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Abstract

The aim of this thesis is to exploit the Embedded Model Control (EMC) in order
to deal with Networked Control Systems (NCS), whose peculiarity is the usage of
a communication network (CN) to connect the plant to the control unit, leading
to ’asynchronous’ measurements and commands. In these types of systems the
execution of the control law, implemented remotely, is driven by the arrival of the
measures, whose frequency is non-deterministic and variable over time, implying
that the controller must deal with variable sampling times.
Thus the canonical EMC design needs to be extended in order to face the problems
provided by introducing a CN in a closed-loop control system, such extension
assumes the name of Asynchronous-EMC (AEMC). More specifically, in this thesis,
the effectiveness of the proposed control methodology is tested by applying it to
a remote control of a two-wheeled differential drive mobile robot, endowed with
a Raspberry Pi board. These tests require the construction of a CN between the
robot and a laptop (which will act as a server). For this purpose two types of
communication will be tested: the first is based on a p2p layout, built through an
Ethernet cable connection, while the other uses a router for forwarding packets
from the robot to the server and vice versa. Both of them are tested in order to
provide more than one benchmark for the AEMC.
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Chapter 1

Introduction

1.1 Networked Control Systems Overview
In the last decade, Networked Control Systems (NCSs) have become increasingly
popular in the technological field. An NCS can be defined as a control system
whose feedback is closed via communication network (CN) [1], which is a com-
munication channel shared among nodes which are potentially unrelated to the
control system (see Fig. 1.1). The growing importance of these systems must be

Figure 1.1: Networked Control System conceptual scheme

attributed to a considerable saving in infrastructure costs, allowed by the usage of
wireless connections. Furthermore, there are also huge advantages coming from
an easier sharing of information between devices belonging to the same controlled
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Introduction

environment, letting the data from different devices to be merged and, then, to be
exploited in order to take smarter decisions over a larger physical space. In addition,
the possibility of moving heavy calculations to remote servers also allows to have
devices with less computing power and therefore less expensive. The applications
of the NCS are very large and range from space and terrestrial exploration for
hazardous environments to the automation of factories, but they also can be used
on domestic robots or for remote diagnostics of automobiles opening up to the
possibility of use in the Internet of Things (IoT), starting to talk about cloud
control.
Nevertheless, it is undeniable that the NCS introduces some critical issues with
respect to a traditional control system. Leaving aside all the problems related
to reliability and security of communication, which are still fundamental aspects
but which are not accounted in this thesis, the main problem is in the timing. In
fact, regardless of the frequency with which the sensor sends measurements to
the control unit, they arrive at totally variable time intervals, due to the NC that
inserts not only transmission delays but also variations of the transmission delays
(see Fig. 1.2). Therefore this type of systems are said to be with asynchronous
measurements and commands. In this scenario it becomes very interesting to

Figure 1.2: effect of the CN process on a packet streaming

analyze the study, whose source is reported here [2], of a possible application to
this type of systems of a control design methodology called Embedded Model
Control (EMC). The choice of the EMC is justified by the fact that this control
method results to be very precise since it is based on the rejection of disturbances,
allowing to zero (or strongly reduce) errors coming from inaccurate parameters,
unmodeled dynamics or generic causal disturbances acting on the plant. In addition,
as it will seen in following sections, this control methodology results to be very
light in computational terms. Thus, by considering time delays or data loss as
a source of disturbance, it is possible to think about EMC as a method able to
reject these disturbances too. Anyway, the traditional design of the EMC found in
the literature is not sufficient to deal with the asynchronous measurements and
commands, thus, an extension of this method is needed. To this aim it is introduced
the asynchronous-EMC (AEMC), which extends the canonical EMC such as to
make it time-adaptive.

2



Introduction

The goal of this thesis is to validate the theoretical results related to AEMC by
applying it to a remote control of a two-wheeled differential drive mobile robot.

1.2 Literature Background

In recent years, research on NCS has led to the study of a large variety of control
methodologies to be applied on it. One of the most used approaches is the optimal
control, in particular the MPC, which is a model-based optimal control whose
purpose is to predict the evolution of the model for a desired number of steps,
in which the "most suitable" command to be supplied to the plant is computed.
The most suitable command is the result of an optimization problem, for a certain
cost function which includes indices such the tracking error and the command
action. An example of the applications of the MPC on the NCSs is provided in
[3], where some precautions are used to deal with CN issues. Anyway the MPC is
strongly affected to parameter errors, moreover this kind of control is very heavy
in computational terms, therefore it may not be suitable for applications in which
a very low sampling time is required.
Other solutions involving optimal control are purposely studied for the NCSs
communication characteristics. One example is given in [4] where the methodology
named packet-based control is employed. The idea behind this control methodology
is to provide a set of control predictions and the to select the most suitable according
to the network conditions. Another example of control specific for NCSs is described
in [5] where the Decentralized-MPC is explored as possible solution. It concerns
the usage of a hierarchical structure between the controllers, one central MPC on a
remote server and several distributed MPCs on the controllable system. Anyway
all these solutions are very complex and requires a quite high computational effort
even on the controlled nodes.
In any case, model-based controls are not the only control methodologies to be used
in these applications, in fact a wide part of the research on NCS focuses on the
use of PID controllers, highlighting their effectiveness despite the very low design
complexity. The possibility of the application of a PID controller on the NCSs is
explored in [6], where it is remarked that a good design and tuning procedure is
sufficient to have acceptable results in the control of remote plant. Anyway the
PID controller suffers some problems of robustness which makes it not very suitable
for an application where the system can be subject to many disturbances coming
from external factors. A comparison between two remote controls performed with
an EMC controller and with a PID one is provided at the end of the thesis.

3
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1.3 Thesis Workflow
As previously mentioned, the focus of the thesis is on the construction of a remote
control system, based on the EMC design methodology, to be applied to a mobile
robot. In order to achieve this goal, first of all there will be a general overview of
the theory regarding EMC. In fact, in chapter 2, the key points for its design are
deepened and a simple practical application of a case study is performed through
a simulation. After that the transition to asynchronous-EMC is faced, dealing
with the main changes to be made to the traditional design so that it can manage
asynchronous measures and commands. Also in this case, another simulation is
performed in order to practice these AEMC design notions, thus concluding the
theoretical part.
In chapter 3 we talk about how to build communication on the network so that
the robot and my own laptop (n.b. it is often referred to as "server") can exchange
data one each other. To this aim two kinds of network architectures are described,
highlighting the tools employed to implement them and, once set up, evaluating
both by means of practical tests.
Then the chapter 4 introduces the robot used for this project, illustrating both
its hardware and software features. In addition, the programming tools that the
vendors provide to developers are also shown, emphasizing those used within the
project.
Finally, the time comes to apply the theoretical results on mobile robot physical
system. In order to do this it is needed to start from the wheels control since,
once it is achieved, it is possible at least to obtain a very raw control of the robot
movements simply by providing suitable speed references to the wheels. Thus in
chapter 5 the model of the motor-wheel system is provided, in addition a deep study
of actuators and sensors is shown. This is needed both for the asynchronous-EMC
design and for the simulation of the extended plant. After that, in chapter 6,
the AEMC designed for the motor-wheel system is tested. First it is used for
simulations, performed by means of Simulink framework, evaluating the control
design for both constant and variable sampling times; then the AEMC design is
"translated" in C++ code, allowing to test it on the physical system. The tests
include both the on board and the remote control of the wheels, and for the remote
control both the network architectures are tested.

4



Chapter 2

Embedded Model Control
Overview

The principles of the EMC are based on the computation of the expected response
of the system to a certain command u(t) by means of a run-time simulation of
the model, whose result must be compared to the measured output of the plant
obtained by applying the same command u(t). This comparison determines the
model error, which is used to estimate non-causal and unpredictable signals acting
on the system called driving noises; the number of driving noises and their effects
on the states of the system is matter of the design procedure.
Nevertheless the noise must be distinguished from all the possible causal distur-
bances acting on the real plant, which, due to their causality, can be added to the
model as states, which can’t be controlled by the command u. This provides a
state-space x(t) composed by xc(t) and xd(t) for which, at design time, can be
defined the dependence on the driving noise.
The computation of the disturbances is the core of the EMC design method since
they are used to adjust the controller command so that the disturbance rejection can
be achieved. The end result is a control methodology very precise, with imperfect
models too, without renounce to the efficiency.
It will follow a more detailed description of EMC’s design method and a study of
its use in systems with asynchronous measurements and commands, after that an
analysis of a case-study which allows to better understand the effectiveness of this
methodology on those kind of systems.

2.1 Embedded Model Control Design Outlines
For the description of the EMC design methodology is used the source [7] from
which are taken the diagram in figure below and which will be summed up with
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the following sections.

Figure 2.1: EMC general scheme

It is possible to recognise in the figure 2.1 the two main blocks which are the
fundamentals of the control theory, which are:

• Extended Plant, that is the real continuous system to control, therefore
it contains all the physical processes, neglected dynamics and unpredictable
noises included. It is the block between the signals u and y.

• Control Unit (CU), implemented in a digital environment which includes
all the modules used for the design of the EMC.

The CU can be further divided in other several units that are the Embedded
Model (EM), the Measurement Law and the Control Law.

2.1.1 Embedded Model
It is possible to recognise two different parts belonging to the EM that are the
Actual dynamics and the Reference dynamics, the first one must be the Extended
Plant copy and its goal is to replicate as best as possible the plant behavior, while

6
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the second one is introduced to track the reference r which could include requests
that cannot be satisfied by the system and which will be referred to as ’operator
requests’.
In the Actual dynamics the state-space x is considered to be composed by both
the controllable state xc and the disturbance state xd, which is not reachable by
the command input u, nevertheless it is a way to model the causal disturbances
acting on the model such as neglected dynamics or parametric uncertainties, then
the action of the disturbance w is modelled so that the state x linearly depends on
it. Finally the state-space equations, in continuous time (CT), are1

ẋ(t) = ACTx(t) +BCTu(t) +GCTw(t), x(0) = x0. (2.1)

Given the sample time T , a possible discretization of this model can be done by
approximating the derivative with the forward Euler method

ẋ(tk) Ä x(tk + T ) − x(tk)
T

, tk = kT, for k ∈ N (2.2)

and by defining the following matrices

A = TACT + Inx×nx , B = TBCT , G = TGCT . (2.3)

it is possible to obtain the equations in discrete time2C
xc
xd

D
(k + 1) = x(k + 1) = Ax(k) +Bu(k) +Gw(k), x(0) = x0,

zm(k) = Fx(k)
ym(k) = Cx(k).

(2.4)

Since x can be splitted in xc and xd, dimensioned respectively nc and nd, it is
possible to consider the following block division in the matrices:

A =
C
Ac Hc

0nd×nc Ad

D
, B =

C
Bc

0nd×nu

D
, G =

C
Gc

Gd

D
,

C =
è
Cc Cd

é
, F =

è
Fc 0nz×nd

é
.

(2.5)

The matrices must be constructed such that both the pairs (Ac, Bc) and (A,G)
are controllable, and both the pairs (Fc, Ac) and (C,A) are observable. In simpler
cases it is assumed zm = ym hence C = F .
Now it is possible to distinguish two different dynamics:

1For simplicity the considered plant is an LTI system, however the results can be extended to
the more general case of non-linear systems exploiting linearization methods

2for the sake of brevity the time tk = kT is replaced by the more compact notation k, assuming
the meaning of "step", thus the following steps are denoted as k + i, i ∈ N+

7
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• Disturbance Dynamics, which takes as input the driving noise w and
provides both the disturbance state xd and the disturbance d, which cumulates
all the disturbances acting on the controllable state;

xd(k + 1) = Adxd(k) +Gdw(k), xd(0) = 0
d(k) = Hcxd(k) +Gcw(k)

(2.6)

• Controllable Dynamics, here the inputs are the command u and the
disturbance d and are computed both the evolution of the controllable state
and the model output. In this case C = F , hence Cd = 0 and Fc = Cc:

xc(k + 1) = Acxc(k) +Bcu(k) + d(k), xc(0) = xc0
ym(k) = Ccxc(k) .

(2.7)

The second part of the EM is the Reference dynamics, where are proposed the
same equations of Controllable dynamics, with the difference that, in this case, the
disturbance isn’t considered:

x(k + 1) = Ac x(k) +Bc u(k), x(0) = x0

y(k) = Cc x(k) .
(2.8)

The input u is the output of the Reference Generator, and it represents the input
to provide to the disturbance-free model such that the output y is able to track
the operator request (r), complying with the eventual constraints imposed on both
command and states. For this reason, u is typically the result of a further control
law applied to the system represented in 2.8, in this way the designer is also able
to set the desired behavior of the reference.

2.1.2 Measurement Law
As told in section 2.1 the noise w is unpredictable and command independent, thus
it is not possible to do any assumption on the values w(k + i), with i > 0; it is
only allowed to estimate its value at the actual time step k in function of the model
error e(k) = y(k) − ym(k), where y is the measurement of the Extended Plant.
The Noise estimator block (in figure 2.1) is in charge to do this work and its
output, which is the estimate of the noise, is named w̄. This signal is used as
input of the Disturbance dynamics, in this way through Actual dynamics and Noise
estimator a loop is constructed, which implements, in practice, a state predictor ,
since it provides the one-step prediction x̂(k + 1). The model error will be denoted
as ē(k) = y(k) − ŷm(k), where ŷm(k) is the estimate of the plant output.
The estimator of w is written, in z domain as

w̄(z) = L(z)ē(z) (2.9)

8
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but the matrix L(z) cannot be uniquely defined, unless some assumptions are made.
In this section will be afforded the solution proposed in [7], where is exposed the
general case of ny ≥ 1 and nw ≥ 1, with ny and nw respectively the dimensions of ē
and w̄, under several assumptions that lead to a unique solution for the estimator.
Let the matrix A to be an block upper-triangular matrix, if not it is possible to force
it to satisfy this assumption. From A can be obtained m diagonal blocks, namely
Aj, with dim(Aj) = nj × nj, for j = 0, ...,m − 1 ≤ ny − 1, and the consequent
division of the state x in m sub-states named xj, each one of dimension nj. In
matrix C, by partitioning each row Cj in ny blocks Cj,i, each one with a number
of columns equal to the number of columns of the respective block Ai, can be
extracted the matrices Cj corresponding to the diagonal blocks Cj,j; let’s denote
the measures corresponding to each row of C as yj.
Result: if each couple (Aj, Cj) is observable, then the measures y0, ..., ym−1 are
sufficient for the estimation of w. The value of m must be as small as possible, the
partitions must be unique, and it is required that ny = m.
Assume, then to divide w in m sub-vectors wj, each sized nwj, and to rearrange
them so that, from the matrix G, are obtained diagonal blocks Gj, of dimension
nj × nwj, for which the couples (Gj, Aj) are controllable.
Under such assumptions estimator can be uniquely chosen, by placing the desired
eigenvalues λm over the closed-loop system formed among Actual dynamics and
Noise estimator. For the definition of the matrix L(z) the above definition of wj

must be employed, since it is useful to consider more than one channel of L, each
one dimensioned nwj × 1 and driven by the scalar value ej like: w̄j = Lj(z)ēj. As
can be seen the general problem is reduced to several simpler ones and each of
them falls in the case of ny = m = 1.
Anyway, for the sake of readability, in the following considerations the "j" subscript
will be neglected, and the problem will be recasted to the simpler case of a scalar
output (i.e. ny = 1). Note that, since this is also the case of each single channel, it
is very simple to came back to the case ny > 1, in fact it suffices to reiterate the
following assumptions to each channel j and then, reconstruct the vector w̄ from
the w̄j.
By comparing n and nw, respectively the dimensions of the state x and the noise
w, two different solutions for the estimator L may occur:

• if n ≤ nw it is possible to use a static estimator (i.e. L(z) = L) of the
kind w̄(k) = L ē(k); moreover this case is always recastable to n = nw by
combining some components of w. Thus the equations of the overall predictor
are:

x̂(k + 1) = A x̂(k) +B u(k) +G w̄(k), x̂(0) = x̂0,

ē(k) = y(k) − ŷm(k),
w̄(k) = L ē(k) .

(2.10)

9
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Applying the right substitutions it can be obtained

x̂(k + 1) = (A−GLC) x̂(k) +B u(k) +GLy(k), x̂(0) = x̂0, (2.11)

where Am = A−GLC. The matrix L must be designed such that the necessary
condition |λi(Am)| < 1, ∀ i = 1, ..., n is satisfied.

• if n > nw must be employed a dynamic estimator since the degrees of
freedom offered by a static matrix L (of dimensions nw×1) are not sufficient to
place n poles, thus it is needed to add other parameters in order to accomplish
the estimator design: the idea is to add as many states as the difference
between the dimensions of x and w, and to define the estimate w̄ as a linear
combination of ē and the added states.
Typically n − nw = 1 since it gives the possibility to implement a filter for
the undesired high-frequency disturbances. In this specific case the state is a
scalar q dependent on, both, its past value and the model error ē. This yields
to the equation

q(k + 1) = Ae q(k) + Le ē(k) (2.12)
and the estimate can be:

w̄(k) = Mm q(k) + L ē(k) . (2.13)

In z-domain, assuming Ae = 1 − β and Le = 1, the transfer function between
ē and q has the form of a filter, since results to be q(z) = (z − 1 + β)−1 ē(z),
hence the estimator has the following dynamic form:

w̄(z) = L(z) ē(z) =
A
L+Mm

1
z − 1 + β

B
ē(z) . (2.14)

Now it is possible to define the overall closed loop state equations, which form
the state predictor, as

x̂(k + 1) = A x̂(k) +B u(k) +G w̄(k), x̂(0) = x̂0,

q(k + 1) = (1 − β)q(k) + ē(k),
ē(k) = y(k) − ŷ(k)
w̄(k) = Mm q(k) + L ē(k) .

