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Abstract

In recent years, Unmanned Aerial Vehicles (UAVs) have been deeply
investigated because of the relevant services they can support and the im-
provements they can provide in different application fields. Examples include
last-mile delivery, area monitoring, and infrastructure inspection. UAV-aided
communication networks can indeed extend or replace the existing communi-
cation infrastructure where such facilities would be difficult or too costly to
deploy due to the remote or inaccessible locations, like in the case of areas
hit by natural disasters.

In spite of the recent advancements, UAV operations and scenarios intro-
duce unique technical challenges, among which remote control and efficient
usage of computational resources emerge as aspects of primary importance.
In this context, data-driven approaches such as machine learning represent
an effective methodology. UAVs, as well as ground devices with which
UAVs communicate, can collect information on the tasks to be executed,
the experienced channel propagation conditions, and the extension of the
covered area – piece of information that can be leveraged for the design of
effective solutions. Importantly, while developing algorithms to address the
aforementioned issues, it is also critical to evaluate the system performance
through scalable, yet realistic, simulations.

In this work, both objectives are pursued, i.e., to develop and implement
a machine learning solution that exploits the data collected by UAVs and
ground devices in order to achieve coverage maximization, while simulating
the system in realistic settings. Realism is brought by the integration with
the well-known ns-3 simulator a statistical channel propagation model.

The addressed scenario includes a set of UAVs, which are meant to assist
a number of ground devices in processing tasks and eventually provide the
ground devices with an outcome. The UAVs can also communicate with



neighbouring UAVs for either sharing their status information or forwarding
tasks if they are too overloaded. Furthermore, a centralized network archi-
tecture characterized by UAVs and a base station has been considered; the
base station will act as aggregation point of the observations forwarded by
UAVs and will provide each one with the action to perform according to a
certain policy.

Hence, a deep reinforcement learning model has been developed in order
to achieve an efficient, flexible and scalable policy. The algorithm will take
as input the positions of the UAVs and of the ground devices, and the
computational task demand; in return, it will provide the best action to
perform in order to maximize the expected cumulative reward, e.g. coverage
or resource utilization maximization.

To conclude, ns-3 offers a noteworthy simulation environment that al-
lows to efficiently evaluate and compare several scenarios, protocols and
applications. This permits to easily encompass all the different aspects
that contribute to design quality and network performance. Future work
could concentrate on improving the techniques tackled in this thesis and
further extending the proposed scenario with higher complexity features that
may lead to interesting results and effective performance evaluation. The
prospect of being able to merge realistic network simulations with innovative
artificial intelligence optimization algorithms serves as a continuous incentive
for future research that may also involve other cutting-edge scenarios.
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Chapter 1

Introduction

UAV networks are an emerging technology that has been recently investigated
in deep due to the extensive set of application domains where its support
can definitely provide an improvement of the experienced service. UAVs can
play an active role in the definition of new state-of-the-art services or the
redefinition of existing ones, such as package delivery, precision agriculture,
surveillance and inspection procedures.
Furthermore, the establishment of a communication network among several
UAVs enables the possibility of their interaction and cooperation with the
purpose of achieving a final common aim. In this scenario, supplying UAVs
with computational capabilities, it is possible to configure a centralized or
distributed architecture for decision making. Machine-learning-based frame-
works, especially Reinforcement Learning ones, can be therefore exploited
for optimization purposes.

On the other hand, UAVs can also serve as aerial low-altitude platforms
extending or replacing the existing communication infrastructures in fields
where these facilities are hard to be deployed or corrupted by unexpected
events. The interaction with an existing networking infrastructure further
extends the previously mentioned set of services, drawing the attention of
research communities toward next-generation wireless networks and inspiring
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Introduction

telecommunication companies for the definition of new vertical industries
solutions. Assuming just one UAV, many BVLOS (Beyond Visual Line
of Sight) use cases have been already studied and deployed in real-world
scenarios; one of them is infrastructure inspection for which the supervisor
is no longer required to be in the specific location of interest and the urban
interruption of service that usually an operation like this requires can be
avoided. Considering instead a network of several UAVs, the potential is
further enhanced: fleets of UAVs can provide computational support for
the execution of tasks forwarded by IoT devices or general ground devices,
therefore acting as computational aerial servers, performing data collection,
partial/full analysis and eventually forwarding the post-processing outcomes
to the internet or to the ground devices themselves.
Recent works on UAV networks have demonstrated how the communication
challenges and open problems related to the deployment and utilization of
this technology are still in an early stage [1]. One of the main challenges
regards the proper placement in space of highly dynamic nodes, such as UAVs,
within the network in order to optimize the overall performance of the system.
Centralized or distributed control solutions can be defined to drive each
UAV towards an optimal position. Machine Learning frameworks, especially
Reinforcement Learning (RL) approaches, have acquired a significant role
in control design application due to the intelligent identification of valid
environmental information and complex patterns [2].
RL is one of the most popular machine learning approaches, its aim is to
solve Markov Decision Processes (MDP) by making an agent learn how to
make decisions according to observations of the surrounding environment
and a correspondent value of expected cumulative reward. It has been found
to be particularly suited for collaborative tasks in multi-agent systems [3]
and performance enhancement in communication networks [4].
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1.1 Context and Problem Statement

The purpose of this thesis is the development of a machine learning solution
that aims at the optimization of UAVs’ positioning and computing tasks
assignment while simulating the system in a realistic setting.

A specific context has been considered: fleets of UAVs, cooperating with
each other and acting as computational aerial servers, are meant to provide
computational support for ground devices’ tasks.

Figure 1.1: Scenario proposed in this work. UAVs are meant to commu-
nicate with GDs for task execution and with a BS for positioning policy
application. Icons provided by Clea Doltz Patrick McDonnell and Barudak
Lier from the Noun Project.

Thus, the first goal is to implement realistic traffic generation and channel
propagation models in order to achieve a network simulation as much realistic
as possible. In the second instance, this work will develop by introducing
a OpenAI Gym interface in order to enhance the simulation with multi-
agent Deep Reinforcement Learning (DRL) algorithms that, by exploiting
the observation coming from the network simulation, leverages the agents’
position and hence optimize coverage and resource utilization. The framework
that has been considered relies on a centralized architecture in which a base
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station is supposed to collect all information about UAVs and provide them
with the best action each one can perform to maximize an expected cumulative
reward.

In conclusion, a key feature of this work is the efficient integration of the
artificial intelligence framework with a realistic, flexible and scalable network
simulation environment provided by ns-3. All the modules that have been
developed in this work are scenario agnostic, such that they can be easily
reused in other contexts or easily extended to provide higher complexity.
This integration is supposed to provide researchers with state-of-the-art ways
to develop, perform and evaluate realistic network simulation scenarios that
exploit AI algorithms for managing the increasing complexity of modern
networks.

1.2 Structure

The work developed in this thesis is presented according to the following
organization.

Chapter 1 - Introduction

The first chapter illustrates the thesis from an high-level perspective. Here,
the main motivations and objectives are introduced and discussed.

Chapter 2 - UAV Network Design: Existing Approaches

The second chapter discusses the main research works that have inspired
and contributed to the development of this thesis. The aim of this chapter is
to exploit results and considerations from other researchers to highlight the
relevance of this work and the innovation it tries to carry out.

4
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Chapter 3 - Background on Mobile Distributed Networks

The third chapter provides a brief description of the main theoretical concepts
that are required for an insightful understanding of this work. Reference
books are provided for all topics, in case further information would be of
interest.

Chapter 4 - Problem Formalization

The fourth chapter presents the needs and the main problems that has inspired
this work. A formal perspective is adopted, highlighting the assumptions and
the strategies deployed at the basis of the solution proposed. In addition, the
algorithms that have been deployed in order to model the proposed scenario
are introduced from a formal perspective.

Chapter 5 - Tools

The fifth chapter highlights the main software that has been exploited in
the course of this thesis. A description of their main characteristics and
functionalities is provided, highlighting the reasons and relevance of their
deployment.

Chapter 6 - Implementation

The sixth chapter introduces and discusses the specific implementation for
this scenario. An accurate description of the new modules and components
that have been produced in this work is provided.

Chapter 7 - Experimental Results and Discussion

The seventh chapter illustrates and compares the experimental results ob-
tained from the simulation of different scenarios. They are all deeply dis-
cussed, pointing out the strengths and the limitations of the outcomes.

5
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Chapter 8 - Vodafone Internship

The eighth chapter acknowledges Vodafone Italia as a great source of inspi-
ration for the development of this work. The projects on which Vodafone
Business’ 5G Program has been investing on are presented, along with a tech-
nical discussion of the potential 5G brings in the definition of revolutionary
applications and services.

Chapter 9 - Conclusions and Future Works

The final chapter concludes this presentation with a summary of the proposed
approach and the resulting outcomes. The main limitations and suggestions
for future works and improvements are eventually proposed.

6



Chapter 2

UAV Network Design:
Existing Approaches

Significant inspiration and contribution to the development of this thesis has
been brought by former researches and surveys. In the following, a literature
review is performed in order to highlight the open problems and the state-of-
the-art strategies regarding UAV-based communications, Machine Learning
integration and propagation modeling.

2.1 Machine Learning and UAV-based Com-
munication

In recent years, standardization bodies, industries, and academia have been
nourishing interest towards the use of UAVs as flying BSs, mobile relays,
or autonomous communicating nodes for providing low latency and highly
reliable communications in cities, across suburban areas and over rural
terrains. A recent study [5] aims at investigating this topic, providing a
detailed survey of all relevant research works in which Machine Learning
techniques and UAV-based communications cooperate.

7
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The authors specifically focus on the following contributions:

• Overview of AI solutions and their application in UAV-based networks

• Discussion of the main UAV-enhanced wireless communication issues,
ranging from physical layer and resource management aspects up to
trajectory design, security and public safety matters

• Identification of open issues in order to foster further research for UAVs
and AI integration

They essentially outline the importance of radical improvements in wireless
networks and the necessity for further advancements based on the application
of machine learning in UAVs-based networks. In particular, they deeply
investigate four main application areas in which innovative solutions can be
gathered:

• Physical Layer issues:

– Development of accurate channel models and mitigation of path-loss
through topology prediction

– Tacking of severe interference from other UAVs and ground nodes

– Configuration of transmission parameters towards achieving specific
performance targets

• Security and Safety issues:

– Protection against cyber-attacks across different network layers

– Discussion on the impact of jamming, eavesdropping and spoofing
over VANETs

– Ensuring privacy when task computation offloading is considered

– Realtime mapping and avoid trespassing UAVs

• Resource Management and Network Planning:

8
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– Predict cell quality and select the best serving cell for one node at a
given location

– Reducing unnecessary handovers

– UAV cooperation and joint optimization of the computation, caching
and communication resources

– Quality of Experience maximization together with energy efficiency

• Position related aspects:

– Detection and Identification

– Determine the proper horizontal and/or vertical placement as well
as the trajectory that optimizes one or more KPIs

2.2 Channel Model

From a channel propagation point of view. in order to make ns-3 simulation
realistic, the work in [6] has been studied in deep and exploited for the
definition of the proposed implementation.

The authors in [6] propose a statistical propagation model for predicting
the air-to-ground path loss between a low altitude platform (LAP) and a
terrestrial terminal. This RF model has the aim of helping designers to
simplify simulation calculations, to speed up radio coverage estimation and
to facilitate the planning efforts of airborne wireless services.

It assumes isotropic antennas for transmitters and receivers and proposes
12 data sets depending on center frequency and urban environment density.
Three different frequencies are considered, i.e. 700 MHz, 2 GHz and 5.8
GHz, and, for each center frequency, a simulation is run over four different
urban environments, i.e. Suburban, Urban, Dense Urban and Highrise Urban.
Moreover, two different propagation groups are considered, one corresponding
to receivers favoring Line-of-Sight condition and the other referring to no

9
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Line-of-Sight scenario, in which the received signal is strongly affected by
reflection and refraction. A third group could have been analyzed, considering
receivers suffering deep fading due to consecutive reflections and diffractions;
nevertheless, it was disregarded because the sample set was limited and
results would have been unreliable.

Figure 2.1: On the left, the three different types of simulated rays discussed
in [6] are shown. On the right, a computer generated city model based on
the ITU-R parameters in [7] and [8]

By curve fitting, using Damped Least Squares (DLS) method, the model
parameters have been explicitly defined and reported in Tables B.1 and
B.2. The algorithm to implement and utilized the proposed radio model is
provided in Algorithm 4. The algorithm consists in an enhancement of the
common free space path loss computation, based on the Friis Propagation
Law in (2.1).

FSPL = 20 log10(d) + 20 log10

A
f

1e6

B
+ 20 log10

A4π · 1e6
c

B
(2.1)

The total path loss the received signal will be affected by is

PL = 10 log10(PTX)− 10 log10(PRX) = FSPL+ ξ (2.2)

where ξ is the extra path loss depending on the elevation angle of the LAP, the
probability of LOS, and the urban density. This model considers ξ normally
distributed with mean value µξ and standard deviation σξ(θ). Since the
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experimental results did not show a clear dependency of µξ on the elevation
angle θ, it is reported as a constant value in the Tables B.1 and B.2. On
the other hand, the standard deviation σξ(θ) was strongly dependent on
the elevation angle θ, hence, the samples had been fitted to the following
formula:

σξ(θ) = α · exp (−β · θ) (2.3)

where α and β are frequency and environment dependent parameters available
in Tables Tables B.1 and B.2.

