertainties formulation
In presence of uncertainties, instead, according to the properties of these disturbances,
you should follow one of the two approaches:

• RMPC (Robust MPC): If the disturbance is bounded it is possible to design a robust
MPC that ensure that the constraints are satisfied for all the possible disturbances
sequence.

• SMPC (Stochastic MPC): If the disturbance is unbounded it is possible to design a
stochastic MPC to ensure that the constraints are satisfied on a specific probability.

Some approaches to RMPC and SMPC are:

• Min-max MPC: The optimization problem is performed with respect to all possible
trajectory evolutions.

• Constraint Tightening MPC: The optimization is subject to enlarged constraints by
a given margin, so that the trajectory feasibility is met.

• Tube-based MPC: The optimization is done over a nominal dynamic model, while a
feedback controller ensures the convergence of the actual state to the nominal one.

5.2.4 Data-Driven formulation
The need not to rely completely on a priori defined model of the system, pushed to develop
the Data-Driven MPC approach:

• LMPC (Learning MPC) [16]: The MPC solve the optimization problem over a
number of iterations of the same task, in which the terminal cost and the terminal
constraints ensure increasing of performance at each iteration.

5.3 MPC Improvement

5.3.1 Prediction and Control Horizon
In order to reduce the overall time for solving the optimization by the solver, it is possible
to reduce the sequence of inputs to take into accounts. This is translated into optimizing
over a control horizon which is smaller than the prediction horizon, usually between 1-5.
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min
𝑈𝑘

𝑁𝑝−1

∑
𝑖=0

∥𝑦𝑖|𝑘 − 𝑦𝑟𝑖|𝑘
∥
2

𝑄
+

𝑁𝑐

∑
𝑖=0

∥𝑢𝑖|𝑘∥
2

𝑅

s.t. 𝑥𝑖+1|𝑘 = 𝐴𝑥𝑖|𝑘 + 𝐵𝑢𝑖|𝑘, 𝑖 ∈ [1, 𝑁𝑝]
𝑥𝑘 = 𝑥0|𝑘

𝑥𝑚𝑖𝑛 ⩽ 𝑥𝑖|𝑘 ⩽ 𝑥𝑚𝑎𝑥, 𝑖 ∈ [1, 𝑁𝑝]
𝑢𝑚𝑖𝑛 ⩽ 𝑢𝑖|𝑘 ⩽ 𝑢𝑚𝑎𝑥, 𝑖 ∈ [0, 𝑁𝑐 − 1]
Δ𝑢𝑚𝑖𝑛 ⩽ Δ𝑢𝑖|𝑘 ⩽ Δ𝑢𝑚𝑎𝑥, 𝑖 ∈ [0, 𝑁𝑐 − 1]

(5.9)

where: 𝑈𝑘 = [𝑢0|𝑘 𝑢1|𝑘 ⋯ 𝑢𝑁𝑐−1|𝑘]𝑇 ∈ ℝ𝑛𝑢𝑁𝑐

5.3.2 Optimization and Prediction sampling time
In general, the requirements for the optimization (computation cost) do not match the
requirements for system evolution (system dynamics). Due to that the sampling time for
prediction can be different from the sampling time for the system:

𝑇𝑠𝑦𝑠 =
𝑇𝑚𝑝𝑐

𝑚

where: 𝑚 is an integer

5.3.3 Soft constraints handling
In some conditions, in case of infeasibility, it is possible to violate some of these constraints,
adding a slack variable to the problem.

min
𝑈𝑘

𝑁𝑝−1

∑
𝑖=0

∥𝑥𝑖|𝑘 − 𝑟𝑖|𝑘∥
2

𝑄
+

𝑁𝑐

∑
𝑖=0

∥𝑢𝑖|𝑘∥
2

𝑅
+ 𝜌𝜖2

s.t. 𝑥𝑖+1|𝑘 = 𝐴𝑥𝑖|𝑘 + 𝐵𝑢𝑖|𝑘, 𝑖 ∈ [1, 𝑁𝑝]
𝑥𝑘 = 𝑥0|𝑘

𝑥𝑚𝑖𝑛 ⩽ 𝑥𝑖|𝑘 ⩽ 𝑥𝑚𝑎𝑥, 𝑖 ∈ [1, 𝑁𝑝]
𝑢𝑚𝑖𝑛 ⩽ 𝑢𝑖|𝑘 ⩽ 𝑢𝑚𝑎𝑥, 𝑖 ∈ [0, 𝑁𝑐 − 1]
Δ𝑢𝑚𝑖𝑛 ⩽ Δ𝑢𝑖|𝑘 ⩽ Δ𝑢𝑚𝑎𝑥, 𝑖 ∈ [0, 𝑁𝑐 − 1]
𝑦𝑚𝑖𝑛 − 𝜖𝑉𝑚𝑖𝑛 ≤ 𝑦𝑖|𝑘 ≤ 𝑦𝑚𝑎𝑥 + 𝜖𝑉𝑚𝑎𝑥

(5.10)

where: 𝜌 ≫ 𝑄
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5.4 Feasibility and Stability issues
Considering the standard MPC formulation in close-loop, recursive feasibility and closed-
loop stability are not guaranteed, since the difference between predicted response and
closed-loop response.
The MPC is recursive feasible, if the system is initialized from a feasible initial state 𝑥0,
then there exists a feasible solution to the same problem for all the future samplings.
The MPC is asymptotically stable, if the system converges asymptotically to steady-state
at infinite time.

Standard MPC solves locally (over a finite prediction horizon) the infinite horizon opti-
mization problem for which stability is guaranteed if the optimization is feasible:

𝐽 ∗
∞(𝑥0) min

𝑈𝑘

∞
∑
𝑘=0

ℎ(𝑥𝑘, 𝑢𝑘)

s.t. 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘)
𝑥𝑘 ∈ 𝑋𝑐

𝑢𝑘 ∈ 𝑈𝑐

(5.11)

The infinite horizon optimization problem can be reformulated as MPC problem through
the dual mode approach:

• Mode I: optimal input of the MPC over a finite horizon optimization

• Mode II: optimal input of the stabilizing feedback law over an infinite horizon
optimization

Replacing the tail (infinite horizon) with the cost-to-go at horizon edge, it is obtained the
compelte formulation:

min
𝑈𝑘

𝑁𝑝−1

∑
𝑖=0

ℎ(𝑥𝑘, 𝑢𝑘) + 𝑉𝑓(𝑥𝑁𝑝
)

s.t. 𝑥𝑖+1|𝑘 = 𝑓(𝑥𝑖|𝑘, 𝑢𝑖|𝑘)
𝑥𝑖|𝑘 ∈ 𝑋𝑐

𝑢𝑖|𝑘 ∈ 𝑈𝑐

𝑥𝑁𝑝|𝑘 ∈ 𝑋𝑓

(5.12)

where: 𝑉𝑓(𝑥𝑁𝑝
) terminal cost (cost-to-go)

𝑋𝑓 terminal constraint set (terminal region)
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5.5 – Discussion

Definition The closed loop stability and the recursive feasibility of the system are
guaranteed, if for any 𝑥0 ∈ Γ𝑁𝑝

, the following conditions are satisfied:

1. 𝑉 is a Lyapunov function:

𝑉 (𝑥) ≥ 𝑚𝑖𝑛𝑢∈𝑈𝑐
ℎ(𝑥, 𝑢) + 𝑉 (𝑓(𝑥, 𝑢))

2. 𝑋𝑓 is an invariant set
𝑓(𝑥, 𝑢) ∈ 𝑋𝑓

where: 𝑥0 ∈ Γ𝑁𝑝
domain of attraction

The objective is to obtain the largest domain of attraction.

