
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Calibration of atmospheric pollution
sensors using quantum machine learning

techniques

Supervisors

Prof. Maurizio REBAUDENGO

Prof. Bartolomeo MONTRUCCHIO

Candidate

Michele Luigi GRECO

ACADEMIC YEAR 2020-2021

Abstract

The need to efficiently process large amounts of data has led information technologies
to migrate to the world of Machine Learning, to be able to extract information with
a variable degree of accuracy, but still quite high. The use of Quantum Computing
for Machine Learning occurs in a similar, but not entirely, scenario, as the amount
of data that can be processed tends not to scale easily. The purpose of this thesis
is to exploit these new computing paradigms to analyze and calibrate sensors for
measuring air pollution, in particular PM-2.5 and PM-10, this is one of the most
interesting potential applications of Quantum Technologies: Machine Learning
for the purpose of prediction. Furthermore, it is shown that some problems that
are generally difficult to calculate can be easily processed by Classical Machine
Learning, which is trained on one part of the initial data-set and then is tested on
the rest. As a starting example, a case study on the prediction of the price of a
house in the classical version is analyzed and then this example is extended to the
quantum version. Using classical prediction algorithms such as Linear Regression
as a basis, the next intent is to develop a methodology for evaluating the potential
quantum advantage in learning and predicting correct values for air pollution
detection sensors. The results are promising, compared to classical methodologies,
the quantum one is able to calibrate better, with a percentage error almost always
below the 10% threshold.

Summary

The need to efficiently process large amounts of data has led information technology
to migrate to the world of Machine Learning, to extract information with a variable
degree of accuracy, inasmuch the Machine Learning is a compromise between the
amount of data that can be processed within a reasonable time and the quality of
the obtained results of the analysis process. Quantum Computing presents new
techniques to approach ML problems, with promising prospects, but also with
some limitations due to its early stage of maturity. The main purpose of this thesis
is to exploit this new IT paradigm, namely, Quantum Machine Learning, for one
of its most interesting applications: the prediction of values. These potentialities
will be applied to the field of air pollution monitoring, specifically this method will
be exploited for the calibration of the PM10 and PM2.5 sensors on the basis of
a reference given to us by ARPA, a government agency, and taking into account
the values of temperature and relative humidity. Machine learning can offer an
efficient alternative to the conventional engineering scheme, i.e. the analysis of
a complex problem in all its parts, which typically leads to a high development
cost and to the lengthening of resolution time, precisely when the costs, time and
complexity of analysis and development are the key elements. On the other side,
the approach has the disadvantages of providing generally suboptimal performance,
or limiting the interpretability of the solution, and can only be applied to a limited
set of problems, which can be grouped into the following tasks:

• Supervised learning: a learning function that maps an input to an output
based on example input-output pairs.

• Unsupervised learning: provides the information system with a series of
inputs that it will reclassify and organize on the basis of common characteristics
to try to make reasonings and forecasts on subsequent inputs.

• Reinforcement learning: aims to create autonomous agents able to choose
the actions to be taken to achieve certain objectives through interaction with
the environment in which they operate.

The task tackled in this thesis falls into the first category: supervised learning.

ii

The classical reference in this specific case is the Linear Regression algorithm.
Focusing on Linear Regression with Classic Machine Learning, what is covered
next are various optimization algorithms, in particular the one considered the most
suitable for our purpose, based on the literature and on functional tests, is Adaptive
Moment Estimation (ADAM), which is a stochastic gradient descent method that
is based on adaptive estimation of first-order and second-order moments. [1]
Focusing on Quantum Machine Learning, it was decided to make an overview of
the characteristics of quantum systems, starting from the mathematical description
of the Quantum Gates, moving on to the neurons and weights definitions, and then
talking aboutFFNN (Feed-Forward Neural Network).
Next step is to extend the concept of Linear Regression to the quantum world,
formulating the problem and adapting the cost function to the new programming
environment. Before proceeding with the description of the implemented algorithm,
an introduction to the existing project at the DAUIN research laboratory is
performed. The Weather Station Analysis project aims to understand if is it
possible with much cheaper devices than the high-end ones of governmental entities
(for example, ARPA, that will be the reference in our case), to proceed with the
analysis of atmospheric pollution by monitoring various climatic factors and not.
The variables of interest are: Pm2.5, Pm10, Temperature, Relative Humidity.
In this context the central role is done by the calibration of the sensor, that is, to
find a mathematical function that, given a value x, of a given sensor belonging to
a given board, is able to return x̂, i.e. the correct value that is closest to the y
reference value provided by ARPA. The existing calibration methods are: Linear
Regression and Random Forest in a Classical Machine Learning way.
In order to verify how much the implemented algorithms are efficient, a validation
class has been used. This class is able to, given the access to the database containing
the raw data, given the algorithms implemented for calibration, to return a series
of metrics capable of facilitating the critical reading of the results:

• The correlation index between the raw values and the ARPA reference.

• The correlation index between the calibrated values and the ARPA reference.

• The Gaussian error distribution of the raw and calibrated values.

• The violin plots of MAE, MSE, RMSE, CORR and R2SCORE.

The central topic of the thesis is how the classical model of Linear Regression can
be related to the world of Quantum Machine Learning through a hybrid network
which structure can be summarized with the following scheme: as first a classical
level, then a quantum level placed in the middle, finally the other classical level.
The number of qubits, or quantum bits, that is the unit of quantum information,
due to the simple calculus performed, is fixed at 1.

iii

In order to understand how the network is set up, it is useful to introduce the
fundamental concept of Quantum Embedding: how data is represented as quantum
states in a Hilbert space via a quantum feature map. Different configurations of
the hybrid model, with different Learning Rates, Number of Epoch and Batch Size,
have been analysed and tested. The tuned configuration is finally compared to the
classical version of the same algorithm.
Results are quite similar to the one obtained with the classical method taken for
comparison, such as Linear Regression and Random Forest. Slightly higher in terms
of accuracy, the QML method has an average of 89-90% in terms of correlation
index, while the counterparts LR and RF reach 89-91%. As can be seen from Fig.
1 the calibration process using QML is promising, the deviation from the reference,
in most cases remains below the threshold set for 10%.
As we can see, with respect to the time required to execute the algorithm, it

0 50 100 150 200 250 300
Sample Number

0

10

20

30

40

50

60

70

80

Se
ns

or
 V

al
ue

ARPA
QML
RF
LR

Figure 1: Comparison between different method of calibration and ARPA reference

is not possible to conclude that the Quantum-Classical Hybrid Network brings
an advantage in terms of time since, due to the strong slowness in running the
simulations on the IMB’s QPUs, through the Qiskit API for Pennylane, we preferred
to use a local simulator. However, a simulation carried out directly on a QPU is
reported at the end of the thesis for comparison.

iv

Acknowledgements

Spero di non dimenticare nessuno :)

Grazie ai miei genitori, Rocco e Maria, che hanno sempre creduto in me, che
non mi hanno mai permesso di arrendermi ad ogni ostacolo che mi si è presentato
in questo viaggio. Grazie a voi, che avete contribuito a rendere la passione di un
bambino che si divertiva a smontare computer in cameretta un longimirante futuro.
Grazie a mia sorella, Benedetta, che so dal profondo del mio cuore quanto ci
tenga me. Grazie ai miei nonni, Annunziata P., Anna G., Luigi L., Michele
G., Luigi S., che siate ancora al mio fianco o che mi stiate guardando da lassù,
vi porterò sempre nel cuore. Grazie zio Gianni, penso che tutta la mia passione
per l’informatica sia anche merito tuo. Grazie zia Marivelia, ricordo ancora quel
giorno in quella sala quando ti laureasti, ricordo le parole "voglio superarti con il
mio voto di laurea", grazie per avermi fatto capire quel giorno che nella vita la
tenacia è tutto.

Grazie Prof. Rebaudengo per ogni occasione che mi ha dato per dimostrarle
quanto valessi, per tutti i progetti del Laboratorio di Ricerca al quale ho potuto
prender parte, grazie per avermi fatto amare ancora di più l’informatica e soprat-
tutto il politecnico, sin dal primo giorno del primo anno della Laurea Triennale,
quando, ricordiamolo, il Torino perse con la Juventus per 4 a 0.

Grazie Vivi, per avermi sostenuto in ogni momento, per essere stata al mio
fianco, per esser stata sempre disposta ad ascoltarmi ore ed ore parlare dei miei
argomenti di studio, del mio lavoro, della mia routine. Ricordo quella volta di
fronte al poli, quando la lezione iniziava sempre tra cinque minuti, e poi quei cinque
minuti erano eterni. Grazie per aver ascoltato ogni singola lamentela, perchè si
sa, a lamentarsi tutti son bravi, ma miky non lo batte nessuno. Grazie per ogni
singolo gesto d’amore, per ogni cazziata, per ogni miky devi studiare, sei e sarai
sempre nel mio cuore, e in quello di poppy.

v

Grazie Giuseppe, il mio miglior amico, senza te penso che avrei fatto molte
più cazzate. Grazie per ogni telefonata alla quale eri sempre pronto a rispondere,
per ogni sveglia suonata alle 7.00 di mattina ad Agosto, quando dopo una notte
insonne studiare Chimica e Fisica 1 poteva solo accompagnare. Grazie per la tua
fiducia, grazie per essere l’altra metà della mia coscienza. Ma soprattutto grazie di
non essere andato all’estero questa estate cosi possiamo festeggiare la Laurea.

Grazie Paolina, sei stata l’amica più importante dei miei anni universitari, con
te ho vissuto ogni singolo esame, ogni singola emozione che il poli e non potessero
regalarci. Ricordo le notti a studiare per Sonza, quando tra un sorso di Martini
Rosato e GOT c’era sempre quel tema d’esame della Baralis che mi convincevi
a fare, ricordo quando il programma non compilava, perchè c’era JUMP FINE,
e quello giustamente andava a FINE, ricordo i sensi di colpa, quando dovevamo
studiare e invece Piazza Vittorio era sempre più magica in quelle notti d’inverno.
Grazie per esser sempre stata al mio fianco, ti voglio un bene dell’anima. P.S. mena
a laurearti che ho pronto l’afflondo-scherzo perfetto. Heheh.

Grazie Edoardo, grazie collega, grazie dottorando, grazie amico, sei stata una
delle persone più strane, in senso positivo eh!, che abbia conosciuto al politecnico,
ne abbiamo combinate di cotte e crude, quando quelle serete dietro ai sensori RFID
finivano con pizza e cazziatone alle 22.00 al poli... Grazie Edo, prometto, prima o
poi mi convicerò che Java è il malessere del mondo.

Grazie a tutti i miei compagni universitari, ai miei amici, Klaus, Iustin,
Matteo, Alberto C., Enrico, Federica, Alessandro, Alberto B., Davide, Domenico,
Luca G., Rosario, Gabriel. Alcuni di voi sono stati miei colleghi fino in fondo, altri
hanno preso strade diverse, per corsi di laurea diversi, grazie per aver reso ogni
lezione meno noiosa, grazie soprattutto per avermi tenuto il posto quando arrivavo
in ritardo.

Grazie ai miei colleghi di Lavoro, che mi hanno sopportato, quando invece
di dedicarmi alle loro parole rispondevo "si si" e continuavo a chiedermi perche
il codice python della tesi non compilasse. Un grazie particolare al mio collega
di Cuneo, Enrico, che da 10 mesi a questa parte mi sopporta in ufficio, e che
da giorni, inoltre, ha deciso che l’aria di cuneo è bene che sia sentita per tutta la
giornata lavorativa. Grazie, quindi, anche al’aria di Cuneo, che mi ha permesso di
tenere ben freschi i neuroni, quando in reatà si sarebbero voluti squagliare.

vi

“Your work is going to fill a large part of your life,
and the only way to be truly satisfied is to do what you believe is great work.

And the only way to do great work is to love what you do.
If you haven’t found it yet, keep looking. Don’t settle.

As with all matters of the heart, you’ll know when you find it.”
Steve Jobs

viii

Table of Contents

List of Tables xiii

List of Figures xiv

Acronyms xvii

1 Introduction 1
1.1 What is Machine Learning . 1
1.2 When to Use Machine Learning . 2

1.2.1 Learning Tasks . 3
1.3 Introduction to Linear Regression 5

1.3.1 Statistical inference . 6
1.3.2 Frequentist Approach . 7
1.3.3 Taxonomy of solutions . 7
1.3.4 Linear Regression (LR) Model 8
1.3.5 Discriminative vs. Generative Probabilistic Model 8
1.3.6 Model Order and Model Parameters 10
1.3.7 Overfitting and Underfitting Problem 10
1.3.8 Influence of dataset size . 11
1.3.9 Regularization . 13

1.4 Optimizers and model accuracy . 14
1.4.1 Gradient Descent . 15
1.4.2 Gradient Descent Algorithm 16
1.4.3 Adaptive Moment Estimation (ADAM) 17
1.4.4 Adam Configuration Parameters 18

1.5 Overview . 20

2 Quantum Machine Learning 21
2.1 What is Quantum Machine Learning 21

2.1.1 Example of Quantum Gates 22
2.1.2 Neurons and Weights . 23

x

2.1.3 Feed Forward Neural Network 23
2.1.4 IO Structure of Layers . 24
2.1.5 Building the network . 24

2.2 Linear Regression with QML, case study 25
2.2.1 Problem formulation . 25
2.2.2 Definition of parametrized Cost Function J 26
2.2.3 Gradient descent algorithm in multivariable version 27
2.2.4 Implementation in Python 27
2.2.5 Results . 28

3 Air pollution sensors Project 30
3.1 Introduction . 30
3.2 Purpose of the project . 31
3.3 Role of Sensors Calibration . 31

3.3.1 Calibration Strategies . 32
3.4 Current Calibration process . 33
3.5 Validation process . 34

3.5.1 Validation metrics . 34
3.5.2 The Validation Process . 35

4 Calibration of air pollution sensors 38
4.1 The idea of a hybrid network . 38

4.1.1 The concept of Quantum embedding 38
4.2 Implementation of the algorithm . 40

4.2.1 Usefully library import . 40
4.2.2 Hybrid quantum-classical layer 40
4.2.3 Import of the dataset for training and testing calibration . . 42
4.2.4 Training neural network . 42
4.2.5 Sensor calibration and Loss analysis 43
4.2.6 Evaluation of the error percentage 44
4.2.7 Example of ws_analysis_qml.py use 44

5 Tuning, Simulations, and Results 46
5.1 Tuning of hyperparameter . 46

5.1.1 Tuning Number of epoches 48
5.1.2 Tuning Learning Rate and Batch Size 54
5.1.3 Tuning overall results . 59

5.2 Validation of calibration strategy 60
5.2.1 PMs and Board Selection 60
5.2.2 Percentile Optimizer range 60
5.2.3 Time window for calibration and evaluation 60

xi

5.2.4 Xticks parameters . 61
5.2.5 calKinds . 61
5.2.6 Metrics and Coefficients . 62

5.3 Validation result phase . 63
5.3.1 Mean absolute error results analysis 64
5.3.2 Mean Square Error results analysis 65
5.3.3 Root Mean Square Error results analysis 66
5.3.4 Correlation coefficient results analysis 67
5.3.5 Correlation coefficient results, violin plots analysis 68
5.3.6 Coefficient of determination results analysis 70

5.4 Execution time analysis . 71
5.5 Results on IBM QPU . 73

6 Conclusions and further improvements 75
6.1 Conclusions . 75
6.2 Further improvements . 76

6.2.1 MultiThread Class Possible Implementation 76

Bibliography 77

xii

List of Tables

2.1 Case study data-set, original length was 450 lines, here an example
of few lines. 29

3.1 Comparing different calibration techniques over different calibration
periods (2 and 12 weeks, respectively), adopting the RMSE (Root
Mean Square Error) metric. We consider all stationary sensors. . . 37

5.1 Hyperparameters tuning phase proposed value 46
5.2 Summary of obtained results of tuning number of epoches 53
5.3 Number of epoches selected for each configuration proposed 53
5.4 Learning Rate and Batch Size selected for each configuration pro-

posed with metrics indicator . 59
5.5 Final hyperparameter choiche for each configuration proposed . . . 59
5.6 Quantile range configurations . 61
5.7 Calibration method proposed for validation process 61
5.8 Metrics for the validation of calibration method 62
5.9 Constants for time analysis . 72
5.10 Execution time for each proposed configuration 72

xiii

List of Figures

1 Comparison between different method of calibration and ARPA
reference . iv

1.1 The Machine Learning approach, automatically adapting to change.
[3] . 2

1.2 Example of a training set D with N = 10 points (xn, tn), n = 1, ..., N .
[2] . 5

1.3 Illustration of underfitting and overfitting in ML learning: The
dashed line is the optimal predictor (2.10), which depends on the
unknown true distribution, while the other lines correspond to the
predictor t ML (x) = µ (x, w ML) learned via ML with different
model orders M. [2] . 11

1.4 Square root of the generalization loss L p(w ML) and of the training
loss LD(wML) as a function of the training set size N. The asymptote
of the generalization and training losses is given by the minimum
generalization loss Lp(w∗) (cf. (2.21)) achievable for the given model
order (see Fig. 2.5). [2] . 12

1.5 Comparison of Adam to Other Optimization Algorithms Training a
Multilayer Perceptron [1] . 18

2.1 Representation of qubit states, unitary gates and measurements in
the quantum circuit model and in the matrix formalism [17] 22

2.2 Simple structure of a hybrid quantum-classical neural network[17] . 24

3.1 Architecture of the project. The data coming from the sensors are
first stored in Raspberry Pi, and then transferred to a remote server
over the Wi-Fi network.[21, 3] . 31

