
POLITECNICO DI TORINO

Master of Science in Mechatronic Engineering

MSC THESIS

The Drone Aided Routing Problem:
Analysis of Optimization Algorithms for

Last Mile Delivery

Author:
Matteo ARICÒ

Supervisor:
Prof. Giorgio GUGLIERI

Co-supervisor:
Dr. Stefano PRIMATESTA

ACADEMIC YEAR 2020/2021

https://www.polito.it/

iii

POLITECNICO DI TORINO

Abstract
Mechatronic Engineering

DAUIN - Department of Control and Computer Engineering

Master of Science in Mechatronic Engineering

The Drone Aided Routing Problem: Analysis of Optimization Algorithms for
Last Mile Delivery

by Matteo ARICÒ

Unmanned Aerial Vehicles are gaining momentum in many industrial sectors. While
in some areas the use of drones has already become a standard practice, in some oth-
ers research activities are still needed as the development has not reached a mature
stage yet. This is where this Thesis project is aimed to insert in, dealing with the
logistic problem of last mile delivery.
Some companies, such as Google, UPS and Amazon, have started their own pro-
grams in order to provide drone delivery in the near future. This push from estab-
lished companies has led to optimism in the sector, as employing drones for this
purpose looks promising. Indeed, several works in the literature handled the truck
and drone routing delivery problem. Cooperation between them to deliver parcels
has already been proven to be effective in terms of delivery time, costs and emis-
sions. Most importantly, drones are extremely effective when fast speeds of delivery
are necessary, as for example for medical goods shipment, since they are not subject
to road network restrictions and traffic.
This work performs an analysis of some approaches already proposed in the liter-
ature in order to build an optimization algorithm able to find an optimal solution
where a set of customers needs to be served by a truck and a drone. Several assump-
tions on the scenario need to be made and various constraints on the optimization
process needs to be followed, so that a feasible solution can be obtained. Starting
from this solid basis, the project is aimed at extending the scenario where a fleet
of drones is employed. In this way, the solution provided by the single truck-single
drone scenario is expected to be improved, even though the problem gets more com-
plicated as the number of available vehicles increases.
Insights on the tested algorithms will be provided, displaying data relevant for the
solutions analysis. The advantages in terms of completion time of the delivery pro-
cess obtained with respect to the well documented single truck solution will be high-
lighted, as well as advantages and disadvantages among the selected approaches.
The Thesis concludes by providing possible improvements that can be made on the
algorithms and suggesting future research perspectives.

HTTPS://WWW.POLITO.IT/
https://didattica.polito.it/laurea_magistrale/mechatronic_engineering/it/presentation
https://www.dauin.polito.it/it/

v

Acknowledgements
First and foremost, I would like to thank my supervisor Prof. Giorgio Guglieri and
co-supervisor Dr. Stefano Primatesta that have greatly supported me in the comple-
tion of this project. Their weekly assistance has helped me throughout this period
working on my Thesis and as I did not taken for granted this aspect, I really appre-
ciated that and I am grateful that I worked on this project with them.
Then, obviously, I would like to mention my mom, my dad, my sister, and my whole
family as they always supported me throughout this journey, that has been some-
times stressful, sometimes hard, but I hope that I gave them some satisfactions dur-
ing these years.
Finally, I would like to thank all of my friends that have been with me since before I
started to study at university, as they allowed to lighten these years that as I already
mentioned, they revealed sometimes stressful.
Of course, I can not forget to mention friends that I made in the classrooms during
this journey, as we started to know each other by sharing the struggle of passing the
exams, but we ended up sharing experiences and passions that enriched me as a per-
son and see things with different perspectives. Furthermore, I believe that, together
with my family, all my friends have contributed to my personal growth during these
crucial years, and I see this aspect as the most valuable thing that path has left to me.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Thesis Goal and Structure . 2

2 Last Mile Delivery UAV Operations - State-of-the-Art 5
2.1 What Last Mile Delivery is . 5
2.2 Examples of UAVs Parcels Delivery Systems 6
2.3 Multi-modal Problems Literature Review 8

2.3.1 Truck and Drones Delivery Classification 8
2.3.2 TSP-D Literature Review . 10
2.3.3 TSP-D with Multiple Drones Literature Review 12
2.3.4 Barriers for UAVs Massive Employment 13

3 Problem Formulation 15
3.1 Theory behind the Traveling Salesman Problem 15
3.2 Terminology . 16
3.3 Notation . 17
3.4 Problem Assumptions and Formulation 18

3.4.1 Assumptions . 18
3.4.2 Mathematical Formulation . 19

4 The Algorithm 23
4.1 Local Search Algorithm - TSP-D Solution 23

4.1.1 Local Search Algorithm Main Body 23
4.1.2 Savings function . 24
4.1.3 Cost Truck function . 25
4.1.4 Cost UAV function . 27
4.1.5 Perform Update function . 28

Time Update function . 29
4.2 Practical Example & Possible Improvements 30

4.2.1 Practical Example in a Simple Real Case Scenario 30
4.2.2 Possible Improvements & Alternative Approaches 32

4.3 Hybrid Genetic Algorithm - TSP-D solution 33
4.3.1 The Only Feasible Solutions Variant 34

Parents Selection function . 34
Child Generation function . 35
Restore function . 36
Select Survivors function . 37

4.3.2 The Infeasible Solutions Variant 37
Split function . 39

viii

Repair function . 41
Select Survivors function . 41

4.3.3 The Only Feasible Variant versus Infeasible Variant Comparison . 42
4.3.4 The Real Case Scenario Example solved with the HGA - Infea-

sible Variant . 43
4.4 Multiple Drones Implementation . 44

4.4.1 Local Search Algorithm - Multiple UAVs Adaptation 44
4.4.2 Hybrid Genetic Algorithm - Multiple UAVs Adaptation 50

The Only Feasible Solutions Variant 50
The Infeasible Solutions Variant 54

4.4.3 The Real Case Scenario Example solved with HGA Infeasible
Variant - Multiple Drones Adaptation 55

4.5 mFSTSP Exact Method - An Alternative Approach for Multiple Drones 56

5 Results 61
5.1 Test 1 - Algorithms Comparison - Ten Customers Scenario 63
5.2 Test 2 - Monte Carlo Simulation for Heuristic Algorithms 67
5.3 Test 3 - Algorithms Comparison - Twenty Customers Scenario 69
5.4 Test 4 - Evolution test for Genetic Algorithms 72

6 Conclusions 75

Bibliography 77

ix

List of Figures

1.1 The same problem leads to different solutions depending on the ve-
hicles employed. The goal of the Thesis is to investigate an efficient
solution in order to integrate the truck delivery process assisted with
drones. 2

1.2 The Gantt chart shows the operational times characterizing the de-
livery process. The truck delivering parcels without assistance is de-
picted by TSP, the truck travel travel when assisted by one drone is
depicted by Truck and the drone that assists the truck is denoted as
Drone. 3

2.1 The Prime Air drone design launched in 2019 at the conference re:MARS,
photo by Jordan Stead. 7

2.2 Classification of drones utilization in routing problems. Taken from
[Macrina et al., 2020]. [10] . 9

4.1 Example of the algorithm operating in a scenario where seven cus-
tomers need to be served. Some of them are eligible for drone delivery
while others can be served only by the truck. 23

4.2 An example on a scenario where the cost truck function can operate 26
4.3 Example of the solution produced by the algorithm in a real case sce-

nario where seven customers need to be served. In this instance, every
node has been considered as eligible for drone delivery. 31

4.4 The Gantt chart showing the operational times in the TSP solution
versus TSP-D solution. 31

4.5 A child generation function practical example. 36
4.6 A split child function practical example. 40
4.7 The differences of performance for the Only Feasible Variant versus the

Infeasible Variant. It is clear that the latter is able to find better results. . 43
4.8 Example of the solution produced by the algorithm in a real case sce-

nario where seven customers need to be served. In this instance every
node has been considered as eligible for drone delivery. 43

4.9 The Gantt chart showing the operational times in the TSP solution
versus TSP-D solution. 44

4.10 An example on how the cost truck function works for the case where
ν = 2. 47

4.11 Example of how algorithm works. 49
4.12 Example of the solution produced by the algorithm in a real case sce-

nario where seven customers need to be served. In this instance every
node has been considered as eligible for drone delivery. 55

4.13 The Gantt chart showing the operational times in the mFSTSP solu-
tion, with ν = 2. 56

x

5.1 The TSP solution for the instance considered, where ten customers
must be served. 63

5.2 TSP-D solution of Local Search Algorithm. 63
5.3 TSP-D solution of HGA - Only Feasible Variant algorithm. 64
5.4 TSP-D solution of HGA - Infeasible Variant algorithm. 64
5.5 mFSTSP solution of Local Search Algorithm - Multiple Drones. 65
5.6 mFSTSP solution of HGA Only Feasible Variant - Multiple Drones. 65
5.7 mFSTSP solution of HGA Infeasible Variant - Multiple Drones. 66
5.8 mFSTSP solution of Exact Method - Multiple Drones. 66
5.9 Results of the Monte Carlo simulation, expressed in % savings of time

with respect to the TSP solution produced by the solver. 68
5.10 The TSP-D solution provided by the HGA - Infeasible Variant for the

instance created for Test 3. 70
5.11 The Gantt chart describing timing between the UAV and the truck

achieved with the solution presented in Figure 5.10. 70
5.12 Results of the Monte Carlo simulation, expressed in % savings of time

with respect to the TSP solution produced by the solver. 71
5.13 Evolution tendency of HGA algorithms over γ = 10000 iterations. . . . 72

xi

List of Tables

2.1 Truck and Drone characteristics, suggesting promising tandem appli-
cation in the delivery process, from [Chung et al.,2020]. [5] 6

2.2 Summary of reviewed literature. 13

4.1 Input data for the algorithm. 30
4.2 Data of the Only Feasible Variant versus Infeasible Variant. The numbers

express the makespan of the delivery process in seconds. These are
results obtained for γ = 10000 generations and n = 20 elements in the
initialized population. 42

5.1 Test parameters. 61
5.2 Input data for the algorithm. 62
5.3 The results in terms of the optimized variable, the completion time of

the delivery process, of the various algorithms that has been tested. . . 67
5.4 Statistical data for the Monte Carlo simulation made for the algo-

rithms discussed. These data have been obtained over n = 100 it-
erated tests. 68

5.5 Set of coordinates generated randomly via http://www.geomidpoint.
com/random/ in a rectangular map comprehending the Rome urban area. 69

5.6 The results in terms of the optimized variable, the completion time of
the delivery process, of the various algorithms that has been tested. . . 71

5.7 Statistical data for the Monte Carlo simulation made for the algo-
rithms discussed. 72

5.8 Results obtained setting γ = 100000 as stop condition for the genetic
algorithm. As it is clear from this Table, leaving more time for the
evolution of genetic algorithms leads to improved solutions. 73

http://www.geomidpoint.com/random/
http://www.geomidpoint.com/random/

xiii

List of Algorithms

1 Local Search Algorithm . 24
2 Calculate savings function . 25
3 Calculate cost truck function . 26
4 Calculate cost UAV function . 27
5 Perform update function . 28
6 Time update function . 29
7 HGA Only Feasible Solutions Variant algorithm 34
8 Parents selection function . 34
9 Child generation function . 35
10 Restore function . 36
11 Select survivors function . 37
12 HGA Infeasible Solutions Variant algorithm 38
13 Split function . 39
14 Repair function . 41
15 Select survivors function . 42
16 Local search function for multiple drones 45
17 Calculate cost truck function for the mFSTSP problem 46
18 Perform update function for the mFSTSP problem 48
19 HGA Only Feasible solution Variant for the mFSTSP problem 50
20 Split function for the mFSTSP problem 51
21 Create UAV sortie function for the mFSTSP problem 52
22 Insert infeasible customers function for the mFSTSP problem 53
23 Truck sub-routes update function for the mFSTSP problem 53
24 Split function of Infeasible Solutions Variant for the mFSTSP problem . 54
25 Exact method algorithm, inspired by [Murray and Raj, 2019] [14] for

the mFSTSP problem . 57
26 Calculate cost truck function for the mFSTSP problem 58

xv

List of Abbreviations

AI Artificial Intelligence
API Application Programming Interface
CVP-D Carrier Vehicle Problem with Drones
DDP Drone Delivery Problem
FAA Federal Aviation Administration
FSTSP Flying Sidekick Traveling Salesman Problem
GPS Global Positioning System
GUI Graphic User Interface
HGA Hybrid Genetic Algorithm
HGVNS Hybrid General Variable Neighborhood Search
HTTP HyperText Transfer Protocol
IQR InterQuartile Range
LTL Lower Truck Limit
mFSTSP multiple Flying Sidekick Traveling Salesman Problem
MILP Mixed Integer Linear Programming
NP Nondeterministic Polynomial time
PDSTSP Parallel Drone Scheduling Traveling Salesman Problem
R&D Research and Development
REST REpresentation State Transfer
RP-D Routing Problem with Drones
TSP Traveling Salesman Problem
TSP-D Traveling Salesman Problem with Drone
UAV Unmanned Aerial Vehicle
VMT Vehicle Miles Travelled
VRP Vehicle Routing Problem
VRP-D Vehicle Routing Problem with Drones

1

Chapter 1

Introduction

The technology development has recently allowed the spread of Unmanned Aerial
Vehicles (UAVs), commonly referred as drones, among completely different sectors.
It is possible to classify three main areas where UAVs can operate:

• Civilian. One of the most promising application in this area is constituted
by transportation. However, this presents several safety problems related to
ground risk, especially if UAVs fly over other transportation infrastructures.
The commercial use for the building sector has become an interesting applica-
tion as well, since it is possible to use UAVs for aerial photography, surveying,
monitoring and inspecting the construction site. This allows to avoid dan-
gerous scenarios and speed up the data collection with the main drawback of
dealing with local regulation restrictions.
An interesting application that is gaining popularity recently is the employ-
ment of UAVs in agriculture. In this sector, they are mainly used to spray
chemicals or water over crops, or just to monitor them.
Disaster management is another area where UAVs have already been efficiently
applied. This spans from image collection to transport of essential goods for
humanitarian purposes. The main drawbacks are related to limited payload
and battery life.
Surveillance is another sector where UAVs have been extensively used, either
indoor or outdoor.
Logistics is a promising area where UAVs could be applied in the near future.
Finally, UAVs are widely used for entertainment and they are becoming a new
standard to film aerial shots which are particularly suggestive for cinema pro-
duction, as well as for filming events.

• Environment. The use of UAVs for environmental monitoring and protection
has become quite common throughout the years. In particular, they have been
used to monitor destructive actions that are affecting the Amazon forest or to
monitor national parks. Other examples of applications are made by air qual-
ity monitoring, soil and crop monitoring and hydrology, where UAVs proven
to be effective in collecting data in difficult to access areas due to adverse me-
teorological events.

• Defense. The use of UAVs in this area dates back to 1982, when the U.S. navy
used these devices for military applications. In this case they can either be
armed to help military operations or they can protect soldiers and civilian by
monitoring activities. [10]

While some applications are already in a mature stage, where the drones are used
extensively and their market is steadily growing like in agricultural applications or
in photography and videomaking, other fields are still placed a step behind in the

2 Chapter 1. Introduction

developing stage, as for example in logistics. [19]
This Thesis is aimed to investigate deeper this aspect, exploiting the already avail-
able literature, possibly adding further insights on this complex problem.

1.1 Thesis Goal and Structure

The Thesis is inserted in a broader project, where a multi-modal transportation sys-
tem for urban delivery in smart cities shall be designed.
This work is aimed at investigating in depth the operational approach for the logis-
tic problem, exploring optimization algorithms that allow to find the best solution to
serve customers located at predefined coordinates through a hybrid delivery system,
constituted by the truck and one or more drones. Firstly, the available literature on
multi-modal delivery systems has been studied and analyzed, in order to establish
the current state-of-the-art in the research field and how this problem shall be tack-
led. The practical aspects that shall be considered for the implementation of such
system in a real case scenario has been surveyed as well, where few examples of
tests and programs launched in recent years by delivery companies have been pre-
sented. Once these pieces of information have been collected, the final goal will be
to implement and analyze a set of algorithms to solve the problem of a single truck
and a single drone delivery. These algorithms have been selected among the most
promising ones in the literature and they will be then evaluated according to vari-
ous scenarios with different customer’s locations instances. Eventually, they will be
extended to applications where availability of multiple drones is forecast. Perform-
ing several tests, the main features of the algorithms will be highlighted, so that the
best approach according to trade-offs on performance and algorithm efficiency can
be selected.
The problem addressed in this Thesis is shown better in Figure 1.1.

(A) The problem consists in visiting the set
of locations present in the Figure in the least
amount of time. The solution reported here is
referred to a single truck as delivery vehicle.

(B) The same problem of serving the cus-
tomer’s locations is tackled differently in this
Figure. In particular the truck is helped in the

delivery process by a drone.

FIGURE 1.1: The same problem leads to different solutions depending
on the vehicles employed. The goal of the Thesis is to investigate
an efficient solution in order to integrate the truck delivery process

assisted with drones.

1.1. Thesis Goal and Structure 3

FIGURE 1.2: The Gantt chart shows the operational times character-
izing the delivery process. The truck delivering parcels without as-
sistance is depicted by TSP, the truck travel travel when assisted by
one drone is depicted by Truck and the drone that assists the truck is

denoted as Drone.

Namely, Figure 1.1a shows the conventional Traveling Salesman Problem, referred
in the following as TSP, where a set of locations must be visited exactly once by the
salesman that shall depart from and come back to the same location. The goal is to
minimize a non-negative cost function associated to the entire tour, that character-
izes the travel between two locations and it is generally the travel time.
Then, a drone insertion is considered so that some customers may be served by
it, allowing the truck to shorten its route. The customer’s assignment to the truck
and to the drone must be taken carefully, because this depends on criteria based on
optimization of completion time of the entire delivery tour, but it also depends on
synchronization between the two vehicles and feasibility in terms of battery life and
payload that can be carried by the drone. These particular aspects are depicted in
Figure 1.2 and they will be thoroughly analyzed. These challenges are emphasized
when multiple drones are added, therefore, analysis for the case where a fleet of
drones is present will be carried out as well.
In CHAPTER 2 a technical introduction to the subject will be provided. In partic-
ular, the Last Mile Delivery concept, real drone delivery tests and applications and
the literature review on the TSP with one drone, called TSP-D, and multiple drones
will be investigated.
CHAPTER 3 deals with the mathematical problem of the TSP. This problem belongs
to a well-documented class of problems that are particularly hard to be solved with
computer algorithms in a finite time. A mixed integer linear programming formu-
lation, taken from [Murray and Chu, 2015] [13], that constitute the milestone for all
the subsequent literature related to TSP-D problems, will be provided as well.
CHAPTER 4 presents the algorithms implementation in Python. Different approaches
will be examined and the chosen methodologies will be described in depth. To re-
trieve the cost functions that will constitute the decision variable of the problem, the
Bing Maps API has been used.
In CHAPTER 5 real scenarios with different number of customers located at various
distances will be implemented to test the algorithms under multiple situations. In-
sights on the data obtained will be given to establish how the algorithms performs
in different operational conditions.

4 Chapter 1. Introduction

CHAPTER 6 closes the Thesis, summing up the work developed and providing pos-
sible improvements and further research opportunities.

5

Chapter 2

Last Mile Delivery UAV
Operations - State-of-the-Art

2.1 What Last Mile Delivery is

The concept of Last Mile Delivery is referred to the very last step of the logistic
process, where the parcel goes from the transportation hub to the final customer’s
location.
The main phases of the Last Mile Delivery process can be described as follows:

1. orders are placed by the customer and these enter in the digital system where
they can be monitored;

2. orders arrive at the transportation hub and they wait to be delivered and this
is where the logistic process actually begins;

3. orders are strategically designated to delivery personnel based on delivery ad-
dresses trying to achieve an optimized process;

4. orders are scanned before being loaded to delivery vehicles in order to monitor
the parcel on both customer and company sides;

5. orders successfully reach the final destination and a proof of correct shipment
is requested in order to update the delivery status.

In recent years, this process has witnessed an enormous increase in quality demand
in a continuously growing market, especially due to the rapid spread of online shop-
ping platforms. Usually, e-commerce retailers are required to deliver a huge number
of parcels within small time windows, to several customers and possibly without
charging any delivery fee. These requirements are obviously conflicting, and they
shall be tackled with efficient management in order to survive in this highly com-
petitive sector.
Furthermore, the main paradox is that even though customers are requiring fast and
possibly free delivery services, the Last Mile Delivery process happens to be the
most expensive one throughout the whole logistic chain. As stated in the OnFleet
blog, "Last mile shipping can account for 53% of a shipment’s total costs. Compa-
nies typically eat about 25% of that cost themselves, but this number is increasing as
supply chain inefficiencies are becoming more and more costly." [15]
This has led companies to push in R&D projects in order to implement new tech-
nologies in the Last Mile Delivery operations to gain advantages with respect to the
competition.
Among many other trends that will be affecting Last Mile Delivery in the future,
there is the employment of autonomous robots and UAVs. In particular, these smart

6 Chapter 2. Last Mile Delivery UAV Operations - State-of-the-Art

devices would allow companies speed up the Last Mile Delivery process, cut the
labor cost and potentially employ them 24 hours per day.
In the following Section, several examples of UAVs parcels delivery that have been
tested throughout the years will be presented.