Eventually, these parameters are classified in two subsets, the Line-of-Sight
Group and the non Line-of-Sight one. Consistently, the mean value and the
variance of the excessive path loss are expected to be much bigger in scenarios
where a Line-of-Sight path is not available. In general, a channel model that
is characterized by many multipath components and one strong LoS one is
said to be statistically characterized by a Rician distribution. On the other
hand, when no LoS component is available, the channel can be described
with a Rayleigh distribution, which usually leads to very fast frequency
selectivity and strong Intersymbol Interference that must be counteracted
with an equalization processing stage at the receiver [9].

By curve fitting, the authors provided the equation to compute the proba-
bility of LoS occurrence:

P [LOS] = γ · (θ − θ0)δ (2.4)

where θ is the elevation angle of the low altitude platform and θ0 is the
minimum elevation angle. A minimum elevation angle is introduced because,
usually, for θ < 15°, the propagation path may be subject to so many
impairments that no reliable transmission can be actually expected.

Authors in [6] present their result in terms of cumulative distribution
function versus the path loss. Figure 2.2 the prediction resulting from the
mathematical model reproduces the path loss estimations in an accurate
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manner with respect to the ray tracing simulation.

Figure 2.2: Cumulative Distribution Function vs Path Loss comparison
between the proposed RF model and ray tracing simulation data in [6]

2.3 AI Integration

Besides acquiring an insight on Machine Learning approaches and especially
achieving confidence with Reinforcement Learning strategies [10], one of the
main focuses of this work was the integration of ns-3 simulator with RL
algorithms running on Python.

Mainly two works have been considered, ns3-gym in [11] and ns3-ai in [12].
The authors in both works share the same motivation; modern communication
networks are evolving into extremely complex and dynamic systems for which
traditional design approaches are becoming limited. Reinforcement Learning
has already proved its effectiveness in communication systems, providing
innovative and powerful optimization techniques for scheduling, resource
management, congestion control, routing and adaptive video streaming.
Nevertheless, the need of real-world environments for a proper training of

12
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the agents, would lead to expensive and time-consuming testbed deployment.
Hence, the purpose of both works is providing a framework that can interface
a realistic and powerful network simulator (ns-3) with the well-known and
agile Open AI Gym framework for RL-based algorithm prototyping.

The ns-3 simulator can be exploited to create a realistic model of the
network and configure scenario conditions, such as traffic, mobility, etc. Open
AI Gym, basing on the observations collected from ns-3 environment, will
produce the best action the agent must leverage in order to maximize a
certain expected cumulative reward.

The ns3-gym framework in [11] exploits ZMQ sockets [13] for data trans-
mission between ns-3 and Open AI Gym [14]. An Environment Gateway
and an Environment Proxy were defined, respectively on ns-3 and Open AI
Gym side, in order to aggregate and systematically exchange observations
and actions between the two environments. More details on how ns3-gym
works are discussed in Chapter 5.

Figure 2.3: On the left, a simple scheme of Reinforcement Learning algo-
rithm is shown. On the right, an high-level scheme of ns3-gym interface is
illustrated. Both Figures have been produced by authors in [11]

The ns3-ai toolkit in [12] arises an enhancement of ns3-gym from the
average transmission time perspective. Instead of deploying ZMQ sockets, ns3-
ai exploits a shared memory technique that allows to achieve a transmission
speed seven times faster from ns-3 to AI frameworks and 50-100 times faster
the other way with respect to ns3-gym.
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In this work, even if the advantages of ns3-ai are clear and inspiring,
ns3-gym framework was deployed for its robustness and clarity; from an high-
level user perspective, its APIs are much more intuitive and implementation
agnostic than the ns3-ai ones.

Figure 2.4: Shared memory structure proposed by ns3-ai authors in [12]
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Chapter 3

Background on Mobile
Distributed Networks

3.1 Unmanned Aerial Vehicles

Unmanned aerial vehicles (UAVs) are aircrafts designed to fly without hu-
man assistance on-board. They can either be controlled remotely from a
ground operator or they can fly autonomously thanks to artificial intelligence
algorithms. Besides the level of autonomy of their flight control, the most
relevant classification is based on the the altitude they can reach. Hence,
they can be divided into High Altitute Platforms (HAP) and Low Altitude
Platforms (LAP) [1]. Devices belonging to the first category are able to fly
at altitudes higher than 17km, and they are usually deployed for long term
applications. Viceversa, devices belonging to the second category can fly
from tens of meters up to few kilometers. LAPs are usually devoted to rapid,
flexible and dynamic applications that can range from common use cases,
such as area monitoring or infrastructure maintenance, to very time-sensitive
scenarios, like natural disasters or emergency rescue.

An important limiting factor for the actual design and deployment of
use cases involving UAVs is regulation. For instance, Italy is one of those
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countries where flight restriction in urban areas is strictly imposed; acquiring
the permissions to fly may be unfeasible from a time perspective or impossible
at all depending on the characteristics of the use case.

3.2 Wireless Local Area Networks

IEEE 802.11, also known as WiFi, is a US-based standard released for the
first time in 1997. It defines technical specification for physical and data
layers’ for WLAN implementation. Since then, a series of IEEE 802.11
standards have been proposed to efficiently serve specific scenarios, improve
performance, provide higher data rates and better coverage??. Some of them
are listed below, chronologically:

• IEEE 802.11: the original version of the standard. It exploits Direct
Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread
Spectrum (FHSS) techniques at 2.4 GHz RF and IR, achieving a peak
rate of 2 Mbps.

• IEEE 802.11b: the most popular standard, operating at both 2.4 GHz
and 5GHz. It enhances the original protocol supporting 5.5 and 11
Mbps.

• IEEE 802.11a: wireless network bearer operating at a central frequency
of 5 GHz and achieving data rate up to 54 Mbps. At the physical layer,
Orthogonal Frequency Division Multiplexing (OFDM) is used, each
subcarrier can be modulated with BPSK, QPSK, 16-QAM, or 64-QAM,
depending on the wireless environment.

• IEEE 802.11g: extension with backward compatibility of 802.11b
achieving up to 54 GHz in the 2.4 GHz band.

• IEEE 802.11e: the approved amendment that defines a set of Quality
of Service (QoS) enhancements by making several modifications to the
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Media Access Control (MAC) layer. These enhancements, such as
packet bursting, enabled better transmission quality for audio and video
applications.

• IEEE 802.11n: high-speed WLAN protocol based on Multiple-Input
Multiple-Output (MIMO) technology. Network throughput is enhanced
up to 600 Mbps thanks to antenna diversity and spatial multiplexing,
without any additional cost of bandwidth or transmission power.

• IEEE 802.11r: enhancement of the original specification enabling fast
BSS transition. It has been designed to specifically manage handover in
a seamless manner, avoiding disruption of service for wireless devices in
motion.

• IEEE 802.11p: amendment that introduces wireless access for the
vehicular environment. It enhances 802.11 in order to allow efficient
Vehicle-to-Vehicle (V2V) or Vehicle-to-Everything (V2X) data exchange.

• IEEE 802.11ac/ax/ad: state-of-the-art versions of the standard.
They exploit higher carrier frequencies, complex modulation schemes,
beamforming techniques and other innovative technologies to achieve
extremely high throughput and low latency.

The standard supports two types of wireless interface: infrastructure and
ad-hoc modes. In the wireless infrastructure mode, the network consists
of a wireless access point (AP) and several wireless stations (STA). The
AP coordinates the transmission among stations within its radio coverage
area, called Basic Service Set (BSS), and it is responsible for bridging traffic
toward the wired LAN.

On the other hand, Ad-Hoc networks represent an evolution of infras-
tructure mode, consisting of self-organized networks made only by wireless
clients communicating directly with each other.
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3.2.1 MANETs

A Mobile Ad-hoc Network (MANET) is a collection of hosts equipped with
wireless communication capabilities, such as WiFi or Bluetooth, which can
communicate with each other without any centralized administration. Each
node of the network can communicate directly with all the other nodes within
its transmission coverage area (point-to-point). Nodes located outside this
area can be reached, if possible, via several intermediate nodes (multi-hop
mode).

These networks are deployed in highly dynamic scenarios where the in-
frastructure is disrupted or not feasible to be implemented, such as natural
disasters, military conflicts, emergency situations or simply local events and
specific use cases like precision agriculture [15].

3.2.2 VANETs

A specific type of MANET is the Vehicular Ad-Hoc Network (VANET), which
is a collection of vehicles provided with mid-range wireless communication
technologies, such as the 802.11p WiFi standard. Vehicle-to-vehicle (V2V)
and vehicle-to-roadside (V2X) communications architectures co-exist in
VANETs with the purpose of providing road safety, navigation and many
other applications and services proposed by the Intelligent Transportation
Systems (ITS) research [16].

3.2.3 FANETs

Flying Ad-Hoc Networks or FANETs are an extension of MANETs and
VANETs that specifically investigate Unmanned Aerial Vehicles (UAVs)
ad-hoc wireless networks. FANET is the latest technology that has been
proposed for several military and civilian purposes, such as infrastructure
extension or surveillance and monitoring of those areas where humans cannot
reach [17].

18



Background on Mobile Distributed Networks

For instance, FANETs allow to relax many constraints imposed by the
traditional UAV-Terrestrial Infrastructure centralized architecture, i.e. with
only one ground station gathering and processing all information from UAVs
in range. However, unlike Air-to-Air communication, the Air-to-Ground
communication link is highly affected by urban environment conditions, lack
of Line of Sight (LoS) condition and several other impairments. Furthermore,
the dynamicity of the flying nodes is strictly constrained by the coverage
range of the fixed infrastructure, which also represents a single point of
failure for the network, inevitably increasing vulnerability.

A direct communication between the flying nodes of the network enables
the possibility of overcoming these problems and introducing other com-
munication approaches relying on the interaction with different kinds of
infrastructures, e.g. distributed ones like satellite and cellular networks.

Some examples of the main FANET network architectures and integrations
are provided in the following:

• Centralized Architecture:
As previously mentioned, this scenario assumes a UAV direct communi-
cation with a ground station, specifically each flying node is connected
to a terrestrial control station according to a star topology. This ap-
proach enables fault tolerance whenever any of the UAVs fails, easy
synchronization and full knowledge of the state of each UAV in range.
On the other hand, this solution is not scalable with the number of UAVs
since the ground station may become the bottleneck of the network.
Moreover, the ground station itself acts as a single point of failure; its
breakdown would cause a full service [18] disruption. For simplicity,
the assumption carried out in this work considers all the devices always
reliable; therefore, the analysis of failure scenarios can be destined for
future works.

• Integration with Satellite Networks:
In first instance, communication with satellite networks is considered
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when a ground station or a cellular infrastructure are not feasible to be
deployed [19]. Secondly, it is important to remark that recently FANETs
are attracting considerable interest in terms of Global Navigation Satel-
lite Systems (GNSS) Integration and Augmentation. Integration, also
known as Assisted GNSS techniques, refers to the idea of providing a
GNSS receiver with additional information through external wireless
aiding sources. This information may be related to proprioceptive sen-
sors on board of drones or exteroceptive sensors on ground devices. On
the other hand, Augmentation refers to the idea of making UAVs act like
pseudolites, i.e. fake satellites transmitting GNSS-like signals with the
purpose of improving accuracy and availability. In conclusion, this aiding
allows to improve the overall performance of the GNSS receiver, such as
submeter precision, the time to first fix (TTFF) and the sensitivity in
harsh environments. [20]

• Integration with Cellular Networks:
Connecting UAVs with the cellular networks is among the most widely
investigated topics. Although the several advantages and the numerous
use cases this solution would enable, UAVs cannot be seen as typical
ground user equipment. Low Altitude Platforms undergo a very different
radio propagation for which the base stations are not designed for.
Recently, Third Generation Partnership Project (3GPP) has concluded
its work about the integration of UAVs communication in LTE networks
[21]. The application that this thesis will discuss in this thesis would
definitely benefit from cellular communication. A connection between
a centralized base station and all the ground devices would ease up
the initialization process in which UAV must discover all the ground
devices asking for service. Nevertheless, since this work aims to provide
communication and computational services in critical areas where the
infrastructure is not available, the cellular link will not be taken into
account. Hence, it will be assumed that a discovery operation had been
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already performed offline, such that UAVs are always aware of which
ground devices are in need of service and where they are located.

3.3 Network Simulation

In general, performance evaluation of systems and networks is usually per-
formed with three different techniques: mathematical analysis, measurements,
and computer simulation [22].

Network simulation is a computer network research technique that exploits
a software program to model the behaviour of a network through the realistic
interaction of the different network entities and the various applications and
services it supports. The need for this technique with respect to the others
arises from the unfeasibility of traditional analytical methods to provide
an accurate understanding of complex systems’ behaviour and hence the
impossibility of producing an efficient design of the solution.

Among the several different types of computer simulations, such as discrete-
event, continuous, Monte Carlo, trace-driven etc., the most relevant approach
in the field of computer networks is discrete-event simulation. The key
property of discrete-event simulations is that the state of the considered
model can only change discretely in time, according to the occurrences of
certain events.

Discrete-event simulation is used to do research on all layers of computer
networks, including signal processing issues in the physical layer, medium
access in the link layer, routing in the network layer, protocol issues in the
transport layer, and finally, design questions of the application layer.

3.4 Machine Learning

Machine Learning is a branch of Artificial Intelligence that studies and defines
computer algorithms for systems that automatically learn and improve their
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performance through experience and data.
In recent years, Machine Learning approaches are attracting an increasing

interest due to their effectiveness towards complex systems and applications,
especially those where it is difficult or unfeasible at all to develop conventional
algorithms to perform predictions and decisions without being explicitly
programmed.

Machine Learning strategies are traditionally classified into three broad
categories, depending on the nature of the signal or feedback available to
the learning system:

• Supervised Learning:
The computer is presented with a set of examples made of different
inputs and their desired outputs. The goal of the algorithm is learning,
basing on this training set, the general rule that maps inputs to outputs.
Once the algorithm is trained, it can be tested over a verification test to
evaluate its reliability. Hence, this approach is oriented to applications
that involve classification or regression procedures.

