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Abstract

In recent years, RISC processors regain their prominence by dint of RISC-V.
The main benefits of RISC-V which are flexibility, accessibility, and royalty-free
structure, have made RISC-V an undeniable open-source rival against semiconductor
companies. Those advantages bring RISC-V is a decent option for bare-metal
embedded systems that the systems without any operating system support or
centralized kernel. Also, for the bare-metal systems, concurrency and parallelism
have been challenging and contradictory issues, to solve them multi-threading can
be an option, and POSIX threads are the first term that comes to mind when
multi-threading is mentioned. This thesis proposes to provide POSIX threads to
the RISC-V bare-metal embedded systems. To exploit POSIX threads, musl has
been chosen which is a C standard library implementation. Regarding the results
of musl’s bare-metal execution, new approaches are proposed and discussed. The
experimental results have reported and discussed for the PULP platform and the
other RISC-V cores. The overall conclusion and probable future works are reported
at the end of the thesis.
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Chapter 1

Introduction

1.1 Premise

Bare-metal systems are known as a system without the support of any operating
system or centralized kernel, the instructions execute on the CPU directly. Due to
a lack of operating system functionality, compared to the fully-fledged systems, any
application requires more operation i.e. I/O management, memory management,
start-up, scheduling, etc. in the development section to run successfully. Nowadays,
it usually convenient for embedded systems. Therefore, close-to-hardware languages
i.e. C, C++, and assembly language are preferred in bare-metal programming.
A bare-metal embedded application can be dependent on developers’ software
structure approach although the simple base model can be shaped around of infinite
main loop which can perform actions. Those actions can vary and this thesis’ work
examines multi-threading support for those. Multi-threading is the ability to execute
multiple threads, concurrently. This parallelism can be provided by instruction-level
parallelism or thread-level parallelism. Modern systems’ architecture has already
combined these two parallelism techniques by dint of operating system support and
standard C libraries, but multi-threading in bare-metal systems are challenging and
generally will be provided by architecture-specific or platform-specific solutions.
Besides, there would be significant constraints for multi-threading on bare-metal
systems which would the general constraints for bare-metal development. Depending
on preference, there are several processor architectures that can be chosen for bare-
metal embedded systems that can eliminate several constraints for the application
and the system. This study examines bare-metal multi-threading on RISC-V
processors. RISC-V is an open-standard ISA based on RISC principles, and apart
from the others i.e. ARM, Intel; the ISA is provided under the open-source licenses.
RISC-V ISA has been designed considering a wide range of usability with the
advantages of compactness, efficiency and, low power consumption.
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Introduction

1.2 Work Introduction
The idea of the thesis starting on a lightweight musl standard C library and port it
to bare-metal RISC-V PULP platform in order to exploit POSIX threads. PULP
platform is developed in collaboration between ETH Zurich and the University of
Bologna, aimed to build new efficient architectures and systems for ultra-low-power
processing to meet the computational demands of IoT applications. PULP platform
contains various micro-controllers like PULP, PULPino, PULPissimo, and etc. for
wide application areas and they have different but similar RISC-V cores that will
be introduced in the following sections.
As mentioned before there are several limitations in bare-metal environments, lack
of operating system, and thus resource management can be counted as one of the
major inadequacies. This thesis’s work is aimed to port musl to the PULP platform
and RISC-V processors, and proposes alternative solutions in order to provide
multi-threading.
In the context of bare-metal multi-threading, there are several solutions that have
been put forward to provide multi-threading or multi-tasking, the most common
way is to use an RTOS for a platform. It should be noted that PULP platforms
are small and lightweight embedded systems. Besides, can be inferred from its
name it consumes ultra-low-power thus the executed program should be lightweight
and satisfied in terms of performance. However, an RTOS allows users to create a
limited task and uses heavy system resources. Therefore, using an RTOS would
not be a feasible solution for the PULP platform or light RISC-V processors.
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Chapter 2

RISC-V Architecture

This chapter is aimed to introduce some fundamental concepts and topics related
to this thesis work’s point of view. This thesis focus on RISC-V architecture and its
ISA. Then, this chapter will introduce RISC-V PULP and SiFive processors family.
RISC-V PULP platform contains three different cores which are RI5CY, Ariane
and, Zero-riscy however this thesis topic is working on RI5CY and Zero-riscy. As
the name PULP suggests, they offer a low-energy consumption system and thus
this chapter also examines correspondent cores in the SiFive processor family to
the PULP platform’s cores.

2.1 RISC-V ISA

As mentioned before, this work examines multi-threading support for embedded
applications on RISC-V processors. So, RISC-V ISA has an important part in
this work. RISC-V ISA is an open-standard ISA based on RISC principles with
bringing advantages to RISC processors and it has a modular and flexible form
which means any supported instruction by the core set can be added or detachable.
Furthermore, anyone can create their own custom instruction set for a custom
RISC-V processor in order to offer top-notch solutions for dedicated applications.
Nowadays, RISC processors and therefore RISC-V have gained great importance
with the enhancement of compilers. This section describes RISC-V base integer ISA
which must be present in any implementation, and RISC-V extensions ISA. Thanks
to the open-standard license, anyone can extend, add, remove any instruction from
the instruction set depending on their application area.

3



RISC-V Architecture

2.1.1 Base Integer ISA
The RISC-V base integer ISA (RV32I-RV64I) is essential for each implementation
and consists of forty instructions that can emulate modern operating system
environments’ functionality although it has minimal implementation. It has two
variants which are RV32I and RV64I depending on the architecture. This section is
focused on RV32I which is used in 32-bit systems. Base integer ISA has 32 integer
registers (x0-x31) whose bits wide is 32-bit. Also, there is a reduced version of
RV32I is called RV32E, the only difference is that RV32E reduced the number
of integer registers to 16(x0-x15), where x0 is dedicated to a zero register both
in RV32I and RV32E. In a nutshell, RV32I contains load and store instructions,
arithmetic operations instructions, control transfer instructions, CSRs operation
instructions, memory ordering instructions and, etc.
There are four standard types of RV32I base instruction formats which are R, I, S,
and U. Besides, to handle immediate operations there are further two instruction
format variants which are B and J. The whole RISC-V instruction formats are
shown in Figure 2.1.

Figure 2.1: RV32I Instructions Format

For better understanding the concept that will introduce in the following chapters,
it will be convenient to describe several base integer instructions, according to [1],
these instructions can be explained as follows,

Load Instructions

Syntax: <LOAD> rd, offset(rs2)

Load instructions have a standard format as shown in Figure 2.2. The opcode can

4



RISC-V Architecture

Figure 2.2: RV32I Load Instructions Format

be lb, lh, lw, lbu, and lhu. Depending on the opcode, it loads an X-bit value
from memory to its first operand(rd) without any atomicity.

Store Instructions

Syntax: <STORE> rs2, offset(rs1)

Figure 2.3: RV32I Store Instructions Format

Same as load instructions store instructions also have a standard format as shown
in Figure 2.3, but different than load instructions format. The opcode can be
sb, sh, and sw. Depending on the opcode, it stores X-bit values from the low bits
of register rs2 to memory without any atomicity.

jal Instruction

Syntax: jal rd, offset

The meaning of the jal abbreviation is "Jump and Link". As understandable from
its name, it is an unconditional jump and it jumps to an address and places a
return address in rd. The instruction format of the jal instruction is shown in
Figure 2.4
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Figure 2.4: RV32I jal Instruction Format

fence Instruction

Syntax: fence pred, succ

Figure 2.5: RV32I fence Instruction Format

When a code compiled, some optimizations can be applied to instructions ordering,
for example, load instructions can be carried at the top of the program even the
programmer loads the variable at any place of the program but especially in the
concurrent programming, it can be led some concurrency pitfalls. Thus these
memory barriers such as FENCE instruction and its variants can be used to put a
barrier in order to guarantee instruction orderings. Briefly, it used to order memory
accesses and I/O orderings.
According to the RISC-V manual [1], the unused fields in the fence instruction
which are rs1 and rd are reserved for finer-grain fences for future improvements.

2.1.2 Extensions ISA
As mentioned before, RISC-V ISA has a modular structure. Thus, any supported
instruction set can append or detachable. RISC-V extensions ISA is designed
to expand RISC-V functionality and provides additional operations. There are
many RISC-V extensions instruction set, however, this sub-section describes the
extensions set which are examined in this thesis’s work. Those are, "M" standard
extension, stands for integer multiplication and division; "A" standard extension,
stands for atomic instructions; "F" standard extension, stands for single-precision
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floating-point instructions.

RV32M - Integer Multiplication and Division Instruction Set

RV32M contains instructions that can operate standard integer multiplication
and division operations between two integer registers. The RISC-V designers
have separated these instructions from the base integer instruction set because
multiplication and division operations either infrequent or better handled for
specific purposes. More detailed information and instructions format can be found
in RISC-V manual[1]

RV32C - Standard Extension for Compressed Instructions

RV32C instructions are used to reduce static and dynamic code size by adding
short 16-bit instruction encodings for common operations.[1] RV32C instructions
increase the compactness of the code and allows memory efficiency.

RV32A - Atomic Instructions Set

From [2], atomicity may have many meanings in computer science, but one can
define atomicity as an "indivisible operation" in this thesis. So, in this context,
one can say that atomic memory operations provide indivisible memory access
operation.
RV32A contains instructions that can operate read, modify, write operations, atom-
ically. In order to avoid pitfalls such as deadlocks and provide synchronization
between multiple RISC-V harts, RV32A guarantees mutual exclusion.
There are mainly two-instructions for atomic load and store operations.

Figure 2.6: RV32I Atomic Instructions Format

Syntax: lr.w rd, rs1

lr.w instruction loads a word from the address in rs1 to rd, different from load
instructions which are described in section 2.1.1, it registers a reservation on the
addressed word’s memory address.

7
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Syntax: sc.w rd, rs1, rs2

sc.w instruction conditionally stores the word in rs2 to the address in rs1, this
condition depends on whether the reservation is still valid and the reservation set
contains the bytes that have been written.

RV32F - Single-precision Floating-point Instruction Set

This instruction set contains the instructions which are capable to operate floating-
point computational operations with single-precision.

2.2 RISC-V PULP
PULP Platform is developed by a collaboration between ETH Zurich and the Uni-
versity of Bologna, aimed to develop energy-efficient processors and microcontrollers.
PULP platform contains RISC-V cores such as RI5CY, Ariane, and Zero-riscy;
single-core microcontrollers of PULPino and PULPissimo; and multi-core proces-
sors such as PULP (also called OpenPULP). For the context of this thesis, this
section describes RI5CY and Zero-riscy cores, then introduces the PULPissimo
microcontroller.

RI5CY Core

RI5CY[3] is a four-stage in-order 32-bit RISC-V processor core whose core archi-
tecture shown in Figure 2.7. It can be as main core in the PULPissimo. The
supported instruction set can be ordered as follows,

• RV32I Base Integer Instruction Set

• RV32M Integer Multiplication and Division Instruction Set Extension

• RV32C Standard Extension for Compressed Instructions

• RV32F Single-precision Floating Point Extensions (Optional full support)

Zero-riscy Core

RI5CY[4] is a two-stage in-order 32-bit RISC-V processor core, it can be called as
a child of the RI5CY core. It can be as main core in the PULPissimo and its core
architecture shown in Figure 2.8. The supported instruction set can be ordered as
follows,

8
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Figure 2.7: RI5CY Core Architecture

Figure 2.8: Zero-riscy Core Architecture

• RV32I Base Integer Instruction Set

• RV32E Base Integer Instruction Set (Light version of RV32I)

• RV32M Integer Multiplication and Division Instruction Set Extension

• RV32C Standard Extension for Compressed Instructions

9
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2.2.1 PULPissimo
PULPissimo[5] is a 32-bit single-core microcontroller architecture, the core can be
configurable either RI5CY or Zero-riscy, and uses a complex memory subsystem.
The supported RISC-V instruction set depends on the selected core. RI5CY and
Zero-riscy’s supported instruction sets have declared in previous sections.
The simplified block diagram of the PULPissimo shown in Figure 2.9. The RI5CY

Figure 2.9: PULPissimo [6]

and Zero-riscy cores have the same external interfaces, so they are plug-compatible
and can interchangeable with each other. All core registers have been memory-
mapped and thus they are accessible through logarithmic-interconnect sub-system.
PULPissimo has various peripherals, most of them are connected to the uDMA
sub-system and thus all the data transfers can be held autonomously for the
uDMA interconnected peripherals. However, FLLs, GPIO, timers, event unit, and
event generator peripherals have connected to the APB bus instead of uDMA

10
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subsystem. PULPissimo has a lightweight event and interrupt controller which
supports FIFO events from the peripherals, or software events. Furthermore, the
event and interrupt controller can manage events relying on their priority level.
The memory map of the PULPissimo is crucial for this work, this importance will
be detailed in the further chapters. In a nutshell, as stated in the figure the RAM
size is 512 kB, this would be another constraint for multi-threaded applications,
because every thread has a different stack areas. Furthermore, application has to
be designed considering this memory space.
The memory map of the PULPissimo is shown in Figure 2.10.

2.3 SiFive Cores
SiFive Cores has been designed by SiFive company[7]. SiFive company is one of
the leading semiconductor companies that aimed to develop products such as cores,
SoC, and boards with RISC-V architecture and its ISA. Despite SiFive has a wide
range of RISC-V cores and products, this section digs into the E2 series of cores
and their supported instruction sets. E2 series has been chosen to examine because
they have able to work in a bare-metal environment and more or less they are
equivalent to the RISC-V PULP platform. Although there would be vast sub-topics
to introduce about the SiFive E2 Cores, their supported instruction sets will be
examined.
E2 Series consists of E20, E21 and, E24 cores. They are mainly designed for
energy-efficient applications, microcontrollers, and embedded systems. They can
be customizable through specific requirements.