2.2 Examples of UAVs Parcels Delivery Systems

Drones are able to bring a significant strategic advantage in terms of delivery; in-
deed, they are generally faster than conventional ground delivery vehicles and they
are not subject to any route restriction, unless flight-restricted areas are present.
Their flexibility represents a key factor to manage the delivery time optimally, as
this variable has become a critical factor. However, the employment of UAVs does
not come without any disadvantage: the payload capacity and the flight range deter-
mined by the battery life are the main technological limitations to massively employ
these devices. Furthermore, ground-related risks are still difficult to be managed.
To partially overcome these issues, the tandem truck-drone delivery system has been
analyzed to be employed in the Last Mile Delivery process. This approach looks very
promising as the drone and the truck characteristics are complementary, as summed
up in Table 2.1. [5]

Mode Speed Weight Capacity Range
Energy

Consumption
Drone High Light One Short Low
Truck Low Heavy Many Long High

TABLE 2.1: Truck and Drone characteristics, suggesting promising
tandem application in the delivery process, from [Chung et al.,2020].

[5]

Indeed, the truck carrying the drone is able to effectively increase the flight range
of the latter, that would have been otherwise limited to a circular area around the dis-
tribution center with a radius proportional to the drone endurance time. This last
scenario would be critical, since depots should be re-located to highly populated ar-
eas, involving high costs for the companies. In the truck-drone tandem case, instead,
the UAV can be brought in proximity to customers by the truck and it can perform
deliveries while the truck is heading towards another customer, leading to an effi-
cient time management of the delivery process. Moreover, the truck will be able to
delivery heavy parcels, while the drone will be entitled to serve customers requiring
low weight goods. [13]
To testify the increase of interest in drones utilization in logistics, in the last decade,
several companies has carried out numerous experiments in order to practically use
UAVs for parcels delivery.
Amazon has launched its drone delivery program Prime Air as early as 2013. The
initial plan was to deliver parcels via UAVs departing from warehouses and trav-
eling towards customer’s location via GPS. Although that announcement has been
welcomed with scepticism [13] at that time, Amazon kept testing and developing its
system in dedicated platforms either in U.S. and abroad. [22] Its latest announce-
ment on the program occurred in 2019, where they launched the drone design that
will be used in Prime Air program. This drone "can fly up to 15 miles and deliver
packages under five pounds to customers in less than 30 minutes", as mentioned in

2.2. Examples of UAVs Parcels Delivery Systems 7

the Amazon website. It features an hybrid design between an helicopter, leading to
greater take-off and landing performances, and an airplane, leading to better stabil-
ity and safety during transit conditions. It also features sophisticated AI technolo-
gies in order to increase safety that would not be guaranteed only by communication
systems for situational awareness. This granted Amazon a certificate by the FAA to
operate its aircraft in authorized flight areas. [11] Furthermore, the company claims
that by using drones for deliveries, it will reach 50% of shipments with environmen-
tal zero-impact by 2030. [24]

FIGURE 2.1: The Prime Air drone design launched in 2019 at the con-
ference re:MARS, photo by Jordan Stead.

Another interesting application of drone delivery involves a U.S startup, called
Zipline, that partnered with the Rwanda government starting from December 2016
to deliver vital medical parcels in the country. In particular, "the company has dis-
patched more than 4000 units of blood products to 12 hospitals—red blood cells,
platelets, and plasma that would have otherwise needed to travel by a treacherously
tangled road network, losing precious hours in the race to save lives", as stated in
the Time article. In this case, it is evident that drone technology has been leveraged
for its efficiency and its fastness compared to the ground vehicles, whose limita-
tions has been emphasized in this scenario by a poor road network. Moreover, being
these devices critical for healthcare, they are designed differently from conventional
quad-copters, in order to fly further and with adverse weather conditions. These
characteristics are essential for reliable and always ready deliveries. Finally, these
drones feature parachute landing in order to avoid that lots of people need to be
trained to interact with these devices. The success of the company in Rwanda has
led to expand the project in other African states and Latin America. [2] The com-
pany has recently used its technology to deliver COVID-19 vaccinations in Ghana,
in order to reach rural area that would have otherwise been difficult to access. [1]
By the time of writing Zipline has actually expanded to U.S healthcare services, de-
fense and disaster response sector, and even in retail and e-commerce, where a pro-
gram partnered with Walmart has been launched in U.S. in September 2020. Wal-
mart has partnered with end-to-end commercial drone delivery company as well,
called Flytrex, in order to achieve safe, convenient and fast goods deliveries, leading
to a decreased environmental impact as well.
Flytrex collaborated with the Iceland’s greatest delivery company, AHA,with drones

8 Chapter 2. Last Mile Delivery UAV Operations - State-of-the-Art

utilized in a hybrid system in tandem with trucks. This system has proven its effi-
ciency, reducing the delivery time operations. [5]
The first company that has obtained the FAA approval for commercial operations
with drones was Wing, a branch of Alphabet, which was granted to fly in 2012. Its
drone is able to deliver packages dropped via tether. The company is partnered with
FedEx and Walgreens and it currently operates in U.S., Finland and Australia. The
demand for its offered service has seen a drastic increase lately, due to the pandemic
that oftentimes forced consumers to stay at home.
Other companies offering logistic services, like UPS and DHL have investigated the
possibility of employing drones for e-commerce applications and for humanitarian
purposes. DHL operated in 2018 in East Africa to deliver medical goods after a
session of tests carried out in Germany [22], while UPS, partnered with Matternet,
operates in U.S. and Switzerland to provide healthcare products. Matternet is collab-
orating with Mercedes-Benz as well, in order to develop a completely autonomous
delivery system for e-commerce applications.
In general, since the demand for same-day delivery or even instant delivery is be-
coming larger and larger, the drone delivery market is expected to grow in the next
decade. This growth is foreseeable also because of the large investments made by the
companies cited above, that committed a large amount of resources in research ac-
tivities and tests. [25] The current pandemic has contributed to boost the demand for
contactless and safe distribution, which is guaranteed by this mode of delivery. Fur-
thermore, drones have helped heavily struck places by delivering medical parcels
and other essential goods for the population under lockdown. Drone regulations
and available technologies constitutes an important role in the growth of this sector,
as they are still behind the demand of services but they are rapidly advancing.[18]

2.3 Multi-modal Problems Literature Review

Since the employment of UAVs in logistics has gained interest from a commercial
and academic standpoint, researches have been made in order to establish the fea-
sibility of utilizing such devices in a real case scenario, analyze the optimization al-
gorithms for truck and drone scheduling operations, investigate the costs related to
such operations and find out the environmental impact related to energy efficiency
management throughout the process.
As this project is directed towards analyzing a possible solution to the truck and
drone delivery problem, the literature review will be focused on the mathematical
formulation of the problem and optimization algorithm implementation for truck
and drone coordination to place an effective parcels delivery.
First a classification of the myriad of problems that can be born from the classical TSP
problem just by adding UAVs will be discussed. Then, the review will be focused on
the specific problem type that will be tackled later in this Thesis.

2.3.1 Truck and Drones Delivery Classification

Routing problems with UAVs are classified according to how many drones are avail-
able and how they are employed for the delivery process. The classification is shown
in Figure 2.2.

The routing problem with drones, RP-D, is divided in four categories:

• TSP-D: TSP with drones, that combines truck and one or multiple drones. In
particular, this problem has been introduced systematically by [Murray and

2.3. Multi-modal Problems Literature Review 9

FIGURE 2.2: Classification of drones utilization in routing problems.
Taken from [Macrina et al., 2020]. [10]

Chu, 2015] [13]. They provided an exhaustive mixed integer linear program-
ming formulation over which several other approaches are built. They pro-
posed two variants to tackle this problem:

– FSTSP: flying sidekick TSP, where a single truck and a single drone are
used to carry out the delivery of the parcels. The goal is to minimize the
completion time of the overall process, by visiting all the customers only
once with either of the two vehicles and coming back to the depot. The
drone is subjected to several constraints, such as battery life that limits
the travel time and distance, the limited payload capacity and other con-
straints related to the coordination of activities with the truck.
Among all the RP-D problems, it is the most documented in literature and
it presents many sub-variants, classified according to the specific initial
hypothesis and constraints imposed. The algorithms proposed to tackle
this problem are numerous as well.

– PDSTSP: parallel drone scheduling TSP, where the goal is again the mini-
mization of the completion time of the delivery process in which all the
customers must be served by either a drone or the truck. However, in
this case, there can be one drone or a fleet of drones that operate asyn-
chronously with respect to the truck operations. Therefore, they perform
one or multiple travels starting and ending to the depot and customers
needs to be within the flight range from the depot. The truck will instead
operate independently, reaching all the customers that can not be served
by UAVs.
Also in this case, several models and algorithms are described in litera-
ture in order to solve this type of problem.

10 Chapter 2. Last Mile Delivery UAV Operations - State-of-the-Art

• VRP-D: VRP with drones, it constitutes a generalization of the TSP-D problem,
where one or multiple trucks and drones are available. It has been introduced
more recently due its more complicated nature. For this reason, the problem
has been firstly considered with some relaxed constraints on the drones oper-
ations. Then, restrictions have been progressively added in order to obtain a
realistic framework and variants have been documented as well in literature,
where several specific problems, related not only on minimization of the time
but of the costs, energy consumption and so on, have been addressed.

• DDP: drone delivery problems, that can be considered as a variant of the VRP-
D, where trucks are eliminated and the fleet is composed by multiple drones.
Being this type of problem related to only drones, the approaches presented
in literature are more focused towards drones characteristics, such as energy
consumption, limited payload and flight range and battery charge, that may
hinder the successful completion of a delivery mission. This is, however, the
least documented problem in literature since only drone deliveries without
any assistance by other vehicles still presents technological challenges due to
the characteristics of the currently available drones.

• CVP-D: carrier-vehicle problem with drones, this problem addresses the techno-
logical difficulties mentioned in the DDP problem. It forecasts the employment
of a team of cooperating vehicles composed by a large and slow carrier (like
ships or large ground vehicles) able to transport a fleet of small and fast ve-
hicles, that are, in this case, the UAVs. The carrier works as a sort of moving
depot, carrying the parcels as well, where the fast delivery vehicles can depart
and come back multiple times to serve efficiently all the customers. Constraints
are usually considered for the drones, while they are in general different with
respect to the TSP-D case for the carrier, where in this latter instance it was en-
titled of deliveries as well. This problem is well documented in literature and it
presents several variants where different hypothesis and variables to optimize
are considered.

The first two problems (TSP-D and VRP-D) belong to the bigger class of rout-
ing problems where either the truck or the drones can perform the deliveries of the
parcels, while the last two (DDP and CVP-D) belong to the class where only drones
can perform deliveries, while the truck is used as a support vehicle for the drones.
[10]

2.3.2 TSP-D Literature Review

A remarkable amount of literature is present for the TSP-D and VRP-D problems.
The first methodical formulation has been elaborated by [Murray and Chu, 2015]
[13], where the challenge of addressing an optimal assignment of customers to a
UAV delivery system working in tandem with a truck has been tackled, called the
FSTSP. The scenario studied foresees a single truck and a single drone. The objec-
tive is to minimize the completion time of the delivery process. In particular, a sys-
tematic mixed integer linear programming, referred as MILP, formulation has been
proposed. To handle the amount of customers that are usually present in a last mile
delivery scenario, an heuristic algorithm has been developed. Indeed, exact meth-
ods are inefficient in terms of run-time, due to the NP-hard nature of the problem.
The heuristic algorithm features a route and re-assign approach, where first the con-
ventional TSP problem is solved and later the drone eligible nodes are progressively

2.3. Multi-modal Problems Literature Review 11

assigned to the UAV, removing them from the truck route. Finally, the savings as-
sociated to the UAV assignments and their feasibility are evaluated. A set of drone
eligible nodes is established by criteria such as the impossibility of delivering heavy
packages. Actual road distance metric is used to calculate the truck cost function
while the Euclidean distance is used for drone travels. The assumptions performed
are related to the nodes, that can be visited only once, either by a truck or a drone,
synchronization between the truck and the drone that must occur, the drone that
can be launched and retrieved only in customer’s nodes and constraints on flight
endurance that must be respected as well. Another problem formulation has been
considered in this paper, that deals with the PDSTSP, where multiple drones operate
in a circular area around the depot delimited by their flight range, while the truck
delivers parcels independently according to a TSP route, thus no synchronization is
needed. Anyhow, the objective still consists in minimizing the delivery time.
In [Ha et al., 2018] [9], the minimization of completion time of the delivery process is
accounted for in parallel with the minimization of the cost of transportation, called
the min-cost TSP-D. The mathematical formulation and problem assumptions are
based on the [Murray and Chu, 2015] [13] formulation, with the main difference that
waiting times between the truck and drone are accounted for, since they degrade
the performances in terms of cost minimization. The approach is based on an hy-
brid genetic algorithm with adaptive diversity control. Also in this case, an initial
TSP solution is considered, called the giant tour chromosome. The TSP tour is built by
selecting two parents and cut them in two random points of the chromosome in or-
der to mix the candidates solutions and possibly improving them by creating a fitter
child for the next generation. Then, a split procedure is performed so that a drone
deliveries chromosome and truck deliveries chromosome are obtained. The individ-
ual evaluation is carried out by computing the penalized cost Φ(P1), i.e. the sum of
the travel times between two locations for the entire tour weighted by constraints
violation, and diversity of population ∆(P1), so that a balance between diversifi-
cation and intensification of solutions will be obtained in the generations, i.e. the
convergence to a solution will not be fast, but the search of that solution will not be
performed randomly.
[Ponza, 2016] [16] exploited the [Murray and Chu, 2015] [13] formulation, slightly
modifying the assumptions on the ready-time of the truck and drone, accounting for
additional time to carry out maintenance services, to build an innovative framework
based on simulated annealing approach. This method is based on an initial solution
to which an energy value is associated with, according to its configuration, and then
its energy is decreased by a so called cooling schedule implemented in the algorithm,
so that the solution converges towards progressively lower energy states. Other al-
gorithms, like ant colony optimization and a naïve approach have been explored by
the author, nevertheless the simulated annealing approach has been implemented
and effectiveness for the considered application has been extensively proven.
The FSTSP formulation has been utilized by [Freitas and Penna, 2020] [6] as well, but
they proposed a solution obtained via variable neighborhood search. The initial step
consists in producing the TSP solution through an already available solver. Then, an
initial solution of the TSP-D approach is generated by an algorithm based on the
[Murray and Chu, 2015] [13] heuristic, where truck customer’s nodes are turned
into drone customer’s nodes. This first tentative TSP-D solution is finally given to
the general variable neighborhood search that improves the final outcome of the al-
gorithm. In the paper, seven neighborhood structures are discussed.
The [Bouman and Agatz, 2018] [3] proposes a completely different approach based

12 Chapter 2. Last Mile Delivery UAV Operations - State-of-the-Art

on a newly designed mathematical model. This introduced some important assump-
tions, like that the drone is α times faster than the truck and the truck can wait
in the same node while the drone is performing its delivery task, i.e. the drone
can be launched and recovered in the same node. Unlike the FSTSP approach, this
new mathematical formulation can not be handled by conventional solvers, and the
initial TSP solution is obtained by exploiting the Bellman-Held-Karp dynamic pro-
gramming algorithm. The TSP-D solution is obtained starting from the initial TSP
solution either via another dynamic programming approach, or by A∗ implemen-
tation. These methodologies, being different from the heuristic approaches seen
above, produces an exact solution. In this paper, it is also highlighted that by re-
stricting the number of visits that the truck can perform while the drone is airborne,
the time required to produce the solution is significantly reduced, without affecting
much the overall quality of the solution.
Other revised articles deal with the environmental impact of the drone delivery over
the truck delivery, like the [Goodchild and Toy, 2017] [8]. The [Chiang et al., 2019] [4]
proposes a genetic algorithm that solves the TSP-D problem by exploiting a specifi-
cally designed integer programming formulation that accounts for carbon emissions
of the hybrid system and the total delivery costs.

2.3.3 TSP-D with Multiple Drones Literature Review

While still a great amount of material is present in the literature for the problem in-
volving multiple drones, the review becomes faceted as many possible variants can
be considered, depending on how many vehicles are employed, how they operates
in tandem and the initial hypothesis utilized. For example, the already mentioned
[Murray and Chu, 2015] [13] PDSTSP formulation already employs multiple UAVs,
nonetheless the characteristics of this problem are quiet different from a scenario
featuring a truck that carries multiple drones and it is utilized as a moving depot,
where drones and parcels can be managed.
In [Murray and Raj, 2019] [14], the concept elaborated by [Murray and Chu, 2015]
[13] is extended. Indeed, in this paper a single truck and multiple heterogeneous
drones are considered. The newly proposed mathematical programming formula-
tion, called the mFSTSP, leverages the core elements that was present in the FSTSP
formulation, featuring the suitable modifications to allow the employment of a fleet
of drones. The final goal is still to minimize the completion time required to deliver
parcels and return to the depot. In this article, two variants on the classical time
restrictions that are present for synchronization between the UAVs and the truck are
present:

• truck not required at depot, i.e. UAVs can be launched and retrieved indepen-
dently of the truck, if the depot is considered;

• automated launch and recovery system, i.e. the driver is not engaged in launch
and delivery operations.

The approach provides a three phase heuristic algorithm where first the customers
are separated in customers eligible for truck deliveries and customers eligible for
drone deliveries. Then, the drone travels are assigned by defining for each customer
eligible for drone delivery the launch node and the rendezvous node. Finally, time
activities and scheduling of launch and retrieval operations are performed in the
third phase. The work presents its results by testing the algorithm with instances
with 10 and up to 100 customers to be served and five possible ways to model the

2.3. Multi-modal Problems Literature Review 13

drones endurance limits are introduced.
The [Ferrandez et al., 2016] [12] proposes a different formulation of the optimization
function, that is solved first by applying a K-means clustering algorithm to find op-
timal launch locations for drones and then a genetic algorithm is designed to solve
the TSP problem connecting the launch nodes. The goal is to establish the time and
energy savings of the truck and drones tandem system compared to the standalone
truck or drone deliveries and to establish the optimal number of drones necessary to
carry out the assigned task.
Finally, [Di Puglia Pugliese et al., 2020] [17] formalizes the problem via a program-
ming mathematical formulation for the VRP, the DDP and the VRP-D. These three
delivery configurations are then tested according to a CO2 emission model in order
to establish which delivery configuration is more sustainable in terms of environ-
mental impact.
In Table 2.2, the reviewed paper are summarized, highlighting their main character-
istics.

Paper Formulation # trucks # drones
Objective
function

Proposed
solution

[Murray and Chu, 2015] [13]
FSTSP

PDSTSP
1

1
n

Completion time
Route and re-assign

heuristic

[Ha et al., 2018] [9] FSTSP 1 1
Completion time

Travel cost
Hybrid genetic algorithm

[Ponza, 2016] [16] FSTSP 1 1 Completion time Simulated annealing

[Freitas and Penna, 2020] [6] FSTSP 1 1 Completion time
Hybrid general variable

neighborhood search

[Agatz and Boumann, 2018] [3]
Dynamic

programming
1 1 Completion time A∗

[Goodchild and Toy, 2017] [8] VMT 1 1 CO2 emissions -

[Chiang et al., 2019] [4]
Integer

programming
1 1

CO2 emissions
Travel cost

Genetic algorithm

[Murray and Raj, 2019] [14] mFSTSP 1 n Completion time Three steps heuristic

[Ferrandez et al, 2016] [12]
Hybrid’s Netwon

method with difference
equation

1 n
Completion time

Energy
K-means clustering with

Genetic algorithm

[Di Puglia Pugliese et al., 2020] [17]
Integer

programming
n n CO2 emissions -

TABLE 2.2: Summary of reviewed literature.

2.3.4 Barriers for UAVs Massive Employment

Despite the huge interest that has raised around the implementation of drone-based
systems in logistics, still the presence of some barriers must be taken into account.
According to the nature of the difficulties that could be faced, the following division
of possible issues related to drones employment can be made:

• privacy issues, which becomes critical as drones are becoming more and more
capable of recording and storing a huge amount of data. This problem involves
particularly drones for surveillance applications;

• security issues, since drones are part of a telecommunication network where
several sensitive data might be shared, thus being subject to cyber attacks;

• safety issues, directly related to accident that might be caused by adverse weather,
malfunctions or hacking attacks that will cause an impact of the drone to the
ground, exposing people to a possible impact with the drone;

• technological issues, dealing mainly with battery life, flight range and payload
capacity, which are the main limitations for massive drone employment in lo-
gistics;

14 Chapter 2. Last Mile Delivery UAV Operations - State-of-the-Art

• environmental issues, related to sound pollution and air-space congestion;

• socio-economic aspects, where several jobs might be taken down by the utiliza-
tion of autonomous vehicles, which then require more specialized workforce.
[5]

• regulation issues, as no global guidelines on commercial utilization of drones
is present and institutions are struggling to keep up to the technological ad-
vancement pace.