• Unsupervised Learning:
The learning algorithm is not provided with labels anymore; its goal
is to discover hidden patterns or correlation features within the data
provided. This strategy is commonly deployed in cluster analysis and
data mining applications.

• Reinforcement Learning:
An agent exists within a dynamic environment that he is able to explore
and collect information from. Basing on this information, the agent will
predict and perform actions that will lead to new observations. The
final aim of the agent will be the maximization of an arbitrarily defined
cumulative reward by actively interacting with the environment. This
approach has proved to be considerably effective in game theory, control
theory and simulation-based optimization, among the others.
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3.4.1 Reinforcement Learning

This work will focus on the third kind of machine learning paradigms, i.e.
Reinforcement Learning.

As previously introduced, Reinforcement Learning is an area of machine
learning concerned with how intelligent agents ought to take actions in
an environment in order to maximize the notion of cumulative reward. It
differs from the other approaches in not needing labelled input/output pairs
and sub-optimal actions to be explicitly corrected. The focus is on finding
a balance between exploration of uncharted territory and exploitation of
current knowledge.

Basic Reinforcement Learning can be introduced as a Markov Decision
Process (MDP), i.e. a discrete-time stochastic control process providing
a mathematical framework for modelling decision-making operations in
situations where outcomes are partly random and partly under the control
of the agent.

The MDP under analysis is made of,

• a set of environment and agent states S

• a set of actions the agent can perform A

• probability of transition at time t from state s ∈ S to sÍ ∈ S under
action a ∈ A, i.e. Pa(s, sÍ) = P [st+1 = sÍ | st = s, at = a]

• immediate reward after transitioning from s to s’ with action a, i.e.
Ra(s, sÍ)

By definition, the probability of occurrence of a given state only depends on
the previous state of the environment and not the entire history of transitions.
This property is known as Markov Property (Eq.3.1)

P [st+1 | st] = P [st+1 | s1, . . . , st] (3.1)
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The agent is essentially characterized by these three components: an a-priori
model of the environment, a policy (π) and a value function (V ).

• The model, if known, provides the agent with a-priori information
regarding the environment. Since it can be either provided or not,
model-based and model-free-based approaches can be introduced.

• The policy is the deterministic/stochastic mapping between the observed
state and the action the agent will perform.

• The value function represents an expected cumulative value of the reward
starting from the current state. While the reward is just an immediate
feedback from the environment, the value function shows how the current
action will also affect the future rewards.

The purpose of Reinforcement Learning is for the agent to learn an optimal
(or nearly optimal) policy [3.2] that maximizes the expected cumulative
reward.

π : A× S → [0,1], π(a, s) = P [at = a | st = s] (3.2)

Hence, the agent must learn to reason about the long-term consequences of
its actions, although the immediate reward associated might be negative.

Reinforcement Learning is powerful thanks to the use of samples to
optimize performance and function approximation to deal with large envi-
ronments. Therefore it is exploited in situations where:

• the environment can be described according to a certain model but an
analytical solution to the problem under analysis cannot be retrieved.

• the only way to collect information about the environment is to interact
with it actively.
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3.4.2 Q-learning

Q-learning is one of the model-free Reinforcement Learning algorithms that
allows the agent to learn the real-valued quality of an action in a particular
state. It aims at finding the optimal policy for decision making that maximizes
the expected value of the total reward over any and all successive steps,
starting from the current state. "Q" refers to the function the algorithm
consider in order to estimate the quality of a state-action combination:
Q : S ×A → R. At each time t, the agent selects an action at, observes an
immediate reward rt, enters a new state st+1 and Q is updated. The core of
the algorithm, described in Algorithm [1], is a Bellman equation as a simple
value iteration update, using the weighted average of the old value and the
new information [3.3].

Qnew(st, at)← (1− α) ·Q(st, at) + α · (rt + γ ·max
a

Q(st+1, a)) (3.3)

• rt is the reward achieved when the agent moves from state st to st+1

• α ∈ (0,1] is the learning rate, i.e. a tuning parameter that influences
to what extent newly acquired observations override old information.
When α = 0, the agent will learn nothing, exclusively exploiting prior
knowledge. On the other hand, when α = 1, the agent will consider only
the most recent information, ignoring prior knowledge.

• γ ∈ [0,1] is the discount factor, i.e. a parameter that determines the
importance of future rewards. When γ equals 0, the agent will act
short-sighted by only considering current rewards. Viceversa, when γ
approaches 1, the agent will strive for a long-term high reward.

• (1− α)Q(st, at) is the current value weighted by the learning rate.

• αγmax
a

Q(st+1, a) is an estimate of the optimal future value that can be
obtained from state st+1 (weighted by learning rate and discount factor)
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Summarizing, the agent explores the environment through trial and error,
hence by trying out different actions at different states, learning the expected
reward and eventually updating the Q-table. Each Q-value is the maximum
expected cumulative reward the agent can achieve by leveraging action at at
state st. Once all Q-values are known, the agent will select at each state the
action that provides the highest expected reward; this procedure is called
exploitation.

3.4.3 Deep Q Networks

The Deep Q Network algorithm is an enhancement of the previously intro-
duced vanilla Q-learning algorithm. The table that maps the state-action
pair to a Q-value is now replaced by a neural network that will instead
perform state → (action, Q).

Figure 3.1: On the left, the architecture of a single neuron is reported. On
the right, an example of flat fully connected network is shown.

The learning process exploits two neural networks called main and target.
They have the same architecture but different weights; periodically the
weights from the main are copied to the target one. This leads to higher
stability and learning effectiveness.

Input nodes refer to the input state of the agent, while the output nodes
represent a possible action the agent can perform. The value inside an output
node is the action’s corresponding Q-value.

Both networks’ update is achieved through Experience Replay, i.e. the act
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of storing and replaying old states. This is a biologically inspired mechanism
that uses a random sample of prior actions instead of the most recent one to
proceed. This approach has proved to minimize correlation in the observation
sequence and to avoid skewing the dataset distribution of different states.

The main advantage of Deep Q-learning with respect to the vanilla version
is scalability. The traditional Q-learning approach relies on a look-up table
system, i.e. the Q-table, to determine at each state which action to perform,
which has S×A entries. If the environment presents large or even continuous
state and/or action space, this solution may become completely unfeasible,
badly affecting memory allocation and the computational time needed to
explore each state. This problem can be effectively counteracted by approxi-
mating these Q-values with machine learning models such as neural networks,
giving birth to the Deep Q Networks approach. The DQN algorithm applying
the concept of main/target networks and experience replay is presented in
Algorithm 2.

Further knowledge beyond the scope of this work can be retrieved in [10].
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Chapter 4

Problem Formalization

As introduced in chapter 1, this thesis aims at the development of a machine
learning solution for UAVs’ optimal positioning and its integration within a
realistic network simulation.

In order to address the aforementioned issues, the problem and the ap-
proach proposed in this work are investigated and discussed from a formal
perspective.

4.1 Deep Q Networks

Consistently with the former research on existing approaches on UAV Net-
work Design introduced in Chapter 2, Reinforcement Learning is the most
promising Machine Learning approach for tackling the proposed optimization
problem. Moreover, as previously stated in the background on mobile dis-
tributed networks in chapter 3, Markov Decision Processes (MDPs) are the
most common and convenient mathematical framework to model decision-
making problems where outcomes are partly random and partly under the
control of a decision maker.

According to the results provided in [10], Deep Q Networks has been
chosen as the most appropriate Reinforcement Learning approach for the
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scenario discussed in this work. It has been preferred over the classical
vanilla Q-learning algorithm for the intrinsic structure of the problem itself:
the deployment of a look-up table for the Q values would badly affect
the scalability of the solution proposed, which already suffers a relatively
large observation space and the need of a trade-off in terms of environment
discretization.

Specifically, a centralized architecture has been considered, which is made
of multiple agents, i.e. UAVs, and a base station (BS). All UAVs will
periodically send their information to the BS, which in turn will aggregate
and process them, selecting the best action each agent should perform in
order to achieve a common goal. A fundamental assumption is that the
communication link among the UAVs and the BS is fully reliable, hence with
no packet loss.

Figure 4.1: Centralized Architecture scenario proposed. The WiFi network
interfaces are represented color-wise, along with the arrows representing the
different types of traffic generated
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4.2 Observation Space

An observation is the arbitrarily defined set of information that the agent is
able to gather from the environment. The design of the proper observation
space should take into account not only the information needed to achieve
a final goal but also whether the agent could realistically gather them or
not. For instance, the proposed scenario considers a set of 3 Ground Devices
(GDs), each one asking for computational service. Assuming a realistic Air-
to-Ground communication link between a UAV and the GD under service,
the transmitting power should be as low as possible in order to improve
battery consumption and avoid the introduction of jamming/interference in
the spectrum shared with other services.

In conclusion, according to these assumptions, it would be unrealistic and
unfeasible to assume that each agent knows everything about the environment.
Hence, the agent should be able to provide the BS with partial and local
information, such as its own position, the position of the GD being served, its
level of activity and the number of tasks that have been successfully served.

In this work, the observation consists in two boxes, respectively of size
nDrones x 6 and mGroundDevices x 6. At each evaluation step, these
boxes are filled according to the information aggregated by the BS and
eventually forwarded to the RL algorithm through the ZMQ inter-process
communication channel.

The first box is composed by the following information for each UAV
considered:

• NodeID: this is the identification number of a specific UAV belonging to
the network. All the following information will be related to this specific
node.

• Timestamp: this is the time instant of the last update message that
has been received by that specific drone. This information can be use-
ful to manage and counteract inconsistencies among the information
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aggregated by the BS and the actual state of the drone under anal-
ysis. Inconsistencies may arise in case of bursts of packet loss or an
inadequately set periodic update and periodic polling.

• Number of Tasks Received and Served: this information is gathered by
accessing the Traffic Generator Application running on that node, it
states how many tasks have been received and how many of them have
been successfully served at that specific time instant. This information
can be useful to monitor whether a UAV is overwhelmed by the task
rate of a certain Ground Device with respect to its processing rate.

• Position: this information is gathered by accessing the Waypoint Mobility
Model installed on that node. This information expresses the coordinates
of the position of a specific UAV in the continuous 2D space. Its
discretization will be performed directly by the RL algorithm.

Similarly, the second box regards the state of each Ground Device taking place
into the network. Since Ground Devices are not supposed to communicate
directly with the Base Station, this information are provided by UAVs. If no
UAV is serving a certain GD, the BS will not be aware of the updates.

However, one of the main assumptions of this work is that an offline
discovery process has been performed in advance, hence the existence and
the location of each GD is provided at the begin of each simulation. This
box is composed by:

• NodeID: this is the identification number of that specific Ground Device.

• Timestamp: this is the time instant of the last update received. As
previously said, this information is useful to check if the BS is up to
date with respect to the actual state of the GD.

• Served By: this is the ID of the UAV that is serving that specific GD.
This information can be exploited to monitor the overall coverage in
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time achieved by UAVs and make the RL algorithm deduce whether a
single UAVs is serving more GDs at the same time.

• Task Rate: this is the rate of the Poisson Process describing the task
generation, it expresses how many tasks per second the GDs is supposed
to forward on average. If the UAV serving that GD has a processing
rate much lower than this parameter, some task loss will be inevitably
experienced, unless other UAVs come in assistance.

• Position: this is the set of coordinates related to that GD’s position
at that time instant. In this work, a constant GD position is assumed
over the whole simulation. Therefore, since the initial position is known
a priori, this information is useless but leaves open the possibility to
increase the complexity of the scenario and allow the GDs to have a
dynamic behaviour.

4.3 Action Space

The design of the action space is another fundamental aspect that must be
addressed while designing the DQN algorithm. An action represents the
ways the agents are allowed to interact with the environment. Consistently
with the purpose of this work, an action corresponds to a discrete movement
the agent can perform within the two-dimensional space that defines the
environment.

The number of possible actions and their complexity have a significant
impact on the performance of the system; an increasing number of actions
inevitably requires additional complexity in the neural network, not only
on the output layer but also in the hidden layers, in order to support them
and lead to an effective policy. In facts, since a multiple agents scenario is
considered and the proposed architecture is centralized, only one network
will be responsible for policy training and inference of all the agents in the
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network. Therefore, the network must be designed to support states and
actions for all the agents of the system, resulting in bad scalability.

Future work may be oriented to realize a distributed architecture in which
each agent is provided with his own network and therefore responsible for its
own actions.

In this work the following trade-off has been selected: the action space is
a nDrones x 1 box in which each entry expresses the index of an action array.
Accessing this array at the proposed index, each agent is informed on which
type of action it should perform according to the policy in use. Five possible
different actions are considered: a movement in the four direction and a
stay-still action. Once the BS notifies each agent on which action it should
leverage, the discretization step parameter and the Boundaries Handler are
exploited to translate the request in an actual position change in the ns-3
continuous space.

Figure 4.2: Discrete Action Space of the model Markov Decision Proces.
At every time step, one of the five possible actions is performed. If the action
overcomes the system boundaries, the Boundary Handler will simulate a
reflection effect (Algorithm 5)
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4.4 Reward Function

The reward function is the most critical feature of the Markov Decision Pro-
cess design. The reward value associated to each state transition and action
pair is the core of the reinforcement learning approach: the fundamental aim
of the algorithm will be the maximization of the expected cumulative reward
by exploration of the environment and exploitation of acquired knowledge.
Furthermore, the performance of the training process strongly rely on how
clear the (transition, action, reward) set is expressed at each evaluation.

A significantly long trial and error procedure has been performed in order
to determine the optimal reward function for the scenario proposed in this
work. Part of these experiments will be discussed in the following sections.