3.2 Different kind of calibration methods used [21] 33
3.3 Validation process R2[21] . 35

xiv

3.4 Time series comparing the reference, the raw, and the calibrated
data using sensor 34, randomly selected. Calibration is performed
using MLR. The different plots show MLR with different dependent
variables, namely temperature (a), humidity (b), and temperature
plus humidity (c).[21] . 36

4.1 Example of y-rotation Ry(v) by an angle v around the y axis, that
is, in the x-z-plane.[25] . 39

5.1 Results Score graph, configuration 1: PM2.5 - offQuantile 49
5.2 Errors Score graph, configuration 1: PM2.5 - offQuantile 49
5.3 Results Score graph, configuration 2: PM10 - offQuantile 50
5.4 Errors Score graph, configuration 2: PM10 - offQuantile 50
5.5 Results Score graph, configuration 3: PM2.5 - onQuantile 51
5.6 Errors Score graph, configuration 3: PM2.5 - onQuantile 51
5.7 Results Score graph, configuration 4: PM10 - onQuantile 52
5.8 Errors Score graph, configuration 4: PM10 - onQuantile 52
5.9 Results Score heatmap, configuration 1: PM2.5 - offQuantile 55
5.10 Errors Score heatmap, configuration 1: PM2.5 - offQuantile 55
5.11 Results Score heatmap, configuration 2: PM10 - offQuantile 56
5.12 Errors Score heatmap, configuration 2: PM10 - offQuantile 56
5.13 Results Score heatmap, configuration 3: PM2.5 - onQuantile 57
5.14 Errors Score heatmap, configuration 3: PM2.5 - onQuantile 57
5.15 Results Score heatmap, configuration 4: PM10 - onQuantile 58
5.16 Errors Score heatmap, configuration 4: PM10 - onQuantile 58
5.17 Comparing MAE results on QML, LR, RF 64
5.18 Comparing MSE results on QML, LR, RF 65
5.19 Comparing RMSE results on QML, LR, RF 66
5.20 Comparing CORR results on QML, LR, RF 67
5.21 QML Correlation coefficient violin plots 68
5.22 LR Correlation coefficient violin plots 68
5.23 RF Correlation coefficient violin plots 69
5.24 Comparing R2 results on QML, LR, RF 70
5.25 QML simulation results on IBM Quantum, PM 2.5 74
5.26 QML simulation results on IBM Quantum, PM 10 74

xv

Acronyms

AI
artificial intelligence

AdaGrad
Adaptive Gradient Algorithm

Adam
Adaptive Moment Estimation

CORR
Correlation coefficient

CRMSE
Corrected Root Mean Square Error

DAG
Directed Acyclic Graph

FFNN
Feed-Forward Neural Network

GMM
Gaussian mixture model

LASSO
Least Absolute Shrinkage and Selection Operator

LR
Linear Regression

xvii

MAE
Mean absolute error

MAP
Maximum a Posteriori

MBE
Mean Bias Error

MDL
Minimum description length

MLR
Multivariate Linear Regression

ML
Maximum Likelihood

MSE
Mean Square Error

NFL
No free lunch theorem

R2SCORE
Coefficient of determination

RF
Random Forest

RMSE
Root Mean Square Error

RMSProp
Root Mean Square Propagation

RSS
Residual Sum of Squares

xviii

Chapter 1

Introduction

In the first part, it is introduced the main concepts of Machine Learning, and how
the basic techniques that will be used in this thesis are implemented, in both an
algorithmic and mathematical way.

1.1 What is Machine Learning
To start the treatment with machine learning methodology, we can start by ex-
ploiting the comparison with the classic scheme of conventional engineering. The
process scheme starts with an in-depth analysis of the problem domain, which ends
with the definition of a mathematical model. The purpose of the mathematical
model is to capture the key features of the problem under study, and is typically
the result of the work of a number of experts. The model just outlined is then
used to obtain a solution starting from existing or from scratch solutions. As
an example, consider the problem of defining a chemical process to produce a
given molecule. An example is the design of speech translation or image / video
compression algorithms. Both of these problems involve the definition of models
and algorithms by teams of experts, such as linguists, psychologists, and signal
processing practitioners, not infrequently during the course of long standardization
meetings.
The engineering design model described above may be too costly and inefficient
for problems in which faster or less expensive solutions are desired. The machine
learning alternative solution is based on collecting large data sets, e.g., of labeled
speech, images, or videos, and to use this information to train general-purpose
learning machines to carry out the desired task.
While the standard engineering scheme is based on domain knowledge and on
the design optimized for the problem, machine learning lets large amounts of
data to set the base for algorithms and solutions. To this purpose, rather than

1

Introduction

requiring a precise model of the problem under study, machine learning requires
the specification of an objective, of the model to be trained, and of an optimization
technique. Returning to the first example, a machine learning approach would
work by training a machine to predict the outcome. To train the selected algorithm
would be used large data sets of images or videos, or in general any kind of data,
with the aim of obtaining compressed representations from which the original input
can be recovered with some distortion.[2]

1.2 When to Use Machine Learning

Figure 1.1: The Machine Learning approach, automatically adapting to change.
[3]

Machine learning can offer an efficient alternative to the conventional engineering
scheme when development cost and time are the key elements, or when the problem
appears to be too complex to be exploited in all its parts. On the other side, the
approach has the disadvantages of providing generally suboptimal performance, or
preventing the interpretability of the solution, and can only be applied to a limited
set of problems.
To identify tasks for which machine learning methods can be useful, reference [3, 4,
5] suggests the following criteria:

1. the task involves a function that maps well-defined inputs to welldefined
outputs;

2. large data sets exist or can be created containing input-output pairs;

3. the task provides clear feedback with clearly definable goals and metrics;

4. the task does not involve long chains of logic or reasoning that depend on
diverse background knowledge or common sense;

2

Introduction

5. the task does not require detailed explanations for how the decision was made;

6. the task has a tolerance for error and no need for provably correct or optimal
solutions;

7. the phenomenon or function being learned should not change rapidly over
time; and

8. no specialized dexterity, physical skills, or mobility is required.

These criteria are useful key points for the decision of whether machine learning
methods are suitable. They also offer a line of differentiation between machine
learning as it is understood today, with its focus on training and computational
statistics tools, and more general notions of AI (artificial intelligence) based on
knowledge and common sense [6].

1.2.1 Learning Tasks
As learned from the literature [7, 8], we can distinguish between three different
main types of machine learning problems, which are briefly introduced below.

1. Supervised learning: We haveN labelled training examplesD = {(xn, tn)}Nn=1,
where xn represents a covariate, or explanatory variable, while tn is the corre-
sponding label, or response. For example, variable xn may represent the text
of an SMS, while the label tn may be a binary variable indicating whether the
SMS is spam or not. The goal of supervised learning is to predict the value of
the label t for an input x that is not in the training set. However, supervised
learning purpose is to generalizing the observations in the data set D to new
inputs. For example, an algorithm trained on a set of SMS should be able to
classify a new SMS not present in the data set D.
We can generally distinguish between classification problems, in which the
label t is discrete, as in the example above, and regression problems, in which
variable t is continuous.
An example of a regression task is the prediction of tomorrow’s air pollution t
based on today’s air pollutions observations x. An effective way to learn a
predictor is to identify from the data set D a predictive distribution P (t|x)
from a set of parametrized distributions. The conditional distribution P (t|x)
defines a profile of beliefs over all possible of the label t given the input x.
For instance, for air pollution prediction, one could learn mean and variance
of a Gaussian distribution P (t|x) as a function of the input x. As a special
case, the output of a supervised learning algorithm may be in the form of a
deterministic predictive function t = t̂(x).

3

Introduction

2. Unsupervised learning: Let consider now that we have an unlabelled
set of training examples D = {(xn)}Nn=1. Defined with a lesser degree of
precision than upervised learning, unsupervised learning generally refers to
the purpose of learning properties of the mechanism that generates this data
set. Specific tasks and applications include clustering, which is the problem of
grouping similar examples xn; dimensionality reduction, feature extraction,
and representation learning, all related to the problem of representing the
data in a smaller, better organized, or more readable space depending on
the desired interpretation of the data. Finally its fundamental to notice that
generative modeling is also the problem of learning a generating mechanism
to produce artificial examples that are similar to available data in the data set
D. As a generalization of both supervised and unsupervised learning, semi-
supervised learning refers to scenarios in which not all examples are labelled,
with the unlabelled examples providing information about the distribution of
the covariates x.

3. Reinforcement learning: Reinforcement learning refers to the problem of
take optimal sequential decisions based on rewards or penalty received as a
result of previous actions. Under supervised learning, the “label” t refers to
an action to be taken when the learner is in an informational state about the
environment given by a variable x. Upon taking an action t in a state x, the
learner is provided with feedback on the immediate reward accrued via this
decision, and the environment moves on to a different state. As an example,
a marines can be trained to navigate a given environment in the presence of
obstacles by penalizing decisions that result in collisions.
Reinforcement learning is hence neither supervised, since the learner is not
provided with the optimal actions t to select in a given state x; nor it’s fully
unsupervised, given the availability of feedback on the quality of the chosen
action. Reinforcement learning is also distinguished from supervised and
unsupervised learning due to the influence of previous actions on future states
and rewards.
These general tasks can be further classified along the following dimensions.

• Passive vs. active learning: A passive learner is when is given the
training examples, otherwise an active learner can affect the choice of
training examples on the basis of prior observations.

• Offline vs. online learning: The offline learning act over a batch
of training samples, otherwise the online learning processes samples in
a streaming mode. It’s easy to notice that the reinforcement learning
operates intrinsically in an online mode, while supervised and unsuper-
vised learning can be carried out by following either offline or online
formulations.

4

Introduction

1.3 Introduction to Linear Regression
In the standard formulation of a supervised learning problem, we give a training
set D containing N training points (xn, tn), n = 1, ..., N . The observations xn are
considered free variables and known as covariates, domain points, or explanatory
variables; while the target variables tn are assumed to be dependent on xn and are
referred to as dependent variables, labels, or responses. [9]
An example is illustrated in Fig. 1.2. We use the notation xD = (x1,, xN)T for

Figure 1.2: Example of a training set D with N = 10 points (xn, tn), n = 1, ..., N .
[2]

the covariates and tD = (t1,, tN)T for the labels in the training set D. Starting
from this data, the goal of supervised learning is to identify an algorithm to predict
the label t for a new domain point x. The outlined learning task is clearly impossible
in the absence of additional information on the mechanism relating variables x and
t. With reference to Fig. 1.2, we can assume that x and t are related by a function

t = f(x) (1.1)

With some characteristics, such as smoothness, we have no way of predicting the
label t for an unobserved domain point x. This observation is formalized by the
NFL (No free lunch theorem): one cannot learn rules that generalize to unseen
examples without making assumptions about the mechanism generating the data.
At this point we define the inductive bias as the set of all assumptions made by
the learning algorithm .

5

Introduction

The key point of this discussion, however, is a key difference between memorizing
and learning. While the first means the mere retrieval of a value tn corresponding to
an already observed pair (xn, tn) ∈ D, learning implicate the capability to predict
the value t for an unseen domain point x.
Learning, otherwise, converts experience in the mathematical form of D into
knowledge in the form of a predictive algorithm. This is well captured by the
following quote by Jorge Luis Borges: “To think is to forget details, generalize,
make abstractions.” [10].
Another important definition for supervised learning is the loss means: loss is the
error in the prediction of a new label t for an unobserved explanatory variable x.
Finally, now we can say that the goal of supervised learning is that of identifying
a predictive algorithm that minimizes the generalization loss. How exactly to
formulate this problem, however, depends on one’s viewpoint, on the nature of the
model that is being learned, and on who are the variables of interest.

1.3.1 Statistical inference
We specifically consider the inference problem of predicting a rv t given the
observation of another rv x under the assumption that their joint distribution
p(x, t) is known. As a matter of terminology, it can be noticed that here it is used
as the term “inference” as it is typically intended in the literature on probabilistic
graphical models[11], that diverging from its use in other branches of the machine
learning literature, such as pattern recognition[12]. To define and exploit the
problem of optimal inference, we can start by defining a non-negative loss function
ü(t, t̂). This defines the loss incurred when the correct value is t while the estimate
is t̂.
An important example is the üq loss:

üq(t, t̂) =
---t− t̂---q (1.2)

which includes as a special case the quadratic loss ü2(t, t̂) = (t, t̂)2, and the 0-1 loss,
or detection error, ü0(t, t̂) = (t, t̂)0, where |a|0 = 1 if a /= 0 and |a|0 = 0 otherwise.
Once a loss function is defined, the optimal prediction t̂(x) for a given value of the
observation x is computed by minimizing the generalization loss:

Lp(t̂) = E(x,t)∼pxt [ü(t, t̂(x))] (1.3)

The syntax Lp emphasizes the dependence of the generalization loss on the distri-
bution p(x, t).
The solution of this problem is given by the optimal prediction, also known as
Bayes’ rule :

t̂∗(x) = argmin
t̂
Ept|x [ü(t, t̂)|x] (1.4)

6

Introduction

This can be noticed by using the law of iterated expectations

E(x,t)∼pxt [·] = Ex∼px [Et∼pt|x][·|x|] (1.5)

Equation (1.4) shows that the optimal prediction t̂∗(x) is a function of the posterior
distribution p(t|x) of the label given the domain point x and of the loss function ü.
Therefore, knowing the posterior p(t|x), the optimal prediction Equation (1.4) can
be evaluated for any desired loss function, without the necessity to know the joint
distribution p(x, t).
The goal of supervised learning methods is to obtain a predictor t̂(x) that performs
closer as possible to the optimal predictor t̂∗(x), based only on the training set D,
and without knowledge of the joint distribution p(x, t).
The closeness in performance is measured by the difference between the generaliza-
tion loss Lp(t̂) obtained by the trained predictor and the minimum generalization
loss Lp(t̂∗) of the optimal predictor, which depends on the true distribution p(x, t).

1.3.2 Frequentist Approach
In this thesis it is specifically treated the Frequentist Approach, as it will be the
method adopted for the implementation of the software for the calibration of
pollution analysis devices. Therefore, the Bayesian approach will not be dealt with.
According to the frequentist point of view, the training data points (xn, tn) ∈ D are
independent identically distributed (i.i.d.) rvs drawn from a true, and unknown,
distribution p(x, t):

(xn, tn) i.i.d.∼ p(x, t) i = 1, ..., N. (1.6)

The new observation (x, t) is also independently generated from the same true
distribution p(x, t); the domain point x is observed and the label t must be predicted.
Since the probabilistic model p(x, t) is not known, one cannot solve directly problem
(1.4) to find the optimal prediction that minimizes the generalization loss Lp in
(1.3). Before discussing the available solutions to this problem, it is worth observing
that the definition of the “true” distribution p(x, t) depends in practice on the way
data is collected. As in the example of the “beauty AI” context, if the rankings tn
assigned to pictures xn of faces are affected by racial biases, the distribution p(x, t)
will reflect these prejudices and produce skewed results [62].

1.3.3 Taxonomy of solutions
There are two main ways to address the problem of learning how to perform
inference when not knowing the distribution p(x, t):

7

Introduction

• Separate learning and (plug-in) inference: Learn first an approximation, say
pD(t|x), of the conditional distribution p(t|x) based on the data D, and then
plug this approximation in (1.4) to obtain an approximation of the optimal
decision.

t̂D(x) = argmin
t̂
Et∼pD(t|x)[ü(t, t̂)|x] (1.7)

• Direct inference via Empirical Risk Minimization (ERM): Learn directly an
approximation t̂D(·) of the optimal decision rule by minimizing an empirical
estimate of the generalization loss (1.3) obtained from the data set.

The notation LD(t̂) highlights the dependence of the empirical loss on the predictor
t̂(·) and on the training set D. In practice, as we will see, both approaches optimize
a set of parameters that define the probabilistic model or the predictor.
Furthermore, the first approach is generally more flexible, since having an estimate
pD(t|x) of the posterior distribution p(t|x) allows the prediction (1.7) to be com-
puted for any loss function. In contrast, the ERM solution is tied to a specific
choice of the loss function ü. In the rest of this section, we will start by taking the
first approach.

1.3.4 Linear Regression (LR) Model
In the following, we will consider the following running example inspired by [12].
In the example, data is generated according to the true distribution p(x, t) =
p(x)p(t|x), dove x ∼ U(0, 1) and

t|x = x ∼ N (sin(2πx),0.1) (1.8)

The training set in Fig.1.2 was generated from this distribution. If this true
distribution were known, the optimal predictor under the ü2 loss would be equal to
the conditional mean

t̂∗ = sin(2πx) (1.9)
Finally, the minimum generalization loss is Lp(t̂∗) = 0.1.

1.3.5 Discriminative vs. Generative Probabilistic Models
In order to use an approximation pD(t|x) of the predictive distribution p(t|x) based
on the data D, we will proceed by first selecting a family of parametric probabilistic
models, also known as a hypothesis class, and then learning the parameters of the
model to fit the data D.
Let consider as an example the linear regression problem introduced above, we
start by modelling the label t as a polynomial function of the domain point x added
to a Gaussian noise with variance β − 1 . Parameter β is the precision, i.e., the

8

Introduction

inverse variance of the additive noise. The polynomial function with degree M can
be written as

µ(x,w) =
MØ
j=0

wjx
j = wTφ(x) (1.10)

where we have defined the weight vector w = [w0 w1 · · · wM]T and the feature
vector φ(x) = [1 x x2 · · · xM]T . The vector w defines the relative weight of the
powers in the sum (2.11). This assumption corresponds to adopting a parametric
probabilistic model p(t|x, θ) defined as

t|x = x ∼ N (µ(x,w), β−1) (1.11)

with parameters θ = (w, β). Having fixed this hypothesis class, the parameter
vector θ can be then learned from the data D, as it will be discussed. In the
example above, we have parametrized the posterior distribution. Alternatively, we
can parametrize and learn the full joint distribution p(x, t). These two alternatives
are introduced below.