E20 Core

SiFive E20[8] core is a two-stage in-order 32-bit RISC-V core. The supported
instruction sets can be ordered as follows,

• RV32I Base Integer Instruction Set

• RV32M Integer Multiplication and Division Instruction Set Extension

• RV32C Standard Extension for Compressed Instructions

• RV32F Single-precision Floating Point Extensions (Optional full support)

E21 Core

SiFive E21[9] core is a three-stage in-order 32-bit RISC-V core. The supported
instruction sets can be ordered as follows,

11
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Figure 2.10: PULPissimo’s Memory Map[5]

• RV32I Base Integer Instruction Set

• RV32M Integer Multiplication and Division Instruction Set Extension

• RV32A Atomic Instructions Set Extension

12
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• RV32B Standard Extension for Bit Manipulation

• RV32C Standard Extension for Compressed Instructions

• RV32F Single-precision Floating Point Extensions (Optional full support)

E24 Core

SiFive E24[10] core is a three-stage in-order 32-bit RISC-V core. The supported
instruction sets can be ordered as follows,

• RV32I Base Integer Instruction Set

• RV32M Integer Multiplication and Division Instruction Set Extension

• RV32A Atomic Instructions Set Extension

• RV32F Single-precision Floating Point Extensions

• RV32B Standard Extension for Bit Manipulation

• RV32C Standard Extension for Compressed Instructions

13



Chapter 3

Multi-threading and
Standard C Libraries

This chapter is aimed to describe the multi-threading concept and its sub-topics
related to this thesis work. The first section introduces the multi-threading con-
cept, its types either software or hardware threads, then touches POSIX threads
which are the first thing in the mind when multi-threading word is announced.
Lastly, described Protothreads which is an architecture-independent event-driven
multi-threading library.
In the second section, several standard C libraries will be introduced in the context
of multi-threading. Those are the newlib which is the standard C library for
embedded systems and the musl which is a barely new standard C library compared
to others.

3.1 Multi-threading
Before introducing multi-threading, it is more convenient to define the word thread
in computer science. A thread can be defined as a concurrent standalone function
or a concurrent standalone sequence of instructions. Thus, multi-threading is the
execution of more than one thread by a scheduler, simultaneously and in perfect
harmony. Another important characteristic of the execution of threads is that
they are architecture-dependent because threads are deeply managed by assembly
instructions. The visualization of multi-threading is summarized in Figure 3.1.

The threads are shown in Figure 3.1 which are running the same process, simulta-
neously. If they are independent threads, means they do not make any operation
(read, modify, or write) on the same variable or in the same memory address, they

14
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Figure 3.1: A Multi-threaded Process

can run at the same time. However, when more than one thread tries to access the
same variable or the same memory address at the time, then there occurs unpre-
dictable behaviour. Thus, synchronization is needed, in order to run those threads
in perfect harmony or in other words run concurrently. The thread synchronization
can be provided in several ways, using synchronization primitives such as mutexes
and semaphores are the common way of providing a thread synchronization. A
mutex can be defined as a flag in order to provide mutual exclusion and mutexes
protect the critical section. Semaphores can be defined as a sophisticated version
of mutexes. Different than mutexes, semaphores have a counter for allows or blocks
the access of critical sections depending on the counter.

3.1.1 Schedulers
Schedulers have a big importance in an operating system’s kernel so it is a vast
subject in computer science but this section just describes its fundamental concepts
and a scheduling algorithm. It manages the CPU for executing instructions,
concurrently. A scheduler is a simple software that provides that operation, even in
single-core systems, an illusion of parallelism can be achieved by dint of schedulers.
In Linux systems, this scheduling process does not require additional code or
software, because it has already implemented in the Linux kernel. However, in
bare-metal environments, a scheduler has to be implemented manually, due to
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the lack of an operating system or a centralized kernel. As mentioned before,
there are several approaches for scheduling algorithms, for the scope of this thesis,
Round-Robin[11] is introduced below.

Round-Robin Scheduling Algorithm

The Round-Robin scheduling algorithm is based on a simple play and pause
operation depending upon its scheduling quantum (as known as time-slices). The
number of the quantum can be determined previously from different approaches.
To explain Round-Robin’s working mechanism, it’s better to explain with an
example. Assume that, two threads are scheduling to execute on a single-core
CPU, concurrently. The first thread starts to execute for a given time slice, when
the given time-slice has been ended, the first thread’s context(all of the registers
including stack pointer and program counter) saves. It should be noted that the
first thread neither finished nor completed, it just paused in order to execute the
second thread. Then the second thread starts to execute for a given time slice.
Likewise, as in the first thread, when the given time-slice has been ended, the
second thread’s context saves. Then the CPU will carry on from the first thread,
thus it restores the first thread’s context and continues its execution. This operation
lasts until the threads will finish their execution. For better understanding, the
round-robin scheduling algorithm running mechanism is shown in Figure 3.2.
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Figure 3.2: Round-Robin Scheduling Algorithm

3.1.2 POSIX Threads

As mentioned before thread execution depends on the CPU architecture. Histori-
cally, hardware vendors have implemented their thread libraries. Therefore, this
situation was led to a complication for programmers in terms of the portability
and compatibility of their programs. Thus, that situation has provided to the
birth of thread library standards, POSIX threads[12] are implemented in the C
programming language, and one of these standards, probably the most widely used
one. POSIX threads generally referred to as "pthreads" is a thread library standard.
Today, it is widely using in Linux systems, but the version supported by Linux has
not supported by the Windows systems. However, apart from the Win32 threads,
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pthreads-w32 named pthreads library is available in the same syntax as the version
of Linux pthreads for Windows systems.

Listing 3.1: Simple Thread Creation with POSIX Threads
1 # include <pthread .h>
2 # include "led.h"
3

4 void *thread(void *ptr)
5 {
6 blinkLED (( int)ptr);
7 }
8

9 int main(int argc , char ** argv)
10 {
11 pthread_t thread1 , thread2 ;
12 int thread_1 = 1;
13 int thread_2 = 2;
14

15 pthread_create (& thread1 , NULL , *thread , (void *)
thread_1 );

16 pthread_create (& thread2 , NULL , *thread , (void *)
thread_2 );

17

18 pthread_join (thread1 ,NULL);
19 pthread_join (thread2 ,NULL);
20

21 return 0;
22 }

POSIX threads define and implement a set of C programming language types,
functions, and constants. To illustrate POSIX threads, simple thread creation
and execution example is shown in Listing 3.1. Firstly, two pthread_t structs
are defined, a pthread_t which holds the elements for a thread. This struct is
defined in the pthread.h library. Then, pthread_create function is called with
given arguments, the first parameter takes the address of pthread_t struct’s, the
second parameter is for passing a thread attribute pthread_attr_t, for sake of
simplicity it can be passed as NULL, the third parameter takes the thread function
which will be executing as concurrent, and the last parameter takes the arguments
of the thread function which passed to the third parameter of pthread_create
function. As mentioned before, threads are executing as parallel or in an illusion of
parallelism. Thus, the execution unit has to wait for each thread until they finish
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their execution. This wait operation can be done with pthread_join. Otherwise,
the program may be terminated before threads are still running.

3.1.3 Protothreads
Dunkels et al.(2006)[13] proposes stackless threads named Protothreads regarding
to an illusion of concurrency. It was designed for memory-constrained embedded
systems based on an event-driven programming model. A Protothread’s size only
two bytes and does not require any stack per thread. Actually, the design of
Protothreads’ located between an event-driven and multithreaded programming
model. Comparing POSIX threads’ default stack size and the total memory size of
tiny embedded systems will show us the inconsistencies in terms of memory usage.
Protothreads’ implemented on C programming language and its principle is based
on preprocessor directives and switch-case statements. Therefore, it does not
dependent on the processor’s architecture or does not require any special compiler.
Also, it does not require any specific scheduler to provide a concurrency or an
illusion of concurrency. The scheduling of Protothreads is based on invoking its
function and a Protothreads invokes by an event handler and it supports nested
Protothreads invocation.
Protothreads also have semaphores in order to provide synchronization of each
protothread, it mainly uses a unsigned integer in order to hold the semaphore’s
counter. As mentioned before, it mainly designed for considering tiny embedded
systems. Generally, those embedded systems can not able to do real parallelism.
Thus, any lock mechanism for the semaphore’s counter is not necessary.
To clarify, it would be better to illustrate Protothreads’ running mechanism with a
source code both before the preprocessing and after.
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Listing 3.2: Protothreads: Before Preprocessing
1 # include "pt.h"
2 # include "led.h"
3

4 static struct pt pt1 , pt2;
5 static int pt1_flag , pt2_flag ;
6 static int protothread1 (struct pt *pt)
7 {
8 PT_BEGIN (pt);
9 while (1) {

10 PT_WAIT_UNTIL (pt , pt2_flag != 0);
11 blinkLED (0);
12 pt2_flag = 0;
13 pt1_flag = 1;
14 }
15 PT_END(pt);
16 }
17 static int protothread2 (struct pt *pt)
18 {
19 PT_BEGIN (pt);
20 while (1) {
21 pt2_flag = 1;
22 PT_WAIT_UNTIL (pt , pt1_flag != 0);
23 blinkLED (1);
24 pt1_flag = 0;
25 }
26 PT_END(pt);
27 }
28

29 int main(int argc , char ** argv)
30 {
31 PT_INIT (& pt1);
32 PT_INIT (& pt2);
33 while (1) {
34 protothread1 (& pt1);
35 protothread2 (& pt2);
36 }
37 return 0;
38 }
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Listing 3.3: Protothreads: After Preprocessing
1 static struct pt pt1 , pt2;
2 static int pt1_flag , pt2_flag ;
3 static int protothread1 (struct pt *pt)
4 {
5 { char PT_YIELD_FLAG = 1; switch ((pt)->lc) { case 0:;
6 while (1) {
7 do { (pt)->lc = 13; case 13:; if (!( pt2_flag != 0)) {

return 0; } } while (0);
8 blinkLED (0);
9 pt2_flag = 0;

10 pt1_flag = 1;
11 }
12 }; PT_YIELD_FLAG = 0; (pt)->lc = 0;; return 3; };
13 }
14

15 static int protothread2 (struct pt *pt)
16 {
17 { char PT_YIELD_FLAG = 1; switch ((pt)->lc) { case 0:;
18 while (1) {
19 pt2_flag = 1;
20 do { (pt)->lc = 31; case 31:; if (!( pt1_flag != 0)) {

return 0; } } while (0);
21 blinkLED (1);
22 pt1_flag = 0;
23 }
24 }; PT_YIELD_FLAG = 0; (pt)->lc = 0;; return 3; };
25 }
26

27 int main(int argc , char ** argv)
28 {
29 (& pt1)->lc = 0;;
30 (& pt2)->lc = 0;;
31 while (1)
32 {
33 protothread1 (& pt1);
34 protothread2 (& pt2);
35 }
36 return 0;
37 }
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In a nutshell, the main principle of this example is that either carries on existing
protothread or return from the protothread to the while loop in main then enter to
another protothread.

3.2 C Standard Library
The standard C library is the collection of built-in C functions, constants, and
header files such as stdio.h, stdlib.h, and etc. The C standard library works
as a reference manual for C programmers. There are many implementations of the
C standard library. This section examines those implementations from the point of
view of embedded systems and bare-metal environments.

Newlib

Newlib[14] is one of the C standard library implementations designed to use on
embedded systems that neither have an operating system nor centralized kernel. In
the context of multi-threading, newlib does not provide multi-threading by default,
because newlib is not designed considering an operating system functionality and
thus does not provide multi-threading by default.

Musl

Musl[15] is one of the C standard library implementations that built on top of
the Linux system calls API and targets a wide range of systems from lightweight
to fully-fledged. The musl is lightweight, simple, fast, and allows efficient static
linking thanks to its design. In the context of multi-threading, musl supports
POSIX threads and C11 threads. The further chapters will describe how to port
musl to riscv32 architecture in order to exploit POSIX threads.
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Simulation Environment

This chapter introduces the concepts of our simulation environment. First, the
chapter describes the code compiling and linking, then introduces the simulation
platforms of ModelSim[16] which is mainly supported for PULP Platform’s simula-
tion tool. Then, introduces the RV-8 simulator which is used to simulate programs
for SiFive RISC-V cores.

4.1 Code Compilation in C
Code compilation is the process of transforming the source code or codes into the
object code, which means ready for the loader. The loader loads the executable
object file into memory in order to execute by the CPU. The code compilation
process can be held in two main stages by the compiler. The first stage called
front-end compiling which is responsible for preprocessing, lexical analysis, syntax
analysis and, semantic analysis; and the second stage called back-end compiling and
which consists of a compiler, assembler, and linker. This section briefly introduces
preprocessing stage in front-end compiling and examines back-end compiling. The
overview of the code compilation process in C is shown in Figure 4.1.

Figure 4.1: Code Compilation Process
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Preprocessing

As known, the C programming language allows programmers to use preprocessor
directives. These preprocessor directives take the # (hash) symbol at the beginning
of the line. These processor directives simply make a substitution to their equiva-
lents. So, preprocessing stage can be explained as changing the code parts with
their equivalents. Also, this substitution can be conditional, which means only
puts the chosen part for the back-end compilation, or as an opposite, it deletes
the irrelevant parts. For better understanding, preprocessing examples are shown
below,

Listing 4.1: Preprocessor Directives
1 #define RISCV 0
2 #define ARM 1
3

4 #define ARCH RISCV
5

6 int main(int argc , char ** argv)
7 {
8 #if ARCH == RISCV
9 // do RISC -V specific operations

10 #endif
11

12 #if ARCH == ARM
13 // do ARM specific operations
14 #endif
15

16 return 0;
17 }

Preprocessor directives provide flexibility and easy-configurable source files, as
shown in the example, a programmer can able change architecture just by setting
the ARCH preprocessor variable. Then, the preprocessor only selects the code parts
depending upon the condition and it cleans the irrelevant parts from the source
code.

Compiling

Compiling is the process of translating C (or any high-level language) source code
into a machine-specific assembly code.
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Assembler

Assembler takes the machine-specific assembly code and translates it to relocatable
machine code. It also checks the correctness of each instruction.

Linking

Linking is the process of creating a single executable file from an object file or a
bundle of object files. There are two types of linking procedures that exist, static
linking and dynamic linking, static linking has taken into account in the context of
this thesis. Static linking is a process of merging all of the given object files and
static libraries into a single execution file.
Linking process is managed by the linker file which has an extension of .ld. The
linker file defines a set of rules for the linking including stack area, entry symbol,
and memory sections.