5.5 Discussion
The MPC approach has become popular for many advantages with respect to common
control techniques since is an extremely flexible control design, able to cope to many
different challenges. At the same time, it is a performance-oriented method easy to tune,
allows to handle constraints, and can be easily used for MIMO systems. One of the biggest
drawbacks of the MPC is its computational cost in term of resources and time, beside of
the fact that it is a suboptimal optimization approach.
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Part II

MPC Design
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Chapter 6

2-layer MPC

The first design is a 2-layer MPC, which is a common approach used in [9] and [10] for
autonomous drive lane change, where it is applied for automated highway driving, where
a high-level MPC is used for guidance, while a low-level MPC for control. The difference
in this case, consists in planning not just a manoeuvre, but instead a full trajectory.
The high-level planner utilizes a point-mass kineamtic model and linear collision avoidance
constraints to computes a manoeuvre. Has been provided a discrete reference points
between the intial position and the goal, in practice, ordered series of waypoints has been
provided in order to divide the full path into smaller pieces. At this level is addressed
the obstacle avoidance into MPC contraints, in a way that is ensured convexity since the
MPC is convex. Since the UGV has to move in a path laterally delimited, it is possible to
consider the space of free movement, as a subset of the entire available space. Provided a
full description of the map in terms of cartesian coordinates, only the convex subset of the
map in which the UGV is located, is active into the constraints.
While the low-level control system uses a non-linear bycicle kinematic model, in order
to compute the control inputs, having as reference the trajectory obtained above. Due to
the nonlinear nature of the bicycle models, a so-called Successive Linearization Adaptive
MPC or SL MPC is exploited, as proposed in [14]. This MPC formulation consists in
using a LPV (Linear Parameter Varying) system for prediction, obtained by linearizing the
nonlinear system around a varying operative point, which can be in general an equilibrium
point or the actual state of the system. In this way, it is possible to guarantee the full range
of operative conditions, continuing to preserve the simplicity of a linear MPC.
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2-layer MPC

6.1 MPC Formulation

6.1.1 Prediction

At 𝑘 − 𝑡ℎ sampled, the predicted state at instant 𝑖, is:

𝜉𝑖+1|𝑘 = 𝐴𝑑𝜉𝑖|𝑘 + 𝐵𝑑𝑢𝑖|𝑘 + 𝐾𝑑, 𝜉0|𝑘 = 𝜉𝑘 (6.1)

The state prediction over the horizon can be stack as:

̄𝜉𝑘 = ̄𝐴𝑑𝜉𝑘 + �̄�𝑑𝑈𝑘 + �̄�𝑑 (6.2)

where: ̄𝜉𝑘 = ⎡
⎢
⎣

𝜉1|𝑘
⋮

𝜉𝑁𝑝|𝑘

⎤
⎥
⎦

∈ ℝ𝑛𝑥𝑁𝑝 ; 𝑈𝑘 = ⎡⎢
⎣

𝑢0|𝑘
⋮

𝑢𝑁𝑐−1|𝑘

⎤⎥
⎦

∈ ℝ𝑛𝑢𝑁𝑐 ;

̄𝐴𝑑 =
⎡
⎢
⎢
⎣

𝐴𝑑
𝐴2

𝑑
⋮

𝐴𝑁𝑝
𝑑

⎤
⎥
⎥
⎦

∈ ℝ𝑛𝑥𝑁𝑝,𝑛𝑥 ;

�̄�𝑑 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐵𝑑 0𝑛𝑥,𝑛𝑢 ⋯ 0𝑛𝑥,𝑛𝑢

𝐴𝑑𝐵𝑑 𝐵𝑑 ⋯ 0𝑛𝑥,𝑛𝑢

⋮ ⋮ ⋱ ⋮
𝐴𝑁𝑐

𝑑 𝐵𝑑 𝐴𝑁𝑐−1
𝑑 𝐵𝑑 ⋯ 𝐵𝑑

⋮ ⋮ ⋱ ⋮
𝐴𝑁𝑝−1

𝑑 𝐵𝑑 𝐴𝑁𝑝−2
𝑑 𝐵𝑑 ⋯ 𝐴𝑁𝑝−𝑁𝑐

𝑑 𝐵𝑑

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝ𝑛𝑥𝑁𝑝,𝑛𝑢𝑁𝑐

�̄�𝑑 =
⎡
⎢
⎢
⎣

𝐾𝑑
𝐴𝑑𝐾𝑑 + 𝐾𝑑

⋮
∑𝑁𝑝−1

𝑖=0 𝐴𝑝
𝑑𝐾𝑑

⎤
⎥
⎥
⎦

∈ ℝ𝑛𝑥𝑁𝑝 ;

6.1.2 Optimization Problem

The optimization problem consists in minimizing over the error between the state and
the reference over a prediction horizon, and at the same time the command input, over a
short control horizon, both of them as square loss. The constraints are the common system
model constraint and the physical constraints on state, inpput and input rate.
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6.1 – MPC Formulation

min
𝑈𝑘

𝑁𝑝

∑
𝑖=1

∥𝜉𝑖|𝑘 − 𝑟𝑒𝑓𝑖|𝑘∥
2

𝑄
+

𝑁𝑐−1

∑
𝑖=0

∥𝑢𝑖|𝑘∥
2

𝑅

s.t. 𝜉𝑖+1|𝑘 = 𝐴𝑑(𝑝)𝜉𝑖|𝑘 + 𝐵𝑑(𝑝)𝑢𝑖|𝑘 + 𝐾𝑑(𝑝), 𝑖 ∈ [1, ..., 𝑁𝑝]
𝜉𝑘 = 𝜉0|𝑘

𝜉𝑚𝑖𝑛 ⩽ 𝜉𝑖|𝑘 ⩽ 𝜉𝑚𝑎𝑥, 𝑖 ∈ [1, ..., 𝑁𝑝]
𝑢𝑚𝑖𝑛 ⩽ 𝑢𝑖|𝑘 ⩽ 𝑢𝑚𝑎𝑥, 𝑖 ∈ [0, ..., 𝑁𝑐 − 1]
Δ𝑢𝑚𝑖𝑛 ⩽ Δ𝑢𝑖|𝑘 ⩽ Δ𝑢𝑚𝑎𝑥, 𝑖 ∈ [0, ..., 𝑁𝑐 − 1]

(6.3)

Objective function

𝐽(𝜉𝑘) =
𝑁𝑝

∑
𝑖=1

∥𝜉𝑖|𝑘 − 𝑟𝑒𝑓𝑖|𝑘∥
2

𝑄
+

𝑁𝑐−1

∑
𝑖=0

∥𝑢𝑖|𝑘∥
2

𝑅

= ∥ ̄𝜉𝑘 − 𝑟𝑒𝑓𝑘∥2
�̄�

+ ‖𝑈𝑘‖2
�̄�

= 𝑈𝑇
𝑘 (�̄� + �̄�𝑇

𝑑 �̄��̄�𝑑) 𝑈𝑘 + 2 ( ̄𝐴𝑑𝜉𝑘 + �̄�𝑑 − 𝑟𝑒𝑓𝑘)𝑇 �̄��̄�𝑑𝑈𝑘

+ ( ̄𝐴𝑑𝜉𝑘 + �̄�𝑑 − 𝑟𝑒𝑓𝑘)𝑇 �̄� ( ̄𝐴𝑑𝜉𝑘 + �̄�𝑑 − 𝑟𝑒𝑓𝑘)

(6.4)

where: 𝑟𝑒𝑓𝑘 = [𝑟𝑒𝑓1|𝑘 ⋯ 𝑟𝑒𝑓𝑁𝑝|𝑘]
𝑇

∈ ℝ𝑛𝑥𝑁𝑝

�̄� =
⎡
⎢
⎢
⎣

𝑄 0 ⋯ 0
0 𝑄 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑄

⎤
⎥
⎥
⎦

∈ ℝ𝑛𝑥𝑁𝑝,𝑛𝑥𝑁𝑝

�̄� =
⎡
⎢
⎢
⎣

𝑅 0 ⋯ 0
0 𝑅 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑅

⎤
⎥
⎥
⎦

∈ ℝ𝑛𝑢𝑁𝑐,𝑛𝑢𝑁𝑐

Constraints

State constraints

𝜉𝑚𝑖𝑛 ≤ 𝜉𝑖|𝑘 ≤ 𝜉𝑚𝑎𝑥 ⇒ {−�̄�𝑑𝑈𝑘 ≤ − ̄𝜉𝑚𝑖𝑛 + ̄𝐴𝑑𝜉𝑘 + �̄�𝑑
�̄�𝑑𝑈𝑘 ≤ ̄𝜉𝑚𝑎𝑥 − ̄𝐴𝑑𝜉𝑘 − �̄�𝑑

(6.5)

where: ̄𝜉𝑚𝑖𝑛 = [𝜉𝑚𝑖𝑛 ⋯ 𝜉𝑚𝑖𝑛]𝑇 ∈ ℝ𝑛𝑥𝑁𝑝

̄𝜉𝑚𝑎𝑥 = [𝜉𝑚𝑎𝑥 ⋯ 𝜉𝑚𝑎𝑥]𝑇 ∈ ℝ𝑛𝑥𝑁𝑝

Input constraint

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑖|𝑘 ≤ 𝑢𝑚𝑎𝑥 ⇒ {−𝑈𝑘 ≤ 𝑈𝑚𝑖𝑛
𝑈𝑘 ≤ 𝑈𝑚𝑎𝑥