(2.15)

Finally, doing some arrangements and substitutions, the state equations can

be rewritten in matricial form using the augmented state xI =
C
x̂
q

D
in the

following way:

xI(k + 1) =
C
A−GLC GMm

−C 1 − β

D
xI(k) +

C
B GL

01×nu 1

D C
u(k)
y(k)

D
, (2.16)
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where Am =
C
A−GLC GMm

−C 1 − β

D
must satisfy the condition |λi(Am)| < 1,

∀ i = 1, ..., n + 1, that is achievable by properly designing the set of values
{β, l0, ..., lnw ,m0, ...,mnw} in function of the placed eigenvalues λm,i. Note
that the number of parameters may be oversized with respect to the number
of poles to place, thus there can be parameters which must be set arbitrarily.

2.1.3 Control Law
Last but not least is the Control Law, which is constructed by correcting the
reference u, provided by Reference Generator, with two terms depending by both
the disturbance state xd and the tracking error ec, which is defined as

ec(k) = x(k) − (xc(k) +Qxd(k)) (2.17)

where x is the reference state (from 2.8) and Q is a weight matrix. Hence can be
written the evolution of ec by means of the equation

ec(k + 1) =Acec(k) +Bc(u(k) − u(k))−
− (Gc +QGd)w(k)+
+ (AcQ−Hc −QAd)xd(k) .

(2.18)

Since xd and w can’t be controlled and since both of them appear in 2.18, one
solution to guarantee stability in the evolution of ec is to set to zero the related
term. Finally the control law can be a linear function of the states like this

u(k) = u(k) +Kec(k) −Mxd(k) (2.19)

where can be distinguished the two terms mentioned before. The three matrices K,
M and Q must be designed in order to satisfy the two necessary conditions:

1. |λk(Ac −BcK)| < 1, ∀ k = 1, ..., nc , (2.20)

2.
C
Hc +QAd

0

D
=
C
Ac Bc

Fc 0

D C
Q
M

D
. (2.21)

Thus, in practice, it is possible to compute K in function of the placed eigenvalues
λc of the matrix in point 1; and then compute the matrices Q and M by solving
the equations in point 2, also known as Davison-Francis relationship.
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2.2 EMC Applied to a Mechanical Arm Driven
by DC Motor

Here a simple example of EMC application will be explored with the aim to apply
the theoretical results in the previous sections.Next step will be to perform suitable
changes to the design in order to obtain an asynchronous-EMC which can handle
the case of variable sampling time.
The case study consists in a rigid arm of length l and mass m and inertia Ja, which
rotates in a vertical plane, driven by a DC motor. The goal is to control in position
the arm.

Extended Plant Definition
The fine model only includes the mechanical part of the system described above, thus
the control command is a torque Cm impressed to the motor side and transmitted
by a gearbox reduction ratio τ to the load; this torque must rotate the motor shaft
with an inertia Jm and affected by a friction with coefficient βm. The transmitted
torque Ca, at load side, moves the arm that is affected by a friction with coefficient
βa and by the gravity acceleration g = 9.81 m

s2 .
Finally all its components are considered to be stiff.

Figure 2.2: mechanical part of the system

The figure shows a scheme of the system just described, where the massm represents
the mass of the entire arm focused at the CoG, spaced r from the center of rotation.
Defining the states θ and ω, respectively the angular position and the angular
velocity of the arm, it is possible to set up the state equations starting from the
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equilibrium of the torques, considering that at horizontal position θ = 0.

motor side :
Cm = Jmω̇m(t) + βmωm(t) + Cl

arm side :

Ca = Jaω̇(t) + βaω(t) + rmg sin
3
π

2 − θ(t)
4
,

(2.22)

since the relationships Cl = Ca/τ and ωm = ωaτ hold, by suitable substitutions
and with some arrangements it is possible to write the following equation:

Cm
τ

= Jeqω̇(t) + βeqω(t) + rmg

τ 2 sin
3
π

2 − θ(t)
4

(2.23)

where

Jeq =Jm + Ja
τ 2 , Ja = 1

3ml
2

βeq = βm + βa
τ 2 .

(2.24)

Finally, considering x1 = θ and x2 = ω and being Cm the command input u, the
state space equations are

ẋ1(t) = x2(t)

ẋ2(t) = −βeq
Jeq

x2(t) − rmg

τ 2Jeq
sin

3
π

2 − x1(t)
4

+ 1
τJeq

u(t)

x(0) =
C
x1
x2

D
(0) = x0 .

(2.25)

Is worth to note that, although the system is nonlinear, with a sufficiently high
reduction factor the nonlinear term is naturally damped since it is divided by
τ 2. Anyway the goal of this simulation is to show the effectiveness of the noise
estimation and the rejection of the disturbances, so the final results will highlight
the difference between the EM implemented both with disturbance rejection and
without it.

Actual Dynamics Design
In the EM the nonlinear term will be neglected, becoming an LTI system where
both Jeq,m and βeq,m differ from the respective real parameters Jeq and βeq by
introducing some parametric errors form of percentage factor.
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Considering one single disturbance state and, by choosing nw = 2 a dynamical
noise estimator will be implemented. Finally, considering the angular position as
both measurable output and performance output (i.e. ym = zm = θ), and being

x =
C
xc
xd

D
, where xc =

C
θ
ω

D
, the equations in CT are

ẋ(t) =


0 1 0

0 −
βeq,m

Jeq,m
1

0 0 0

x(t) +


0
1

τJeq,m
0

u(t) +

0 0
1 0
0 1

w(t),

ym(t) = zm(t) =
è
1 0 0

é
x(t), x(0) = x0

(2.26)

and the discretization can be performed using the method in 2.3, which provides
the following equations in DT:

x(k + 1) =


1 T 0

0 −T
βeq,m

Jeq,m
+ 1 T

0 0 1

x(k) +


0

T
1

τJeq,m
0

u(k) +

0 0
T 0
0 T

w(k),

ym(k) = zm(k) =
è
1 0 0

é
x(k),

x(0) = x0 .

(2.27)
Hence the matrices are

Ac =

1 T

0 −T
βeq,m

Jeq,m
+ 1

 Hc =
C

0
T

D
Bc =

 0

T
1

τJeq,m

 Gc =
C

0 0
T 0

D

Ad = 1 Bd = 0 Gd =
è
0 T

é
Cc = Fc =

è
1 0

é
Cd = Fd = 0 ,

(2.28)

once all the matrices are defined, the Controllable and Disturbance dynamics can
be easily constructed as in 2.7 and 2.6 respectively.

Reference Generator Design
The reference generator is based on the equations described in 2.8 and its goal is to
generate a reference u such that the output y follows the operator request r with
a smooth dynamic, such that input and state constraints are respected. In this
specific case study no input constraints are considered, while the state constraints
are handled by controlling the dynamic of the system with a static state feedback
control of the kind

u(k) = Krefx(k) +Nr(k) (2.29)
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where Kref and N are chosen so that (i) |λi(Ac −BcKref )| < 1, ∀ i = 1, ..., nc ,
defining the components of Kref in function of the placed eigenvalues λref,i, and
(ii) N =

è
Cc[I − (Ac −BcKref )]−1Bc

é−1
, which makes the output to track the

reference r. By employing a state feedback control (figure 2.3), it is possible to
set the desired dynamics to the reference, making it smoother than a step or an
impulse given by the operator. In this example nc = 2, thus it is needed to place
as many poles, chosen arbitrarily such that it is respected the condition (i).
Let λref,1 and λref,2 be the placed poles, Kref =

è
k1 k2

é
is computed as:

Figure 2.3: block scheme of the designed Reference Dynamics

k1 = λref,1λref,2 − ac,11ac,22 + ac,11bc,21k2

ac,12bc,21

k2 = ac,11 + ac,22 − λref,1 − λref,2
bc,21

where ac,ij and bc,ij are respectively the components of Ac and Bc.

Noise Estimator Design
As written above, for this design, the Noise estimator is chosen to be dynamic, thus
the predictor shown in the equation 2.16 is employed. In this case it needs to place
four eigenvalues λm,i, in function of which it is possible to compute the parameters
β, l0, l1, m0, m1 are found in function of the eigenvalues and the estimator can be
finally constructed. Note that there is one free parameter which can be set to an
arbitrary value, independently from the eigenvalues.
The figure 2.4 represents a possible block scheme for the designed Noise estimator,
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Figure 2.4: block scheme of the designed Noise Estimator

where the Σ block represents an integrator in DT. The figure also shows that for
this design was set m0 = 0, while other parameters are computed as follows:

β = a11 + a22 + a33 − α3 + 1

l0 = 1
a12g21

((β − 1)(a11 + a22 + a33) − a11a22 − a11a33 − a22a33 + α2)

l1 = 1
a12a23g32

(a11a22a33 − (β − 1)(a11a22 + a11a33 + a22a33)+

+ a12g21l0(a33 − (β − 1)) − α1)

m1 = 1
a12a23g32

((β − 1)(a11a22a33 + a12a33g21l0 − a12a23g32l1) + α0)

(2.30)

where α0, α1, α2 and α3 are the coefficient of the desired characteristic polynomial

P (λ) = λ4 − α3λ
3 + α2λ

2 − α1λ+ α0

and

α0 = λm,1λm,2λm,3λm,4

α1 = λm,1λm,2λm,3 + λm,1λm,2λm,4 + λm,1λm,3λm,4 + λm,2λm,3λm,4

α2 = λm,1λm,2 + λm,1λm,3 + λm,1λm,4 + λm,2λm,3 + λm,2λm,4 + λm,3λm,4

α3 = λm,1 + λm,2 + λm,3 + λm,4
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Control Law Design
Finally comes the control law which is designed, as shown in section 2.1.3, by
defining the matrices K, Q and M . The first one is computed by placing the
eigenvalues λc, i on the matrix Ac −BcK and it is worth to note that this problem
has the same solution of the pole placement proposed in the reference generator
design, this means that the components of K =

è
k1 k2

é
can be computed using the

same formulae exposed before, simply replacing λref,i with λc,i. Then, by solving
the equations C

Hc +QAd
0

D
=
C
Ac Bc

Fc 0

D C
Q
M

D

with Q =
C
q0
q1

D
and M = m as unknowns, it results

q0 = 0; q1 = 0; m = hc,2
bc,2

.

2.2.1 Case Study Simulations
The simulation is based on a Matlab-Simulink script where the parameters in
the table 2.1 are considered. The simulation time is set to 6 s and the sample time
is T = 5ms.

System Parameters
Arm Part Motor Part

m [kg] l [m] r [m] Ja [kg m2] βa[kg ms−1] τ Jm [kg m2] βm [kg ms−1]
5 2 1 6.667 0.5 150 0.02 0.6

Table 2.1: Fine Model Parameters

In addition, as can be seen from the previous sections, there are three different
pole placements and for each one of them the respective eigenvalues are defined in
discrete time. For the sake of simplicity the poles are considered to be real and
coincident for all the pole placement problems, and their values are set as follows:

λref = 0.98
λc = 0.8187
λm = 0.85

The simulation consists in bringing the arm from the initial position θ = 0 to
the position θ = π, thus the reference r(k) is a step which starts at time 1 s with
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amplitude r∞ = π. In following some simulations will be shown, each one for
a different parameter error, with the goal to show the robustness of the EMC
methodology. The performances are evaluated by means of both the tracking error
e = y − y and the model error ē = y − ym, in addition each chart compares the
controller performance with noise estimation and the one without it.

SIMULATION 1: βeq,m = βeq, Jeq,m = Jeq −→ no parameter errors

Figure 2.5: simulation 1, e Figure 2.6: simulation 1, ē

Note that in figure 2.5, in terms of magnitude, the red line is even better than
blue one, but the problem is that both the errors will converge to a non zero value
because of the gravitational force, which slowly pushes down the arm. Meanwhile,
with the noise rejection the control action compensates the torque due to gravita-
tional action keeping, as can be seen, the blue lines permanently to 0.
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SIMULATION 2: βeq,m = 1.05 βeq, Jeq,m = 1.05 Jeq −→ 5% of error

Figure 2.7: simulation 2, e Figure 2.8: simulation 2, ē

Here can be seen how the parameter errors completely influence the performances
of the controller without noise estimation, while the errors of the simulations
with noise estimator are more or less of the same order magnitude of the ones of
simulation 1.

SIMULATION 3: βeq,m = 1.1 βeq, Jeq,m = 1.1 Jeq −→ 10% of error

Figure 2.9: simulation 3, e Figure 2.10: simulation 3, ē
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Finally, with the third simulation, it is shown how the errors of the models without
noise estimator increase with the parameter errors. On the other hand, in terms of
magnitude, both model and tracking errors remain almost unchanged in all the
three simulations when the noise estimation is on; but, most important, all of them
remain on 0 at steady state.

2.3 Asynchronous EMC
The term "asynchronous-EMC " [2] derives from the integration of some techniques
in the EMC design methodology that makes it suitable to some particular frame-
works characterized by asynchronous measurements and commands. Networked
Control Systems (NCS) are a typical example, since they employ the Network
to keep Plant and Control Unit in communication, introducing several timing
problems, crucial for control applications, such as delay of transmission and delay
variability (i.e. jitter); other possible problems of the Network communication, as
the packet loss or packet exchange, are not addressed in this thesis. The goal of
this section is to show how to extend the EMC design in such a way that the above
mentioned issues can be properly handled.
The problem to face in this section dictates that the Control Unit receives the
measurements asynchronously from the Plant and each measurement arrival trig-
gers the command computation, which is provided to the Plant asynchronously
as well. The asynchronism makes the arrival times ti to be non-deterministic and,
consequently, the intervals Ti = ti+1 − ti are potentially different one each other; a
possible representation of this concept is given by the figure below.

Figure 2.11: sample arrival times with variable intervals

For the construction of the asynchronous-EMC the time-stamp associated to each
measurement is needed such that the related time interval Ti, which actually is
the variable sampling time, can be derived. As the following sections will better
explain, the main idea of the asynchronous-EMC is the adaptability to the variable
time interval Ti.
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2.3.1 Asynchronous Embedded Model
The first step to construct an asynchronous-EMC is to make the Embedded Model
adaptive to the variable sampling time Ti. Let’s suppose to have a LTI continuous
time state equations as the ones represented by 2.1, then it is possible to obtain the
related discrete time equations by applying the forward Euler method 2.2, which
allows to obtain the following result

x(ti + Ti) = (TiACT + Inx×nx)x(ti) + TiBCTu(ti) + TiGCTw(ti) =
= Aix(ti) +Biu(ti) +Giw(ti),

x(ti) =
C
xc
xd

D
(ti), x(0) = x0;

(2.31)

where

Ai =
C
Aci Hci

0nd×nc Adi

D
, B =

C
Bci

0nd×nu

D
, G =

C
Gci

Gdi

D
, (2.32)

as you can see the matrices Ai, Bi and Gi adapt to the time interval Ti. In addition
it is possible to define the two model outputs zm(k) = Fx(k) and ym(k) = Cx(k),
where, for simplicity, will be considered F = C.
At this point, following the guidelines of section 2.1.1 and using the just mentioned
adaptive matrices, it is quite simple to write both actual and reference dynamics
of the asynchronous-EM. Indeed for the actual dynamics it is possible to the define
its two parts as:

• Controllable Dynamics

xc(ti + Ti) = Acixc(ti) +Bciu(ti) + d(ti), xc(0) = xc0
ym(ti) = Ccxc(ti)

(2.33)

• Disturbance Dynamics

xd(ti + Ti) = Adixd(ti) +Gdiw(ti), xd(0) = 0
d(ti) = Hcixd(ti) +Gciw(ti) ,

(2.34)

while the reference dynamics can be defined by the following equations:

x(ti + Ti) = Aci x(ti) +Bci u(ti), x(0) = x0

y(ti) = Cc x(ti) .
(2.35)

Notice that the state equations matrices can’t be computed once and for all,
indeed it is needed to compute them at each sample arrival but this, in terms of
computational time, is not a problem, as it is a relatively low number of operations.
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2.3.2 Asynchronous Noise Estimator and Control Law

As previously mentioned, the main characteristic of the asynchronous-EMC is its
adaptability to the variable time interval Ti, not only by changing the discrete time
model with Ti (as seen in 2.3.1), but also by adjusting the response speed to the
time elapsed between two samples. The elements which allow to perform these
adjustments are the eigenvalues of both the observer and the controller, which must
vary with Ti as λDT = eλ

CTTi . Therefore at design time the eigenvalues are chosen
in continuous time and, in order to keep the desired frequency behaviors of both
the observer and the controller, it is needed to dynamically compute the respective
discrete time eigenvalues, where the desired frequency behavior for the controller
response is imposed by the plant bandwidth, while for the noise estimator it is
taken by the bandwidth of the dynamics to estimate. These bandwidths force some
constraints over the sampling time Ti since a too high value can cause a too fast
response which can be cut, while a too low value of Ti involves a too slow response
which doesn’t let to follow the dynamics of interest: in the worst case, it can cause
instability.
Established this, let the assumptions over the state equations matrices enunciated
in 2.1.1 and 2.1.2 to hold in this case too, then it is possible to construct both the
noise estimator and control law exactly as it is done in the canonical EMC.
For the noise estimator, if a dynamic estimator (see 2.13) is designed then it

holds Ami =
C
Ai −GiLiCi GiMmi

−Ci 1 − βi

D
, otherwise (see 2.10) the matrix Ami can be

simply written as Ami = Ai −GiLiCi, where Li, and eventually Mmi and βi, can
be computed by placing the eigenvalues λ(Ami).
On the other side, the design of the control law (see 2.19) needs the following
two conditions to hold:

1. |λk(Aci −BciKi)| < 1,∀ k = 1, ..., nc , (2.36)

2.
C
Hci +QiAdi

0

D
=
C
Aci Bci

Fci 0

D C
Qi

Mi

D
. (2.37)

By solving the second one, it is possible to compute the two matrices Mi and Qi,
while matrix Ki is the solution of the pole placement problem which guarantees
the achievement of the first condition. Therefore it is clear that, in practice, what
is changed is that the unknowns must be computed at each time step because of
the variability of both the state space matrices and the discrete time poles.
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2.4 Asynchronous EMC Applied to a
Mechanical Arm Driven by DC Motor

The case study analyzed in this section is the same treated in 2.2, hence the overall
design of the EMC won’t change so much. The additional assumption introduced in
this problem which make sense the usage of an asynchronous-EMC is the fact that
the extended plant is remotely controlled by the control unit, making the system
to assume the structure of an NCS, which involves that the EMC must deal with
both the transmission delay, denoted with td, and the variable sampling time.