Cross-compilation

Cross-compilation is a compilation technique that compiling sources for a system
called target on a different system called a host. This is an often technique for
generating executable files for embedded systems. The reason is that most of the
embedded systems have not any operating system and have not sufficient capability
to compile sources for themselves. Thus cross-compilation is quite advantageous
than compiling sources in target systems. Cross-compilers is the tool built for
doing cross-compilation, to configuring cross compilers there are many compilers
build parameters are existing[17], but for the cross-compiling, the build, host,
and target options are important, build is the system that currently using, host
is the system where the programmer desires to run the compiler, target is the
system that the executable files which are generated by the compiler will run to.
There are several types of cross-compilers are listed in Table 4.1.

Cross-compiler build, host are same; target is different

Crossback Compiler build, target are same; host is different

Crossed Native Compiler host, target are same; build is different

Canadian Cross Compiler build, host, and target are different

Table 4.1: Cross-compiler Types
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4.2 PULP Platform
This section describes how to compile and execute the desired program in the
PULP platform, it is quite complex than simply build executables just by typing
as follows,

gcc foo.c -o foo

This command preprocesses, compiles, assembles, and links, respectively for default
compiler configuration. After that process, a single executable file has been created.
A set of source files including start-up files has to be compiled and linked in order
to build a single executable file for the PULP platform. Start-up files ignite the
execution and forward the execution flow to the main function, the start-up files
generally have a symbol of _start which is the entry point of the C programs. By
the way, this simulation environment is designed considering mainly C programs
and C++ programs.
In fact, the PULP platform has its own runtime environment, but it is not extensible
and feasible for us in terms of the targets of this thesis work. Because of that, an
extensible and easily configurable simulation environment has been built.
First of all, a toolchain has to be built for the PULP platform, PULP platform has
its own toolchain which named PULP RISC-V toolchain[18], this toolchain will be
used in order to compile and link our sources.

Toolchain Build

To get a successful toolchain built, the PULP toolchain’s installation instructions
can be followed. However, the toolchain’s arch parameter can be configured as
written below,

--with-arch=rv32imafc

Despite the RI5CY and Zero-riscy do not support atomic instructions set extension,
the toolchain has been configured with this arch option in order to flexibly compile
sources and trace the flow whether the sources had an inline assembly call.
This PULP toolchain contains Binutils, GCC compiler, and newlib C standard
library which all ported to riscv32 architecture. However, the binaries will be taken
into account after the build. They have a prefix of riscv32-unknown-elf-, for
example, our C and C++ compilers are riscv32-unknown-elf-gcc and
riscv32-unknown-elf-g++, respectively.

Simulation Environment Skeleton

Referenced from PULP-runtime[19], a custom runtime skeleton has been created
as shown in the directory tree,
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pulp-runtime
pulp-sdk
pulp
pulpissimo
pulp-toolchain
baremetal-riscv-threads

drivers
include
kernel
lib
src

pulp-runtime includes the shell scripts in order to set necessary environment
variables through selected configuration. pulp-sdk contains SDK sources and
shell scripts for simulating applications using PULP-SDK. pulp and pulpissimo
directories contain configuration files and shell scripts, respectively for each chip.
pulp-toolchain contains the built files of PULP toolchain, drivers contains the
driver source files like UART, SPI, GPIO interfaces, include contains the header
files, kernel contains the configurable source files of PULP platform, lib contains
the source files of minimal C library, and src contains our application source files
which include the main function. Referenced the PULP-runtime, the necessary
source files has been placed as follows,
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baremetal-riscv-threads
drivers

uart.c
include

archi
bench
chips
crt
data
hal
implem
ctype.h
io.h
pulp.h
stdio.h
stdlib.h
string.h

kernel
chips
crt0.S
irq-asm.S
alloc-pool.c
alloc.c
bench.c
cluster.c
fll-v1.c
freq-domains.c
init.c
irq.c
kernel.c
soc-event.c

lib
fprintf.c
io.c
prf.c
sprintf.c

src
sample-project

main.c
Makefile
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Compiling and Linking

The compile and linking phases are driven by a Makefile. Makefile defines a set
of rules for compile and linking phases. The base Makefile’s rules are provided in
Appendix A.1 for building a single executable file. This base Makefile’s rules can
be explained with the following bullet points in a nutshell,

1. Chip selection, the available options either pulp or pulpissimo

2. Setting toolchain, GCC, and build directories

3. Definition of executable file name

4. Definition of compiler and linker flags

5. Definitions for preprocessing stage

6. Setting kernel and library source files

7. Compiling of assembly sources, object files will be created at the end of the
operation

8. Compiling of C sources including the application source file or source files,
object files will be created at the end of the operation

9. Linking all of the source files and static libraries (if chosen) into a single
executable file

In order to build single a executable file for C++ applications, the base Makefile
has to be modified with minor changes, the base Makefile rules for C++ applications
are provided in Appendix A.2. The only modification is that after compiling C
sources, C++ sources must be compiled, and object files must be created for them.
By dint of these base Makefiles, any modification can be made easily, besides any
supported API can be added.
Afterwards, the single executable file can be created with make command as follows,

>>: ~/<PATH>/baremetal-riscv-threads/src/sample-project$ make

4.2.1 PULPissimo
For compiling sources in order to simulate applications for PULPissimo[6], the
base Makefile can be used without any major modification. The only modification
is that setting application source files and configuring CHIP variable that shown
below,

CHIP = pulpissimo
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PULP_APP_SRCS = main.c sample-api.c

For the simulation, the PULP platform suggests simulating applications on Model-
Sim/QuestaSim’s VSIM RTL Simulator for PULPissimo. VSIM is a fully-featured
VHDL and/or Verilog simulator. Before executing VSIM, some environment vari-
ables have to be defined and some necessary files have symbolically linked to the
build directory as written in the base Makefile.
After building of executable file, these commands as follows has to be entered
in the command line in order to set environment variables and other necessary
configuration.

>>: ~/<PATH>/pulp-runtime$ source configs/pulpissimo.sh

>>: ~/<PATH>/pulpissimo$ source setup/vsim.sh

Then, the RTL simulation platform is ready to execute the application, the
execution can be started with the command as follows,

>>: ~/src/sample-project$ make modelsim

After make modelsim command, the Makefile symbolically links modelsim.ini,
boot, tcl_files, and waves files to the given build directory then sets --binary ar-
gument to the single executable file. Then executes VSIM with stated configurations
for the simulation.

4.3 RV8
Before introducing the RV8 simulator, it would be better to explain how to achieve
simulations in the RV8 simulator. As mentioned before, a set of rules is needed for
the simulation, and these rules are provided by Makefiles. As predicted, processors
do not have any systems or memory like PULPissimo, they just execute the
instructions, respectively. Thus the Makefile rules for SiFive processors will be
much simpler than the PULP platform’s provided Makefile rules. The Makefile for
compiling sources with musl for SiFive processors has provided in Appendix A.4.
As mentioned before, this work also examines SiFive processors for the context of
bare-metal POSIX thread execution. In order to simulate executables for SiFive
processors, RV8 has been preferred. RV8[20] is a simulation suite for RISC-V
architecture-based applications. It contains a set of simulators for various purposes,
those are listed in the table below,

For sake of simplicity, rv-jit and rv-sim has been preferred to simulate
applications. Furthermore, these two simulators are sufficient for trace the execution
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rv-jit user mode x86-64 binary translator
rv-sim user mode system call proxy simulator
rv-sys full system emulator with soft MMU
rv-bin ELF disassembler and histogram tool
rv-meta code and documentation generator

Table 4.2: RV8 Simulation Suite Simulators

Figure 4.2: RV8 Working Principle

flow, thanks to their user-friendly command sets.
The working principle of RV8 simulator is summarized in Figure 4.2.

As shown in Figure 4.2, RV8 translates the instructions to x86-64 architecture
which is the most used personal computer architecture and executes the instructions
in the native x86-64 environment. Then, it reports the output of the code to the
simulator.
To execute an executable file in the RV8 simulator is quite easy, especially comparing
to the ModelSim/QuestaSim’s VSIM RTL simulator. The execution commands
are written below,

>>:~/src/sample-project$ rv-jit <exec_file>

>>:~/src/sample-project$ rv-sim <exec_file>
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Case Study

This chapter aims to introduce a case study that porting musl to riscv32 architecture
in order to exploit POSIX threads for a bare-metal RISC-V environment and
execution of these threads in PULP platform and in SiFive environment. The
latest stable version of musl is not supporting riscv32 architecture and thus musl’s
riscv32 port is required first. Then, the cross-compilation of the "musl" sources
has introduced in order to build libraries and headers. After that, the simple musl
POSIX threads program have implemented which is shown in Listing 5.1, both
on the PULP platform and SiFive processors instruction set simulator of RV8 in
order to trace thread creation and execution. The creation and execution result is
provided in the given sections, but the overall conclusion will be introduced in the
last chapter.

Listing 5.1: Simple musl POSIX Threads Program
1 # include <math.h>
2 # include <pthread .h>
3 # include "led.h"
4

5 void *foo ()
6 {
7 blinkLED (0);
8 pthread_exit (NULL);
9 }

10

11 int main ()
12 {
13 pthread_t thread_id ;
14 int ret;
15 double result = pow (10.0 ,2.0);
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16 double result2 = sqrt (100.0) ;
17

18 if(result == 100) blinkLED (1);
19 if( result2 == 10) blinkLED (2);
20

21 ret = pthread_create (& thread_id , NULL , foo , NULL);
22 if (ret) {
23 blinkLED (3);
24 exit (-1);
25 }
26 pthread_join (thread_id , NULL);
27

28 return 0;
29 }

The program also contains math.h functions, the reason is that checks whether
musl’s riscv32 port has been succeeded. The program also controls the
pthread_create return value, this would be a good indicator for tracing the
execution flow using musl POSIX threads’ source codes.

5.1 Multi-threading with musl
As stated in previous chapters, musl supports POSIX threads, before describing
musl POSIX threads support, it would be better to describe musl port to riscv32
which is the desired architecture configuration. After that, this section describes
musl’s POSIX threads execution on the PULP platform and SiFive processors.
Then, introduces the encountered problems and stated results.

Musl riscv32 Port

Michael J. Clark et al. (2018)[21] have been ported musl’s 1.1.18 version to riscv32
architecture. Despite of musl’s latest stable version is 1.2.2, there are no major
changes between version 1.1.18 and 1.2.2 for POSIX threads. There are only changes
for performance improvements and advanced POSIX features implementations.
Therefore, the work of Michael J. Clark can be used for this thesis’s work.

Musl Cross Build

As mentioned in the previous chapters, the application will be executed in the
bare-metal RISC-V platforms either in the PULP platform or SiFive Processors,
and thus cross-compilation is needed. So, the musl library will be compiled in
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the x86-64 machine and executed in the riscv32 machine, and thus the build
configuration should be as given in the table.

build x86-64
host x86-64

target riscv32-unknown-elf

Table 5.1: Musl Cross Compilation Architecture Options to 32-bit RISC-V

In order to start cross-compilation, the riscv32-unknown-elf-* binaries’ path
should be appended to the PATH environment variable. Otherwise, the musl’s
Makefile cannot find the riscv32’s compiler to compile the sources. This operation
can be done with the following command as written in below

>>: ~/export PATH=$PATH:/<TOOLCHAIN_PATH>/bin

After that, with which riscv32-unknown-elf-gcc command can be check
whether the operation is succeeded.

>>: ~/which riscv32-unknown-elf-gcc
<TOOLCHAIN_PATH>/bin

Before the build, config.mak or musl has to be configured for the desired
configuration. This can be done with the following command for our purpose.

Listing 5.2: Musl Build Command for 32-bit RISC-V
1 CFLAGS="-DSYSCALL_NO_INLINE " ./ configure --prefix=<

INSTALLATION_PATH > --target=riscv32 -unknown -elf --
enable - multilib --disable -shared

Then, the build process can be started with the following command, this command
will compile the sources, then creates static libraries, dynamic libraries are not
chosen to be built, because the target is a bare-metal embedded environment thus
dynamic libraries are not necessary.

>>: ~/<MUSL_PATH>/ make

It should be noted that, after the make command, the Makefile rules do not
initiate the installation of the musl headers and libraries to the installation path that
the programmer declared in the --prefix parameter. The headers and libraries
are created in the local musl directory. To install musl headers and libraries in the
given path, the following command has to be executed.
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>>: ~/<MUSL_PATH>/ make install

Finally, musl has been cross-compiled and the libraries and the headers are
created, the final musl built is shown below,

include
// header files

lib
crt1.o
crti.o
crtn.o
libc.a
libcrypt.a
libdl.a
libm.a
libpthread.a
libresolve.a
librt.a
libutil.a
libxnet.a
rcrt1.o
Scrt1.o

Because of the --disable-shared option, all the objects have been placed in
the libc.a static library. The other static libraries are entirely empty. Therefore,
the only static library that will be used is libc.a.

crt1.o can be called as ignition file, this object file contains _start symbol
which is the default entry point for C applications, then it calls the function of
_libc_init_main which calls other functions in order to initialize musl libc’s
parameters.

crti.o and crtn.o object files are define function prologues and epilogues for
the .init and .fini sections, respectively. Scrt1.o is used when generating PIEs.
rcrt1.o is used when generating static-PIEs. Eventually, the musl is ready for
linking and simulation.
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5.1.1 PULP Platform
This section is aimed to integrate musl into the PULP platform, for the sake of
simplicity, the PULPissimo has been selected as a microcontroller. As mentioned
in previous chapters, PULPissimo is a single-core microcontroller and the expected
output is that of running a multi-threaded application with an illusion of parallelism.
To integrate musl into the PULP platform, several modifications are required. The
most important one is that start-up files. Musl and PULPissimo’s runtime has
their own start-up files, but both start-up files’ logic is almost the same, they both
enter from the _start symbol, doing necessary pieces of stuff then forward the flow
to the main function. However, these two start-up files cannot be used at the same
time, because the same symbols have already existed in these files. Thus, musl’s
crt1.o cannot able to be used, a new file called crt1.c has to be created in the
PULPissimo’s API. The source code of the crt1.c is provided in Appendix B.1.
Then, the PULPissimo’s start-up file (crt0.S) has to be modified in the .text
section. Original crt0.S forwards the flow to the main function, directly, but
before the main, __libc_start_main function should be executed for the musl’s
libc initialization, and thus the modification has been made in the PULPissimo’s
crt0.S file.