(6.6)
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2-layer MPC

where: 𝑈𝑚𝑖𝑛 = [𝑢𝑚𝑖𝑛 ⋯ 𝑢𝑚𝑖𝑛]𝑇 ∈ ℝ𝑛𝑢𝑁𝑝

𝑈𝑚𝑖𝑛 = [𝑢𝑚𝑎𝑥 ⋯ 𝑢𝑚𝑎𝑥]𝑇 ∈ ℝ𝑛𝑢𝑁𝑝

Input rate constraint

Δ𝑢𝑚𝑖𝑛 ≤ Δ𝑢𝑖|𝑘 ≤ Δ𝑢𝑚𝑎𝑥 ⇒ {−𝑈𝑘 ≤ −Δ𝑈𝑚𝑖𝑛 − 𝑈𝑘−1
𝑈𝑘 ≤ Δ𝑈𝑚𝑎𝑥 + 𝑈𝑘−1

(6.7)

where: Δ𝑈𝑚𝑖𝑛 = [Δ𝑢𝑚𝑖𝑛 ⋯ Δ𝑢𝑚𝑖𝑛]𝑇 ∈ ℝ𝑛𝑢𝑁𝑝

Δ𝑈𝑚𝑖𝑛 = [Δ𝑢𝑚𝑎𝑥 ⋯ Δ𝑢𝑚𝑎𝑥]𝑇 ∈ ℝ𝑛𝑢𝑁𝑝

Δ𝑢𝑖|𝑘 = 𝑢𝑖|𝑘 − 𝑢𝑖|𝑘−1 → Δ𝑈𝑘 = 𝑈𝑘 − 𝑈𝑘−1

Δ𝑈𝑘 = [Δ𝑢0|𝑘 ⋯ Δ𝑢𝑁𝑐−1|𝑘]𝑇

𝑈𝑘−1 = [Δ𝑢0|𝑘−1 ⋯ Δ𝑢𝑁𝑐−1|𝑘−1]𝑇

6.1.3 QP formulation

min
𝑈𝑘

𝑈𝑇
𝑘 𝐻𝑈𝑘 + 2𝑓𝑇𝑈𝑘 + 𝑔

s.t. 𝐴𝑖𝑛𝑒𝑞𝑈𝑘 ≤ 𝑏𝑖𝑛𝑒𝑞

(6.8)

where: 𝐻 = (�̄� + �̄�𝑇
𝑑 �̄��̄�𝑑)

𝑓 = ( ̄𝐴𝑑𝜉𝑘 + �̄�𝑑 − 𝑟𝑒𝑓𝑘)𝑇 �̄��̄�𝑑

𝑔 = ( ̄𝐴𝑑𝜉𝑘 + �̄�𝑑 − 𝑟𝑒𝑓𝑘)𝑇 �̄� ( ̄𝐴𝑑𝜉𝑘 + �̄�𝑑 − 𝑟𝑒𝑓𝑘)

𝐴𝑖𝑛𝑒𝑞 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−�̄�𝑑
�̄�𝑑

−𝐼𝑛𝑢𝑁𝑝

𝐼𝑛𝑢𝑁𝑝

−𝐼𝑛𝑢𝑁𝑝

𝐼𝑛𝑢𝑁𝑝

⎤
⎥
⎥
⎥
⎥
⎥
⎦

; 𝑏𝑖𝑛𝑒𝑞 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− ̄𝜉𝑚𝑖𝑛 + ̄𝐴𝑑𝜉𝑘 + �̄�𝑑
̄𝜉𝑚𝑎𝑥 − ̄𝐴𝑑𝜉𝑘 − �̄�𝑑

−𝑈𝑚𝑖𝑛
𝑈𝑚𝑎𝑥

−Δ𝑈𝑚𝑖𝑛 − 𝑈𝑘−1
Δ𝑈𝑚𝑎𝑥 + 𝑈𝑘−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

6.2 High-level MPC

The high-level MPC is a classical linear MPC, using a point mass kinematic model for
prediction. The optimization has a quadratic cost function which minimizes the difference
of the state/output from a reference and the input, while the constraints include obstacle
avoidance conditions beside the physical and design contraints.
The reference, here, is a sequence of given waypoints along the path, from the initial
position to the final goal, and updated according the UGV position. In other words, once
the UGV has reaced the waypoint set, the reference is updated with the next waypoint.
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6.2 – High-level MPC

6.2.1 Point mass kinemtic model
The point mass kinematic model 3.2 is a LTI system that can be expressed in the state
space form:

̇𝜉(𝑡) =
⎡
⎢
⎢
⎣

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟

𝐴

⎡
⎢
⎢
⎣

𝑋
𝑌
𝑉𝑥
𝑉𝑦

⎤
⎥
⎥
⎦⏟

𝜉(𝑡)

+
⎡
⎢
⎢
⎣

0 0
0 0
1 0
0 1

⎤
⎥
⎥
⎦⏟

𝐵

[
̇𝑉𝑥
̇𝑉𝑦
]

⏟
𝑢(𝑡)

= 𝐴𝜉(𝑡) + 𝐵𝑢(𝑡) (6.9)

where: 𝜉(𝑡) = [𝑋 𝑌 𝑉𝑥 𝑉𝑦]𝑇 state
𝑢(𝑡) = [ ̇𝑉𝑥

̇𝑉𝑦]𝑇 input

The continuos system has to be discretized according to the Euler approximation 10.7, as
follow:

𝜉𝑘+1 = 𝐴𝑑𝜉𝑘 + 𝐵𝑑𝑢𝑘 (6.10)

6.2.2 Obstacle Avoidance
The obstacle avoidance can be part of the optimization problem constraints, taking into
account that the constraints has to be convex in order to keep the optimization convex.
Exploiting the nature of the environment, the space can be though as a series of connected
rectangular corridors, each of these is convex by definition.
Thus obstacle avoidance can be set as constraints over the position (state) of the UGV,
where the minimum and maximum values are the border coordinates of each corridor.
In other words, the UGV’s state position is constrained to move within the borders of a
corridor in which it is located. This means that it must be active only one corridor at time,
which corrispond to a single set of obstacle avoidance contraints over the UGV’s position
state, to keep the proble convex.

Considering a generic corridor characterized by the following borders expressed through
cartesian coordinates:

𝑥𝑠𝑗
= [𝑥𝑠𝑗,𝑚𝑖𝑛

, 𝑥𝑠𝑗,𝑚𝑎𝑥
]

𝑦𝑠𝑗
= [𝑦𝑠𝑗,𝑚𝑖𝑛

, 𝑦𝑠𝑗,𝑚𝑎𝑥
]

(6.11)

it is active, if and only if it satisfies the following conditions:

• Condition I: the UGV position lies inside a range for which that constraints exists
(obstacle’s borders):

𝑆𝐼 = {
𝑥𝐼𝑗

= 𝑥𝑠𝑗
⇔ 𝑦𝑠𝑗,𝑚𝑖𝑛

≤ 𝑦𝑘 ≤ 𝑦𝑠𝑗,𝑚𝑎𝑥

𝑦𝐼𝑗
= 𝑦𝑠𝑗

⇔ 𝑥𝑠𝑗,𝑚𝑖𝑛
≤ 𝑥𝑘 ≤ 𝑥𝑠𝑗,𝑚𝑎𝑥

(6.12)
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2-layer MPC

• Condition II: the borders are within an activation range 𝑟𝑎𝑐𝑡 with respect to the UGV
position:

𝑆𝐼𝐼 = {
𝑥𝐼𝐼𝑗

= 𝑥𝑠𝑗
⇔ ∣𝑥𝑘 − 𝑥𝑠𝑗

∣ ≤ 𝑟𝑎𝑐𝑡

𝑦𝐼𝐼𝑗
= 𝑦𝑠𝑗

⇔ ∣𝑦𝑘 − 𝑦𝑠𝑗
∣ ≤ 𝑟𝑎𝑐𝑡

(6.13)

The union of the two conditions above, returns the unique active corridor:

𝑥𝑎𝑐𝑡 = 𝑥𝑠𝑗
⇔ {

𝑦𝑠𝑗,𝑚𝑖𝑛
≤ 𝑦𝑘 ≤ 𝑦𝑠𝑗,𝑚𝑎𝑥

∣𝑥𝑘 − 𝑥𝑠𝑗
∣ ≤ 𝑟𝑎𝑐𝑡

𝑦𝑎𝑐𝑡 = 𝑦𝑠𝑗
⇔ {

𝑥𝑠𝑗,𝑚𝑖𝑛
≤ 𝑥𝑘 ≤ 𝑥𝑠𝑗,𝑚𝑎𝑥

∣𝑦𝑘 − 𝑦𝑠𝑗
∣ ≤ 𝑟𝑎𝑐𝑡

(6.14)

Furthermore, it is possible to take into account a safety distance 𝑟𝑠𝑎𝑓𝑒 from the obstacle
border:

𝑋𝑐 = [𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥] = [𝑥𝑎𝑐𝑡𝑚𝑖𝑛
+ 𝑟𝑠𝑎𝑓𝑒, 𝑥𝑎𝑐𝑡𝑚𝑎𝑥

− 𝑟𝑠𝑎𝑓𝑒]
𝑌𝑐 = [𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥] = [𝑦𝑎𝑐𝑡𝑚𝑖𝑛

+ 𝑟𝑠𝑎𝑓𝑒, 𝑦𝑎𝑐𝑡𝑚𝑎𝑥
− 𝑟𝑠𝑎𝑓𝑒]

(6.15)

Then it is possibile to set the constraints:

𝑥𝑎𝑐𝑡𝑚𝑖𝑛
+ 𝑟𝑠𝑎𝑓𝑒⏟⏟⏟⏟⏟⏟⏟

𝑋𝑚𝑖𝑛

≤ 𝑥𝑘 ≤ 𝑥𝑎𝑐𝑡𝑚𝑎𝑥
− 𝑟𝑠𝑎𝑓𝑒⏟⏟⏟⏟⏟⏟⏟

𝑋𝑚𝑎𝑥
𝑦𝑎𝑐𝑡𝑚𝑖𝑛

+ 𝑟𝑠𝑎𝑓𝑒⏟⏟⏟⏟⏟⏟⏟
𝑌𝑚𝑖𝑛

≤ 𝑦𝑘 ≤ 𝑦𝑎𝑐𝑡𝑚𝑎𝑥
− 𝑟𝑠𝑎𝑓𝑒⏟⏟⏟⏟⏟⏟⏟

𝑌𝑚𝑎𝑥

(6.16)

6.2.3 Constraints
State constratins are related to the position and velocity expressed with respect to the
ineratial frame O. About the position it ha been set the map boundaries, but these con-
strained are overwritten at each sample time by the constrains obstained in by the obstacle
avoidance algorithm. Meanwhile for velocity it has been set the absolute value of 3𝑚/𝑠
as a boundaries box.