1. Discriminative probabilistic model
With this first class of models, the posterior, or predictive, distribution p(t|x)
is assumed to belong to a hypothesis class p(t|x, θ) defined by a parameter
vector θ. The parameter vector θ is learned from the data set D. For a
given parameter vector θ, the conditional distribution p(t|x, θ) allows the
different values of the label t to be discriminated on the basis of their posterior
probability.
In particular, once the model is learned, one can directly compute the predictor
(2.6) for any loss function. As an example, for the linear regression problem,
once a vector of parameters θD = (wD, βD) is identified based on the data D
during learning, the optimal prediction under the ü2 loss is the conditional
mean t̂D(x) = Et∼p(t|x,θD)[t|x], that is, t̂D(x) = µ(x,wD).

2. Generative probabilistic model
Instead of learning directly the posterior p(t|x), one can model the joint
distribution p(x, t) as being part of a parametric family p(x, t|θ).Note that,
as opposed to discriminative models, the joint distribution p(x, t|θ) models
also the distribution of the covariates x. Accordingly, the term “generative”
reflects the capacity of this type of models to generate a realization of the
covariates x by using the marginal p(x|θ).
Once the joint distribution p(x, t|θ) is learned from the data, one can compute
the posterior p(t|x, θ) using Bayes’ theorem, and, from it, the optimal predictor
(1.7) can be evaluated for any loss function. Generative models make stronger
assumptions by modeling also the distribution of the explanatory variables.
As a result, an improper selection of the model may lead to more significant

9

Introduction

bias issues. However, there are potential advantages, such as the ability to
deal with missing data or latent variables, such as in semi-supervised learning.

1.3.6 Model Order and Model Parameters
In the linear regression example, the selection of the hypothesis class required the
definition of the polynomial degree M, while the determination of a specific model
p(t|x, θ) in the class called for the selection of the parameter vector θ = (w, β). As
we will see, these two types of variables play a significantly different role during
learning and should be clearly distinguished, as discussed next.

1. Model order M (and hyperparameters): The model order defines the
“capacity” of the hypothesis class, that is, the number of the degrees of
freedom in the model. The larger M is, the more capable a model is to fit the
available data. For instance, in the linear regression example, the model order
determines the size of the weight vector w. More generally, variables that
define the class of models to be learned are known as hyperparameters. As we
will see, determining the model order, and more broadly the hyperparameters,
requires a process known as validation.

2. Model parameters θ: Assigning specific values to the model parameters
θ identifies a hypothesis within the given hypothesis class. This can be
done by using learning criteria such as ML (Maximum Likelihood) and MAP
(Maximum a Posteriori).

1.3.7 Overfitting and Underfitting Problem
Adopting the ü2 loss, let us now compare the predictor tML(x) = µ(x,wML) learned
via ML with the optimal, but unknown, predictor t̂∗(x) in (2.10). To this end,
Fig.1.4 shows the optimal predictor t̂∗ as a dashed line and the ML-based predictor
tML(x) obtained with different values of the model order M for the training set D
in Fig. 1.2 (also shown in Fig. 1.4 for reference).
We begin by observing that, with M = 1, the ML predictor underfits the data: the
model is not rich enough to capture the variations present in the data. As a result,
the training loss LD(wML) is large. In contrast, with M = 9, the ML predictor
overfits the data: the model is too rich and, to account for the observations in the
training set, it yields inaccurate predictions outside it. In this case, the training
loss LD(w) is small, but the generalization loss is large.

Lp(wML) = E(x,t)∼pxt [ü(t, µ(x,wML))] (1.12)
With overfitting, the model is memorizing the training set, rather than learning
how to generalize to unseen examples.

10

Introduction

Figure 1.3: Illustration of underfitting and overfitting in ML learning: The
dashed line is the optimal predictor (2.10), which depends on the unknown true
distribution, while the other lines correspond to the predictor t ML (x) = µ (x, w
ML) learned via ML with different model orders M. [2]

The choice M = 3 appears to be the best in comparison with the optimal predictor.
Note that this observation is in practice precluded given the impossibility to
determine t̂∗(x) and hence the generalization loss.[13]

1.3.8 Influence of dataset size
Extrapolating from the behavior observed in Fig. 1.4, we can surmise that, as the
number N of data points increases, overfitting is avoided even for large values of M .
When the training set is big compared to the number of parameters in θ, we expect
the training loss LD(w) to provide an accurate measure of the generalization loss
Lp(w) for all possible values of w.
Informally, we have the approximation LD(w) Ä Lp(w) simultaneously for all values
of w as long as N is large enough. Therefore, the weight vector wML that minimizes
the training loss LD(w) also (approximately) minimizes the generalization loss
Lp(w). It follows that, for large N , the ML parameter vector w ML tends to the
the optimal value w∗(assuming for simplicity of argument that it is unique) that
minimizes the generalization loss among all predictors in the model, i.e.,

w∗ = argmin
w
Lp(w) (1.13)

11

Introduction

To better understand what we have pointed, we can give a numerical example,

Figure 1.4: Square root of the generalization loss L p(w ML) and of the training
loss LD(wML) as a function of the training set size N. The asymptote of the
generalization and training losses is given by the minimum generalization loss
Lp(w∗) (cf. (2.21)) achievable for the given model order (see Fig. 2.5). [2]

Fig.1.3 plots the square root of the generalization and training losses versus N ,
where the training sets were generated random from the true distribution. From
the figure, we can make the following important assumptions:

• Overfitting, as measured by the gap between training and generalization losses,
vanishes as N increases. This is a consequence of the discussed approxi-
mate equalities LD(w) Ä Lp(w) and wML Ä w∗, which are valid as N grows
large, which imply the approximate equalities LD(wML) Ä Lp(wML) Ä Lp(w∗).

• Training loss LD(wML) tends to the minimum generalization loss Lp(w∗) for
the given M from below, while the generalization loss Lp(wML) tends to it
from above. This happen because, as N increases, it becomes more difficult
to fit the data set D, and LD(wML) increases. Contrary as N grows large the
ML estimate becomes more accurate, because of the increasingly accurate
approximation wML Ä w∗ , and thus the generalization loss Lp(wML) decreases.

• Selecting a smaller model orderM yields an improved generalization loss when

12

Introduction

the training set is small, while a larger value of M is desirable when the data
set is bigger. When N is small, the estimation error caused by overfitting
dominates the bias caused by the choice of a small hypothesis class. In con-
trast, for sufficiently large training sets, the estimation error vanishes and
the performance is dominated by the bias induced by the selection of the model.

1.3.9 Regularization
As we saw before, the model will have a low accuracy if it is overfitting, so one of
the major aspects of training a machine learning model is avoiding overfitting. This
happens because the model is trying too hard to capture the noise on the training
dataset. By noise we mean the data points that don’t really represent the true
properties of the data, but random chance. Learning such data points makes the
model more flexible, at the risk of overfitting. Regularization is a form of regression
that constrains/regularizes or shrinks the coefficient estimates towards zero. In
other words, this technique discourages learning a more complex or flexible model
to avoid the risk of overfitting [14].
We have seen above that the MAP learning criterion amounts to the addition of
a regularization function R(w) to the ML or ERM learning loss. This function
penalizes values of the weight vector w that are likely to occur in the presence of
overfitting, or, generally, that are improbable on the basis of the available prior
information. The net effect of this addition is to effectively decrease the capacity
of the model, as the set of values for the parameter vector w that the learning
algorithm is likely to choose from is reduced. As a result, as seen, regularization
can control overfitting and its optimization requires validation. A simple relation
for linear regression looks like this. Here Y represents the learned relation and β
represents the coefficient estimates for different variables or predictors(X)

Y ≈ β0 + β1x1 + β2x2 + ...+ βpxp (1.14)

The fitting procedure involves a loss function, known as RSS (Residual Sum of
Squares). The coefficients are chosen such that they minimize this loss function.

RSS =
nØ
i=1

yi + β0 −
pØ
j=1

βjxij

2

(1.15)

The 1.15 will adjust the coefficients based on the training data. If there is noise
in the training data, then the estimated coefficients won’t generalize well to the
future data. This is where regularization comes in and shrinks or regularizes these
learned estimates towards zero.
We note that the same techniques, such as ridge regression and LASSO (Least

13

Introduction

Absolute Shrinkage and Selection Operator), can also be introduced independently
of a probabilistic framework in an ERM formulation. Furthermore, apart from the
discussed addition of regularization terms to the empirical risk, there are other
ways to perform regularization.
One approach is to modify the optimization scheme by using techniques such as
early stopping [15]. Another is to augment the training set by generating artificial
examples and hence effectively increasing the number N of training examples.
Related to this idea is the technique known as bagging.
With bagging, we first create a number K of bootstrap data sets. Bootstrap data
sets are obtained by selecting N data points uniformly with replacement from D
(so that the same data point generally appears multiple times in the bootstrap data
set). Then, we train the model K times, each time over a different bootstrap set.
Finally, we average the results obtained from the models using equal weights. If
the errors accrued by the different models were independent, bagging would yield
an estimation error that decreases with K. In practice, significantly smaller gains
are obtained, particularly for large K, given that the bootstrap data sets are all
drawn from D and hence the estimation errors are not independent [16].

1.4 Optimizers and model accuracy

We have previously dealt with the loss function, which is a mathematical way of
measuring how wrong your predictions are. During the training process, we tweak
and change the parameters (weights) of our model to try and minimize that loss
function, and make our predictions as correct and optimized as possible. However,
how exactly do you do that? How do you change the parameters of the model, by
how much, and when?
This is where optimizers come in. They tie together the loss function and model
parameters by updating the model in response to the output of the loss function.
In simpler terms, optimizers shape and mold your model into its most accurate
possible form by futzing with the weights. The loss function is the guide to the
terrain, telling the optimizer when it’s moving in the right or wrong direction.
For a useful mental model, we can think of a hiker trying to get down a mountain
with a blindfold on. It’s impossible to know which direction to go in, but there’s
one thing she can know: If she’s going down (making progress) or going up (losing
progress). Eventually, if she keeps taking steps that lead her downwards, she’ll
reach the base. Similarly, it’s impossible to know what your model’s weight should
be right from the start. However, with some trial and error based on the loss
function (whether the hiker is descending), you can end up getting there eventually.

14

Introduction

1.4.1 Gradient Descent
This algorithm is used across all types of machine learning (and other math
problems) to optimize. Gradient descent is a first-order optimization algorithm
which depends on the first-order derivative of a loss function. It calculates that
which way the weights should be altered so that the function can reach a minima.
Through backpropagation, the loss is transferred from one layer to another and
the model’s parameters, also known as weights, are modified depending on the
losses so that the loss can be minimized. The algorithm of gradient descent can be
implemented following the following instruction:

1. Calculate what a small change in each individual weight would do to the loss
function (i.e. which direction should the hiker walk in)

2. Adjust each individual weight based on its gradient (i.e. take a small step in
the determined direction)

3. Keep doing steps #1 and #2 until the loss function gets as low as possible

In mathematical form, this can be translated into

Θ = Θ− α · ∇J(Θ) (1.16)

The tricky part of this algorithm (and optimizers in general) is understanding the
gradients, which represent what a small change in a weight or parameter would do
to the loss function. Gradients are partial derivatives and are a measure of change.
They connect the loss function and the weights; they tell us what specific operation
we should do on our weights—add 5, subtract .07, or anything else—to lower the
output of the loss function and thereby make our model more accurate.
The cost function can be mathematically defined as follows:

J(θ) = 1/2m
mØ
i=1

(h(θ)(i) − y(i))2 (1.17)

Note that the cost function is for linear regression, for other algorithms the cost
function will be different and the gradients would have to be derived from the cost
function. Others important parameters of Gradient Descendent are:

• Learning Rate: is a tuning parameter in an optimization algorithm that
determines the step size at each iteration while moving toward the minimum
of a loss function. Since it influences to what extent the newly acquired
information overrides old information, it metaphorically represents the speed
at which a machine learning model "learns". In the adaptive control literature,
the learning rate is commonly referred to as gain.

15

Introduction

• Epochs: one epoch is when an entire dataset is passed forward and backward
through the neural network only once. Since one epoch is too big to feed to
the computer at once, we divide it in several smaller batches. Passing the
entire dataset through a neural network is not enough. What is typically done
is to pass the full dataset multiple times to the same neural network.

• Batch Size: total number of training examples present in a single batch. As
was previously mentioned, you can’t pass the entire dataset into the neural
net at once. Therefore, what is done is to divide the dataset into a number of
batches or sets or parts.

• Iterations: iteration is the number of batches needed to complete one epoch.

1.4.2 Gradient Descent Algorithm
Basically the Gradient Descent can be implemented in this way.
First of all,we define the cost function:

1 de f ca l_cost (theta ,X, y) :
2 ’ ’ ’
3 Ca l cu l a t e s the co s t f o r g iven X and Y. The f o l l o w i n g shows and

example o f a s i n g l e d imens iona l X
4 theta = Vector o f the ta s
5 X = Row of X ’ s np . z e r o s ((2 , j))
6 y = Actual y ’ s np . z e r o s ((2 , 1))
7 where :
8 j i s the no o f f e a t u r e s
9 ’ ’ ’

10

11 m = len (y)
12 p r e d i c t i o n s = X. dot (theta)
13 co s t = (1/2∗m) ∗ np . sum(np . square (p r ed i c t i on s −y))
14 re turn co s t
15

Then we can define the Gradient Descent algorithm:

1 de f grad ient_descent (X, y , theta , l ea rn ing_rate =0.01 , i t e r a t i o n s =100) :
2 ’ ’ ’
3 X = Matrix o f X with added b ia s un i t s
4 y = Vector o f Y
5 theta=Vector o f the ta s np . random . randn (j , 1)
6 l e a rn ing_rate
7 i t e r a t i o n s = no o f i t e r a t i o n s

16

Introduction

8 Returns the f i n a l theta vec to r and array o f co s t h i s t o r y over no
o f i t e r a t i o n s

9 ’ ’ ’
10 m = len (y)
11 cos t_h i s to ry = np . z e ro s (i t e r a t i o n s)
12 theta_hi s tory = np . z e r o s ((i t e r a t i o n s , 2))
13 f o r i t in range (i t e r a t i o n s) :
14

15 p r e d i c t i o n = np . dot (X, theta)
16

17 theta = theta −(1/m) ∗ l e a rn ing_rate ∗(X.T. dot ((p r e d i c t i o n − y)))
18 theta_hi s tory [i t , :] =theta .T
19 cos t_h i s to ry [i t] = ca l_cost (theta ,X, y)
20

21 re turn theta , cost_his tory , theta_hi s tory
22

1.4.3 Adaptive Moment Estimation (ADAM)
Adam optimization is a stochastic gradient descent method that is based on adaptive
estimation of first-order and second-order moments.Adam is different from classical
stochastic gradient descent: Stochastic gradient descent maintains a single learning
rate (termed alpha) for all weight updates and the learning rate does not change
during training. A learning rate is maintained for each network weight (parameter)
and separately adapted as learning unfolds. Adam combines the advantages of two
other extensions of stochastic gradient descent. Specifically:

• AdaGrad (Adaptive Gradient Algorithm): that maintains a per-parameter
learning rate that improves performance on problems with sparse gradients
(e.g., natural language and computer vision problems).

• RMSProp (Root Mean Square Propagation): that also maintains per-
parameter learning rates that are adapted based on the average of the recent
magnitudes of the gradients of the weight (e.g., how quickly it is changing).
This means the algorithm does well on online and nonstationary problems
(e.g. noisy).

Instead of adapting the parameter learning rates based on the average first moment
(mean) as in RMSProp, Adam also makes use of the average of the second moments
of the gradients (uncentered variance).
Specifically, the algorithm calculates an exponential moving average of the gradient
and the squared gradient, and the parameters beta1 and beta2 control the decay
rates of these moving averages.
The initial value of the moving averages and beta1 and beta2 values close to 1.0

17

Introduction

(recommended) result in a bias of moment estimates towards zero. This bias is
overcome by first calculating the biased estimates before then calculating bias-
corrected estimates.[1]

Figure 1.5: Comparison of Adam to Other Optimization Algorithms Training a
Multilayer Perceptron [1]

1.4.4 Adam Configuration Parameters

• alpha: also referred to as the learning rate or step size. The proportion that
weights are updated (e.g., 0.001). Larger values (e.g., 0.3) results in faster
initial learning before the rate is updated. Smaller values (e.g., 1.0E-5) slow
learning right down during training

• beta1: the exponential decay rate for the first moment estimates (e.g., 0.9).

• beta2: the exponential decay rate for the second moment estimates (e.g.,
0.999). This value should be set close to 1.0 for problems with a sparse gradient
(e.g., NLP and computer vision problems).

• epsilon: is a very small number to prevent any division by zero in the
implementation (e.g., 10E-8).

18

Introduction

Algorithm 1 Adam optimizer algorithm. All operations are element-wise even
powers. Good values for the constants are α = 0.001, β1 = 0.9, β2 = 0.999, Ô = 10−8.
Ô is needed to guarantee numerical stability.