Listing 5.3: PULPissimo’s crt0.S modification
1 . section .text
2

3 # On all other chips we simply pass 0.
4 addi a0 , x0 , 0
5 addi a1 , x0 , 0
6

7 # Jump to main program entry point (argc = a0 , argv
= a1).

8 # la t2 , main
9 la t2 , _start_musl_c

10 jalr x1 , t2
11 mv s0 , a0

Instead of jumping to main, this modified crt0.S jumps to the
_start_musl_c function in order to do initialization for musl libc. Then, it forwards
the flow to the main function.

To integrate musl with PULPissimo API, the base Makefile has to be modified
with minor changes. These modifications can be summarized as,

• musl’s path declaration

• musl’s include path declaration
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• musl libc.a’s integration in the linking phase.

The modified Makefile is provided in Appendix A.5.

Simulation Result

As mentioned before, the simulation can be started with a simple command of,

>>: ~/<PROJECT_PATH>/ make modelsim

The simulation output is given below,

# [STDOUT-CL31_PE0] LED-1 is blinking..
# [STDOUT-CL31_PE0] LED-2 is blinking..
# 13304880ns: Illegal instruction (core 0) at PC 0x1c009fb8:

The illegal instruction error generally occurs for two possible reasons, the
most common one for C applications is that because of an unsupported instruction.
Or program counter jumps to the wrong address. To trace the error, the single
executable file has dissembled and the address 0x1c009fb8 and its content is shown
below,

1c009fb2: e08a8a93 addi s5,s5,-504
1c009fb6: c85c sw a5,20(s0)
1c009fb8: 100aa7af lr.w a5,(s5)
1c009fbc: 0785 addi a5,a5,1
1c009fbe: 18faa9af sc.w s3,a5,(s5)
1c009fc2: fe099be3 bnez s3,1c009fb8
1c009fc6: 57fd li a5,-1

As written in the error, there is an illegal instruction in the address of
0x1c009fb8, the address contains lr.w instruction which is the member of RV32A -
Atomic Instruction Set which the PULP platform does not support these instruction
set extension. Furthermore, the RISC-V instruction set manual[1] states that
on page 13, "RV32I can emulate almost any other ISA extension (except the A
extension, which requires additional hardware support for atomicity). The reason
behind this statement is that RV32A - Atomic Instruction Set provides address-
based reservation and instruction ordering, even the current version of FENCE
instruction cannot able do address-based reservation, it just provides instruction-
based ordering. Thus, it is impossible to execute atomic instructions on the PULP
platform without any hardware support for atomicity.
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5.1.2 SiFive Processors
As mentioned in previous sections, SiFive processors have not any API like the
PULP platform, they just contain processors that purpose executing the instructions
one by one. Also, the Makefiles rules with musl integration have been provided
which can be found in Appendix A.4.
Compilation can be started with the make command in the related project directory.
After a successful built, simulation can be started with logging system calls and
memory map information,

>>: ~/<PROJECT_DIR>/ make rv

Simulation Result

The simulation output is given below,

sys_set_tid_address(0xc7b28) = 1
ioctl(1,21523) = 0
LED-1 is blinking..
writev(1,0x7efffffffab0,2) = 31
LED-2 is blinking..
writev(1,0x7efffffffad0,2) = 28
mmap(0x0,143360,0,34,-1,0) = 0x40000000
mprotect(0x40002000,135168,3) = 0
clone(8195840,1073884912) = 22
munmap(0x40000000,143360) = 0
MAIN: pthread_create return 11
writev(1,0x7efffffffad0,2) = 31
ERROR; return code from pthread_create() is 11
writev(1,0x7efffffffad0,2) = 47
exit(-1)
make: *** [Makefile:71: rv] Error 255

As inferred from the output, pthread_create is calling clone system call
however, the code is running on a bare-metal environment. As mentioned in
previous chapters, bare-metal environments do not have any operating system
support or centralized kernel. Thus, there is no system call. Also, for tracing
further errors, musl has re-compiled with the assumption of the clone system
call has returned success. Then, pthread_join has called futex system call for
synchronization and pthread_create has called set_scheduler system call when
a POSIX threads attribute is preferred for thread creation. For a counter approach,
writing support for these system calls such as clone, futex, and etc. is not
guaranteed to execute musl’s POSIX threads. Because as mentioned in previous
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chapters, musl is built on top of the Linux system call API and, clone system
call clones a child process with a new stack, but the program is running on a
bare-metal environment so there is no Linux process. Furthermore, assume that
all these system calls have been supported. However, In the end, a kernel will be
formed, unwillingly. Therefore, the whole system would stay out of the bare-metal
environment term.

5.2 Multi-threading with Protothreads
As mentioned in previous sections, Protothreads’ working principle is based on
preprocessor directives and does not use any source code for invoking or running
threads. So, in order to exploit Protothreads, the related header files have to be
included to the include search path of the compiler, this can be done using the
base Makefile as follows,

PT_DIR = $(CURDIR)/../../../pt-1.4
INC_DIRS += $(addprefix -I, $(PT_DIR)/include/)

It should be noted that Protothreads’ syntax is different than POSIX threads.
So the simulation source code has to be re-implemented considering the POSIX
thread program which is given in Listing 5.1. The re-implemented source code
is given in Listing 5.4. Also, in this case study, a simple producer-consumer
problem source code with Protothreads and its simulation has been provided. The
producer-consumer problem source code is referenced from in the Protothreads’
official project[13] and provided in the Appendix B.3 with the copyright notice.

Listing 5.4: A Simple Protothread Program
1 # include <pt.h>
2 # include "led.h"
3

4 static struct pt pt1;
5

6 static int foo(struct pt *pt)
7 {
8 PT_BEGIN (pt);
9 blinkLED (0);

10 PT_END(pt);
11 }
12

13 int main ()
14 {
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15 PT_INIT (& pt1);
16 foo (& pt1);
17 return 0;
18 }

Simulation Result

The simulation outputs for Listing 5.4 and Appendix B.3 on the PULPissimo is
given below, respectively.

Simulation Output for Listing 5.4:
-------------------------------------------------
# [STDOUT-CL31_PE0] LED-0 is blinking..
-------------------------------------------------

Simulation Output for Appendix B.3:
-------------------------------------------------
# [STDOUT-CL31_PE0] LED-0 is on by producer
# [STDOUT-CL31_PE0] LED-0 added to buffer at place 0
# [STDOUT-CL31_PE0] LED-1 is on by producer
# [STDOUT-CL31_PE0] LED-1 added to buffer at place 1
# [STDOUT-CL31_PE0] LED-0 retrieved from buffer at place 0
# [STDOUT-CL31_PE0] LED-0 is off by consumer
# [STDOUT-CL31_PE0] LED-1 retrieved from buffer at place 1
# [STDOUT-CL31_PE0] LED-1 is off by consumer
# [STDOUT-CL31_PE0] LED-2 is on by producer
# [STDOUT-CL31_PE0] LED-2 added to buffer at place 0
# [STDOUT-CL31_PE0] LED-3 is on by producer
# [STDOUT-CL31_PE0] LED-3 added to buffer at place 1
# [STDOUT-CL31_PE0] LED-2 retrieved from buffer at place 0
# [STDOUT-CL31_PE0] LED-2 is off by consumer
# [STDOUT-CL31_PE0] LED-3 retrieved from buffer at place 1
# [STDOUT-CL31_PE0] LED-3 is off by consumer
# [STDOUT-CL31_PE0] LED-4 is on by producer
# [STDOUT-CL31_PE0] LED-4 added to buffer at place 0
# [STDOUT-CL31_PE0] LED-5 is on by producer
# [STDOUT-CL31_PE0] LED-5 added to buffer at place 1
# [STDOUT-CL31_PE0] LED-4 retrieved from buffer at place 0
# [STDOUT-CL31_PE0] LED-4 is off by consumer
# [STDOUT-CL31_PE0] LED-5 retrieved from buffer at place 1
# [STDOUT-CL31_PE0] LED-5 is off by consumer
-------------------------------------------------
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Thus, one can say that Protothreads can provide concurrency by dint of event-
driven programming techniques, but should be noted that, Protothreads cannot
provide real parallelism, although providing an illusion of parallelism.
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Chapter 6

Proposed Approach

This chapter is aimed to introduce a multi-threading approach for bare-metal
platforms. As stated in previous chapters, musl’s POSIX threads are not convenient
for bare-metal systems that have been focused on, due to musl’s inline assembly
calls, start-up files and the implementation based on the Linux system calls API.
Thus, this approach is based on implementing a standalone multi-threading API
inspired from POSIX threads and Protothreads, and porting it to the PULPissimo.
The API is called "bare-threads" or "bthreads". Hereinafter, this API is called
"bare-threads".

6.1 Bare-Threads API
Bare-threads API is an experimental standalone multi-threading library developed
for the context of this thesis. The main motivation of implementing bare-threads
API is based on portability and compatibility. The implementation has designed
considering musl POSIX threads’ issues for the bare-metal compatibility, the issues
can be summarized as bullet points as follows.

• Bare-threads API does not need any pre-built objects or files, although musl’s
POSIX threads need musl’s pre-built start-up files in order to initialize POSIX
threads.

• Musl’s POSIX threads implementation contains inline assembly calls and uses
RV32A - atomic instruction set extension in spite of that bare-metal API does
not implement any atomic instruction in its base functions.

• The musl is built on top of the Linux system calls API nevertheless Bare-
threads API does not call any Linux system call by default.
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The bare-threads API has implemented in the C programming language and
consists of a set of C source code files and header files. The implementation is based
on simplicity and compactness. The implementation shows a lot of similarities
with POSIX threads implementation. Listing 6.1 shown below declares a thread
creation both in POSIX threads and bare-threads. Also, the other functions have
a similarity with POSIX threads.

Listing 6.1: POSIX thread creation versus bare-thread creation
1 // POSIX threads
2 int pthread_create ( pthread_t *__restrict , const

pthread_attr_t *__restrict , void *(*)(void *), void *
__restrict );

3

4 // bare - threads
5 int bthread_create (struct bthread_t *bId , struct

bthread_attr_t *bAttr , void *(* entry)(void *), void *
args);

The directory structure of the bare-threads is given below, it consists of three
main directories, include path contains header files, src path contains source
codes, and arch path contains architecture-specific sources. The arch path has to
contain mandatory files and macros for each architecture.

bare-threads
arch
include
src

Thread Creation

As mentioned before thread creation is dependent on the platform and the ar-
chitecture of the platform. Indeed, it depends on many parameters such as the
number of the cores, supported instruction set, and etc. Thus, thread creation in
bare-threads API is offered by architecture-dependent functions, bthread_create
function initializes necessary elements for thread creation and then sets the elements
of the bthread_t struct, and calls for the execution of the thread. The run function
is the thread execution call provided from the architecture-dependent sources, and
the syntax of this function has to be the same for all architecture ports. The
source code of the bthread_create is provided in Listing 6.3. Also, bare-threads
offer a thread pool for further improvements. It should be noted that the run
function has to be implemented as architecture-dependent or platform-dependent
and implemented in the arch directory. The run function takes a bthread_t struct
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as an argument and the syntax is provided in Listing 6.4. The implementation of
the run function will be described in further sections.

Listing 6.2: bthread_t Structure
1 #define THREAD_STACK_SIZE 8192
2

3 typedef struct {
4 unsigned int pc;
5 unsigned int regs [31];
6 } context_t ;
7

8 typedef struct bthread_t {
9 unsigned short tId;

10 void *(*f)(void *);
11 void *args;
12 context_t context ;
13 unsigned int stack[ THREAD_STACK_SIZE ]
14 volatile void *status;
15 struct bthread_attr_t *attr;
16 } bthread_t ;

bthread_t struct contains necessary elements for a thread. bthread_t structure
shown in Listing 6.2. tId is the unique id number for a thread, f is the function
pointer which holds the entry function of a thread, args is the argument of the
thread function, context is the integer registers’ values and program counter value
for the thread, stack is the stack space for the thread, status is the state of the
thread to check whether a thread has been finished or still running, and the attr
holds the thread attributes of the thread.

Listing 6.3: bthread_create.c Source Code
1 int bthread_create (struct bthread_t *bId , struct

bthread_attr_t *bAttr , void *(* entry)(void *), void *
args)

2 {
3 if(! isInit)
4 __bthread_init ();
5 bId ->tId = unique_id ++;
6 bId ->f = entry;
7 bId ->args = args;
8 if(bAttr != NULL)
9 bId ->attr = bAttr;
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10 __enqueue (thread_queue , *bId);
11

12 run(bId);
13

14 return 0;
15 }

Listing 6.4: run Function Syntax
1 short run(struct bthread_t *thread);

Synchronization

Thread synchronization in bare-threads has provided by mutexes and semaphores.
Mutexes and semaphores are defined in previous chapters. As stated in the
beginning, bare-threads API is an experimental library. Therefore, the mutex and
semaphore implementations are simplified. The mutex implementation is simply
based on a flag variable, depending on the flag variable’s value, the mutex either
allows a thread to enter the critical section or blocks threads until the critical
section becomes available. The semaphore implementation is based on a mutex
and a counter. Simply, when a semaphore has been signaling, the counter value
will have been increased and when it has been waiting, the counter value will have
been decreased.
The mutexes and semaphores are called bthread_mutex_t and bthread_sem_t,
respectively. The source codes and implementations are provided in Appendix B.4.

Porting

The bare-threads porting can be provided with the files in the arch directory. The
architecture-specific functions, constants, or any elements have to be reachable
through core.h. Therefore, core.h is a mandatory header file that has to exist in
all architecture ports and it has to contain a run function which is able to execute
a thread. The porting sources should be in the form which is written below,

arch
riscv32

pulpissimo
core.h
core.c

pulp
core.h
core.c
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Scheduling

The source code of the bare-threads API does not provide any scheduling mechanism,
because scheduling depends on many parameters such as application type, core
architecture, supported instruction set, and etc. Therefore, any scheduler has not
provided by default. However, a scheduler has to be provided in architecture-
dependent sources. Furthermore, bare-threads are designed for bare-metal systems
which do not have any operating system support nor centralized kernel. Therefore,
default scheduler support would be not a realistic approach. A scheduling instance
will be examined in further sections.