𝜉𝑐 = [𝜉𝑚𝑖𝑛 𝜉𝑚𝑎𝑥] =
⎡
⎢
⎢
⎣

𝑋𝑚𝑖𝑛 𝑋𝑚𝑎𝑥
𝑌𝑚𝑖𝑛 𝑌𝑚𝑎𝑥

𝑉𝑥,𝑚𝑖𝑛 𝑉𝑥,𝑚𝑎𝑥
𝑉𝑦,𝑚𝑖𝑛 𝑉𝑦,𝑚𝑎𝑥

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

0𝑚 +20𝑚
0𝑚 +10𝑚

−3𝑚/𝑠 +3𝑚/𝑠
−3𝑚/𝑠 +3𝑚/𝑠

⎤
⎥
⎥
⎦

(6.17)

Input constraints are related to the accellerations expressed with respect to the ineratial
frame O, and it has been choosen the absolute value of 0.1𝑚/𝑠2 as a boundaries box.

𝑢𝑐 = [𝑢𝑚𝑖𝑛 𝑢𝑚𝑎𝑥] = [
̇𝑉𝑥,𝑚𝑖𝑛

̇𝑉𝑥,𝑚𝑎𝑥
̇𝑉𝑦,𝑚𝑖𝑛

̇𝑉𝑦,𝑚𝑎𝑥
] = [−0.1𝑚/𝑠 +0.1𝑚/𝑠

−0.1𝑚/𝑠 +0.1𝑚/𝑠] (6.18)
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6.3 – Low-level Adaptive SL MPC

6.2.4 Trajectory generation

The trajectory is generated appling the optimal solution 𝑢∗, sample by sample, to the same
system model used by the MPC, but with a smaller sample time:

𝑥𝑘+1 = 𝐴𝑑𝑥𝑘 + 𝐵𝑑𝑢∗
𝑘 (6.19)

where: 𝑇𝑠𝑦𝑠 = 𝑇𝑠
𝛼

6.3 Low-level Adaptive SL MPC

The low-level MPC used for control, requires at least an adaptive formulation, since the
bycicle kinemtics model is nonlinear. For this reason has been chosen the Successive
Linearization MPC, using as operative point the actual state and input of the system. This
choice came from evaluating [14], where good performance are achieved with this kind of
approach.
The optimization problem has a quadratic cost function, minimizing the error between the
state of the system and the reference obtained from the high-level MPC.

6.3.1 Bicycle kinemtic model

The model used in prediction is the bicycle model 3.3, assuming only the frontal steering
angle:

⎧{
⎨{⎩

�̇�(𝑡) = 𝑣 cos(𝜓 + 𝛽)
̇𝑌 (𝑡) = 𝑣 sin(𝜓 + 𝛽)
̇𝜓(𝑡) = 𝑣 cos(𝛽)

𝑙𝑓+𝑙𝑟
tan(𝛿𝑓) = 𝑉

𝑙𝑟
sin(𝛽)

(6.20)

where: 𝑋, 𝑌 ∶ coordinates with respect to the inertial frame
𝑉𝑥, 𝑉𝑦 ∶ longitudinal and lateral velocity with respect to the inertial frame
𝑣 ∶ velocity in body frame
𝜃𝑓, 𝜃𝑟 ∶ front and rear steering angles
𝜓 ∶ heading with respect to the inertial frame
𝛽 = arctan ( 𝑙𝑓 tan(𝛿𝑟)+𝑙𝑟 tan(𝛿𝑓)

𝑙𝑓+𝑙𝑟
) ∶ slip angle

Linearization

The nonlinear system has to be linearized around the operative point 𝑝 = (𝜉0, 𝑢0). Ac-
cording to 10.2, the system can be approximated through the Taylor expansion:
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2-layer MPC

̇𝜉(𝑡) = ⎡⎢
⎣

0 0 0
0 0 0
0 0 0

⎤⎥
⎦⏟⏟⏟⏟⏟

𝐴(𝑝)

𝜉(𝑡) + ⎡⎢
⎣

−𝑣 sin(𝜓0 + 𝛽0)
𝑣 cos(𝜓0 + 𝛽0)

𝑣 cos(𝛽0)
⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵(𝑝)

𝑢(𝑡) + ⎡⎢
⎣

𝑣 cos(𝜓0 + 𝛽0)
𝑣 sin(𝜓0 + 𝛽0)

𝑣 cos(𝛽0)
⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟

𝐾(𝑝)

(6.21)

where: 𝜉(𝑡) = [𝑋 𝑌 𝜓]𝑇 ∈ ℝ𝑛𝑥 state
𝑢(𝑡) = Δ𝛽 ∈ ℝ𝑛𝑢 input

obtaining the following LPV system:

̇𝜉(𝑡) = 𝐴(𝑝)𝜉(𝑡) + 𝐵(𝑝)𝑢(𝑡) + 𝐾(𝑝) (6.22)

Discretization

For prediction, the system is discretized according to the Euler approximation 10.7, as
follow:

𝜉𝑘+1 = ⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦⏟⏟⏟⏟⏟

𝐴𝑘(𝑝)

𝜉𝑘 + ⎡⎢
⎣

−𝑉 sin(𝜓0 + 𝛽0)𝑇𝑠
𝑉 cos(𝜓0 + 𝛽0)𝑇𝑠

𝑉 cos(𝛽0)𝑇𝑠

⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵𝑘(𝑝)

𝑢𝑘 + ⎡⎢
⎣

−𝑉 sin(𝜓0 + 𝛽0)𝑇𝑠
𝑉 cos(𝜓0 + 𝛽0)𝑇𝑠

𝑉 cos(𝛽0)𝑇𝑠

⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐾𝑑(𝑝)

(6.23)

obtaining:
𝜉𝑘+1 = 𝐴𝑑(𝑝)𝜉𝑘 + 𝐵𝑑(𝑝)𝑢𝑘 + 𝐾𝑑(𝑝) (6.24)

6.3.2 Constraints
The state constraints is related to the pose of the UGV, and for the position, are set the
map boundaries, as for the High-Level MPC, but in this case these ones are not updated.

𝜉𝑐 = [𝜉𝑚𝑖𝑛 𝜉𝑚𝑎𝑥] = ⎡⎢
⎣

𝑋𝑚𝑖𝑛 𝑋𝑚𝑎𝑥
𝑌𝑚𝑖𝑛 𝑌𝑚𝑎𝑥
𝜓𝑚𝑖𝑛 𝜓𝑚𝑎𝑥

⎤⎥
⎦

= ⎡⎢
⎣

0𝑚 +20𝑚
0𝑚 +10𝑚
−𝜋° +𝜋°

⎤⎥
⎦

(6.25)

Input constraint and input rate constraint are respectively the slip angle limits and slip
angle rate limits.

𝑢𝑐 = [𝑢𝑚𝑖𝑛 𝑢𝑚𝑎𝑥] = [𝛽𝑚𝑖𝑛 𝛽𝑚𝑎𝑥] = [−0.5𝑟𝑎𝑑/𝑠 +0.5𝑟𝑎𝑑/𝑠] (6.26)

Δ𝑢𝑐 = [Δ𝑢𝑚𝑖𝑛 Δ𝑢𝑚𝑎𝑥] = [Δ𝛽𝑚𝑖𝑛 Δ𝛽𝑚𝑎𝑥] = [−0.1°/𝑠 +0.1°/𝑠] (6.27)
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Chapter 7

Adaptive MPC in curvilinear
frame

The second design developed was inspired by [17], in which a MPC formulation is used
with a model with respect to a curvilinaer reference frame, called Frenet frame, expressed in
curvilinaer coordinates. In this way, due to the nature of the environment, the obstacles can
be direcly are addressed directly into contraints, in particular, as the maximum distance
with respect a defined path centreline. For this reason the reference is porvided as a
complete description of a geometric path. In our case we decided to use again a Successive
Linearization formulation of the MPC, but with a bycicle dynamics model. Furthermore,
it has been taken into account in the cost function, the minimization of the input rate, in
order to have an impact on the steering rate, which is a performance parameter.