Extended Plant Definition
Recall that the plant consists of a mechanical arm rotating on a vertical plane
(thus subject to disturbance toques due to gravity force) where the command input
u(t) is the motor torque, transmitted to the arm by means of a gearbox with ratio
τ ; the scheme in figure 2.2 can be taken as a reference for this extended plant
structure once again, while the parameters of the mechanical arm system can be
taken from the table 2.1.

Embedded Model Design
The model in continuous time domain is represented by the 2.26, where the
nonlinearity provided by the gravity action is treated as a causal disturbance
dynamic. By applying the forward Euler method, as explained in theoretical part,
it is possible to obtain the time variable DT matrices:

Ai =


1 Ti 0

0 −Ti
βeq,m

Jeq,m
+ 1 Ti

0 0 1

 , Bi =


0

Ti
1

τJeq,m
0

 , Gi =

 0 0
Ti 0
0 Ti

 ,

nc = 2, nd = 1, nu = 1, nw = 2, ny = 1.

(2.38)

At this point it is quite simple to write the Actual Dynamics for this model, indeed
it suffices to apply the formulae 2.33 and 2.34 as seen before.
For the Reference Generator it is used the same idea of the EMC case study previ-
ously analyzed, namely a static state feedback control (figure 2.3) which provides a
smoother reference to the system. Therefore, using the just shown matrices, it is
possible to construct the reference dynamics using 2.35 and then to establish the
value of Kref,i by placing the eigenvalues λ(Ai −BiKref,i). Note that, even in this
case, it is possible to dynamically change the desired DT eigenvalues starting from
the ones in CT domain, defined as λCTref .
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Noise Estimator Design
Since a dynamic noise estimator is implemented, indeed it holds nw < n, taking as
reference the matrices shown above, it is possible to define the observer closed loop
state matrix as:

Am,i =


1 Ti 0 0

−Ti l0i −Ti
βeq,m

Jeq,m
+ 1 Ti Tim0i

−Ti l1i 0 1 Tim1i
−1 0 0 1 − βi


and then, by imposing the set λ(Am,i) at the desired one, it is possible to compute
the unknowns l0i, l1,i, m0,i, m1,i and βi in function of the eigenvalues. Note that
the problem is exactly the same exposed in the previous case study, thus, posing
m0i = 0 ∀ i, a solution similar to 2.30 can be applied in this case too, with the
difference that the unknowns must be computed at each time step. At this point,

having both Li =
C
l0i
l1i

D
and Mmi =

C
m0i
m1i

D
, it is possible to build the already known

dynamical estimator of the driving noise:

w̄(ti) = Mm q(ti) + L ē(ti) ,

where
q(ti + Ti) = (1 − βi) q(ti) + ē(ti) , q(0) = 0 .

Control Law Design
For the control law the strategy is identical to the one of the previous case study,
indeed it is possible to compute very simply Qi and Mi by solving the Devison-
Francis condition 2.37, which provides:

Qi =
C
0
0

D
; Mi = hci,2

bci,2

and then it is possible to compute Ki such that λ1(Aci − BciKi) = λci,1 and
λ2(Aci −BciKi) = λci,2, where λci,1 and λci,2 are the desired DT eigenvalues.

2.4.1 Simulations Results
The data exposed in this section are the results of simulations performed in
the framework matlab-simulink, where the extended plant is built using the
parameters in the table 2.1, while the EM parameters are affected by 5 % error, as
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done in simulation 2 of section 2.2.1. The simulation lasts tf = 5 s and the sampling
time for the plant output is T = 5ms. As already said, the eigenvalues which must
be placed in the three pole placement problems, must be defined in continuous
time. In this case, for the sake of simplicity, the eigenvalues are considered to be
real and coincident for all the problems and are:

λCTref,1 =λCTref,2 = λCTref = −3 , λCTc,1 = λCTc,2 = λCTc = −20 ,
λCTm,j = λCTm = −15 for j = 1, ...,4 .

Furthermore two artifice are used such that a NCS can be emulated in the simulation:

• the ’Transport Delay’ Simulink block, connecting control unit and extended
plant in both directions, which retards the signals with a delay of 10ms.

• the ’Triggered Subsystem’ which is a particular Simulink subsystem executed
at each rise front of a square wave with a period which varies uniformly from
2ms to 30ms .

With this configuration it happens that td is within the interval [12, 40]ms and,
consequently, Ti ∈ [2, 30]ms with a uniform distribution; the figure 2.12 shows
what has just been said, indeed it represents the behavior of the sampling times in
the first 100 samples.

Figure 2.12: Variability of the Sampling Times

The following results show the response of the controlled system to a step reference
with a rise front at 0.5 s from the simulation start; they are analyzed by means
of plant and model outputs, respectively y and ym, compared to the generated
reference y (figure 2.13), and the model and tracking errors, respectively ē and e
(figure 2.14). The two figures below (second one in a more detailed fashion) show
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Figure 2.13: model and plant outputs tracking the reference (green) following
the trajectory of y (red)

Figure 2.14: model (top) and tracking (bottom) errors
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Figure 2.15: reference generator out-
put command (blue line), tracking error
component (red line) and disturbance
rejection component (yellow line)

Figure 2.16: state observer discrete
time poles evolution

the good behavior of the asynchronous-EMC, which lets the output to track very
precisely the reference.

The figure 2.15 shows the three components of the command u, including the
one represented by yellow line which allows to reject the disturbances enclosed in
the state x̂d.
Another important aspect of the asynchronous-EMC is the variability of the DT
eigenvalues which, as told in the theoretical part, guarantees to keep the desired
frequency behavior even when the sampling time changes at each time step. The
figure 2.16 shows the variation, in the z-plain, of the DT poles placed in the
extended state observer, each blue circle represents one pole and all of them are
stable poles since lay within the unit circle.
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Chapter 3

Network Architectures

As anticipated in the previous chapters, the goal in this thesis is to test the
effectiveness of the asynchronous-EMC applied on a real NCS. To this aim, it is
necessary to build up a network structure between the plant and the control unit,
which are respectively represented by a Raspberry Pi board, which is attached
to a robot, and the author’s laptop, where the controller is implemented. Two
different solutions are explored for the establishment of this communication: the
first one includes the usage of an application programming interface (API) named
pcap, and useful for capturing raw packets; the second solution contemplates a
traditional socket employment, more in detail a UDP transport protocol is used
for this project.

3.1 Packet Capture Libraries

The name pcap stands for packet capture, in fact the main purpose of this API is
to obtain, at application level, all the packets read by a network interface in a raw
format, bypassing the whole protocol stack; for this reason it is at the basis of the
main traffic analysis softwares such as Wireshark or tcpdump.
The libraries which allow to access to pcap functionalities are libpcap and WinPcap
(both written in C), the first one is the original library for Unix while the second
is a porting of libpcap for Windows operating systems. Note that the client side,
represented by the robot system, must be implemented in a Linux environment,
thus libpcap is needed, while the server side is on Windows and it needs the
WinPcap version. Before talking about the functions of these libraries, a brief
overview of the pcap design is provided in order to understand all the critical and
beneficial aspects of their employment.
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3.1.1 Libpcap and WinPcap architectures
Without entering in implementation details [8], the basic ideas of libpcap and
WinPcap libraries are the same and are focused on two main actions:

• filtering the packets coming from the network interface such that the only
packets arriving to the user application are the ones that achieve certain
constraints;

• buffering data so that the number of readings (or system calls, if the buffer
is in kernel space) can be reduced;

the strength of this capture system stands in performing these two actions at kernel
space, since it allows to significantly reduce the number of transmitted packets
from the network interface to the user space.
The filtering process starts at user level where the library allows to define some
text-based commands (with a specific syntax) which must be compiled such that
the resulting code can be sent to the filtering machine located in kernel. Doing
so, each arrived packet can be processed by the kernel and all the packets which
don’t satisfy the user-defined constraints are discarded, the others are sent to
the kernel buffers. In fact, before sending them to user space, it is fundamental
to preliminarily store packets in kernel space to perform as few system calls as
possible, since they are critical in terms of performance; after that it is possible to
fill user-space buffer with a single read().

Figure 3.1: libpcap architecture Figure 3.2: WinPcap architecture
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Figures 3.1 and 3.2 (taken by [8]) show respectively the libpcap and WinPcap archi-
tectures, highlighting some differences such as the kernel buffers implementations
or the presence of additional elements at WinPcap user level. Anyway the goal
here is not to delve into these details, but it is important to point out that both
the architectures need the support of a component at kernel level which is able
to communicate with the libraries. For WinPcap this is not a problem since the
installation of the library includes a driver called Netgroup Packet Filter (NPF)
which operates at kernel level (see fig. 3.2), but for libpcap the Barkeley Packet
Filter (see fig. 3.1) is not present in all the Unix operating systems, in this case
both filtering and buffering actions must be emulated at the user level with the
consequent loss of pcap benefits.
Once these aspects have been clarified, it becomes easier to understand the strengths
and weaknesses of a communication based on pcap. This solution provides high
performances since the packets are processed only from the filter, bypassing the
protocol stack; this allows to save time in packets processing with respect to IP-
based network communications. On the other hand the performances are strongly
influenced by the buffering mechanism and, as will be shown in the next sections,
the management of buffering by means of parameters defined by the code developer
becomes crucial.

3.1.2 Libpcap functions
At this point a brief overview of functions used in this project and exposed by both
libpcap and WinPcap must be provided. The first mandatory step to perform a
packet capture is the choice of the network interface which will provide the packets.

int pcap_findalldevs ( pcap_if_t ** alldevsp , char * errbuf );
void pcap_freealldevs ( pcap_if_t * alldevs );

The two functions above are used respectively to obtain the list of all the devices,
passing a list pointer as reference, and to free the memory occupied by the list itself;
once the device is chosen it must be opened. The opening action is performed by

pcap_t * pcap_open_live ( const char* device , int snaplen , int promisc ,
int to_ms , char* ebuf);

which opens the device identified by device argument, located in the structure
pcap_if_t , and sets the capture behavior by means of: snaplen , which define
the maximum number of bytes to capture, promisc , which specifies if the interface
must be set to promiscuous mode and to_ms , which represents the read timeout
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in milliseconds. About this last parameter, it is worth to notice that it represents
the time to wait before returning from reading, regardless of whether packets have
arrived in the meantime; this means that, for the purposes of this project, it can be
a crucial parameter since choosing a too high value would risk to have too many
packets buffered together and, therefore, to have too many consecutive arrivals
with time intervals ≈ 0. On the other hand, by choosing it too low, a performance
drop could be experimented caused by too frequent context switching. The last
argument, namely ebuf , is used to obtain an eventual error description. Finally
this function returns a pointer to the structure pcap_t, which is the identifier of
packet capture process.
Before start reading it is needed to set the filter for the obtained pcap identifier,
this is made by the following functions

int pcap_compile ( pcap_t * p, struct bpf_program * fp , char* str , int optimize ,
bpf_u_int32 netmask );

int pcap_setfilter ( pcap_t * p, struct bpf_program * fp);

where the first one allows to compile the textual filter command written in str
argument, by saving the resulting code in the space pointed by fp. Notice that the
function also requires the identifier of the capture and the netmask of the network
in which the interface is. After that the compiled code must be sent to the filter
machine by means of the second function, which requires the structure where filter
code is saved.
At this point it is possible to start the capture, with the certainty that all the
readings are triggered only by packets which achieve the constraints specified in
str parameter.

int pcap_loop ( pcap_t * p, int cnt , pcap_handler callback , u_char * user);

The function above starts the capture and blocks the thread which calls it in an
event loop, until the number of read packets reaches the value indicated in cnt or
until a call of the following function

int pcap_breakloop ( pcap_t * p);

that must be performed by the thread which is in the loop; in the meanwhile at
each packet arrival the function pointed by callback is called. In particular, the
function pointer type is defined in the following way
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typedef void (* pcap_handler )( u_char * user , const struct pcap_pkthdr * pkt_header ,
const u_char * pkt_data )

where the data of each packet is stored in the location pointed by pkt_data , while
the structure pointed by pkt_header simply encapsulates an header related to the
capture which must not be associated to protocol headers.
Anyway it is possible to use another method to read packets which bypasses the
callback mechanism and can be actuated by calling the function

int pcap_next_ex ( pcap_t * p, struct pcap_pkthdr ** pkt_header ,
const u_char ** pkt_data );

which returns when one of two conditions are verified: (i) a packet is ready to read
or (ii) to_ms milliseconds are elapsed from its call. The advantage of this function
is that, using the return value of this function, it is possible to implement a loop
with customized exit conditions. In the project, this reading method is used on
server side, while client side uses the first one.
Finally, the last function that will be shown in this section is used for sending
packets. Anyway, as for the readings, it deals with raw packets which means that
if the intention is to communicate within an IP infrastructure (passing through
IP routers) then the whole packet with appropriate headers must be built. It
goes without saying that such a solution would not be convenient in terms of
implementation, so it is considered an acceptable solution for a first phase in which
the robot and the PC are connected through a p2p connection. The cited function
is the following one

int pcap_sendpacket ( pcap_t * p, u_char * buf , int size);

and it requires both the pointer to the buffer, where data must be picked up, and
the size of data to send.

3.1.3 Performances Evaluation: p2p connection
The setting that is going to be evaluated in this section is a p2p connection via
Ethernet cable between laptop and Raspberry Pi attached to the robot. In this
condition two performance indices are considered:
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- Round Trip Time (RTT), in order to understand the magnitude of the trans-
mission delays;

- RTT variance, that is needed to obtain a good representation of the transport
delay variation, which is a fundamental parameter for the application of a
remote control.

The first performance index is obtained by means of a simple client-server program
with which the laptop sends some ’dump’ packets to the Raspberry, which replies
sending back the same packets it reads. Two timestamps are saved: the first
one when the packet is sent by the laptop, the second one when it returns, their
difference gives the RTT of the packet. This procedure is performed for N = 1000
packets. More in detail, the transmitted packets are 92 Bytes each and are sent by
the client each 100ms. As said in previous sections, pcap is able to manipulate
raw packets, which means that it is possible to send and receive packets without
any protocol header except for that of the Ethernet protocol, since the network
interface must be able to recognise MAC addresses. Therefore the packet sent in
this test has the format represented in figure 3.3. As can be seen, Ethernet header

Figure 3.3: packet format

is present in the packet but payload field do not contain any other protocol header
and it is filled only with 0 bits for this application. In addition, in order to perform
a strong filter, the ’EtherType’ field is set to the unused value 0x8000, with the aim
to construct a filter based on this field, guaranteeing that the captured packets, in
both the client and the server sides, are only the ones transmitted for this test. It
is worth to notice that the RTT includes also the time which the packet spends to
pass from the interface to the user application and vice versa. Figure 3.4 shows
the RTT trend for N = 1000 samples, and three horizontal lines which represent
the mean value (in red) and the margins given by standard deviation (in green);
approximating this behavior to a Gaussian distribution, it is possible to assume,
from the theory of the statistics, that about 68% of the samples should fall within
the green lines and the experiment result show that even more than 680 sample
lie there. The statistical computations of mean value and standard deviation are
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Figure 3.4: test result: Round Trip Time values

performed as follows:

¯RTT =
1
N

NØ
i=1

RTTi = 20.7573ms, σ̂RTT =

öõõô 1
N

NØ
i=1

(RTTi − ¯RTT )2 = 7.5017ms

allowing to obtain an indirect evaluation of the transmission delay for this Network
architecture:

t̄d =
¯RTT
2 = 10.3787ms ≈ 10.5ms .

In addition it is very important to notice that the standard deviation measurement
is fundamental for the aims of this application since the variability of the sampling
time is crucial for the Asynchronous-EMC and, although σ̂RTT is not a direct
measurement of sampling time variability, it is still a good index for it. In conclusion,
this experiment was performed to understand the network response in the p2p setup
described above, trying not to influence the data with the buffering mechanism,
which would influence the results if the packets would be transmitted too fast.

3.2 UDP Sockets
The second, and more classic, solution requires the use of UDP sockets for both
robot and server sides. Sockets are software objects that provide an inter-process
communication (IPC) solution between processes running either on the same
machine or on dislocated machines which can reach one each other by means
of Network infrastructure. Typically three kinds of sockets are provided to the
developer:

- Datagram sockets, which allow to send single messages to the specified
endpoint;
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- Stream sockets, which implement connection-oriented communication that
allow to send a flow of messages;

- Raw sockets, which are used for particular protocols;

in particular, when it comes to Network sockets, the above cited first two types
refer respectively to UDP/IP sockets and TCP/IP ones. Both of them need to be
bound to specified IP address and UDP or TCP port, this action allows the sockets
to receive all the packets arriving to the specified port-address couple; in addition
only TCP sockets need to send an explicit requirement of opening the connection
to an endpoint which must be waiting for a proper connection query. Finally, for
the packet handling, read and write actions can be performed on socket objects
according to a FIFO order.
Among the various tools for socket programming, the ones chosen for this thesis
are: Unix native sockets, for robot side, and the sockets of the framework Qt, for
the Windows environment of the server. Furthermore UDP protocol is chosen for
this application since, even if it can’t avoid packet loss, it still provides a more
efficient solution than TCP protocol which is heavier due to flow and congestion
control.