The optimal reward function that has been selected is a binary function
that computes, for each ground device, the minimum distance with respect
to all UAVs and returns 1 if this value is below a certain threshold, otherwise
it returns 0. The final behavior that is expected from this reward function is
the minimization of the distance among a Ground Device and the nearest
UAV, hence leading to coverage maximization.

The experiments showed that sub-optimal performance are achieved by
the training process when the reward function is as much simple as possible;
an increase in its complexity leads to improper behavior of the agents during
inference procedure. Future work may be devoted to deeply investigate the
reasons of this critical complexity scalability and define a methodic strategy
to identify the optimal solution.

4.5 Neural Network Design

In the literature there are several examples of neural network design processes
for optimization purposes, the results carried out by authors in [23] have
been of great inspiration for this work.
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According to the features and purposes of the system described up to
now, a neural network has been selected as the best solution to model
the reinforcement learning policy. This network should accept as input
information about the position of UAVs and Ground Devices within the
environment and eventually provide on output the Q-value associated with
each possible action the agents can perform. Therefore, starting from the
relative and absolute positions of the agents within the environment, the
network will be trained in order to select at each time the optimal action, i.e.
the action that maximizes the expected cumulative reward of the system.

Since the number of UAVs and GDs is supposed to be an arbitrary
parameter of the system, the input layer should be designed to be agnostic
with respect to that. The best way to address this problem is to organize
the position information in two-dimensional maps, i.e. sparse matrices with
ones occurring on the cells corresponding to the proper discretized position
of each agent. The same strategy could be applied also for other variables,
depending on the purpose of that specific scenario, e.g. a map expressing the
level of activity of the ground devices or the amount of resource utilization
of each UAV.

Figure 4.3: Neural Network architecture proposed in this work, from input,
i.e. the three state maps, to the output, i.e. the Q value associated to each
possible action. The absolute observation provided in the middle of the chain
corresponds to the position of the specific agent whose action is going to be
determined.
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From Machine Learning Theory, Convolutional Neural Networks (CNNs)
are indeed the best solution to address problems with two-dimensional
structures as input, e.g. they are renown for image classification.

The main perks of CNNs are:

• Local receptive fields: only a subset of cells will be connected to a hidden
neuron, this hugely reduces the complexity of the network and exploits
the idea that informative elements may be pretty localized rather than
uniformly distributed.

• Shared weights: the connections from the local receptive field to each
neuron have all the same weights, hence with the convolution kernel
acting as a filter. This allows to significantly reduce the complexity of
the network in terms of parameters.

• Pooling: pooling layers allow to simplify the information output from
a convolutional layer, performing a sort of downsampling. This allows
to avoid the exponential increase of the number of parameters when
moving from a layer to another.

After an extensive trial and error procedure, the neural network architecture
best suited for the purposes has been identified and it is presented in the
following. It is reasonable to consider this solution as the best trade off
among computational complexity and training performance, although future
work could be devoted to further experiments and robustness improvements.

The input CNN is made of one convolutional layer with 9 kernel filters
of 3x3 size and one max-pooling layer with kernel size 2x2 and stride of 2.
Afterwards, the output of this CNN is passed to the last part of the network,
made of three fully connected layers. The two hidden layers are respectively
made of 900 and 80 neurons, they allow the implementation of reasonably
complex functions while keeping the computational complexity bearable.
The output layer has exactly the action space dimension; each neuron refers
to one of the possible 5 actions an agent is allowed to perform and the value
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associated to that neuron is the Q-value, hence the reinforcement metric
related to that action (Figure 4.3).

4.6 Training Process

As introduced in Chapter 3, the aim of the training procedure is for the
designed deep Q network to learn a policy that correctly maps the current
state of the agent to the action that maximizes the expected cumulative
reward. The general algorithms for Q-learning and its DQN enhancement
have been introduced in Algorithms 1 and 2. Since a centralized architecture
has been considered, a single network will be considered as well; hence, the
aim of the training process design is to achieve a unique and scalable policy
that is shared by all the agents in the system and fosters their cooperation.

During the training procedure, for each episode, the agents will interact
with the environment at the same time, mutually affecting the results of
their decisions. The actions, for each evaluation step, are selected according
to a ε-Greedy Policy, which has been proven to be the best balance for
exploration and exploitation procedures. At the beginning of the training
process the agents will purely explore the environment, performing random
actions only. Eventually, the noise will be gradually reduced, up to the
end of the training process in which the network should fully exploit the
acquired knowledge. For each (state, next state) transition, a certain value of
cumulative reward is associated and the whole set is appended to the replay
buffer, whose batches are exploited to train the network. Eventually the
target network’s parameters are updated according to the Polyak averaging.

The parameters deeply affecting the training performance are:

• Number of Training Episodes: the appropriate amount of episodes
needed for the network to achieve good training performance can be
found by trial and error procedures.

• Simulation Time: each episode corresponds to an entire simulation of
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Figure 4.4: DQN Training Process for the proposed multiple agents system.
On the right, the agents provide their observation and receive a corresponding
action according to the current policy determined by the DQN algorithm.
On the left, the training scheme is shown, which relies on the replay buffer
and the two main and target networks as discussed in Chapter 3

a certain duration. Longer simulations allow better exploration of the
environment but it may significantly slow down the training process.

• Evaluation Step Time: this is the periodic sampling performed by
algorithm on the agents, observations are collected, reward is computed
and actions imposed.

• Discount Factor γ ∈ [0,1]: the discount factor is a parameter that ex-
presses the importance of cumulative future rewards over the immediate
instantaneous ones. When γ equals 0, the agent will act short-sighted
by only considering current rewards. Viceversa, when γ approaches 1,
the agent will strive for a long-term high reward.

• Epsilon ε ∈ [0,1]: the epsilon parameter is involved in the ε-greedy
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policy for the selection of the action to perform at each evaluation step.
ε can be interpreted as the probability according to which a random
action must be performed (exploration) rather than one based on the
acquired knowledge (exploitation).

• Pure exploration limit: previous studies proved that a pure exploration
phase at the beginning of the training process may lead to better per-
formance. Starting from this episode, at each evaluation, the ε will be
decreased, e.g. according to εt+1 = εt ∗ 0.99995.

• Minimum Epsilon εmin: this is the minimum value imposed for ε, even
in the pure exploitation mode there will be a certain number of random
actions according to this probability. This can be interpreted as an
intentional addition of noise in the action performed, in the following
chapters the benefits of this action will be discussed.

• Batch Size: the batch size defines the number of samples that will be
propagated through the network. Using many small sets of samples for
training the network enables lower memory requirements and typically
faster training. On the other hand, the main disadvantage of mini-
batches is the less accurate estimate for the gradient, which may lead
to unexpected fluctuations on the results. The proper value must be
determined for each specific scenario by trial and error procedures.

• Polyak Weight τ : this parameter is involved in the Polyak Averaging
process performed when updating the weights of the target neural
network according to those from the main one.

• Experience Replay Buffer Size: the larger the experience replay buffer,
the less likely correlated elements will be sampled, hence the more stable
the training of the network will be. However, a large experience replay
buffer also requires a lot of memory and it might produce a much slower
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training. The proper value for this parameter depends on the specific
scenario, it should be determined by a fine tuning procedure.

• Bounds and Discretization: these parameters express how fine the
discretization of the continuous space is and the overall boundaries of
the environment. A rough discretization leads to lower complexity in
the network but lower accuracy when re-mapped onto the continuous
space. A proper trade off must be determined in order to achieve the
best performance, however it is clear that, no matter how fine the
discretization is, a quantization error will always occur.
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Chapter 5

Tools

5.1 Network Simulator 3 (ns-3)

ns-3 is a free and open-source discrete-event network simulator based on
C++ programming language and Unix network architectures.

Although ns-3 is based on C++ at its core, every API can be exported as
Python bindings, allowing users also to write python scripts rather than C++
programs. In addition, components like pybindgen, castxml and pygccxml
are provided by default and allow the C++ libraries’ parsing and binding
generation.

One of the hallmarks characterizing ns-3 is the realism of its models,
making implementation closer to the actual software they represent. In fact,
ns-3 has been designed with the purpose of simulating networks architectures
in a way that resembles as much as possible the Unix internal and application
interfaces (e.g. device drivers and sockets). This also emphasizes ns-3’s
emulation capabilities and its feasibility to be used on testbeds with real
devices and applications.

The WAF build system is a Python-based framework that ns-3 exploits
for configuring, compiling and installing applications.

In the following, the main components of ns-3 simulations are presented:
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• Nodes: They represent a network host; hence they can realistically
contain lists of network devices, applications and objects in general.
This intuitive representation is made possible by the aggregation system,
which will be discussed later on.

• NetDevices: They implement functionalities to send and receive data.
Sub-classes of NetDevices include PointToPoint, CSMA and Wifi. The
simplest ones come by default with a MAC and Physical layer imple-
mentation, while more complex ones, like Wifi LANs, require explicit
definition from channel properties up to MAC protocols’ parameters.

• Channels: They define a connection between a set of nodes. These
nodes, sharing the same channel object, will therefore belong to the
same broadcast domain. For instance, all nodes in a LAN share a single
CsmaChannel and all nodes in a WiFi network should have the same
YansWifiChannel.

• Packets: They represent the quantum unit for information exchange
among nodes. Like real communications, packets are made by headers,
trailers and payload, all stored in a byte buffer. In addition, they can
also have tags and metadata added to them:

– Tags: set of arbitrary, user-provided data structures (e.g., per-packet
cross-layer messages, or flow identifiers)

– Metadata: describes types of headers and trailers that have been
serialized, optional and usually disabled by default.

• Applications: They represent the high-level traffic generators, creating
packets, hence forwarding them to lower layers of the stack, or listening
for packets and eventually processing them. The simplest examples of
application are:

– UdpEchoApplication: it generates packets of a certain size with
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an arbitrary time interval. This is usually deployed to test if the
communication is properly functional.

– OnOffApplication: it generates traffic according to an on-off pattern.
During the "Off" state, no traffic is generated. During the "on" state,
a constant bitrate (CBR) traffic is generated, characterized by the
specified "data rate" and "packet size".

• Mobility Models: They specify the behaviour of nodes in terms of
mobility. Nodes can be stationary or moving according to a certain
model, e.g. RandomWayPoint or RandomWalk.

Since, by definition, simulation time moves discretely from event to event,
a scheduler has been introduced to manage the event execution fully. It
enqueues new events when created and dequeues them whenever the simulator
engine is ready to move the system to its next state. Thus, the engine
maintains a sorted list of future events which are progressively dispatched
and served by calling the proper event handler subroutine. In ns-3, every
member function for any object has the potential to be an event handler
since it can easily create and schedule new events.

All ns-3 objects inherit from their base class ns3::Object several useful
features such as:

• dynamic run-time object aggregation

• an attribute system

• smart-pointer memory management

Given a certain entity, such as a node, aggregation allows to retrieve pointers
to all its connected objects (e.g. Mobility Model, NetDevices or Applications)
without explicitly modifying the base class to do so. This feature enables
flexibility in design, efficiency in memory usage and simplicity in object
representation.
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An Attribute represents a template value of the system that can be
connected to an underlying variable or function of the corresponding object.
The attribute system is a unified and agile way to handle initialization
and access to the variables of an object (e.g. setting or getting a variable
during the execution without explicitly programming methods to access the
corresponding pointers).

Smart pointers are template objects belonging to the ns-3 reference-
counting system. They behave like normal pointers from a syntax perspective,
but they are designed to avoid memory leaks, automatically managing the
heap deallocation whenever the reference count goes to zero.

In order to produce an alignment with the common input/output stan-
dards, such as ASCII or pcap traces, ns-3 has been equipped with a tracing
system that enables agile post-processing of simulation data, with the aim of
evaluating and monitoring the workflow and the performance of the system
under analysis.

TraceSources causes a function with a specific signature to be called
whenever a certain event occurs, e.g. packet reception or wifi association.
The user-defined routine to execute is called TraceSink.

5.1.1 Native Modules

In the following, the main libraries that have been exploited in this work are
introduced.

• core-module: it provides the main ns-3 functionalities, such as event
management, the scheduling system, random variables and the attribute
system.

• network-module: it manages several aspects of the network stack, such
as topology management, physical layer definition, MAC and IP layer
protocols, queuing systems, packet management and socket factories.
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• applications-module: it contains all the helpers needed to install native
applications, such as OnOff, Echo, 3GPP HTTP, etc.

• mobility-module: it provides all the objects and methods needed for
position allocation and native mobility models installation, such as
Random Walk, Waypoint, Gauss-Markov, Hierarchical, etc.

• internet-module: it handles the IP layer protocols, the routing manage-
ment and the interface with the transport layer.

• yans-wifi-module: it provides an accurate implementation of IEEE 802.11
standard, based on the Yet Another Network Simulator project [24].

• propagation-module: it enables the implementation of a realistic channel
model in terms of loss and delay experienced, such as FixedRSS, Friis
Propagation, 3GPP indoor/outdoor models, etc.

• flow-monitor-module: it provides a user-friendly system that allows to
gather aggregated flow-based statistics over the whole simulation.

5.1.2 New Modules

In addition to the modules natively available and previously introduced, new
modules have been produced from scratch as part of this work.

These modules have been implemented according to a scenario agnostic
approach and consistently with the official contribution guide provided in [25].
This strategy enables an efficient and agile reuse of these modules for future
works, such that they can be deployed for even completely different scenarios.
Furthermore, they can even be published as an open-source contribution to
ns-3, such that anyone can exploit them without the need of modifying the
ns-3 original source code.