Attributes

As mentioned in the previous sections, bare-threads is an experimental API,
Therefore, the thread attributes implemented for future improvements. Thus,
bare-threads attributes have not tested. They implemented in order to show,
bare-threads can take attributes and has an extensible interface.

6.1.1 Single-Core Multi-threading
As mentioned in previous chapters, single-core multi-threading can be provided
only and only if with an illusion of parallelism. Hyper-threaded cores are excluded
and they are not in the scope of this thesis. This concurrency can be provided
with a scheduler, it schedules threads and executes on the core. There are various
types of schedulers approach has been available, but in this scope, Round-Robin
scheduling has been preferred. It has a simple algorithm based on play and pause
operation. To simulate and port bare-threads on a single-core microcontroller,
PULPissimo has been chosen which is one of the main actors of this thesis work.
Before start porting bare-threads API to the PULPissimo, it would be better to
figure out the maximum asynchronous thread capability of the PULPissimo. Herdt
et al. (2018)[22] propose a new approach for the RISC-V simulator which named
RISC-V VP or RISC-V Virtual Prototype, and RISC-V VP’s source directory has
an example code for simple scheduling single-core threads. Referenced from it, a
test code has written. The test code is based on a simple concurrent program that
can be useful to figure out PULPissimo’s capabilities. The test code’s scheduling
mechanism has preferred as the simplest. The scheduling is provided with a context
switch that switches the execution context of each thread, including the main thread.
This context switch, interchanges the main registers with each thread stack’s context
for the execution of threads, concurrently. This context can be extensible, but
the skeleton context has integer registers, stack pointer, and program counter.
Furthermore, with that code also a minimal concurrency will have been proven
on the PULPissimo platform. The test code is provided on RISC-V VP’s source
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directory[23], to test this code on PULPissimo the base Makefile for PULPissimo
can be used with adding source files to the PULP_APP_SRCS variable.

Simulation Result

The default stack area has defined as ~64 kB, with this stack area configuration,
eight threads are capable to run concurrently. Eight threads with ~64 kB stack
area are sufficient for many applications will execute on the PULPissimo. So, one
can infer that PULPissimo is suitable for multi-threaded applications. It should be
noted that this simulation is made without bare-threads’ PULPissimo port. This
simulation has made with an experimental test code with a scheduler in order to
figure out PULPissimo’s capabilities.

Porting to PULPissimo

After proving PULPissimo’s suitability for the multi-threaded applications, bare-
threads API’s PULPissimo port can be explained. It should be noted that bare-
threads PULPissimo’s port is not implemented, this section is given as a guideline
for proposing how multi-threaded applications can be run on the PULPissimo. The
proposed approach for single-core systems in order to provide multi-threading is
summarized in Figure 6.1. In the figure, the CPU shown with a purple arrow, the
arrow on the left defines the threads that have not started yet, the arrow on the
right defines the threads that have already finished, the curved arrow represents
a timer interrupt in order to trigger the context switch, in other words, it turns
the wheel when the timer interrupt occurred, the wheel which contains threads
stands for the thread pool, and each wheel slices represents a thread. Hereinafter
this thread pool is called as thread wheel.

According to Figure 6.1, after the program has been executing, when a thread
created with bthread_create, bare-threads appends this thread on the wheel as a
wheel slice or this can be called thread slice. The number of the slices represents
the total running threads and this can be defined or limited for each platform or
architecture. As mentioned before, the curved arrow represents a timer interrupt,
when the timer interrupt occurred, first, the context switch saves the active context
of the thread to the current running thread’s stack area, then the context switch
loads the next thread’s context to the active context and executes the related
thread. For sake of simplicity, a thread’s context can consist of a program counter,
integer registers, and stack pointer, but it can be extensible depending on the
application area. The context switch’s source code is provided in Appendix C.1.
This operation is carrying on until every thread finishes its execution. The wait
operation can be done with the bthread_join function. Besides, any thread can
be appended while the other threads are running, or in the opposite, any thread
can finish its execution and detach from the thread wheel while the other threads
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Figure 6.1: Thread Scheduling Approach for Single-core Systems

are running. Listing 6.5 is provided below in order to illustrate the whole execution
flow. As mentioned before, bare-threads’ syntax is similar to the POSIX threads,
the example shows how to create a thread and to wait until the threads have been
finished.
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Listing 6.5: An example code for bare-threads
1 # include <bthread .h>
2 # include "led.h"
3 # include "util.h"
4 volatile char done;
5 bthread_mutex_t mutex;
6

7 void *foo(void *a){
8 while (! done){
9 bthread_mutex_lock (& mutex);

10 pause_interrupts ();
11 toggleLED (0);
12 resume_interrupts ();
13 bthread_mutex_unlock (& mutex);
14 sleep_milliseconds (2000);
15 }
16 }
17 void *bar(void *a){
18 int * real_roots = findRealRoots (1, 6,-10, 34, 132,

31, -10, -1450);
19 }
20 void *tar(void *a){
21 Complex * cmp_roots = findComplexRoots (1, 6,-10, 34,

132, 31, -10, -1450);
22 }
23

24 int main(int argc , char ** argv){
25 struct bthread_t foo_t , bar_t , tar_t;
26 bthread_mutex_init (& mutex);
27 bthread_create (& foo_t , NULL , foo , (void *)4);
28 bthread_create (& bar_t , NULL , bar , (void *)5);
29 bthread_create (& tar_t , NULL , tar , (void *)6);
30

31 bthread_join (& bar_t);
32 bthread_join (& tar_t);
33 done = 1;
34 bthread_join (& foo_t);
35 return 0;
36 }

49



Proposed Approach

In Listing 6.5, a simple operation has been illustrated. In the example, the bar
thread will run for finding the real roots of the given equation, the tar thread will
run for finding the complex roots of the given equation. The foo thread flashes
LED-0 every 2 seconds to let the programmer know that the program is running.
Assume that there is no thread except the main function in the thread wheel at the
beginning, the initial form of the scheduler is shown in Figure 6.2. The threads are
ready to bind to the thread wheel. Each bthread_create function adds the thread
to the thread wheel as a thread slice. It should be noted that the "main" function
manages thread adding operation to the thread wheel. After each bthread_create
is called, threads are appending to the thread pool one by one, the illustration is
shown in Figure 6.3, Figure 6.4, and Figure 6.5, respectively.

Figure 6.2: Initial form of the scheduler
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Figure 6.3: The form of the scheduler after foo thread is appended

Figure 6.4: The form of the scheduler after bar thread is appended
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Figure 6.5: The form of the scheduler after all threads are appended

As shown in the figures, initially only the main function is running. After a
thread is added to the thread wheel, the scheduler starts to schedule and execute
threads towards the proposed approach. The state which is shown in Figure
6.5, indicates the bar thread is running for a given time interval, when a timer
interrupt occurred, the interrupt function makes a context switch between the
current thread and the next thread. The working mechanism of the context switch
is explained before. It should be noted that this operation does not mean the
bar thread has been ended, the bar thread has paused for the other threads’
execution including the main thread. This operation is carrying on until the
program finishes its execution. Regarding Listing 6.5, the bar and tar find the
roots of the given equation both real and complex, then their execution will be
finished, but the foo thread has to be run until the bar and tar threads finish.
Also, the main thread will not be ended until all threads have been finished,
because the main function has to wait for all threads until their executions had
been finished. Furthermore, it should be noted that the foo thread makes an
I/O operation, and thus a critical section is needed because output writes should
not be interrupted due to the hardware health considerations. The scheduler is
paused in the area between pause_interrupts and resume_interrupts. So, one
can state that pause_interrupts pauses the scheduler and resumes_interrupts
resumes the scheduler from the point of scheduler had been paused. Figure 6.6 and
Figure 6.7 show the scheduler states after bar and tar threads have been finished,
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respectively. The point that should be noticed, the threads’ state which is running
or finished does not affect any threads. Thus, concurrency can be provided with
this approach.

Figure 6.6: The form of the scheduler after bar thread is finished
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Figure 6.7: The form of the scheduler after bar and tar threads are finished

Figure 6.8: The form of the scheduler after foo, bar, and tar threads are finished

When the foo thread had been finished successfully, the program can terminate
and finish its execution.
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I/O Operations

I/O operations denote that the program contains some operations that receive
or transmit some data from the hardware. Especially, the input operations gen-
erally handle an immediate interrupt that interrupts the execution flow and re-
ceives the data from the regarding sources. The bare-threads are supporting I/O
operations with an approach. As mentioned before, bare-threads provide multi-
threading with a timer interrupt, and thus the interrupts have to be managed
in a smart way to avoid data loss. To handle external input interrupts, bare-
threads proposes a two-stage interrupt handling mechanism. when an interrupt
occurred, the execution flow will jump to the stage_0_interrupt_handler, then
stage_0_interrupt_handler primarily pauses all interrupts including the timer
interrupt using by the bare-threads’ scheduling mechanism. Then, it saves the cur-
rent context to the stack and jumps to the stage_1_interrupt_handler function.
stage_1_interrupt_handler function can be considered as a simple switch-case
mechanism that handles the interrupt associated with the interrupt cause. The
timer interrupt is also handled in there. The important point is that, if the timer
interrupt has occurred which is the scheduler’s interrupt, the interrupts have to be
enabled just after the context switch operation, then the execution flow carry out
through the next thread. However, if another interrupt has been occurred, after
the interrupt handler function, it will return to the stage_0_interrupt_handler
function and it restores the saved context, and enables the interrupts, then resumes
the execution flow. The proposed interrupt management mechanism provided in
Listing 6.6.
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Listing 6.6: Interrupt Handling Mechanism for I/O Operations
1 void stage_0_interrupt_handler ()
2 {
3 pause_interrupts ();
4 save_current_context ();
5 stage_1_interrupt_handler ();
6 restore_saved_context ();
7 resume_interrupts ();
8 jump ();
9 }

10

11 void stage_1_interrupt_handler ()
12 {
13 switch(cause)
14 {
15 case SCHEDULER_INTERRUPT :
16 context_switch ();
17 resume_interrupts ();
18 jump ();
19 case EXTERNAL_INTERRUPT :
20 interrupt_handler_function ();
21 return;
22 case CUSTOM_INTERRUPT :
23 // do something
24 return;
25 }
26 }

However, output operations generally do not require an interrupt operation that
transmits data to peripherals. Thus, bare-threads can operate output operations in
a safe zone. This safe zone defines a code area that disables all interrupts and the
whole code placed in that safe zone can be executed without any interruption. As
mentioned in the sample code, the foo thread contains an output operation that
toggles the status of LED-0, this operation will be executed without any interruption.
Furthermore, the output operations have to be protected by synchronization
primitives such as a mutex or a semaphore in order to avoid multi-write on the
same output register.
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Thread Timing

As mentioned before, bare-threads are proposing to use the Round-Robin scheduling
algorithm to schedule threads. According to the Round-Robin scheduling algorithm,
it works with time slices. The timeline has to divide into equal blocks as called a
time slice. Assume that the timeline divided into 10 ms blocks and the time slice
value determined as 3. So, this means that each thread is running 30 ms at an
operation. Thread timing operation is illustrated in Figure 6.8.
Each time slot represents a 10 ms time interval, for example, the main thread
executes in the time slots 1 and 3. In other words, the main thread starts executing
on time slot 1 and its execution paused on time slot 3, then the "main" thread
resumes at time slot 13, and pauses again at time slot 15.
In fact, there are many approaches available for adjusting parameters for the
Round-Robin scheduling algorithm such as obtaining the optimum values for time
slots, time quantum, or even if a dynamic parameter calculation can be made.
However, those can be a subject for another research, this approach only proposes
the simplest Round-Robin scheduling algorithm for bare-threads.

Figure 6.9: Execution timing schedule of threads

However, the foo thread contains an output operation that toggles the status
of the LED-0 every 2 seconds, and this operation is protected by
pause_interrupts and resume_interrupts functions. Thus, the scheduler will
be paused between the area which covered these two functions. So, the scheduler
will be paused while the foo thread has been executing. The actual execution
timing schedule is illustrated on Figure 6.10.
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Figure 6.10: Actual execution timing schedule of threads

Memory Occupancy

The bthread_t has been already defined and declared in previous sections. The
size of the bthread_t can be calculated using sizeof operator. The total size of
bthread_t is 65.6 kB, including stack area. As mentioned before PULPissimo has
512 kB of RAM and the simulation has executed eight simple threads concurrently.
However, considering each thread that fully occupies 65.6 kB of memory space,
eight threads will lead to memory overflow. Therefore, the possible maximum
number of concurrent threads is seven for PULPissimo.
However, the multi-threaded program will execute in the bare-metal environment,
neither a centralized kernel nor memory management unit has existed. Although
the calculation states the maximum number of threads is seven, even seven threads
can lead to a memory overflow. Thus, the programmer has to manage the memory
considering each thread occupies 65.6 kB of memory space.
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Chapter 7

Conclusions and Future
Work

7.1 Conclusions

This work has presented a case study and a proposed approach in order to provide
multi-threading support for bare-metal RISC-V systems. The case study proposes
that to port musl C standard library to the RISC-V 32-bit architecture in order to
exploit POSIX threads for 32-bit RISC-V bare-metal environment. First, the musl
C standard library has been ported to the 32-bit RISC-V architecture, then the
ported musl C standard library has tested on the PULPissimo’s simulator and the
SiFive E2 Series Cores’ simulator. Then, a set of incompatibilities has been inferred
for both the PULPissimo and the SiFive E2 cores. Musl standard C library has
inline assembly calls and those calls contain the instructions which are belong to
the RV32A - RISC-V atomic instructions set extensions, where PULPissimo’s core
which can be RI5CY or Zero-riscy do not support RV32A - atomic instructions
set extension. Furthermore, the RISC-V ISA manual[1] states that the atomic
instructions cannot able to be emulated with the instruction sets that RI5CY and
Zero-riscy supports. Thus, the current version of PULPissimo cannot support RISC-
V atomic instructions set extension unless any additional hardware support. The
other incompatibility is start-up files which are responsible for igniting the program
execution. PULPissimo has its own start-up file called crt0.S, also musl has its
own start-up files. Musl’s start-up files have vast importance for multi-threading
because the functions placed in the musl’s start-up files initialize and set variables
that are using in musl’s POSIX threads. Both start-up files cannot able to use at
the same time, because both of them have the same symbols. However, this issue
has been solved by merging these start-up files without overlap and explained in the
thesis. Although SiFive E2 Series cores are supporting the RISC-V 32-bit atomic
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instruction set extension, musl was not worked on SiFive E2 Series cores[9] because
of the lack of a Linux system call API. Musl is built on the Linux system calls API
and thus musl C standard library contains the functions that call Linux system
calls. In the context of musl’s POSIX threads implementation, a set of system
calls have to required such as SYS_clone, SYS_futex, SYS_set_scheduler, and
etc. However, this thesis examines multi-threading in bare-metal environments and
thus neither operating system support nor centralized kernel has existed. Therefore,
musl C standard library has not succeeded on SiFive E2 Series cores in the bare-
metal mode. Nevertheless, if these system calls will implement to support the
dedicated bare-metal platform and the musl C standard library sources will change
in that aspect, one can be stated that musl will work on the bare-metal platform
which has SiFive E2 Series cores. Furthermore, this situation is also valid for
PULPissimo. Even if the atomic instruction set instruction has been supported by
additional hardware support, these system calls support required to implement for
PULPissimo too. Referenced from these conclusions and inferences, a standalone
multi-threading API has been proposed called bare-threads. Bare-threads’ design
takes into account these constraints encountered on musl’s RISC-V 32-bit port.
The main motivation of this proposal can be concluded as bullet points as follow,

• To build a standalone multi-threading API that can be easily portable for any
architecture or platform, just considering multi-threading demands.