1: procedure Adam(α, β1, β2, f, θ0)
2: ó α is the stepsize
3: ó β1, β2 ∈ [0, 1) are the exponential decay rates for the moment estimates
4: ó f (θ) is the objective function to optimize
5: ó θ0 is the initial vector of parameters which will be optimized
6: ó Initialization
7: m0 ← 0 ó First moment estimate vector set to 0
8: v0 ← 0 ó Second moment estimate vector set to 0
9: t← 0 ó Timestep set to 0

10: ó Execution
11: while θt not converged do
12: t← t+ 1 ó Update timestep
13: ó Gradients are computed w.r.t the parameters to optimize
14: ó using the value of the objective function
15: ó at the previous timestep
16: gt ← ∇θf (θt−1)
17: ó Update of first-moment and second-moment estimates using
18: ó previous value and new gradients, biased
19: mt ← β1 ·mt−1 + (1− β1) · gt
20: vt ← β2 · vt−1 + (1− β2) · g2

t

21: ó Bias-correction of estimates
22: m̂t ←

mt

1− βt1
23: v̂t ←

vt
1− βt2

24: θt ← θt−1 − α ·
m̂t√
v̂t + Ô

ó Update parameters
25: end while
26: return θt ó Optimized parameters are returned
27: end procedure

19

Introduction

1.5 Overview
The following chapters will first introduce the methodologies used so far, then,
following an introduction on the work already started in the research department
of the Department of Automation and Information Technology of the Politecnico di
Torino, finally it will be explained how to relate these technologies to the case study.

• Chapter 2 presents the main concepts of Quantum Machine Learning, and how
to implement Linear Regression model through Quantum Neural Networks.

• Chapter 3 introduces the Air Pollution Project, illustrating from the beginning
how the project has been setted up.

• Chapter 4 presents the idea of how to exploit the technologies of Quantum Ma-
chine Learning to create a hybrid network that is able to refine the calibration
of sensors in a fast and punctual way.

• Chapter 5 reports the hyperparameter tuning phase, exploits the simulation
plots, and evaluates the obtained results.

• Chapter 6 draws the conclusions and proposes some possible further improve-
ments related to the overall project.

20

Chapter 2

Quantum Machine Learning

In the second part, it will be introduced the concept of Quantum Machine Learning
and how this feature can be correlated with the air pollution sensors calibration.In
this chapter, we explore how a classical neural network can be partially quantized
to create a hybrid quantum-classical neural network.

2.1 What is Quantum Machine Learning
Quantum computing refers to the manipulation of quantum systems to process
information. The ability of quantum states to be in superposition can thereby lead
to a substantial speed-up of a computation in terms of complexity, since operations
can be executed on many states at the same time. The basic unit of quantum
computation is the qubit, that can be defined in a mathematical way like:

|ψê = α|0ê+ β|1ê (2.1)

with α, β ∈ C and |0ê, |1ê in the two-dimensional Hilbert space H2.

The absolute squares of the amplitudes are the probability to measure the qubit
in the 0 or the 1 state, and quantum dynamics always maintain the property of
probability conservation by

|α|2 + |β|2 = 1 (2.2)

In mathematical language, this means that transformations that map quantum
states to other quantum states (so-called quantum gates) have to be unitary.
Through single qubit quantum gates, we are able to manipulate the basis state,
amplitude or phase of a qubit (for example, through the so-called X-gate, the
Z-gate, and the Y-gate, respectively), or put a qubit with β = 0 (α = 0) into an

21

Quantum Machine Learning

equal superposition (the Hadamard or H-gate) :

α = β = 1√
2
or α = 1√

2
β = − 1√

2
(2.3)

Multi-qubit gates are often based on controlled operations that execute a single
qubit operation only if another (ancilla or control qubit) is in a certain state. One
of the most important gates is the two-qubit XOR-gate, which flips the basis state
of the second qubit in case the first qubit is in state |1ê. A two-qubit gate that will
be mentioned later is the SWAP-gate exchanging the state of two qubits with each
other.

2.1.1 Example of Quantum Gates

Figure 2.1: Representation of qubit states, unitary gates and measurements in
the quantum circuit model and in the matrix formalism [17]

Quantum gates are usually expressed as unitary matrices, this can be seen in Fig.
2.1. The matrices operate on 2n-dimensional vectors that contain the amplitudes
of the 2n basis states of a n-dimensional quantum system.
For example, the XOR-gate working on the quantum state |ψê = 1√

2(|00ê+ |11ê)
would look like

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 · 1√
2

1
0
0
1

 = 1√
2

1
0
1
0

 (2.4)

and produce ψÍ = 1√
2(|00ê+ ||10ê).

The art of developing algorithms for a potential quantum computer is to use such
elementary gates to create a quantum state that has a relatively high amplitude

22

Quantum Machine Learning

for states that represent solutions for the given problem. A measurement in the
computational basis then produces such a desired result with a relatively high
probability. Quantum algorithms are usually repeated a number of times since
the result is always probabilistic. For a comprehensive introduction to quantum
computing, we refer to the standard textbook by Nielsen and Chuang [18] as well
as Plenio and Vitelli’s presentation of the concept of quantum information [19].
In quantum machine learning, quantum algorithms are developed to solve typical
problems of machine learning using the efficiency of quantum computing. This is
usually done by adapting classical algorithms or their expensive subroutines to run
on a potential quantum computer. The expectation is that in the near future, such
machines will be commonly available for applications and can help to process the
growing amount of global information. The emerging field also includes approaches
vice versa, namely well-established methods of machine learning that can help to
extend and improve quantum information theory.[20]

2.1.2 Neurons and Weights

A neural network is ultimately just an elaborate function that is built by composing
smaller building blocks called neurons.
A neuron is typically a simple, easy-to-compute, and nonlinear function that maps
one or more inputs to a single real number. The single output of a neuron is
typically copied and fed as input into other neurons. Graphically, we represent
neurons as nodes in a graph and we draw directed edges between nodes to indicate
how the output of one neuron will be used as input to other neurons. It’s also
important to note that each edge in our graph is often associated with a scalar
value called a weight. The idea here is that each of the inputs to a neuron will be
multiplied by a different scalar before being collected and processed into a single
value. The objective when training a neural network consists primarily of choosing
weights such that the network behaves in a particular way.

2.1.3 Feed Forward Neural Network

It is also worth noting that the particular type of neural network we will concern
ourselves with is called a FFNN (Feed-Forward Neural Network). This means
that as data flows through our neural network, it will never return to a neuron it
has already visited. Equivalently, you could say that the graph which describes
our neural network is a DAG (Directed Acyclic Graph). Furthermore, we will
stipulate that neurons within the same layer of our neural network will not have
edges between them.

23

Quantum Machine Learning

2.1.4 IO Structure of Layers
The input to a neural network is a classical (real-valued) vector. Each component
of the input vector is multiplied by a different weight and fed into a layer of neurons
according to the graph structure of the network. After each neuron in the layer has
been evaluated, the results are collected into a new vector where the i’th component
records the output of the i’th neuron. This new vector can then be treated as an
input for a new layer, and so on. We will use the standard term hidden layer to
describe all but the first and last layers of our network.

2.1.5 Building the Network
To create a quantum classical neural network, it can be implemented as a hidden
layer of our neural network using a parameterized quantum circuit. By "param-
eterized quantum circuit", we mean a circuit where the rotation angles for each
gate are specified by the components of a classical input vector. The outputs from
our neural network’s previous layer will be collected and used as the inputs for our
parameterized circuit. The measurement statistics of our quantum circuit can then
be collected and used as inputs for the following layer.
A simple example is depicted in Fig. 2.2:

Figure 2.2: Simple structure of a hybrid quantum-classical neural network[17]

Here,σ is a nonlinear function and hi is the value of neuron i at each hidden layer.
R(hi) represents any rotation gate about an angle equal to hi and y is the final
prediction value generated from the hybrid network.

24

Quantum Machine Learning

About backpropagation the quantum circuit can be seen as a black box and the
gradient of this black box with respect to its parameters can be calculated as
follows:

∇θ QC(θ) = QC(θ + s)−QC(θ − s) (2.5)

where QC = Quantum Circuit

2.2 Linear Regression with QML, case study
In the case study taken by the Developer guidelines on IBM Quantum Computing
Developer Recipes, they show how to calculate the multivariate linear regression to
find a prediction function in case the output depends on more than one x variable,
such as house extension and the number of rooms.
What we will discuss in this chapter is how a low-level QPU works, the passage
is fundamental, as it is useful to understand the rest of the work, where it was
considered easy to use a higher level of abstraction, through the Pennylane library, a
cross-platform Python library for differentiable programming of quantum computers.

2.2.1 Problem formulation
We are looking for a function

hθ(x) = θ0 + θ1x1 + θ2x2 (2.6)

able to mark the prediction, where

θ0, θ1, θ2 (2.7)

are the parameters to be found.
An example dataset is used in witch, the first column is square feet, the second is
room number, and third is the price.
The cost function is defined as the squared error function calculated between the
function evaluation hθ(x) and the training data y and its means a calculation of
the difference between evaluated and measured data. The purpose is to minimize
this difference. In the multivariable case, we preliminary need to normalize data.
It means that the feature xi can be very different in scale. It means that the J(θ)
function can be very stretched in the direction of the largest scale feature. To
prevent that is preferred to normalize the data, trying to maintain the feature xi
in the range −1 6 xi 6 1.
To do this, we substract to each xi value the mean of all xi values and divide it by
the standard deviation of xi data.

xi,n = xi − µi
Si

(2.8)

25

Quantum Machine Learning

µi = 1
m

mØ
i=1

xi Si =
óqm

i=1 xi − µi
m

(2.9)

To do this calculus fast we can use the numpy function np.mean, the same way for
the standard deviation we can use np.std. After that, it is added a ’ones’ column
before the normalized x value and set to θ the θ value. This must be done to take
account of the intercept in the prediction function. To add the column after having
set it to ’ones’ by means of the np.ones function, it can be used as the instruction
column stack.
The choice of learning rate α parameter is very critical :

• Choosing it too small, we can have a small convergence.

• Choosing it too big, J(θ) may not decrease with every iteration and may not
converge at all.

In the example, it is suggested to check the results varying the value of α starting
from 0.01 and increasing this value each time multiplying by 3. Some values can
be : 0.01, 0.03, 0.1, 0.3 .
Another imporants warning is that in reading phase the data variable could be set
to an integer data type (instead of real) and so when we normalize its value it
can be rounded to 0.To prevent that we inizialize a new vector of zeros and use it
to make the calculation. In this case, this new array is defined as real.

2.2.2 Definition of parametrized Cost Function J
The choice of using a function is motivated by its recurrence in various parts of the
algorithm.
The squared error function can be defined as follows:

J(θ0, θ1, ...) = J(θ) = 1
2m

mØ
i=1

(hθ(xi)− yi)2 (2.10)

If we consider the value of hθ(x) function the previous expression becomes:

J(θ0, θ1, ...) = J(θ) = 1
2m

mØ
i=1

(Xθ − yi)2 (2.11)

where X is a 3 x 3 matrix and θ is a vector 3 x 1.
By multiplying these two matrices it’s obtained a vector that can be subtracted
from the y vector. Finally, this is the function target to minimize.

26

Quantum Machine Learning

2.2.3 Gradient descent algorithm in multivariable version
For each iteration cycle

θj := θj − α
δJ(θ0, θ1)

δθj
(2.12)

where j is the θ index and α is the so called learning rate, which defines the
“length” of the single step of iteration, initially set at 0.01, but later refined through
hyper-parameter tuning.
The update value of θ0, θ1, θ2 must be simultaneous:

tempj := θj − α
δJ(θ)
δθj

(2.13)

θj := θj −
α

m

mØ
i=1

(hθ(xi)− yi)xi (2.14)

then
θj := tempj (2.15)

2.2.4 Implementation in Python
First of all, let us include the basic calculation libraries, these libraries are based
on Toffoli and controlled phase gates:

• Quantum Fourier transform of |qê, of length n.

• Inverse Fourier transform of |qê, of length n.

• Controlled-controlled phase gate with phase θ

• Quantum Fourier transform of q, controlled by p.

• Inverse quantum Fourier transform of p, controlled by p.

Then we need to define the decimal implementation, because we work with decimal
numbers, in particular we define:

• Decimal implementation of multiplication.

• Decimal implementation of subtraction. It takes into account the relative
numbers, that is the case in which the first number is minor than the second
one by putting a - sign.

27

Quantum Machine Learning

Another useful method that has been implemented is the quantum determinant
function of a 2x2 matrix.
Let us now put all together for the final algorithm for price prediction:

• Starting from θ = (XTX)−1XTy we calculate classically XTX. This provides
a generic 3x3 matrix.

• We use the minmax function to get the min and max values, and then we call
the function standardizeMatrix which returns an integer scaled matrix with
values from 0 to 7.

• Then we call getMatrixInverse to obtain the inverse of the standardized.

• Then we de-standardize the inverse obtaining an approximated inverse of the
original matrix (the approximation depends on the variance of the values in
the matrix).

• We complete the elaboration providing the q-calculated theta and we use it
to perform the price prediction.

2.2.5 Results
Considering the dataset shown in Tab. 2.1, the algorithm lends itself well to
predicting the price of a 1650 3-room house.What we want to point out in this
section, however, is the complexity of managing the implementation of the solution.
At first it was necessary to define the quantum circuit that complied with the
requirements of the formal problem, then we moved on to the implementation of
the basic functions, which were partly already defined by means of some libraries.
Finally, we had to implement the function for the management of multiplication
and subtraction with decimal digits, since, as in the case study, also in the final
project for the calibration of the sensors need to work with decimal numbers is
evident, as both the correlated variables and the variables subject to calibration
they are expressed in decimal format. To better understand the results obtained,
let us compare the result of the Qml algorithm with the standard one of the ml
and with the mathematical solution, based on the use of matrices.
Keep in mind that the exact result, having a home with 1380 sq ft and 3 bedrooms,
amounted to $212,000

• Normal Solution algorithm result:
θ0 = 89597.909 θ1 = 139210.674 θ2 = −8738.019
Predicted value : $255494.582
Absolute error on prediction: 43494.582
% error on prediction: 20.51%

28

Quantum Machine Learning

Squared feet Room number Price
2104 3 399900 $
1600 3 329900 $
2400 3 369000 $
...
1416 2 232000 $
3000 4 539900 $
1985 4 299900 $

Table 2.1: Case study data-set, original length was 450 lines, here an example of
few lines.

• Gradient Descent algorithm result
θ0 = 340311.977 θ1 = 107880.128 θ2 = −5066.007
Predicted value : $256289.590
Absolute error on prediction: 44289.59
% error on prediction: 20.89%

• Quantum Computing algorithm result
θ0 = −46903.716 θ1 = 98926.358 θ2 = 56727.495
Predicted value : $259797.144
Absolute error on prediction: 47797.144
% error on prediction: 22.54%

From the comparison of the results obtained, it is clear that none of the three
methods can provide a reliable prediction, i.e., that it respects a percentage error
below 10%.
The other observation that immediately stands out is that the QML solution has
the lowest score.
Taking into account the above, it was considered easier to switch to a library
that would allow all this to be managed with a greater degree of abstraction,
the hybrid quantum classic machine learning choice is motivated by the ease of
management and understanding of classical neural network models and by the
greatest performance and reliability , through which the selective loading of data
was efficiently managed according to the desired preferences.

29

Chapter 3

Air pollution sensors
Project

In this chapter, what we are going to do is an introduction to the Weather Station
Analysis project, of which Sensor Calibration occupies a central role. All reference
tables and figures presented in this chapter are taken from a previous paper
describing the overall project.[21]

3.1 Introduction
Air pollution, especially air quality and particulate matter, have recently fueled
the interests of government, industry and academia to find new solutions for their
monitoring, particularly what they have been trying to do is to understand if it
is possible to monitor these environmental parameters through low-cost detection
strategies. However, this has led to the need to analyze all the limitations of these
low-cost sensors, in particular their sensitivity to aging, environmental conditions
and cross-sensitivity to pollutants. The current solution to the problem, at least in
part, has been to limit its use over time.
Within the project developed by the DAUIN research department, what has been
developed is a low-cost particulate monitoring system, based on special acquisition
cards, used to monitor air quality on sensor platforms. Different data acquisition
and processing methods were analyzed in detail, in particular the aim is to, through
the various calibration methods that will be proposed and analyzed, it was to
understand if, given a value of a low-cost sensor , it is possible to calibrate this
value in order to make it as reliable as possible with respect to the reference value
given by ARPA.
The collected sensor data amount to about 50GB of data gathered in six months
during winter. Tests of statically immovable stations include an analysis of accuracy

30

Air pollution sensors Project

and sensors’ reliability made by comparing our results with more accurate and
expensive standard β-radiation sensors. Tests on mobile stations have been designed
to analyze the reactivity of our system to unexpected and abrupt events.
With respect to other approaches, the proposed methodology has been proved to
be extremely easy to calibrate, to offer a very high sample rate (one sample per
second), and to be based on an open-source software architecture.

3.2 Purpose of the project

PM 2.5/10

RH%

Pressure

Temperature

Core board

Cloud Database

Wi-FiLTE Cell

Figure 3.1: Architecture of the project. The data coming from the sensors are
first stored in Raspberry Pi, and then transferred to a remote server over the Wi-Fi
network.[21, 3]

In this project, it was designed, builded, and verified a low-cost, open-source air-
quality system which is based on special-purpose acquisition boards, it was deployed
to stationary platforms, and it was devised for participatory sensing strategies. It
was following article 18.5 of Italian Decree 155/2010 on the dissemination of air
quality data, which absorbs EU directive 2008/50/CE.

3.3 Role of Sensors Calibration
Once the data has been collected and saved in a specific database, what was done
was to focus on the most important part of the project, namely the calibration of
the values and the validation of the calibrated data.

31

Air pollution sensors Project

Regarding the data calibration process, the target was to maintain a fairly high
and rigid standard, as particularly reliable calibration models are critical for the
success of dense sensor networks deployed in urban areas of developed countries.
In this scenario, pollutant concentrations are often found at the lower end of the
spectrum of global pollutant concentrations, and poor signal-to-noise ratio and
cross-sensitivity can hinder the network’s ability to provide reliable results. With
this in mind, the calibration phase has been designed with extreme care, using
both the Multivariate Linear Regression model and the Random Forest [22], [23]
machine learning algorithm.
Furthermore, the collected results were compared with different calibration methods
and were validated over different periods to evaluate the quality of the result over
time.