3.2.1 Unix native sockets libraries
In this section some of the used functions of Unix socket API are provided, the
information related to the meaning of each symbol come from online Linux manual
[9]. They are exposed in the source file "sys/socket.h", and it will be shown that
some of the peculiarities of the sockets summarized in the previous section will be
present in this implementation too.
The first function that must be presented is the one which is in charge of build the
socket, and is declared as shown below.

int socket (int domain , int type , int protocol );

The return value of this function is the file descriptor which refers to the created
socket, while the three arguments determine what kind of socket it must be built.
The first parameter, named domain specifies the type of communication it must be
established with the socket, some possible values for that parameter are: AF_UNIX,
for a IPC between processes in the same device, AF_INET and AF_INET6 respectively
for IPv4 and IPv6 Network communication or AF_BLUETOOTH for bluetooth links.
The argument type is the one which allows to select the kind of socket, choosing
between some defined types such as: SOCK_STREAM, SOCK_DGRAM, SOCK_RAW (see
3.2) and others more. Finally protocol specifies the communication protocol for
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the created socket, even if in the most of the cases only one protocol is implemented
for each socket type, hence this parameter is usually set to 0.
For our aims the needed socket is a UDP/IP one, this means that three parameters
are set respectively to: AF_INET, SOCK_DGRAM and 0.
Once constructed the socket it is possible to bind it to given address and port, this
can be done by means of the function bind() declared as follows.

int bind(int sockfd , const struct sockaddr *addr , socklen_t addrlen );

First of all it can be noticed that the first parameter is the identifier of the socket
(i.e. the returned value of socket()) while the following ones are needed to specify
the address and the port to bind. In particular the structure sockaddr contains
the address, the port and an identifier of the address family (for IPv4 it is AF_INET),
while the third argument simply is the length of the address structure; note that
this last argument is needed because the address length can vary from one address
family to an other.
The last function of Unix sockets used in this project is the one which allows to
send packets, shown in the code below.

ssize_t sendto (int sockfd , const void *buf , size_t len , int flags ,
const struct sockaddr *dest_addr , socklen_t addrlen );

This is one of the three functions for sending packets and is mainly used for
Datagram type sockets. As can be seen the first parameter is, once again, the
socket identifier, while second and third parameters are respectively the pointer to
the buffer containing data to send and its length. In addition, since this kind of
socket doesn’t expect to open a connection, destination port and address must be
provided through the last two arguments using the same procedure already explained
for the bind() function. Furthermore the flags argument is used to communicate
the sending behavior, two examples are represented by the flags MSG_DONTWAIT,
which makes the operation to be non-blocking, and MSG_DONTROUTE, used to send
packets without pass by gateway.
Note that no functions for reading packets are shown in this section, this because
on the Raspberry it was possible to choose the interface which uses WiFi protocol
to perform a packet capture by means of libpcap functionalities.

3.2.2 QUdpSocket
As anticipated in previous sections, on server side the socket communication is
implemented by means of an object provided by Qt framework, named QUdpSocket.
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First it can be appropriate to make a brief digression on Qt and on its main
characteristics, [10].
Qt is a multiplatform library, originally written in C++, for the developing of
graphical interfaces; it is strictly based on signaling paradigm, which is also the
strength of this framework since it allows to implement in a very convenient way the
model-contol-view (MCV), which is a pattern at the basis of graphical interfaces.
However, thanks to this signaling mechanism, Qt is extremely suitable for any
object that has to handle events coming from the operating system: starting from
the button widget, receiving the mouse click event, up to the sockets that must
manage the interrupts triggered by packets arrivals. The signaling system is based
on two kinds of functions:

• slots : roughly speaking, they are the callbacks of the signals, in fact they
are called whenever a signal to which they are registered is issued;

• signals : they must only be declared but never defined; their only role is to
be emitted (by means of the macro emit), so that the slots registered to them
can be called back.

The function that allows to construct a signal-slot structure (see Fig. 3.5) is the
method named connect() which typically accepts four arguments: the object
that owns the signal, the signal itself, the object that owns the slot which must
be attached to the signal and the slot itself. At this point, without deepening the

Figure 3.5: signals and slots conceptual architecture
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matter of events, for the thesis purposes it is sufficient to know that, at each packet
arrival, the QUdpSocket object emits the signal called QUdpSocket::readyRead(),
to which a slot must be hooked so that it can manage a packet reading. More in
detail, the QUdpSocket member functions that have been used in this project are
three, one for binding and the others for reading and writing datagram, and are
defined as follows.

bool QAbstractSocket :: bind( const QHostAddress &address , quint16 port =0,
QAbstractSocket :: BindMode mode= DefaultForPlatform )

qint64 QUdpSocket :: readDatagram (char *data , qint64 maxSize ,
QHostAddress * address =nullptr , quint16 *port= nullptr )

qint64 QUdpSocket :: writeDatagram ( const char *data , qint64 size ,
const QHostAddress &address , quint16 port)

First function needs to bind the socket to the specified address-port couple by means
of the QHostAddress class, which can encapsulate different types of addresses, and
the argument port. After binding, the signal QUdpSocket::readyRead() is emitted
whenever a packet arrives at the specified address and port. At this point, as said
before, it suffices to connect a slot which performs a reading of the datagram by
means of the second function shown above. It can be seen that the reading method
requires a buffer where to save data and the maximum number of bytes to read, it
returns the number of effectively read data; it is also possible to obtain the source
address and port by means of its last two arguments.
Finally the first two arguments of the writing method are respectively the pointer
to the buffer, where lies the data to transmit, and the size of data to transmit;
furthermore the other two arguments are used to specify the destination address
and port.

3.2.3 Performance Evaluation: UDP connection
As done in section 3.1.3, the aim here is to evaluate the performances of a network
infrastructure built by means of UDP connection between two hosts (i.e. the
Raspberry and the laptop) between which a router is posed. For this test, a home
router connected to both devices via WiFi protocol is used and, in order to ensure
that it behaves like a third-layer device rather than a simple switch, the packets
exchanged between hosts have the public address of the router as their destination
addresses so that the packets arrived to the router can be forwarded to the desired
hosts. This is possible after a proper PAT setting, which is the router component in
charge of forwarding packets on the private network according to their destination
port. Transmission times are expected to be much more variable than in the
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p2p case analyzed above since a third element (the router) is inserted into the
communication and it is expected to manage other traffic in addition to the one
dedicated to this application.
Also in this case the main performance indices are the RTT and its variance. In
order to obtain them a client-server application as the one of section 3.1.3 is built.
Thus the laptop sends and receives a packet by means of the object QUdpSocket,
while the Raspberry sends back the arrived packets. The RTT is computed on for
each sent packet, by measuring the time elapsed from the departure of a packet to
its arrival.
More in detail N = 1000 packets are sent each 100ms and each one of them is 50
Bytes long, the results of the test are exposed in figure 3.6 which, compared to
the figure 3.4, shows a greater variability of RTT but an unexpected lower mean
value (red line). In fact the mean value ¯RTT and the standard deviation σ̂RTT are
respectively:

¯RTT = 16.8910ms, σ̂RTT = 20.5035ms
hence the expected delay time can be considered to be

t̄d = 8.4455ms ≈ 8.5ms .

It is worth to notice that, in this case, an approximation to a Normal distribution

Figure 3.6: RTT values for UDP communication

can result more forced than the previous case since the computation of a standard
deviation do not takes into account a lower bound for the RTT, provided by the
technological constraints. This problem can be noticed by the bottom green line
of figure 3.6 which goes below 0 s, covering a zone that is certainly unrealistic for
RTT values. In any case it is undeniable that the result of this last test gives very
variable RTT values.

As already said both the solutions are experimented for the application of the
Asynchronous-EMC, and it is expected to have two results radically different due
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to the response of the network infrastructure. In fact in both cases the transport
delay is not relevant since it is a time comparable to the reaction times of the robot
system, but it is clear that for connection implemented by means of UDP sockets
the EMC performances are expected to be more deteriorated compared to the case
with a p2p connection, due to the higher variability of the sampling time. In any
case the second solution is considered as the one of greater practical validity since
it is the solution closer to a real application case.

40



Chapter 4

GoPiGo3: Mobile Robot

In order to test the theoretical results, in the following sections an experimental
application is performed over a two-wheeled differential drive mobile robot; in
particular the robot used for these tests is the GoPiGo3, which is an educational
purpose product of Dexter Industries. This robot microcontroller can be attached
to the Raspberry Pi such that a Raspbian-like OS can be employed in order to
manage the I/O devices for a full control of robot movements.

4.1 Hardware Specifications

Figure 4.1: back view of a GoPiGo3
3D model

Figure 4.2: front view of a GoPiGo3
3D model

The figures 4.1 and 4.2 show the GoPiGo3 shape reproduced by a 3D model
taken from [11]. As said before this is a differential drive mobile robot indeed, as
the two pictures show, it has three wheels:
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• one rear omnidirectional passive wheel that has the role of stabilizing the
robot,

• two active front wheels that are allowed to rotate only about the axis parallel
to the floor, for this reason they are said to be "fixed".

Since the wheels can’t steer, the chassis rotation about the z axis is allowed by the
different speed rotation of the two active wheels, thus it is needed the presence of
two motors, one for each front wheel, with a gear ratio of τ = 120. In addition both
the motors are endowed of an incremental magnetic encoder with 6 pulse counts
per rotation that means to have 720 pulse counts per wheel rotation [12], providing
an angular resolution of 0.5◦ for the wheel angular position measurement.
The microcontroller board is equipped with (see figures 4.3, 4.4):

a. I2C, Serial and Analog Digital ports for sensors purpose;

b. two ports for the motors control and encoder readings;

c. one barrel jack port for 9-12V power supply;

d. RGB LEDs for status signaling;

e. interface for Raspberry Pi header;

Figure 4.3: GoPiGo3 board: bottom
side

Figure 4.4: GoPiGo3 board: top side
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Figure 4.5: GoPiGo3 H-bridge integrated circuit scheme

in addition it provides the possibility to mount several sensors which are not natives
for GoPiGo3 applications, thanks to the General Purpose I/O (GPIO) pins.

Very important to the end of this experimental application is the integrated
circuit that allows to actuate the motors, whose scheme is represented in figure 4.5.
This integrated circuit implements two h-bridges (one for each motor), which are
electronic circuits that allow to modulate the input voltage on the motor by means
of a square wave with a variable duty cycle (DC), called PWM. More in detail, the
scheme shows the two motor ports with 6 pins each: two of them are employed for
the encoder infos transport, which are direction and count pulse, while the third
one is used for 5V power supply, followed by one pin for ground and two for input
voltage to the motor.
On the right side of the scheme the pins for input signals are represented: some of
them are for the power supply, such as ones called VMx, used to receive the voltage
that must be modulated and provided to the motors, and VCC, used for the chip
power supply; other pins receive logical signals both for the voltage modulation
(PWM) and for the motor rotational direction.
Some information about the PWM signal can be taken from the source [13], in
which the square wave is displayed by means of an oscilloscope, showing that the
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period of the PWM is 20ms. In addition it is highlighted the functionality of the
h-bridge, demonstrating that the voltage given as input to the motor changes from
0 to |Vmax| Volts by varying the square wave DC from 0 % to 100 %.
Moreover a Raspberry Pi model 3B is used, it is equipped with an ARM Cortex-A7,
a 32-bit microprocessor, and with a network card that supports WiFi connection
by means of 802.11n protocol. The connectivity with the Raspberry is guaranteed
also by an HDMI port and an Ethernet port.
A fundamental role in the robot control is played by sensors and actuators, hence
their study is provided in the following sections. In this case both the measurement
and the actuation are performed by means of high level programming interface (as
will seen in section 4.2.1), which means that there is not a direct interaction with
the hardware components. Nevertheless both hardware and software constraints
must be understood in order to perform a proper reconstruction of Extended Plant
behavior.

4.1.1 Actuators Study
The modulation of the motor input voltages requires the management of a PWM,
the main consequence is that PWM duty cycle can’t be varied within time intervals
smaller than its period, which is 20ms. In addition the actuator is affected by a
resolution error since the PWM duty cycle is set with a maximum precision of one
percentage point. Moreover, a dead-zone has been experienced for |Va| < 2.3V

(a) left motor (b) right motor

Figure 4.6: wheels angular speed (red) according to motor input voltage (blue)

(this range can vary a lot), in fact input voltages within this range produce a zero
response in wheel speed. What have just been said can be seen in figure 4.6, where
the measured input voltage and wheel rotational speed are displayed, showing the
output response to an input voltage ranging from 0 to its maximum value that
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corresponds to the battery voltage supply: Vmax ≈ 10.5V . However the input
shown in the figure is obtained by increasing PWM duty cycle of one percentage
point per step, showing the resolution error problem which can be prized only for
low values of the input voltage, where its measurements are cleaner than the highest
values, in fact, as the duty cycle of the PWM increases, the noise is amplified and
it becomes more difficult to see a clear jump between two steps.

4.1.2 Sensors Study
For measurement errors it is essential to remember that the encoders mounted
on the motors are incremental with 6 pulses per revolution and, with a gear ratio
τ = 120, the wheel position angle measurement resolution is α̃ = 0.5◦. At software
level, a function which returns the pulse counter must be executed (see the Listing
4.3) and, letting p(k) be the pulse count of the k-th sample, then the transition to
the wheel rotation angle can be performed as follows:

θ(k) =
60◦

120 p(k) = p(k) 0.5◦.

The speed measurements can be obtained by numerically differentiate the position
samples, for this reason it will be referenced to as the derived measurement of the
speed. Starting from the pulse counts of actual and previous wheel position, i.e.
p(k) and p(k−1) respectively, in order to perform the backward Euler differentiation
the following formula must be applied:

ω(k) =
(p(k) − p(k − 1)) 0.5◦

Ts

where Ts is the sampling time. Please note that the resolution of this measurement
is strongly dependent on the choice of sampling time, in fact the minimum distance
between two consecutive pulse counts is 1, thus the parameter Ts is the only one
which can determine how fine the resulting sample is.
Nevertheless another kind of speed measurement is obtained by calling a function
which directly returns the pulse frequency. In the second case, letting f(k) be the
pulse frequency read at k-th step, then the wheel speed can be computed as

ω(k) =
f(k)

2

where 2 are the number of pulses needed for one wheel degree. In addition, since
the pulse frequency f is represented on a 16 bits integer variable (see the Listing
4.3), it is simple to understand that the resolution error is er = 0.5 deg/s for this
measurement method.
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The two measurement methods are compared below, both are performed simulta-
neously on the same data acquisition process obtained by providing to the motors
an input voltage ranging from 0 up to Vmax as in the example above.

(a) left wheel (b) right wheel

Figure 4.7: wheels direct (red) and derived (blue) angular speed measurements
with Ts = 10ms.

Figure 4.7 shows the speed measurements for the left and right wheels obtained at
a sampling time Ts = 10ms. It is clear that, in this case, the direct measurements
have a better resolution than the derived ones but, on the other hand, the direct
measurements are subject to a slight delay with respect to the other one that is
experienced especially in the rising edge around the time instant t = 2 s. Figure
4.8 shows the results of a measurement process identical to that displayed in the
previous figure, with the difference that a sampling time of 20ms is used for this
case. Both the plots show a substantial improvement in the resolution of the
measurements, confirming what was said previously. Anyway, in this case too, the
direct measurement behaves better than the derived one, except for the delay in
the rising edge, which is even more pronounced than in the previous case.
In conclusion, although the derived measurement has a greater responsiveness with
respect to the direct measurement, it still has a too low resolution, especially for
the sampling time Ts = 10ms, which is the one chosen to implement the remote
control system; for this reason, the direct measurement method is the one used for
this project.
Before going on, a last comment is needed about the two kinds of measurements,
so that the choices made in the following sections can be well understood. In figure
4.9 you can see the same comparison presented in figure 4.7 with the difference that
the derived measurements are filtered by means of the Moving Average technique
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(a) left wheel (b) right wheel

Figure 4.8: wheels direct (red) and derived (blue) angular speed measurements
with Ts = 20ms.

implemented with a sliding window of 10 slots. As can be prized from the figure, by
applying this kind of filter to the derived measurements, the blue line and the red
line become very similar both for the trend of the samples and for their resolution.
It is very important to underline this aspect because it provides a solution for a
software emulation of the sensors behavior.

(a) left wheel (b) right wheel

Figure 4.9: wheels direct (red) and filtered derived (blue) angular speed measure-
ments with Ts = 10ms.
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4.2 Software Specifications
The operating system installed in the microSD plugged in the Raspberry board is
called DexterOS and is a Raspbian-like OS owned by Dexter Industires.
DexterOS allows to use the Raspberry as a server, indeed by digiting its IP address,
which can also be obtained by resolving the hostname "dex.local", on the search
bar of the browser it will answer with a web page which lets to access remotely to
the robot in two different modes:

- Desktop view, on TCP port 8001, which offers a classical GUI-based interface,
very convenient for developing code through graphical IDEs;

- Terminal view, on TCP port 4200, which allows interactions by means of shell
commands only, providing a lighter and more energy-saving solution than the
first one.

In addition to the OS, some developers tools are included in the installation
package, ranging from ad-hoc graphical programming languages for beginners to
more complex languages such as C++, C#, Python or Java, providing libraries which
allow to communicate with motors, encoders and other sensors eventually attached
to board ports. In particular, the C++ libraries will be analyzed since it is the
language chosen for the development of the project described in the next chapters.

4.2.1 GoPiGo3 C++ libraries
Some libraries dedicated to robot control are made available for code development,
whose symbols are declared in file "GoPiGo3.h" and are defined in "GoPiGo3.cpp"
one.
The presence of an operating system simplifies a lot the management of an I/O
device, in particular the Linux-based ones use pseudo files, typically placed in
directory "/dev" , allowing to treat the communication with a device as a read/write
procedure on a file, [14]; the piece of code in 4.1 confirm what said, showing how
the transfer of the data can be handled. The just mentioned code is directly taken
from file "GoPiGo3.h" and it is possible to see that the I/O device is treated as
a file since the ’#define’ directive saves into ’SPIDEV_FILE_NAME’ the path of a
pseudo file which represents the SPI (Serial Peripheral Interface) device. Finally,
as for a normal file, it is opened through the system call open() which returns
a handle used as a file identifier from that moment on. Very important is the
structure ’spi_xfer_struct’, which is used as a buffer both for transmit and for
receive data, providing the length of the transferred data and optional infos related
to the communication , such as the time delay or the bit rate, [15].
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Listing 4.1: GoPiGo3.h: SPI device opening
1
2 ...

