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Summary

Thanks to the development and continuous enhancement of new medical and
biological technologies, Artificial Intelligence (AI) holds grand hope to rev-
olutionize cancer malignancy detection in the biomedical field. One of the
recently emerging challenges consists of developing Machine and Deep Learn-
ing (ML, DL) based frameworks involving the integration of heterogeneous
data gathered from omics such as Genomics, Epigenomics, Transcriptomics,
or Proteomics and biomedical images. Highlighting the inter-relationships
between data of different nature may help to better understand the pro-
gression of complex diseases in order to obtain a more precise diagnosis and
prognosis, providing the patient the best possible attainable therapies.

This work aims to investigate the integration between two data types: a spe-
cific category of biomedical images, the histological ones, and DNA methyla-
tion. The latter can reveal transcriptional regulation mechanisms and, con-
sequently, it is suitable to study pathological conditions, particularly cancer.
In this thesis, I consider colon cancer data derived from patients in The Can-
cer Genome Atlas (TCGA), one of the largest available repositories for this
type of information. Concerning images, I also exploit an additional set of
Regions Of Interest (ROIs) derived from an external dataset of colon cancer
histological images, pre-cleaned and labeled in a previous study according to
the presence of healthy or tumor tissue.

To achieve the aim, I train an image classification model to predict the malig-
nancy in the histological images. Afterward, I analyze how methylation data
affects the prediction performances by exploiting the correlation between the
features extracted from the two data types.

The input data consists of the methylation samples, divided between healthy
and tumor class, and the images, which are also globally labeled as tumor or
healthy. In the preliminary phase of the work, I perform a division into train
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set and test set for both data types, taking care to integrate both the image
and methylation data for the same patient. Next, I develop two pipelines in
parallel that perform the same tasks for the two data types, exploiting an
ML/DL approach based on the distinct nature of the data.

Regarding methylation, after a preprocessing step, I train multiple genomic
classifiers and analyze the prediction scores on the test set. All the trained
genomic classifiers achieve an accuracy higher than 94%. At this point,
I evaluate two dimensionality reduction techniques, Principal Component
Analysis (PCA) and Autoencoders (AE), to extract different feature sets
from the methylation train set. Therefore, I train a Support Vector Machine
(SVM) classifier for each extracted feature set and choose the feature set that
achieves the best scores on the test set.

On images, the preprocessing step involves cutting the whole images and
ROIs into smaller crops. For images sourced from the TCGA repository, I
also handle background removal. I exploit a well-known Convolution Neu-
ral Network (CNN) architecture, the VGG16, to develop the image feature
extractor model. After a hyper-parameters tuning procedure, I perform a
complete VGG16 fine-tuning on the ROIs. I evaluate a second model by
performing a further complete fine-tuning on part of the TCGA train set.
The CNN is the first part of a features extraction pipeline that eventually
performs PCA to obtain the same number of features extracted from the
methylome data. I classify the test set images with both models and obtain
two baseline results. I extract the train set features with both models, eval-
uating different feature sets, and train a Multi-Layer Perceptron (MLP) for
each feature set. I choose the MLP that classifies the test set more likely to
the respective baseline, hence making the extracted features representative.
The selected MLP becomes the actual images baseline classification model.

I perform the integration between the features extracted from the image and
methylation data for both the train and the test sets, exploiting two different
statistical methods: Mutual Information (MI) and Pearson correlation. In
detail, for each of the crops belonging to each whole slide, I have a vector
of extracted features; even if one image is divided into multiple crops, it be-
longs to a single patient. Instead, in the methylation dataset, each patient
is associated with a single sample, and therefore a single vector of extracted
features is available. For this reason, the correlation is performed between all
the crops of a specific patient with his methylation data. The crops belonging
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to the tumor images are correlated with the corresponding tumor methyla-
tion sample, similarly for the healthy data. The MI method returns only
non-negative values; results equal to 0 indicate that the feature vectors are
independent of each other. Instead, Pearson’s correlation between the two
vectors yields outcomes in a range [-1, 1]. These values are used to discard
all those image crops with a correlation value below a certain threshold: in
the case of Mutual Information, I choose a threshold value equal to 0; as for
Pearson, I discard crops that have a correlation value below the first quartile
(25%) of the maximum correlation value.

In the final part of the work, I compare the prediction results from the base-
line image classification model with those obtained from the same predic-
tive model, but without accounting for the under-threshold crops described
above. Therefore, I obtain three different sets of prediction scores on the
test set (Baseline case, MI case, and Pearson case). Assuming that a slide is
globally labeled as tumor if at least 10% of the crops is labeled as tumor, I
conclude that the MI-based approach is the best.

The main challenges of this analysis mainly derive from the image data com-
ing from the TGCA repository. Although the database provides a global
label for each image, there is often a non-negligible percentage of other tis-
sues inside (e.g., stromal tissue), which adds noise and introduces an error in
the training of the models. In detail, it would be necessary to have at least a
third-class available to distinguish between healthy, tumor, and other tissue
types to improve the reliability of the results. It could improve the perfor-
mance of the feature extractor model and consequently of the correlation
values.
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Chapter 1

Introduction

Artificial Intelligence (AI) has contributed to the progress of diverse research
fields in recent years. Machine Learning (ML) is an AI application that
aims to develop algorithms able to automatically learn from data and pro-
vide experience-enhanced predictions without being explicitly programmed.
In turn, Deep Learning (DL) is an ML subcategory that has found remark-
able success in multiple areas (computer vision, natural language processing,
bioinformatics, etc.) for its ability to identify features of data automatically
at different levels of abstraction.