15

Chapter 3

Problem Formulation

3.1 Theory behind the Traveling Salesman Problem

Problems are characterized by their difficulty to be solved. In particular, a problem
is said to be tractable if there exists an algorithm that is able to find the exact solution
in polynomial time, i.e. given an input of size n, the run-time of the algorithm will
be O(nk), for some constant k. Instead, a problem is said intractable, or hard, if the
time required to be solved is superpolynomial.
According to this criteria, problems are divided in classes, and the P and NP classes
will be considered. A problem belonging to the P class can be solved in polynomial
time. NP class consists, instead, of problems that can be verified in polynomial time,
i.e. if a solution of this problem is somehow available, its correctness can be checked
in polynomial time of the size of the input problem. P is contained in the NP set,
thus any problem in P belongs to NP as well. The main question is whether P=NP,
and this is still an unsolved question in computational sciences. A particular set of
NP problems is made by NP-complete set. This type of problems have an unknown
status, i.e. no one has found an algorithm able to solve them in polynomial time,
but a proof that no polynomial time algorithms exist to solve these problems has not
been found yet. Therefore, NP-complete problems are considered at least as hard as
any other NP problem. Nowadays NP-complete problems are considered intractable,
as it would be surprising that, given the large number of problems belonging to this
set, no one was ever able to find an algorithm solving any of these problems in poly-
nomial time, even though no proof is given.
For these reasons, NP-completeness property establishes how hard a problem is and
how unlikely is that an efficient algorithm to solve this problem exists.
NP properties actually refer to decision problems, i.e. all the problems whose answer
is simply yes or no. However, decision problems can be directly linked to optimization
problems, such as the traveling salesman problem, therefore NP-completeness conse-
quences can directly affect this type of problems as well.
The traveling salesman problem can be formulated as a set of n cities, or nodes, that
the salesman wishes to visit exactly once, finishing the tour in the city where he
started from. Each travel between two cities is characterized by a non-negative cost,
and the salesman wishes to perform the tour that leads to the minimum total cost
possible, being the total cost the sum of individual costs due to the travel between
the cities. The problem such formulated has been proven to be NP-complete.
[20] The traveling salesman problem with drones has actually been proven to belong
to the NP-hard problem set, which is informally the set of problems at least as hard
as the hardest problems in NP. [21]
Nonetheless, the intractability of those problems does not mean that they can not be
solved in practice. Indeed, approximation algorithms can be applied in these cases
to obtain the optimal solution in a reasonable amount of time. These algorithms will

16 Chapter 3. Problem Formulation

be investigated in the next Chapter.
As a matter of fact, this Thesis has by no means the ambition to treat the problem
from a mathematical standpoint, however the reasons why this problem is hard to
solve needed to be clarified and thus they have been reported above.

3.2 Terminology

In the followings a list of terms and definitions that will be used throughout the
Thesis will be provided:

• TSP-D: traveling salesman problem with drone, in particular a single truck-
single drone set up is considered with this term.

• FSTSP: flying sidekick traveling salesman problem, it is the TSP-D formulation
proposed by Murray and Chu.

• mFSTSP: multiple flying sidekick traveling salesman problem, where a single
truck and multiple drones are available for the delivery task.

• truck node: it is a node exclusively served by the truck.

• drone node: it is a node exclusively served by the drone.

• truck route or tsp tour: it is the ordered sequence of nodes visited by the truck,
that leads to the minimum cost possible for the set of customers considered.

• sub-route: it is a sub-set of the truck route delimited by a node where the drone
is launched and a node where the drone is retrieved.

• truck sub-route: it is the set comprehending all the sub-routes present for a given
truck route.

• truck only nodes: they are the nodes that can not be served by a drone because,
for example, the parcel associated with these nodes exceed the payload that
can be carried by the drone.

• drone eligible nodes: they are the nodes that can be served either by a truck or by
a drone, thus, in the algorithms, they are susceptible to assignments to drone
checks.

• drone sortie: it is a tuple 〈i, j, k〉 that describes drone operation of being launched
from the truck at node i, delivering the parcel at node j and being recovered
by the truck at node k. For a drone sortie, the following conditions must hold:

– the drone can not be launched from the node i corresponding to the end-
ing depot node;

– the node j must be eligible for drone delivery and it must be different
from the launch node i;

– the node where the drone is retrieved k may be either the ending depot
node or a customer node different from i and j and the drone travel time to
accomplish the route i −→ j −→ k must not exceed the drone endurance
limit. [13]

• drone travel: it describes any drone operation moving from one node to another
one. [5]

3.3. Notation 17

3.3 Notation

The following notation will be employed for the mathematical formulation of the
truck and drone routing problem:

• C = 1, 2, ..., c represents the set of all customers that must be served either by a
truck or a drone;

• C′ ⊆ C denotes the sub-set of customers that may be served by a UAV;

• N = 0, 1, ..., c + 1 denotes the set of nodes that must be visited exactly once in
the delivery process. Although the drone and truck must return to the initial
depot node 0, in this set the final depot is depicted by c + 1, therefore nodes 0
and c + 1 actually correspond to the same location;

• N0 = 0, 1, ..., c stands for all the nodes from which vehicles can depart from;

• N+ = 1, 2, ..., c + 1 represents all the nodes to which vehicles can head to dur-
ing the tour;

• τij denotes the time necessary for the truck to travel from node i ∈ N0 to j ∈
N+;

• τ′ij denotes the correspondent time necessary for the drone to travel from node
i ∈ N0 to j ∈ N+;

• sL represents the service time required to launch the drone form a customer’s
node;

• sR represents the analogous service time required for drone recovery at a cus-
tomer’s node;

• ε depicts the drone flight endurance, i.e. the drone battery life, which conse-
quently determines its flight range;

• δt is the time necessary to physically deliver the parcel to a customer;

• M is a sufficiently large number;

• 〈i, j, k〉 depicts a drone sortie, with the characteristics defined in Section 3.2;

• P is the set of all possible drone sorties that can be feasibly flown by the UAV;

• xij ∈ {0, 1} is the decision variable representing whether the truck travels from
node i ∈ N0 to j ∈ N+, in this case setting it equal to one, or not, setting instead
the decision variable to zero;

• yijk ∈ {0, 1} analogous decision variable for the drone, that is set to one if the
UAV flies from i ∈ N0 to j ∈ N+ without the truck, and it is recovered at node
k ∈ {N+ : 〈i, j, k〉 ∈ P};

• tj is the time at which the truck arrives at node j ∈ N+;

• t′j is the time at which the drone arrives at node j ∈ N+;

• t0 = t′0 = 0 depicts the earliest time at which the drone and the truck may
leave the initial depot;

18 Chapter 3. Problem Formulation

• pij ∈ {0, 1} represents another decision variable that establishes whether cus-
tomer i ∈ C has been visited some time before j ∈ {C : j 6= i} in the truck
route. As a consequence p0j = 1, ∀j ∈ C, since the depot must be the starting
node of the tour;

• 1 ≤ ui ≤ c+ 2 denotes an integer variable specifying the position of the i ∈ N+

in the truck’s tour. [13]

3.4 Problem Assumptions and Formulation

The single truck-single drone routing delivery problem, denoted in the following by
the TSP-D problem, can be informally described by a set of customers that need to be
visited exactly once either by the truck or by the drone, that operate in coordination.
Some customers can not be feasibly served by the UAV; this may be due to customers
assigned to heavy parcels that exceeds the payload capacity of the drone, customers
located in places where landing becomes challenging or requirement of customer’s
signature. These nodes must be necessarily served by the truck, thus they will be
included in the truck only nodes set. The truck and the drone must depart and re-
turn to the depot exactly once. The depot has been considered as a single location,
thus, as the conventional TSP problem, the two vehicles must end their tours where
it started. The UAV can travel towards customers transported by the truck, in which
case its battery life is conserved, or it can perform a travel accomplishing a drone sor-
tie, draining the energy available from the battery. The drone sortie consists in three
locations from which the drone is launched, it delivers the parcel, and it performs
the rendezvous maneuver. To be feasible, this travel must not exceed the drone en-
durance limit. In the meantime, the truck may go directly from the launch customer
to the rendezvous customer, or it can perform multiple deliveries, always accounting
for synchronization constraints, which imposes anyhow the truck to be at the ren-
dezvous node before the battery life of the drone expires. During the whole delivery
cycle, the drone may perform multiple drone sorties. A drone sortie may be either
started from the depot or from a customer’s node, where the UAV is loaded of the
parcel it needs to deliver. The rendezvous node may be either another customer’s
node or the final depot, where in this latter case, no synchronization is needed as-
suming that personnel is always available to recover the drone, independently from
the truck. In the launch and recovery nodes, the driver of the truck is also entitled of
delivering the parcel to the corresponding customer. Therefore, several service times
are taken into account. In particular, a service time required to load the parcel and
possibly changing the battery of the drone is required. Then, a service time account-
ing for physical delivery of the parcel by the truck’s driver is considered. Finally, a
recovery service time is required in order to allow the driver to recover the landing
drone at rendezvous node.
The goal will be to minimize the completion time of the delivery cycle, called the
makespan, determined by the arrival of both vehicles at the final depot. [13]

3.4.1 Assumptions

The following assumptions have been formulated in order to coherently tackle the
problem:

• the UAV can only be launched from the depot or customer’s nodes served
by the truck. This is a reasonable assumption as performing rendezvous at

3.4. Problem Assumptions and Formulation 19

intermediate locations would require landing on a moving truck, that is still
technologically challenging, or parking on an arbitrary spot on the road side,
that may not be always possible; [3]

• while the drone may visit only one customer per sortie, in the meantime the
truck may visit several customers;

• the UAV is assumed to remain constantly airborne during the drone sortie,
even when waiting for the truck at the rendezvous node. Therefore, if the
truck arrives later than the drone at node k ∈ N+, the drone will hover in place
until it will not be recovered. In this way, the drone does not have the chance
to save battery in its delivery tasks;

• if the drone is recovered at customer’s node i, it may be re-launched from the
same node i, however, it shall not return back to it, since the truck can not visit
a customer’s location twice to recover the UAV;

• non-customer’s nodes visits are not allowed, as well as either truck or drone
customers re-visit;

• once the UAV reaches the depot at the end of a drone sortie, it can not be re-
launched from it. [13]

• the battery is assumed to be recharged anytime the drone comes back to the
truck after having performed a delivery task, even if a residual battery life is
still present.

3.4.2 Mathematical Formulation

The problem is formally defined by the mathematical formulation, taken from the
[Murray and Chu, 2015] [13], provided below:

Min tc+1 (3.1)
s.t.

∑
i∈N0
i 6=j

xij + ∑
i∈N0
i 6=j

∑
k∈N+

(i,j,k) ∈ P

yijk = 1 ∀j ∈ C (3.2)

∑
j∈N+

x0j = 1 (3.3)

∑
i∈N0

xi,c+1 = 1 (3.4)

ui − uj + 1 ≤ (c + 2)(1− xij) ∀i ∈ C, j ∈ {N+ : j 6= i} (3.5)

∑
i∈N0
i 6=j

xij = ∑
k∈N+
k 6=j

xjk ∀j ∈ C (3.6)

∑
j∈C
j 6=i

∑
j∈C

(i,j,k)∈P

yijk ≤ 1 ∀i ∈ N0 (3.7)

∑
i∈ N0
i 6=k

∑
j∈C

(i,j,k)∈P

yijk ≤ 1 ∀k ∈ N+ (3.8)

20 Chapter 3. Problem Formulation

2 yijk ≤ ∑
h∈N0
h 6=i

xhi + ∑
l∈C
l 6=k

xlk ∀i ∈ C, j ∈ {C : j 6= i}, k ∈ {N+ : 〈i, j, k〉 ∈ P}

(3.9)

y0jk ≤ ∑
h∈N0
h 6=k

xhk ∀j ∈ C, k ∈ {N+ : 〈0, j, k〉 ∈ P} (3.10)

uk − ui ≥ 1− (c + 2)

1− ∑
j∈C

〈i,j,k〉∈P

yijk

 ∀i ∈ C, k ∈ {N+ : k 6= i} (3.11)

t′i ≥ ti −M

1−∑
j∈C
j 6=i

∑
k∈N+
〈i,j,k〉∈P

yijk

 ∀i ∈ C (3.12)

t′i ≤ ti + M

1−∑
j∈C
j 6=i

∑
k∈N+
〈i,j,k〉∈P

yijk

 ∀i ∈ C (3.13)

t′k ≥ tk −M

1− ∑
i∈N0
i 6=k

∑
j∈C

〈i,j,k〉∈P

yijk

 ∀k ∈ N+ (3.14)

t′k ≤ tk + M

1− ∑
i∈N0
i 6=k

∑
j∈C

〈i,j,k〉∈P

yijk

 ∀k ∈ N+ (3.15)

tk ≥ th + τhk + sL

1−∑
l∈C
l 6=k

∑
m∈N+
〈k,l,m〉∈P

yklm

 + sR

 ∑
i∈N0
i 6=k

∑
j∈C

〈i,j,k〉∈P

yijk

+ δt+

−M(1− xhk) ∀h ∈ N0, k ∈ {N+ : k 6= h} (3.16)

t′j ≥ t′i + τ′ij + δt −M

1− ∑
k∈N+
〈i,j,k〉∈P

yijk

 ∀j ∈ C′, i ∈ {N0 : i 6= j} (3.17)

t′k ≥ t′j + τ′jk + sR −M

1− ∑
i∈N0
〈i,j,k〉∈P

yijk

 ∀j ∈ C′, k ∈ {N+ : k 6= j} (3.18)

t′k − (t′j − τ′ij) ≤ e + M(1− yijk)

∀k ∈ N+, j ∈ {C : j 6= k}, i ∈ {N0 : 〈i, j, k〉 ∈ P} (3.19)
ui − uj ≥ 1− (c + 2)pij ∀i ∈ C, j ∈ {C : j 6= i} (3.20)

ui − uj ≤ −1 + (c + 2)(1− pij) ∀i ∈ C, j ∈ {C : j 6= i} (3.21)

pij + pji = 1 ∀i ∈ C, j ∈ {C : j 6= i} (3.22)

t′l ≥ t′k −M(3− ∑
j∈C

〈i,j,k〉∈P
j 6=l

yijk − ∑
m∈C
m 6=i
m 6=k
m 6=l

∑
n∈N+
〈l,m,n〉∈P

n 6=i
n 6=k

ylmn − pil

3.4. Problem Assumptions and Formulation 21

∀i ∈ N0, k ∈ {N+ : k 6= i}, l ∈ {C : l 6= i, l 6= k} (3.23)
t0 = 0 (3.24)
t′0 = 0 (3.25)
p0j = 1 ∀j ∈ C (3.26)

xij ∈ {0, 1} ∀i ∈ N0, j ∈ {N+ : j ∈ i} (3.27)

yijk ∈ {0, 1} ∀i ∈ N0, j ∈ {C : j 6= i}, k ∈ {N+ : 〈i, j, k〉 ∈ P} (3.28)

1 ≤ ui ≤ c + 2 ∀i ∈ N+ (3.29)
ti ≥ 0 ∀i ∈ N (3.30)
t′i ≥ 0 ∀i ∈ N (3.31)
pij ∈ {0, 1} ∀i ∈ N0, j ∈ {C : j 6= i} (3.32)

Equation 3.1 represents the objective function that seeks to minimize the makespan
of the delivery cycle. In particular, tc+1 is the latest time of arrival by either the truck
or the UAV, i.e. it is equivalent to min(max(tc+1, t′c+1)), as constraints 3.14 and 3.15
imposes a connection between the truck time and the drone time, required for ren-
dezvous nodes. Nonetheless, this does not mean that the truck and drone must be
synchronized to come back to depot. Constraints 3.2 imposes the single visit condi-
tion for each customer, either by a truck or a drone. Constraints 3.3 and 3.4 requires
that the truck starts its tour from the depot and it comes back to the depot at the
end of its delivery cycle exactly once respectively. Constraint 3.5 is entitled of elim-
inating the truck sub-tours, with bounds on the auxiliary variable ui provided in
Constraint 3.29. The truck visiting node j, must depart from j once it performed its
delivery task, and this is specified by Constraint 3.6. Constraints 3.7 and 3.8 establish
that the UAV may be launched and retrieved at any node, either customer’s node or
depot, at most once. If the UAV is launched from node i and recovered at node k,
Constraint 3.9 imposes that both nodes i and k must be assigned to the truck tour.
A similar condition for the drone starting at the depot and being retrieved at node
k is formulated in Constraint 3.10, while Constraint 3.11 imposes that if the UAV is
launched from customer i and collected at customer k, the truck must visit i before k.
Constraints 3.12 and 3.13 are aimed at coordinating the UAV launch and the truck at
node i, so that the drone can not be launched from this node if both the drone and the
truck are not present at the customer’s location. For similar purposes, Constraints
3.14 and 3.15 are introduced, in this case coordinating the time of truck and drone at
rendezvous node k. Constraint 3.16 establishes the time update for the truck tour if
the truck travels from node h ∈ N0 to k ∈ N+. The actual arrival time of the truck at
node k must include the service times necessary for drone launch or the drone ren-
dezvous, if either of these conditions happen at node k. Furthermore, a service time
necessary for physical delivery at node k is accounted for. Note that the last term
ensures that, if the truck travel from h to k does not occur, then the arrival time value
shall not be increased. Constraint 3.17 states that the drone launched from node i
and serving node j must incorporate the travel time necessary to go from customer
i to customer j. Also in the case of UAV, a service time necessary for delivery of the
parcel is included. However, the service time for launch sL is not accounted for the
drone as Constraints 3.12 and 3.13 already incorporate it. Similarly, Constraint 3.18
is aimed at incorporating the drone travel time from node j to node k and in this
case the service recovery time sR is accounted for, as the drone might arrive later

22 Chapter 3. Problem Formulation

than the truck at node k. The UAV endurance limitations are depicted by Constraint
3.19. The last term imposes that this Constraint becomes active if and only if the
drone travel i −→ j −→ k takes place. Constraints 3.20 to 3.22 establish the correct
ordered truck’s path. Constraint 3.23 prevents that the UAV is launched from a node
l before it is retrieved at node k, as in a single drone scenario, this situation would
be infeasible. This Constraint is tied with Constraint 3.26 for proper working condi-
tions. Finally, Constraints 3.27 to 3.32 depict the domain of the decision variables.
Even if this model has been taken from [Murray and Chu, 2015] [13], as already
mentioned, a slight modification has been introduced to account for service times
necessary to actually deliver the parcels, that was not taken into account in the orig-
inal model.
In the next Chapter the problem such formulated will be tackled by developing a set
of heuristic algorithms.

23

Chapter 4

The Algorithm

4.1 Local Search Algorithm - TSP-D Solution

The first approach analyzed has been heavily inspired from the [Murray and Chu,
2015] [13] work, for multiple reasons: it has been among the first approaches pro-
posed in the literature to tackle the TSP-D problem, thus it constitutes a milestone
over which several other methodologies are built, and, as a first step, it is the most
intuitive technique to start the analysis.
The algorithm is based on a heuristic approach that first solves the conventional TSP,
and then it tries to sequentially remove nodes from the TSP tour and assign them to
a drone. Possible truck route swap that would lead to an improved TSP-D solution
are investigated as well. The process goes on until the algorithm is not able to find
any improvement on the solution.
An example of this algorithm in action is shown in Figure 4.1.

(A) The tsp tour produced by
the TSP solver. Grey nodes
represent the depot, green
nodes represent drone eligible
nodes and red nodes represent

truck only nodes.

(B) In a first iteration the node
4 is removed from the tsp
tour and it is assigned to the
UAV, starting from node 2 and

arriving to node 3.

(C) The final solution is ob-
tained by assigning node 5
to the UAV that travels from
node 3 and arrives at the depot

0.

FIGURE 4.1: Example of the algorithm operating in a scenario where
seven customers need to be served. Some of them are eligible for

drone delivery while others can be served only by the truck.

4.1.1 Local Search Algorithm Main Body

The main algorithm is depicted in the pseudocode of Algorithm 1.
First, it is necessary to load the .json that contains all the needed information to
calculate the cost matrix and to establish the other variables necessary to start the
program, such as the drone endurance ε, service times sL and sR, nodes that can not
be served by the drone and so on.
To determine the set of drone eligible nodes, C′, it is necessary to remove from the
total set of customers the ones that are can not be served by the UAV, depicted by the
vector truck only nodes. In Line 2 the conventional tsp tour is calculated through
a solver. In particular, it takes as input the complete set of customers C and it re-
turns the tsp tour made by customers visited by the truck such that the travel time

24 Chapter 4. The Algorithm

is minimized, and the vector of the arrival time t at each customer’s node. The uti-
lized solver is Google OR tools, but this can be a generic solver.
It is useful to define a variable that denotes the nodes visited by the truck correlated
to the drone travels as well. This will be evident in the followings as the tsp tour
will be split in many sub tours, called sub-route. These depict within the tsp tour
the truck nodes where the drone is launched and where it is recovered. The vec-
tor including all the sub-routes is called the truck sub-routes. This concept can
be better clarified by Figure 4.1c, where an example of sub-route is [2, 1, 7, 3],
while the truck sub-routes vector is [[0, 2],[2, 1, 7, 3],[3],[3, 6, 0]].
The truck sub-routes vector is initialized in Line 3 and it will be progressively
modified throughout the code when drone assignments will be performed.

Algorithm 1: Local Search Algorithm
Initialize: response, truck only nodes, ε, sR, sL, δt

1 max savings = 0;
2 C_prime = C/truck only nodes Call the tsp solver;
3 truck sub-routes = [tsp tour]
4 while no improvement is produced do
5 for j ∈ C_prime do
6 Call savings(j, t, tsp tour) function;
7 for all sub-route into which the tsp tour is divided do
8 if this sub-route is already assigned to a UAV then
9 Call cost truck(j, t, savings, sub-route) function;

10 else
11 Call cost uav(j, t, savings, sub-route) function;
12 end
13 end
14 end
15 if max savings > 0 then
16 Call perform update(i*, j*, k*, served by uav) function;
17 Reset max savings
18 else
19 STOP;
20 end
21 end

Once the initialization procedure is completed, the TSP-D optimization process
begins: each drone eligible node j is investigated by a for loop. In particular, the
savings function is called in order to establish the time reduction in case of removal
of the j node from the tsp tour, as it can be seen better in Algorithm 2.

4.1.2 Savings function

Calculating the savings value is trivial if no UAV is assigned to the current sub-route:
savings value is calculated as the sum of the truck travel time from node i to node
j, the delivery time δt associated to node j and the truck travel time from node j
to node k minus the new truck travel time that would be employed by removing j
from the tsp tour, depicted in Line 3.
It becomes more complicated if a UAV is associated to the considered sub-route,
since truck and drone are supposed to be synchronized. In particular, if removing
j from the sub-route leads to a truck waiting time at the end of it, meaning that

4.1. Local Search Algorithm - TSP-D Solution 25

the drone travel takes longer time than the new reduced sub-route without node j,
then this would lead to a negative savings time, that translates in a worsened solu-
tion with respect to the one with j in the tsp tour. Indeed, note that the algorithm
is seeking for positive values of savings rather than negative. This calculation that
accounts for synchronization between truck and drone is performed in line 9.