3.3.1 Calibration Strategies
In the original version of the paper, two calibration methods are exploited:

• The MLR (Multivariate Linear Regression) Model:
In Multivariate Linear Regression Models, regression analysis is used to predict
the value of one or more responses from a set of predictors. Let (x1, x2, ..., xn)
be a set of predictors (dependent variables) believed to be related to a response
(independent) variable Y . The linear regression model for the j-th sample
unit has the form

Yj = β0 + β1 · xj1 + β2 · xj2 + ...+ βr · xjr + j (3.1)

where j is a random error and the β are unknown (and fixed) regression
coefficients. The value β0 is the intercept. With n independent observations,
we can write one model for each sample unit or we can organize everything
into vectors and matrices as: Y = X · β + e The training data are used to
calculate the model coefficients, and the model performance is evaluated on
withheld testing data. Separate MLR models are usually developed for each
sensor and each measure.

• The RF (Random Forest) Model:
A Random Forest Model is a machine learning algorithm for solving regression
or classification problems. It works by constructing an ensemble of decision
trees using a training data set. The mean value from that ensemble of decision
trees is then used to predict the value for the new input data. To develop a
random forest model, we must specify the maximum number of trees that make
up the forest, and each tree is constructed using a bootstrapped random sample
from the training data set. The origin node of the decision tree is split into

32

Air pollution sensors Project

subnodes by considering a random subset of possible explanatory variables.
The training algorithm splits the tree based on which of the explanatory
variables in each random subset is the strongest predictor of the response.
This process of node splitting is repeated until a terminal node is reached.
The user can specify the number of random explanatory variables considered
at each node, the maximum number of subnodes, or the minimum number of
data points in the node as the indication to terminate the tree.

3.4 Current Calibration process

 0

 20

 40

 60

 80

 100

 120

20
18

-1
0-

15

20
18

-1
0-

22

20
18

-1
0-

28

p
m

 2
.5

 [
u
g
/m

3
]

reference
original

calibrated

(a)

 0

 20

 40

 60

 80

 100

 120

20
18

-1
0-

15

20
18

-1
0-

22

20
18

-1
0-

28

p
m

 2
.5

 [
u
g
/m

3
]

reference
original

calibrated

(b)

Figure 3.2: Different kind of calibration methods used [21]

Considering that PM2.5 is strongly affected by the influence of meteorologi-
cal factors, what has been done was to exploit this dependency and correlation
between the sensor error and these weather factors. Particularly the Honeywell
HPMA115S0-XXX particulate sensor has a relatively high accuracy (±15µg/m3

from 0 to 100µg/m3), considering the extremely low price and the technology used.
However, a filter and calibration of the collected data is necessary to eliminate
possible offsets, peaks and linearity errors.
For this purpose, during the calibration phase, all the sensors were positioned near
the ARPA fixed physical station in the City of Turin, which uses β -radiation
technology to provide high-precision measurements. The ARPA station provides
the hourly average data, which in this project have been used as a reference for
all the connection data from the sensor cards. It tends to point out that the

33

Air pollution sensors Project

hourly average data, obtained with the ARPA beta -radiation approach, are fully
consistent with the measurements of the gravimetric sensor.
As for our boards, first of all various filters were applied to remove outliers (Gaus-
sianMix) and any unwanted data, such as peaks. In particular, what has been
done is to calculate the average with a variable width window for the refinement of
the analyzed samples. Subsequently, the collected values were grouped, initially
on a 1 sample per second basis, by hourly average, in order to have data directly
comparable with those of ARPA. The results were very satisfactory as, most of the
samples are in the (±15µg/m3 range, which is reasonable considering the sensitivity
of the sensor.
Finally, the calibration process was performed on the hourly averages calculated.
As previously introduced in this chapter, the methods we chose for calibration
were: multivariate linear regression and the random forest. However, three types
of MLR were applied, namely, using only temperature, humidity only, and both
temperature and humidity. In all cases, RF calibration takes into account both
temperature and humidity.

3.5 Validation process
3.5.1 Validation metrics
The way to quantify the accuracy of a fitting model is by minimizing some error
function that measures the misfit between the output and the response function
for any given value of the data set. In the following, we will use several metrics
defined as in the SciKitLearn Python Library [24].

• The coefficient of determination is the proportion of the variance in the
dependent variable that is predictable from the independent variable:

R2(y, ŷ) =
qnsamples−1

i=0 (ŷi−ȳ)2qnsamples−1
i=0 (yi−ȳ)2

(3.2)

• The mean squared error (MSE) measures the average of the squares of the
errors. It is the second moment (about the origin) of the error and thus
incorporates the variance of the calibration curve:

MSE(y, ŷ) = 1
nsamples

·
qnsamples −1
i=0 (yi − ŷi)2 , (3.3)

• The Mean Bias Error (MBE) is usually adopted to capture the average bias
in a prediction.

MBE(y, ŷ) = 1
nsamples

·
qnsamples −1
i=0 (yi − ŷi) . (3.4)

34

Air pollution sensors Project

• The root mean squared error (RMSE) allows comparing different sizes of data
sets, since it is measured on the same scale as the target value. It is obtained
as the square root of the MSE, i.e.,

RMSE(y, ŷ) =
ð

MSE(y, ŷ). (3.5)

• The CRMSE is the Root Mean Square Error (RMSE) corrected for bias, i.e.,
it is defined as:

CRMSE = RMSE · sign(σmodel − σreference) (3.6)

where σ is the standard deviation of the measure.

• The correlation coefficient (Pearson product-moment correlation coefficient)
is defined as the covariance of the variables divided by the product of their
standard deviations.

ρy,ây = cov(y,ây)
σy ·σây (3.7)

3.5.2 The Validation Process

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

R
2
=0.8499

O
u
r

s
e
n
s
o
rs

Reference

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

R
2
=0.8443

O
u
r

s
e
n
s
o
rs

Reference

(b)

Figure 3.3: Validation process R2[21]

To test the performance of the two different calibration models, we first calibrate
our sensors using the data collected in the first 2 weeks of October 2018. Then,
we validate these calibration methods using samples collected in the last 2 weeks
of the same month. In this period, we compare the concentrations obtained after

35

Air pollution sensors Project

 0

 20

 40

 60

 80

 100

 120

20
18

-1
0-

15

20
18

-1
0-

22

20
18

-1
0-

28

p
m

 2
.5

 [
u

g
/m

3
]

reference
original

calibrated

(a)

 0

 20

 40

 60

 80

 100

 120

20
18

-1
0-

15

20
18

-1
0-

22

20
18

-1
0-

28

p
m

 2
.5

 [
u

g
/m

3
]

reference
original

calibrated

(b)

 0

 20

 40

 60

 80

 100

 120

20
18

-1
0-

15

20
18

-1
0-

22

20
18

-1
0-

28

p
m

 2
.5

 [
u

g
/m

3
]

reference
original

calibrated

(c)

Figure 3.4: Time series comparing the reference, the raw, and the calibrated
data using sensor 34, randomly selected. Calibration is performed using MLR. The
different plots show MLR with different dependent variables, namely temperature
(a), humidity (b), and temperature plus humidity (c).[21]

36

Air pollution sensors Project

calibration with the measured reference concentrations.
Fig. 3.4 shows the obtained results for one single sensor (sensor 34), randomly

selected using the MLR model. For this model, the three plots present the data
gathered as dependent variables, only temperature, only humidity, and both
variables as free variables. For all graphics, the calibrated plot is far more stable
than the original one. However, it is not possible to outline a strategy that is
clearly better than the other proposal.
To deepen our analysis, Figs. 3.2, 3.3 compares the MLR model with the RF one
(again using sensor 34). As for Fig. 3.4, calibration is performed during the first
2 weeks of October and validation during the last 2 weeks. In this case, we use
both the temperature and humidity as free variables. The charts report time series
(Fig. 3.2(a) and 3.2(b)) and scatter plots (Fig. 3.3(a) and 3.3(b)). Unexpectedly
(please see Zimmerman et al. [23]), our results show no advantage for the RF
model with respect to the MLR one. On the contrary, the MLR model seems to
outperform the RF model.
To better evaluate our results and to better assess the overall model performance,
we performed calibration and validation tests for longer periods. A secondary target
of this analysis is to find the best trade-off between the calibration effort and the
error obtained. We consider calibration periods varying from the 2 weeks used so
far up to 12 weeks, starting in October and ending in November 2018. In all cases,
the validation period has been selected in December 2018.
Table 3.1 reports the RMSE (Root Mean Square Error) (i.e., the Root Mean Square
Error, computed as defined by Equation 3.5) and the data correlation (computed
following Equation 3.7) for a representative sensor with different calibration periods
(2 and 12 weeks, respectively).

2 weeks 12 weeks
323 samples 1851 samples

T H T+H T H T+H
LR RMSE 19.03 14.17 14.42 13.49 10.04 11.66

Correlation 0.89 0.88 0.89 0.88 0.88 0.89
RF RMSE 25.41 21.77 23.50 13.85 12.63 11.33

Correlation 0.82 0.80 0.78 0.85 0.88 0.89

Table 3.1: Comparing different calibration techniques over different calibration
periods (2 and 12 weeks, respectively), adopting the RMSE (Root Mean Square
Error) metric. We consider all stationary sensors.

37

Chapter 4

Calibration of air pollution
sensors

In this chapter is discussed the third calibration approach, such as using Quantum
Machine Learning to calibrate the PM Sensors. The idea was born as an extension of
what is illustrated in the previous chapter, that is, starting from known algorithms,
such as that of Linear Regression in the classical field of machine learning, trying
to extend this approach and related to the world of quantum machine learning that
has recently made its way through advanced computing projects, which due to the
high number of resources required become complex to manage in a traditional way.

4.1 The idea of a hybrid network
The main purpose of the ws_analysis_qml.py class is to perform a calibration of
particulate sensors through the Linear Regression method using Angle Embedding,
since we have a limited number of features, and the classical data are represented
by float numbers, and one Single Qubit, because the required calculations on the
data are quite simple.

4.1.1 The concept of Quantum embedding
A quantum embedding represents classical data as quantum states in a Hilbert
space via a quantum feature map. It takes a classical datapoint x and translates
it into a set of gate parameters in a quantum circuit, creating a quantum state
|φxê.This process is a crucial part of designing quantum algorithms and affects
their computational power. To embed this data into n quantum subsystems (n
qubits or n qumodes for discrete and continuous variable quantum computing,
respectively), we can use various embedding techniques:

38

Calibration of air pollution sensors

• Basis-Embedding: each input is associated with a computational basis state
of a qubit system. Therefore, classical data has to be in the form of binary
strings. The embedded quantum state is the bit-wise translation of a binary
string to the corresponding states of the quantum subsystems.

• Amplitude-Embedding: data is encoded into the amplitude of a quantum
state. A normalized classical N -dimensional datapoint x is represented by the
amplitudes of a n-qubit quantum state |φxê as

|φxê =
NØ
i=0

xi|iê (4.1)

where N = 2n, xi, is the i-th element of x, and |iê is the i-th computational
basis state.

• Angle-Embedding: encodes N features into the rotation angles of n qubits,
where N ≤ n. This method is performed by applying rotations on the x-axis
or y-axis using quantum gates along with the values that have to be encoded.
If we want to apply angle embedding on a dataset, the number of rotations
will be the same as the number of features in the dataset. The n-dimensional
sample would take n-number of qubits to generate the set of quantum states.
Fig. 4.1 show an example of y-rotation Ry(v) by an angle v around the y axis,
that is, in the x-z-plane.

Figure 4.1: Example of y-rotation Ry(v) by an angle v around the y axis, that is,
in the x-z-plane.[25]

39

Calibration of air pollution sensors

4.2 Implementation of the algorithm
In this section, the key parts of the algorithm are explained.

4.2.1 Useful library import
In this preliminary phase, all the required libraries are imported, noticing that to
perform several tests, both Tensorflow-gpu and Tensorflow-cpu libraries [26] will be
used for testing and evaluating of the algorithm in the presence of Nvidia CUDA ©

Core GPU [27] (for reference all test with CUDA Core are performed with a Nvidia
Quadro P2200 and Nvidia Tesla 4 Grapic Card). The library chosen to interface
with quantum computing is Pennylane [28], that was preferred to use as, compared
to the others taken into consideration, it was first of all the most complete in terms
of documentation and secondly it did not require manual configuration of quantum
circuits, thus managing to maintain a high level of code abstraction.
In addition to the specific libraries for classical and quantum Machine Learning,
the potential of the tt numpy library has been used to perform calculations and
prepare the data for the analysis; the matplotlib and seaborn libraries has been
used for the plots of graphs and heatmaps.

4.2.2 Hybrid quantum-classical layer
The stages of the construction of the levels are as follows:

• We start from creating a single qubit to represent one feature and encoding it
using AngleEmbedding Template.

• First, we create a device, then Qnode, that is defined as a quantum processor
of at least one qubit.

• In Qnode we have a quantum function , where we accept an input on one wire,
a qubit, in this case.

• StronglyEntanglingLayers [29] allows us to train Quantum Layers using pa-
rameters. This layer consists of single qubit rotations and entanglers, inspired
by the circuit-centric classifier design [25]. The argument weight contains the
weights for each layer.

1 c l a s s Strong lyEntang l ingLayers (weights , wires , ranges=None ,
impr imi t ive=None , do_queue=True)

2

40

Calibration of air pollution sensors

• Keras [30] will create the weight and pass it to our Qnode and in turn to
Strongly-Entangling Layer Notice that a single Strongly-Entangling Layer can
have multiple repeated layers, each of this layer has three trainiable parameters
that can be adjusted.

• The shape of the weights is hence [layer, no of qubits, 3].

• For the predicted output, we use a single neuron Dense Layer with linear
activation.

• Since we have a linear regression problem, the selected loss type is the mean
squared error (MSE).

The above results in the following Python implementation:

1 n_qubits = 1
2 l a y e r s = 3
3 data_dimension = 2
4 dev = qml . dev i c e (" d e f a u l t . qubit " , w i r e s=n_qubits)
5

6

7 @qml . qnode (dev)
8 de f qnode (inputs , weights) :
9 qml . templates . AngleEmbedding (inputs , w i r e s=range (n_qubits))

10 qml . templates . Strong lyEntang l ingLayers (weights , w i r e s=range (
n_qubits))

11 re turn [qml . expval (qml . PauliZ (i)) f o r i in range (n_qubits)]
12

13 weight_shapes = { " weights " : (l aye r s , n_qubits , 3) }
14

15 #Creat ing model l e v e l s
16 q laye r= qml . qnn . KerasLayer (qnode , weight_shapes , output_dim=n_qubits)
17 c l ay e r1= t f . keras . l a y e r s . Dense (n_qubits , a c t i v a t i o n=’ r e l u ’)
18 c l ay e r2= t f . keras . l a y e r s . Dense (data_dimension , a c t i v a t i o n=" l i n e a r ")
19

20 # Set t ing model l e v e l s
21 model= t f . keras . models . S equent i a l ([c layer1 , q layer , c l ay e r 2])
22

23 # S e l e c t i o n o f the model Optimizer
24 opt = t f . keras . op t im i z e r s .Adam(l ea rn ing_rate =0.01)
25

26 # S e l e c t i o n o f the model Loss
27 model . compi le (opt , l o s s=’mse ’)

41

Calibration of air pollution sensors

4.2.3 Import of the dataset for training and testing cali-
bration

The data are subsequently imported and the setup of the training network is
performed

1 X = tmp [r e g r e s s o r _ l i s t]
2 yarr = tmp [’ arpa ’]
3

4 X_train , X_test = s p l i t _ l i s t (X)
5 Y_train , Y_tets = s p l i t _ l i s t (yarr)
6

7 Y = np . array (Y_train , dtype=np . f l o a t 3 2)
8 X = pd . DataFrame (X_train . va lue s . reshape (l en (X_train) , 2))
9 Y = Y. reshape ((l en (Y_train) , 1))

10

11 scale_x = MinMaxScaler ()
12 x = scale_x . f i t_trans fo rm (X)
13 scale_y = MinMaxScaler ()
14 y = scale_y . f i t_trans fo rm (Y)
15

16 # Plot o f data pre−c a l i b r a t i o n
17 no_cal ib = p l t . f i g u r e (f i g s i z e =(50 , 10))
18 p l t . p l o t (Y, l a b e l=" Arpa Ri f . " , l i n ew id th =2)
19 p l t . p l o t (X[0] , l a b e l=" Sensor noCalib " , l i n ew id th =2)
20 p l t . l egend (l o c =2, prop={ ’ s i z e ’ : 20})
21 p l t . show ()

4.2.4 Training neural network
Here we train the combined Hybrid Model and plot the summarized history for
loss, the N_EPOCH and BATCH_SIZE parameter values will be discussed in the
next chapter, when we will talk about hyperparameter tuning.

1 # Training the Quantum Hybrid Neural Network
2 # Key parameter Number o f epoch = N_EPOCH
3 # and Batch S i z e = BATCH_SIZE
4 # w i l l be s e t ad hoc a f t e r the re f inement
5 # proce s s f o r each s i n g l e usab le c o n f i g u r a t i o n
6 # of the c a l i b r a t i o n method
7

8 h i s t o r y = model . f i t (x , y , epochs=N_EPOCH, batch_size=BATCH_SIZE)

42

Calibration of air pollution sensors

4.2.5 Sensor calibration and Loss analysis

After the train phase, we can perform a test with some new values to understand
the reliability of the trained network.