7.1 Bicycle dynamics in a curvilinear reference

From the previous sections, a dynamic model of the bicycle in a curvilinear reference can
be implemented under the following assumptions:

• Small sideslip angles (𝛼 ≤ ±5°)

• Front steering wheel command (𝛿𝑟 = 0)

• Rear traction (𝐹𝑙𝑟 = 𝑇 , 𝐹𝑙𝑓 = 0)

• The forces are multiplied by a factor of 2 in order to take into account the physics of
4 wheels
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Adaptive MPC in curvilinear frame

the dynamics in 3.10 can be semplified as:

̇𝑣𝑥 = 1
𝑚

(−𝐹𝑠𝑓 sin(𝛿𝑓) + 𝑇 ) + 𝜔𝑧𝑣𝑦

̇𝑣𝑦 = 1
𝑚

(𝐹𝑠𝑓 cos(𝛿𝑓) + 𝐹𝑠𝑟) − 𝜔𝑧𝑣𝑥

�̇�𝑧 = 1
𝐼𝑧

(𝑙𝑓𝐹𝑠𝑓 cos(𝛿𝑓) − 𝑙𝑟𝐹𝑠𝑟)

(7.1)

while the sideslip angle, from 3.13, under the assumption of small angles, is:

𝛼𝑓 = 𝛿𝑓 − arctan (
𝑣𝑦 + 𝑙𝑓𝜔𝑧

𝑣𝑥
) ≃ 𝛿𝑓 −

𝑣𝑦 + 𝑙𝑓𝜔𝑧

𝑣𝑥

𝛼𝑟 = − arctan (
𝑣𝑦 − 𝑙𝑟𝜔𝑧

𝑣𝑥
) ≃ −

𝑣𝑦 − 𝑙𝑟𝜔𝑧

𝑣𝑥

(7.2)

The tire’s forces are then:

𝐹𝑠𝑓 = 2𝐶𝑓𝛼𝑓 ≃ 2𝐶𝑓 (𝛿𝑓 −
𝑣𝑦 + 𝑙𝑓𝜔𝑧

𝑣𝑥
)

𝐹𝑠𝑟 = 2𝐶𝑟𝛼𝑟 ≃ 2𝐶𝑟 (−
𝑣𝑦 − 𝑙𝑟𝜔𝑧

𝑣𝑥
)

(7.3)

While the link between the dynamics from the cartesian coordinate into the curvilinear
cooridnate from 2.18 is:

̇𝑠(𝑡) =
𝑣𝑥 cos 𝑒𝜓 − 𝑣𝑦 sin 𝑒𝜓

1 − 𝑐𝑐(𝑠)𝑒𝑦

̇𝑒𝑦(𝑡) = 𝑣𝑥 sin 𝑒𝜓 + 𝑣𝑦 cos 𝑒𝜓

̇𝑒𝜓(𝑡) = 𝜔𝑧 −
𝑣𝑥 cos 𝑒𝜓 − 𝑣𝑦 sin 𝑒𝜓

1 − 𝑐𝑐(𝑠)𝑒𝑦
𝑐𝑐(𝑠)

(7.4)

Putting toghether 7.1 7.3 7.4 it is obtained the complete dynamics:

̇𝑣𝑥(𝑡) = 𝑎 + 2
𝑚

(−𝐶𝑓 (𝛿𝑓 −
𝑣𝑦 + 𝑙𝑓𝜔𝑧

𝑣𝑥
) sin(𝛿𝑓)) + 𝑣𝑦𝜔𝑧

̇𝑣𝑦(𝑡) = 2
𝑚

(𝐶𝑓 (𝛿𝑓 −
𝑣𝑦 + 𝑙𝑓𝜔𝑧

𝑣𝑥
) cos(𝛿𝑓) + 𝐶𝑟 (−

𝑣𝑦 − 𝑙𝑟𝜔𝑧

𝑣𝑥
)) − 𝑣𝑥𝜔𝑧

�̇�𝑧(𝑡) = 2
𝐼𝑧

(𝑙𝑓𝐶𝑓 (𝛿𝑓 −
𝑣𝑦 + 𝑙𝑓𝜔𝑧

𝑣𝑥
) cos(𝛿𝑓) − 𝑙𝑟𝐶𝑟 (−

𝑣𝑦 − 𝑙𝑟𝜔𝑧

𝑣𝑥
))

̇𝑠(𝑡) =
𝑣𝑥 cos 𝑒𝜓 − 𝑣𝑦 sin 𝑒𝜓

1 − 𝑐𝑐(𝑠)𝑒𝑦

̇𝑒𝑦(𝑡) = 𝑣𝑥 sin 𝑒𝜓 + 𝑣𝑦 cos 𝑒𝜓

̇𝑒𝜓(𝑡) = 𝜔𝑧 −
𝑣𝑥 cos 𝑒𝜓 − 𝑣𝑦 sin 𝑒𝜓

1 − 𝑐𝑐(𝑠)𝑒𝑦
𝑐𝑐(𝑠)

(7.5)
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7.2 – Prediction

where: 𝜉 = [𝑣𝑥 𝑣𝑦 𝜔𝑧 𝑠 𝑒𝑦 𝑒𝜓]𝑇

𝑢 = [𝛿𝑓 𝑎]𝑇

7.1.1 Linearization

The nonlinear system has to be linearized around the operative point 𝑝 = (𝜉0, 𝑢0). Ac-
cording to 10.2, the system can be approximated through the Taylor expansion:

𝑑
𝑑𝑡

(𝛿𝜉(𝑡)) ≈ 𝜕𝑓
𝜕𝜉

𝛿𝜉(𝑡) + 𝜕𝑓
𝜕𝑢

𝛿𝑢(𝑡) ⇒ 𝛿 ̇𝜉(𝑡) ≈ 𝐴(𝑝)𝛿𝜉(𝑡) + 𝐵(𝑝)𝛿𝑢(𝑡) (7.6)

where: 𝛿𝜉(𝑡) = 𝜉(𝑡) − 𝜉0 = [𝛿𝑣𝑥 𝛿𝑣𝑦 𝛿𝜔𝑧 𝛿𝑠 𝛿𝑒𝑦 𝛿𝑒𝜓]𝑇

𝛿𝑢(𝑡) = 𝑢(𝑡) − 𝑢0 = 𝑢(𝑡) = [𝛿𝑓 𝑎]𝑇

then:

𝛿 ̇𝜉(𝑡) = 𝐴(𝑝)𝛿𝜉(𝑡) + 𝐵(𝑝)𝑢(𝑡) (7.7)

7.1.2 Discretization

For prediction, the system is discretized according to the Euler approximation 10.7, as
follow:

𝛿𝜉𝑘+1 = 𝐴𝑑𝛿𝜉𝑘 + 𝐵𝑑𝑢𝑘 (7.8)

7.2 Prediction

At k-th sampled, the predicted state is:

𝛿𝜉𝑖+1|𝑘 = 𝐴𝑑(𝑝)𝛿𝜉𝑖|𝑘 + 𝐵𝑑(𝑝)𝑢𝑖|𝑘, 𝛿𝜉0|𝑘 = 𝛿𝜉𝑘 (7.9)

State prediction:

𝛿 ̄𝜉𝑘 = ̄𝐴𝑑(𝑝)𝛿𝜉𝑘 + �̄�𝑑(𝑝)𝑈𝑘 (7.10)
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where: ̄𝛿𝜉𝑘 = ⎡
⎢
⎣

𝛿𝜉1|𝑘
⋮

𝛿𝜉𝑁𝑝|𝑘

⎤
⎥
⎦

∈ ℝ𝑛𝑥𝑁𝑝 ; 𝑈𝑘 = ⎡⎢
⎣

𝑢0|𝑘
⋮

𝑢𝑁𝑐−1|𝑘

⎤⎥
⎦

∈ ℝ𝑛𝑢𝑁𝑐 ;

̄𝐴𝑑(𝑝) =
⎡
⎢
⎢
⎣

𝐴𝑑(𝑝)
𝐴2

𝑑(𝑝)
⋮

𝐴𝑁𝑝
𝑑 (𝑝)

⎤
⎥
⎥
⎦

∈ ℝ𝑛𝑥𝑁𝑝,𝑛𝑥 ;

�̄�𝑑(𝑝) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐵𝑑(𝑝) 0𝑛𝑥,𝑛𝑢 ⋯ 0𝑛𝑥,𝑛𝑢