Algorithm 2: Calculate savings function
Input: j, t, tsp tour

1 find i, customer’s node right before j in tsp tour;
2 find k, customer’s node right after j in tsp tour;
3 savings = τij + δt + τjk − τik;
4 if j belongs to a sub-route already served by a UAV then
5 find a, first customer’s node of the sub route;
6 find b, last customer’s node of the sub route;
7 find j’, customer’s node currently served by UAV;
8 find t’[b], arrival time of truck at node b when j is removed;
9 savings = min(savings, t’[b]− (t[a]+ τ′aj′ + δt + τ′j′b + sR));

10 end
11 return savings

As an example, it is possible to refer to Figure 4.1b: a drone sortie, (i, j’, k)
= (2, 4, 3) has been assigned, leading to the sub-route = [2, 1, 7, 3]. Sup-
pose that the savings function is evaluating the removal of j = 7 from its sub-route.
If the new sub-route = [2, 1, 3] has still a longer duration than the drone travel
τ′aj′ + δt + τ′j′b + sR, then the savings value would be positive but with a decreased
magnitude with respect to the trivial case, since the truck needs anyhow to recover
the drone. A more critical situation happens when the new sub-route = [2, 1, 3]
has a shorter duration than the drone travel that would lead to a wait time of the
truck at node b = 3 and so a negative value of savings, worsening the overall TSP-D
solution.
After having evaluated the removal of node j by the savings function, another for
loop is initiated, in order to investigate the insertion of j in any of the sub-route that
compose the overall tsp tour. j can be inserted either as a truck node, if the con-
sidered sub-route is already served by a UAV, through the cost truck function, or
it can be inserted as a drone node if the considered sub-route is not yet served by a
UAV, through the cost uav function.

4.1.3 Cost Truck function

The cost truck function aims at evaluating the insertion of the node j in a sub-route
as a truck node. In particular,it will be desirable to swap a truck node when this will
lead to reduced waiting times between the UAV and the truck. It is called whenever
a sub-route contains a node j ∈ C′ that can not be assigned to a UAV because this
is already operating on the considered sub-route.

26 Chapter 4. The Algorithm

FIGURE 4.2: An example on a scenario where the cost truck func-
tion can operate

Algorithm 3: Calculate cost truck function
Input: j, t, savings, sub-route

1 find a, first node of the sub-route;
2 find b, first node of the sub-route;
3 for all i ∈ sub-route do
4 find k, node right after i in the sub-route;
5 cost = τij + δt + τjk − τik;
6 if cost < savings then
7 if t[b]− t[a]+ cost ≤ ε then
8 if savings - cost > max savings then
9 served by uav = False;

10 i∗ = i;
11 j∗ = j;
12 k∗ = k;
13 max savings = savings - cost;
14 end
15 end
16 end
17 end
18 return i∗, j∗, k∗, served by uav, max savings

For example, in Figure 4.2 suppose that the sub-route = [2, 1] has a shorter
duration than the corresponding uav sortie = (i, j’, k) = (2, 4, 1) travel time.
This will result in a drone waiting time at node b = 1. In any case, the drone travel
time should always be smaller than the endurance limit, ε. By taking suitably a node
in the following sub-route and inserting it in the considered sub-route, it will be
possible to reduce the time of the overall TSP-D solution. For example, by taking
node j = 3, after having calculated its savings related to its removal from sub-route
= [1, 3, 6, 5, 0], its insertion in sub-route = [2, 1] can be evaluated, leading
to a new sub-route = [2, 3, 1]. However, feasibility needs to be accounted for,
i.e. the truck travel time τ23 + δt + τ31 must stay below ε, in order not to run out of
battery before the truck arrival.
The procedure that handles this scenario is shown in Algorithm 3.
i∗, j∗, k∗ denote the relevant nodes necessary for the update that will be performed
later in case of a convenient truck node swap is found, once each node j ∈ C′ has
been analyzed. The served by uav flag determines whether the update to the TSP-
D solution involves a truck node swap or a drone node assignment. In this case,
since the cost truck function is entitled of truck node swap assignment, it is set to
False. The max savings variable store the most convenient assignment among all
the j nodes analyzed for each iteration, either for truck or drone nodes. This, indeed,

4.1. Local Search Algorithm - TSP-D Solution 27

constitutes the driving factor for whether updating the TSP-D solution or not.

4.1.4 Cost UAV function

The cost uav function is called whenever a node j ∈ C′ can be potentially assigned
to a drone travel depicted by a uav sortie = (i, j, k). This happens if the node
j investigated does not belong to a sub-route where a UAV travel has already been
assigned.
The function is depicted in Algorithm 4

Algorithm 4: Calculate cost UAV function
Input: j, t, savings, sub-route

1 for all i ∈ sub-route do
2 for all k ∈ sub-route such that k comes after i do
3 if τ′ij + δt + τ′jk ≤ ε then
4 find t′[k] arrival time at node k when node j is removed from the

sub-route;
5 if t′[k]− t[i] + sR + sL < ε then
6 cost = max(0, max(t′[k]− t[i] + sR + sL,

τ′ij + δt + τ′jk + sR + sL) −(t′[k]− t[i]));
7 end
8 if savings - cost > max savings then
9 served by uav = True;

10 i∗ = i;
11 j∗ = j;
12 k∗ = k;
13 max savings = savings - cost;
14 end
15 end
16 end
17 end
18 return i∗, j∗, k∗, served by uav, max savings

It is possible to refer again to Figure 4.1 in order to explain the drone travel in-
sertion mechanism.
In the first attempt to insert a drone delivery in the tsp tour shown in Figure 4.1a, all
the nodes j ∈ C′ are examined, i.e. the nodes represented by the green squared dia-
gram blocks. At the first iteration, node j = 2 is considered, and if its removal leads to
a reduced completion time of the TSP tour and it can be feasibly inserted in a drone
sortie, i.e. there exists a node i from which the drone can be launched and a node
k in which the drone can be recovered without violating the drone endurance limits,
then the corresponding temporary solution will be stored in i∗ = i, j∗ = j, k∗ = k,
with its associated savings max savings and the served by uav flag will be set to
True. However, in the next iteration, node j = 4 is considered and its evaluation
leads to a greater time reduction of the tsp tour completion, thus the previous
i∗ = i, j∗ = j, k∗ = k and max savings will be overwritten. For the next nodes j
∈ C′ all the possible insertions are evaluated. Finally, the algorithm established that
the most convenient solution is to serve customer j = 4 with the drone starting from
i = 2 and landing at k = 3. The tsp tour is updated as in Figure 4.1b. With a further
attempt to insert a drone delivery, it has been found that node j = 5 can be conve-
niently served by drone, producing the TSP-D solution depicted in Figure 4.1c. After
this drone delivery assignment, it is important to notice that no other drone travels

28 Chapter 4. The Algorithm

are possible with subsequent attempts, since all the drone eligible nodes are either
inside a sub-route where the UAV has already been assigned or they constitute a
launch or a retrieve node.
In this case, the only possible improvement could be obtained by swapping node 7
to the other sub-route. If no improvements are obtained by this swap, the algorithm
will stop.

4.1.5 Perform Update function

Once all drone eligible nodes have been evaluated, the perform update function
is called whenever the algorithm is able to produce an improvement of the final
solution, i.e. when max savings > 0. This function is entitled of updating the tsp
tour, its associated truck sub-routes, the UAV assignment and the t vector that
represents the arrival time of the truck at each tsp tour node.
The function is shown in details in Algorithm 5

Algorithm 5: Perform update function
Input: i∗, j∗, k∗, served by uav

1 if served by uav then
2 remove j∗ from the tsp tour;
3 split the truck sub-routes;
4 update the drone delivery nodes;
5 if i∗ ∈ C′ then
6 remove i∗ from C′;
7 end
8 if k∗ ∈ C′ then
9 remove k∗ from C′

10 end
11 else
12 remove j∗ from the tsp tour;
13 insert j∗ in the new position in the tsp tour;
14 update the truck sub-routes;
15 end
16 Call the time update(truck sub-routes, drone nodes) function;
17 return tsp tour, t, truck sub-routes

If the served by uav flag is set to True, it means that the j∗ node needs to be
served by a UAV, thus the drone assignment procedure begins: in particular, it is
necessary to remove j∗ from the tsp tour and suitably split the truck sub-routes.
These are obtained by taking the previously assigned truck sub-routes and divide
them into the nodes served by the truck before i∗, the nodes served by the truck
between i∗ and k∗, without j∗ and the nodes served by the truck after k∗. The drone
delivery nodes are updated as well in order to take track of all the nodes served by
the UAV. Furthermore, it is necessary to remove i∗ and k∗ from the drone eligible
nodes set. This action is needed in order to prevent the algorithm to attempt to
assign these nodes to the UAV, because otherwise it would not be possible anymore
to launch the drone from node i∗ to node j∗, or recover it at node k∗.
If, instead, a truck swap is performed, i.e. the served by uav flag is set to False,
then the node j∗ must be removed from the current position in the tsp tour and it
must be placed in the correct position, between i∗ and k∗. The truck sub-routes
affected by this swap must be updated as well.
At the end of the update procedure, the t vector must be re-calculated.

4.1. Local Search Algorithm - TSP-D Solution 29

Conversely, if the max savings will not be changed by any drone assignment or
truck swap, it means that no improvement can be produced and the algorithm will
not call the perform update function and it will be stopped.
Finally, the tsp tour, the drone deliveries and the total completion time will be
printed out.
In Section 4.2 this algorithm will be further clarified with a simple real case scenario.

Time Update function

A critical aspect that has to be highlighted is the update of the t vector when an
assignment is performed. Indeed, particular attention must be devoted to synchro-
nization between the truck and the drone travels, as this concept is not trivial in
terms of computation. For example, when a drone travel is longer than the corre-
sponding sub-route, the truck must wait for the drone before leaving to serve the
next customer.
This procedure is shown in Algorithm 6

Algorithm 6: Time update function
Input: truck sub-routes, drone nodes

1 initialize t = [0 for nodes ∈ tsp tour];
2 index = 0;
3 for all sub-route ∈ truck sub-routes do
4 time truck = 0;
5 find a first node of the sub-route;
6 find b last node of the sub-route;
7 for node∈ sub-route do
8 find i current node;
9 find j next node in sub-route;

10 index = index + 1;
11 if it is the last node of the tsp tour then
12 time truck = time truck + τij;
13 t[index] = t[index - 1] + τij;
14 else
15 time truck = τij + δt;
16 t[index] = t[index - 1] + τij + δt;
17 end
18 end
19 j’ = drone nodes associated to the considered sub-route;
20 time drone = τ′aj′ + δt + τ′j′b;
21 if time drone > time truck then
22 t[index] = time drone - time truck;
23 time truck = time drone - time truck;
24 end
25 if time drone > ε or time truck > ε then
26 INFEASIBLE!
27 end
28 end
29 return t

As it can be seem from Line 1, the t vector is initialized as a vector of as many
zeroes as nodes present in the tsp tour currently, i.e. without all the nodes that

30 Chapter 4. The Algorithm

have been assigned to the UAV. The variable index in initialized as well, in order to
sequentially fill the t vector. At Line 4 the time truck variable is introduced. This
variable is needed in order to calculate the completion time of the single sub-route
currently considered. This will be essential to establish the feasibility of the solu-
tion. Indeed, for any node composing the sub-route, the time truck and t[index]
are updated, adding to them the truck travel time τij and the delivery time δt if ap-
plicable. Then, the time drone associated to the considered sub-route is calculated
as the drone travel time necessary to complete the uav sortie = (a, j’, b). Since
synchronization between the drone and the truck has been assumed, if the drone
arrives later than the truck at node b, then the truck has to wait the drone, and this
operation is accounted for in Line 21. Finally, a check on the feasibility of the solution
is performed and then the time vector t is returned.

4.2 Practical Example & Possible Improvements

4.2.1 Practical Example in a Simple Real Case Scenario

Coordinates
0 45.06259 7.678623
1 45.06442 7.696024
2 45.07169 7.665551
3 45.06242 7.662471
4 45.05035 7.681623
5 45.03527 7.665348
6 45.0436 7.649661
7 45.05573 7.614408

(A) Table of the coordinates for the practical example.

0 388 292 297 301 512 618 1116
334 0 626 631 428 639 961 1450
388 625 0 311 689 901 628 1011
374 763 292 0 435 659 373 880
314 423 606 573 0 287 612 1119
707 816 970 872 418 0 612 1227
561 980 526 473 582 501 0 754
1100 1488 973 920 1087 927 668 0

(B) Truck travel time matrix, generated trough the Bing Maps API and taken as cost function matrix.

0 99 103 91 99 231 223 367
99 0 181 190 138 290 310 466
103 181 0 76 193 291 242 316
91 190 76 0 145 217 167 277
99 138 193 145 0 151 188 382
231 290 291 217 151 0 111 331
223 310 242 167 188 111 0 221
367 466 316 277 382 331 221 0

(C) Drone travel time matrix, generated trough the Euclidean distance matrix provided by the Bing
Maps API and by assuming an average drone speed of 50 km/h.

TABLE 4.1: Input data for the algorithm.

Table 4.1 shows the main inputs necessary to start the algorithm. In particular,
from the set of coordinates in Table 4.1a it is possible, through the Bing Maps API,
to obtain the distance matrix and the travel time matrix shown in Tables 4.1b and
4.1c, that are calculated in real time based on traffic conditions. The request makes
use of REST HTTP protocol. The list of coordinates are passed with a string format
and the response is constituted by a .json file. This file is automatically handled

4.2. Practical Example & Possible Improvements 31

by the application in Python that extracts the relevant information for the algorithm.
The request can be done either within the Python application, or through an external
application. In this case, to interact with the Bing Maps API, the Postman App has
been used, because of the easy to use GUI that allowed to operate easily with the
API.

(A) The conventional TSP solution of the in-
stance considered.

(B) The TSP-D solution produced by the Local
Search Algorithm.

FIGURE 4.3: Example of the solution produced by the algorithm in a
real case scenario where seven customers need to be served. In this
instance, every node has been considered as eligible for drone deliv-

ery.

FIGURE 4.4: The Gantt chart showing the operational times in the
TSP solution versus TSP-D solution.

Figure 4.3 overlays the truck route with a map showing the coordinates selected.
Figure 4.3a depicts the conventional TSP tour, whose solution has been calculated
by the Google OR tools solver, while Figure 4.3b shows the TSP-D solution calculated
through the Local Search Algorithm. As it is evident from the map, the algorithm is
able to cut efficiently from the truck route the furthest nodes, assigning them to the
UAV and generating the square shaped truck route that covers much less distance

32 Chapter 4. The Algorithm

than the correspondent solution without drone. However, it is intuitive that, since
in this example it has been supposed that all nodes are eligible for drone delivery,
more UAV assignments could have been done in order to optimize the TSP tour.
This has not been possible since, once the algorithm assign the drone to a node and
to a specific truck sub-route, all the nodes within the truck sub-route can not be
assigned to another UAV.
Figure 4.4 shows the truck and drone operations with respect to time. The TSP la-
belled row depicts the time employed by the truck for the conventional TSP tour,
starting from the depot 0 and reaching progressively the nodes indicated on the sec-
tion’s right sides in which the Gantt chart is divided. The Truck row indicates the
timing of the truck for the TSP-D solution, i.e. the solution that employs one truck
and one drone, in a similar way as described for the TSP row. Finally, the Drone
labelled row shows the drone operations in time, that must be coordinated with the
truck in the Truck row. Indeed, in the first travel, the drone starts at depot 0, it reaches
node 7 and it must be retrieved at node 6. Note, however, that in the meantime, the
truck is performing other deliveries, thus the drone arrives at node 6 at time 588s
before the truck that arrives at that node at time 1216s. Therefore, the drone must
hover at node 6 waiting for the truck for 1216s− 588s = 628s, depicted in the chart
with a blank space. This is possible as long as endurance constraints are not violated.
The same happens for the next drone travel from 6, with delivery to customer 1 and
arriving at depot 0. However, in this case, waiting constraints can be relaxed, since
it is possible to assume that the drone at the depot can be directly retrieved without
waiting for the truck. By a first observation it is possible to notice that, even if the
algorithm would probably not converge to a global optimum, it anyhow produces a
relevant reduction of the makespan of the overall solution.

4.2.2 Possible Improvements & Alternative Approaches

Based on the previous considerations made about convergence of the algorithm to a
local optimum, an empirical experiment has been made during the design, in order
to investigate better the algorithm. In particular, an instance made by 22 nodes plus
the depot situated in Turin has been used. The Google OR tools solver has been set to
solve the problem with the following parameters:

• local search metaheuristic = GUIDED LOCAL SEARCH;

• time limit = 30 seconds

Since this instance is relatively simple, the solver is able to find the best TSP tour
consistently, so the Local Search Algorithm, even though it has a function that is able
to recombine the truck nodes to improve the solution, it actually never used it for
this particular case, because the truck route was already the best possible. Therefore,
the Local Search Algorithm only inserted drone travels. To analyze better the behavior
of the cost truck function entitled of swapping truck nodes, the tsp tour opti-
mal solution produced by the solver has been manually modified, shuffling some
nodes inside the tsp tour. This could be considered as an artifact to simulate the
case for a more complicated scenario where the solver can not find the optimal tsp
tour within the time limit set. From this experiment, the cost truck function has
been tested successfully, producing an improvement of the overall TSP-D solution
through truck nodes swap even though it never produced the same solutions that
was obtained directly with the solver. However, in some cases, it turned out that
the Local Search Algorithm that took as input a manually modified, non-optimal tsp

4.3. Hybrid Genetic Algorithm - TSP-D solution 33

tour was performing better than the combination of the solver plus the Local Search
Algorithm.
This has proven that the algorithm converges to a local minimum solution, with-
out exploring any other possible combinations. The approach with an already built
solver for the conventional TSP scenario plus the Local Search Algorithm allowed to
simplify the problem both in the concept and in the code. However, even if the
solver is able to find the optimal solution for the pure TSP problem, this does not
necessarily mean that the correspondent TSP-D solution will be optimal as well.
This happens because, even if the TSP problem and TSP-D problem looks very sim-
ilar, they are intrinsically different, because the former is based on one vehicle only,
while the latter has two vehicles available.
These considerations have given the idea to integrate the Local Search Algorithm into
a more complex framework, as it will be discussed in the following Section.

4.3 Hybrid Genetic Algorithm - TSP-D solution

As suggested by the empirical test performed in the previously discussed algorithm,
a more complex methodology shall be employed in order to find a better solution,
possibly converging to a local minimum that is closer to the global one. However,
the Local Search Algorithm will not be discarded, but it will be integrated in this new
approach investigated, in order to give rise to a blended heuristic. In particular, this
new algorithm has been suggested by the [Ha et al., 2018] [9] work, that proposes a
genetic algorithm approach to solve the TSP-D problem. In this case, the main struc-
ture will be integrated with the Local Search Algorithm heuristic. For this reason, this
framework is referred as Hybrid Genetic Algorithm, or HGA.
A genetic algorithm approach forecasts an evolution process, starting from an ini-
tial population made by individuals, which is able to produce progressively improved
solutions based on the previous generation. In this case, the individuals, that are
pure TSP solutions, carry the genetic material of previous generations, comprehend-
ing the information related to each individual that is valuable for an efficient evo-
lution. The transmission of genetic material throughout the generations is made
through a crossover process, where individuals are split and re-assembled in order
to compose a new genome that will possibly produce an improved solution with
respect to previous generations. The evolution is carried out through an iteration
process, where these individuals are progressively selected according to some fitness
criteria, that in this case will be the completion time of the delivery process. As pre-
viously mentioned, evolution mechanisms will be helped in this case by the Local
Search Algorithm. In the followings, two variants of this algorithm will be analyzed:

• the only feasible solutions variant, where only feasible solutions of the TSP-D
problem will be considered, i.e. solutions that do not violate drone endurance
constraints;

• the infeasible solutions variant, where also infeasible solutions will be consid-
ered within the algorithm. However, the final solution must obviously be fea-
sible, therefore methodologies to discourage infeasible selections will be dis-
cussed as well.

The two variants share the same framework, with the major difference that the sec-
ond one can include in its population infeasible solutions, while the first is populated

34 Chapter 4. The Algorithm

only by feasible individuals. A comparison between the two methods will be pro-
vided, as well as a discussion of the advantages brought by considering infeasible
individuals.

4.3.1 The Only Feasible Solutions Variant

The first variant of the HGA analyzed is shown in Algorithm 7.
As it can be seen, it features a simple structure, within which several functions are
built in and they will be discussed in the followings, except for the Local Search func-
tion that has already been described in details in Section 4.1.

Algorithm 7: HGA Only Feasible Solutions Variant algorithm
Initialize: response, truck only nodes, ε, sR, sL, δt

1 generate random population of n individuals;
2 γ = 0
3 while γ < threshold do
4 γ = γ + 1;
5 Call parents selection(population, fit values) function;
6 Call child generation(parents, drone deliveries) function;
7 Call local search(child) function;
8 Call restore(educated child, educated drone deliveries) function;
9 Call select survivors(restored child, educated child, educated drone

deliveries, population) function;
10 end
11 Call select fittest individual(population, fit values) function;

The algorithm starts with the variable initialization necessary to establish the
problem parameters. Then, a population of n individuals is initialized. This step has
been performed using the DEAP library available for Pyhton, since it allows easier
and faster management of evolutionary algorithm variables. The generation index,
γ, is initialized as well and it will constitute the STOP condition of the algorithm.
Indeed, once a predefined threshold on γ is reached, the algorithm will stop auto-
matically. However, other STOP conditions can be implemented, such as stop after
a certain number of iterations without improvement, or after a certain fitness value
goal is overcome.