Here they are introduced:
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• air2ground-propagation-loss-model: this module provides a probabilistic
propagation loss model that realistically resembles an actual Air-to-
Ground communication channel. The inspiration for the algorithm and
its parameters comes from the work in [6]. This model is an enhancement
of the native Friis propagation-loss-module, introducing a stochastic
characterization of an extra path loss depending on the urban environ-
ment and the elevation angle of the flying vehicles. Specifically, the
authors in [6] empirically retrieved several sets of parameters, each one
related to a specific urban environment density. These parameters allow
to compute the probability of Line of Sight for a specific communication
link and to describe the extra path loss affecting the propagation as a
Gaussian random variable with certain mean value and variance.

• traffic-generator-module: this module provides a server/client pair of
applications that allows to model a realistic task/processing traffic
generation process. From the client perspective, traffic is generated
according to an arbitrary inter-packet time. The default definition of the
inter-packet time is an Exponential Random Variable with parameter
λ, resulting in a Poisson Stochastic Process description of the traffic
generated by the client. From the server perspective, once a packet
has been received, it is assumed that a certain amount of time for its
processing must be allocated. This allows to resemble the computational
cost required for the server to perform a certain task forwarded by the
client. The default description of this processing time is again a Poisson
Process with parameter µ. For the sake of simplicity, the server is
assumed not capable of parallel processing; a new task will be processed
once the last one has been successfully accomplished. Eventually, once
the processing operation has been completed, the server forwards a
packet back to the client. This packet’s payload will provide an outcome
related to the previously assigned task.

• ai-interface-module: this module consists in the cooperation among three
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different applications, a client/server pair of traffic generators and a
gym interface framework. The objective of the module is the full imple-
mentation of the interface among ns-3 and the OpenAI Gym algorithm.
The client application is meant to run on the same node performing
server operations for the traffic-generator module. In fact, a periodic
interrupt callback system is deployed for the sampling of that node’s
statistics, e.g. its position, the number of tasks received/served and the
ground devices it is serving along with its statistics. These statistics
will then take part in the observation for the reinforcement learning
algorithm. Once this information has been aggregated and serialized,
it is forwarded to the server as part of a packet’s payload. Therefore,
the client generates a constant bitrate traffic defined according to an
arbitrary constant inter-packet time. From the server perspective, these
packets are processed and their information parsed and accumulated,
ready to be forwarded to the AI algorithm. When the AI algorithm
determines which actions the agents should perform in order to maximize
the expected cumulative reward, the server will handle the production of
a proper packet in order to inform the client. Eventually, the client will
receive the packet, parse it, and apply the action suggested by the AI
algorithm. The gym interface component is responsible for establishing
the ZMQ inter-process communication channel needed for the exchange
of observations, actions and rewards among ns-3 and the OpenAI Gym
algorithm.

5.2 PyTorch

As declared in the official paper [26] and on its website [27], PyTorch is a
Python package that mainly provides two high-level features:

• Tensor computation: multi-dimensional data structures that can run on
GPUs and hence speed computational time up.
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• Deep neural networks built on a tape-based autograd system, i.e. an
automatic differentiation engine that powers neural network training.

Compared to other popular frameworks, PyTorch introduces a dynamic way
of building neural networks based on using and replaying a tape recorder. This
technique, i.e. reverse-mode automatic differentiation, allows to change the
way the network behaves arbitrarily, with zero lag or overhead. Furthermore,
its GPU-Ready Tensor and Neural Networks libraries are the hallmarks of
this module, providing efficient accelerated computing capabilities and agile
neural networks definition.

In conclusion, PyTorch is usually chosen as deep learning framework
because it enables fast, flexible experimentation and efficient production
through a user-friendly front-end, distributed training, and ecosystem of
tools and libraries.

5.3 ns3-gym

In order to follow the major trend in network research to merge ns-3 simula-
tions with RL algorithms, the authors in [28] introduced the ns3-gym module.
This toolkit has been designed to enable the interaction among OpenAI Gym
and ns-3 network simulator by establishing a ZMQ-socket-based Inter-Process
Communication channel.

The purpose of the authors was to define a scenario agnostic framework
where the realistic simulation provided by ns-3 could be exploited as the
environment of a RL algorithm where the agent performs exploration and
exploitation procedures. In order to make policy learning as much effective as
possible, real-world training would be necessary; however, this is usually not
feasible because of testbed cost, setup time and safety reasons. Since ns-3 has
been designed to reflect communication systems’ behaviour realistically, this
model fosters the prototyping of innovative RL-based networking solutions
without buying and setting up costly testbeds. On the other hand, since ns-3
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natively supports testbed implementation, this module allows the seamless
porting of the simulated RL solution onto a real-world system, in order to
eventually evaluate the consistency with the simulated scenario.

Figure 5.1: Architecture of ns3-gym framework [11]

Figure 5.1 depicts the architecture of ns3-gym. It consists of an ns-3
framework (1), an OpenAI Gym framework (4) and ns3-gym middleware (2
and 3). The first defines the environment and the agents interacting with it;
the second defines the reinforcement learning algorithm that, basing on the
observations, will provide the optimal action that maximizes the cumulative
reward for the agent. The middleware between the two frameworks provides
a ZMQ socket inter-process communication channel that enables messages
exchange among them (i.e. observations and actions). It is composed of the
Environment Gateway (2) and the Environment Proxy (3).

On the ns-3 side, the Environment Gateway is responsible for gathering
the agents’ states and interpreting the actions received from the RL algorithm.
The main APIs exposed in ns-3 for the gateway implementation are:
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• GetObservationSpace() and GetActionSpace() initialize the observa-
tion/action data structures and establish a common ground for both
frameworks to exchange messages properly.

• GetObservation() gathers the simulation variables involved in the ob-
servation definition and collects them in the predefined data structures,
ready to be forwarded to the AI framework;

• GetReward() evaluates the reward achieved during the last agent’s state
transition;

• GetGameOver() checks whether the agent has reached the game-over
condition or not, hence if the episode must be terminated or not;

• ExecuteActions(action) handles the reception of the action data structure
from the AI framework and maps it into the corresponding action the
agent must perform.

Similarly, on the AI framework side, the Environment Proxy will manage
the reception of the observations from the ns-3 environment and eventually
forward them to the RL algorithm through Gym APIs. Viceversa, it will
collect the action that has been selected by the RL algorithm and forward it
to the ns-3 simulation through the ZMQ communication channel.
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Implementation

The previous chapters have been devoted to an introduction of the problems
tackled in this work, the approach and strategy proposed and the tools
exploited to achieve some results and conclusions. This chapter highlights
the methodology that has been pursued to design and implement the proposed
solution.

6.1 Python Environment

Two main Python frameworks have been implemented; the first handles
the policy training and the latter exploits a previously trained network to
perform inference simulations.

Both of them obviously share and implement the same problem formal-
ization structure discussed in Chapter 4.6: for each timestep, a certain
observation space is gathered from the ns-3 environment, it is processed, an
action space is returned, and, eventually, the reward function corresponding
to this state transition is evaluated.

In the following, a description of the policy training framework is provided.
The first step regards the processing of the information boxes coming from

ns-3; the most significant operation is the discretization process that maps
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the continuous position information to the discrete maps that will be later
passed to the CNN for training. Specifically, three maps are produced from
each observation: UAVs’ position, Ground Devices’ position and their level
of activity, i.e. the task rate of the Poisson distributed traffic generation
process.

The next step is the selection of the action to perform; according to the
ε-greedy policy algorithm, an instance from a uniform random variable in
[0,1] is extracted and compared with the ε parameter defined during the
initialization. If the value is lower than ε, a random action is performed
(exploration), otherwise exploitation is performed. In detail, the current
state is passed to the neural network, along with the position of the specific
UAV that is supposed to perform the action, and the final action index will
be determined by the neuron of the output layer with the highest Q-value.

The ns3-gym method step(self, action) will exploit the ZMQ inter-process
communication channel to forward the action to the ns-3 framework for
its actual execution. Once the action has been performed, a new complete
observation of the next state is gathered, along with the reward achieved
with the current state transition. Eventually, the set state, next state, action
and reward is stored in the Replay Buffer for later policy training.

Once the Replay Buffer becomes full, the training procedure starts: a batch
of a certain size is sampled from the replay buffer and passed to PyTorch
methods that will handle the training of the main network. Eventually, Polyak
averaging is performed in order to update the target network parameters
and the ε is updated according to the strategy imposed during initialization.

6.2 ns-3 Environment

As already stated in the previous chapter, the definition of an ns-3 envi-
ronment has the purpose of bringing as much realism as possible in the
simulations. Each element of the system must be defined as a node of a
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network with a specific set of physical layer characteristics, network devices,
protocols and applications.

In this chapter, the main features of the proposed ns-3 framework are
introduced.

6.2.1 Network Architecture

The scenario proposed in this work consists of three types of nodes: Drones
(UAVs), Ground Devices (GDs) and Base Stations (BSs). UAVs will be able
to establish three different communication links, the first with the GDs for
task processing, the second with other UAVs for task offloading and the
third with the BS for periodic observation/action exchange. In order to
achieve them, each UAV has been equipped with three IEEE 802.11a network
devices:

• WiFi 802.11a - Infrastructure Mode: the UAV is configured to act as an
Access Point that will be able to serve one or multiple GDs at the same
time acting as WiFi Stations.

• WiFi 802.11a - Infrastructure Mode: the UAV is configured to act as
a WiFi station which will pair with the corresponding AP interface on
the BS.

• WiFi 802.11a - Ad-Hoc Mode: the communication among UAVs is
implemented with an Ad-Hoc interface for simplicity and consistency
with the absence of classification among UAVs.

From the previous information, it is clear that both the BS and the GDs are
equipped with a WiFi 802.11a interface in Infrastructure mode, respectively
acting as AP and STA.

Each one of these devices relies on a specific Physical Layer definition
characterized by Transmission Power, Frequency Channel Number, Propaga-
tion Delay Model and Propagation Loss Model. The WiFi Channel Numbers
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are selected in order to avoid inter-channel interference among the three net-
work devices, hence sufficiently spaced to avoid spectrum overlapping. The
transmission power can be set arbitrarily at the beginning of the simulation;
the default values are consistent with the real hardware capabilities of the
devices: UAVs and GDs should transmit with the lowest power possible in
order to maximize the energy efficiency while the BSs is realistically allowed
to support higher values for the transmission power [29].

6.2.2 Channel Model

For all Air-to-Ground communication links, the channel model presented
in [6] and described in Algorithm 4 is adopted. The Urban Density and
the Elevation Angle are arbitrary parameters that can be imposed at the
beginning of the simulation during the initialization procedure.

Since the Air-to-Air communication channel is supposed to be affected by
fewer impairments, the ideal Friis Propagation Loss model is implemented,
as described in Algorithm 3.

6.2.3 Mobility Models

As already stated in the Problem Formalization (Chapter 4.6), the UAVs
must be able to receive messages from a BS containing the action they should
perform according to the policy imposed by the Reinforcement Learning
algorithm.

ns-3 offers a native mobility model that allows to asynchronously schedule
the next position a certain node should reach, i.e. WayPoint Mobility Model.
The initial position of all UAVs is selected according to a Random Disc
Position Allocator: they lay on a circle with the origin of the reference
system as its centre, arbitrary constant radius |ρ| and angle θ extracted from
a uniform random variable in [0,2π]. This disc will also be interpreted as
the boundary of the whole environment, such that the agents should not go
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beyond it. All the following positions, aka waypoints, will be scheduled in
the ai-interface-client application whenever a packet is received from the
BS. Since Python AI framework operates within a discretized bi-dimensional
space, each action will correspond to moving an agent from a cell to an
adjacent one; hence, every new waypoint will correspond to covering a
distance equal to the space discretization factor imposed as initialization
parameter.

All GDs and the BS are instead characterized by a Constant Position
Mobility Model; future work may be devoted to the introduction of dynamic
behaviour for the GDs and to training performance comparison with respect
to this simplified scenario.

An important assumption that is important to underline is the fact that
the BS is aware, at the beginning of each simulation, of the initial positions
of all UAVs and GDs. It is like having performed a prior offline exploration
of the environment in order to identify which GDs are asking for service
and store their location. Future work may be oriented to removing this
assumption and moving to a more realistic solution in which this discovery
is performed in real-time.

6.2.4 Applications

As already introduced previously, there are three different types of traffic that
are generated within the proposed scenario. One regards the task/outcome
exchange among UAVs and the GDs under service, another is related to the
periodic observation/action exchange among UAVs and the BS, and the last
one is an ideal constant bit rate traffic that resembles a constant information
exchange among UAVs in the same radio range.

Specifically, the applications installed on all UAVs are:

• traffic-generator-server : this application is devoted to task reception
from GDs. Whenever a task is received, a simulated processing time
needed for its execution is extracted from a random variable arbitrarily
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distributed, e.g. Exponential by default with parameter µ. After the
processing time elapsed, an outcome packet is sent back to the proper
GD. In other words, this application generates a Poisson distributed
traffic going from UAVs to GDs. It is important to highlight that,
in order to avoid inconsistencies, each UAV is assumed not capable of
parallel processing features. Hence, an internal FIFO queuing system has
been implemented in order to guarantee that only one task is executed
in each time instant and, at the same time, ensure that the application
is able to listen for other tasks without dropping them.

• ai-interface-client: the aim of this application is to forward the observa-
tions to the BS periodically and to handle the reception of the action
messages in return. Regarding the observations, the Inter-Packet Time
can be configured as a random variable with arbitrary distribution; in
this case, a constant deterministic value has been preferred. A periodic
interrupt system has been implemented in order to access and update
the information required for the composition of an up-to-date obser-
vation. On the other hand, whenever an action message is received,
the application will handle its parsing and translation into an actual
waypoint.