𝐴𝑑(𝑝)𝐵𝑑(𝑝) 𝐵𝑑(𝑝) ⋯ 0𝑛𝑥,𝑛𝑢

⋮ ⋮ ⋱ ⋮
𝐴𝑁𝑐

𝑑 (𝑝)𝐵𝑑(𝑝) 𝐴𝑁𝑐−1
𝑑 (𝑝)𝐵𝑑(𝑝) ⋯ 𝐵𝑑(𝑝)

⋮ ⋮ ⋱ ⋮
𝐴𝑁𝑝−1

𝑑 (𝑝)𝐵𝑑(𝑝) 𝐴𝑁𝑝−2
𝑑 (𝑝)𝐵𝑑(𝑝) ⋯ 𝐴𝑁𝑝−𝑁𝑐

𝑑 (𝑝)𝐵𝑑(𝑝)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝ𝑛𝑥𝑁𝑝,𝑛𝑢𝑁𝑐

7.3 Optimization Problem

In this case, our objective function consists in minimizing the state variation 𝛿𝜉𝑖|𝑘, the
input 𝑢𝑖|𝑘 and also the input rate Δ𝑢𝑖|𝑘, each one as quadratic loss. This choise came
from the need to penalize big variation in the steering angle command, in order to avoid
possible discontinuities. As in the first approach, the constraints are the prediction model
constraint, the state, input and input rate.

min
𝑈𝑘

𝑁𝑝

∑
𝑖=1

∥𝛿𝜉𝑖|𝑘∥
2

𝑄
+

𝑁𝑐−1

∑
𝑖=0

(∥𝑢𝑖|𝑘∥
2

𝑅
+ ∥Δ𝑢𝑖|𝑘∥

2

𝑆
)

s.t. 𝛿𝜉𝑖+1|𝑘 = 𝐴𝑑(𝑝)𝛿𝜉𝑖|𝑘 + 𝐵𝑑(𝑝)𝑢𝑖|𝑘, 𝑖 ∈ [1, ..., 𝑁𝑝]
𝛿𝜉0|𝑘 = 𝛿𝜉𝑘

𝛿𝜉𝑚𝑖𝑛 ≤ 𝛿𝜉𝑖|𝑘 ≤ 𝛿𝜉𝑚𝑎𝑥, 𝑖 ∈ [1, ..., 𝑁𝑝]
𝑢𝑚𝑖𝑛 ⩽ 𝑢𝑖|𝑘 ⩽ 𝑢𝑚𝑎𝑥, 𝑖 ∈ [0, ..., 𝑁𝑐 − 1]
Δ𝑢𝑚𝑖𝑛 ⩽ Δ𝑢𝑖|𝑘 ⩽ Δ𝑢𝑚𝑎𝑥, 𝑖 ∈ [0, ..., 𝑁𝑐 − 1]

(7.11)
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7.3 – Optimization Problem

7.3.1 Objective function
The objective functione consists in minimizing the square root of the state variation, the
input and the input rate.

𝐽(𝜉𝑘) =
𝑁𝑝

∑
𝑖=1

∥𝛿𝜉𝑖|𝑘∥
2

𝑄
+

𝑁𝑐−1

∑
𝑖=0

(∥𝑢𝑖|𝑘∥
2

𝑅
+ ∥Δ𝑢𝑖|𝑘∥

2

𝑆
)

= ∥ ̄𝛿𝜉𝑘∥2

�̄�
+ ‖𝑈𝑘‖2

�̄� + ‖Δ𝑈𝑘‖2
̄𝑆

= 𝑈𝑇
𝑘 (�̄�𝑇

𝑑 �̄��̄�𝑑 + �̄� + ̄𝑆) 𝑈𝑘 + 2 (( ̄𝐴𝑑𝛿𝜉𝑘)𝑇 �̄��̄�𝑑 − 𝑈𝑘−1
̄𝑆) 𝑈𝑘

+ ( ̄𝐴𝑑𝛿𝜉𝑘)𝑇 �̄� ( ̄𝐴𝑑𝛿𝜉𝑘) + (𝑈𝑘−1)𝑇 ̄𝑆𝑈𝑘−1

(7.12)

where: �̄� =
⎡
⎢
⎢
⎣

𝑄 0 ⋯ 0
0 𝑄 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑄

⎤
⎥
⎥
⎦

∈ ℝ𝑛𝑥𝑁𝑝,𝑛𝑥𝑁𝑝

�̄� =
⎡
⎢
⎢
⎣

𝑅 0 ⋯ 0
0 𝑅 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑅

⎤
⎥
⎥
⎦

∈ ℝ𝑛𝑢𝑁𝑐,𝑛𝑢𝑁𝑐

̄𝑆 =
⎡
⎢
⎢
⎣

𝑆 0 ⋯ 0
0 𝑆 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑆

⎤
⎥
⎥
⎦

∈ ℝ𝑛𝑢𝑁𝑐,𝑛𝑢𝑁𝑐

7.3.2 Constraints
State constraints The velocity along the body longitudinal axis is contrained in a range
of ±0.2𝑚/𝑠 with respect to the initial velocity, while for lateral velocity and angular
velocity variation it has been taken values congruent with reality. Instead, about the
curvilinear we expected a variation between a minimum of 0𝑚 and a maximum of 0.2𝑚
with respect the actual curvilinera value, meanwhile for contraints on lateral variation it
has been set the lateral track boundaries which represent the obstacle avoidance contraints,
and the angular deviation a freedom of ±30° with respect to the centerline direction.

𝛿𝜉𝑐 = [𝛿𝜉𝑚𝑖𝑛 𝛿𝜉𝑚𝑎𝑥] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝛿𝑣𝑥,𝑚𝑖𝑛 𝛿𝑣𝑥,𝑚𝑎𝑥
𝛿𝑣𝑦,𝑚𝑖𝑛 𝛿𝑣𝑦,𝑚𝑎𝑥
𝛿𝜔𝑧,𝑚𝑖𝑛 𝛿𝜔𝑧,𝑚𝑎𝑥
𝛿𝑠𝑚𝑖𝑛 𝛿𝑠𝑚𝑎𝑥

𝛿𝑒𝑦,𝑚𝑖𝑛 𝛿𝑒𝑦,𝑚𝑎𝑥
𝛿𝑒𝜓,𝑚𝑖𝑛 𝛿𝑒𝜓,𝑚𝑎𝑥

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

−0.2𝑚/𝑠 +0.2𝑚/𝑠
−0.5𝑚/𝑠 +0.5𝑚/𝑠
−50°/𝑠 +50°/𝑠
−0𝑚 +0.2𝑚
−1𝑚 +1𝑚
−30° +30°

⎤
⎥
⎥
⎥
⎥
⎦

(7.13)
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Adaptive MPC in curvilinear frame

𝛿𝜉𝑚𝑖𝑛 ≤ 𝛿𝜉𝑖|𝑘 ≤ 𝛿𝜉𝑚𝑎𝑥 ⇒ {−�̄�𝑑(𝑝)𝑈𝑘 ≤ −𝛿 ̄𝜉𝑚𝑖𝑛 + ̄𝐴𝑑(𝑝)𝛿𝜉𝑘
�̄�𝑑(𝑝)𝑈𝑘 ≤ 𝛿 ̄𝜉𝑚𝑎𝑥 − ̄𝐴𝑑(𝑝)𝛿𝜉𝑘

(7.14)

where: 𝛿 ̄𝜉𝑚𝑖𝑛 = [𝛿𝜉𝑚𝑖𝑛 ⋯ 𝛿𝜉𝑚𝑖𝑛]𝑇 ∈ ℝ𝑛𝑥𝑁𝑝

𝛿 ̄𝜉𝑚𝑎𝑥 = [𝛿𝜉𝑚𝑎𝑥 ⋯ 𝛿𝜉𝑚𝑎𝑥]𝑇 ∈ ℝ𝑛𝑥𝑁𝑝

Input constraints The steering angle is contrained to a lower range with respect the
real UGV, since the model used is under the assumption of a single steering wheel, so we
decided to take a common value for this kind of vehicles. About the accellerations, it has
been choosen a standard range of ±0.1𝑚/𝑠2.