• To provide more flexibility and compatibility to the programmers.

• To create an extensible API that programmers can extend or modify the API
with minor modifications through their needings in bare-metal mode.

The bare-threads API have not ported to the PULPissimo, it has proposed as
an approach for further approaches or implementations.

7.2 Future Work
The future work can be divided into two main branches. One approach can move
forward on musl C standard library branch and the other future work approach
can move forward on bare-threads API.
The future work on musl C standard library should be based on the Linux system
calls that musl’s POSIX threads implementation called. A set of system call sup-
ports have to be implemented such as SYS_clone, SYS_futex, SYS_set_scheduler,
and etc. with taking into account the platform has been working on.
The future work on bare-threads API can be various, but the most important part
is that porting to the PULPissimo. After a successful port to the PULPissimo,
the bare-threads API will be proved itself in the context of multi-threading. After
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that, there might be several improvements exist, one of them is that modifying the
bare-threads syntax to make the same as the POSIX threads’ standard. After that,
any multi-threaded program that contains POSIX threads will also compatible
with bare-metal platforms. Another improvement can be associated with the syn-
chronization primitives. As mentioned in the thesis, the synchronization primitives
have implemented in simplicity. Therefore, the synchronization primitives can be
advanced through the work of, Peterson et al. (1981)[24]are proposed a way for mu-
tual exclusion problems without using additional hardware support. The Peterson
algorithm is simply based on a willingness to enter the critical section and notice
for has entered the critical section. Thus the bare-threads API’s synchronization
primitives can be enhanced with this algorithm.
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Makefile Rules

Listing A.1: PULPissimo’s Base Makefile Rules for C Applications
1 TOOLCHAIN_DIR = $(CURDIR) /../../../ pulp -rv32
2 BUILD_DIR = $(CURDIR)/build
3 GCC_DIR = $( TOOLCHAIN_DIR )/lib/gcc/riscv32 -unknown -elf

/7.1.1/
4

5 CHIP = pulpissimo
6

7 CC = riscv32 -unknown -elf -gcc
8

9 PULP_TARGET = mainApp
10 PULP_APP_SRCS = main.c
11

12 PULP_KERNEL_SRCS_STAGE_1 = $(CURDIR) /../../ kernel/fll -v1
.c $(CURDIR) /../../ kernel/freq - domains .c $(CURDIR)
/../../ kernel/chips/$(CHIP)/soc.c

13 PULP_LIB_SRCS = $( wildcard $(CURDIR) /../../ lib /*.c)
14 PULP_KERNEL_SRCS_STAGE_2 += $(CURDIR) /../../ kernel/init.

c $(CURDIR) /../../ kernel/kernel.c $(CURDIR) /../../
kernel/alloc.c

15 PULP_KERNEL_SRCS_STAGE_2 += $(CURDIR) /../../ kernel/
alloc_pool .c $(CURDIR) /../../ kernel/irq.c $(CURDIR)
/../../ kernel/ soc_event .c $(CURDIR) /../../ kernel/
bench.c

16 PULP_KERNEL_SRCS_STAGE_2 += $(CURDIR) /../../ drivers /uart
.c
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17 PULP_ASM_SRCS = $(CURDIR) /../../ kernel/crt0.S $(CURDIR)
/../../ kernel/ irq_asm .S

18

19 PULP_SRCS_BIN = $( patsubst %.c,%,$(
PULP_KERNEL_SRCS_STAGE_1 )) \

20 $( patsubst %.c,%,$( PULP_LIB_SRCS )) \
21 $( patsubst %.c,%,$( PULP_KERNEL_SRCS_STAGE_2 )) \
22 $( patsubst %.c,%,$( PULP_APP_SRCS )) \
23

24 PULP_ASM_BIN = $( patsubst %.S,%,$( PULP_ASM_SRCS ))
25

26 PULP_OBJS = $( patsubst $(notdir %.c) ,%.o,$( PULP_APP_SRCS
)) \

27 $( patsubst $(notdir %.c) ,%.o,$( PULP_KERNEL_SRCS_STAGE_1 )
) \

28 $( patsubst $(notdir %.c) ,%.o,$( PULP_LIB_SRCS )) \
29 $( patsubst $(notdir %.c) ,%.o,$( PULP_KERNEL_SRCS_STAGE_2 )

) \
30 $( patsubst $(notdir %.S) ,%.o,$( PULP_ASM_SRCS ))
31

32 PULP_LINKER = -T/$(CURDIR) /../../ kernel/chips/$(CHIP)/
link.ld

33

34 PULP_DEFS = -DPULP_CHIP_STR =$(CHIP) -D__PLATFORM__ =
ARCHI_PLATFORM_RTL -DCONFIG_IO_UART_BAUDRATE =115200 -
DCONFIG_IO_UART_ITF =0 -D__RISCV_GENERIC__

35 PULP_ASM_DEFS = -DLANGUAGE_ASSEMBLY
36 PULP_CFLAGS = -Os -v -static -nostdinc -g3 -fdata -

sections -ffunction - sections -fno -jump -tables -fno -
tree -loop -distribute - patterns -fno - exceptions

37 PULP_CFLAGS += -include $(CURDIR) /../../ include /chips/$(
CHIP)/config.h -MMD -MP

38 PULP_LDFLAGS = -v -nostdlib -nodefaultlibs -nostartfiles
-Wl ,--gc - sections $( PULP_LINKER )

39 # PULP_LDFLAGS += $( addprefix -L, $( TOOLCHAIN_DIR )/lib/
gcc/riscv32 -unknown -elf /7.1.1/ rv32imcxgap9 /ilp32) \

40 $( addprefix -L, $( TOOLCHAIN_DIR )/lib/gcc/riscv32 -unknown
-elf /7.1.1)

41

42 PULP_INC_DIRS := $( addprefix -I, $(CURDIR) /../../ include
/chips/$(CHIP)) \
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43 $( addprefix -I, $(CURDIR) /../../ include /) \
44 $( addprefix -I, $(CURDIR) /../../ kernel /)
45

46 # LIBGCC = $( addprefix -L, $( GCC_DIR )) -lgcc
47 LIBGCC = $( GCC_DIR )/libgcc.a
48

49 all: clean build link
50

51 build:
52 mkdir build
53

54 $( PULP_ASM_BIN ): %: %.S
55 $(info ***************************************)
56 $(info CC $<)
57 $(info ***************************************)
58 $( TOOLCHAIN_DIR )/bin/$(CC) $( PULP_ASM_DEFS ) $(

PULP_DEFS ) $( PULP_CFLAGS ) \
59 $( PULP_INC_DIRS ) \
60 $< -c -o $( BUILD_DIR )/$(notdir $@).o
61

62 $( PULP_SRCS_BIN ): %: %.c
63 $(info ***************************************)
64 $(info CC $<)
65 $(info ***************************************)
66 $( TOOLCHAIN_DIR )/bin/$(CC) $( PULP_DEFS ) $(

PULP_CFLAGS ) \
67 $( PULP_INC_DIRS ) \
68 $< -c -o $( BUILD_DIR )/$(notdir $@).o
69

70 link: $( PULP_ASM_BIN ) $( PULP_SRCS_BIN )
71 $(info ***************************************)
72 $(info Linking ..)
73 $(info ***************************************)
74 $( TOOLCHAIN_DIR )/bin/$(CC) $( PULP_DEFS ) $(

PULP_CFLAGS ) $( PULP_LDFLAGS ) \
75 $( PULP_INC_DIRS ) \
76 $( addprefix $( BUILD_DIR )/, $(notdir $( PULP_OBJS ))) $

(LIBGCC) -o $( BUILD_DIR )/$( PULP_TARGET )
77

78

79 $( BUILD_DIR )/ modelsim .ini:
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80 ln -s $( VSIM_PATH )/ modelsim .ini $@
81

82 $( BUILD_DIR )/boot:
83 ln -s $( VSIM_PATH )/boot $@
84

85 $( BUILD_DIR )/ tcl_files :
86 ln -s $( VSIM_PATH )/ tcl_files $@
87

88 $( BUILD_DIR )/waves:
89 ln -s $( VSIM_PATH )/waves $@
90

91

92 modelsim - prepare : $( BUILD_DIR )/ modelsim .ini $( BUILD_DIR
)/boot $( BUILD_DIR )/ tcl_files $( BUILD_DIR )/waves

93 $( PULPRT_HOME )/bin/ stim_utils .py --binary=$(
BUILD_DIR )/$( PULP_TARGET ) --vectors =$( BUILD_DIR )/
vectors /stim.txt

94

95 modelsim : modelsim - prepare
96 cd $( BUILD_DIR ) && \
97 export VSIM_RUNNER_FLAGS ="+ ENTRY_POINT =0 x1c008080 -

gLOAD_L2 =JTAG -dpicpppath /usr/bin/g++ -
permit_unmatched_virtual_intf -gBAUDRATE =115200 " && \

98 vsim -c -do ’source $( VSIM_PATH )/ tcl_files /config/
run_and_exit .tcl ’ -do ’source $( VSIM_PATH )/ tcl_files /
run.tcl; run_and_exit ;’

99

100 dump -elf:
101 $( TOOLCHAIN_DIR )/bin/riscv32 -unknown -elf - readelf -a

$( BUILD_DIR )/$( PULP_TARGET )
102

103 dump - symbols :
104 $( TOOLCHAIN_DIR )/bin/riscv32 -unknown -elf - objdump -D

$( BUILD_DIR )/$( PULP_TARGET )
105

106 dump -code:
107 $( TOOLCHAIN_DIR )/bin/riscv32 -unknown -elf - objdump -D

$( BUILD_DIR )/$( PULP_TARGET )
108

109 clean:
110 rm -rf $( BUILD_DIR )
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Listing A.2: PULPissimo’s Base Makefile Rules for C++ Applications
1 TOOLCHAIN_DIR = $(CURDIR) /../../../ pulp -rv32
2 BUILD_DIR = $(CURDIR)/build
3 GCC_DIR = $( TOOLCHAIN_DIR )/lib/gcc/riscv32 -unknown -elf

/7.1.1/
4

5 CHIP = pulpissimo
6

7 CC = riscv32 -unknown -elf -gcc
8 CXX = riscv32 -unknown -elf -g++
9

10 PULP_TARGET = mainApp
11 PULP_APP_SRCS = main.cpp
12

13 PULP_KERNEL_SRCS_STAGE_1 = $(CURDIR) /../../ kernel/fll -v1
.c $(CURDIR) /../../ kernel/freq - domains .c $(CURDIR)
/../../ kernel/chips/$(CHIP)/soc.c

14 PULP_LIB_SRCS = $( wildcard $(CURDIR) /../../ lib /*.c)
15 PULP_KERNEL_SRCS_STAGE_2 += $(CURDIR) /../../ kernel/init.

c $(CURDIR) /../../ kernel/kernel.c $(CURDIR) /../../
kernel/alloc.c

16 PULP_KERNEL_SRCS_STAGE_2 += $(CURDIR) /../../ kernel/
alloc_pool .c $(CURDIR) /../../ kernel/irq.c $(CURDIR)
/../../ kernel/ soc_event .c $(CURDIR) /../../ kernel/
bench.c

17 PULP_KERNEL_SRCS_STAGE_2 += $(CURDIR) /../../ drivers /uart
.c

18 PULP_ASM_SRCS = $(CURDIR) /../../ kernel/crt0.S $(CURDIR)
/../../ kernel/ irq_asm .S

19

20 PULP_ASM_BIN = $( patsubst %.S,%,$( PULP_ASM_SRCS ))
21

22 PULP_SRCS_BIN = $( patsubst %.c,%,$(
PULP_KERNEL_SRCS_STAGE_1 )) \

23 $( patsubst %.c,%,$( PULP_LIB_SRCS )) \
24 $( patsubst %.c,%,$( PULP_KERNEL_SRCS_STAGE_2 )) \
25

26 PULP_APP_BIN = $( patsubst %.cpp ,%,$( PULP_APP_SRCS ))
27

28 PULP_OBJS = $( patsubst $(notdir %. cpp) ,%.o,$(
PULP_APP_SRCS ))
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29 PULP_OBJS += $( patsubst $(notdir %.c) ,%.o,$(
PULP_KERNEL_SRCS_STAGE_1 )) \

30 $( patsubst $(notdir %.c) ,%.o,$( PULP_LIB_SRCS )) \
31 $( patsubst $(notdir %.c) ,%.o,$( PULP_KERNEL_SRCS_STAGE_2 )