19 # define SPI_TARGET_SPEED 500000 // SPI target speed of 500 kbps
20
21 # define SPIDEV_FILE_NAME "/dev/ spidev0 .1" // File name of SPI
22
23 ...
46 struct spi_ioc_transfer spi_xfer_struct ; // SPI transfer struct
47 uint8_t spi_array_out [ LONGEST_SPI_TRANSFER ]; // SPI out array
48 uint8_t spi_array_in [ LONGEST_SPI_TRANSFER ]; // SPI in array
49 // Set up SPI. Open the file , and define the configuration .
50 int spi_setup (){
51 spi_file_handle = open( SPIDEV_FILE_NAME , O_RDWR );
52
53 if ( spi_file_handle < 0){
54 return ERROR_SPI_FILE ;
55 }
56
57 spi_xfer_struct . cs_change = 0; // Keep CS activated
58 spi_xfer_struct . delay_usecs = 0; // delay in us
59 spi_xfer_struct . speed_hz = SPI_TARGET_SPEED ; // Speed
60 spi_xfer_struct . bits_per_word = 8; // bits per word
61
62 return ERROR_NONE ;
63 }
64
65 ...

The function ’spi_transfer_array()’ plays a central role in communicating
with I/O devices, since allows to send any kind of data collected in the user memory
location pointed by the parameter ’outArray’ and to receive data saving it on the
user memory location pointed by the parameter ’inArray’. The piece of code in
4.2 highlights what just said, showing that the buffers pointers are saved in the
structure mentioned above which, in turn, is passed to the system call ioctl(), in
charge of performing the communication with the driver.

Listing 4.2: GoPiGo3.h: SPI transfer array function
1 ...

65 // Transfer length number of bytes . Write from outArray , read to inArray .
66 int spi_transfer_array ( uint8_t length , uint8_t *outArray , uint8_t * inArray ){
67 spi_xfer_struct .len = length ;
68 spi_xfer_struct . tx_buf = ( unsigned long) outArray ;
69 spi_xfer_struct . rx_buf = ( unsigned long) inArray ;
70
71 if ( ioctl ( spi_file_handle , SPI_IOC_MESSAGE (1) , & spi_xfer_struct ) < 0) {
72 return ERROR_SPI_FILE ;
73 }
74
75 return ERROR_NONE ;
76 }
77
78 ...
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In simple terms, the function exposed in the code 4.2 is the backbone of all the C++
GoPiGo3 library, since every time it is needed to transmit data with HW devices
(i.e. motors commands, battery information or sensors readings) this function must
be called. However the code exposed above is at a very low level of this library
and it is not needed to directly deal with it, nevertheless it is essential to know it
in order to understand the functioning of higher level code. The library provides
a class named GoPiGo3 that doesn’t contain member variables of interest but
exposes a series of setter and getter functions which have the role of, respectively,
sending to and receiving from peripherals. For initialization of the class it is used
the function "detect() ", needed to make sure the robot is connected and the
firmware is up to date, on the other hand the function "reset_all() " must be
called to reset all the peripherals, included motors and encoders.

Listing 4.3: GoPiGo3.h: some member functions of GoPiGo3 class
1 ...

265 int get_voltage_battery ( float & voltage );
266
267 ...
270 // Set the motor PWM power
271 int set_motor_power ( uint8_t port , int8_t power );
272
273 ...
270 // Get the motor status . State , PWM power , encoder position , and speed (in

degrees per second )
271 int get_motor_status ( uint8_t port , uint8_t &state , int8_t &power ,

int32_t &position , int16_t &dps);
272 // Offset the encoder position . By setting the offset to the current position ,

it effectively resets the encoder value .
273 int offset_motor_encoder ( uint8_t port , int32_t position );
274
275 // Get the encoder position
276 // Pass the port and pass -by - reference variable where the encoder value will be

stored . Returns the error code.
277 int get_motor_encoder ( uint8_t port , int32_t & value );
278
279 ...

In code listed in 4.3 the member functions of class GoPiGo3, used for this project,
are presented:

- get_voltage_battery() is used to get the voltage which must be modulated
by the PWM signal, in other words it represents the maximum supply voltage
for the motors;

- set_motor_power() is the method used to set the PWM duty cycle for a
motor by means of the parameter power . It is worth to notice that it is a
signed 8 bits variable, this means that (i) when it assumes negative values
the motor rotates in the opposite verse and (ii) all its values higher than 100
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in magnitude, are considered to be equal to 100 since the magnitude of this
parameter represents the percentage of the PWM duty cycle;

- get_motor_status() is used to obtain some measurements related to a
specified motor, in particular it is needed for angular position and angular
speed measurements saved in variables position and dps , passed as rvalue
reference to the function. In first parameter is saved the position of the encoder
in terms of pulses count, in second one the degrees per second. Please note
that this is the function used to obtain the direct measurement discussed in
section 4.1.2;

- offset_motor_encoder() is to set the encoder position offset;

- get_motor_encoder() is used to measure the encoder position. It is used
for the derived speed measurement.

Finally in the last three methods it is possible to note the same parameter port
which is in charge to define the motor where must be performed the function
operation; thus it can assume only two values represented by the constants defined
in the file GoPiGo3.h which are MOTOR_LEFT and MOTOR_RIGHT.
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Chapter 5

Model and Control of
Motor-Wheel System

At this point the practical application of what has been said about the EMC theory
must be addressed. Particularly, this chapter will deal with a dynamic analysis of
the real motor-wheel system in order to provide a model for the EMC.

5.1 Motor-Wheel Model Definition

Since no detailed information has been provided regarding the DC motor used for
the robot in question, a generic model is considered so that appropriate state space
equations can be derived. The figure 5.1 represents a scheme of a DC motor which
is attached to a load, in this case the wheel, by means of a gearbox with ratio τ ,
forming what in this thesis will be referred to as motor-wheel system. More in
detail, the model considered does not take into account any type of elasticity, i.e.
all the components are assumed to be stiff, and any type of slack in the gearbox is
neglected. Finally, it should be noted that some of the disturbing torques acting on
the wheel, such as, for example, the rolling friction, are grouped within the defined
torque Tl; on the other hand, with Tr the disturbing torques that would act directly
on the motor side are identified. At this point let’s analyze the dynamic equations
related to this model and used for the construction of the EM. In order to obtain
the final equations, let rm and rw be the radii of the motor-side and wheel-side
gears respectively, and let f be the force of interaction between the two gears; then
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Figure 5.1: scheme of DC motor and wheel system

the following equations are provided:


Va(t) = Ra ia(t) + La i̇a(t) + kωωm(t)
Jm ω̇m(t) = kt ia(t) − βmωm(t) − Tr(t) − rm f(t)
Jw ω̇w(t) = rw f(t) − βwωw(t) − Tl(t)
θ̇m(t) = ωm(t)

(5.1)

where the first equation is obtained by applying the voltage equilibrium equation
at the electrical part, while the following ones are obtained by the analysis of the
mechanical part. Performing suitable substitutions and rearrangements on second
and third equations, and reminding that τ = rw/rm = ωm(t)/ωw(t), it can be
obtained:

A
Jm +

Jw

τ 2

B
ü ûú ý

=Jeq

ω̇m(t) = kt ia(t) −
A
βm +

βw

τ 2

B
ü ûú ý

=βeq

ωm(t) −
A
Tr(t) +

Tl(t)
τ

B
ü ûú ý

=Td(t)

. (5.2)

This last equation speaks volumes about the mechanical action of the gearbox, in
fact it can be noticed that the toques coming from the wheel-side, which react to
the motor action, are reduced by factors τ 2 and τ ; it means that a relatively high
reduction factor (as in this case, where τ = 120) will cause a mechanical damping
of the reactions and disturbances coming from the wheel side.
Anyway, at this point the final state-space equations can be obtained by using the
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5.2, which lets to write:
i̇a(t) = −

Ra

La
ia(t) −

kω

La
ωm(t) +

1
La
Va(t)

ω̇m(t) =
kt

Jeq
ia(t) −

βeq

Jeq
ωm(t) −

1
Jeq

Td(t)

θ̇m(t) = ωm(t)

(5.3)

Finally, passing to the Laplace domain, the resulting equations allow to sketch the
block scheme in figure 5.2 .

ia(s) =
1

Ra + sLa
(Va(s) − kω ωm(s))

ωm(s) =
1

βeq + sJeq
(kt ia(s) − Td(s))

θm(s) =
1
s
ωm(s)

(5.4)

Figure 5.2: block scheme of DC motor and wheel system

5.1.1 Model Evaluation
At this point it can be proper to carry out an evaluation of the model taken into ac-
count. To this aim the values of the parameters are needed but no official datasheets
are provided by GoPiGo3 motors suppliers, therefore a parameter identification
should be performed. In this regard, the work carried out in the Source [13] can be
very useful since a detailed process for estimating the parameters of GoPiGo3’s
motors is provided in there. It is very important to specify that the purpose
here is not to use parameters which perfectly fit the motors behavior, it would be
impossible since from one motor to another there could be structural differences
that could cause considerable variations in their parameters. Nevertheless, it was
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decided to use the parameters estimated in the above mentioned thesis, since in
the past chapters it has been widely shown how EMC is able to compensate for
parametric errors.
The parameters used for this thesis are exposed in the table below. In order to

Parameter Unit of Measure Value

βeq Nm (s/rad) 4.3116 × 10−7

Jeq kg m2 4.6743 × 10−7

La H 0.2152

Ra Ω 18.573

kω V s 0.0134

kt NmA−1 0.0134

Table 5.1: DC Motor Parameters

evaluate the resulting model, the measurements of rotational speed the wheels are
compared to the response obtained by the model implemented in Simulink, to
which the same input given to the motors is provided. The Simulink project is
based on the block scheme of figure 5.2, the results are displayed below.

(a) left motor (b) right motor

Figure 5.3: input voltage obtained by ranging PWM duty cycle from 30% to 75%
with increment of 5% each jump.

Figures 5.3 and 5.4 display the the input voltage provided to the motors and the
resulting angular speeds. As can be seen, the input is obtained by increasing the
PWM duty cycle of 5 percentage points for 9 times starting from 30%. The first
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(a) left wheel (b) right wheel

Figure 5.4: comparison between measured wheels angular speed output (blue)
and model output (red) for stairs input.

aspect that must be highlighted is the different response of the two motors, in fact,
as can be seen in figures 5.4a and 5.4b, the "stairs" represented by the two blue lines
have two different slopes, confirming that there are differences between parameters
of the two motors. Moreover as these two figures point out, there is a substantial
difference between model response and measurements for both the right and left
wheels, suggesting a gain error caused by a bad choice of parameters. Anyway,
as said above, the EMC control methodology is able to reject parameter errors,
thus, as we will see, the parameters chosen above are more than sufficient. The
aspect of the model that needs to be evaluated more carefully is its responsiveness,
whose evaluation can be performed with the next example. Figure 5.5 represents
another voltage input provided to the motors, obtained by setting the PWM DC
at the values {0, 50, -50, 0}, in this order. Also in this case the figure 5.6 points
out a gain error already highlighted in the previous case, but the goal here is to
show the behavior of the model transient with respect to the measurements. About
this, the estimated output seems to be slightly in advance wrt the measurements,
but please remember that the direct measurement method provides a delay in the
system output (see 4.1.2). In any case, the transient of the estimated output is
very similar to that given by the measurements, therefore, although the chosen
parameters don’t give a precise estimate of the output, the model can be considered
to be acceptable for its application on the EM.

56



Model and Control of Motor-Wheel System

(a) left motor (b) right motor

Figure 5.5: input voltage obtained by PWM duty cycle values sequence: {0, 50,
-50, 0}%.

(a) left wheel (b) right wheel

Figure 5.6: comparison between measured wheels angular speed output (blue)
and model output (red) for double port input.

5.2 Asynchronous-EMCDesign for Motor-Wheel
System

This section deals with the design choices taken for the construction of the
Asynchronous-EMC which is able to control the wheel-motor system described
above in asynchronous measurements and commands scenario. It is worth to
notice that the Asynchronous-EMC can be considered as a generalization of the
canonical EMC, therefore their designs are equivalent and, in order to use the
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Asynchronous-EMC design for a normal EMC application, it suffices to provide
a constant sampling time T . It is important to specify this aspect because, after
the design phase, there will be an experimentation phase carried out on software
simulations first (both for asynchronous and synchronous systems) and then directly
on the robot with an embedded application. Once these two test phases have been
passed, we move on to experimenting with remote control, by testing the design of
the control unit with the variable sampling time in a real NCS.

5.2.1 Embedded Model Design
Let’s start from the design of the EM, which includes both Actual and Reference
Dynamics. The model used here was widely discussed in section 5.1, whose state-
space equations defined in 5.3 are employed in order to obtain the discrete time
model. In addition to those equations both driving noise and disturbance states
must be added in order to obtain the complete Actual Dynamics definition. In
particular, for this design, a single disturbance state is accounted, and it is modelled
as an acceleration disturbance. Therefore, the state x has dimension n = 3 and,
in order to design a dynamic noise estimator, the driving noise is chosen to have
dimension nw = 2, with the first component directly added to the armature
current differential equation while the second one is added to the disturbance state
differential equation. Reminding that ωm = τ ωw, the equations below represent
what has just been said.

i̇a(t) = −
Ra

La
ia(t) −

τ kω

La
ωw(t) +

1
La
Va(t) + w1(t)

ω̇w(t) =
kt

τ Jeq
ia(t) −

βeq

Jeq
ωw(t) + xd(t)

ẋd(t) = w2(t)

(5.5)

First of all, please notice that the position is not included in the state-space in
order to have a lower complexity, also note that the disturbance torque Td can be
considered to be included into the more generic acceleration disturbance xd. At
this point, applying the forward Euler discretization method to the just displayed
equations, the DT equations can be written as follows.

ia(ti + Ti) =
A

1 − Ti
Ra

La

B
ia(ti) − Ti

τ kω

La
ωw(ti) +

Ti

La
Va(ti) + Tiw1(ti)

ωw(ti + Ti) =
A

1 − Ti
βeq

Jeq

B
ωw(ti) + Ti

kt

τ Jeq
ia(ti) + Ti xd(ti)

xd(ti + Ti) = xd(ti) + Tiw2(ti)
(5.6)
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As can be seen, the controllable state is composed by armature current ia and
wheel rotational speed ωw, letting Va be the system input and ωw be its output,
the Controllable Dynamics can be written with the matrix form below:

xc(ti + Ti) =

Aciú ýü û
1 − Ti

Ra

La
−Ti

τ kω

La

Ti
kt

τ Jeq
1 − Ti

βeq

Jeq

 xc(ti) +

Bciú ýü û
Ti

La

0

 u(ti) + d(ti)

ym(ti) =
è
0 1

é
ü ûú ý
Cc

xc(ti),
C
ia
ωw

D
(0) = xc0

(5.7)

where d, as discussed in the theoretical part, represents the modelled disturbances
acting on the system, including both the driving noise w and the disturbance state
xd; it can be obtained by the Disturbance Dynamics written in the following matrix
form:

xd(ti + Ti) = xd(ti) +

Gdiú ýü ûè
0 Ti

é
w(ti), xd(0) = 0

d(ti) =
C

0
Ti

D
ü ûú ý
Hci

xd(ti) +
C
Ti 0
0 0

D
ü ûú ý

Gci

w(ti)
(5.8)

from which results Adi = 1, ∀ i. Finally, all the matrices needed for the construction
of the Actual Dynamics are found, thus all the matrices Ai, Bi, Gi can be constructed
as shown in 2.32.
At this point it is very simple to build the Reference Dynamics, in fact it suffices
to copy the Controllable Dynamics by neglecting the disturbances, obtaining the
matrix form equations written below.

x(ti + Ti) =


1 − Ti

Ra

La
−Ti

τ kω

La

Ti
kt

τ Jeq
1 − Ti

βeq

Jeq

 x(ti) +


Ti

La

0

 u(ti)

y(ti) =
è
0 1

é
x(ti),

C
ia
ωw

D
(0) = x0

(5.9)
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5.2.2 Reference Generator Design
Let’s remind that the aim of the Reference Generator is to generate the input
u such that the output y follows the reference r with a "legal" trajectory, where
the term "legal" implies that the constraints imposed on both the states and the
input must be respected. In this specific case an input constraint is imposed by
the actuator, that is its saturation to the value |Vmax| = 10.5V corresponding to
the battery voltage. Anyway a control of the reference dynamics output must
be performed and an usual static state-feedback control law can be designed; the
resulting Reference Generator is sketched in the figure 5.7. To this aim the matrix

Figure 5.7: Reference Generator with saturation of input u and state-feedback
control.

Kref,i = [ki1 ki2] must be computed using pole placement technique, which provides
the following solution:

ki1 =
1
bci1

(aci11 + aci22 − λref,i1 − λref,i2)

ki2 =
1

aci21bci1
(λref,i1λref,i2 − aci11aci22 + aci12aci21 + aci22bci1ki1)

where λref,i1 and λref,i2 are the DT domain eigenvalues to place at instant ti.
Therefore the matrix Ni is needed in order to obtain a unitary dc-gain in the
transfer function between r and y, for this reason Ni is computed as follows:

Ni =
è
Cci [I − (Aci −BciKref,i)]−1 Bci

é−1
.

In the figure the saturation block can be recognised, and it is placed there in order
to guarantee that the reference input is within the limits imposed by the maximum
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battery voltage supply, namely −10.5 ≤ u ≤ 10.5.

5.2.3 Noise Estimator Design
As already mentioned, we want to implement a dynamic noise estimator, this
implies that a model error filtering is performed by an integrator included into the
driving noise estimator. Let’s remind that, for this kind of noise estimator, the
observer closed-loop states matrix Am is constructed as follows:

Ami =
C
Ai −Gi LiCi GiMmi

−Ci 1 − βi

D

where Mmi =
C
mi0
mi1

D
, L =

C
li0
li1

D
and β are the unknowns of the pole placement

problem. Since the dimension of x is n = 3, the number of eigenvalues to place are
dim(Ami) = 4 but there are 5 unknowns, therefore at least one parameter must be
set to an arbitrary value. In detail, by choosing li0 = 0, ∀ i, it is possible to obtain
the remaining parameters in function of the desired eigenvalues in the following
way:

βi = ai11 + ai22 + ai33 − αi3 + 1

li1 = −
1

ai23gi32
[(1 − βi)(ai11 + ai22 + ai33) + ai11ai22 + ai11ai33 + ai22ai33−

− ai12ai21 − αi2]

mi1 =
1

ai23gi32(ai33 − ai11)[(1 − βi)(ai11a
2
i33 + ai22a

2
i33 + (ai33 − ai11)ai23gi32li1)+

+ αi0 − ai33(αi1 − ai11ai22ai33 + ai12ai21ai33 − ai11ai23gi32li1)]

mi0 =
1

ai21gi11
[(1 − βi)(ai11ai22 + ai11ai33 + ai22ai33 − ai12ai21 + ai23gi32li1) − αi1+

+ ai11ai22ai33 − ai12ai21ai33 + ai23gi32(ai11li1 −mi1)]

being Pi(λ) = λ4 +αi3 λ
3 +αi2 λ

2 +αi1 λ+αi0 the desired characteristic polynomial
at time step ti, with the coefficients depending on the desired DT eigenvalues as
shown below.