𝑢𝑐 = [𝑢𝑚𝑖𝑛 𝑢𝑚𝑎𝑥] = [𝛿𝑓,𝑚𝑖𝑛 𝛿𝑓,𝑚𝑎𝑥
𝑎𝑚𝑖𝑛 𝑎𝑚𝑎𝑥

] = [ −30° +30°
−0.1𝑚/𝑠2 +0.1𝑚/𝑠2] (7.15)

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑖|𝑘 ≤ 𝑢𝑚𝑎𝑥 ⇒ {−𝑈𝑘 ≤ 𝑈𝑚𝑖𝑛
𝑈𝑘 ≤ 𝑈𝑚𝑎𝑥

(7.16)

where: 𝑈𝑚𝑖𝑛 = [𝑢𝑚𝑖𝑛 ⋯ 𝑢𝑚𝑖𝑛]𝑇 ∈ ℝ𝑛𝑢𝑁𝑝

𝑈𝑚𝑎𝑥 = [𝑢𝑚𝑎𝑥 ⋯ 𝑢𝑚𝑎𝑥]𝑇 ∈ ℝ𝑛𝑢𝑁𝑝

7.4 QP formulation
min
𝑈𝑘

𝑈𝑇
𝑘 𝐻(𝑝)𝑈𝑘 + 2𝑓𝑇(𝑝)𝑈𝑘 + 𝑔(𝑝)

s.t. 𝐴𝑖𝑛𝑒𝑞(𝑝)𝑈𝑘 ≤ 𝑏𝑖𝑛𝑒𝑞(𝑝)
(7.17)

where: 𝐻(𝑝) = (�̄�𝑇
𝑑 �̄��̄�𝑑 + �̄� + ̄𝑆)

𝑓(𝑝) = (( ̄𝐴𝑑𝛿𝜉𝑘)𝑇 �̄��̄�𝑑 − 𝑈𝑘−1
̄𝑆)

𝑔(𝑝) = ( ̄𝐴𝑑𝛿𝜉𝑘)𝑇 �̄� ( ̄𝐴𝑑𝛿𝜉𝑘) + (𝑈𝑘−1)𝑇 ̄𝑆𝑈𝑘−1

𝐴𝑖𝑛𝑒𝑞(𝑝) =
⎡
⎢
⎢
⎣

−�̄�𝑑
�̄�𝑑

−𝐼𝑛𝑢𝑁𝑝

𝐼𝑛𝑢𝑁𝑝

⎤
⎥
⎥
⎦

, 𝑏𝑖𝑛𝑒𝑞(𝑝) =
⎡
⎢
⎢
⎣

−𝛿 ̄𝜉𝑚𝑖𝑛 + ̄𝐴𝑑𝛿𝜉𝑘
𝛿 ̄𝜉𝑚𝑎𝑥 − ̄𝐴𝑑𝛿𝜉𝑘

−𝛿𝑈𝑚𝑖𝑛
𝛿𝑈𝑚𝑎𝑥

⎤
⎥
⎥
⎦

44



Part III

Conclusions

45





Chapter 8

First design

8.1 Implementation
The first design has been implemented in Simulink, as shown in figure 8.1 and 8.3, using
”quadprog” function of the Optimization Toolbox. In these pictures are highlited the
sampling time of each block:

• black box: continuos time domain

• red box: 𝑇𝑠 = 0.001𝑠

• green box: 𝑇𝑠 = 0.01𝑠

• blue box: 𝑇𝑠 = 0.1𝑠

8.1.1 Guidance

The guidance system is made up by the ”Low-Level MPC” which embeds the ”Obstacle
Avoidance” system, then the ”Reference Update” system and the ”Plant”.

Reference Update It takes care of set and hold the proper waypoint till the UGV reached
it, and then it is set the next waypoint on the list. The waypoints have to be choosen in
order to avoidance potentially infeasibility in the problem, in other words that it must
guarantee the local optimality.

Track The track is the serpentine in fig. 8.2, where are visible the obstacles. This map is
provided to the MPC block of obstacle avoidance, as a series of rectangular spaces, where
the UGV is free to move.
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First design

Figure 8.1: High-Level MPC Simulink scheme

Figure 8.2: First Track

Low-Level MPC The set waypoint is used as fixed reference for the Low-Level MPC,
which, according to the constraints given by the ”Obstacle Avoidance” system, it compute
the optimal input. The obstacle avoidance system takes as input the full description of the
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8.2 – Simulations

map and the pose of the UGV, in order to determine which constraints is active at that
instant.

Plant The optimal input is used by the plant to generate the the corresponding trajectory.
This trajectory can be computed online or more efficiently offline if there is no need to
recomputing the trajectory.

8.1.2 Control

Figure 8.3: Low-Level MPC Simulink scheme

The control system is simply made up by the ”High-Level MPC” which controls the real
system. The High-Level MPC takes as refernce the trajectory determined by the guidance
system and the current state and input used as operative point by the linearization.

8.2 Simulations

The two systems share each other common information, as the initial state, which is:
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First design

State Value Description
𝑋 1𝑚 xcooridinate in inertial frame
𝑌 1𝑚 ycooridinate in inertial frame
𝜓 90° orientation in inertial frame
𝑉x 0𝑚/𝑠 velocity along longitudinal body axis
𝑉y 0𝑚/𝑠 velocity along lateral body axis

Table 8.1: First design: initial state

while the initial tuning of the guidance MPC and control MPC are listed respectively
in table 8.2 and table 8.3:

Parameter Value Description
𝑁p 30 prediction horizon
𝑁c 30 prediction control
𝑄 𝑑𝑖𝑎𝑔([1 1 1 1]) state matrix weight
𝑅 𝑑𝑖𝑎𝑔([10 10]) input matrix weight

Table 8.2: First design: guidance MPC tuning

Parameter Value Description
𝑁p 25 prediction horizon
𝑁c 10 prediction control
𝑄 𝑑𝑖𝑎𝑔([1 1]) state matrix weight
𝑅 𝑑𝑖𝑎𝑔([1]) input matrix weight

Table 8.3: First design: control MPC tuning

With this initial configuration we obtain the results shown in fig. 8.4, in which the
planned trajectory generated (in blue), by the point mass model is sharp, making it hard to
tightly track it in the control part.
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8.2 – Simulations

(a)

(b)

Figure 8.4: Results: a) 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦; b) 𝑖𝑛𝑝𝑢𝑡;
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8.3 Conclusion
As mentioned before, the trajectory generated appears to be too sharp, due to the point
mass model that generates it, which does not have constraints over the heading. Two
possible solutions can ba considered: the first consists in implementing a more complex
model for the planning MPC, the second instead, in increasing the number of waypoints to
make the path generated smoother. Moreover another restriction in the considered system
has been in the restricted possibility to tune the MPC, which easily fell in infeasibility
conditions.
The advantage of this approach is that it is possible to compute offline the feasible trajectory,
while online performing only the control part, reducing drammatically the computation
time required and then the amount of resources.
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Chapter 9

Second design

9.1 Implementation

Figure 9.1: MPC in curvilinear frame block scheme

Differently to the first approach, the second has been developed completely on Matlab,
with the the scheme shown in figure 9.1, using, as previously done, ”quadprog” function
of the Optimization Toolbox.
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Second design

This system is made up by the ”MPC” (Prediction and Optimization) which embeds
the obstacle avoidance directly into constraints, the ”Plant” and the ”gloval2curvilinear”
function.

Track The difference with respect the first approach it is that here it has to be fully
defined a geometric path. A track can be simple created by specifyng only few elements:

• vector of intial position and orientation of the track

• matrix in which each row defines length and radius of each segment of the track

Then a function fully defines the geometric path, obtaining a matrix, which entries corre-
spond to the position 𝑥, 𝑦, the orientation 𝜓, the curvilinear abscissa 𝑠, the segment length
𝑙 and the curvature 𝑐 of each segment.
The track defined for our tests is a serpentine shown in figure 9.2. With respect to the first
track it is sligtly bigger, since it has been required curves with a slightly wider radius of
curvature.

Figure 9.2: Second Track
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9.2 – System evolution validation

MPC The MPC uses the prediction model along with the track definition, to make a
predicion over a horizon, which is used by the optimization problem to find the optimal
input to apply to the system.

Plant In this specific case the system to control is the following nonlinear system obtained
by the sets 3.3 and 3.10, which state is:

𝜉𝑠𝑦𝑠 = [𝑣𝑥 𝑣𝑦 𝜔𝑧 𝑋 𝑌 𝜓]𝑇 (9.1)

global2curvilinear In general, since the system gives information about the state ex-
pressed in another coordinate system, it is required a function that convert that system in
the curvilinear one.

9.2 System evolution validation

Before using a specific system to control, it has been taken into account three model
systems:

• nonlinear continuous bycicle dynamics

• nonlinear discrete bycicle dynamics

• linearized discrete bycicle dynamics

Firstly it has been evaluate the forced response of the systems subjeced to differents
steering angles as shown in figure 9.3, where it can be clearly seen that the two nonlinear
models coincides perfectly, which means that the discretization accordin Euler approxima-
tion is quite good for out purpose, menawhile the linearized model differs from the other
two at high steering angles. These results have given us the deviation of the linearized
model used for prediction from the nonlinear model from which it was derived.
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(a) (b)

(c)

Figure 9.3: System evolution with initial 𝑣𝑥 = 1, 5𝑚/𝑠: a) 𝛿 = 5°; b) 𝛿 = 10°; c) 𝛿 = 25°.
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9.2 – System evolution validation

Then the three models are tested in a simulation with the MPC control, as shown in
figure 9.4 giving to us another validation about the behaviour of the systems.