Parents Selection function

Algorithm 8: Parents selection function
Input: population, fit values

1 for i = 1:2 do
2 sample k = 2 random individuals in the population;
3 pick the fittest individual among the selected ones;
4 assign the selected individual to parents[i]
5 end
6 return parents

The parents selection function select two individuals of the current popula-
tion, where individual stands for a TSP tour made by all the customers available,
without the depots attached. These selected TSP tours will constitute the basis for
the child generation, that thus will inherit the genetic material from the previous
generation through the parents. The selection is performed, as referred by [Ha et al.,
2018] [9], through the tournament method, that is depicted in Algorithm 8.

4.3. Hybrid Genetic Algorithm - TSP-D solution 35

Child Generation function

The child generation function is entitled of generating a new individual that inher-
its the genetic material from the selected parents. This allows the genetic algorithm
to produce progressively evolved solutions, since the child will inherit the features
of previous generations, possibly being different from previous individuals in order
to introduce diversification and thus exploration capacity of the algorithm itself to
investigate many solutions.
The algorithm is shown in Algorithm 9.
The inputs of this function are the parents, that are individuals selected from the
population, thus they are pure TSP vectors without the depots attached, and the
drone deliveries associated to them, that are an empty set if it is the first iteration
or if a tentative TSP-D solution has not yet been calculated, while they contains the
nodes served by the UAV if the correspondent individuals have previously under-
gone through a tentative TSP-D solution evaluation.

Algorithm 9: Child generation function
Input: parents, drone deliveries

1 insert depots to the parents;
2 initialize r ∈ [0, 10], integer variable;
3 if r < 5 or drone deliveries is empty then
4 consider the first parent parents[1];
5 sample [a, b] from parents[1] with a located before b in the TSP tour;
6 assign all the nodes of parents[1] between a and b to the child;
7 if drone deliveries within a and b then
8 skip drone deliveries nodes;
9 end

10 assign the remaining nodes to child from parents[2], keeping the
order;

11 else
12 sample [a, b] from drone deliveries[1] with a located before b in the

drone deliveries;
13 assign all the nodes of drone deliveries[1] between a and b to the

child;
14 if parents[1] TSP nodes within a and b then
15 skip parents[1] nodes;
16 end
17 assign the remaining nodes to child from parents[2], keeping the

order;
18 end
19 return child

This function can be explained better with the help of Figure 4.5.
In this example, the parents = [P1, P2] selected from the population are shown

with the correspondent tsp tour and drone deliveries that are associated to them,
to represent a possible final TSP-D solution. Suppose that these tentative solutions
has been evaluated in a hypothetical iteration that happened before. Once the depot
nodes 0 are added at the beginning and at the end of the parents, the child genera-
tion procedure begins.
Consider the first the case, where the randomly initialized variable is r < 5. In this
case, the parent P1 and its associated tsp tour will be taken. The nodes [a, b] will
be sampled randomly from the tsp tour, with a that shall be always located before

36 Chapter 4. The Algorithm

FIGURE 4.5: A child generation function practical example.

b, leading to the result [a, b] = [7, 5]. Therefore, the giant tour chromosome1, that
is basically an individual with the depots added, shall transmit the nodes between
a and b to the child, only if they belong to the correspondent tsp tour. Indeed,
node 6 has not been transmitted to the child because, even if it is located in between
a and b in the giant tour chromosome, this belongs to the drone deliveries asso-
ciated with P1. It should be noted also that the positions of the transmitted nodes
is kept from the giant tour chromosome to the child. To fill the empty nodes left
by this procedure, the P2 is considered with its associated giant tour chromosome.
In particular, the nodes inherited from the vector GC2 are kept ordered to complete
sequentially the empty spaces of the child vector.
If, instead, the random variable r ≥ 5 the drone deliveries vector, DD1 will be con-
sidered in order to transmit the genome to future generations. Thus, [a, b] = [1, 6]
are randomly sampled from DD1, always with a positioned before b in the giant
tour chromosome. The latter is used in order to transmit all the nodes between a
and b belonging to DD1 keeping their positions. In this simple case, only 1 and 6
will be transmitted. Then, similarly to the previous case, the empty nodes of the
child are filled by the ordered nodes of vector GC2.

Restore function

Algorithm 10: Restore function
Input: educated child, educated drone deliveries

1 for sub-route ∈ truck sub-routes do
2 find a first node of sub-route;
3 find b last node of sub-route;
4 insert randomly the drone delivery associated with the sub-route

within a and b;
5 remove the depots;
6 end
7 return restored child

Once the child has been educated by the Local Search function, the produced ten-
tative TSP-D solution needs to be restored in order to be properly inserted in the
population. This is made through the restore function, shown in Algorithm 10,
that is aimed at producing an individual coherent with other individuals present in

4.3. Hybrid Genetic Algorithm - TSP-D solution 37

the population.
Note that the vector of truck sub-routes should be returned by the Local Search
function, thus it assumes the same meaning as discussed in Section 4.1.

Select Survivors function

The select survivors function is aimed at discarding individuals that have poor
characteristics, either in terms of diversification or in terms of fitness value, repre-
sented in this case as the completion time of all the deliveries. Furthermore, it is
entitled of updating the population, inserting the educated child solution produced in
the previous steps.
This procedure is shown in Algorithm 11.

Algorithm 11: Select survivors function
Input: restored child, educated child, educated drone deliveries,

population
1 if there is one individual equal to restored child then
2 if fitness value of restored child < fitness value of individual then
3 remove individual from the population;
4 insert restored child in the population;
5 update tentative solution with correspondent educated drone

deliveries;
6 else
7 ignore restored child
8 end
9 else

10 remove individual with greatest fitness value;
11 insert restored child in the population;
12 update tentative solution with correspondent educated drone

deliveries;
13 end
14 return population

Once the whole genetic algorithm process ends, the best TSP-D solution present
in the population is selected through the select fittest individual function,
whose selection is trivially based on the fitness value associated with the individ-
ual and its relative TSP-D solution.
Note that with this algorithm is not possible to produce infeasible solutions since the
TSP-D solutions are generated directly from a pure TSP vector, that is the child,
with the Local Search function, which, as defined in Section 4.1, does not consider
infeasible solutions.

4.3.2 The Infeasible Solutions Variant

In this Section, an additional function that is able to already create a TSP-D so-
lution within the genetic algorithm framework will be discussed. Since the tsp
tour and drone deliveries related to the TSP-D solution will be generated pseudo-
randomly, these will be either feasible or infeasible. In this case, the Local Search func-
tion will be entitled of improving the pseudo-random feasible TSP-D solution if pos-
sible, or to repair the infeasible solution according to some probability.

38 Chapter 4. The Algorithm

The general structure is similar to the Only Feasible Variant, however, it will be re-
ported here for completeness. The different features of Algorithm 12 will be high-
lighted in the next Sections.

Algorithm 12: HGA Infeasible Solutions Variant algorithm
Initialize: response, truck only nodes, ε, sR, sL, δt, ω, η, µ

1 generate random population of n individuals;
2 γ = 0
3 while γ < threshold do
4 γ = γ + 1;
5 Call parents selection(population, fit values) function;
6 Call child generation(parents, drone deliveries) function;
7 Call split(child) function;
8 Call local search(split child, split drone deliveries) function;
9 Call restore(educated child, educated drone deliveries) function;

10 if split child infeasible then
11 Sample random P ∈ [0, 100] if P > 50 then
12 Call repair(restored truck route) function;
13 Call restore(repaired child, repaired drone deliveries);
14 update population;
15 else
16 update population;
17 increase ω

18 end
19 else
20 update population;
21 decrease ω

22 end
23 if infeasible individuals > η or feasible individuals > µ then
24 Call select survivors(population η) function;
25 end
26 end
27 Call select fittest individual(population, fit values) function;

It is immediately evident that few more variables need to be initialized: ω con-
stitutes a penalizing factor for the travel time calculation that will be considered
whenever the feasibility constraints will be violated, through the following equa-
tion:

tp = t + ω · max

(
0,

i = j−1

∑
j ∈ sub−route

τi j, (τ′i j + τ′jk)

)
(4.1)

where tp represents the penalized cost that will be inserted in the time vector
t of arrival time of the truck at each node, t is the actual time employed by the
truck to reach the current node considered, ∑

i = j−1
j ∈ sr

τij depicts the truck travel time
necessary to serve all the customers within the considered sub-route and τ′ij + τ′jk
indicates the drone travel time to complete the uav sortie = (i,j,k) associated
with the sub-route. If this operation takes place, it means that either ∑

i = j−1
j ∈ sr

τij,
or τ′ij + τ′jk, or both exceeded the drone endurance constraints, thus the maximum
between the two will be considered as an additional term for the time calculation.

4.3. Hybrid Genetic Algorithm - TSP-D solution 39

η and µ represent respectively the maximum number of infeasible individuals and
the maximum number of feasible individuals allowed inside the population. For a
population of n = 20 the following parameters have been considered for the design:

ω = 1 η = 15 µ = 25

The next steps remain unchanged, with parents selection and child generation
functions operating as in Section 4.3.1. Then, the split function is called and, as this
constitute the main novelty with respect to the Only Feasible Variant, it will be dis-
cussed in the next Section.

Split function

The split function splits the child vector taken as input, made by a pure TSP tour
with every customer’s node plus the initial and final depots, into a pseudo-random
TSP-D solution where a tsp tour combined with drone deliveries are defined. In
this way, the drone assignment and the relative truck sub-routes are not checked
for feasibility, thus the produced TSP-D solution can be either feasible or infeasible.
The function is shown in Algorithm 13.

Algorithm 13: Split function
Input: child

1 sample random nd ∈ [0, len(C′)/2] = number of drone nodes;
2 sample nd random drone nodes ∈ C′;
3 if in drone nodes there are consecutive nodes as ordered in child then
4 remove previous node from drone node;
5 end
6 for sub-route ∈ truck sub-routes do
7 for j ∈ drone nodes do
8 if j is currently in the sub-route then
9 sample random i ∈ sub-route before j;

10 sample random k ∈ sub-route after j and before the next drone
node in drone nodes;

11 assign j to drone deliveries;
12 remove j from child and C′;
13 if i ∈ C′ then
14 remove i from C′;
15 end
16 if k ∈ C′ then
17 remove k from C′;
18 end
19 update truck sub-routes;
20 end
21 end
22 end
23 return split child, split drone deliveries

To show better how this function works, refer to Figure 4.6.
The child is the input of the function. The vector drone deliveries depicts the

vector of customers that will be actually served by the UAV, while drone nodes is
referred to a tentative assignment of customers to the UAV. In particular, suppose
that nd = 5 is the random number of drone nodes that must be tentatively assigned.

40 Chapter 4. The Algorithm

FIGURE 4.6: A split child function practical example.

Thus, 5 drone nodes are sampled from the set of drone eligible customers, C′. How-
ever, this random drone nodes assignment has led to two consecutive nodes as they
are appearing in the child vector. This is not possible, since it is supposed that the
UAV can make one delivery at a time and after each delivery it has to come back to
the truck to be recharged and launched again. Therefore, the drone would not be
able to travel to node 4 and then to node 5 without truck nodes in between that are
necessary for a UAV rendezvous. For this reason, the tentative node 4 is removed
from the drone nodes vector.
Now, the drone assignment can start by assigning consecutively j ∈ drone nodes. In
the first iteration, still no drone assignments are present, thus the child vector corre-
sponds to truck sub-routes vector. With j = 9, i and k are sampled randomly, with
the condition that i must be before j and belonging to the considered sub-route
and k must be after j but before the next drone node 4. Thus, the possibilities are
i = random([0, 3]) and k = random([1, 4]). The obtained nodes are i = 0 and k = 1
in the example. At this stage, it is necessary to assign j to the drone deliveries,
remove it from the child and update the child with a truck sub-routes subdivi-
sion. Moreover, it is necessary to remove [i, j, k] from C′. In this case, since i
= 0 /∈ C′, only [j, k] will be removed.
In the second iteration, j = 5 is considered for assignment, thus, since it belongs to
the sub-route = [1, 4, 5, 2, 7, 6, 8, 0] ∈ truck sub-route, the sub-route =
[0, 3, 1] is skipped. Again, i and k are selected with the previously mentioned cri-
teria, giving rise to the possibilities for i = random([1, 4]) and k = random(2). Then,
similarly as described above, the child, drone deliveries, truck sub-routes and
C′ must be updated.
The process runs out once all the nodes inside drone nodes are successfully inserted
in the TSP-D solution.
This pseudo-random TSP-D solution is then passed in the Local Search function in

4.3. Hybrid Genetic Algorithm - TSP-D solution 41

order to assign further nodes to drone deliveries, if possible. This educated TSP-D so-
lution will be restored with the restore function in order to be coherently inserted
again in the population. However, at this stage, a feasibility check must be per-
formed, in order to establish if the pseudo-random TSP-D solution educated is feasi-
ble. If not, it can be repaired with 50% chance by the repair function, that will be
briefly discussed in the next Section, otherwise it will be inserted in the population
with a penalized fitness value. If feasible, the solution will be directly inserted in the
population.
Note that, depending on the outcome of the feasibility analysis, the ω parameter
must be updated as well. In particular, if many infeasible solutions are produced, it
means that the algorithm is falling in a wrong region of the search space, thus in-
creasing ω will lead to more and more penalized solutions that will be immediately
discarded by the select survivors function. Instead, decreasing ω if many feasi-
ble solutions are produced encourages diversification of the algorithm, that will not
converge rapidly to a local minimum.

Repair function

The repair function is called with 50% chance, whenever an infeasible TSP-D solu-
tion is generated.
The function is shown in Algorithm 14.

Algorithm 14: Repair function
Input: restored truck route

1 add start and arrival depots;
2 initialize drone deliveries as an empty set;
3 Call the local search(restored truck route, drone deliveries);
4 return repaired child, repaired drone deliveries

This function simply takes the restored truck route vector, that is a pure TSP
vector without the depots and with all customers available assigned to the truck, and
this will be re-educated using the Local Search function. In this case, the tentative TSP-
D solution produced by the split child function is ignored, while only its restored
version will be considered. This will undergo to the education procedure through
the Local Search function that, if fed by an already feasible TSP or TSP-D solution, will
produce another improved feasible solution by definition.

Select Survivors function

The select survivors function is here discussed since it has slight modifications
with respect to the version used for the Only Feasible Variant. Indeed, in this case,
the population will be updated only when either η or µ constraints are violated. In
particular, the former establishes the maximum number of infeasible individuals that
can be accepted in the population, while the latter denotes the maximum size of the
feasible individuals inside the population. Therefore, these modifications require the

42 Chapter 4. The Algorithm

function to operate as depicted in Algorithm 15.

Algorithm 15: Select survivors function
Input: population, η

1 if there are clones inside population then
2 remove clones;
3 end
4 remove η − number of clones least fit individuals;
5 return population

Note that a clone is considered as either two exact same individuals or one indi-
vidual that is equal to the reverse of another individual.

4.3.3 The Only Feasible Variant versus Infeasible Variant Comparison

Results Only Feasible Variant Results Infeasible Variant
1 7521 6757
2 7396 6396
3 7519 6642
4 6631 6403
5 7261 6421
6 7127 6452
7 7086 6439
8 7110 6318
9 6510 6156
10 7626 6031
11 7131 6544
12 7280 6571
13 7108 6690
14 7310 6323
15 7237 6420
16 7156 6456
17 7030 6483
18 7472 6598
19 6935 6618
20 6839 6503

Average 7164.25 6461.85
Standard deviation 279.96 168.28

Minimum 6510 6031
Maximum 7626 6757

TABLE 4.2: Data of the Only Feasible Variant versus Infeasible Variant.
The numbers express the makespan of the delivery process in seconds.
These are results obtained for γ = 10000 generations and n = 20 ele-

ments in the initialized population.

In this Section, a preliminary statistical analysis in order to establish if the slightly
more complicated Infeasible Variant is able to produce better solutions with respect
to the Only Feasible Variant has been performed.
The results are shown in Table 4.2 and in Figure 4.7.
This improvement in performance is due to the fact that the Infeasible Variant inher-
ently considers more possibilities, thus its exploration abilities in the search space in
terms of possible solutions is increased. Indeed, the Only Feasible Variant is able to
explore only a restricted set of solutions, being limited to the only feasible ones by
definition.
This has been assured by [Ha et al., 2018] [9] as well, where the [Vidal et al., 2012]
[23] work is cited, in which the demonstration of this behavior is analyzed in depth.

4.3. Hybrid Genetic Algorithm - TSP-D solution 43

(A) The data of Table 4.2 depicted in a dia-
gram.

(B) The data of Table 4.2 depicted with a box
and whiskers plot.

FIGURE 4.7: The differences of performance for the Only Feasible Vari-
ant versus the Infeasible Variant. It is clear that the latter is able to find

better results.

4.3.4 The Real Case Scenario Example solved with the HGA - Infeasible
Variant

Figure 4.8 shows the solution produced by the HGA - Infeasible Variant of the same in-
stance considered as example in Section 4.2, that takes as input the same coordinates
and cost function matrices reported in Table 4.1.

(A) The conventional TSP solution of the in-
stance considered.

(B) The TSP-D solution produced by the HGA
- Infeasible Variant.

FIGURE 4.8: Example of the solution produced by the algorithm in a
real case scenario where seven customers need to be served. In this
instance every node has been considered as eligible for drone deliv-

ery.

It is immediately evident that the truck route completion time has been dramat-
ically decreased with respect to the employment of the Local Search Algorithm only.
The operational times of the truck combined with the drone can be seen from the
Gantt chart in Figure 4.9.
First of all, it is important to notice that the Local Search Algorithm produced a so-
lution with a makespan of 2509s while the HGA - Infeasible Variant found a feasible
solution employing 1871s. This is testified by the tight schedule between the drone

44 Chapter 4. The Algorithm

and truck operations as well. However, to prove that with statistically meaningful
data, an in depth analysis of the solutions produced with these algorithms with dif-
ferent scenarios will be provided in Chapter 5.
In this instance, both drone and truck leave the depot at t = 0. The truck goes to-
wards customer 3 while the drone heads to customer 2 and joins the truck again at
node 3. After the service times required for the drone, this leaves again the truck
going to node 7. The truck heads to customer 6, where it needs to recover the UAV.
However, in this particular case, the truck needs to wait the drone at node 6 since the
latter employs more time for its delivery. Then, the drone serves customer 5 while
the truck is heading towards node 4 and finally, while the truck is coming back to
the depot 0, the drone is able to deliver the last parcel to customer 1.
Note however that, being the HGA - Infeasible Variant a pure heuristic approach
for the TSP-D problem, the solution produced each time the algorithm is run may
slightly vary.

FIGURE 4.9: The Gantt chart showing the operational times in the
TSP solution versus TSP-D solution.

4.4 Multiple Drones Implementation

An interesting extension of the previously discussed problem with a single truck
and a single drone is made by the so called mFSTSP, in which one truck and mul-
tiple UAVs are available. This problem is less documented in literature, thus it is
worth to try to extend the algorithms described above in this new scenario. There-
fore, the available theory and algorithms developed will be exploited in order to
find a solution where multiple drones can be launched from the truck. In particular,
the approach will be focused on two UAVs implementation. However, this could be
extended to multiple UAVs. Even though the methodology is based on a framework
specifically designed for the TSP-D, the improvement that can be obtained with mul-
tiple drones still seemed worthy for a further analysis.

4.4.1 Local Search Algorithm - Multiple UAVs Adaptation

First of all, it has been necessary to modify the Local Search Algorithm so that it will
be able to find a mFSTSP solution, possibly converging to at least a local minimum.

4.4. Multiple Drones Implementation 45

Note, however, that this aspect has not been emphasized at this stage because it
was already clear that this algorithm would have been then inserted in the HGA
framework, where it operates as an education algorithm and to eventually restore
solutions that are not feasible.
The method implemented is shown in Algorithm 16.

Algorithm 16: Local search function for multiple drones
Initialize: tsp tour, response, truck only nodes, ε, sR, sL, δt, ν

1 max savings = 0;
2 C_prime = C/truck only nodes;
3 truck sub routes = [[tsp tour] as many ν are available];
4 i∗ = [[] as many ν are available];
5 j∗ = [[] as many ν are available];
6 k∗ = [[] as many ν are available];
7 sub route uav flag = [[] as many ν are available];
8 while no improvement is produced do
9 for n ∈ ν do

10 for j ∈ C_prime do
11 Call savings(j, t, tsp tour) function;
12 for all sub route ∈ truck sub routes[n] do
13 if this sub route is already assigned to a UAV then
14 Call cost truck(j, t, savings, truck sub-routes, sub-route)

function;
15 else
16 Call cost uav(j, t, savings, sub-route) function;
17 end
18 end
19 end
20 if max savings > 0 then
21 Call perform update(i*[n], j*[n], k*[n], served by uav[n], truck

sub-routes, drone nodes) function;
22 Reset max savings
23 else
24 STOP;
25 end
26 end
27 end

The first thing to be noticed is that the TSP solver has been removed, because
it has been supposed that the tsp tour is an external input, coming from the HGA
algorithm. For testing purposes, the tsp tour can be initialized as a random vector
comprehending all customers that must be served.
Another peculiar aspect is that the algorithm requires the truck sub-routes to be
initialized as the tsp tour, as it happened for the single drone single truck problem,
but in this case for as many drones are available to be launched from the truck. In
this way, each UAV has assigned its own schedule and it becomes simpler to detect
their activities. In the same way i∗, j∗, k∗ needs to be initialized as empty sets of as
many elements as the number of drones available. In this way, ν different assign-
ments per iteration can be done, where ν depicts the number of drones available.
Then, the main structure of the algorithm remains unchanged. However, an addi-
tional for loop appeared, in order to iterate the procedure for each drone available.