αi0 = λmi1λmi2λmi3λmi4

αi1 = λmi1λmi2λmi3 + λmi1λmi2λmi4 + λmi1λmi3λmi4 + λmi2λmi3λmi4

αi2 = λmi1λmi2 + λmi1λmi3 + λmi1λmi4 + λmi2λmi3 + λmi2λmi4 + λmi3λmi4

αi3 = λmi1 + λmi2 + λmi3 + λmi4
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At this point, once the unknowns are computed, the estimation of the driving noise
can be performed by applying the following formulae

w̄1(ti) = mi0 q(ti) ,
w̄2(ti) = li1 ē(ti) +mi1 q(k) ,
q(ti + Ti) = ē(ti) + (1 − βi)q(ti), q(0) = 0 .

(5.10)

5.2.4 Control Law Design
Let’s remind that for the design of Control Law both the conditions 2.36 and 2.37,
must be achieved. The first one can be accomplished by performing the usual pole
placement which allows to compute the matrix Ki = [ki1 ki2] in function of the
desired poles λci1 and λci2. In particular the solution for this problem is exactly
the same of the one obtained for the Reference Generator design, in fact they are
the same problem.

ki1 =
1
bci1

(aci11 + aci22 − λci1 − λci2)

ki2 =
1

aci21bci1
(λci1λci2 − aci11aci22 + aci12aci21 + aci22bci1ki1)

Therefore the components of Ki are computed as shown above while the matrices

Q =
C
q1
q2

D
and M = m (in this case M is a scalar) must be computed by solving

the following Devison-Francis condition

 q1
Ti + q2

0

 =


1 − Ti

Ra

La
−Ti

τ kw

La

Ti

La

Ti
kt

τ Jeq
1 − Ti

βeq

Jeq
0

0 1 0


q1
q2
m



which provides the following solution for the unknowns q1, q2, m:

q1 =
τ Jeq

kt
, q2 = 0 ,

m = q1 Ra .

Note that these parameters are independent from the sampling time Ti. At this
point all is needed to build the Control Law is available, it suffices then to use the
formulae 2.17 and 2.19 (properly adapted to the asynchronous case) such that the
desired command u is provided to both the Plant and the Embedded Model.
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Chapter 6

Wheels Rotational Speed
Control Simulations

At this point it is possible to practice the asynchronous-EMC designed above, first
of all starting from simulations, whose aim is to test the closed loop system tuning
the eigenvalues of observer, controller and reference generator, and then moving on
to the real application. Please note that although the final purpose is to implement
a remote control, a simulation for testing the canonical EMC is still implemented,
since a preliminary embedded control will be performed before moving on to a
remote application. To this aim, as told in 5.2, it is sufficient to provide a constant
sampling time in order to make the designed Asynchronous-EMC to behave as a
normal EMC.
Then the real motor control will follow, first carried out directly on the board and
then remotely, highlighting, in the latter case, both the methods of communication
described in chapter 3. Before starting with the results review, three time intervals
must be defined:

- Ta that is the time period with which the command is provided to the motors
and it is fixed to Ta = 20ms;

- Ts that is the time interval between two measurements readings performed on
the encoder;

- Ti which is the i-th time elapsed from two consecutive measurement arrivals in
the asynchronous measurements and commands case; it also can be considered
as the time interval between two executions of the control unit.

Please note that, in this thesis, Ti is always referenced as "sampling time" but,
strictly speaking, the only sampling time is Ts; nevertheless it is not totally
incorrect to define it as a sampling time, since Ti can be considered as the sampling
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time from the point of view of the server, which reads the measurements with a
cadence imposed by Ti itself. In addition, in case of synchronous commands and
measurements, Ti = Ts holds. Therefore let’s to specify that whenever we speak
about "sampling time", we always refer to Ti, differently, if we have to refer to Ts,
it will be expressed explicitly.

6.1 Motor-Wheel Extended Plant Simulator
Before the simulations can be performed, a discussion about the extended plant
implementation is needed since its purpose is to fit as much as possible to the real
motor-wheel system. What has been described in section 5.1 is considered for the
Simulink block implementation of the system dynamics and it is represented in
figure 6.1; let it be referenced to as plant. Please note that the parameters chosen

Figure 6.1: Simulink wheel-motor dynamics block scheme implementation

for the plant model are the same as those of the EM, this implies that between
simulation and real robot application there will be a first big difference due to the
fact that the parameter errors are not taken into account in this simulations.
Nevertheless, the errors regarding actuators and sensors, described in previous
sections, will be considered, since they have a strong influence on the final result.
Starting from the actuators, let’s remind that the problems issued in 4.1.1 can be
summarized in the following points:

1. minimum periodicity of 20ms;

2. command voltage saturation: −Vmax ≤ Va ≤ Vmax;

3. resolution error: Va = i
Vmax

100 , for i ∈ Z;
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4. dead zone for |Va| ≤ Vdead;

where Vdead is the minimum value in magnitude of the input voltage which makes the
wheel rotate. In Simulink framework, these constraints are simply implemented
with the block scheme represented in figure 6.2, which shows that the saturation
and the resolution error are implemented by means of the appropriate blocks, while
the dead-zone is implemented by means of Matlab code, where a simple if-else
structure allows to set to 0 the input voltages in the dead-zone range. These three

Figure 6.2: actuator implementation in Simulink

blocks are, then, encapsulated in a subsystem whose sampling time is set to 20ms
in order to achieve the constraint on the periodicity. Figure 6.3 show the input
and output of the just described subsystem.
The output of this subsystem is directly provided to the wheel-motor model,

Figure 6.3: input (red) and output (blue) of the simulated actuator.

represented in figure 6.1, whose output must be handled in order to have a proper
replication of the real plant behavior when it provides a measurement. Therefore a
sensor model must be constructed starting from the considerations done on the
two different kinds of measurements in section 4.1.2. Please remind that the direct
measurement method is the one chosen for the real application, hence it is needed
to implement a sensor model which emulates this method. Unfortunately it is not
simple to obtain this kind of output via simulation, thus a trick is used in order to
achieve the desired result. To this purpose, it is employed an observation made in
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the past sections about the similarity between the direct measurements and the
derived ones if the latter are filtered through the Moving Average technique and,
more precisely, with a sliding window of 10 samples width.
Since all the characteristics of the encoder mounted at motor-side are well known,

Figure 6.4: Simulink model for derived measurement method emulation

it is very simple to implement on software the emulation of the angular speed
derived measurement method starting from the angular position θm provided by
the plant model. The figure 6.4 shows a possible implementation of this sensor
model whose input is the angular position which, as you can see, is divided by the
encoder step angle (i.e. α̃ = 60◦) in order to pass from angular position to the pulse
count; the latter must be quantized since we are interested in its integer value1.
It is worth to notice that the transition from angular position to pulse count is
not mandatory, nevertheless it is performed in order to understand what sensor
really do to obtain the position measurement. Then the actual pulse count must be
subtracted by the previous one in order to obtain the pulse frequency by dividing
the result by the sensor sampling time Ts = 10ms; finally the pulse frequency is
converted in motor angular speed by multiplying the result to the encoder step
angle.
As discussed previously, the final step must be the filtering of the resulting output
by means of a Moving Average filter of the kind:

yfilt(k) =
1
N

N−1Ø
i=0

y(k − i), y(k) = 0 : ∀ k ≤ 0;

where N = 10 is the sliding window width; it is very simple to implement it using
a cascade of delay blocks, whose outputs are summed and then divided by N .
In conclusion, the figure below shows the step response of the whole model which
includes actuator, plant and sensor, which takes the name of Extended Plant. In
the figure is also shown the comparison between the not-noisy output (red), taken
directly from plant output, the sensor unfiltered output (yellow) and the filtered
one (blue).

1Note that, in order to have a realistic behavior, the quantizer block should truncate the input,
but it performs a round-to-nearest
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(a) input (b) outputs

Figure 6.5: Extended Plant voltage input (left) and angular speed outputs (right)

6.2 EMC for Simulated Motor-Wheel System:
Constant Sampling Time

This first simulation involves the application of the asynchronous-EMC in a condi-
tion of synchronous measurements and commands, providing a constant sampling
time. The aim here is to test the goodness of the design of EMC components and to
get an idea of the eigenvalues scale to be used in such a system. Note that, although
it is not necessary since a constant sampling time is used, the eigenvalues to tune
are provided in CT domain for a matter of continuity with the asynchronous case.
Another preamble to make concerns the eigenvalues of the reference generator,
which will be set to:

λCTref1 = λCTref2 = −3

since these value allow to have a good compromise between response speed and
dead-zone problem handling, which is observed in the initial phase of the control
action. Nevertheless the other two sets of eigenvalues will be tuned and the related
results will be shown. The following table displays the CT domain eigenvalues used
in each simulation.
The following simulations will be performed for tf = 10 s with Ts = 10ms and
the operator reference r is defined as follows:

r(t) =


5 : 0 ≤ t ≤

tf

2
3 :

tf

2 < t ≤ tf

(6.1)
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Observer Controller

λCTm1 λCTm2 λCTm3 λCTm4 λCTc1 λCTc2

simulation 1 -100 -100 -100 -100 -10 -10

simulation 2 -500 -50 -50 -50 -10 -10

simulation 3 -500 -50 -10 -60 -10 -5

Table 6.1: EMC Observer and Controller eigenvalues for motor-wheel simulations

(a) controller command output u (b) extended plant (blue), EM (red) and
reference generator (green) outputs

(c) model error ē (d) tracking error e

Figure 6.6: simulation 1 results

6.2.1 Simulation 1

The eigenvalues choice is based on the rule of thumb for which the observer’s
eigenvalues must be 5 to 10 times faster than controller ones. The results in Fig.
6.6 show a small initial oscillation due to a high command action which leads to
an overshoot in the starting phase of the output rise. Another problem highlighted
in the figure is the fact that the estimated wheel angular speed includes a too high
frequency dynamic which must be filtered.
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(a) controller command output u (b) extended plant (blue), EM (red) and
reference generator (green) outputs

(c) model error ē (d) tracking error e

Figure 6.7: simulation 2 results

6.2.2 Simulation 2

The observer eigenvalue related to the current is increased since the electric dynamics
are certainly more rapid than the mechanical ones. On the other hand the other
three observer eigenvalues are decreased since the aim is to cut off the high frequency
noises from the final estimate of the speed state. The results (see Fig. 6.7) show
that the filter action is achieved but the initial oscillation is still too pronounced.

6.2.3 Simulation 3

In order to obtain a better result on the rising phase, the control eigenvalue related
to the rotational speed must be decreased, this leads to a lower control action
and, then, a lower overshoot. In Fig. 6.8 it can be noticed that these eigenvalues
provide a filtered estimation, in addition the previously mentioned overshoot is
well damped, even if it doesn’t completely disappear.
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(a) controller command output u (b) extended plant (blue), EM (red) and
reference generator (green) outputs

(c) model error ē (d) tracking error e

Figure 6.8: simulation 3 results

6.2.4 Results summary

Focusing on the resulting error plots it is possible to highlight two fundamental
aspects which are common to all the simulations:

- for the first 2 seconds an oscillation can be noted for both types of error. As
anticipated earlier, this behavior is due to the dead-zone introduced by the
actuator, discussed in section 4.1.1, which causes a disproportionate command
action that results in an initial overshoot. The speech above is proved by the
fact that no oscillation is found in the falling edge within the time interval
from 5 s to 7 s, in which the output ranges from 6 rad/s to 4 rad/s; in fact, in
this speed range, the voltage input works outside the dead-zone. In conclusion,
it can be understood that this problem will be present in all the next results,
nevertheless, with the current design of the EMC, the only tool to counter it
is the tuning of the eigenvalues, in particular that of the reference generator:
by slowing down them, it is possible to have a smoother and slower reference
which would make the command action less aggressive at the moment of
detachment from the dead-zone.
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- Apart from these first two seconds, the errors always remain in very low
margins: in the last simulation, for example, both the model and tracking
errors are within the range [−0.2, 0.2] rad/s from the instant tÍ = 2 s on. In
conclusion, it can be stated that these errors are mainly attributable to the
disturbance in the measurements.

6.3 EMC for Simulated Motor-Wheel System:
Constant Sampling Time

At this point we move on to the simulation of a system with asynchronous mea-
surements and commands, testing the control with a variable sampling time. The
purpose of this section, differently from the work done in the previous one, is not
to expose an eigenvalues tuning, as it could be not very interesting, but to make
understand how much the variability of the sampling time can affect the final result.
Anyway, before deepen this topic, a brief description of the tools used to carry out
such a simulation is needed.

6.3.1 Networked Control System simulation
In order to simulate a system of asynchronous measurements and commands on
the Simulink framework, it is necessary to use two blocks already presented in
the section 2.4.1, namely the Transport Delay and the Triggered Subsystem blocks.
As already explained in that section, their combined usage allows to emulate
the transmission delay and the delay variability respectively, both caused by the
insertion of a communication network (CN) in the closed loop.
About Transport Delay simply is a buffer which delays the input signal by a specified
time. In this case, by using the results of 3.2.3, it is used a delay time of td = 8.5ms.
On the other hand, the Triggered Subsystem block may be of greater interest since
it is the one that allows to simulate a variable sampling time. Please remember that
this block is basically a subsystem that is executed at each rising edge of a square
wave signal that is given to it as an input. In order to have a simulation that is as
realistic as possible, it is needed to have a sampling time which varies in a random
fashion and with a proper variance. To this aim it is needed to construct a square
wave with a variable period which must be provided to the Triggered Subsystem,
as shown in the figure 6.9 where the block Variable Pulse Generator is the one in
charge for this task. The most important role is played by the Random Number
block which generates random values with a Normal distribution to which must be
specified the mean value µ and the variance σ2 of the stochastic process. In this
particular case it holds µ = Ts = 10ms, as a consequence of the fact that the plant
sends a measurement each Ts, while σ2 is a parameter which will be changed in the
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Figure 6.9: Simulink block scheme of square wave generator for Triggered
Subsystem block.

following simulations in order to prize the effect of the sampling time variability
to the controlled system. Finally, the random numbers generated by this block,
are provided to the pulse generator, adjusting the time interval between two rising
fronts of its output square wave, nevertheless not all values are admitted as input
for pulse generator thus it is needed a saturation block which prevents this input
from assuming values below 1ms and above 100ms, as shown in figure.
In conclusion, the simulations whose results will be shown below differ from each
other for the variance of the sampling times, which, for simplicity of notation,
will be indicated with its standard deviation σ. In addition, remember that the
final result is also influenced by the stochastic process realization of the random
number generator, which changes with the variation of the seed that is supplied as
a parameter to the block. For this reason, each simulation presents 4 of the most
representative results, each obtained by supplying a different seed to the random
number generator. Moreover the eigenvalues used for all the simulations are the
same and are exposed in the table 6.2 and the operator reference defined in 6.1 is
used.

Observer Controller Reference

λCTm1 λCTm2 λCTm3 λCTm4 λCTc1 λCTc2 λCTref1 λCTref2

-100 -70 -5 -60 -70 -60 -2 -2

Table 6.2: EMC Observer, Controller and Reference Generator eigenvalues
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6.3.2 Simulation 1: σ = 5ms

The figure 6.10 shows the results of the simulation performed with σ = 5ms,
it immediately can be seen that there are no particular changes between the
realizations. The errors are very good, in fact they only show the usual little
oscillation in the initial phases which, however, is immediately dampened, bringing
both errors to remain stably in very low values.

Figure 6.10: simulation 1: extended plant outputs (top), model errors (bottom
left) and tracking errors (bottom right) in 30 different realizations of Ti, with
σ = 5ms.

6.3.3 Simulation 2: σ = 10ms

The figure 6.11 shows the results of the second simulation, performed with σ = 10ms.
Here the effects of a greater variability of sampling times is much evident then
the previous simulation, especially in the realization represented by with the light
blue line, which is the one with a more pronounced oscillation on the rising phase.
It can be observed that the difference between realizations is more visible with
respect to the simulation 1. Nevertheless, also for the simulation 2, the error is
limited to the first phase where the dead-zone strongly affect the performance of
the controller in the first two seconds.
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Figure 6.11: simulation 2: extended plant outputs (top), model errors (bottom
left) and tracking errors (bottom right) in 30 different realizations of Ti, with
σ = 10ms.

6.3.4 Simulation 3: σ = 15ms
The simulation 3 is obtained with a standard deviation σ = 15ms. Here the control
is very deteriorated, in fact, how it can be seen in figure 6.12, there are some
realizations (e.g. the light blue line) where the oscillations are not limited to the
first rising phase but they are extended to the whole output. Anyway, although the
oscillations, the system remains stable, showing a good robustness to the sampling
time variations. Of course, by augmenting more and more σ, instability can occur.