Figure 9.4: Trajectory of the three systems
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9.3 Simulations

The following results are obtained from simulations, choosing as plant the nonlinear
continuos bycicle dynamic model, with initial state:

State Value Description
𝑣x 1, 5𝑚/𝑠 velocity along longitudinal body axis
𝑣y 0𝑚/𝑠 velocity along lateral body axis
𝜔z 0°/𝑠 angular velocity
𝑋 0𝑚 position along x inertial frame
𝑌 0𝑚 position along y inertial frame
𝜓 90° orientation in inertial frame

Table 9.1: Initial state

and initial tuning of MPC parameters:

Parameter Value Description
𝑁p 20 prediction horizon
𝑄 𝑑𝑖𝑎𝑔([1 1 1 1 10 1]) state matrix weight
𝑅 𝑑𝑖𝑎𝑔([1 1]) input matrix weight
𝑆 𝑑𝑖𝑎𝑔([1 1]) input rate matrix weight

Table 9.2: MPC tuning parameters

With this configuration, it has been obtain a well defined trajectory, as shown in fig.
9.5, showing quite good results.
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9.3 – Simulations

(a) (b)

(c) (d)

Figure 9.5: Second design: initial conditions
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9.3.1 Initial conditions variation
Before trying to look for better performance, we had validated the MPC for working in
different initial conditions, trying to obtain a range of operational states.

At first it has been taken the extremes of the speed range we consider. Results shown
in fig. 9.6 that, as expected the UGV complete the path in smaller time with higher
starting velocities. It has been noticed an increasing of the steering rate for the highest
velocity of 𝑣𝑥 = 2.0𝑚/𝑠 with respect the other two that present almost the same behaviour.

(a) (b)

(c) (d)

Figure 9.6: MPC with different initial velocities

Then it has been considered to start from three different initial poses, as shown in fig. 9.7.
From these simulation it has been possible to see that there are no restricton on the starting
position, as long as it lies within the track boundaries, while for the starting orientation it
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is obtained a range of ±50° with respect to the centerline. For higher deviations, the MPC
cannot find a feasible trajectory for that initial condition.

Figure 9.7: MPC with different initial pose
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9.3.2 MPC tuning
Firstly it has been changed the prediction horizon 𝑁𝑝 in a range from 10 to 50. In general
increasing the prediction horizon, the MPC can obtain a better sequence of optimal input to
apply in terms of energy minimization, but at the same time it might run into infeasibility,
since the constraints must be guaranteed for a longer time.
In fact the horizon at 𝑁𝑝 = 50 has the trajectory that tightly follow the center-line altought
the input never reach saturation. In the opposity way the horizon at 𝑁𝑝 = 10 has a more
relaxed trajectory, but reaching the saturation of the steering angle.

(a) (b)

(c) (d)

Figure 9.8: MPC with different initial pose

Then we proceed to tune the weighting matrices. In general increasing the value of a
diagonal element of a matrix, means penalizing the term related to it more than the other
ones, then it can be said that it is important the relative weight and not the absolute value
of them.
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The aim of this tuning is to obtain a smoother trajectory as well as a smooth behaviour
of the steering angle. A first attempt is decreasing the weight related to the deviation
from the center-line 𝑒𝑦. As shown in fig. 9.9, we obtain lower values of the steering angle
velocities and in general a more uniform behaviour on the steering angle itself.

(a) (b)

(c) (d)

Figure 9.9: MPC weight matrices tuning I

Then we tried to increase the weight on the steering angle and also on the steering
angle rate, as shown in fig. 9.10.
In both cases we can notice no significant improvement on the steering angle command,
but shown at the end, better performance with respect the first design, with a more complex
model, with trajectories that are smoother and more coherent with the given operative
environment.
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(a) (b)

(c) (d)

Figure 9.10: MPC weight matrices tuning II

9.4 Conclusion
This last approach show bettere performances with respect to the first one. A feasible
trajectory is obtained for a wide range of conditions and MPC tuning, despite the tight
constraints due to the small curvature radius of the path. Increasing the angle of steering to
the our UGV specifications it is posible to obtain feasible trajectories for narrower tracks.
Moreover, it is possible to widely tune the MPC parameters in order to have different
performance as it is possible to see from simulations. It also whorty to notice the impact
ever the steering rate given by introducing it in the cost function of the optimization
problem, even if not present directly as state or input of the system, Finally, it is possible
to state that the velocity profiles appear to be, in each simulation, smooth and without
discontinuities, which are essential requirements.
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Appendix
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Chapter 10

Linearization and Discretization

10.1 Linearization
The linearization allows to make linear a nonlinear system:

̇𝑥(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) (10.1)

around an operative/equilibrium point (𝑥𝑜𝑝, 𝑢𝑜𝑝). The system can be approximated through
the Taylor expansion, stopped to the first derivative:

𝑑
𝑑𝑡

(𝛿𝑥(𝑡)) ≈ 𝜕𝑓
𝜕𝑥

𝛿𝑥(𝑡) + 𝜕𝑓
𝜕𝑢

𝛿𝑢(𝑡) (10.2)

where: 𝑥(𝑡) = 𝑥𝑜𝑝 + 𝛿𝑥(𝑡)
𝑢(𝑡) = 𝑢𝑜𝑝 + 𝛿𝑢(𝑡)

which can be replaced:

𝛿 ̇𝑥(𝑡) ≈ ̇𝑥𝑜𝑝 + 𝜕𝑓
𝜕𝑥

𝛿𝑥(𝑡) + 𝜕𝑓
𝜕𝑢

𝛿𝑢(𝑡)

= ̇𝑥𝑜𝑝 + ⎡
⎢
⎣

𝜕𝑓1
𝜕𝑥
⋮

𝜕𝑓𝑛𝑥
𝜕𝑥

⎤
⎥
⎦

𝛿𝑥(𝑡) + ⎡
⎢
⎣

𝜕𝑓1
𝜕𝑢
⋮

𝜕𝑓𝑛𝑥
𝜕𝑢

⎤
⎥
⎦

𝛿𝑢(𝑡)
(10.3)

where: 𝜕𝑓𝑖
𝜕𝑥 = [ 𝜕𝑓𝑖

𝜕𝑥1
⋯ 𝜕𝑓𝑖

𝜕𝑥𝑛𝑥
]

𝜕𝑓𝑖
𝜕𝑢 = [ 𝜕𝑓𝑖

𝜕𝑢1
⋯ 𝜕𝑓𝑖

𝜕𝑢𝑛𝑢
]

The system can be linearized as:

𝛿 ̇𝑥(𝑡) = 𝐴𝛿𝑥(𝑡) + 𝐵𝛿𝑢(𝑡) (10.4)
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where: 𝐴 = 𝐽𝑓(𝑥) =
⎡
⎢⎢
⎣

𝜕𝑓1
𝜕𝑥1

⋯ 𝜕𝑓1
𝜕𝑥𝑛𝑥

⋮ ⋱ ⋮
𝜕𝑓𝑛𝑥
𝜕𝑥1

⋯ 𝜕𝑓𝑛𝑥
𝜕𝑥𝑛𝑥

⎤
⎥⎥
⎦

∈ ℝ𝑛𝑥,𝑛𝑥

𝐵 = 𝐽𝑓(𝑢) =
⎡
⎢⎢
⎣

𝜕𝑓1
𝜕𝑢1

⋯ 𝜕𝑓1
𝜕𝑢𝑛𝑢

⋮ ⋱ ⋮
𝜕𝑓𝑛𝑥
𝜕𝑢1

⋯ 𝜕𝑓𝑛𝑥
𝜕𝑢𝑛𝑢

⎤
⎥⎥
⎦

∈ ℝ𝑛𝑥,𝑛𝑢

Expanding the variables:

𝑑
𝑑𝑡

(𝑥(𝑡) − 𝑥𝑜𝑝) = 𝐴(𝑥(𝑡) − 𝑥𝑜𝑝) + 𝐵(𝑢(𝑡) − 𝑢𝑜𝑝)

⇒ ̇𝑥(𝑡) = 𝐴(𝑝)𝑥(𝑡) + 𝐵(𝑝)𝑢(𝑡) + 𝐾(𝑝)
(10.5)

where: 𝐾(𝑝) = ̇𝑥𝑜𝑝(𝑡) − 𝐴(𝑝)𝑥𝑜𝑝(𝑡) − 𝐵(𝑝)𝑢𝑜𝑝(𝑡)

10.2 Discretization
Since controllers in general works in discrete time domain, then a continuous state-space
continuous model has to be discretized.

10.2.1 Exact integration

{𝐴𝑑 = exp(𝐴𝑐𝑇𝑠)
𝐵𝑑 = 𝐴−1

𝑐 (exp(𝐴𝑐𝑇𝑠) − 𝐼)𝐵𝑐
(10.6)

10.2.2 Euler approximation

{𝐴𝑑 = 𝐼 + 𝐴𝑐𝑇𝑠
𝐵𝑑 = 𝐵𝑐𝑇𝑠

(10.7)
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