• on-off-application: the native on-off application module has been ex-
ploited to roughly simulate a constant bit rate traffic among UAVs in
the same radio range, which may resemble task offloading operations or
collaborative computing.

Consequently, GDs are characterized by a traffic-generator-client application,
whose purpose is to generate a Poisson distributed traffic towards UAVs,
resembling a sequence of tasks to be executed. Thanks to its agnostic im-
plementation, the inter-packet time variable can be easily changed from
Exponential with intensity λ to any preferred distribution that is supported
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natively by ns-3. Concurrently, the application is able to listen for pack-
ets coming back from UAVs, which resemble the outcomes related to the
previously forwarded tasks.

Eventually, the BS is provided with a ai-interface-server application, whose
aim is to receive the observations from all the UAVs in the system, update
its internal aggregated maps, establish a ZMQ inter-process communication
channel with the AI framework, and forward action messages back to the
UAVs.

Figure 6.1: Overview of the framework design. The block on the left
presents the problem formalization in Chapter 4.6. The block on the right
illustrates the information flow among the two frameworks, i.e. ns-3 and
Open AI Gym.
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6.2.5 Handlers

Many of the functionalities and results that have been presented in this
thesis have been achieved thanks to the implementation of a set of various
algorithms:

• Handover Handler: this routine allows to keep track in real-time
of the handovers occurring whenever a UAV stops serving a certain
GD and moves towards another one. The WiFi AssociationLog trace
source is exploited: whenever an AP ↔ STA pairing occurs at the
MAC layer, an interrupt callback routine is executed. This routine is in
charge of extracting the Node IDs involved in this operation and inform
the corresponding applications. The traffic-generator-client application
running on a GD will be informed about the new UAV in radio range,
i.e. the corresponding IP address is set as the destination for all the
future tasks generated. The ai-interface-client application running on a
UAV will be informed as well in order to add the new GD to the list of
the GDs currently served by that UAV. Similarly, the DeassociationLog
trace source is exploited to perform the inverse operation: whenever the
AP ↔ STA pairing is lost, the corresponding GD is removed from the
list of the UAV involved.

• Boundaries Handler: whenever an action is produced by the Rein-
forcement Learning algorithm, before actuating it, it is fundamental to
check if this action may make the agent overcome the boundaries of
the reference system. This handler provides two possible approaches on
addressing this issue. The first is the possibility to rescale an action, if
this results in a boundary overcome, or stay still if needed. The second
option is to simulate a reflection effect: the agent reaches the boundary
and the remained amount of distance to cover is performed towards the
centre of the circle. The algorithm is presented in Algorithm 5.

• Packet Monitoring: the huge set of trace sources provided by ns-3
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allows the production of output logging files that can be later post-
processed in order to gather some statistics. The simulator natively
offers the possibility to trace everything occurring in the system with
pcap traces or ASCII logs; however, part of this work has been devoted
to producing a tracing system that could export only the information
that was actually of interest and therefore avoid processing irrelevant
and redundant information. All the Physical Layer trace sources have
been exploited, i.e. an interrupt is received whenever a packet has been
transmitted, received or dropped on a certain network device. The
packet involved can be inspected and its information arbitrarily printed
onto an output file.

• Mobility Monitoring: similarly, the CourseChange trace source, re-
lated to the Mobility Model module, has been exploited in order to log
the time evolution of the positions assumed by nodes of the system.
This handler has been particularly useful in the initial connectivity and
performance evaluation tests, in which a Random WayPoint Mobility
Model was deployed.

• SNR Tracing: the Signal-to-Noise Ratio is a fundamental metric of
telecommunication systems that allows to evaluate from a quantitative
perspective the quality of the communication channel. This parameter is
usually related to the Bit Error Rate guarantees that must be fulfilled as
a requirement of a certain communication system. Tracing this quantity
allows to acquire further knowledge from a technical perspective of the
communications occurring during the simulation and ease up design
processes if necessary.

• Vehicle Visualizer: the native network visualizer provided by ns-3 is
definitely not sufficient to fully illustrate the characteristics of a designed
system. In particular, it does not allow to change nodes’ colour or icons,
making the representation pretty messy and definitely not flexible or
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agile. Part of the work in [30] was devoted to the development of a
visualizer based on NodeJS that allows to address the aforementioned
issues. A comparison among the two tools is provided in Figures 6.2
and 6.3; the visualizer from ms-van3t enables the introduction of icons
for each node and an underlying geographic map that can be chosen
according to arbitrary coordinates. This definitely increases the quality
of experience when presenting a simulated scenario and enables the
possibility to compare multiple environments, e.g. suburban or dense
urban, in a clearer and more effective way.

Figure 6.2: Vehicle Visual-
izer from ms-van3t [30]

Figure 6.3: PyGraphViz na-
tive module
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6.3 Post-processing Environment

A wide library of MATLAB functions has been developed in order to read,
parse and process the output logs produced from ns-3.

The set of statistics that can be gathered can be classified into two main
types: those aggregated over the whole simulation and those aggregated over
an arbitrary time window, e.g. every 200 packets.

For the sake of clarity, the following Figures are related to simpler scenarios
and have been reported just as an example of the potential of these post-
processing algorithms for future work.

For the first class, the following statistics can be achieved:

• Transmission Power PTX vs Throughput, SNR, Delay or Packet Loss

• SNR vs Throughput with variable Bin size

Figure 6.4: Statistics related to multiple simulation instances, each one
with a different transmission power. A simple Random WayPoint Scenario
and CBR traffic generation are considered

Figures in 6.4 highlight the consistency among the metrics under analysis:
increasing the transmission power, the quality of the communication increases,
achieving higher SNR values and consequently higher throughput and lower
packet loss.
With respect to second class, the following statistics can be gathered:

• Time vs Throughput, SNR, Delay or Packet Loss
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• Distance UAV ↔ GD vs SNR

• SNR vs Throughput with variable Bin size

• Nodes trajectories in time

Figures in 6.5 allow to qualitatively appreciate the consistency among the
relative distance of the two UAVs and the achieved SNR. Obviously, due to
the 3D nature of the first plot, more effort is definitely required to make the
comparison actually appreciable.

Figures in 6.6 consistently show that shorter distances between a UAV
and a GD under service correspond to higher SNR achieved. Moreover, the
proposed algorithm takes into account handovers too; that is the reason why
multiple UAVs are shown on the left plot. The second plot highlights the
lower mean value and the huge variance that characterize the throughput
random process; the reason is related to the deployment of a realistic A2G
Propagation Loss model and the fact that the worst-case scenario is imposed.
Low elevation angles will produce higher non LoS probability and a Highrise
Urban environment will correspond to harsher propagation conditions.

Eventually, it is worth mentioning the last class of statistics related to
the application layer rather than the physical one. The application traffic-
generator is considered, set to generate a Poisson distributed traffic for
task forwarding according to parameter λ and task processing according to
parameter µ.

• Poisson Process stair plot

• End-to-end Delay at Application layer

• Task Loss

Figures in 6.7 clearly depict the properties of Poisson Processes: non-
negative, never decreasing, no deterministic information superimposed, inde-
pendent and stationary increments. Consistently with the expectations, the
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Figure 6.5: Statistics related to a Suburban environment scenario with
Elevation Angle θ = 50°. The plot on the left is a 3D plot reporting the
trajectories of the two UAVs involved in A2A communication. The plot
on the right highlights the achieved SNR in time for both A2G and A2A
communications.

Figure 6.6: Statistics related to a Highrise Urban environment scenario
with Elevation Angle θ = 50°. The plot on the left compares the UAV ↔
GD distance with the SNR experienced by the UAV that is serving. The
plot on the right reports the achieved throughput in time for both A2G and
A2A communications.
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expected number of packets in the long run is directly proportional to the
hazard rate.

Figures in 6.8 highlight the E2E Delay and the Task Loss experienced.
The average E2E Delay for the UAVs’ outcomes is smaller, probably due to
the fact that smaller packets sizes have been simulated. The second plot
compares the task loss with different processing rates µ [packets/s], assuming
a fixed task rate λ [packets/s]. The percentage of tasks that has not been
served within the simulation consistently decrease with the processing rate.
If λ < µ, the server can cope with the task rate: all tasks will be served
successfully. On the other hand, if λ > µ, the server can’t cope with the task
rate in terms of processing time: some tasks will be left unserved.

Figure 6.7: Trajectory of Poisson Processes: number of events in time

Figure 6.8: End-to-end delay at application layer and task loss experienced
for fixed λ and different µ
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Chapter 7

Experimental Results and
Discussion

In previous chapters, both ns-3 and Python environments have been in-
troduced and deeply analyzed, highlighting purpose, strategy and imple-
mentation of the proposed solution. In first instance, the purpose of this
chapter is to briefly discuss the main limitations of the system which have
been encountered during the several experiments carried out. Specifically,
some of the most important training sessions and their results are reported,
underlining the common critical aspects of machine learning in general and
the limitations of the specific solution proposed.

In second instance, the best policy achieved is exploited to retrieve a set
of statistics that can represent and describe the performance of the system.

7.1 Training Experiments

As introduced previously, this section is devoted to the introduction and brief
discussion of some of the experiments that have been conducted during the
trial and error procedure to find the best hyper-parameters for the training
session.
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Each figure of the following reports the evolution of the cumulative reward
achieved in each episode and averaged according to the following algorithm:
for each episode, the running reward is updated according to Equation 7.1
and eventually stored for plot purposes every 10 episodes. This allows to
smooth out the reward curve and highlight its fundamental characteristics:
the increasing trend and the maximum value achieved.

It is worth mentioning that each training experiment could last up to 10
hours each. Exploiting more powerful computational resources, especially
introducing a GPU, leads to shorter training times (about 5 hours). Future
work may concentrate on improving this timing issue and hence enable the
possibility to perform multiple tests with higher efficiency and agility.

runningReward← 0.9 · runningReward+ 0.1 · episodeReward (7.1)

Figure 7.1: Cumulative Reward Problem, Complex Reward Unsuitability,
Exploding Gradients Effect

• Figure 7.1:

– Cumulative Reward Problem: a reward function aiming at the
minimization of the maximum UAV↔GD distance leads to improper
results; due to the algorithm’s critical aspects, the reward over the
whole simulation may always be related to the same UAV↔GD
pair, making all the actions performed by other UAVs completely
unaccounted for.
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– Complex Reward Unsuitability: in the attempt to solve the previous
problem, the reward function has been extended to higher complexity.
The achieved maximum reward is even lower than the previous case;
a possible conclusion is that the algorithm is not robust enough to
support complex reward.

– Exploding Gradients Effect: if the reward function produces large
values, the training process may face one of the most common
learning problems, i.e. exploding gradients effect.

• Figure 7.2:

– NaN Inconsistencies: a reward function that produces infinitely large
values and tiny ones in the same context leads to inefficient learning.

– Noisy Inference: in order to address the previous issue, clipping
could be implemented. However, the inference phase appears to be
particularly noisy and characterized by a decreasing trend.

– Complex Reward Unsuitability: going back to complex reward
functions, this time ensuring that exploding gradients effect does
not occur, still brings no benefit. This corroborates the idea that
the algorithm is not robust enough to support them.

• Figure 7.3:

– Discretization Mismatch: a binary reward is deployed: if a UAV
is within radio range of a GD, 1 is returned. However, if the
discretization parameter is not designed properly, mismatches due
to ns-3 continuous space and python discrete one improper mapping
may arise.

– Noisy Inference: once the discretization mismatch has been corrected,
the maximum reward achieved is consistent, although extremely
noisy.
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– Competition Effect: increasing the batch size significantly improved
the noisy behaviour, leading to an increasing trend during the
inference phase. Good performance is achieved if dithering technique
is applied during verification.

• Figure 7.4:

– Improper Batch Size: following the idea of the previous experiment,
the batch size is further increased. This, however, led to no learning
achieved at all.

– Vanishing Gradients: it is commonly renowned that normalizing the
reward leads to faster and better training sessions. This is not the
case since vanishing gradients effect occurs.

– Reduced Reward Range: going back to the best result up to now
and trying to reduce the radio coverage boundary in order to ensure
no competition effect among agents. This leads to weird knowledge
loss and unreliable behaviour on inference.

• Figure 7.5:

– Large Reward Range: larger radio range limits appear to lead to
better performance, but, actually, this is an illusion since agents will
appear to be converged when they are actually pretty far from the
corresponding GD.

– Algorithm Scalability: going back to the best result up to now and
trying to reduce the discretization complexity. It seems that smaller
scales are better managed by the algorithm, however, this inevitably
corresponds to high inaccuracy and high quantization error.

– Reward Range Sensitivity: staying on a smaller scale and increasing
distance among GDs to avoid competition brings back the agents
to noisy, unreliable and inconsistent behaviour during the inference
phase.
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Figure 7.2: NaN Inconsistencies, Noisy Inference, Complex Reward Un-
suitability

Figure 7.3: Discretization Mismatch, Noisy Inference, Competition Effect

Figure 7.4: Improper Batch Size, Vanishing Gradients, Reduced Reward
Range

Figure 7.5: Large Reward Range, Algorithm Scalability, Reward Range
Sensitivity
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7.2 Performance Evaluation

This section aim at introducing and discussing the final experimental results
achieved in this work. From the long set of training sessions experiments, the
one that achieved the best performing policy has been selected and exploited
to produce some statistics. The simulation parameters corresponding to the
chosen policy and shared by all the following experiments are reported in
Table 7.1. The final reward function selected is shown in Equation 7.2, where
xj is the distance between a GD and the nearest UAV, i.e. Equation 7.3,
and ρ0 is an arbitrary parameter expressing the minimum distance within
which a UAV can be sufficiently considered in radio range of a certain GD. In
other words, the RL algorithm will aim at the minimization of the distance
between a GD and its nearest UAV.

rt =
Ø
j

(xj,t ≤ ρ0) ∀j ∈ {1, . . . , nGDs}, t ∈ {1, . . . , simTime}, (7.2)

xj = min
i

(dGDj−UAVi) ∀i ∈ {1, . . . , nUAVs} ∀j ∈ {1, . . . , nGDs} (7.3)

The first result that is worth mentioning is the reward achieved by the
system episode by episode in Figure 7.6. This curve has been obtained by
repeating the training procedure six times and averaging the results. A 90
% confidence interval is assumed when evaluating the standard deviation
estimate. As expected, the training process starts in pure exploration mode,
i.e. the agents exclusively perform random action with the purpose of
acquiring knowledge about the environment they are in. Starting from
episode 200, the probability of random actions starts decreasing iteration by
iteration; the agents are now progressively exploiting the acquired knowledge
and simultaneously improving it further. Around episode 300, a steady state
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is reached; the network is not learning anymore, reaching an average reward
value per episode equal to 800. This value is consistent: since three GDs
and three UAVs have been considered, the maximum reward that can be
obtained is given by nGD · simTime = 900.