) \
32 $( patsubst $(notdir %.S) ,%.o,$( PULP_ASM_SRCS ))
33

34 PULP_LINKER = -T/$(CURDIR) /../../ kernel/chips/$(CHIP)/
link.ld

35

36 PULP_DEFS = -DPULP_CHIP_STR =$(CHIP) -D__PLATFORM__ =
ARCHI_PLATFORM_RTL -DCONFIG_IO_UART_BAUDRATE =115200 -
DCONFIG_IO_UART_ITF =0 -D__RISCV_GENERIC__

37 PULP_ASM_DEFS = -DLANGUAGE_ASSEMBLY
38

39 PULP_CFLAGS = -Os -static -nostdinc -g3 -fdata - sections
-ffunction - sections -fno -jump -tables -fno -tree -loop -
distribute - patterns -fno - exceptions

40 PULP_CFLAGS += -include $(CURDIR) /../../ include /chips/$(
CHIP)/config.h -MMD -MP

41

42 PULP_CXX_FLAGS = -nostdinc -std=c++11 -ffreestanding -
fno -threadsafe - statics -fno -unwind -tables

43

44 PULP_INC_C_DIRS = $( addprefix -I, $(CURDIR) /../../
include /chips/$(CHIP)) \

45 $( addprefix -I, $(CURDIR) /../../ include /) \
46 $( addprefix -I, $(CURDIR) /../../ kernel /) \
47

48 PULP_INC_C ++ _DIRS = $( addprefix -isystem , $(CURDIR)
/../../ include /) \

49 $( addprefix -isystem , $(CURDIR) /../../ kernel /) \
50 $( addprefix -isystem , $(CURDIR) /../../ include /chips/$(

CHIP)) \
51 $( addprefix -I, $( TOOLCHAIN_DIR )/riscv32 -unknown -elf/

include /c ++/7.1.1) \
52 $( addprefix -I, $( TOOLCHAIN_DIR )/riscv32 -unknown -elf/

include /c ++/7.1.1/ riscv32 -unknown -elf) \
53 $( addprefix -I, $( TOOLCHAIN_DIR )/riscv32 -unknown -elf/

include /c ++/7.1.1/ backward ) \
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54 $( addprefix -I, $( TOOLCHAIN_DIR )/lib/gcc/riscv32 -unknown
-elf /7.1.1/ include ) \

55 $( addprefix -I, $( TOOLCHAIN_DIR )/lib/gcc/riscv32 -unknown
-elf /7.1.1/ include -fixed) \

56 $( addprefix -I, $( TOOLCHAIN_DIR )/riscv32 -unknown -elf/sys
- include ) \

57 $( addprefix -I, $( TOOLCHAIN_DIR )/riscv32 -unknown -elf/
include )

58

59 PULP_LDFLAGS = -Os -static -ffreestanding -std=c++11 -
nostdlib -nostartfiles -fno -threadsafe - statics -fno -
unwind -tables -Wl ,--gc - sections $( PULP_LINKER )

60 # PULP_LDFLAGS += $( addprefix -L, $( TOOLCHAIN_DIR )/lib/
gcc/riscv32 -unknown -elf /7.1.1/ rv32imcxgap9 /ilp32) \

61 # $( addprefix -L, $( TOOLCHAIN_DIR )/lib/gcc/riscv32 -
unknown -elf /7.1.1) \

62

63 LIBGCC = $( GCC_DIR )/libgcc.a
64 LIBC = $( TOOLCHAIN_DIR )/riscv32 -unknown -elf/lib/libc.a
65 LIBC ++ = $( TOOLCHAIN_DIR )/riscv32 -unknown -elf/lib/

libstdc ++.a
66

67 CRUNTIME_BEGIN = $( TOOLCHAIN_DIR )/lib/gcc/riscv32 -
unknown -elf /7.1.1/ crtbegin .o

68 CRUNTIME_END = $( TOOLCHAIN_DIR )/lib/gcc/riscv32 -unknown -
elf /7.1.1/ crtend.o

69

70 all: clean build link
71

72 build:
73 mkdir build
74

75 $( PULP_ASM_BIN ): %: %.S
76 $(info ***************************************)
77 $(info CC $<)
78 $(info ***************************************)
79 $( TOOLCHAIN_DIR )/bin/$(CC) $( PULP_ASM_DEFS ) $(

PULP_DEFS ) $( PULP_CFLAGS ) \
80 $( PULP_INC_C_DIRS ) \
81 $< -c -o $( BUILD_DIR )/$(notdir $@).o
82
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83 $( PULP_SRCS_BIN ): %: %.c
84 $(info ***************************************)
85 $(info CC $<)
86 $(info ***************************************)
87 $( TOOLCHAIN_DIR )/bin/$(CC) $( PULP_DEFS ) $(

PULP_CFLAGS ) \
88 $( PULP_INC_C_DIRS ) \
89 $< -c -o $( BUILD_DIR )/$(notdir $@).o
90

91 $( PULP_APP_BIN ): %: %. cpp
92 $(info ***************************************)
93 $(info CXX $<)
94 $(info ***************************************)
95 $( TOOLCHAIN_DIR )/bin/$(CXX) $( PULP_DEFS ) $(

PULP_CFLAGS ) $( PULP_CXX_FLAGS ) \
96 $( PULP_INC_C ++ _DIRS) \
97 $< -c -o $( BUILD_DIR )/$(notdir $@).o
98

99 link: $( PULP_ASM_BIN ) $( PULP_SRCS_BIN ) $( PULP_APP_BIN )
100 $(info ***************************************)
101 $(info Linking ..)
102 $(info ***************************************)
103 $( TOOLCHAIN_DIR )/bin/$(CXX) $( PULP_LDFLAGS ) \
104 $( CRUNTIME_BEGIN ) \
105 $( addprefix $( BUILD_DIR )/, $(notdir $( PULP_OBJS ))) $

(LIBC ++) $(LIBC) $(LIBGCC) $( CRUNTIME_END ) -o $(
BUILD_DIR )/$( PULP_TARGET )

106

107 $( BUILD_DIR )/ modelsim .ini:
108 ln -s $( VSIM_PATH )/ modelsim .ini $@
109

110 $( BUILD_DIR )/boot:
111 ln -s $( VSIM_PATH )/boot $@
112

113 $( BUILD_DIR )/ tcl_files :
114 ln -s $( VSIM_PATH )/ tcl_files $@
115

116 $( BUILD_DIR )/waves:
117 ln -s $( VSIM_PATH )/waves $@
118

119

69



Makefile Rules

120 modelsim - prepare : $( BUILD_DIR )/ modelsim .ini $( BUILD_DIR
)/boot $( BUILD_DIR )/ tcl_files $( BUILD_DIR )/waves

121 $( PULPRT_HOME )/bin/ stim_utils .py --binary=$(
BUILD_DIR )/$( PULP_TARGET ) --vectors =$( BUILD_DIR )/
vectors /stim.txt

122

123 modelsim : modelsim - prepare
124 cd $( BUILD_DIR ) && \
125 export VSIM_RUNNER_FLAGS ="+ ENTRY_POINT =0 x1c008080 -

gLOAD_L2 =JTAG -dpicpppath /usr/bin/g++ -
permit_unmatched_virtual_intf -gBAUDRATE =115200 " && \

126 vsim -c -do ’source $( VSIM_PATH )/ tcl_files /config/
run_and_exit .tcl ’ -do ’source $( VSIM_PATH )/ tcl_files /
run.tcl; run_and_exit ;’

127

128 dump -elf:
129 $( TOOLCHAIN_DIR )/bin/riscv32 -unknown -elf - readelf -a

$( BUILD_DIR )/$( PULP_TARGET )
130

131 dump - symbols :
132 $( TOOLCHAIN_DIR )/bin/riscv32 -unknown -elf - objdump -D

$( BUILD_DIR )/$( PULP_TARGET )
133

134 dump -code:
135 $( TOOLCHAIN_DIR )/bin/riscv32 -unknown -elf - objdump -D

$( BUILD_DIR )/$( PULP_TARGET )
136

137 clean:
138 rm -rf $( BUILD_DIR )

Listing A.3: Makefile Rules for SiFive with musl integration
1 TOOLCHAIN_DIR = $(CURDIR) /../../../ riscv -default -tc
2 MUSL_DIR = $(CURDIR) /../../../ musl -riscv
3 BUILD_DIR = $(CURDIR)/build
4 GCC_DIR = $( TOOLCHAIN_DIR )/lib/gcc/riscv32 -unknown -elf

/10.2.0
5

6 CC = riscv32 -unknown -elf -gcc
7

8 TARGET = mainApp
9 APP_SRCS = main.c
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10 ASM_SRCS =
11

12 CFLAGS = -Os -v -static -nostdinc -g3 -MMD -MP -
nostartfiles -march= rv32imafdc -ffreestanding

13 LINKER = linker.ld
14 LDFLAGS = -v -nostdlib -nostartfiles -ffreestanding -Wl

,- e_start -T$(LINKER)
15 # LDFLAGS += $( addprefix -L, $( TOOLCHAIN_DIR )/lib/gcc/

riscv32 -unknown -elf /10.2.0/ rv32imafc /ilp32f) \
16 # $( addprefix -L, $( TOOLCHAIN_DIR )/lib/gcc/riscv32 -

unknown -elf /10.2.0)
17

18 INC_DIRS := $( addprefix -I, $( MUSL_DIR )/ include )
19

20 SRCS_BIN = $( patsubst %.c,%,$( APP_SRCS ))
21 ASM_BIN = $( patsubst %.S,%,$( ASM_SRCS ))
22

23 OBJS = $( patsubst $(notdir %.c) ,%.o,$( APP_SRCS )) $(
patsubst $(notdir %.S) ,%.o,$( ASM_SRCS ))

24

25 CRT_OBJS = $( MUSL_DIR )/lib/crt1.o $( MUSL_DIR )/lib/crti.o
$( MUSL_DIR )/lib/crtn.o

26

27 LIBGCC = $( GCC_DIR )/libgcc.a
28 LIBC = $( MUSL_DIR )/lib/libc.a
29

30 RISCV_VP_DIR = /home/mert/ Desktop /Thesis/riscv -vp/vp/
build/bin

31 QEMU_PATH = /opt/riscv -qemu/bin
32 GEM5_PATH = /home/mert/ Desktop /Thesis/fresh/gem5
33 all: clean build link
34

35 build:
36 mkdir build
37

38 $( ASM_BIN ): %: %.S
39 $(info ***************************************)
40 $(info CC $<)
41 $(info ***************************************)
42 $( TOOLCHAIN_DIR )/bin/$(CC) $(CFLAGS) \
43 $( INC_DIRS ) \
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44 $< -c -o $( BUILD_DIR )/$(notdir $@).o
45

46 $( SRCS_BIN ): %: %.c
47 $(info ***************************************)
48 $(info CC $<)
49 $(info ***************************************)
50 $( TOOLCHAIN_DIR )/bin/$(CC) $(CFLAGS) \
51 $( INC_DIRS ) \
52 $< -c -o $( BUILD_DIR )/$(notdir $@).o
53

54 link: $( ASM_BIN ) $( SRCS_BIN )
55 $(info ***************************************)
56 $(info Linking ..)
57 $(info ***************************************)
58 $( TOOLCHAIN_DIR )/bin/$(CC) $(CFLAGS) $( LDFLAGS ) \
59 $( CRT_OBJS ) $( addprefix $( BUILD_DIR )/, $(notdir $(

OBJS))) $(LIBGCC) $(LIBC) $(LIBGCC) -o $( BUILD_DIR )/$
(TARGET)

60

61 rv:
62 rv -sim -c -m $( BUILD_DIR )/$(TARGET)
63

64 dump -elf:
65 $( TOOLCHAIN_DIR )/bin/riscv32 -unknown -elf - readelf -a

$( BUILD_DIR )/$(TARGET)
66

67 dump - symbols :
68 $( TOOLCHAIN_DIR )/bin/riscv32 -unknown -elf - objdump -D

$( BUILD_DIR )/$(TARGET) > dumpsym1 .txt
69

70 dump -code:
71 $( TOOLCHAIN_DIR )/bin/riscv32 -unknown -elf - objdump -D

$( BUILD_DIR )/$(TARGET)
72

73 clean:
74 rm -rf $( BUILD_DIR )

Listing A.4: Makefile Rules for PULPissimo with musl integration
1 TOOLCHAIN_DIR = $(CURDIR) /../../../ pulp -rv32
2 MUSL_DIR = $(CURDIR) /../../../ pulp -rv32 -musl
3 BUILD_DIR = $(CURDIR)/build
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4 GCC_DIR = $( TOOLCHAIN_DIR )/lib/gcc/riscv32 -unknown -elf
/7.1.1/

5

6 CHIP = pulpissimo
7

8 CC = riscv32 -unknown -elf -gcc
9

10 PULP_TARGET = mainApp
11 PULP_APP_SRCS = main.c
12

13 PULP_KERNEL_SRCS_STAGE_1 = $(CURDIR) /../../ kernel/fll -v1
.c $(CURDIR) /../../ kernel/freq - domains .c $(CURDIR)
/../../ kernel/chips/$(CHIP)/soc.c

14 PULP_LIB_SRCS = $( wildcard $(CURDIR) /../../ lib /*.c)
15 PULP_KERNEL_SRCS_STAGE_2 += $(CURDIR) /../../ kernel/init.

c $(CURDIR) /../../ kernel/kernel.c $(CURDIR) /../../
kernel/alloc.c

16 PULP_KERNEL_SRCS_STAGE_2 += $(CURDIR) /../../ kernel/
alloc_pool .c $(CURDIR) /../../ kernel/irq.c $(CURDIR)
/../../ kernel/ soc_event .c $(CURDIR) /../../ kernel/
bench.c

17 PULP_KERNEL_SRCS_STAGE_2 += $(CURDIR) /../../ drivers /uart
.c $(CURDIR) /../../ kernel/crt/crt1.c

18 PULP_ASM_SRCS = $(CURDIR) /../../ kernel/crt/crt0.S $(
CURDIR) /../../ kernel/crt/crti.S $(CURDIR) /../../
kernel/ irq_asm .S

19

20 PULP_SRCS_BIN = $( patsubst %.c,%,$(
PULP_KERNEL_SRCS_STAGE_1 )) \

21 $( patsubst %.c,%,$( PULP_LIB_SRCS )) \
22 $( patsubst %.c,%,$( PULP_KERNEL_SRCS_STAGE_2 )) \
23 $( patsubst %.c,%,$( PULP_APP_SRCS )) \
24