1 model . summary ()
2

3 # Plot the Loss summary
4 p l t . p l o t (h i s t o r y . h i s t o r y [’ l o s s ’])
5 p l t . t i t l e (’ model l o s s ’)
6 p l t . y l a b e l (’ l o s s ’)
7 p l t . x l a b e l (’ epoch ’)
8 p l t . l egend ([’ t r a i n ’] , l o c=’ upper l e f t ’)
9 p l t . show ()

10

11 # Restore data se t e be f o r e check
12 # c a l i b r a t i o n r e s u l t
13 X = tmp [r e g r e s s o r _ l i s t]
14 X = pd . DataFrame (X. va lue s . reshape (l en (X) , 2))
15

16 Y = np . array (yarr , dtype=np . f l o a t 3 2)
17 Y = Y. reshape ((l en (yarr) , 1))
18

19 scale_x = MinMaxScaler ()
20 x = scale_x . f i t_trans fo rm (X)
21

22 scale_y = MinMaxScaler ()
23 y = scale_y . f i t_trans fo rm (Y)
24

25 # Pred ic t c a l i b r a t e d value
26 pred = model . p r e d i c t (x)
27

28 r e s = scale_y . inverse_trans form (pred)
29

30 # Saving r e s u l t in CSV format
31 # f o r fu the r a n a l y s i s
32 pd . DataFrame (r e s) . to_csv (" r e s u l t s / r e s u l t . csv ")
33

34 # Plot u n c l a l i b r a t e d vs c a l i b r a t e d data
35 c a l i b = p l t . f i g u r e (f i g s i z e =(50 , 10))
36 p l t . p l o t (Y, l a b e l=" Arpa " , l i n ew id th =3)
37 p l t . p l o t (X[0] , l a b e l=" uncal s enso r " , l i n ew id th =2)
38 p l t . p l o t (r e s [: , 0] , l a b e l=" c a l s enso r " , l i n ew id th =3)
39 p l t . l egend (l o c =2, prop={ ’ s i z e ’ : 20})
40 p l t . g c f () . autofmt_xdate ()
41 p l t . show ()

43

Calibration of air pollution sensors

4.2.6 Evaluation of the error percentage
Finally, in the test phase of the algorithm, before the integration with the ws_analysis.py
class, a plot of %error was performed to have an estimation of how good is the
calibration. The target error threshold has been fixed at 10%

1 de f errorFunc (data) :
2 re turn (data − np . min (data)) / (np . max(data) − np . min (data))
3

4 percentage_error= []
5

6 f o r pred , r e a l in z ip (r e s [: , 0] ,Y) :
7 percentage_error . append (abs (pred−r e a l) / r e a l)
8

9 e r ro r_thre sho ld = [1 0] ∗ l en (t ime_ser i e s)
10

11 e r r o r = p l t . f i g u r e (f i g s i z e =(50 , 10))
12 p l t . p l o t (t ime_ser ie s , e r ror_thresho ld , " red " , l a b e l="10%")
13 p l t . p l o t (t ime_ser ie s , errorFunc (percentage_error) ∗100 ,
14 l a b e l="%Error " , l ineWidth=3)
15 p l t . p l o t (time_train , np . z e r o s (l en (t ime_train)) , " red " ,
16 l a b e l=" Train Set " , l ineWidth=4)
17 p l t . p l o t (time_test , np . z e r o s (l en (t ime_test)) , " b lue " ,
18 l a b e l=" Test Set " , l ineWidth=4)
19 p l t . l egend (l o c =2, prop={ ’ s i z e ’ : 20})
20 p l t . g c f () . autofmt_xdate ()
21 p l t . show ()

4.2.7 Example of ws_analysis_qml.py use
A complete call example of the calibration function is the following. The function
requires the following parameters:

• s: Sensor value.

• ws_id: Wheater Station ID (will be always 0, since we have only one Wheater
Station).

• start_dt_calibration: begin of the time window where the calibration will
be applied.

• end_dt_calibration: end of the time window where the calibration will be
applied.

• use_temp_bool: say whether the temperature will be used as a correlated
value.

44

Calibration of air pollution sensors

• use_rh_bool: say whether the relative humidity will be used as a correlated
value.

• hreshold_value: specifies the maximum value used for peak suppression.

• report_mode_bool: enables / disables the detailed report mode, including
printing of the graph for each single step of the algorithm. This parameter
will subsequently be divided in the tuning phase to facilitate access to some
graph and metric generating components of the algorithm.

1 nBoards = 12
2 boardNumbers = [1 0]
3

4 s t a r t_dt_ca l i b ra t i on = ’ 2018−10−16 ’
5 end_dt_cal ibrat ion = ’ 2018−10−31 ’
6

7 calKind = ’ qml ’
8 pmKinds = [’pm10 ’]
9

10 f o r s in board_l i s t [board] [pmKind] :
11 s t rS = " s " + s t r (s)
12 #other s cal_kind are skipped
13 i f calKind == ’ qml ’ :
14 ca lRet =
15 x . ca l ibrate_sensor_qml (
16 s , 0 ,
17 s ta r t_dt_ca l ib ra t i on ,
18 end_dt_cal ibrat ion ,
19 use_temp= use_temp_bool ,
20 use_rh= use_rh_bool ,
21 th r e sho ld= threshold_value ,
22 r epor t= report_mode_bool
23)

45

Chapter 5

Tuning, Simulations, and
Results

In this chapter, it is reported the hyperparameter tuning phase, the simulation
plots are exploited, and finally the obtained results are evaluated.

5.1 Tuning of hyperparameter
In this preliminary phase, the main purpose is to search for the optimal hyperpa-
rameters to have a calibration whose error percentage is as much as possible below
the threshold set at 10%.
The hyperparameters taken into consideration are the following, for each of them,
the range of values through which they have been tested is proposed in Tab. 5.1.
To reduce the computational time, all other available calibration methods have

Hyperparameter Proposed values
Number of Epoch 32, 64, 128, 256, 512
Batch Size 5, 10, 15, 20, 25, 30, 50
Learning Rate 0.001, 0.005, 0.01, 0.1

Table 5.1: Hyperparameters tuning phase proposed value

been disabled from the ws_analysis.py class. In addition, a special wrapper
function has been created, as shown below, which allows the export of the results
in CSV.
Subsequently, these files were analyzed using a specific script that outlines the
salient features. In particular, two evaluation metrics have been defined for each
individual configuration.

46

Tuning, Simulations, and Results

The Result Score was defined as

RS =
qN
i=0 |arpai − resulti|

N
(5.1)

Then the average of the Percentage Error, e.g the Error Score is:

ES =
qN
i=0

|arpai−resulti|
arpai

N
(5.2)

It should be noted that, for the metrics just defined, the lower value represents a
better data.

1 x . ca l ibrate_sensor_qml (
2 s ,
3 0 ,
4 s ta r t_dt_ca l ib ra t i on ,
5 end_dt_cal ibrat ion ,
6 use_temp=False ,
7 use_rh=True ,
8 th r e sho ld =150.0 ,
9 r epor t=False ,

10 p lo t=True ,
11 plot_name= " /perMin_ "+s t r (<value >)+
12 "_perMax_"+s t r (<value >) ,
13 d i r e c t o r y=d i r e c to ry ,
14 min_percent i l e=min_percent i le ,
15 max_percenti le=max_percenti le ,
16 use_quant i l e=<value >,
17 i s_tuning=<value >,
18 is_heatmap=<value>
19)

47

Tuning, Simulations, and Results

5.1.1 Tuning Number of epoches
As first, we start by finding the best value of the number of epoches. This analysis
is done by keeping a fixed value of Batch Size and Learning Rate to, respectively,
10 and 0.1. During the refining of the number of epoches, several configurations
were tested:

• Configuration 1:
Batch Size = 10,
Learning Rate = 0.1,
Time Range =2019/02/01 - 2019/02/16,
Sensor: s123,
Type= PM2.5,
Percentile optimization = Disabled.

• Configuration 2:
Batch Size = 10,
Learning Rate = 0.1,
Time Range =2019/02/01 - 2019/02/16,
Sensor: s124,
Type= PM10,
Percentile optimization = Disabled.

• Configuration 3:
Batch Size = 10,
Learning Rate = 0.1,
Time Range =2019/02/01 - 2019/02/16,
Sensor: s123,
Type= PM2.5,
Percentile optimization = Enabled,
Percentile range = 0.33 - 0.66.

• Configuration 4:
Batch Size = 10,
Learning Rate = 0.1,
Time Range =2019/02/01 - 2019/02/16,
Sensor: s124,
Type= PM10,
Percentile optimization = Enabled,
Percentile range = 0.33 - 0.66.

48

Tuning, Simulations, and Results

• Configuration 1:
Batch Size = 10,
Learning Rate = 0.1,
Time Range =2019/02/01 - 2019/02/16,
Sensor: s123,
Type= PM2.5,
Percentile optimization = Disabled.

0 50 100 150 200 250 300 350 400
Sample Number

0

20

40

60

80

100

120

Se
ns

or
 V

al
ue

ARPA
32 Epoch, Score: 25.9
64 Epoch, Score: 30.5
128 Epoch, Score: 24.0
256 Epoch, Score: 21.3
512 Epoch, Score: 28.9

Figure 5.1: Results Score graph, configuration 1: PM2.5 - offQuantile

0 50 100 150 200 250 300 350 400
Sample Number

0.0

0.2

0.4

0.6

0.8

1.0

%
er

ro
r

32 Epoch, Score: 0.16
64 Epoch, Score: 0.28
128 Epoch, Score: 0.10
256 Epoch, Score: 0.07
512 Epoch, Score: 0.18

Figure 5.2: Errors Score graph, configuration 1: PM2.5 - offQuantile

49

Tuning, Simulations, and Results

• Configuration 2:
Batch Size = 10,
Learning Rate = 0.1,
Time Range =2019/02/01 - 2019/02/16,
Sensor: s124,
Type= PM10,
Percentile optimization = Disabled.

0 50 100 150 200 250 300 350 400
Sample Number

0

20

40

60

80

100

120

Se
ns

or
 V

al
ue

ARPA
32 Epoch, Score: 15.2
64 Epoch, Score: 19.3
128 Epoch, Score: 14.9
256 Epoch, Score: 16.4
512 Epoch, Score: 15.4

Figure 5.3: Results Score graph, configuration 2: PM10 - offQuantile

0 50 100 150 200 250 300 350
Sample Number

0.0

0.2

0.4

0.6

0.8

1.0

%
er

ro
r

32 Epoch, Score: 0.07
64 Epoch, Score: 0.16
128 Epoch, Score: 0.14
256 Epoch, Score: 0.07
512 Epoch, Score: 0.12

Figure 5.4: Errors Score graph, configuration 2: PM10 - offQuantile

50

Tuning, Simulations, and Results

• Configuration 3:
Batch Size = 10,
Learning Rate = 0.1,
Time Range =2019/02/01 - 2019/02/16,
Sensor: s123,
Type= PM2.5,
Percentile optimization = Enabled,
Percentile range = 0.33 - 0.66.

0 20 40 60 80 100 120
Sample Number

0

20

40

60

80

100

120

Se
ns

or
 V

al
ue

ARPA
32 Epoch, Score: 21.3
64 Epoch, Score: 23.8
128 Epoch, Score: 24.0
256 Epoch, Score: 23.0
512 Epoch, Score: 16.9

Figure 5.5: Results Score graph, configuration 3: PM2.5 - onQuantile

0 20 40 60 80 100 120
Sample Number

0.0

0.2

0.4

0.6

0.8

1.0

%
er

ro
r

32 Epoch, Score: 0.14
64 Epoch, Score: 0.16
128 Epoch, Score: 0.12
256 Epoch, Score: 0.20
512 Epoch, Score: 0.09

Figure 5.6: Errors Score graph, configuration 3: PM2.5 - onQuantile

51

Tuning, Simulations, and Results

• Configuration 4:
Batch Size = 10,
Learning Rate = 0.1,
Time Range =2019/02/01 - 2019/02/16,
Sensor: s124,
Type= PM10,
Percentile optimization = Enabled,
Percentile range = 0.33 - 0.66.

0 20 40 60 80 100 120
Sample Number

0

20

40

60

80

100

Se
ns

or
 V

al
ue

ARPA
32 Epoch, Score: 23.4
64 Epoch, Score: 16.3
128 Epoch, Score: 13.4
256 Epoch, Score: 18.9
512 Epoch, Score: 17.8

Figure 5.7: Results Score graph, configuration 4: PM10 - onQuantile

0 20 40 60 80 100 120
Sample Number

0.0

0.2

0.4

0.6

0.8

1.0

%
er

ro
r

32 Epoch, Score: 0.08
64 Epoch, Score: 0.07
128 Epoch, Score: 0.13
256 Epoch, Score: 0.11
512 Epoch, Score: 0.09

Figure 5.8: Errors Score graph, configuration 4: PM10 - onQuantile

52

Tuning, Simulations, and Results

Configuration Batch Size SR ES SC

Config. 1
PM 2.5 - offQuantile

32 25.90 16 %
64 30.50 28 %
128 24.00 10 %
256 21.30 7 % J
512 28.90 18 %

Config. 2
PM 10 - offQuantile

32 15.20 7 % J
64 19.30 16 %
128 14.90 14 %
256 16.40 7 %
512 15.40 12 %

Config. 3
PM 2.5 - onQuantile

32 21.30 14 %
64 23.80 16 %
128 24.00 12 %
256 23.00 20 %
512 16.90 9 % J

Config. 4
PM 10 - onQuantile

32 23.40 8 %
64 16.30 7 % J
128 13.40 13 %
256 18.90 11 %
512 17.80 9 %

Table 5.2: Summary of obtained results of tuning number of epoches

Configuration Epoch Number SR ES
Config. 1
PM 2.5 - offQuantile 256 21.30 7 %
Config. 2
PM 10 - offQuantile 32 15.20 7 %
Config. 3
PM 2.5 - onQuantile 512 16.90 9 %
Config. 4
PM 10 - onQuantile 64 16.30 7 %

Table 5.3: Number of epoches selected for each configuration proposed

The Tab. 5.2 summarizes the results obtained, divided by configuration. On
the basis of the results obtained, the optimal configuration is shown in Tab.5.3, by
number of epoches for each single configuration proposed.

53

Tuning, Simulations, and Results

5.1.2 Tuning Learning Rate and Batch Size
Once the optimal number of epoches for each configuration was set, a gridsearch was
carried out to find the best combination of Learning Rate and Batch Size for each
configuration previously proposed (Config. 1-4). During gridsearch optimization,
the same configurations as before were used:

• Configuration 1:
Epoch Number = 256,
Time Range =2019/02/01 - 2019/02/16,
Sensor: s123, Type= PM2.5,
Percentile optimization = Disabled.

• Configuration 2:
Epoch Number = 32,
Time Range =2019/02/01 - 2019/02/16,
Sensor: s124,
Type= PM10,
Percentile optimization = Disabled.

• Configuration 3:
Epoch Number = 512,
Time Range =2019/02/01 - 2019/02/16,
Sensor: s123,
Type= PM2.5,
Percentile optimization = Enabled,
Percentile range = 0.33 - 0.66.

• Configuration 4:
Epoch Number = 64,
Time Range =2019/02/01 - 2019/02/16,
Sensor: s124,
Type= PM10,
Percentile optimization = Enabled,
Percentile range = 0.33 - 0.66.

54

Tuning, Simulations, and Results

• Configuration 1:
Epoch Number = 256,
Time Range =2019/02/01 - 2019/02/16,
Sensor: s123, Type= PM2.5,
Percentile optimization = Disabled.

0.001 0.005 0.01 0.1
Learning Rate

5

10

15

20

25

30

50

Ba
tc

h
Si

ze

10.8798 10.8599 11.6229 8.8219

11.7793 11.3914 11.6934 15.5714

11.4241 11.3454 11.5337 13.7814

11.3948 11.2052 11.9880 8.7898

11.3058 11.5840 11.9402 10.3682

11.5053 11.9189 10.6909 9.6996

11.6364 11.4583 11.3882 11.6402
9

10

11

12

13

14

15

Figure 5.9: Results Score heatmap, configuration 1: PM2.5 - offQuantile

0.001 0.005 0.01 0.1
Learning Rate

5

10

15

20

25

30

50

Ba
tc

h
Si

ze

0.0925 0.0913 0.1079 0.0822

0.1058 0.0994 0.1011 0.2005

0.1049 0.0978 0.1011 0.1624

0.1011 0.0976 0.1053 0.0807

0.1008 0.1028 0.1065 0.0903

0.1008 0.1054 0.0939 0.0822

0.1022 0.1010 0.0998 0.1062

0.10

0.12

0.14

0.16

0.18

0.20

Figure 5.10: Errors Score heatmap, configuration 1: PM2.5 - offQuantile

55

Tuning, Simulations, and Results

• Configuration 2:
Epoch Number = 32,
Time Range =2019/02/01 - 2019/02/16,
Sensor: s124,
Type= PM10,
Percentile optimization = Disabled.