46 Chapter 4. The Algorithm

For example, in the case of ν = 2, in the first cycle, i.e. when n = 1, the algorithm
assigns a delivery task to UAV1, that leads to the greatest value of max savings]. In
the second iteration, with n = 2, it assigns to UAV2 the travel that leads again to the
greatest value of max savings. Then, if other possible improvements can be done,
the algorithm starts back as in the TSP-D case.
The functions savings and cost uav required some modifications regarding the cal-
culation of the t vector representing the arrival times of the truck at each served
node. In particular, this aspect has become even more critical with respect to the
TSP-D scenario since synchronization with multiple drones is harder to deal with.
In any case, the input provided corresponds to a single truck-single drone problem,
thus the general structure does not change. Indeed, the external loop for n ∈ nD
allowed to separate each UAV activity and so it has been possible to treat each drone
assignment as a TSP-D problem. However, the cost truck and perform update
functions required a particular attention. The cost truck function is reported in
Algorithm 17.

Algorithm 17: Calculate cost truck function for the mFSTSP problem
Input: j, t, savings, truck sub-routes, sub-route

1 find a, first node of the sub-route;
2 find b, first node of the sub-route;
3 for all i ∈ sub-route do
4 find k, node right after i in the sub-route;
5 cost = τij + δt + τjk − τik;
6 if cost < savings then
7 if t[b]− t[a] + cost ≤ ε then
8 if savings - cost > max savings then
9 for other truck sub-routes assigned to the other UAVs do

10 find aD, first node of the sub-route;
11 find bD, first node of the sub-route;
12 if t[bD]− t[aD] + cost ≤ ε then
13 the truck node swap is feasible also considering other

UAVs assignments;
14 end
15 end
16 if swap feasible for all UAVs assignment then
17 served by uav = False;
18 i∗ = i;
19 j∗ = j;
20 k∗ = k;
21 max savings = savings - cost;
22 end
23 end
24 end
25 end
26 end
27 return i∗, j∗, k∗, served by uav, max savings

The modification reported has been necessary since, if a truck node swap is feasi-
ble for a UAV assignment, it might be in contrast with other UAVs already assigned,
hindering to reach feasibility for all drone travels.

Take as example Figure 4.10. The UAV1 row is referred to the truck sub-routes

4.4. Multiple Drones Implementation 47

FIGURE 4.10: An example on how the cost truck function works for
the case where ν = 2.

and drone assignments made for the first drone available, similarly UAV2 represents
the same items for the second drone available. Note that, in any case, the two truck
sub-routes must give rise to the same tsp tour and this is achieved by properly
updating the truck sub-routes as it will be explained in the followings.
In this scenario, the only node still available for the assignment is customer 5. This
can be either assigned to UAV2 or it can be swapped in the tsp tour. Indeed, in the
first iteration, node 5 can not be assigned to UAV1, since this is already travelling
towards customer 3. Thus, a truck node swap is investigated. Suppose that a conve-
nient swap that leads to max savings > 0 is found by inserting node 5 between the
nodes 0 and 4. The feasibility of this swap for the drone sortie (i, j, k) = (0,
2, 4) is checked first. If it results as feasible, this does not mean that it would be
feasible for other UAVs already assigned. Indeed, if the insertion of 5 within 0 and 4
would hinder the UAV2 travel from 0 to 8 returning to 1, then the truck swap must
not be performed. If, instead, the sub-route = [0, 5, 4, 1] associated with the
drone sortie = (i, j, k) = (0, 8, 1) still does not violate the feasibility con-
straints, then the truck swap can be feasibly made.
Finally, the perform update function is called, in order to update the truck sub-routes
associated to the UAVn considered, corresponding to the index n, but it is necessary
to update the other truck sub-routes as well, according to the assignment per-
formed.
The function is reported in Algorithm 18.
The perform update function resembles the previous version. Nonetheless, it needed
minor tweaks in order to update the multiple truck sub-routes and the corre-
sponding UAV assignments that are present in this scenario. In particular, it is
possible to see that until Line 9 the structure remains unchanged. In Line 11, the
UAVn assignment is removed from the other sub-route associated to other UAVs.
Then, from Line 18 to Line 20, the truck node swap is performed as in the single
truck-single drone case. However, it is then necessary to update all the other truck
sub-routes as well, by swapping j∗[n] either inside the same sub-route, or among
different sub-route.
The time update function required some modifications in order to obtain synchro-
nization between the truck and the different UAVs available. This has been done by
evaluating the time separately for each truck sub-routes associated to the corre-
sponding UAV, as explained in Algorithm 6, but then a parallel check between the
time vectors associated to each truck sub-routes is necessary in order to establish

48 Chapter 4. The Algorithm

whether the deliveries are coordinated or not.
Algorithm 18: Perform update function for the mFSTSP problem

Input: i∗[n], j∗[n], k∗[n], served by uav[n], truck sub-routes, drone
nodes

1 if served by uav[n] then
2 remove j∗[n] from the tsp tour;
3 split the truck sub-routes[n];
4 update the drone nodes[n];
5 if i∗[n] ∈ C′ then
6 remove i∗[n] from C′;
7 end
8 if k∗[n] ∈ C′ then
9 remove k∗[n] from C′

10 end
11 for all truck sub-routes do
12 for sub-route in each truck sub-routes do
13 remove j∗[n] from sub-route;
14 end
15 end
16 Call time update(truck sub-routes, drone nodes) function;
17 else
18 remove j∗[n] from the tsp tour;
19 insert j∗[n] in the new position in the tsp tour;
20 update the truck sub-routes[n];
21 for all truck sub-routes do
22 for sub-route in each truck sub-routes do
23 make the truck node swap among the sub-route, according to

where j∗[n] is located;
24 end
25 end
26 Call time update(truck sub-routes, drone nodes) function;
27 end
28 return tsp tour, t, truck sub-routes

In the followings, a numerical example will be provided in order to better clarify
how the algorithm works.

The tsp tour shown in Figure 4.11a is taken as input for the algorithm. This can
be either produced by a solver, or it can be a random vector, or it can come from the
general HGA framework, in which this algorithm will be inserted in. Then, the truck
sub-routes will be initialized as truck sub-routes = [[0,2,4,8,1,7,9,3,6,5,0],
[0,2,4,8,1,7,9,3,6,5,0]], since ν = 2. In this way, each drone will have its own
truck sub-routes assigned to separate the travels that they can perform. However,
as already mentioned, once an assignment is made, all the truck sub-routes need
to be accordingly updated. At this stage, all the other relevant variables will be ini-
tialized, as depicted in Algorithm 16.
Next, the first iteration for n ∈ ν = [1, 2] begins, i.e. n = 1. In this iteration, only
the UAV1 with its associated truck sub-routes[1] will be considered, as if it was
a single drone, single truck scenario. The algorithm found that the most convenient
drone assignment corresponds to the uav sortie = (0,2,4). Therefore, the assign-
ment will be stored, the tsp tour and truck sub-routes will be updated, but most
importantly, from the perform update function the nodes 2 and 4 will be removed from

4.4. Multiple Drones Implementation 49

(A) The tsp tour input of the Local Search
function adapted for two UAVs. Grey nodes
represent the depot, green nodes represent
drone eligible nodes and red nodes represent

truck only nodes.

(B) After the 1st iteration, the algorithm as-
signed node 2 to UAV1 and node 7 to UAV2.

(C) The 2nd iteration produced a further as-
signment for UAV1 travelling towards cus-

tomer 3 and UAV2 heading to customer 8.

(D) Finally, the last drone eligible node that
could have been assigned 5 is served by

UAV2.

FIGURE 4.11: Example of how algorithm works.

the set of drone eligible nodes, C′. This is done to avoid that the same assignment
will occur also for the following drones available and to avoid that customer 4 will
be removed from the tsp tour. The latter condition shall be prevented since the uav
sortie = (0,2,4) forecasts that UAV1 will be recovered by the truck at node 4, thus
the truck needs to visit that customer.
In the second iteration of the for loop, i.e. when n = 2, the UAV2 and related truck
sub-routes[2] = [0,4,8,1,7,9,3,6,5,0] are considered. Note that node 2 has
been removed from the truck sub-route[2] since it has been assigned to UAV1.
For this drone, it has been found that the most convenient assignment is the uav
sortie = (1,7,9), therefore the tsp tour, all the truck sub-routes and C′ will be
updated accordingly. The final situation after the first improvement cycle is shown
in Figure 4.11b.
Then, the algorithm goes out the for loop, but since in the first iteration has pro-
duced some improvements in the overall solution, it starts back trying to find new
assignments in order to reduce the overall makespan of the delivery process. In this
iteration, the algorithm has found the following assignment: uav sortie = (9,3,0)
for UAV1 and uav sortie = (0,8,1) for UAV2. This is depicted in Figure 4.11c.
The algorithm keeps going another time, where only two possibilities are still present:

• make a truck node swap for node 5 for UAV1;

• make a drone assignment for node 5 for UAV2;

Customer 4 can not be assigned to any drone or swapped in the tsp tour be-
cause it constitutes a drone retrieval point for UAV1 and UAV2 is already occupied
in the meantime, travelling towards customer 8. Thus, a tentative truck node swap
for customer 5 is performed first for UAV1. This happens because UAV1 is already
busy, carrying its parcel to customer 3. Supposing that there are not truck node
swaps that allows feasible and/or improved solutions (it is possible to refer to the

50 Chapter 4. The Algorithm

explanation of Figure 4.10 to have a better insight of this particular problem), the
algorithm will then move on to UAV2 and it tries to allocate it to a drone travel. This
has been found as a feasible solution so the uav sortie = (9,5,0) is assigned, as it
shown in Figure 4.11d.
Finally, the algorithm will stop because no other improvements can be done, but in
this particular case, it also stops because the C′ set has become empty at this stage.

4.4.2 Hybrid Genetic Algorithm - Multiple UAVs Adaptation

The HGA framework has been modified as well in both of its versions, the Only
Feasible Solutions Variant and the Infeasible Solutions Variant. The modifications intro-
duced in order to deal with multiple drones has narrowed the difference between
these two variants, as it will be discussed in the next Section.

The Only Feasible Solutions Variant

First, the Only Feasible Variant will be discussed. Basically, the main structure of the
algorithm remains unchanged. The only exception is that in Line 7 there is already
present the split function. This insertion has been necessary since the Local Search
function for multiple drones has revealed quite inefficient in finding a local mini-
mum for a general case that starts from a random tsp tour. Therefore, in this case,
the split function finds a tentative solution pseudo-randomly, that can be possibly
improved by the Local Search function, refining locally the provided tentative solu-
tion for the mFSTSP problem. However, the main difference with the split function
described in Section 4.3.2 is that, in this case, the split function must return Only
Feasible solutions for ν drones.

Algorithm 19: HGA Only Feasible solution Variant for the mFSTSP problem
Initialize: response, truck only nodes, ε, sR, sL, δt, ν

1 generate random population of n individuals;
2 γ = 0
3 while γ < threshold do
4 γ = γ + 1;
5 Call parents selection(population, fit values) function;
6 Call child generation(parents, drone deliveries) function;
7 Call split(child) function;
8 Call local search(split child) function;
9 Call restore(educated child, educated drone deliveries) function;

10 Call select survivors(restored child, educated child, educated drone
deliveries, population) function;

11 end
12 Call select fittest individual(population, fit values) function;

Since all the other functions are designed in the exact same way as in the HGA
for the TSP-D problem, they will not be described here. A particular emphasis will
be devoted to the split function instead, which is the main new feature for the
multiple drones adaption of the HGA algorithm.

4.4. Multiple Drones Implementation 51

The split function is shown in Algorithm 20.
This has nested inside few more functions that will be described in the followings.

Algorithm 20: Split function for the mFSTSP problem
Input: child

1 select number of drone nodes nd as in Equation 4.2;
2 sample nd random drone nodes ∈ C′;
3 remove assigned drone nodes from child;
4 calculate t vector of child;
5 Call create uav sorties(child, drone nodes, nd, t) function;
6 while infeasible customer is not empty do
7 Call insert infeasible customers(child, infeasible customer);
8 reset assigned drone nodes;
9 update t;

10 Call create uav sorties(child, drone nodes, nd, t) function;
11 end
12 reset drone nodes and C′;
13 Call truck sub-routes update(child, uav sorties, ν) function;
14 Call time update(truck sub-routes, drone nodes) function;
15 return split child, t, split truck sub-routes, split drone

deliveries
First, it is necessary to define the number of customers that can be served by ν

drones, nd. In this case, it has been chosen that they should always be the maximum
possible. The formula to calculate nd is shown in Equation 4.2:

nd = len(C)−
⌈

C− ν

ν + 1

⌉
i f nd > len(C′) : nd = len(C′)

(4.2)

The quantity
⌈C−ν

ν+1

⌉
has been taken from the [Murray & Raj, 2019] [14] and it is called

lower truck limit, or LTL. This corresponds to the minimum number of customers that
can be served by the truck, in presence of ν drones. C depicts the total number of
customers that must be served.
Then, nd drone nodes will be sampled from the drone eligible nodes set, C′. These
nodes will be removed from the child vector. Note that in this case, opposite to the
split function shown in Section 4.3.2, it is not necessary to remove consecutive sam-
pled nodes as they appear in the child vector, since now there are multiple drones
available that can serve these customers.
Then the create uav sorties, shown in Algorithm 21, is called in order to assign
all the drone nodes. However, some of them might result to be infeasible, thus they
need to be re-inserted in the child vector as a truck node. This is done by the insert
infeasible customers function, depicted in Algorithm 22.
The while loop is used because the insert infeasible customers function does not
deal with drone feasibility constraints, but it only accounts for the best insertion of
the infeasible customer inside the current tsp tour represented by the child vector.
Thus, until infeasible customers are produced, the algorithm tries to assign less
drone nodes to a uav sortie and it inserts them in the tsp tour in the most conve-
nient way.
Once a feasible solution has been found, the algorithm exits from the while loop and
it produces a mFSTSP solution in a format that will be readable by the Local Search
function, i.e. by creating the truck sub-routes, drone nodes and calculating the

52 Chapter 4. The Algorithm

corresponding t vector.

Algorithm 21: Create UAV sortie function for the mFSTSP problem
Input: child, drone nodes, nd, t

1 initialize number of options as vector of zeros, with as many nodes as in
tsp tour;

2 for n ∈ range(nd) do
3 for j ∈ drone nodes do
4 for i ∈ tsp tour do
5 find k node in the tsp tour after i;
6 if τ′ij + δt + τ′jk < ε and τik < ε then
7 number options[j] = number options[j] + 1
8 end
9 end

10 end
11 end
12 while there are unassigned customers do
13 initialize wait time = ∞;
14 pick j as node with less number options;
15 if number option[j] = 0 then
16 insert j in infeasible customers;
17 else
18 j = j’;
19 for i ∈ tsp tour do
20 for n ∈ available uav[i] do
21 find k node in the tsp tour after i;
22 if τ′ij + δt + τ′jk < ε and τik < ε then
23 w = τ′ij + δt + τ′jk− t[k] - t[i] if wait time ≥ 0 and w <

wait time or wait time < w < 0 then
24 wait time = w;
25 n∗ = n;
26 i∗ = i;
27 j∗ = j′;
28 k∗ = k;
29 end
30 end
31 end
32 end
33 if wait time = ∞ then
34 insert j′ in infeasible customers;
35 else
36 assign uav sortie = (n*,i*,j*,k*)
37 end
38 end
39 end
40 return uav sorties, infeasible customers

In the create uav sortie function, from Line 2 to Line 11 the number options
available for each drone nodes that needs to be assigned is calculated. In particular,
the number options vector denotes the number of feasible drone assignments for
node j that can be done considering i and k as consecutive nodes in the tsp tour.

4.4. Multiple Drones Implementation 53

i and k are considered as consecutive nodes in the tsp tour since it has been sup-
posed that the least amount of customers shall be served by the truck. Therefore, the
drone travels must happen between consecutive nodes. Then, if some drone assign-
ment will result as infeasible, the insert infeasible customers function will be
entitled of inserting additional truck nodes that can not be assigned to uav sortie
and if possible the Local Search function will improve the overall mFSTSP solution.
From Line 12 to Line 39 the drone nodes are progressively assigned to uav sorties.
If a node does not have any option to be feasibly served by a UAV, it will be inserted
in the infeasible customers set. Instead, if number options associated to the con-
sidered node j is greater than 0, the nodes that has less number options is assigned
first preferably, because fewer possibilities are available and so it is advisable to ad-
dress these customers first, in order to serve the maximum number of customers
with UAVs. Indeed, it may happen that previous assignments made all the UAVs
busy, decreasing the corresponding number options. For this reason, it is better to
leave the drone nodes with more options at the end of the assignment.

Algorithm 22: Insert infeasible customers function for the mFSTSP problem
Input: infeasible customers, tsp tour

1 while there are infeasible customers do
2 for i ∈ infeasible customers do
3 for k ∈ tsp tour do
4 find p: position of k in tsp tour;
5 find h node right before k;
6 (p∗, i∗) = arg min

(p,i)∈TSPtour
(τhi + δt + τik − τhk);

7 end
8 end
9 insert i∗ in the tsp tour at position p∗;

10 end
11 return tsp tour

Algorithm 23: Truck sub-routes update function for the mFSTSP problem
Input: child, uav sorties, ν

1 for n ∈ range(nd) do
2 for each uav sortie do
3 uav sortie = (n,i,j,k));
4 remove i, j, k from C′, if present;
5 for sub-route ∈ truck sub-routes[n] do
6 remove j from the sub-route;
7 split the truck sub-routes;
8 update the drone delivery nodes;
9 BREAK;

10 end
11 end
12 end
13 return truck sub routes, drone nodes

The insert infeasible customers function simply inserts all the infeasible
customers inside the tsp tour that will lead to the minimum impact on the final
mFSTSP solution.
Once all the nodes have been assigned either to the UAVs or the truck, the solution
must be updated according to the truck sub-routes update function.

54 Chapter 4. The Algorithm

Finally, the fittest individual with its associated solution is selected as in the
single truck-single drone scenario.

The Infeasible Solutions Variant

The Infeasible Solutions Variant of the HGA for multiple drones shares the same struc-
ture of the Algorithm 12 described for a single truck and a single drone. Further-
more, it shares many features of the Only Feasible Variant as well, since this has al-
ready built in a split function. In this case, however, the split function does not
necessarily have to produce a feasible solution, thus the while loop that guaranteed
feasible mFSTSP solutions in Algorithm 20 can be ignored.
The new split function is depicted in Algorithm 24.

Algorithm 24: Split function of Infeasible Solutions Variant for the mFSTSP
problem

Input: child
1 select number of drone nodes nd as in Equation 4.2;
2 sample nd random drone nodes ∈ C′;
3 if number of infeasible solutions = η or increment variable = 0 then
4 increment variable = increment variable + 1;
5 if increment variable = nd

2 then
6 increment variable = 0;
7 nd = 1;
8 end
9 end

10 nd = nd− increment variable;
11 remove assigned drone nodes from child;
12 calculate t vector of child;
13 Call create uav sorties(child, drone nodes, nd, t) function;
14 Call truck sub-routes update(child, uav sorties, ν) function;
15 Call time update(truck sub-routes, drone nodes) function;
16 return split child, t, split truck sub-routes, split drone

deliveries
Another interesting feature of this function consists in the introduction of the so

called increment variable. This is used to reduce the number of nodes arbitrarily
assigned to UAVs if many infeasible solutions are produced. Indeed, as supposed
in Algorithm 20, the seeded drone nodes shall always be the maximum, in order
to reduce the customers served by the truck to minimize the makespan of the de-
livery process. However, in the Only Feasible Variant, if some of the customers have
no possibilities to be served by UAVs, because, for example, they are located too far
from the truck route to be feasibly served by a UAV that has a fixed endurance limit,
then, they can be re-inserted in the tsp tour by the insert infeasible customer
function. Instead, in this case, if the customer’s location pattern is such that many
nodes are located far from each other and so they have fewer options to be served
by UAVs during the truck route, if the maximum number of customers is always as-
signed to the UAVs, the split function will produce only infeasible solutions. Thus,
the increment variable is used to decrease the the number of customers served by
drones, nd, if many infeasible solutions have been produced previously. In this way,
it is more likely that the split function will eventually produce a pseudo-random
feasible solution. Once the increment variable reaches a certain threshold it is re-
set, in order to always tentatively assign some customers to the UAVs.

4.4. Multiple Drones Implementation 55

The create uav sorties function called inside the split function, is slightly dif-
ferent from the previous version, since now the number options are not considered
anymore, but all the customers are assigned to a uav sortie, regardless of their fea-
sibility. Therefore, in this case, the create uav sorties function will not return any
infeasible customer.

4.4.3 The Real Case Scenario Example solved with HGA Infeasible Vari-
ant - Multiple Drones Adaptation

To see how the algorithm adapted for multiple UAVs performs, the example of the
real case scenario already discussed in Section 4.2 is provided in the followings. The
inputs are always given by Tables 4.1a, 4.1b and 4.1c.

(A) The conventional TSP solution of the in-
stance considered.

(B) The mFSTSP solution produced by the Hy-
brid Genetic Algorithm Infeasible Variant - Mult-

ple Drones Adaptation.

FIGURE 4.12: Example of the solution produced by the algorithm in
a real case scenario where seven customers need to be served. In this
instance every node has been considered as eligible for drone deliv-

ery.