Parameter Value
nDrones 3

nGroundDevices 3
Simulation Time 300 s
Training Episodes 1000

Starting ε 1
Minimum ε 0.1

Episode for Exploitation start 200
Epsilon Decrement Law εt+1 = εt · 0.99995

Discount Factor γ 0.97
Batch Size 175

Polyak Weight τ 0.01
Experience Replay Buffer Size 15e3

Evaluation Step Time 1 s
Bounds 20

Discretization 5

Table 7.1: Simulation Parameters

Figure 7.6: Reward achieved for each episode

On the other hand, what was not expected at all is the amount of noise
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experienced. Randomly, during the course of the inference phase, i.e. for
episodes > 300, some simulations end up with meagre rewards, e.g. 500,
meaning that convergence of UAVs toward the GDs was not achieved. Ex-
ploiting the visualizers introduced in Figures 6.3 and 6.2, it becomes clear
that despite most of the times the algorithm works, making the agents
converge successfully, other times this does not happen. The agents happen
to get stuck in their position, oscillating or competing with each other. A
solution to this issue has been identified: introducing a certain probability
of random actions in the inference phase may lead agents to states where
the behaviour they have to leverage is clearer. The procedure of intention-
ally introducing noise to achieve better performance is commonly known as
dithering, a technique usually deployed in Digital Signal Processing field.

Figure 7.7: Average coverage percentage vs Time

Previous considerations are further corroborated by results in Figure 7.7.
This plot depicts the average coverage percentage achieved by the system in
time. It has been retrieved repeating the inference session a thousand times
and collecting, for each one of them, a coverage log expressing how many GDs
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were served at a certain time instant. The average among these thousand
instances has been evaluated and a 99% confidence interval assumed for the
standard deviation computation. Consistently with the expectations, the
coverage percentage grows rapidly from 0% to 90% within the first 50 s. In
most simulations, the algorithm is able to bring the agents to convergence in
few seconds. For those instances in which the agents may get stuck in critical
states, dithering solves the problem: a probability of 0.1 for random actions
is imposed, meaning that, statistically, one action over a hundred will be
random, and, luckily, it will bring the agents out of the critical state. That is
probably why convergence suddenly grows up almost to 100% starting from
about 115 s. Actually, a more smooth growth toward total convergence was
expected; the fact that almost deterministically the algorithm converges at
115 s leads to the idea that the network might actually be learning to do so.
Future work may be devoted to investigating the reasons why this occurs
and how to prevent it.

The last result presented is the task drop rate experienced by all GDs in
time (Figure 7.8). Also in this case a thousand simulations were performed
and application layer logs collected and processed. The strategy deployed
to produce these logs and the approach for their post-processing is deeply
discussed in Chapter 6. Differently with respect to previous results, this
time more scenarios were considered, changing the urban conditions or the
transmission power.

• Best-case scenario: Suburban environment and relatively high trans-
mission power, i.e. PTX = −5dBm. Propagation conditions are simu-
lated to be almost ideal, pretty much resembling the free space path loss
from the Friis equation (Algorithms 3 and 4). Hence, low communication
impairments and losses are expected.

• Worst-case scenario: Highrise Urban environment and relatively low
transmission power, i.e. PTX = −10dBm. Propagation conditions are
simulated to be the harshest possible, the probability of LoS will be
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lower with respect to the previous case and the corresponding extra
path loss will much higher.

• Intermediate-case scenario: Suburban environment and relatively
low transmission power, i.e. PTX = −10dBm. Even though the propa-
gation conditions simulated are the best possible, a lower transmission
power has been considered. This means that there is the possibility
that the experienced SNR is not sufficiently high to guarantee reliable
performance.

Figure 7.8: Task Drop Rate vs Time

As expected, Figure 7.8 clearly shows that, for the worst-case scenario,
although convergence is achieved, the task drop rate is particularly high.
Therefore, there is no doubt that, for harsh propagation conditions like
this one, some telecommunication improvements must be engineered. Sim-
ulating higher transmission power is for sure possible, however, the energy
consumption and interference constraints will realistically mark a limit. An
example could be to deploy a reliable transport layer protocol, e.g. TCP, that
could handle the retransmission of packets if any packet loss occurred. The
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other two scenarios are consistent with the expectations too: the considered
increase in transmission power leads to almost 20% benefit in task drop
rate. Moreover, as already discussed for Figure 7.7, the lowest rates are
achieved on average after 115 s, i.e. when full convergence of UAVs over the
GDs is obtained. Considering the characteristics of the proposed system, its
non-idealities and its critical aspects, a 10% task drop rate for the best-case
scenario can be considered adequate.
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Chapter 8

Vodafone Internship

8.1 Introduction

Great source of inspiration for the development of this thesis must be
acknowledged to Vodafone Business Italia and, specifically, the 5G Program
team. Over the last few years, Vodafone Italia has invested a considerable
amount of resources in the development of use cases that could provide a
significant impact on our society. The main focus is the exploitation of 5G,
i.e. the state of the art standard for mobile communication systems, in order
to pursue the technological revolution that has been foreseen for the next
decade. The fundamental feature that makes 5G technology remarkable with
respect to previous standards is the achievement of potential application
fields and services that were completely unimaginable up to now.

They can be essentially classified into three main sections:

• Enhanced Mobile Broadband: the aim is the achievement of high
throughput and high spectral efficiency. The ideal peak data rate
achievable is in the order of Gbps, enabling ultra high-quality streaming
services as well as augmented and virtual reality experiences.

• Ultra Reliable and Low Latency Communication: it is possible
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to guarantee an E2E latency below 10 ms and a FER below 10−9,
enabling applications where transmission errors or delay excess can
not be tolerated, e.g. autonomous vehicles communications or remote
surgery.

• Massive Machine Type Communication: the capacity of the net-
work in terms of simultaneous connections have been improved up to 1
million per squared kilometre. This enables dense Internet of Things
scenarios, characterized by the cooperation of multiple sensors and de-
vices which require good coverage, aim at exchanging short messages
and are focused on energy efficiency.

Figure 8.1: 5G Features. Sources: ITU, vodafone5g.it

Obviously, these features cannot be achieved at the same time; depending on
the specific application needed by vertical industries and its QoS requirements,
the parameters of the network, at every layer of the network stack, will be
properly designed and tuned. In conclusion, 5G should not be seen as a
single standard but as a set of recommendations covering different use cases.
The principal characteristics of 5G are briefly introduced in the following:

• Multiple Frequency Spectrums: from a communication system per-
spective, according to the Shannon Theorem, the most effective way to
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increase the amount of bandwidth available is moving to higher central
frequencies, although this inevitably results in worse coverage and the
need for cellular densification. Multiple center frequencies could be
exploited depending on the specific requirements: 700 MHz for offering
wide coverage in urban and rural areas, 27 GHz for high-performance
data transmission and 3.6 GHz as a trade-off among the two.

• Orthogonal Frequency Division Multiplexing: OFDM, together
with Cyclic Prefix technique, is the most deployed multi-carrier system
technique. It allows to efficiently counteract frequency selectivity of the
wireless channel, schedule resource allocation in a flexible way, guarantee
no inter-channel interference (ICI) and no inter-symbol interference
(ISI), and enable single-tap equalization for channel estimation. All
these features come with a reasonably low computational complexity
thanks to the Fast Fourier Transform Algorithm.

• Massive MIMO: working at higher frequencies leads to smaller antenna
sizes; the coexistence of multiple input and multiple output antennas
enables digital signal processing techniques such as spatial diversity,
beamforming and spatial multiplexing.

• Multi Access Edge Computing: the network is now enhanced with
localized computing capabilities that allow to process data at the edges
of the network, resulting in shorter data paths and faster response time.

• Software Defined Networking and Network Function Virtual-
ization: SDN enables the abstraction of network resources, making
them machine-independent and ready for general-purpose hardware.
NFV exploits this new physical resources perspective to define software-
based network functions and combine them in order to produce services.
In order words, while SDN decouples data and control plane, NFV
decouples the physical network equipment from the network functions
running on them. The proper orchestrations of these two technologies
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lead to Network Slicing, i.e. the possibility to define multiple vertical
industry solutions with specific requirements that are fulfilled while
properly sharing the same physical resources at the same time.

8.2 Vodafone 5G Trials

Vodafone has been involved in multiple projects funded by MiSE (Ministero
dello Sviluppo Economico) and promoted by several endorsers.

• Milan, 5G European Capital: the Vodafone 5G Trials, assigned by
the MiSE after Vodafone won the national call for Milan, is backed by
an investment of 90 millions euro and the involvement of 38 partners. As
a result, Milan has become the European capital of 5G, with 41 services
across 7 industries.

• Vodafone 5G Genova: Vodafone is bringing four 5G projects to Gen-
ova related to public transportation and infrastructure security. The use
of 5G technology will allow Genova to accelerate digital transformation
and evolve into a true city of the future.

• Catanzaro 4.0: Vodafone is part of ‘Catanzaro 4.0’, a trial project
funded by MiSE and promoted by Comune and Provincia of Catan-
zaro in collaboration with the Magna Graecia University, Polo Bio
Tecnomed and PMI Igea Soluzioni. The project objective is to valorize
the historical, cultural and enviromental assets of the territory using 5G
solutions, allowing citizens and tourists access to innovative information
and recreational services.

• BASE-5G: Vodafone is part of BASE-5G, one of the winning projects
of the “Call Hub Ricerca e Innovazione” by the Regione Lombardia and
lead by Politecnico di Milano and in collaboration with Akka Italia,
LIFE, YAPE and Anotherreality. The project objective is to develop the
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Smart City of the future, smart areas that use Vodafone 5G to interact
with citizens, offering intuitive interfaces depending on their needs.

8.3 5G Program for Vertical Solutions

The main fields of applications and services that have been being investigated
in the 5G Program are:

• Digital Divide: the use of 5G technology as a Fixed Wireless Access
solution allows people, businesses and public offices to use evolved,
interactive and engaging services in Digital Divide areas where the
deployment of fixed infrastructure is not feasible.

• Education and Entertainment: 5G enables the possibility to access
video streaming content in highly dynamic mobility seamlessly and to be
integrated with augmented reality devices for Tourist 4.0 and Education
4.0 solutions.

• Manufacturing and Industry 4.0: 5G can be exploited as the under-
lying communication system for many different applications ranging from
Smart Agriculture, Connected Drones for Infrastructure Maintenance,
Augmented Reality for assisted maintenance, Collaborative Robotics,
and Last Mile Logistics.

• Mobility and Transport: Assisted Driving solutions aim at enlarging
the driver visual range extension in case of partial or blind visibility
exploiting connected vehicles real-time video exchange and signaling.

• Health and Wellbeing: URLLC features of 5G enable the deployment
of a robotic telesurgery system that allows a surgeon to operate a patient
remotely.
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• Security and Surveillance: 5G enables the adoption of smart video-
surveillance systems that can automatically detect suspicious or anoma-
lous behaviours, increasing safety in public spaces. Other solutions range
from video surveillance on board of law enforcement vehicles, automat-
ically detecting licenses, or the deployment of drones for surveillance
of sensitive or inaccessible areas due to emergency scenarios or natural
disasters.

• Smart Energy and Smart City: the coexistence of a huge number
of interconnected devices and sensors fosters the definition of Smart City
solutions and cutting-edge applications to improve people’s quality of
life.

8.4 Internship Activities

This six-month internship activity has been mainly devoted to the analysis
of the previously announced use-cases and to the active involvement in the
development of existing ones regarding Manufacturing and Industry 4.0.

Several training sessions have been organized in order to analyze in deep
the core strategies and technologies on which the use cases are designed from
a networking perspective:

• Real-time streaming protocols, e.g. WebRTC, and comparing their
performance with legacy standards.

• Network Traversal Services, e.g. ICE (Interactive Connectivity
Establishment), STUN (Session Traversal Utilities for NAT), TURN
(Traversal Using Relays around NAT)

• Data Center Virtualization, analyzing the functionalities and ser-
vices provided by VMware vSphere Suite in terms of resources virtual-
ization and orchestration.
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• IaaS to CaaS Evolution: an introduction to Docker and Kubernetes
has been provided, highlighting the advantages of container-based solu-
tions with respect to VM-based ones.

• Virtual Private Networks, analyzing how to configure VPNs, inves-
tigating how to make them compliant with Cyber Security Standards
and the reasons why it could be of interest for the development of a
certain application.