0.001 0.005 0.01 0.1
Learning Rate

5

10

15

20

25

30

50

Ba
tc

h
Si

ze

16.1809 16.2568 16.9810 14.7305

16.0614 15.9813 15.8031 15.5873

16.3251 16.2300 15.6751 11.8440

16.0653 16.1037 16.8510 14.2683

16.3568 16.7783 15.5743 20.1499

16.4225 16.5453 16.5390 15.5732

16.1956 16.2028 15.3906 16.1198
12

13

14

15

16

17

18

19

20

Figure 5.11: Results Score heatmap, configuration 2: PM10 - offQuantile

0.001 0.005 0.01 0.1
Learning Rate

5

10

15

20

25

30

50

Ba
tc

h
Si

ze

0.0816 0.0937 0.0920 0.0750

0.0937 0.0947 0.0934 0.0809

0.0957 0.0951 0.0912 0.0694

0.0946 0.0938 0.1009 0.0823

0.0957 0.0984 0.0910 0.1076

0.0965 0.1006 0.0963 0.0870

0.0947 0.0945 0.0883 0.0994
0.070

0.075

0.080

0.085

0.090

0.095

0.100

0.105

Figure 5.12: Errors Score heatmap, configuration 2: PM10 - offQuantile

56

Tuning, Simulations, and Results

• Configuration 3:
Epoch Number = 512,
Time Range =2019/02/01 - 2019/02/16,
Sensor: s123,
Type= PM2.5,
Percentile optimization = Enabled,
Percentile range = 0.33 - 0.66.

0.001 0.005 0.01 0.1
Learning Rate

5

10

15

20

25

30

50

Ba
tc

h
Si

ze

13.8551 5.5834 6.2076 6.5778

5.9291 6.0931 5.7501 7.5001

5.9945 6.0083 5.9711 6.2840

5.9129 5.9136 5.9253 5.8035

5.7819 5.8399 5.8354 5.9269

5.8982 5.8822 5.8851 7.1404

5.8297 5.8667 5.8464 5.7755
6

7

8

9

10

11

12

13

Figure 5.13: Results Score heatmap, configuration 3: PM2.5 - onQuantile

0.001 0.005 0.01 0.1
Learning Rate

5

10

15

20

25

30

50

Ba
tc

h
Si

ze

0.0736 0.1437 0.2335 0.1468

0.1172 0.1125 0.0978 0.2817

0.1118 0.1102 0.1134 0.1822

0.1090 0.1110 0.1186 0.1008

0.1129 0.1206 0.1214 0.1035

0.1129 0.1136 0.1158 0.1635

0.1077 0.1103 0.1259 0.0878

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Figure 5.14: Errors Score heatmap, configuration 3: PM2.5 - onQuantile

57

Tuning, Simulations, and Results

• Configuration 4:
Epoch Number = 64,
Time Range =2019/02/01 - 2019/02/16,
Sensor: s124,
Type= PM10,
Percentile optimization = Enabled,
Percentile range = 0.33 - 0.66.

0.001 0.005 0.01 0.1
Learning Rate

5

10

15

20

25

30

50

Ba
tc

h
Si

ze

12.3438 7.9947 8.9407 12.7383

8.2558 8.4235 8.9344 8.4483

8.2288 8.2243 8.3483 9.0761

8.1881 8.1664 8.0797 8.5207

8.1912 8.3305 8.0297 8.1230

8.1807 8.1887 8.1200 8.1344

8.1332 8.2933 8.3442 8.6618

8

9

10

11

12

Figure 5.15: Results Score heatmap, configuration 4: PM10 - onQuantile

0.001 0.005 0.01 0.1
Learning Rate

5

10

15

20

25

30

50

Ba
tc

h
Si

ze

0.0651 0.0904 0.0957 0.1139

0.0852 0.0822 0.0804 0.0732

0.0833 0.0841 0.0846 0.0766

0.0853 0.0860 0.0878 0.1582

0.0872 0.0806 0.0890 0.0825

0.0855 0.0862 0.0866 0.0926

0.0846 0.0915 0.0960 0.0873

0.08

0.10

0.12

0.14

Figure 5.16: Errors Score heatmap, configuration 4: PM10 - onQuantile

58

Tuning, Simulations, and Results

On the basis of the results obtained, the optimal configuration is shown in Tab.5.4,
by Learning Rate and Batch Size for each single configuration proposed.

Configuration Learning Rate Batch Size SR ES
Config. 1
PM 2.5 - offQuantile 0.1 20 8.78 8.07 %
Config. 2
PM 10 - offQuantile 0.1 15 11.84 6.94 %
Config. 3
PM 2.5 - onQuantile 0.01 10 5.75 9.78 %
Config. 4
PM 10 - onQuantile 0.1 10 8.44 7.32 %

Table 5.4: Learning Rate and Batch Size selected for each configuration proposed
with metrics indicator

5.1.3 Tuning overall results

After tuning all hyperparameters of interest, i.e., epoch Number, Batch Size,
and Learning Rate, Tab. 5.5 shows the optimal configuration for each possible
configuration of the calibration method, i.e., for different PMs (2.5 and 10) and by
enabling or not the quantile-based optimizer.

Configuration Epoch Number Learning Rate Batch Size
Config. 1
PM 2.5 - offQuantile 256 0.1 20
Config. 2
PM 10 - offQuantile 32 0.1 15
Config. 3
PM 2.5 - onQuantile 512 0.01 10
Config. 4
PM 10 - onQuantile 64 0.1 10

Table 5.5: Final hyperparameter choiche for each configuration proposed

59

Tuning, Simulations, and Results

5.2 Validation of calibration strategy
After tuning all hyperparameters of interest, a reliability test of the calibration
method was carried out based on the same metrics seen in Chapter 3. The purpose
is to make a direct comparison between the calibration methods already present
and the one proposed in this thesis, to highlight the potential of this alternative
solution based on Quantum Machine Learning.
Before analyzing the results obtained by comparing the various calibration methods,
the configuration of the Violins.py class is reported, i.e., the class used for
comparing the calibrations carried out by the various methods.

5.2.1 PMs and Board Selection
Given the total of 12 boards present in the Weather Station, and given the high
time required for calibration and data analysis, it was decided to continue the
validation by choosing board number 10 as a reference. This choice is justified
because, based on a preliminary analysis carried out in another project, it turns
out to be the most reliable board.
We define first of all the number of boards as:

Nboards,available = 12 (5.3)

Then we select only one to perform validation:

Nselected board = 10 (5.4)

5.2.2 Percentile Optimizer range
The quantile-based optimizer arises from the idea that, at given relative humidity
values, some sensors tend to deviate significantly from the real value of the PM.
What this component does is an outlier detection calibration via GMM (Gaussian
mixture model), which can be viewed as an extension of the ideas behind k-means.
A Gaussian mixture model attempts to find a mixture of multidimensional Gaussian
probability distributions that best model any input dataset. Tab. 5.6 summarizes
the proposed configurations and, for each, the range used by the Gaussian mixture
model.

5.2.3 Time window calibration and evaluation
The calibration time windows represent the set of data on which each calibration
method trains. Different time windows of variable width were chosen, all in the
range of dates between 1 October 2018 and 1 March 2019. In particular, the

60

Tuning, Simulations, and Results

Config. Quantile range
Config. 1 0.00, 0.33
Config. 2 0.33, 0.66
Config. 3 0.66, 1.00

Table 5.6: Quantile range configurations

analysis focused on windows with a duration of 2, 4, 8, and 16 weeks.
Otherwise, the evaluation time windows represent the set of data on which each
calibration method performs its own test to understand if the neural network has
succeeded or not in correctly fitting the data. As for the time windows of the
training phase, the same methodology was also used in the test phase.

5.2.4 Xticks parameters
The Xticks parameters represent the points of interest used in the analysis of the
metrics of the Violins class. Precisely, they are specific dates in which the proposed
calibration result and the real value of the PM detected by ARPA will be observed.
The criterion for choosing these parameters is in line with the previous time windows
used in the training and evaluation phase. In particular, periods have been selected
where the occurrence of particular atmospheric events has meant that the sensors
will record singular events, such as the PM peak due to fireworks during New Year’s
Eve.

5.2.5 calKinds
The calKinds represent all calibration methods proposed and under analysis. Tab.
5.7 show all the proposed methods available and a brief description of them, with
an indication of those chosen for comparison with the new method proposed.

Calibration method Description Selected
lr Classic Linear Regression (LR) YES
lrt LR with Temperature NO
lrh LR with Relative Humidity NO
lrth LR with boot Temp. and Rel. Hum. NO
rf Random Forest YES
qml Quantum Machine Learning LR YES

Table 5.7: Calibration method proposed for validation process

61

Tuning, Simulations, and Results

5.2.6 Metrics and Coefficients
The metrics through which the existing calibration methods and the proposed new
one will be evaluated and compared are indicated in the metrics vector, there is
also another coefficient vector where the coefficients returned by the calibration
methods that support this type of data will be saved. This is not the case of the
Random Forest and Quantum Linear Regression, as being neural networks do not
return coefficients, but pretrained neural networks.
Tab. 5.7 recaps all the used metrics and their tags.

Metrics tag Description
mae Mean absolute error
mse Mean Square Error
rmse Root Mean Square Error
corr Correlation coefficient
r2score Coefficient of determination

Table 5.8: Metrics for the validation of calibration method

62

Tuning, Simulations, and Results

5.3 Validation result phase
In this section, the obtained results will be proposed, compared with the preexisting
calibration methods, such as Linear Regression, Random Forest, and Quantum
Linear Regression.
This was done through the Violins.py class, which gives different calibration
methods is able to return different comparison metrics, in particular the ones we
are going to see are:

• MAE (Mean absolute error)

• MSE (Mean Square Error)

• RMSE (Root Mean Square Error)

• CORR (Correlation coefficient)

• R2SCORE (Coefficient of determination)

Considering the multitude of time ranges on which the new proposed calibration
method has been validated, the results obtained over a single period, chosen
randomly, will be shown below. In order to be complete, all comparison graphs
generated will be shown for all proposed Xtick values.
The chosen time window is : 2018/10/01 - 2018/12/01

63

Tuning, Simulations, and Results

5.3.1 Mean absolute error results analysis
The Mean Absolute Error median plots are shown below. As it can be seen if Fig.
5.17, the error of the QML method is slightly higher compared to the LR, while it
is much better than the RF algorithm.
This result is motivated by the fact that the data is processed several times in more
cycles and with greater refinement than RF. The error threshold is therefore in
line with what was expected.

2018/10/01 - 2018/10/15 2018/10/16 - 2018/11/01 2018/11/01 - 2018/11/16 2018/11/16 - 2018/12/01
tst_time

5

10

15

20

25

m
ae

QML
LR
RF

Figure 5.17: Comparing MAE results on QML, LR, RF

64

Tuning, Simulations, and Results

5.3.2 Mean Square Error results analysis
The Mean Square Error instead indicates the average quadratic discrepancy between
the values of the observed data, in our case the reference ARPA and the values of
the estimated data, such as the output of the different calibration methods.

2018/10/01 - 2018/10/15 2018/10/16 - 2018/11/01 2018/11/01 - 2018/11/16 2018/11/16 - 2018/12/01
tst_time

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

m
se

QML
LR
RF

Figure 5.18: Comparing MSE results on QML, LR, RF

What emerges from this analysis is underlined in Fig. 5.18, even in this situation,
the results perfectly follow our expectations, as seen in the previous section, and
confirmed in this one, the method based on QML is always preferable to the RF,
while the LR continues to have a lower score on errors.

65

Tuning, Simulations, and Results

5.3.3 Root Mean Square Error results analysis
The RMSE represents the square mean of these differences. These deviations
are called residuals when calculations are performed on the data sample used for
estimation and are called errors, or forecast errors, when they are calculated out
of samples. RMSE is a measure of accuracy to compare the prediction errors of
different models for a particular dataset and not between datasets, as it depends
on the scale.

2018/10/01 - 2018/10/15 2018/10/16 - 2018/11/01 2018/11/01 - 2018/11/16 2018/11/16 - 2018/12/01
tst_time

5

10

15

20

25

30

35

40

rm
se

QML
LR
RF

Figure 5.19: Comparing RMSE results on QML, LR, RF

Finally, also in this case, as showed in Fig. 5.19, the error metrics lead to the
conclusion that the QML-based method has a reliability index that can be compared
to that of the classical LR method. As for the comparison with the RF, it is difficult
to define a winner, as the RF-based algorithm tends to have a high variance of data
reliability, however, based on the tests and simulations performed, the reliability of
the QML is being in most cases higher than that of the RF.

66

Tuning, Simulations, and Results

5.3.4 Correlation coefficient results analysis
What can be seen from the Fig. 5.20 is that given the data correlation index, i.e.,
the linearity relationship possibly present between the calibrated data and those of
the APRA reference, the RF calibration method is initially the most efficient, which
is denied by subsequent tests. These tests show the optimal nature of the results
obtained by the method based on QML and LR, the correlation index remains
quite high, fully satisfying the preestablished requirements.

2018/10/01 - 2018/10/15 2018/10/16 - 2018/11/01 2018/11/01 - 2018/11/16 2018/11/16 - 2018/12/01
tst_time

0.65

0.70

0.75

0.80

0.85

0.90

0.95

co
rr

QML
LR
RF

Figure 5.20: Comparing CORR results on QML, LR, RF

67

Tuning, Simulations, and Results

5.3.5 Correlation coefficient results, violin plots analysis
Violin plots are similar to box plots, except that they also show the probability
density of the data at different values, usually smoothed by a kernel density
estimator. As you can imagine a greater size for a given value, it indicates the
presence of more data in a given range.

20
18
-10
-01
_20

18
-10
-15

20
18
-10
-16
_20

18
-11
-01

20
18
-11
-01
_20

18
-11
-16

20
18
-11
-16
_20

18
-12
-01

tst_time

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
rr

Figure 5.21: QML Correlation coefficient violin plots

20
18
-10
-01
_20

18
-10
-15

20
18
-10
-16
_20

18
-11
-01

20
18
-11
-01
_20

18
-11
-16

20
18
-11
-16
_20

18
-12
-01

tst_time

0.0

0.2

0.4

0.6

0.8

1.0

co
rr

Figure 5.22: LR Correlation coefficient violin plots

68

Tuning, Simulations, and Results

20
18
-10
-01
_20

18
-10
-15

20
18
-10
-16
_20

18
-11
-01

20
18
-11
-01
_20

18
-11
-16

20
18
-11
-16
_20

18
-12
-01

tst_time

0.5

0.6

0.7

0.8

0.9

1.0

co
rr

Figure 5.23: RF Correlation coefficient violin plots

What can be seen from the graph above is first of all the presence of some oulire
values, highlighted in the narrow lower part of the graph.
The other thing that stands out immediately to the eye is the concentration of the
values in the high range, this is very positive, as being a correlation index, we can
interpret this data as a strong correlation between the data calibrated by the QML
method and those of the ARPA reference.

69

Tuning, Simulations, and Results

5.3.6 Coefficient of determination results analysis
Remembering the definition of correlation coefficient R2, such as the proportion
of variance in the dependent variable that is predictable from the independent
variable. Fig. 5.24 show the obtained results. The metrics and test periods remain
unchanged.
Analyzing the results obtained, we notice that R2 is in most cases is not very close
to 1, so the calibration algorithm does not its job very well.However, the values
obtained for the QML-based method are quite satisfactory and in line with what
was expected, the gap compared to the previous calibration methods in terms of
quality is remarkable.

2018/10/01 - 2018/10/15 2018/10/16 - 2018/11/01 2018/11/01 - 2018/11/16 2018/11/16 - 2018/12/01
tst_time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

r2

QML
LR
RF

Figure 5.24: Comparing R2 results on QML, LR, RF

70

Tuning, Simulations, and Results

5.4 Execution time analysis
The final step for the comparison of the calibration methods concerns the compu-
tational times involved. As previously mentioned, the method based on Quantum
Machine Learning cannot be particularly fast, since, first of all, it is performed by
means of a simulator of a quantum computer which the algorithm accesses through
the Pennylane library.
Second, the training process requires a variable amount of execution time, based
on the configuration of the hyperparameters. In particular, taking the worst case,
that is, configuration number 3, it requires an Epoch Number equal to 512.
From the simulations carried out, the following data result:

• Step execution time:
Tstep = 8s (5.5)

• Test execution time:
Ttest = 10s (5.6)

These data, which correspond to a pure average of those obtained, will be used as
a basis for the following calculations.
To perform the theoretical calculation of the overall execution time of the violins.py
class, according to the parameters specified for execution, the following steps were
performed:

1. First we define the time required to perform the training of the neural notwork
as:

Ttrain = Tstep ·Nepoch (5.7)

2. Second, we define the overall time for testing as

Ttest,tot = Ttest ·Ntest windows (5.8)

3. Now we can define the overall time for the QLM calibration kind.

TQML = (Ttrain + Ttest,tot) (5.9)

4. We define next the time required for one sensor, considering the number of
quantile slots, as:

Tsensor = TQML ·Nquantile slot (5.10)

5. Now we have to remind that for each board there are a different number of
sensors:

Tboard = Tsensor ·Nsensors (5.11)

71

Tuning, Simulations, and Results

6. Once we have reached the time required for execution on a single board we
must take into account the type of calibration required, that is PM2.5 or
PM10 or both.

TPMkinds = Tboard ·Nselected PMkinds (5.12)

7. Finally we multiply the number just obtained by the number of traning
windows

Ttot = TPMkinds ·Ntrain windows (5.13)

Tab. 5.9 show the constants used for time analysis, since we use only a part of the
available sensor data, since, as will be noted below, the execution times tend to
grow very rapidly.

Variable Description Value
Ntest windows Number of test windows 20
Nquantile Number of quantile range 3
NcalKinds Number of cal kinds 1
Nsensors Number of sensors 4
Nboards Number of boards 1
NpmKinds Number of pmKinds 1
Ntrain windows Number of train windows 20

Table 5.9: Constants for time analysis

Tab. 5.10 resume the execution time for each proposed configuration.