From Figure 4.12b it is possible to notice that the customers served by the truck
are reduced to the minimum number possible for ν = 2, according to Equation 4.2.
This has been possible since, in this instance, all the customers are located within
reachable distance for the endurance limits of the UAVs. UAV1 travels are depicted
in the Figure by the red lines, while UAV2 assignments are represented by orange
lines.
From Figure 4.13, it is possible to see that the completion time of the overall deliv-
ery process is 1390s, that corresponds to an important improvement with respect
to the TSP-D scenario, as expected. This advantage is already evident even for this
example, where a small number of customers are present. A further analysis and
comparison among the different algorithms will be provided in Chapter 5.

In Figure 4.13 it is possible to see the truck operations, denoted by Truck row, the
first UAV deliveries, denoted by Drone1 and the second UAV deliveries, shown in
row Drone2.
The truck and both the drones starts from the depot 0. The truck heads toward
customer 3, where both UAVs will be retrieved again. Drone1 goes to customer 2
and comes back at node 3 before the truck, thus it needs to wait, hovering in place.

56 Chapter 4. The Algorithm

FIGURE 4.13: The Gantt chart showing the operational times in the
mFSTSP solution, with ν = 2.

Drone2 delivers its parcel to node 6 and it comes back to the truck route at node 3
being the last vehicle to arrive at that node. Thus, before heading to the next cus-
tomer, the truck must wait for Drone2. Once all the drones are retrieved and the
maintenance has been done, all the vehicles heads towards the next delivery. In par-
ticular, the truck goes to customer 4, while Drone1 goes to node 7 and Drone2 goes
to customer 5. When Drone2 arrives first at node 4, it has to wait for the truck to
be retrieved. Then, the truck needs to wait for Drone1, that is busy in the longest
travel for this sub-route. Finally, Drone1 heads to customer 1 while the truck with
on board Drone2 comes back to the depot 0.
The activities of all the vehicles are synchronized as supposed at the beginning and
the solution provided an important improvement with respect to the initial TSP and
TSP-D solutions as expected.

4.5 mFSTSP Exact Method - An Alternative Approach for Mul-
tiple Drones

In this Section an alternative approach to the mFSTSP solution will be discussed.
Since this is based on the [Murray and Raj, 2019] [14] work, it has been used as a
benchmark because this method represents the current state-of-the-art for solutions
of this type of problem. However, the code implementation has been greatly sim-
plified from the original method proposed, thus it should be considered as a sub-
optimal solution to which the previously discussed algorithms shall be compared.

4.5. mFSTSP Exact Method - An Alternative Approach for Multiple Drones 57

This method has been tested during the design phase of the other approaches pre-
sented in this Thesis, and it will be discussed in the followings.

Algorithm 25: Exact method algorithm, inspired by [Murray and Raj, 2019]
[14] for the mFSTSP problem

Initialize: truck input, response, truck only nodes, ε, δt, ν
1 calculate LTL as in Equation 4.2;
2 low bound = ∞
3 while LTL < len(truck input) do
4 C_prime = C/truck only nodes;
5 initialize tsp tour = [0,0];
6 Call cost truck calculation(tsp tour, truck input, C_prime, LTL)

function;
7 Call customer division(tsp tour, C_prime);
8 Call time update(tsp tour) function;
9 Call create uav sorties(tsp tour, uav customers, time, ν);

10 Call insert infeasible customers(tsp tour);
11 Call create truck sub-routes(tsp tour, drone nodes) function;
12 if makespan < low bound and LTL ≤ len(truck customer) and not

infeasible then
13 save the mFSTSP solution;
14 update low bound;
15 increase LTL;
16 else
17 increase LTL;
18 end
19 end

This algorithm deals with the mFSTSP problem in a completely different way
with respect to the HGA heuristic; indeed, this produces a unique solution, while the
previously seen heuristics seek an optimal solution iteratively by exploring several
possible combinations, which shall produce progressively improved solutions.
First of all, the algorithm computes the LTL, which corresponds to the minimum pos-
sible number of customers that can be served by the truck if ν drones are present, as
discussed in Equation 4.2. In this way, the maximum number of customers possible
will be served by drones. This is done in order to reduce the total makespan since
the drones are supposed to be faster than the truck in a generic urban scenario.
Then, a while loop is initiated because, if for feasibility reasons the algorithm is not
able to assign the maximum number of customers to the drones, this should be able
to find anyway a feasible solution that will be obtained more likely if the customers
assigned to the truck is increased. The set of drone eligible drones, C′, is initialized
every time the loop starts, as well as the tsp tour, that is defined initially just with
the initial and final destinations that correspond to the same depot 0.
At this point LTL customers are inserted in the tsp tour according to the cost truck

58 Chapter 4. The Algorithm

calculation function.
Algorithm 26: Calculate cost truck function for the mFSTSP problem

Input: tsp tour, truck input, truck only nodes, LTL
1 while index < LTL do
2 min cost = ∞;
3 if truck only nodes is not empty then
4 for j ∈ truck only nodes do
5 for i ∈ tsp tour do
6 find k, node right after i in tsp tour;
7 cost = τij + δt + τjk +−τik;
8 if cost < min cost then
9 j star = j;

10 k star = k;
11 min cost = cost
12 end
13 end
14 end
15 insert j star before k star;
16 index = index + 1;
17 else
18 for j ∈ truck input do
19 for i ∈ tsp tour do
20 find k, node right after i in tsp tour;
21 cost = τij + δt + τjk +−τik;
22 if cost < min cost then
23 j star = j;
24 k star = k;
25 min cost = cost
26 end
27 end
28 end
29 insert j star before k star;
30 index = index + 1;
31 end
32 end
33 return tsp tour

This function inserts the requested number of customers LTL such that, among
all the customers available, the tsp tour would be the shortest possible. Therefore,
it solves a problem similar to a conventional TSP, where the truck should not serve
all the customers, but only LTL customers that are the most convenient ones. Note
that, if some customers are not eligible for drone delivery, for example for capacity
constraints, these customers shall be preferably assigned first, as it is done from Line
3 to Line 17, since they can not be addressed by drones in any way. Otherwise, the
customers are selected and conveniently inserted from the truck input, as it can be
seen from Line 18 to Line 31.
For example, if a set of customer truck input = [1:10] is present, the truck only
nodes = [2, 5, 8] and LTL = 5, then the cost truck calculation must find the
best TSP tour composed by 5 customers belonging to the truck input set, which
could be tsp tour = [0, 3, 8, 2, 5, 10, 0], where the insertion of 3 and 10 and

4.5. mFSTSP Exact Method - An Alternative Approach for Multiple Drones 59

their disposition has been found as the most convenient possible. Consequently, the
remaining customers, called uav customers = [1, 4, 6, 7, 9] will be assigned to
UAVs automatically. This division among customers served by truck and UAVs is
dealt by the customer division function.
Subsequently, the algorithm tentatively assign a mFSTSP solution according to the
tsp tour and uav customers available, by calling the create uav sorties, insert
infeasible customers and create truck sub-routes functions. These have ex-
actly the same structure as discussed respectively in Algorithms 21, 22 and 23. If the
solution’s makespan is lower than the low bound, initialized as ∞, then the solution
is saved, but the algorithm seeks for another possible solution by increasing the LTL
and repeating the procedure again. This is useful when nodes are located further
apart and some of them can not feasibly served by UAVs, thus, the first attempts
are either infeasible or poor solutions due to the re-insertion of customers made by
the insert infeasible customers function, that integrate on the tsp tour the cus-
tomers that can not feasibly served by the UAVs.
In the next Chapter, an insight of the performance of the algorithms developed will
be discussed with different scenarios featuring randomly sampled customers in a
given area, in order to investigate better the behavior of the methodologies explained
above.

61

Chapter 5

Results

In this Chapter, a numerical analysis has been carried out in order to test the algo-
rithms presented previously. These experiments allowed to acquire a better insight
on performances and to demonstrate the behavior of the approaches that has been
discussed theoretically.
The computational work has been carried out with a laptop ASUS Vivobook F510U
equipped with a quad-core Intel ® Core ™ i5-8250U 1.6 GHz and 8 GB of RAM in-
stalled.
The codes have been developed in PyCharm using Python 3.9.
The parameters characterizing UAVs operations are shown in Table 5.1. These pa-
rameters are necessary in order to initialize any algorithm.

Parameters
ε sR sL Avg Drone Speed Truck Only Nodes

25 min 1 min 1 min 40 km/h -

TABLE 5.1: Test parameters.

The assumptions on these values are motivated as follows:

• drone endurance limit, ε, has been set to 25 minutes because, even if this value
does not stretch to the values that can be reached by the current state-of-the-
art of drones technology, battery life during parcel deliveries may be hindered
by the weight of the payload and by the varying relative speed between the
drone and the air flow. However, these effects have not been accounted for,
thus a constant battery life model with a conservative value has been selected;

• service launch and service recovery times, sR and sL, have been supposed to last
1 minute each, in order to account for setting the drone for take off or landing
and possibly for battery swap;

• Average Drone Speed, has been set to 40 km/h. This value has been considered
reasonable because even though it is lower than the maximum speeds achiev-
able by drones for parcel delivery, landing and take off maneuvers must be
taken into account as they occur at a lower speed than cruise speed. Further-
more, as for battery life, wind and payload might adversely affect this param-
eter as well. However, a constant speed model has been assumed in order to
not make the model too much sophisticated;

• Truck Only Nodes have been assumed to be an empty set, i.e. all nodes have
been declared eligible for drone delivery. This has been done in order to let the
algorithms free to find the best possible solutions given the set of customers
and the fleet for delivery available. However, the algorithms are able to deal
with restrictions related to some parcels that must be served by the truck.

62 Chapter 5. Results

Another important parameter to set is the set of coordinates depicting the cus-
tomers that must be served in the delivery process. For these experiments, they have
been generated randomly via http://www.geomidpoint.com/random/ in a rectangu-
lar map comprehending the Turin urban area with the following limits:

• N limit 45.120371

• S limit 44.995261

• W limit 7.595798

• E limit 7.731985

Coordinates
0 45.09023778 7.86381856
1 45.00477682 7.81873701
2 44.99679575 7.54456076
3 45.13373049 7.6307671
4 45.05939138 7.7530238
5 45.05952062 7.70488864
6 45.10627511 7.63601916
7 45.15397837 7.80954089
8 45.04886232 7.66584172
9 45.03143891 7.69105793
10 45.092564 7.84682093

(A) Set of coordinates generated randomly via http://www.geomidpoint.com/random/ in a rectangu-
lar map comprehending the Turin urban area.

0 1049 1128 739 471 995 713 644 448 593 191
1030 0 772 1610 733 1192 1216 1160 1136 1536 1222
1179 829 0 1379 1059 1939 855 1625 1398 1621 1283
840 1501 1362 0 1098 1357 758 1009 957 424 728
404 849 925 1057 0 963 716 850 623 997 595
1006 1337 1908 1475 983 0 1448 774 751 1090 973
655 1040 848 839 674 1405 0 1084 857 1081 731
634 1132 1536 1231 611 507 1076 0 379 847 601
450 1195 1324 1000 541 652 892 288 0 629 350
696 1546 1509 458 975 1125 1040 828 649 0 551
373 1197 1310 775 543 929 896 574 381 533 0

(B) Truck travel time matrix, generated trough the Bing Maps API and taken as cost function matrix.

0 590 571 320 213 395 303 213 144 287 79
590 0 367 909 376 618 680 521 522 841 591
571 367 0 863 416 806 478 637 595 858 619
320 909 863 0 533 543 452 447 408 152 325
213 376 416 533 0 402 377 221 181 479 225
395 618 806 543 402 0 695 194 263 401 317
303 680 478 452 377 695 0 505 433 515 383
213 521 637 447 221 194 505 0 71 339 146
144 522 595 408 181 263 433 71 0 319 86
287 841 858 152 479 401 515 339 319 0 254
79 591 619 325 225 317 383 146 86 254 0

(C) Drone travel time matrix, generated trough the Euclidean distance matrix taken from the Bing
Maps API and by assuming an average drone speed of 40 km/h.

TABLE 5.2: Input data for the algorithm.

The random sampling has produced a set of 10 customers plus the Depot from
which the truck must depart and go back to at the end of the delivery process.
The set of coordinates are shown in Table 5.2a.
The list of coordinates have been sent to the Bing Maps API REST Services in order

http://www.geomidpoint.com/random/
http://www.geomidpoint.com/random/

5.1. Test 1 - Algorithms Comparison - Ten Customers Scenario 63

to obtain Table 5.2b, that is the truck travel time matrix, expressed in seconds, cal-
culated according to road network available for the area considered. If called in real
time, this will be affected by current traffic data as well. Table 5.2c is the drone travel
time matrix. This has been calculated, instead, according to the Euclidean distances
among coordinates that have been divided by the Average Drone Speed.
The parameters presented in Table 5.1 have been considered for all the algorithms
and tests carried out in Sections 5.1, 5.2, 5.3 and 5.4.

5.1 Test 1 - Algorithms Comparison - Ten Customers Scenario

First, a comparison among algorithms operating on the defined scenario is discussed.
In this case, graphical outputs has been produced, in order to clarify how the ap-
proaches operate.

(A) The conventional TSP solution map.

(B) The Gantt chart of the TSP solution.

FIGURE 5.1: The TSP solution for the instance considered, where ten
customers must be served.

(A) The TSP-D solution produced by the Local
Search Algorithm.

(B) The Gantt chart of the TSP-D solution.

FIGURE 5.2: TSP-D solution of Local Search Algorithm.

64 Chapter 5. Results

(A) The TSP-D solution produced by the HGA
- Only Feasible Variant.

(B) The Gantt chart of the TSP-D solution.

FIGURE 5.3: TSP-D solution of HGA - Only Feasible Variant algorithm.

(A) The TSP-D solution produced by the HGA
- Infeasible Variant.

(B) The Gantt chart of the TSP-D solution.

FIGURE 5.4: TSP-D solution of HGA - Infeasible Variant algorithm.

5.1. Test 1 - Algorithms Comparison - Ten Customers Scenario 65

(A) The mFSTSP solution produced by the Lo-
cal Search Function - Multiple Drones.

(B) The Gantt chart of the mFSTSP solution.

FIGURE 5.5: mFSTSP solution of Local Search Algorithm - Multiple
Drones.

(A) The mFSTSP solution produced by the
HGA Only Feasible Variant - Multiple Drones.

(B) The Gantt chart of the mFSTSP solution.

FIGURE 5.6: mFSTSP solution of HGA Only Feasible Variant - Multiple
Drones.

66 Chapter 5. Results

(A) The mFSTSP solution produced by the
HGA Infeasible Variant - Multiple Drones.

(B) The Gantt chart of the mFSTSP solution.

FIGURE 5.7: mFSTSP solution of HGA Infeasible Variant - Multiple
Drones.

(A) The mFSTSP solution produced by the Ex-
act Method - Multiple Drones.

(B) The Gantt chart of the mFSTSP solution.

FIGURE 5.8: mFSTSP solution of Exact Method - Multiple Drones.

The Figures above show the progression of the algorithms towards a better solu-
tion. Indeed, the total truck travel time is minimized, reducing the number of cus-
tomers that must be visited by the truck, when one drone is available. In particular,
the efficiency of the algorithm is depicted by the tightness of the schedule between
drone deliveries and truck deliveries, that can be seen from the Gantt charts. This
becomes more evident for the HGA - Infeasible Variant algorithm in Figure 5.4, where
almost no waiting times between the truck and the drone are occurring during the
delivery process.
Advantages are emphasized if two drones are available, as expected. The enlarge-
ment of the drone fleet has produced a reduced truck route, without undermining
coordination, that is always obtained. Indeed, multiple drones are able to serve mul-
tiple customers simultaneously while the truck is able to reduce its delivery sched-
ule.

5.2. Test 2 - Monte Carlo Simulation for Heuristic Algorithms 67

In Table 5.3, results are reported in terms of the optimized variable of the test for a
single iteration.

Completion Time

TSP 1 UAV 2 UAVs
Savings over

TSP (%)
TSP solver 1 h 58 min and 7 s - - -

Local Search - 1 h 23 min and 15 s - 34.9
HGA - Feasible - 1 h 11 min and 38 s - 39.8

HGA - Infeasible - 1 h 5 min and 52 s - 44.6
Local Search - mUAVs - - 1 h 51 min and 40 s 5.5

HGA Feasible - mUAVs - - 50 min and 28 s 57.3
HGA Infeasible - mUAVs - - 50 min and 28 s 57.3

Exact Method - - 53 min and 43 s 54.5

TABLE 5.3: The results in terms of the optimized variable, the com-
pletion time of the delivery process, of the various algorithms that has

been tested.

Also in this Table, the progressive enhancement of the solution is highlighted,
with the only exception that is constituted by the Local Search Algorithm - Multiple
Drones. This, however, has been used just as an intermediate step to build the opti-
mized algorithms HGA Feasible - Multiple Drones and HGA Only Infeasible - Multiple
Drones, thus it has been ignored.

5.2 Test 2 - Monte Carlo Simulation for Heuristic Algorithms

In this Section, several simulation has been performed using the Test 1 scenario, in
order to obtain a set of data that helps visualizing the results and establishing the ef-
ficiency of the algorithms implemented. The solutions will be distributed according
to a probability function, so that possible future outcomes of the algorithms can be
predicted with more ease.
The results are shown in Figure 5.9, through a box and whiskers plot. This diagram de-
picts the probability distribution of the outcomes in more compact way with respect
to the probability function description. In particular, it is based on five numbers that
efficiently sum up the main statistical features of the distribution:

• the median depicted by the red line, i.e. the value that splits exactly in half the
data set;

• the first quartile Q1, determined by the middle value between the median and
the lowest value of the data set;

• the third quartile Q3, determined by the middle value between the median and
the highest value of the data set;

• the minimum, depicted by the below whisker. This does not correspond to the
lowest value of the data set, but it is determined by Q1− 1.5 · IQR

• the maximum, depicted by the above whisker. This does not correspond to the
highest value of the data set, but it is determined by Q3 + 1.5 · IQR

The interquartile range, IQR is depicted by the blue box, and it comprehends the data
between the first quartile and the third quartile. The red crosses are the outliers,
representing the data that lies outside the whiskers range.

68 Chapter 5. Results

For example, a normal distribution will have a blue box where the median will be
located exactly in the center and with equal length whiskers. Outliers will represent
the 0.7% of data. [7]

FIGURE 5.9: Results of the Monte Carlo simulation, expressed in %
savings of time with respect to the TSP solution produced by the

solver.

For the instance considered, where few customers need to be served and they are
located in a relatively small area, all the algorithms presented show evident savings
with respect to the TSP solution. In particular, among the single truck-single drone
implemented algorithms, the HGA - Infeasible Variant has proven to be more effective,
because, as pointed out in Section 4.3.3, its capabilities of exploration are enhanced
by the fact that the algorithm is able to store and analyze also the solutions that
would be infeasible due to drone battery life time violation. This presents an average
% savings over the TSP solution of 42.18%.
Among the single truck-multiple drones approaches, no significant differences are
detect among the genetic algorithms, while these are in advantage with respect to
the Exact Method of 2.56 %. Most importantly, these methods are able halve the
completion time from the TSP solution, with some solutions approaching savings as
high as 60%. Furthermore, the HGA approaches show a good convergence, as their
outcomes are tightly distributed in a narrow band around 57% of saved time from
the TSP solution.
Table 5.4 synthesizes the results obtained for the Monte Carlo simulation.

Average σ Minimum Maximum
Local Search 4993 - 4993 4993

HGA - Feasible 4347 148.88 4020 4602
HGA - Infeasible 4098.05 97.21 3952 4243

Local Search - mUAVs 6700 - 6700 6700
HGA Feasible - mUAVs 3041.25 33.25 2951 3127

HGA Infeasible - mUAVs 3040.85 42.31 2916 3107
Exact Method 3223 - 3223 3223

TABLE 5.4: Statistical data for the Monte Carlo simulation made for
the algorithms discussed. These data have been obtained over n =

100 iterated tests.

5.3. Test 3 - Algorithms Comparison - Twenty Customers Scenario 69

5.3 Test 3 - Algorithms Comparison - Twenty Customers Sce-
nario

To better test the performances of the algorithms considered, a new, more challeng-
ing scenario has been examined. The coordinates have been sampled randomly, as
explained at the beginning of this Chapter, and they are reported in Table 5.5.

Coordinates
0 41.89584681 12.67442782
1 41.89083068 12.66714406
2 41.79538085 12.66041148
3 42.00292964 12.46945934
4 41.88294013 12.4764626
5 41.83750948 12.65677788
6 41.93437279 12.35555196
7 41.86712808 12.51086024
8 41.80060169 12.56156446
9 41.80869405 12.5552257
10 41.95771275 12.34473376
11 41.93778645 12.33746581
12 41.80767318 12.5186584
13 41.91871169 12.48503364
14 41.91370674 12.55091789
15 41.90833823 12.33239965
16 41.94596145 12.4253967
17 41.84033194 12.43157198
18 41.84033194 12.43157198
19 41.83442432 12.53886858
20 41.80539241 12.37548078

TABLE 5.5: Set of coordinates generated randomly via http://www.
geomidpoint.com/random/ in a rectangular map comprehending the

Rome urban area.

These coordinates have been sampled within the Rome urban area. In this way,
nodes are located further apart with respect to the previous instance, thus drone time
management will be more critical. Moreover, the urban area considered is expected
to have traffic conditions more likely, yielding to truck travels further penalized in
terms of speed of delivery.
The initial parameters have been kept unchanged, as described at the beginning of
Chapter 5. As an example of graphical outcome, the map of the solution by the
HGA - Infeasible Variant algorithm is provided along with its corresponding Gantt
chart, shown in Figures 5.10 and 5.11. The average results obtained through a new
Monte Carlo simulation are displayed in Table 5.6, while the outcome distributions
are depicted in Figure 5.12.

http://www.geomidpoint.com/random/
http://www.geomidpoint.com/random/

70 Chapter 5. Results

FIGURE 5.10: The TSP-D solution provided by the HGA - Infeasible
Variant for the instance created for Test 3.