6.3.5 Results summary
Before commenting these results, let’s clarify how the choice of the variance was
performed. Please remind that, in the Normal distributions, the values included
in the interval [µ − 3σ, µ + 3σ] have an outcome probability of more than 99%;
therefore it is possible to get the standard deviation by defining a desired range of
values within which there must lie the most of the sampling times values.
At this point, the results show that the controlled system starts to reveal problems
when the variability of the sampling times rises, and this can be explained by
the fact that the model isn’t able to follow the plant since plant and model are
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Figure 6.12: simulation 3: extended plant outputs (top), model errors (bottom
left) and tracking errors (bottom right) in 30 different realizations of Ti, with
σ = 15ms.

totally out of sync. Nevertheless, it is worth to notice that the simulation has a big
difference with respect to the real system: supposing that there is no transmission
delay (i.e. the Transport Delay block is neglected), in the simulation the sample
obtained at the instant ti from the block of the control unit is a measurement read in
that same instant by the extended plant, therefore all the measurements performed
on the plant between two consecutive samples can be considered to be lost. On the
other hand, in a real network communication, two samples arriving to the server at
two consecutive instants are certainly measurements performed in two consecutively
on the robot, since it is assumed that there is neither loss nor exchange of packets
in the transmission. Note that this constraint also imposes a certain rationality
on the variability of sampling times, for example, if a sample arrives after 100ms,
it is normal to expect subsequent samples arrivals at shorter time intervals, since
Network mechanisms, such as buffering, come into play. Unfortunately all these
aspects can’t be easily implemented with a simulation, thus differences between
simulations and real system tests will be experienced.
Anyway, in terms of control performance, all what was highlighted in section 6.2.4
is confirmed here, in fact, looking at the errors of all three simulations, it can
be seen that the most problematic part is always the rising phase, in which the
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oscillations are more pronounced than elsewhere. Even in the last simulation, which
is characterised by an high variance, there is one stochastic realization in which
oscillations are experienced also after the rising phase, but, also in this case, both
the errors remain restrained to low values.
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Chapter 7

Wheels Rotational Speed
Control Experimental Tests

In this chapter the goal is to show the results of the experimental tests performed on
the designed EMC applied to the real system, both in the on-board application and
in the remote one. To this aim it is used a C++ project which includes a program
executed on the robot board and, for the case of remote control, a program executed
on the server. The details of the project are not deepened but some outlines are
provided in the following sections. Nevertheless it is fundamental to underline
that it is possible to use exactly the same EMC implemented in the simulator
on the C++ project too. This can be done by using Code Generator of Simulink
that is a tool which allows to generate a code starting from a target Subsystem
block. Moreover, since the generated code implements a C++ class which replicates
a Simulink subsystem, it provides methods for the access to inputs, states and
outputs of the converted subsystem ant it also provides a method for a single step
execution, called step(). In this specific context the target subsystem is the one
which implements the whole EMC, this means that, by referring to the scheme
in figure 2.1, the inputs to provide to the class are the measurement y and the
operator reference r, while the output generated after a step() call is the command
u. In conclusion, when it comes to the on board control, this piece of code must be
executed on the Raspberry, on the other hand, when a remote control is tested, it
must be executed on the server.
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7.1 EMC for Real Motor-Wheel System:
On Board Control

In the project to be executed on the robot board, actuators and sensors are managed
through libraries provided by the manufacturers (see section 4.2), while the EMC
is managed by a class automatically generated by the Simulink tool mentioned
above. Therefore the rest of the project becomes relatively simple to implement,
in fact it is only a matter of being able to give a specific timing to the actions to
perform. More in detail, to keep a continuity with the simulations shown previously,
the use of two timers is needed, one that expires every Ts = 10ms and which gives
the timing for both the measurement and the execution of the function step(), while
the other timer expires each Ta = 20ms and gives the timing for the actuation of
the motors.

7.1.1 Wheels on Board Control Tests General Settings
The goal of the tests is not to show the process of eigenvalues tuning, in fact it is
more interesting to see what is the response of right and left controlled wheels wrt
the operator reference r. So the eigenvalues used for these tests are are assumed
to be fixed and the tables 7.1 and 7.2 point out the values used for the EMC
eigenvalues of the right wheel and the left wheel respectively.
Please note that the two tables show different eigenvalues, this means that they

Right Wheel EMC Eigenvalues

Observer Controller Reference

λCTm1 λCTm2 λCTm3 λCTm4 λCTc1 λCTc2 λCTref1 λCTref2

-100 -50 -5 -60 -10 -5 -2 -2

Table 7.1: EMC Observer, Controller and Reference Generator eigenvalues for
right wheel speed control tests

can potentially react with different responses even by providing to the wheels the
same operator reference to track. Anyway the two motor-wheel systems have some
structural differences which prevent them to have the same response even using
the same eigenvalues.
In the figures 7.4 and 7.3 the step responses of both the wheels are displayed

and, in this preliminary test, the eigenvalues of the table 7.1 are provided to
both the EMC. It can be observed that the two outputs are not exactly the same
and this proves what said above. Therefore, in order to ensure that both wheels
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Left Wheel EMC Eigenvalues

Observer Controller Reference

λCTm1 λCTm2 λCTm3 λCTm4 λCTc1 λCTc2 λCTref1 λCTref2

-1000 -35 -10 -60 -200 -5 -2 -2

Table 7.2: EMC Observer, Controller and Reference Generator eigenvalues for
left wheel speed control tests

Figure 7.1: left wheel, step response
with eigenvalues in Tab. 7.1

Figure 7.2: right wheel, step response
with eigenvalues in Tab. 7.1

provide a similar response, it is needed that both of them are able to follow the
respective reference y with the minimal tracking error possible; obviously the other
necessary condition is that reference generators of right and left wheels have the
same eigenvalues, because the angular speed references must be the same.
Then it is worth to notice that the reference generator eigenvalues are decreased
since it is needed a slower dynamic for the reference because, in real case, the
detachment from the dead-zone is more aggressive wrt what was seen in the
simulations. At this point, starting from this basic settings, some of the most
significant tests, performed on both the wheels, are shown in the following.
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7.1.2 Wheels on board control: test 1
The goal of this test is to verify the goodness of the control system applied to both
the wheels. To do this aim the reference defined in 6.1 is provided to both the
wheels, where the duration time of the test is tf = 10 s. The figure 7.3 shows the
results of this test for the right wheel while the figure 7.4 shows the results of the
EMC applied to the left wheel.

(a) controller command output u (b) measurements (blue), estimate (red)
and reference (green)

(c) model error ē (bottom) and tracking
error e (top)

Figure 7.3: right motor test 1 results
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(a) controller command output u (b) measurements (blue), estimate (red) ref-
erence (green)

(c) model error ē (top) and tracking error
e (bottom)

Figure 7.4: left motor test 1 results
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7.1.3 Wheels on board control: test 2
In this second test the reference provided to the wheels is a port function as the
one written below.

r(t) =


5 : 0 ≤ t ≤

tf

2
0 :

tf

2 < t ≤ tf

(7.1)

Practically it is a wheel braking test and it is very interesting since it implies that
the input voltage must return to the dead-zone, potentially causing some problems
in the control system. Figures 7.5 and 7.6 represent the results of the test of right
wheel and the left wheel respectively.
As you can see, around the instant t = 7 s there is an immediate drop to zero

(a) controller command output u (b) measurements (blue), estimate (red)
and reference (green)

(c) model error ē (top) and tracking error
e (bottom)

Figure 7.5: right motor test 2 results

of the measurements on both wheels, pointing out the entry to the dead-zone. It
is also worth to notice that the command u settles on a non-null value, this is
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(a) controller command output u (b) measurements (blue), estimate (red) ref-
erence (green)

(c) model error ē (top) and tracking error
e (bottom)

Figure 7.6: left motor test 2 results

because, according to EMC, it is the input value that makes the wheels stop. In
reality we know that there is a range of values that brings the output speed to zero
(i.e. dead-zone), but the control system simply settles on the first value it meets in
this range, which is in particular u1 = 1.74V , making to note that, when the wheel
is in running, the dead-zone has a smaller range of values than that indicated in
section 4.1.1.
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7.1.4 Wheels on board control: test 3
The third and last test is made to provide more evidences to support the findings
of the last test. In fact in this case a double port reference is given as input to
both the wheels, in order to study the behavior of the systems when the dead-zone
is approached starting from negative speed values.
Thus let be

r(t) =



5 : 0 ≤ t ≤
tf

4
0 :

tf

4 < t ≤
tf

2
−5 :

tf

2 < t ≤
3 tf
4

0 :
3 tf
4 < t ≤ tf

(7.2)

the operator reference provided to the wheels, where tf = 20 s, then the results are
exposed in figures 7.7 and 7.8

(a) controller command output u (b) measurements (blue), estimate (red)
and reference (green)

(c) model error ē (top) and tracking
error e (bottom)

Figure 7.7: right motor test 3 results
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(a) controller command output u (b) measurements (blue), estimate (red) ref-
erence (green)

(c) model error ē (top) and tracking error
e (bottom)

Figure 7.8: left motor test 3 results

7.1.5 Results summary
With this tests the goal is to provide proofs of the validity of the designed control
system applied to the real robot wheels. The first result that does not stand out
from these figures, but which is worth pointing out, is that the parametric errors
mentioned in section 5.1.1 are rejected by the EMC, exactly as expected from the
theory. The second result concerns the management of the non-linearity inserted by
the dead-zone in the plant. Especially the last test points out that the dead-zone
varies from engine to engine and, in the same engine, it varies in the direction of
rotation speed of the wheel. This type of behavior means that, whenever the wheel
approaches the dead-zone, both the model error and the tracking error increase.
Nevertheless, on the whole, the control system still responds very well, although
the transient can be influenced by the dead-zone, the final target is still reached
relatively shortly, in fact in 2.5 s both wheels reach 96% of the final target.
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7.2 EMC for Real Motor-Wheel System:
Remote Control

Finally the tests of the remote control applied to the wheels can be performed,
first by using the p2p connection between laptop and robot board, and then by
employing a router to forward the UDP packets which the two hosts exchange.

7.2.1 Wheels Remote Control Tests General Settings
Regardless of which of the two communication methods is used, the general setting
of the project is the following:

- the client, implemented on the robot board, is in charge of performing mea-
surements and sending them to the server at a cadence of Ts = 10ms, and in
the meanwhile it must actuate motor at a cadence of Ta = 20ms. In addition
a second thread is implemented to read the packets arriving from the server;

- the server is implemented on the laptop and, also in this case, two threads
are employed: one for reading the measurements sent by the client and the
second one used to execute the EMC and to send back the resulting command
to the client.

Thus from one network architecture to another only the methods to send and
receive packets change in software implementation. The following tests will show a
comparison between the control performances in the two communication methods,
using eigenvalues that are different from wheel to wheel (as in the previous test)
but that do not change between one test and another. The tables 7.3 and 7.4
show the eigenvalues used for the remote control of the right wheel and left wheel
respectively. In addition let’s specify that a limit of the sampling times is needed

Right Wheel EMC Eigenvalues

Observer Controller Reference

λCTm1 λCTm2 λCTm3 λCTm4 λCTc1 λCTc2 λCTref1 λCTref2

-100 -65 -2 -60 -80 -15 -2 -2

Table 7.3: EMC Observer, Controller and Reference Generator eigenvalues for
right wheel speed remote control tests

since either too high or too low sampling times can cause instability in the control
loop. Obviously this limitation is imposed merely for the software layer, it is
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Left Wheel EMC Eigenvalues

Observer Controller Reference

λCTm1 λCTm2 λCTm3 λCTm4 λCTc1 λCTc2 λCTref1 λCTref2

-100 -60 -1 -60 -80 -12 -2 -2

Table 7.4: EMC Observer, Controller and Reference Generator eigenvalues for
left wheel speed remote control tests

impossible to limit the time intervals between two sample arrivals. In particular,
for these tests, the sampling times are limited as follows: 1ms ≤ Ti ≤ 30ms ∀ i.
Also in this case some interesting references are provided to the systems in order
to obtain a comparison with the tests carried out previously with the control
performed directly on the robot board.

7.2.2 Wheels remote control, p2p connection: test 1
In this test the operator reference provided to the wheels is the that defined in
6.1 for the test 1 of the embedded speed control with a test time of tf = 20ms.
The results for the two wheels are shown in figures 7.9 and 7.10, where also the
realization of the sampling times are reported.
An aspect to highlight is that, as can be observed in the figures 7.10d and 7.9d,
the sampling times can assume value Ti = 0 for some i, but these zero values are a
consequence of the buffering action performed by the server before the operating
system sends the received data to the user space. When this happens, more than
one packet is sent to the application at once, implying that the reading times
between two consecutive packets are some order smaller than the millisecond.
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(a) controller command output u (b) measurements (blue), estimate (red)
and reference (green)

(c) model error ē (top) and tracking error
e (bottom)

(d) sampling times

Figure 7.9: right wheel remote control, p2p connection, test 1 results
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(a) controller command output u (b) measurements (blue), estimate (red)
and reference (green)

(c) model error ē (top) and tracking error
e (bottom)

(d) sampling times

Figure 7.10: left wheel remote control, p2p connection, test 1 results
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7.2.3 Wheels remote control, p2p connection: test 2
This test deals with the braking case, already studied with the control of the wheels
performed directly on the board. The reference for this test is the one defined in
equation 7.1 and the results are shown in figures 7.11 and 7.12 for the right and left
wheel respectively. Let’s highlight that, thanks to low variability of the sampling

(a) controller command output u (b) measurements (blue), estimate (red)
and reference (green)

(c) model error ē (top) and tracking error
e (bottom)

(d) sampling times

Figure 7.11: right wheel remote control, p2p connection, test 2 results

times, the results are very good and comparable to the results obtained by the on
board control tests. However these tests are not as reliable, first of all because a
realistic network connection is much more complex and therefore introduces more
variability in sampling times; furthermore, since the physical connection is via
Ethernet cable, the robot cannot stay with the wheels attached to the floor, hence
the results do not take into account the friction between wheel and floor.
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(a) controller command output u (b) measurements (blue), estimate (red)
and reference (green)

(c) model error ē (top) and tracking error
e (bottom)

(d) sampling times

Figure 7.12: left wheel remote control, p2p connection, test 2 results
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7.2.4 Wheels remote control, WiFi connection: test 1
As anticipated, to carry out this test and the next, a connection between robot
and server is taken into consideration which includes the use of a router to forward
the packets exchanged to each other. Both devices are connected to the router via
WiFi and the latter forwards the packets according to the destination UDP port it
reads from the packet (a PAT configuration is needed). The reference is the same
used for 7.2.2, and the results for right and left wheel are shown in figures 7.13 and
7.14 respectively.

(a) controller command output u (b) measurements (blue), estimate (red)
and reference (green)

(c) model error ē (top) and tracking error
e (bottom)

(d) sampling times

Figure 7.13: right wheel remote control, WiFi connection, test 1 results
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(a) controller command output u (b) measurements (blue), estimate (red)
and reference (green)

(c) model error ē (top) and tracking error
e (bottom)

(d) sampling times

Figure 7.14: left wheel remote control, WiFi connection, test 1 results
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7.2.5 Wheels remote control, WiFi connection: test 2
The final test performed for the remote control system is the usual braking test,
whose reference is defined as 7.1. The following figures, namely 7.15 and 7.16 show
the results.

(a) controller command output u (b) measurements (blue), estimate (red)
and reference (green)

(c) model error ē (top) and tracking error
e (bottom)

(d) sampling times

Figure 7.15: right wheel remote control, WiFi connection, test 2 results
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(a) controller command output u (b) measurements (blue), estimate (red)
and reference (green)

(c) model error ē (top) and tracking error
e (bottom)

(d) sampling times

Figure 7.16: left wheel remote control, WiFi connection, test 2 results

7.2.6 Results Summary

The first thing to point out is the large difference in scale between the sampling
times obtained from the tests on the p2p connection and those obtained from the
tests on the WiFi connection. So this is a great example of how remote control
system performances change when the variability of sampling times changes as
well. Moreover it is worth to notice that, as anticipated, the sampling times have
a specific rationality in the realization: as can be seen, for example, in figure
7.16d, very low values are in correspondence of too high peaks and this behavior is
attributable to the the fact that an excessive delay of a packet transmission leads
to a very fast arrival of subsequent packets. Please note that this event can cause
a packet exchange if it happens in more complex Network structures, but can be
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certainly excluded for both the Network architecture studied here. In addition,
although a UDP protocol is used for the tests performed with WiFi connection, no
packets dropouts are registered.
Once made these clarifications, it is possible to better analyze the responses of
the controlled systems by comparing the tests performed with the two types of
connection. As you can easily observe, the results provided in the last two tests
have more deteriorated performances than those of the first two tests, proving that
the the Asynchronous-EMC performances are mostly affected by the variability of
the sampling times. More specifically, in figure 7.16 it is possible to see that an
unlucky realization of the sampling times is obtained, nevertheless it is interesting
to see that the wheel speed is kept always very close to the reference. The usual
initial oscillation due to the dead-zone detachment can be more evident in some
realizations (e.g. in Fig. 7.14b) than in other ones, even applying exactly the same
EMC design to the same system.
Another aspect to underline is about the braking phase, which show a control
action slightly less precise in the tests conducted with the WiFi connection, since a
sort of bounce is experienced when the wheel approaches to the dead-zone, proving,
once again, a lower precision in control when the sampling times take on very
variable values. However all the results show an excellent behavior of the control
system, especially for WiFi connection, which is the one taken as reference since
although on a smaller scale, it is still a realistic implementation of a connection
between robot and remote server.

7.3 EMC for Real Motor-Wheel System:Remote
Control with Packet Dropout

When it comes to network communication through UDP transport layer protocol,
it is necessary to take into account the possibility of information leakages. In
previous chapters it was specified that the problem of packet loss would not be
addressed in this thesis, since it would require at least a mechanism of fast recovery,
to implement on the robot board, which must be activated in case of either a too
frequent packet dropouts or a too long waiting time from the last command arrival.
Anyway, despite this control design doesn’t handle these kind of events, it is very
interesting to evaluate its behavior with packet losses homogeneously distributed on
the whole transmission. For this reason, it is investigated this aspect by testing the
performance of the controller in the presence of a constant rate packages dropouts.
In particular six tests will be shown with a rising dropout rate, from now on
referenced to as fd. The latter value indicates the number of lost packets out of
the number of sent packets, e.g. if fd = 1/5 then there is one loss exactly after five
packet transmissions (it is always the last packet of the sequence to be lost).
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Moreover it is noteworthy to say that packet drop is forced, since having packet loss
in a single router network setup is very unlikely, if not impossible, although UDP
is used. To simulate the packet drop it is imposed a filter on the server ingress
which has the task of discarding packets every 1

fd
packets. In addition it must be

noted that the following tests are for the left wheel only in order to avoid adding
further results about the right wheel which may be redundant information. Finally
the reference provided to the wheel for all the following tests is the one represented
in 6.1.