Configuration Epoch Number Execution time (hours)
Config. 1
PM 2.5 - offQuantile 256 149
Config. 2
PM 10 - offQuantile 32 30
Config. 3
PM 2.5 - onQuantile 512 286
Config. 4
PM 10 - onQuantile 64 47

Table 5.10: Execution time for each proposed configuration

72

Tuning, Simulations, and Results

5.5 Results on IBM QPU
To carry out this type of calibration through direct QPU, the PennyLane-Qiskit
plugin was used, which allows automatic translation of information in quantum
circuits.
In particular, the simulator configuration is as follows:

• The qiskit.ibmq device has been chosen, which allows direct execution with
auto translation of information to the remote QPU of IBM.

• The chosen backend is ibmq_bogota, whose configuration includes a maximum
total of 5 qubits, for a total quantum volume of 32 units. The quantum
processor used is the Falcon r4L.

The main disadvantage, which led to the exclusion of the use of a remote QPU,
was the fact that the chosen backend, like all others available, are shared among
millions of users. Therefore, the single execution of a task requires not indifferent
waits, and since for our calibration process the algorithm requires to iterate several
times over the data, we preferred to use a local simulator, which at the expense
of the quality of the data obtained , however, allowed to carry out all testing and
validation processes in a reasonable time.
The configurations chosen for the simulation carried out on the quantum computer
are the following:

• Configuration 1:
Results in Fig. 5.25
Epoch Number = 256,
Learning Rate = 0.1
Batch Size = 20
Time Range =2019/02/01 - 2019/02/16,
Sensor: s123,
Type= PM2.5,
Percentile optimization = Disabled.

• Configuration 2:
Results in Fig. 5.26
Epoch Number = 32,
Learning Rate = 0.1
Batch Size = 15
Time Range =2019/02/01 - 2019/02/16,
Sensor: s124,
Type= PM10,
Percentile optimization = Disabled.

73

Tuning, Simulations, and Results

2019-02-01 00:00:00 2019-02-03 00:00:00 2019-02-05 00:00:00 2019-02-07 00:00:00 2019-02-09 00:00:00 2019-02-11 00:00:00 2019-02-13 00:00:00 2019-02-15 00:00:00
Time range

0

20

40

60

80

100

120

140

160
Se

ns
or

 v
al

ue
Arpa
uncal sensor
cal sensor

Figure 5.25: QML simulation results on IBM Quantum, PM 2.5

2019-02-01 00:00:00 2019-02-03 04:00:00 2019-02-05 04:00:00 2019-02-07 04:00:00 2019-02-09 04:00:00 2019-02-11 04:00:00 2019-02-13 04:00:00 2019-02-15 04:00:00
Time range

0

50

100

150

200

Se
ns

or
 v

al
ue

Arpa
uncal sensor
cal sensor

Figure 5.26: QML simulation results on IBM Quantum, PM 10

What can be seen from the graphs is that, as expected, the simulation carried out
on QPU is able to calibrate the sensors with a greater degree of precision than the
simulator used locally.
However, as already mentioned previously, the long wait before receiving a response
from the remote QPU prevents its intensive use, as the time to carry out a complete
calibration would grow exponentially. This turns out to be one of the strongest
limitations in the field of quantum programming today.

74

Chapter 6

Conclusions and further
improvements

6.1 Conclusions

The ws_analysis.py class has been analyzed in detail, and based on the comparison
parameters seen in the previous chapter, it can be said that the results are promising.
Analyzing the comparison graph it is possible to note that in most cases the deviation
in the absolute value between the ARPA reference and the calibrated value of a
sensor remains in most cases below the threshold set at 10%.
Taking this into account, it is therefore possible to consider the method through
Quantum Machine Learning a valid alternative to the calibration methods already
proposed, as in terms of execution time, the results are perfectly in line with those
of the other methods.
Although, as just said, QML represents a valid alternative, it is nevertheless
necessary to take into consideration the biggest limiting factor found in this thesis.
During the simulations carried out with the help of the IMB QPUs, we found that
a significant waiting time to access the cloud resources was not among the largest
QPUs, there was still a lot of pending jobs.
The conclusion we reach is therefore that the world of QML is certainly a promising
world, through which very complex calculations can be carried out in a much
shorter time than the classic ML, but, nowadays, this technology is not easily
accessible and usable by everyone as the waiting times of the free QPUs made
available by various companies cannot guarantee manageable execution times.

75

Conclusions and further improvements

6.2 Further improvements
The next step to improve the only flaw that occurred during the implementation
of the thesis is to make the calibration class multithreaded.
A multithreaded approach would significantly reduce the execution time, since,
given the parallelizability of the operations, specifically the execution of the cali-
bration method for each sensor, one could think of calibrating several sensors at
the same time.
This would certainly lead to the problem of managing all synchronization mecha-
nisms at the thread level, but on the other hand the gain in terms of execution
time would be high.
What we intend to propose is a possible implementation of this class through the
use of the Python 3.8 Threading Library, a class that acts as a wrapper to the
internal part of the calibration, i.e. the passage through which the calibration
algorithm is chosen and performed on the given sensor.

6.2.1 MultiThread Class Possible Implementation

1 c l a s s generateDFQuantileMultiThreadWrapper (thread ing . Thread) :
2 de f __init__(s e l f ,
3 threadID , #Thread I d e n t i f i e r
4 pmKind , #PM10 or PM2.5
5 board , #Board ID
6 s , #Sensor ID
7 win_percent i l e , #P e r c e n t i l e Ranges
8 calKind , #Ca l i b ra t i on Type
9 x , #ws_anal isys s e l f

10 df , d fCoef f , #C o e f f i c e n t s
11 d i r e c to ry , #Root f o r P lo t s
12 time_windows_calibration , #Windows f o r Cal ib
13 time_windows_evaluation #Windows f o r Test
14) :
15

16 thread ing . Thread . __init__(s e l f)
17 #Omitted parameter s e l f i n i t
18

19 #I s o l a t e d Thread f o r t r a i n and t e s t
20 de f run (s e l f) :
21 pr in t (" S ta r t i ng " + s e l f . name)
22 #Run Ca l i b ra t i on
23 pr in t (" Ex i t ing " + s e l f . name)
24 re turn df , d fCoe f f

76

Bibliography

[1] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2017. arXiv: 1412.6980 [cs.LG] (cit. on pp. iii, 18).

[2] Osvaldo Simeone. A Brief Introduction to Machine Learning for Engineers.
2018. arXiv: 1709.02840 [cs.LG] (cit. on pp. 2, 5, 11, 12).

[3] Aurélien Géron. Hands-on machine learning with Scikit-Learn and TensorFlow
: concepts, tools, and techniques to build intelligent systems. Sebastopol, CA:
O’Reilly Media, 2017. isbn: 978-1491962299 (cit. on pp. 2, 31).

[4] Erik Brynjolfsson and Tom Mitchell. «What can machine learning do?
Workforce implications». In: Science 358.6370 (2017), pp. 1530–1534. issn:
0036-8075. doi: 10.1126/science.aap8062. eprint: https://science.
sciencemag.org/content/358/6370/1530.full.pdf. url: https://
science.sciencemag.org/content/358/6370/1530 (cit. on p. 2).

[5] Salma Jamal, Sukriti Goyal, Abhinav Grover, and Asheesh Shanker. «Machine
Learning: What, Why, and How?» In: Bioinformatics: Sequences, Structures,
Phylogeny. Ed. by Asheesh Shanker. Singapore: Springer Singapore, 2018,
pp. 359–374. doi: 10.1007/978-981-13-1562-6_16. url: https://doi.
org/10.1007/978-981-13-1562-6_16 (cit. on p. 2).

[6] George J. Aulisio. «Common Sense, the Turing Test, and the Quest for Real
AI». In: The European Legacy 25.1 (2020), pp. 105–107. doi: 10.1080/
10848770.2019.1598142. eprint: https://doi.org/10.1080/10848770.
2019.1598142. url: https://doi.org/10.1080/10848770.2019.1598142
(cit. on p. 3).

[7] Ethem Alpaydin. Introduction to Machine Learning. 3rd ed. Adaptive Com-
putation and Machine Learning. Cambridge, MA: MIT Press, 2014. isbn:
978-0-262-02818-9 (cit. on p. 3).

[8] Erik G Learned-Miller. «Introduction to supervised learning». In: I: De-
partment of Computer Science, University of Massachusetts (2014) (cit. on
p. 3).

77

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1709.02840
https://doi.org/10.1126/science.aap8062
https://science.sciencemag.org/content/358/6370/1530.full.pdf
https://science.sciencemag.org/content/358/6370/1530.full.pdf
https://science.sciencemag.org/content/358/6370/1530
https://science.sciencemag.org/content/358/6370/1530
https://doi.org/10.1007/978-981-13-1562-6_16
https://doi.org/10.1007/978-981-13-1562-6_16
https://doi.org/10.1007/978-981-13-1562-6_16
https://doi.org/10.1080/10848770.2019.1598142
https://doi.org/10.1080/10848770.2019.1598142
https://doi.org/10.1080/10848770.2019.1598142
https://doi.org/10.1080/10848770.2019.1598142
https://doi.org/10.1080/10848770.2019.1598142

BIBLIOGRAPHY

[9] Xin Yan and Xiao Gang Su. Linear Regression Analysis. WORLD SCIEN-
TIFIC, 2009. doi: 10.1142/6986. eprint: https://www.worldscientific.
com/doi/pdf/10.1142/6986. url: https://www.worldscientific.com/
doi/abs/10.1142/6986 (cit. on p. 5).

[10] Stephen M. Stigler. «The Seven Pillars of Statistical Wisdom». In: (2016).
doi: 10.4159/9780674970199 (cit. on p. 6).

[11] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and
Techniques. Adaptive computation and machine learning. MIT Press, 2009.
isbn: 9780262013192. url: https://books.google.co.in/books?id=
7dzpHCHzNQ4C (cit. on p. 6).

[12] Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. isbn:
0387310738 (cit. on pp. 6, 8).

[13] Haider Khalaf Jabbar and R. Khan. «Methods to Avoid Over-Fitting and
Under-Fitting in Supervised Machine Learning (Comparative Study)». In:
2014 (cit. on p. 11).

[14] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An In-
troduction to Statistical Learning: With Applications in R. Springer Publishing
Company, Incorporated, 2014. isbn: 1461471370 (cit. on p. 13).

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016 (cit. on p. 14).

[16] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006 (cit. on p. 14).

[17] Documentation Reference — Qiskit 0.27.0. url: https://qiskit.org/
(visited on 06/01/2021) (cit. on pp. 22, 24).

[18] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. 10th. USA: Cambridge University
Press, 2011. isbn: 1107002176 (cit. on p. 23).

[19] M. B. Plenio and V. Vitelli. «The physics of forgetting: Landauer’s erasure
principle and information theory». In: Contemporary Physics 42.1 (2001),
pp. 25–60. doi: 10.1080/00107510010018916 (cit. on p. 23).

[20] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. «An introduction to
quantum machine learning». In: Contemporary Physics 56.2 (2015), pp. 172–
185. doi: 10.1080/00107514.2014.964942 (cit. on p. 23).

78

https://doi.org/10.1142/6986
https://www.worldscientific.com/doi/pdf/10.1142/6986
https://www.worldscientific.com/doi/pdf/10.1142/6986
https://www.worldscientific.com/doi/abs/10.1142/6986
https://www.worldscientific.com/doi/abs/10.1142/6986
https://doi.org/10.4159/9780674970199
https://books.google.co.in/books?id=7dzpHCHzNQ4C
https://books.google.co.in/books?id=7dzpHCHzNQ4C
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://qiskit.org/
https://doi.org/10.1080/00107510010018916
https://doi.org/10.1080/00107514.2014.964942

BIBLIOGRAPHY

[21] Bartolomeo Montrucchio, Edoardo Giusto, Mohammad Ghazi Vakili, Stefano
Quer, Renato Ferrero, and Claudio Fornaro. «A Densely-Deployed, High
Sampling Rate, Open-Source Air Pollution Monitoring WSN». In: IEEE
Transactions on Vehicular Technology 69.12 (2020), pp. 15786–15799. doi:
10.1109/TVT.2020.3035554 (cit. on pp. 30, 31, 33, 35, 36).

[22] Alessandro Bigi, Michael Mueller, Stuart K Grange, Grazia Ghermandi, and
Christoph Hueglin. «Performance of NO, NO2 low cost sensors and three
calibration approaches within a real world application». In: Atmospheric
Measurement Techniques 11.6 (2018), pp. 3717–3735. doi: 10.5194/amt-11-
3717-2018 (cit. on p. 32).

[23] Naomi Zimmerman, Albert A. Presto, Sriniwasa P. N. Kumar, Jason Gu,
Aliaksei Hauryliuk, Ellis S. Robinson, Allen L. Robinson, and R. Subramanian.
«A machine learning calibration model using random forests to improve
sensor performance for lower-cost air quality monitoring». In: Atmospheric
Measurement Techniques 11.1 (2018), pp. 291–313. doi: 10.5194/amt-11-
291-2018 (cit. on pp. 32, 37).

[24] API Reference — scikit-learn 0.21.3 documentation. url: https://scikit-
learn.org/stable/modules/classes.html%5C#module-sklearn.metrics
(visited on 06/01/2021) (cit. on p. 34).

[25] Maria Schuld, Alex Bocharov, Krysta M. Svore, and Nathan Wiebe. «Circuit-
centric quantum classifiers». In: Physical Review A 101.3 (Mar. 2020). issn:
2469-9934. doi: 10.1103/physreva.101.032308. url: http://dx.doi.
org/10.1103/PhysRevA.101.032308 (cit. on pp. 39, 40).

[26] API Reference — TensorFlow Core v2.5.0 documentation. url: https://
www.tensorflow.org/api_docs/python/tf (visited on 06/01/2021) (cit. on
p. 40).

[27] API Reference — CUDA Toolkit v11.4.0 documentation. url: https://docs.
nvidia.com/cuda/index.html (visited on 06/01/2021) (cit. on p. 40).

[28] API Reference — Pennylane Core 0.16.0. url: https://pennylane.readth
edocs.io/en/stable/ (visited on 06/01/2021) (cit. on p. 40).

[29] API Reference — Pennylane: StronglyEntanglingLayers. url: https://pe
nnylane.readthedocs.io/en/stable/code/api/pennylane.templates.
layers.StronglyEntanglingLayers.html (visited on 06/01/2021) (cit. on
p. 40).

[30] API Reference — Keras 2.4.3. url: https://keras.io/api/ (visited on
06/01/2021) (cit. on p. 41).

79

https://doi.org/10.1109/TVT.2020.3035554
https://doi.org/10.5194/amt-11-3717-2018
https://doi.org/10.5194/amt-11-3717-2018
https://doi.org/10.5194/amt-11-291-2018
https://doi.org/10.5194/amt-11-291-2018
https://scikit-learn.org/stable/modules/classes.html%5C#module-sklearn.metrics
https://scikit-learn.org/stable/modules/classes.html%5C#module-sklearn.metrics
https://doi.org/10.1103/physreva.101.032308
http://dx.doi.org/10.1103/PhysRevA.101.032308
http://dx.doi.org/10.1103/PhysRevA.101.032308
https://www.tensorflow.org/api_docs/python/tf
https://www.tensorflow.org/api_docs/python/tf
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html
https://pennylane.readthedocs.io/en/stable/
https://pennylane.readthedocs.io/en/stable/
https://pennylane.readthedocs.io/en/stable/code/api/pennylane.templates.layers.StronglyEntanglingLayers.html
https://pennylane.readthedocs.io/en/stable/code/api/pennylane.templates.layers.StronglyEntanglingLayers.html
https://pennylane.readthedocs.io/en/stable/code/api/pennylane.templates.layers.StronglyEntanglingLayers.html
https://keras.io/api/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	What is Machine Learning
	When to Use Machine Learning
	Learning Tasks

	Introduction to Linear Regression
	Statistical inference
	Frequentist Approach
	Taxonomy of solutions
	Linear Regression (LR) Model
	Discriminative vs. Generative Probabilistic Model
	Model Order and Model Parameters
	Overfitting and Underfitting Problem
	Influence of dataset size
	Regularization

	Optimizers and model accuracy
	Gradient Descent
	Gradient Descent Algorithm
	Adaptive Moment Estimation (ADAM)
	Adam Configuration Parameters

	Overview

	Quantum Machine Learning
	What is Quantum Machine Learning
	Example of Quantum Gates
	Neurons and Weights
	Feed Forward Neural Network
	IO Structure of Layers
	Building the network

	Linear Regression with QML, case study
	Problem formulation
	Definition of parametrized Cost Function J
	Gradient descent algorithm in multivariable version
	Implementation in Python
	Results

	Air pollution sensors Project
	Introduction
	Purpose of the project
	Role of Sensors Calibration
	Calibration Strategies

	Current Calibration process
	Validation process
	Validation metrics
	The Validation Process

	Calibration of air pollution sensors
	The idea of a hybrid network
	The concept of Quantum embedding

	Implementation of the algorithm
	Usefully library import
	Hybrid quantum-classical layer
	Import of the dataset for training and testing calibration
	Training neural network
	Sensor calibration and Loss analysis
	Evaluation of the error percentage
	Example of ws_analysis_qml.py use

	Tuning, Simulations, and Results
	Tuning of hyperparameter
	Tuning Number of epoches
	Tuning Learning Rate and Batch Size
	Tuning overall results

	Validation of calibration strategy
	PMs and Board Selection
	Percentile Optimizer range
	Time window for calibration and evaluation
	Xticks parameters
	calKinds
	Metrics and Coefficients

	Validation result phase
	Mean absolute error results analysis
	Mean Square Error results analysis
	Root Mean Square Error results analysis
	Correlation coefficient results analysis
	Correlation coefficient results, violin plots analysis
	Coefficient of determination results analysis

	Execution time analysis
	Results on IBM QPU

	Conclusions and further improvements
	Conclusions
	Further improvements
	MultiThread Class Possible Implementation

	Bibliography