FIGURE 5.11: The Gantt chart describing timing between the UAV
and the truck achieved with the solution presented in Figure 5.10.

5.3. Test 3 - Algorithms Comparison - Twenty Customers Scenario 71

Completion Time

TSP 1 UAV 2 UAVs
Savings over

TSP (%)
TSP solver 5 h 30 min and 0 s - - -

Local Search - 4 h 35 min and 9 s - 16.6
HGA - Feasible - 5 h 32 min and 57 s - -0.8

HGA - Infeasible - 4 h 52 min and 6 s - 11.5
Local Search - mUAVs - - 5 h 11 min and 29 s 5.6

HGA Feasible - mUAVs - - 3 h 40 min and 54 33.1
HGA Infeasible - mUAVs - - 4 h 16 min and 32 s 22.2

Exact Method - - 5 h 3 min and 35 s 8.0

TABLE 5.6: The results in terms of the optimized variable, the com-
pletion time of the delivery process, of the various algorithms that has

been tested.

FIGURE 5.12: Results of the Monte Carlo simulation, expressed in
% savings of time with respect to the TSP solution produced by the

solver.

It is immediately evident that the efficiency of the algorithms is partially under-
mined by this new challenging scenario. In particular, the HGA - Feasible Variant
features an average solution which is slightly worse than the TSP solution. This bad
conditioning might be due to the fact that the population is initialized completely
randomly, thus making the exploration of the algorithm particularly challenging,
due to the higher number of combinations possible. This problem is partially over-
come by the HGA - Infeasible Variant where the algorithm shows the potential to out-
run the Local Search Algorithm, which performs very well in this particular instance,
leading to a 16.6% improvement over the TSP solution.
The algorithm that shows the better behavior by far is the HGA - Only Feasible Variant
for mUAVs, where it consistently reaches savings around 33.1 %. The HGA - Infeasible
Variant for mUAVs shows instead more inconsistencies, with several outliers present
below the minimum depicted by the whisker. However, the genetic algorithm stop
condition could have been set later in the generations, as it will be pointed out in
Section 5.4, since the number of combinations to explore are much higher with re-
spect to the previous instances. Still γ = 10000 generations have been considered
for this test in order to have consistency with respect to the simulation performed in

72 Chapter 5. Results

Section 5.2.
Statistical data of this experiment are summed up in Table 5.7.

Average σ Minimum Maximum
Local Search 16509 - 16509 16509

HGA - Feasible 19977.84 1537.07 16796 24631
HGA - Infeasible 17526.67 1060.27 15168 20078

Local Search - mUAVs 18690 - 18690 18690
HGA Feasible - mUAVs 13254.09 324.30 12679 14029

HGA Infeasible - mUAVs 15392.96 1376.37 13163 20242
Exact Method 18216 - 18216 18216

TABLE 5.7: Statistical data for the Monte Carlo simulation made for
the algorithms discussed.

5.4 Test 4 - Evolution test for Genetic Algorithms

The Monte Carlo simulation iterated several times in order to get significant data
related to the heuristics performances allowed to collect data on how the evolution
in genetic algorithms performs generation by generation as well. In particular, the
fitness values of the temporary result produced at the n generation has been stored,
and it has been averaged out over the 100 simulations carried out for the previous
tests. The results are depicted in Figure 5.13.

FIGURE 5.13: Evolution tendency of HGA algorithms over γ = 10000
iterations.

This test considers data coming from the instance described in Section 5.3. The
Local Search Algorithm, that, as already pointed out, is performing very well for this
case, has been set as a target point to be achieved by the genetic algorithms. From
the plot it can be seen that the HGA - Only Feasible Variant features an asymptotic
behavior that converges to a completion time solution which is significantly higher
than the target. However, this does not hold for the HGA - Infeasible Variant, where
still after γ = 10000 the curve has a slight downward tendency that suggests that
the solution could have been improved if more generations would have been con-
sidered. This may be achieved by changing the stop conditions for the genetic algo-
rithm that may be based on how the algorithm progressively improve or by setting

5.4. Test 4 - Evolution test for Genetic Algorithms 73

a target point upon which the algorithm will stop. In this case, the stop condition of
γ = 10000 has been left unchanged from the other experiments, in order to lead to
consistent results that can be compared.
The best performing algorithm, the HGA - Only Feasible Variant for mUAVs, has been
confirmed also by this test, which shows a strong asymptotic convergence below the
set target. The HGA - Infeasible Variant for mUAVs, even though it shows a downward
tendency as its corresponding version for one drone, shows an inconsistent behavior
throughout the generations, that has been highlighted in Section 5.3 as well.
A further test has been performed for the HGA - Infeasible Variant with one and two
drones, where an increased number of generations has been considered, in order to
confirm that, if these algorithms have more time to search the optimal solution, then
they will converge more consistently to it. This has been suggested by the down-
ward tendency that is still present when γ = 10000 generations are considered.
The results of this test are shown in Table 5.8.

Completion time
Savings over TSP

(%)
Local Search 5 h 30 min and 0 s 16.6

HGA - Infeasible 4 h 22 min and 39 s 20.4
HGA - Infeasible mUAVs 3 h 40 min and 59 s 33.0

TABLE 5.8: Results obtained setting γ = 100000 as stop condition for
the genetic algorithm. As it is clear from this Table, leaving more time
for the evolution of genetic algorithms leads to improved solutions.

From the Table, it is possible to observe that the convergence of the HGA - Infea-
sible Variant algorithm for a single drone towards the minimum values found in the
test considered in Section 5.3 is more consistent and the same holds for the adapted
algorithm operating with multiple UAVs. These results confirm that the genetic al-
gorithms need more time to converge to optimal solutions if the scenario gets more
complicated.
In the next Chapter, conclusions on the overall behavior of the considered algorithms
will be drawn, as well as suggestions for possible improvements will be provided.

75

Chapter 6

Conclusions

The recent push towards drone employment for parcel delivery by the leading com-
panies on the market for logistics, as well as the increasing number of researches on-
going, hints that the relatively new technology of UAVs may have a great future in
this sector, either by helping the current standard vehicles to perform better, or even
to substitute them. As this latter scenario, by the time of writing, seems to be imma-
ture, due to technological limitation that are still present, this Thesis has proven that
the collaboration between conventional vehicles and drones is not only possible, but
desirable, as efficiency of last mile delivery processes is greatly improved.
Several approaches have been investigated, starting from the heuristic approach for-
mulated by [Murray and Chu, 2015] [13], and then, exploiting subsequent researches
in the field, as the [Ha et al., 2018] [9], improvements on the initial algorithm have
been implemented and tested. The provided added value from this Thesis consisted
in extending these documented approaches to a multiple drones routing problem.
This latter case has been explored as it will be of actual interest, since a bigger deliv-
ery fleet in turn implies larger savings, leading to economies of scale, and it is less
documented in literature as well.
Overall, the methodologies analyzed performed very well with the instance com-
posed by ten customers plus the depot that were located in relatively close proxim-
ity. In particular, a progression from the Local Search Algorithm to the HGA - Infeasible
Variant algorithm towards better results has been emphasized. This has been at-
tributed to the better exploration capacity of this last methodology over the HGA -
Only Feasible Variant. The adaptation for multiple UAVs of the genetic algorithms
has featured great performance in both cases and a strong convergence to the op-
timal solution. Instead, for the more complicated instance of twenty customers lo-
cated further apart, a trade-off between the quality of the result and the run-time
of the program has been highlighted. Indeed, the Local Search Algorithm showed
robust performance, with a great quality of the solution to run-time ratio. Indeed,
its run-time did not differ much from the ten customers instance. Instead, genetic
algorithms showed a slower convergence to an optimal solution as the number of
possible combinations greatly increases. Therefore, in this case, a suitable choice be-
tween a fast and robust algorithm or a slow and optimal algorithm must be taken,
depending on the application.
Nonetheless, some improvements may still be applied in the algorithms implemented.
In particular, the genetic algorithms stop condition may be varied according to the
number of customers that must be served, so that an optimal solution is guaranteed
in every scenario. The stop condition can be based on the generation index γ, as it
was set in the analysis performed, or on a target fitness value that must be achieved,
or finally, it can be based on the rate of improvement of the algorithm, that would
stop after an arbitrary number of steps without upgrade of fitness value occurrence.
A possible enhancement of performance of the genetic algorithms, even with large

76 Chapter 6. Conclusions

number of customers instances, may be achieved by initializing the population not
randomly, but exploiting the TSP vector, so that the starting point of operations of
the algorithm is already optimal in some sense.
Possibilities for future research in the field are endless, as a slight change in the
initial assumptions may lead to different problem formulations and different con-
clusions. However, the assumptions taken in this Thesis were selected in order to
lead to as much as possible faithful scenario of a real world application. Despite
that, few constraints may be changed to further explore how the tandem of truck
and drone for delivery behaves in different conditions. For example, as technology
for autonomous vehicles advances, the launch and rendezvous locations constraints
for the drone may be relaxed, leading to autonomous maneuver of the drone while
the truck is traveling. Moreover, a fleet of truck may be considered in tandem with a
fleet of drones. Furthermore, different cost functions may be considered depending
on what is the main goal to be achieved. In many logistic applications the comple-
tion time is the fundamental parameter to be optimized, although some companies
may be interested in save energy, reducing the overall emissions, save on the costs
related to fuel powering the truck and electric energy feeding the drone, or safety
related variables may be a reason of concern as well, as drone flight over infrastruc-
tures and even driving a truck in the road network does not come without any risk.
More realistic problem modelling may be analyzed as well. For example, the bat-
tery life may be modelled by some linear or nonlinear function of the drone speed
and/or of the payload that must be carried by the drone. Similarly, the drone speed
may be modelled as a three phase function, where launch and landing maneuvers
are taken into account. Moreover, cruise drone speed may be affected by the pay-
load or the energy available in the battery and these factors may be included in the
model as well.
All in all, every element analyzed in this Thesis hints that a great future of drones in
the logistic sector is foreseeable.

77

Bibliography

[1] Tom Bateman. “Drone delivery of vaccine doses speeds up COVID-19 vacci-
nations in remote areas of Ghana”. In: Euronews (2021). URL: https://www.
euronews.com/next/2021/06/04/drone- delivery- of- vaccine- doses-
speeds-up-covid-19-vaccinations-in-remote-areas-of-ghana.

[2] Aryn Becker. “THE AMERICAN DRONES SAVING LIVES IN RWANDA”. In:
Time (2017). URL: https://time.com/rwanda-drones-zipline/.

[3] Paul Bouman, Niels Agatz, and Marie Schmidt. “Dynamic programming ap-
proaches for the traveling salesman problem with drone”. eng. In: Networks
72.4 (2018), pp. 528–542. ISSN: 0028-3045.

[4] Wen-Chyuan Chiang et al. “Impact of drone delivery on sustainability and
cost: Realizing the UAV potential through vehicle routing optimization”. eng.
In: Applied energy 242 (2019), pp. 1164–1175. ISSN: 0306-2619.

[5] Sung Hoon Chung, Bhawesh Sah, and Jinkun Lee. “Optimization for drone
and drone-truck combined operations: A review of the state of the art and
future directions”. eng. In: Computers & operations research 123 (2020), p. 105004.
ISSN: 0305-0548.

[6] Júlia Cária Freitas and Puca Huachi Vaz Penna. “A variable neighborhood
search for flying sidekick traveling salesman problem”. eng. In: International
transactions in operational research 27.1 (2020), pp. 267–290. ISSN: 0969-6016.

[7] Michael Galarnyk. “Understanding boxplots”. In: Towards Data Science (2018).
URL: https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51.

[8] Anne Goodchild and Jordan Toy. “Delivery by drone: An evaluation of un-
manned aerial vehicle technology in reducing CO2 emissions in the delivery
service industry”. eng. In: Transportation research. Part D, Transport and environ-
ment 61 (2018), pp. 58–67. ISSN: 1361-9209.

[9] Quang Minh Ha et al. “A hybrid genetic algorithm for the traveling salesman
problem with drone”. eng. In: Journal of heuristics 26.2 (2020), pp. 219–247. ISSN:
1381-1231.

[10] Giusy Macrina et al. “Drone-aided routing: A literature review”. eng. In: Trans-
portation research. Part C, Emerging technologies 120 (2020), p. 102762. ISSN: 0968-
090X.

[11] Miriam McNabb. “See Amazon’s New Delivery Drone Fly: Will Your Stuff
Be Delivered By Drone Within Months?” In: Dronelife (2019). URL: https://
dronelife.com/2019/06/06/see-amazons-new-delivery-drone-fly-will-
your-stuff-be-delivered-by-drone-within-months/.

[12] Sergio Mourelo Ferrandez et al. “Optimization of a truck-drone in tandem de-
livery network using k-means and genetic algorithm”. eng. In: Journal of indus-
trial engineering and management 9.2 (2016), pp. 374–388. ISSN: 2013-8423.

https://www.euronews.com/next/2021/06/04/drone-delivery-of-vaccine-doses-speeds-up-covid-19-vaccinations-in-remote-areas-of-ghana
https://www.euronews.com/next/2021/06/04/drone-delivery-of-vaccine-doses-speeds-up-covid-19-vaccinations-in-remote-areas-of-ghana
https://www.euronews.com/next/2021/06/04/drone-delivery-of-vaccine-doses-speeds-up-covid-19-vaccinations-in-remote-areas-of-ghana
https://time.com/rwanda-drones-zipline/
https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51
https://dronelife.com/2019/06/06/see-amazons-new-delivery-drone-fly-will-your-stuff-be-delivered-by-drone-within-months/
https://dronelife.com/2019/06/06/see-amazons-new-delivery-drone-fly-will-your-stuff-be-delivered-by-drone-within-months/
https://dronelife.com/2019/06/06/see-amazons-new-delivery-drone-fly-will-your-stuff-be-delivered-by-drone-within-months/

78 Bibliography

[13] Chase C Murray and Amanda G Chu. “The flying sidekick traveling salesman
problem: Optimization of drone-assisted parcel delivery”. eng. In: Transporta-
tion research. Part C, Emerging technologies 54 (2015), pp. 86–109. ISSN: 0968-
090X.

[14] Chase C Murray and Ritwik Raj. “The multiple flying sidekicks traveling sales-
man problem: Parcel delivery with multiple drones”. eng. In: Transportation
research. Part C, Emerging technologies 110 (2020), pp. 368–398. ISSN: 0968-090X.

[15] Inc. OnFleet. “Last Mile Delivery: What it is, Trends and Tips for Success in
2020”. In: OnFleet Blog (2020). URL: https://onfleet.com/blog/what-is-
last-mile-delivery/.

[16] Andrea Ponza. “OPTIMIZATION OF DRONE-ASSISTED PARCEL DELIV-
ERY”. In: Univeristy of Padova (2016). URL: http : / / tesi . cab . unipd . it /
51947/.

[17] Luigi Di Puglia Pugliese, Francesca Guerriero, and Giusy Macrina. “Using
drones for parcels delivery process”. eng. In: Procedia manufacturing 42 (2020),
pp. 488–497. ISSN: 2351-9789.

[18] ReportLinker. “Drone Package Delivery Global Market Report 2021: COVID-
19 Growth And Change”. In: GlobeNewsWire (2021). URL: https://www.globenewswire.
com/news-release/2021/03/08/2188710/0/en/Drone-Package-Delivery-
Global-Market-Report-2021-COVID-19-Growth-And-Change.html.

[19] Mireia Roca-Riu and Monica Menendez. “Logistic deliveries with drones. State
of the art of practice and research”. en. In: 19th Swiss Transport Research Con-
ference (STRC 2019); Conference Location: Ascona, Switzerland; Conference
Date: May 15-17, 2019; Conference lecture on 16 May 2019. Ascona: STRC,
2019. DOI: 10.3929/ethz-b-000342823.

[20] Clifford Stein et al. Introduction to algorithms. eng. The MIT Press. The MIT
Press, 2009. ISBN: 9780262533058.

[21] Ziye Tang, Willem-Jan van Hoeve, and Paul Shaw. “A Study on the Traveling
Salesman Problem with a Drone”. eng. In: Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2019, pp. 557–564. ISBN:
3030192113.

[22] Sig Ueland. “8 Commercial Drone Delivery Companies”. In: Research and Mar-
kets (2021). URL: https://www.practicalecommerce.com/8- commercial-
drone-delivery-companies.

[23] Thibaut VIDAL et al. “A Hybrid Genetic Algorithm for Multidepot and Peri-
odic Vehicle Routing Problems”. eng. In: Operations research 60.3 (2012), pp. 611–
624. ISSN: 0030-364X.

[24] Jeff Wilke. “Amazon moves closer to its goal of a drone delivery solution that
scales to meet the needs of customers.” In: Amazon (2019). URL: https://www.
aboutamazon.com/news/transportation/a-drone-program-taking-flight.

[25] Laura Wood. “Worldwide Drone Delivery Industry to 2030 - Increasing Need
for Contactless Deliveries for Safety Purposes is Driving Growth”. In: Globe-
NewsWire (2021). URL: https://www.globenewswire.com/en/news-release/
2021/04/06/2204790/28124/en/Worldwide-Drone-Delivery-Industry-
to-2030-Increasing-Need-for-Contactless-Deliveries-for-Safety-
Purposes-is-Driving-Growth.html.

https://onfleet.com/blog/what-is-last-mile-delivery/
https://onfleet.com/blog/what-is-last-mile-delivery/
http://tesi.cab.unipd.it/51947/
http://tesi.cab.unipd.it/51947/
https://www.globenewswire.com/news-release/2021/03/08/2188710/0/en/Drone-Package-Delivery-Global-Market-Report-2021-COVID-19-Growth-And-Change.html
https://www.globenewswire.com/news-release/2021/03/08/2188710/0/en/Drone-Package-Delivery-Global-Market-Report-2021-COVID-19-Growth-And-Change.html
https://www.globenewswire.com/news-release/2021/03/08/2188710/0/en/Drone-Package-Delivery-Global-Market-Report-2021-COVID-19-Growth-And-Change.html
https://doi.org/10.3929/ethz-b-000342823
https://www.practicalecommerce.com/8-commercial-drone-delivery-companies
https://www.practicalecommerce.com/8-commercial-drone-delivery-companies
https://www.aboutamazon.com/news/transportation/a-drone-program-taking-flight
https://www.aboutamazon.com/news/transportation/a-drone-program-taking-flight
https://www.globenewswire.com/en/news-release/2021/04/06/2204790/28124/en/Worldwide-Drone-Delivery-Industry-to-2030-Increasing-Need-for-Contactless-Deliveries-for-Safety-Purposes-is-Driving-Growth.html
https://www.globenewswire.com/en/news-release/2021/04/06/2204790/28124/en/Worldwide-Drone-Delivery-Industry-to-2030-Increasing-Need-for-Contactless-Deliveries-for-Safety-Purposes-is-Driving-Growth.html
https://www.globenewswire.com/en/news-release/2021/04/06/2204790/28124/en/Worldwide-Drone-Delivery-Industry-to-2030-Increasing-Need-for-Contactless-Deliveries-for-Safety-Purposes-is-Driving-Growth.html
https://www.globenewswire.com/en/news-release/2021/04/06/2204790/28124/en/Worldwide-Drone-Delivery-Industry-to-2030-Increasing-Need-for-Contactless-Deliveries-for-Safety-Purposes-is-Driving-Growth.html

	Abstract
	Acknowledgements
	Introduction
	Thesis Goal and Structure

	Last Mile Delivery UAV Operations - State-of-the-Art
	What Last Mile Delivery is
	Examples of UAVs Parcels Delivery Systems
	Multi-modal Problems Literature Review
	Truck and Drones Delivery Classification
	TSP-D Literature Review
	TSP-D with Multiple Drones Literature Review
	Barriers for UAVs Massive Employment

	Problem Formulation
	Theory behind the Traveling Salesman Problem
	Terminology
	Notation
	Problem Assumptions and Formulation
	Assumptions
	Mathematical Formulation

	The Algorithm
	Local Search Algorithm - TSP-D Solution
	Local Search Algorithm Main Body
	Savings function
	Cost Truck function
	Cost UAV function
	Perform Update function
	Time Update function

	Practical Example & Possible Improvements
	Practical Example in a Simple Real Case Scenario
	Possible Improvements & Alternative Approaches

	Hybrid Genetic Algorithm - TSP-D solution
	The Only Feasible Solutions Variant
	Parents Selection function
	Child Generation function
	Restore function
	Select Survivors function

	The Infeasible Solutions Variant
	Split function
	Repair function
	Select Survivors function

	The Only Feasible Variant versus Infeasible Variant Comparison
	The Real Case Scenario Example solved with the HGA - Infeasible Variant

	Multiple Drones Implementation
	Local Search Algorithm - Multiple UAVs Adaptation
	Hybrid Genetic Algorithm - Multiple UAVs Adaptation
	The Only Feasible Solutions Variant
	The Infeasible Solutions Variant

	The Real Case Scenario Example solved with HGA Infeasible Variant - Multiple Drones Adaptation

	mFSTSP Exact Method - An Alternative Approach for Multiple Drones

	Results
	Test 1 - Algorithms Comparison - Ten Customers Scenario
	Test 2 - Monte Carlo Simulation for Heuristic Algorithms
	Test 3 - Algorithms Comparison - Twenty Customers Scenario
	Test 4 - Evolution test for Genetic Algorithms

	Conclusions
	Bibliography