7.3.1 Wheel Remote Control With Losses: test 1
For this test a drop rate of fd = 1

50 is used, this means that the number of packets
lost in the transmission is the 2% of the total packets. The results are represented
in Fig. 7.17.

(a) controller command output u (b) measurements (blue), estimate (red)
and reference (green)

(c) model error ē (top) and tracking
error e (bottom)

(d) sampling times

Figure 7.17: remote control on WiFi connection, with 2% packet lost
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7.3.2 Wheel Remote Control With Losses: test 2
The dropout rate here is fd = 1

20 , with a percentage of packets lost of the 5% of
the total transmitted packets. The results are represented in Fig. 7.18.

(a) controller command output u (b) measurements (blue), estimate (red)
and reference (green)

(c) model error ē (top) and tracking
error e (bottom)

(d) sampling times

Figure 7.18: remote control on WiFi connection, with 5% packet lost
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7.3.3 Wheel Remote Control With Losses: test 3
In this test it holds fd = 1

10 , thus 10% of the total transmitted packets are lost.
The results are represented in Fig. 7.19.

(a) controller command output u (b) measurements (blue), estimate (red)
and reference (green)

(c) model error ē (top) and tracking
error e (bottom)

(d) sampling times

Figure 7.19: remote control on WiFi connection, with 10% packet lost

99



Wheels Rotational Speed Control Experimental Tests

7.3.4 Wheel Remote Control With Losses: test 4
For this test the dropout rate is fd = 1

5 , that is to say that 20% of the total
transmitted packets are lost. The results are represented in Fig. 7.20.

(a) controller command output u (b) measurements (blue), estimate (red)
and reference (green)

(c) model error ē (top) and tracking
error e (bottom)

(d) sampling times

Figure 7.20: remote control on WiFi connection, with 20% packet lost
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7.3.5 Wheel Remote Control With Losses: test 5
Finally for the last test is used the dropout rate fd = 1

3 , that means about 33.3%
of the total transmitted packets are lost. The results are represented in Fig. 7.21.

(a) controller command output u (b) measurements (blue), estimate (red)
and reference (green)

(c) model error ē (top) and tracking
error e (bottom)

(d) sampling times

Figure 7.21: remote control on WiFi connection, with 33.3% packet lost

7.3.6 Results Summary
The first observation to do is that the designed control seems to respond very well
to the information leak, in fact, apart from the usual phase of detachment from the
dead-zone, the wheel speed seems to correctly follow the whole reference. Of course,
as the dropout rate increases, the control deteriorates, but it is also true that, after
a few oscillations, the control settles down quite quickly for all the dropout rates
exposed.
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Anyway, it is important to underline that this doesn’t mean that the asynchronous-
EMC is also a solution for the reliability problem introduced by a communication
based on the Network in the NCSs, but it is a good proof of the fact that this
control system can resist to sporadic information loss, and also to frequent but
homogeneously distributed packet leakage. In fact some possible events that can
put a strain on this design is the loss of an entire block of packets, in which case it
may be appropriate to carry out recoveries specifically designed on the robot.
It is also worth to notice that these tests only concerns the packet loss in the
transmission from robot to server, but the loss in the reverse transmission is not
taken into account. It can seem an useless experience, but the two behaviors can be
totally different, in fact it suffices to think that if the packet drops before entering
in the server, the EMC simply skips the measurement, as it was never performed
on the plant. On the other hand, if the measurement arrives to the server, but the
command resulting from the execution of the EMC doesn’t arrive to the robot,
then it can also be a less problematic event. In fact let’s remind that, even when
no dropouts are admitted, it is not mandatory that all the commands are executed
on the plant because the actuation is performed every Ta = 20ms and this means
that if more then one command arrives to the plant in this interval, then only the
last arrived is effectively given as input to the motor, while the previous ones are
naturally discarded.

7.4 Comparison with PID Controller
An alternative controller that can be applied to an NCS is the PID, [6]. This
controller is widely used in many generic applications thanks to the simplicity of its
design, and, according to some studies, it can be used also for applications where
timing problems are introduced in the control loop. In this section a comparison
between the results obtained respectively by PID and EMC controllers is provided,
in order to explain why EMC is preferred over PID-based control.
First of all let’s start describing the PID design phase. Starting from the transfer
function of a PID controller expressed in Laplace domain as:

C(s) = Kp +
Ki

s
+Kd

N

1 +N/s
(7.3)

it is possible to obtain its discrete time version by using the forward Euler method,
which allows to write the z-domain transfer function as follows:

C(z) = Kp +Ki

T

z − 1 +Kd

N (z − 1)
z − 1 +N T

(7.4)

where T is the sampling time.
The tuning of the parameters Kp, Ki, Kd and N is performed by means of a trial
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and error procedure over the model of the motor-wheel system described in 5.1,
by evaluating the results obtained applying the DT PID to the simulated plant
without any kind of noise. At the end of this procedure the resulting values are:

Kp = 0.001, Ki = 5, Kd = 0.1, N = 2.

Once the parameters are achieved, it is possible to use the related PID for the
remote control of the wheel, in particular the WiFi connection is exploited for this
application.
In the following some results of the tests performed applying both the PID and the
EMC on the remote control of the left wheel are shown.

7.4.1 PID and EMC controllers comparison: test 1
For this test the target provided to both the controllers is ωref = 5 rad/s, the figure
7.22 shows the resulting outputs for both the control methodologies, comparing it
to the provided target.

Figure 7.22: PID (left) and EMC (right) remote control comparison, test 1

7.4.2 PID and EMC controllers comparison: test 2
The target ωref = 8 rad/s is provided for this test. Please note that this is an
unreachable target since the motors are in saturation when the wheels speed about
about 6.5 rad/s. The results are on the figure 7.23, showing the total degradation
of the PID controller performances.

7.4.3 Results Summary
First of all it is worth to notice that the PID controller behaves very well for
this particular application, confirming that it can be a good alternative control
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Figure 7.23: PID (left) and EMC (right) remote control comparison, test 2

methodology for NCS. In fact, apart from an initial overshoot shown in the result
of tests 1, the tracking of the target is quite accurate despite the variable delays
occurring on the measurements transmissions. Since the network constructed for
these tests has a small scale, there is not the possibility to show that the EMC
presents a better robustness on the timing problems introduced by NCS. Anyway
it is expected that for greater sampling time variations the behavior of the PID
control degrades, since it hasn’t any knowledge of the model, differently from the
EMC which is a model-based control methodology, resulting more robust on timing
disturbances introduced by the CN.
Anyway some problems can be remarked for PID controller. First of all although PID
is quite simple to implement, it doesn’t give the possibility to consider constraints
on the plant as, for example, the command saturation. This is highlighted form
the second test, where a reference which saturates the motors is provided to both
the controllers. From this test it can be seen that the PID can’t follow the target
as it doesn’t know that the command saturates. On the other hand the EMC
behaves very well and, even if it can’t make the wheel reach the target, it makes the
wheel settle to its maximum speed. This is due to the fact that the EMC uses the
information related to the command saturation included in the reference generator.
In addition, another problem of PID could be related to the choice of the response
speed, which may not always be easy to impose without making a trade-off with
the performances of the control. In fact it can be observed from test 1 that the
response is too fast, and it can be a problem especially in this application since a
too high acceleration of the wheel can make it slip. With the EMC this problem
is solved by giving a smoother dynamic to the reference to track by means of the
reference generator.
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Conclusions

Considering the results achieved during the tests, it is possible to confirm the
validity of the asynchronous-EMC for remote control applications. It is important
to remark that the control system is able, first of all, to guarantee a total rejection
of parametric errors of which the model supplied to the EMC is strongly affected
(see Figs. 5.6a, 5.6b). This behavior can be seen for both on board and remote
controls, showing that the main characteristics of the EMC are not lost if it is
executed remotely.
The other great achievement is the robustness of the control to the variability of
Ti. This can be seen from both simulations and tests. In fact the simulations
shown in section 6.3 are purposely built to verify how the control reacts when the
variability of the sampling times increases or when their stochastic realization is
particularly unlucky. They show that, although the control loses precision, it still
guarantees stability when highly variable sampling times are experienced. This
result is confirmed also with the tests of section 7.2, where is shown that, even
if the p2p network architecture provides a less variable Ti than ones of the WiFi
connection, the control results to be excellent in both the type of connections.

In any case, these results are extremely positive as regards the application of
AEMC on networked control systems, nevertheless there are some possible improve-
ments to perform on the EMC design for wheels speed control, proposed in this
thesis. In fact, as you can easily guess from the results of the tests proposed in
sections 7.1 and 7.2, the most complex obstacle to overcome is the dead-zone of
the motor, i.e. the range of input voltage values such that the wheel rotational
speed is zero. As widely explained in the previous sections, the dead-zone causes
an oscillation both when the wheel starts and when the wheel brakes, since they
are two moments in which the input voltage enters the dead-zone range. It should
be noted that this is not a cause of instability, but it is a source of inaccuracy in
tracking the target. A possible solution for this problem could be to insert this
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non-linearity into the reference generator, as done for the command saturation.
However, some complications could arise in identifying the range of the dead-zone,
since it depends potentially on numerous factors: the motor manufacture, the
inertia of the robot, the speed of the wheel and so on. For this reason this solution
may not be as simple as it has been for the motors saturation problem.

A final comment should be made on the control system of the entire robot. As
the project looks at present, an easy way to control the robot mobility could be
to implement an application, running on the server, that offers to the user some
basic commands such as "go forward", "go backward", "turn right" and "turn left".
Converting these commands to speed references for the wheels and by associating
each of them to a key on the keyboard (or of a pad), then a user would be able to
maneuver the robot remotely.

A more attractive proposal requires a totally autonomous control system for
the robot mobility. Therefore, future additions to this project may concern the
implementation of a complete control of the robot, which is able to get as reference
a point of the 2D Cartesian plane, making the robot to reach autonomously the
indicated point by controlling both its longitudinal position and its orientation,
simultaneously. A solution for this type of problem could be the hierarchical control
structure, for which the position and orientation controls are independent of each
other, and the commands generated from their control laws are fictitious force and
torque, respectively. These two commands are fictitious because they cannot be
directly applied to the system, but they are supplied through the movement of
the wheels, which, under the assumption of pure rolling, generate frictional forces
that make the robot to translate and to rotate. For this reason the output of
both position and orientation controls are the speeds of the wheels which must
be supplied as a reference to the controller of the wheels. In this way the force
and torque commands are indirectly applied to the robot. The great advantage of
the hierarchical control structure is that the individual controllers are extremely
simple to implement, since the problem of the actuation of the motors and that of
the dynamics of the chassis are separate. The alternative is to study the complete
dynamics of the robot through classical analysis systems such as Newton’s laws
or Lagrange’s equations, and then to obtain the dynamic equations that rule the
entire mobility of the robot.
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Acronyms

NCS
Network Control System

CN
Communication Network

EMC
Embedded Model Control

AEMC
Asynchronous-Embedded Model Control

MPC
Model Predictive Control

PID
Proportional-Integral-Derivative

EM
Embedded Model

CoG
Center of Gravity

LTI
Linear Time Invariant

OS
Operating System
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Acronyms

DC
Duty Cycle

DT
Discrete Time

CT
Continuous Time

wrt
with respect to

API
Application Programming Interface

UDP
User Datagram Protocol

TCP
Transmission Control Protocol

PAT
Port Address Translation

109



Bibliography

[1] Fei-Yue Wang and Derong Liu. In: Networked control systems: theory and
applications. Springer, 2010, pp. 1–5 (cit. on p. 1).

[2] Carlos Perez-Montenegro, Luigi Colangelo, Jose Pardo, Alessandro Rizzo, and
Carlo Novara. «Asynchronous Multi-rate Sampled-data Control: an Embedded
Model Control Perspective». In: 2019 IEEE 58th Conference on Decision and
Control. Nice, France, Dec. 2019, pp. 2628–2633 (cit. on pp. 2, 20).

[3] G. P. Liu Y.-B. Zhao and D. Rees. In: Integrated predictive control and
scheduling co-design for networked control systems. 2008, pp. 1–8 (cit. on
p. 3).

[4] Yun-Bo Zhao, Guo-Ping, LiuYu Kang, and Li Yu. In: Packet-Based Control
for Networked Control Systems. Springer, 2018, pp. 1–15 (cit. on p. 3).

[5] Alberto Bemporad, Maurice Heemels, and Mikael Johansson. In: Networked
Control Systems. Springer, 2010, pp. 149–152 (cit. on p. 3).

[6] Lasse Eriksson. In: PID Controller Design and Tuning in Networked Control
Systems. 2008, pp. 1–10 (cit. on pp. 3, 102).

[7] Enrico Canuto. «Embedded Model Control: Outline of the theory». In: ISA
Transactions 46 (Jan. 2007), pp. 363–377 (cit. on pp. 5, 9).

[8] Fulvio Risso and Loris Degioanni. «An Architecture for High Performance
Network Analysis». In: Proceedings of the 6th IEEE Symposium on Computers
and Communications (ISCC 2001). Hammamet, Tunisia, July 2001 (cit. on
pp. 29, 30).

[9] Linux Manual online man7.org. https://man7.org/linux/man-pages/
(cit. on p. 35).

[10] G. Malnati, L. Giannantoni, and M. Mosso. slides for Giovanni Malnati’s
Programmazione di Sistema course. 2018 (cit. on p. 37).

[11] GitHub repository for GoPiGo3 design informations. https://github.com/
DexterInd/GoPiGo3 (cit. on p. 41).

110

https://man7.org/linux/man-pages/
https://github.com/DexterInd/GoPiGo3
https://github.com/DexterInd/GoPiGo3


BIBLIOGRAPHY

[12] Dexter Industries techincal specifications of GoPiGo3 design. https://www.
dexterindustries.com/GoPiGo/learning/technical-specifications-
for-the-gopigo-raspberry-pi-robotics-kit/ (cit. on p. 42).

[13] Luca Nanu, Carlos Perez-Montenegro, and Carlo Novara. «Asynchronous
Embedded Model Control For Robotic Applications». Master Thesis. MA
thesis. Politecnico di Torino, July 2020 (cit. on pp. 43, 54).

[14] Silbershatz, Galvin, and Gagne. slides for Gianpiero Cabodi’s Programmazione
di Sistema course. 2018 (cit. on p. 48).

[15] Linux Manual Reference for Struct spi_ioc_transfer. https://docs.huihoo.
com/doxygen/linux/kernel/3.7/structspi__ioc__transfer.html#
ab32597ad72699fd3481059340fdae62c/ (cit. on p. 48).

111

https://www.dexterindustries.com/GoPiGo/learning/technical-specifications-for-the-gopigo-raspberry-pi-robotics-kit/
https://www.dexterindustries.com/GoPiGo/learning/technical-specifications-for-the-gopigo-raspberry-pi-robotics-kit/
https://www.dexterindustries.com/GoPiGo/learning/technical-specifications-for-the-gopigo-raspberry-pi-robotics-kit/
https://docs.huihoo.com/doxygen/linux/kernel/3.7/structspi__ioc__transfer.html#ab32597ad72699fd3481059340fdae62c/
https://docs.huihoo.com/doxygen/linux/kernel/3.7/structspi__ioc__transfer.html#ab32597ad72699fd3481059340fdae62c/
https://docs.huihoo.com/doxygen/linux/kernel/3.7/structspi__ioc__transfer.html#ab32597ad72699fd3481059340fdae62c/

	List of Tables
	List of Figures
	Introduction
	Networked Control Systems Overview
	Literature Background
	Thesis Workflow

	Embedded Model Control Overview
	Embedded Model Control Design Outlines
	Embedded Model
	Measurement Law
	Control Law

	EMC Applied to a Mechanical Arm Driven by DC Motor
	Case Study Simulations

	Asynchronous EMC
	Asynchronous Embedded Model
	Asynchronous Noise Estimator and Control Law

	Asynchronous EMC Applied to a Mechanical Arm Driven by DC Motor
	Simulations Results


	Network Architectures
	Packet Capture Libraries
	Libpcap and WinPcap architectures
	Libpcap functions
	Performances Evaluation: p2p connection

	UDP Sockets
	Unix native sockets libraries
	QUdpSocket
	Performance Evaluation: UDP connection


	GoPiGo3: Mobile Robot
	Hardware Specifications
	Actuators Study
	Sensors Study

	Software Specifications
	GoPiGo3 C++ libraries


	Model and Control of Motor-Wheel System
	Motor-Wheel Model Definition
	Model Evaluation

	Asynchronous-EMC Design for Motor-Wheel System
	Embedded Model Design
	Reference Generator Design
	Noise Estimator Design
	Control Law Design


	Wheels Rotational Speed Control Simulations
	Motor-Wheel Extended Plant Simulator
	EMC for Simulated Motor-Wheel System:Constant Sampling Time
	Simulation 1
	Simulation 2
	Simulation 3
	Results summary

	EMC for Simulated Motor-Wheel System:Constant Sampling Time (1)
	Networked Control System simulation
	Simulation 1:  = 5ms
	Simulation 2:  = 10ms
	Simulation 3:  = 15ms
	Results summary


	Wheels Rotational Speed Control Experimental Tests
	EMC for Real Motor-Wheel System:On Board Control
	Wheels on Board Control Tests General Settings
	Wheels on board control: test 1
	Wheels on board control: test 2
	Wheels on board control: test 3
	Results summary

	EMC for Real Motor-Wheel System:Remote Control
	Wheels Remote Control Tests General Settings
	Wheels remote control, p2p connection: test1
	Wheels remote control, p2p connection: test2
	Wheels remote control, WiFi connection: test1
	Wheels remote control, WiFi connection: test2
	Results Summary

	EMC for Real Motor-Wheel System:Remote Control with Packet Dropout
	Wheel Remote Control With Losses: test 1
	Wheel Remote Control With Losses: test 2
	Wheel Remote Control With Losses: test 3
	Wheel Remote Control With Losses: test 4
	Wheel Remote Control With Losses: test 5
	Results Summary

	Comparison with PID Controller
	PID and EMC controllers comparison: test1
	PID and EMC controllers comparison: test2
	Results Summary


	Conclusions
	Acronyms
	Bibliography