25 PULP_ASM_BIN = $( patsubst %.S,%,$( PULP_ASM_SRCS ))
26

27 PULP_OBJS = $( patsubst $(notdir %.c) ,%.o,$( PULP_APP_SRCS
)) \

28 $( patsubst $(notdir %.c) ,%.o,$( PULP_KERNEL_SRCS_STAGE_1 )
) \

29 $( patsubst $(notdir %.c) ,%.o,$( PULP_LIB_SRCS )) \
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30 $( patsubst $(notdir %.c) ,%.o,$( PULP_KERNEL_SRCS_STAGE_2 )
) \

31 $( patsubst $(notdir %.S) ,%.o,$( PULP_ASM_SRCS ))
32

33 PULP_LINKER = -T/$(CURDIR) /../../ kernel/chips/$(CHIP)/
link.ld

34

35 PULP_DEFS = -DPULP_CHIP_STR =$(CHIP) -D__PLATFORM__ =
ARCHI_PLATFORM_RTL -DCONFIG_IO_UART_BAUDRATE =115200 -
DCONFIG_IO_UART_ITF =0 -D__RISCV_GENERIC__ -
DSYSCALL_NO_INLINE

36 PULP_ASM_DEFS = -DLANGUAGE_ASSEMBLY -DSYSCALL_NO_INLINE
37 PULP_CFLAGS = -Os -v -static -nostdinc -g3 -fdata -

sections -ffunction - sections -fno - exceptions -fno -
asynchronous -unwind -tables

38 PULP_CFLAGS += -include $(CURDIR) /../../ include /chips/$(
CHIP)/config.h -MMD -MP

39 PULP_LDFLAGS = -v -nostdlib -nodefaultlibs -nostartfiles
$( PULP_LINKER )

40 # PULP_LDFLAGS += $( addprefix -L, $( TOOLCHAIN_DIR )/lib/
gcc/riscv32 -unknown -elf /7.1.1/ rv32imcxgap9 /ilp32) \

41 $( addprefix -L, $( TOOLCHAIN_DIR )/lib/gcc/riscv32 -unknown
-elf /7.1.1)

42

43 PULP_INC_DIRS := $( addprefix -I, $(CURDIR) /../../ include
/chips/$(CHIP)) \

44 $( addprefix -I, $(CURDIR) /../../ include /) \
45 $( addprefix -I, $(CURDIR) /../../ kernel /) \
46 $( addprefix -I, $(CURDIR) /../../ include /crt /) \
47 $( addprefix -I, $( MUSL_DIR )/ include )
48

49 # LIBGCC = $( addprefix -L, $( GCC_DIR )) -lgcc
50 # LIBC = $( addprefix -L, $( MUSL_DIR )/lib /) -lc
51

52 LIBGCC = $( GCC_DIR )/libgcc.a
53 LIBC = $( MUSL_DIR )/lib/libc.a
54

55 all: clean build link
56

57 build:
58 mkdir build
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59

60 $( PULP_ASM_BIN ): %: %.S
61 $(info ***************************************)
62 $(info CC $<)
63 $(info ***************************************)
64 $( TOOLCHAIN_DIR )/bin/$(CC) $( PULP_ASM_DEFS ) $(

PULP_DEFS ) $( PULP_CFLAGS ) \
65 $( PULP_INC_DIRS ) \
66 $< -c -o $( BUILD_DIR )/$(notdir $@).o
67

68 $( PULP_SRCS_BIN ): %: %.c
69 $(info ***************************************)
70 $(info CC $<)
71 $(info ***************************************)
72 $( TOOLCHAIN_DIR )/bin/$(CC) $( PULP_DEFS ) $(

PULP_CFLAGS ) \
73 $( PULP_INC_DIRS ) \
74 $< -c -o $( BUILD_DIR )/$(notdir $@).o
75

76 link: $( PULP_ASM_BIN ) $( PULP_SRCS_BIN )
77 $(info ***************************************)
78 $(info Linking ..)
79 $(info ***************************************)
80 $( TOOLCHAIN_DIR )/bin/$(CC) $( PULP_DEFS ) $(

PULP_CFLAGS ) $( PULP_LDFLAGS ) \
81 $( PULP_INC_DIRS ) \
82 $(LIBGCC) $(LIBC) $(LIBGCC) \
83 $( addprefix $( BUILD_DIR )/, $(notdir $( PULP_OBJS ))) $

(LIBC) -o $( BUILD_DIR )/$( PULP_TARGET )
84

85

86 $( BUILD_DIR )/ modelsim .ini:
87 ln -s $( VSIM_PATH )/ modelsim .ini $@
88

89 $( BUILD_DIR )/boot:
90 ln -s $( VSIM_PATH )/boot $@
91

92 $( BUILD_DIR )/ tcl_files :
93 ln -s $( VSIM_PATH )/ tcl_files $@
94

95 $( BUILD_DIR )/waves:
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96 ln -s $( VSIM_PATH )/waves $@
97

98

99 modelsim - prepare : $( BUILD_DIR )/ modelsim .ini $( BUILD_DIR
)/boot $( BUILD_DIR )/ tcl_files $( BUILD_DIR )/waves

100 $( PULPRT_HOME )/bin/ stim_utils .py --binary=$(
BUILD_DIR )/$( PULP_TARGET ) --vectors =$( BUILD_DIR )/
vectors /stim.txt

101

102 modelsim : modelsim - prepare
103 cd $( BUILD_DIR ) && \
104 export VSIM_RUNNER_FLAGS ="+ ENTRY_POINT =0 x1c008080 -

gLOAD_L2 =JTAG -dpicpppath /usr/bin/g++ -
permit_unmatched_virtual_intf -gBAUDRATE =115200 " && \

105 vsim -c -do ’source $( VSIM_PATH )/ tcl_files /config/
run_and_exit .tcl ’ -do ’source $( VSIM_PATH )/ tcl_files /
run.tcl; run_and_exit ;’

106

107 dump -elf:
108 $( TOOLCHAIN_DIR )/bin/riscv32 -unknown -elf - readelf -a

$( BUILD_DIR )/$( PULP_TARGET )
109

110 dump - symbols :
111 $( TOOLCHAIN_DIR )/bin/riscv32 -unknown -elf - objdump -D

$( BUILD_DIR )/$( PULP_TARGET ) > dumpsym1 .txt
112

113 dump -code:
114 $( TOOLCHAIN_DIR )/bin/riscv32 -unknown -elf - objdump -D

$( BUILD_DIR )/$( PULP_TARGET )
115

116 clean:
117 rm -rf $( BUILD_DIR )
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C Source Codes

Listing B.1: crt1.c code for PULPissimo
1 # include <features .h>
2

3 #define START " _start_musl "
4

5 # include " crt_arch .h"
6 # include <stdio.h>
7

8 int main ();
9 void _init () __attribute__ (( weak));

10 void _fini () __attribute__ (( weak));
11 _Noreturn int __libc_start_main (int (*) (), int , char **,
12 void (*) (), void (*) (), void (*) ());
13

14 extern void (* const __init_array_start )(void), (* const
__init_array_end )(void);

15

16

17 void _start_musl_c (int argc , char ** argv)
18 {
19 __libc_start_main (main , argc , argv , _init , _fini , 0)

;
20 }

Listing B.2: crt-arch.h code for PULPissimo
1 __asm__ (
2 ".text\n"
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3 ".global " START "\n"
4 ".type " START " ,% function \n"
5 START ":\n"
6 ".weak __global_pointer$ \n"
7 ".hidden __global_pointer$ \n\t"
8 ".option push\n"
9 ".option norelax \n\t"

10 "lla gp , __global_pointer$ \n"
11 ".option pop\n\t"
12 "mv a0 , sp\n"
13 ".weak _DYNAMIC \n"
14 ".hidden _DYNAMIC \n\t"
15 "lla a1 , _DYNAMIC \n\t"
16 "andi sp , sp , -16\n\t"
17 "jal " START "_c"
18 );

Listing B.3: Producer-Consumer Problem implemented with Protothreads
1 /*
2 * Copyright (c) 2004 -2005 , Swedish Institute of

Computer Science .
3 * All rights reserved .
4 *
5 * Author: Adam Dunkels <adam@sics .se >
6 *
7 * $Id: example -buffer.c,v 1.5 2005/10/07 05:21:33 adam

Exp $
8 */
9

10 # include "pt -sem.h"
11 # include "led.h"
12

13 static struct pt_sem full , empty;
14

15 static
16 PT_THREAD ( producer (struct pt *pt))
17 {
18 static int produced ;
19 PT_BEGIN (pt);
20

21 for( produced = 0; produced < NUM_ITEMS ; ++ produced ) {
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22 PT_SEM_WAIT (pt , &full);
23 add_to_buffer ( turnOnLed ());
24 PT_SEM_SIGNAL (pt , &empty);
25 }
26 PT_END(pt);
27 }
28

29 static
30 PT_THREAD ( consumer (struct pt *pt))
31 {
32 static int consumed ;
33 PT_BEGIN (pt);
34 for( consumed = 0; consumed < NUM_ITEMS ; ++ consumed ) {
35 PT_SEM_WAIT (pt , &empty);
36 turnOffLed ( get_from_buffer ());
37 PT_SEM_SIGNAL (pt , &full);
38 }
39 PT_END(pt);
40 }
41

42 static
43 PT_THREAD ( driver_thread (struct pt *pt))
44 {
45 static struct pt pt_producer , pt_consumer ;
46 PT_BEGIN (pt);
47 PT_SEM_INIT (& empty , 0);
48 PT_SEM_INIT (&full , BUFSIZE );
49 PT_INIT (& pt_producer );
50 PT_INIT (& pt_consumer );
51 PT_WAIT_THREAD (pt , producer (& pt_producer ) &
52 consumer (& pt_consumer ));
53 PT_END(pt);
54 }
55

56

57 int
58 main(void)
59 {
60 struct pt driver_pt ;
61 PT_INIT (& driver_pt );
62 while( PT_SCHEDULE ( driver_thread (& driver_pt ))) {
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63 /*
64 * When running this example on a multitasking

system , we must
65 * give other processes a chance to run too and

therefore we call
66 * usleep () resp. Sleep () here. On a dedicated

embedded system ,
67 * we usually do not need to do this.
68 */
69 }
70

71 return 0;
72 }

Listing B.4: Source code of bare-thread API’s mutexes and semaphores
1 typedef struct bthread_mutex_t {
2 volatile unsigned bool lock;
3 } bthread_mutex_t ;
4

5 typedef struct bthread_sem_t {
6 volatile unsigned short count;
7 struct bthread_mutex_t _mtx;
8 } bthread_sem_t ;
9

10 void bthread_mutex_init (struct bthread_mutex_t *mtx);
11 void bthread_mutex_lock (struct bthread_mutex_t *mtx);
12 void bthread_mutex_unlock (struct bthread_mutex_t *mtx);
13

14 void bthread_sem_init ( bthread_sem_t *sem , unsigned int
initialValue );

15 void bthread_sem_post (struct bthread_sem_t *sem);
16 void bthread_sem_wait (struct bthread_sem_t *sem);
17 unsigned short bthread_sem_get_value (struct

bthread_sem_t *sem);
18

19 void bthread_mutex_init (struct bthread_mutex_t *mtx)
20 {
21 mtx ->lock = FALSE;
22 }
23

24 void bthread_mutex_lock (struct bthread_mutex_t *mtx)
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25 {
26 while(mtx ->lock);
27 __mem_barrier ();
28 mtx ->lock = TRUE;
29 }
30

31 void bthread_mutex_unlock (struct bthread_mutex_t *mtx)
32 {
33 __mem_barrier ();
34 mtx ->lock = FALSE;
35 }
36

37 void bthread_sem_init (struct bthread_sem_t *sem ,
unsigned int initialValue )

38 {
39 sem ->count = initialValue ;
40 }
41

42 void bthread_sem_post (struct bthread_sem_t *sem)
43 {
44 bthread_mutex_lock (&sem ->_mtx);
45 sem ->count ++;
46 bthread_mutex_unlock (&sem ->_mtx);
47 }
48

49 void bthread_sem_wait (struct bthread_sem_t *sem)
50 {
51 while(sem ->count == 0);
52 bthread_mutex_lock (&sem ->_mtx);
53 sem ->count --;
54 bthread_mutex_unlock (&sem ->_mtx);
55 }
56

57 unsigned short bthread_sem_get_value (struct
bthread_sem_t *sem)

58 {
59 return sem ->count;
60 }
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RISC-V Assembly Source
Codes

Listing C.1: Context Switch Source Code
1 contextswitch :
2 // store registers
3 sw x1 ,4( a0) // ra
4 sw x2 ,8( a0) // sp
5 sw x8 ,32( a0) // s0
6 sw x9 ,36( a0) // s1
7 sw x18 ,72( a0) // s2
8 sw x19 ,76( a0) // s3
9 sw x20 ,80( a0) // s4

10 sw x21 ,84( a0) // s5
11 sw x22 ,88( a0) // s6
12 sw x23 ,92( a0) // s7
13 sw x24 ,96( a0) // s8
14 sw x25 ,100( a0) // s9
15 sw x26 ,104( a0) // s10
16 sw x27 ,108( a0) // s11
17

18 // store pc
19 la t0 , _resume
20 sw t0 ,0( a0)
21

22 // restore other registers (NOTE: callee saved only
+ ra)

23 lw x1 ,4( a1) // ra
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24 lw x2 ,8( a1) // sp
25 lw x8 ,32( a1) // s0
26 lw x9 ,36( a1) // s1
27 lw x18 ,72( a1) // s2
28 lw x19 ,76( a1) // s3
29 lw x20 ,80( a1) // s4
30 lw x21 ,84( a1) // s5
31 lw x22 ,88( a1) // s6
32 lw x23 ,92( a1) // s7
33 lw x24 ,96( a1) // s8
34 lw x25 ,100( a1) // s9
35 lw x26 ,104( a1) // s10
36 lw x27 ,108( a1) // s11
37

38 // load new program counter and perform context
switch

39 lw t0 ,0( a1)
40 jr t0
41

42 _resume :
43

44 ret
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