Significant attention has been devoted to the development of these use cases:

• Last Mile Logistics: this use case focuses on the deployment of
a self-driven ultra-light electric vehicle for urban delivery purposes.
The solution is based on the low latency features of 5G, enabling the
possibility for a pilot to remotely control the drone if necessary in a
seamless way. Moreover, Multiple Access Edge Computing is exploited
to run the self-drive algorithm and the fleet management applications,
hence maximizing the energy efficiency on board of the drone. An
additional feature that has been recently investigated is the possibility
for the drone to interact with an IoT-enhanced environment, such as
Smart Elevators.

• UAVs for Smart Logistics: this use case aims at providing a fast,
efficient and reliable way to transport sensitive items within the campus
of a renowned hospital in Milan. For instance, UAVs could be exploited
to deliver samples from the hub to the proper laboratory autonomously.
One of the main focuses is the development of a collision helper algo-
rithm that enables the coexistence of multiple UAVs in the same area.
Whenever an obstacle or an imminent collision with another UAV is
detected, a pilot in a control room will receive a signal and take control
remotely of the UAV in question. During the flight, an application
running on MEC constantly monitors the drone, acquiring telemetry in
real-time thanks to 5G technology.
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• UAVs for Infrastructure Maintenance: the aim of this use case is
the development of a solution for the inspection and monitoring of public
infrastructures. A UAV, enhanced with multiple sensors, e.g. UHD
Camera, Infrared Camera, LIDAR, etc., allows to monitor a building or
an infrastructure efficiently, reducing the time usually needed to organize
and perform operations like these, avoiding urban service disruption,
and improving safety since human intervention can be scheduled only
if necessary. The drone exploits 5G communication to continuously
transmit information during the flight, which will be processed in near
real-time by MEC applications. Multiple applications are expected to
run at the same time: one handles the remote control of the drone,
another aggregates the information and prepares a 3D model of the
infrastructure, another may apply a Machine Learning model for an AI
Analytics procedure.

Eventually, considerable interest has been devoted to the Vodafone IoT
Academy, a joint project between Vodafone Italia and Politecnico di Torino
with the purpose of merging high-quality academic formation with wide
business perspectives and experienced technical support. The groups of
students are organized in the most heterogeneous way possible; one of the
expected skills to develop is the ability to establish an interdisciplinary
cooperation while seeking innovative solutions. The students have been
initially provided with two main topics, Smart Agriculture and Connected
Drones; the purpose of the Academy is for them to formalize, design, develop
and actually implement an innovative application regarding these topics.
Although the objective is to foster imagination, innovation and creative
thinking, the solution should also fulfill the business requirements to make it
attractive and its implementation actually feasible.
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Conclusions

Unmanned Aerial Vehicles are widely considered to be among the most
interesting and promising technologies of recent years. Their potential in
terms of applications, services and quality of life enhancement has been
attracting widespread interest, both from the research world and business
companies. In light of recent advancements and the rapid rise in the use
of UAVs, concerns have arisen about the unique technical challenges UAV
operations and scenarios introduce. The design of an effective methodology for
dealing with optimization problems and the evaluation of system performance
through scalable, yet realistic, simulations are indeed recognized as critical
topics that deserve to be properly investigated.

In this work, both objectives are pursued, i.e. to develop and implement
a machine learning solution that allows to achieve the optimal UAV posi-
tioning in terms of coverage maximization and resource utilization while
simulating the system in realistic settings. In facts, ns-3 simulation offers
a noteworthy simulation environment that allows to evaluate and compare
several scenarios, protocols and applications efficiently. This permits to
easily encompass all the different aspects that contribute to design quality
and network performance. An efficient integration among ns-3 and artificial
intelligence frameworks is renowned as a challenging and intriguing research
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field since it is supposed to provide researchers with state-of-the-art ways
to manage the increasing complexity of modern networks. The addressed
scenario includes a set of UAVs, which are meant to assist a number of ground
devices in processing tasks and eventually provide the ground devices with an
outcome. This work presents a deep reinforcement learning model devoted
to assessing a centralized policy that, basing on the observations provided by
UAVs, establishes the best action each one should perform to maximize the
expected cumulative reward, i.e. coverage optimization. In order to provide
the algorithm with an environment as much realistic as possible, an ns-3
simulation framework has been developed, exploiting both native features
and a set of new scenario agnostic modules and applications. For example, a
statistical channel propagation model for low altitude platforms has been
implemented, aiming at the realistic prediction of the path loss experienced
by network devices basing on urban environment properties and the elevation
angle.

A long trial and error session has been performed in order to identify the
optimal parameters and reward function for the deep q-learning network
algorithm. Although the maximum reward achieved during inference is
consistent, the experiments highlighted several limitations that should be
considered and addressed in future works, especially those regarding critical
states and the lack of robustness. Despite that, the final performance
evaluations and experimental results are definitely consistent and particularly
promising: thanks to the proposed policy, all agents are able to converge
successfully within the end of each simulation; hence a wide set of meaningful
statistics could be gathered.

Taken together, these findings demonstrated that the integration of AI
frameworks with realistic network simulations provides a powerful tool for
investigating complex network scenarios. The proposed approach and method-
ology in this work has the potential to lead researchers to new state-of-the-art
ways to design and validate innovative and cutting-edge solutions.
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9.1 Future Works

In spite of the fact that there are several limitations in the proposed algorithm,
given the potential demonstrated, it is reasonable to believe that this work
could be a springboard for further research.

The most important limitation lies in the fact that the algorithm showed
weaknesses in terms of robustness with respect to small changes in the
simulated environment or in the training parameters. Future studies are
therefore suggested in order to investigate more sophisticated neural network
architectures and carry out multiple experiments and debugging sessions in
order to identify which part of the framework chain could be responsible for
the limitations discussed.

In addition, it is worth remarking that the centralized architecture pro-
posed in this work should be compared with a distributed one. As discussed
in previous chapters, in light of the experiments conducted, it seems fair to
believe that a distributed solution could lead to better state transitions and
reward association pairs and therefore to performance enhancement.

Eventually, another suggestion for future work is to concentrate on im-
proving the scalability of the system: a significant contribution would be
to determine a policy as much scenario-agnostic as possible, in order to
avoid repeating the time-consuming training sessions for each possible con-
figuration and therefore achieve the first step towards an actual baseline
solution. Improving time efficiency is for sure a way to foster a large number
of experiments and to deploy an agile methodology that could lead to efficient
design solutions.
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Reinforcement Learning
Algorithms
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A.1 Q-learning and DQN

Algorithm 1 Q-learning: Learning function Q : S ×A → R
Require:
States Set S
Actions Set A
Reward function R : S ×A → R
State transition function T : S ×A → S
Learning rate α ∈ (0, 1]
Discounting factor γ ∈ [0, 1]
procedure Q-Learning(S, A, R, T , α, γ)

Initialize Q : S ×A → R arbitrarily
while Q is not converged do

Start in state st ∈ S
while st is not terminal do

ó Select the best action according to a defined policy
e.g., at ← arg max

a∈A
Q(s, a)

ó Compute the immediate reward
rt ← R(st, at)
ó Define the new state
st+1 ← T (st, at)
ó Update Q function
Qnew(st, at)← (1− α) ·Q(st, at) + α · (rt + γ ·max

a
Q(st+1, a))

ó Update state
st ← st+1

end while
end while

return Q
end procedure
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Algorithm 2 Deep Q Network with Experience Replay and ε-greedy Ex-
ploration Strategy
Initialize:
Replay Memory D to capacity N
Main Neural Network Qθ arbitrarily
Target Neural Network QθÍ with θÍ = θ
for episode ∈ [1,M ] do

Initialize the state s0
Define a Bernoulli Random Variable ξ for which P (ξ = 1) = ε
for t ∈ [1, T ] do

Extract instance of ξ
if ξ == 1 then

Select action at randomly
else

at ← arg max
a

Q(st, a, θ)
end if
Get next state st+1 and reward rt
Store the transition (st, at, rt, st+1) in D
Sample a random mini-batch of transitions (sj, aj, rj, sj+1) from D
Set the temporal difference yj = rj + γ arg max

a
Q(sj+1, a; θÍ)

Update θ through gradient descent step on (yj −Q(sj, aj; θ))
Update θÍ through Polyak averaging: θÍ = τ ·θÍ +(1−τ) ·θ, τ ∈ [0,1]

end for
end for
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Channel Model
Algorithms

B.1 Friis Propagation Loss Model

Algorithm 3 Free Space Received Power Computation
Initialize:
Carrier Frequency f [Hz]
Distance between TX and RX d [m]
Transmitting Power PTX [dBm]
Free Space Path Loss FSPL [dB]
Define:
Speed of Light in vacuum c ≈ 3e8 [m/s]
Carrier Wavelength λ = c/f [m]
Assume:
Antenna TX and RX Gain GTX = GRX = 1
Compute:
Retrieve Mobility Models for TX and RX, respectively a and b
Update distance: d = a→GetDistanceFrom (b) [m]
FSPL = 20 log10(d) + 20 log10( f

1e6) + 20 log10(4π·1e6
c ) [dB]

Return:
PRX = PTX − FSPL [dBm]

90



Channel Model Algorithms

B.2 Probabilistic Loss Model for LAP

Algorithm 4 Probabilistic Channel Model Received Power Computation
Initialize:
Carrier Frequency f [Hz]
Distance between TX and RX d [m]
Elevation Angle θ [deg]
Minimum Elevation Angle θ0 [deg]
Urban Density (Sub Urban, Urban, Dense Urban, Highrise Urban) ρ
Line of Sight Condition (LOS, nLOS, Random) ψ0
Transmitting Power PTX [dBm]
Free Space Path Loss FSPL [dB]
Extra Path Loss ξ [dB]
Define:
Speed of Light in vacuum c ≈ 3e8 [m/s]
Carrier Wavelength λ = c/f [m]
Parameter µξ: mean value for extra path loss
Parameters α, β: for extra path loss standard deviation
Parameters γ, δ: for probability of LOS computation
Assume:
Antenna TX and RX Gain GTX = GRX = 1
Compute:
if ψ0 == Random then

Retrive γ, δ according to Tables B.1 or B.2 basing on f and ρ
Compute Probability of LOS: P = γ · (θ − θ0)δ
Update ψ according to probability P

end if
Retrive µ, α, β according to Tables B.1 or B.2 basing on ψ, f and ρ
Compute Standard Deviation for Extra Path Loss ξ: σξ = α · exp (−β · θ)
Update Free Space Path Loss FSPL according to Algorithm 3
Extract ξ from N (µξ, σ2

ξ )
Return:
PRX = PTX − FSPL− ξ [dBm]
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700 MHz
Suburban Urban Dense Urban Highrise Urban

µ 0.0 0.6 1.0 1.5
(α, β) (11.53,0.06) (10.98,0.05) (9.64,0.04) (9.16,0.03)
(γ, δ) (0.77,0.05) (0.63,0.09) (0.37,0.21) (0.06,0.58)

2000 MHz
Suburban Urban Dense Urban Highrise Urban

µ 0.1 1.0 1.6 2.3
(α, β) (11.25,0.06) (10.39,0.05) (8.96,0.04) (7.37,0.03)
(γ, δ) (0.76,0.06) (0.6,0.11) (0.36,0.21) (0.05,0.61)

5800 MHz
Suburban Urban Dense Urban Highrise Urban

µ 0.2 1.2 1.8 2.5
(α, β) (11.04,0.06) (10.67,0.05) (9.21,0.04) (7.15,0.03)
(γ, δ) (0.75,0.06) (0.56,0.13) (0.33,0.23) (0.05,0.64)

Table B.1: LOS Parameters from [6] obtained with curve fitting method

700 MHz
Suburban Urban Dense Urban Highrise Urban

µ 18 17 20 29
(α, β) (26.53,0.03) (23.31,0.03) (30.80,0.04) (32.13,0.03)
(γ, δ) (0.77,0.05) (0.63,0.09) (0.37,0.21) (0.06,0.58)

2000 MHz
Suburban Urban Dense Urban Highrise Urban

µ 21 20 23 34
(α, β) (32.17,0.03) (29.60,0.03) (35.97,0.04) (37.08,0.03)
(γ, δ) (0.76,0.06) (0.60,0.11) (0.36,0.21) (0.05,0.61)

5800 MHz
Suburban Urban Dense Urban Highrise Urban

µ 24 23 26 41
(α, β) (39.56,0.04) (35.85,0.04) (40.86,0.04) (40.96,0.03)
(γ, δ) (0.75,0.06) (0.56,0.13) (0.33,0.23) (0.05,0.64)

Table B.2: nLOS Parameters from [6] obtained with curve fitting method
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Handlers Algorithms

C.1 Boundaries Handler
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Algorithm 5 Rescale actions or simulate reflection effect
deltaStep, currentPos and newPos are 3D Vectors
ρ is the radius of the circle that defines the boundary of the system
deltaStep has been derived from the action message
newPos has been computed as currentPos + deltaStep
while excessBoundaries do
Compute distance d among newPos and the origin

if d ≤ ρ then
excessBoundaries = false
Add the new WayPoint w to the UAV Mobility Model

else
if reflectionEn == false then

Rescale deltaStep of one unit and update newPos
else

Compute the coordinates of the nearest point
belonging to the boundary circle
if deltaStep.x != 0 then

Action performed along the x-axis
|boundary.x| =

√
ρ2 − currPos.y2

Compute newPos and Add a new Waypoint w
Compute the remainder distance to be covered
|δd| = |deltaStep.x| - |boundary.x− currPos.x|
Compute the angle for the direction
∠δd = tan−1 |currPos.y/boundary.x|

end if
Mutatis mutandis for actions along y-axis
if currPos.y > 0 and currPos.x > 0 then

newPos.y = newPos.y − |δd| · sin∠δd
end if
Mutatis mutandis for the other quadrants
Add the new WayPoint w to the UAV Mobility Model
excessBoundaries = false

end if
end if

end while
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