In the biomedical area, thanks to the development and continuous enhance-
ment of new medical and biological technologies, AI holds grand hope to
revolutionize cancer malignancy detection. One of the challenges recently
emerging is the development of ML and DL based frameworks that involve the
integration of heterogeneous data gathered from omics studies and biomed-
ical images. On one side, the advent of Next Generation Sequencing (NGS)
technologies has made it possible to perform massive DNA and RNA sequenc-
ing, producing billions of nucleotide sequences in a relatively short time. On
the other side, biomedical imaging coming from various imaging technologies
is already widely used to discover tissue and organ characteristics associated
with particular pathological states. Highlighting the inter-relationships be-
tween data of different nature may help better understand the progression of
complex diseases and obtain a more precise diagnosis and prognosis, provid-
ing the patient the best possible attainable therapies. As a relatively recent
field of research, there are still few experiments in the literature, yet they are
steadily increasing. In many of them, the researchers exploit the integration
between some of the omics like Genomics, Epigenomics, Transcriptomics, or
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1 – Introduction

Proteomics, and image data generated using different technologies such as
Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET),
or histological images [1] [2]. The contribution of AI is essential to highlight
possible connections between the different types of data that would be diffi-
cult to identify otherwise. Approaches employed often involve the develop-
ment of ML and DL models able, for example, to identify imaging-derived
features that provide information about underlying tumor biology, to improve
the accuracy of disease classification or patient survival time prediction.

The challenges facing this interdisciplinary field are not trivial. Firstly, the
necessity to have high quality and sufficiently large data; this is a hyper-
present issue in the data science world: to create reliable models, the collected
data (the raw material) should have high standards. Furthermore, since
we are dealing with sensitive data, there are confidentiality requirements to
consider, which add a further obstacle to data usage. Secondly, the need to
have correct annotations, including proper data labeling, requires knowledge
of the application domain. Finally, designing and testing diverse network
models is needed to reveal meaningful relationships among the different types
of data. It is fundamental to keep all these aspects in mind to build robust
ML or DL models and thus trust AI in clinical applications.

1.1 Thesis objective
The main objective of this thesis is to investigate the integration between one
specific category of images, the histological images, and DNA methylation
(Figure 1.1). The latter can reveal transcriptional regulation mechanisms
and, consequently, it is suitable to study pathological conditions, particularly
cancer.
I use colon cancer patient data, freely accessible online on the Genomic Data
Commons (GDC) Data Portal [3], a research program of the National Cancer
Institute (NCI) that makes available data and information on cancer patients
from some of the complete cancer genomic repositories. Concerning images,
I also have an additional set of Regions Of Interest (ROIs) deriving from a
set of colon cancer histological images available on the University of Leeds
Virtual Pathology Project Website [4], cleaned and labeled in a previous
study, based on the presence of healthy or tumor tissue [5].
More specifically, I implement two parallel pipelines for both types of data
coming from GDC Data Portal able to (i) preprocess the data, (ii) extract
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1.2 – Organization

Figure 1.1. On the left, microarry technology used to obtain ge-
nomic values such as DNA methylation, On the right, an example
histological image patches.

the features, (iii) validate the extracted features, adopting an ML/DL based
approach. Finally, I build an image classification model to predict the whole
image as healthy or malignant. Data integration is accomplished by correlat-
ing features extracted from images and DNA methylation. The final goal is
to analyze how the correlation data impacts the image classification model,
considering various evaluation metrics.

1.2 Organization
The work is distributed into the following chapters:

• Chapter 2: this chapter introduces the biological background, providing
an overview of colon cancer, histological imaging, and DNA methylation.
Successively, it presents an overview of some of the strategies found in
the literature regarding the integration of omics and imaging using an
ML/DL based approach.

• Chapter 3: This chapter represents the heart of the work. It describes
the structure of the data and the preliminary operations to prepare them.
Next, it focuses on the experiments performed for feature extraction
and validation and creating the image classification model. Finally, it
describes the integration methods examined and how these methods im-
pact the aforementioned predictive image model.
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1 – Introduction

• Chapter 4: this chapter presents the results derived from the different
experiments conducted.

• Chapter 5: this chapter focuses on describing and interpreting the achieved
results.

• Chapter 6: this chapter focuses on deriving a conclusion for the whole
thesis.

• Appendix: this section contains supplementary material beneficial for
understanding the effects of the method used, showing for some example
slides the performed analysis.
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Chapter 2

Background

This chapter introduces the biological background, providing an outline of
colorectal cancer, DNA methylation, and histological imaging. After that, I
present an overview of some of the approaches found in the literature regard-
ing the integration of omics and imaging based on ML or DL.

2.1 Biological context
2.1.1 Colorectal cancer
The estimates of cancer incidence and mortality produced by the Interna-
tional Agency for Research on Cancer across over 20 global regions ranked
colon cancer as the fourth most diagnosed cancer type in 2018 [6].

Figure 2.1. Colon position in the lower digestive system, shown in a healthy
condition and affected by cancer [7].
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2 – Background

Colorectal cancer (CRC) develops from the colon or rectum (part of the large
intestine). In most cases, the tumor originates from small polyps that sit
inside the intestine, evolving into cancer over the years (Figure 2.1). Possible
risk factors may be having a family history of experiencing the disease (in two
or more first-degree relatives) rather than having a personal medical history
that may trigger the development of the malignancy (i.e., Crohn’s disease).
Other potential causes include alcohol abuse, smoking, and obesity. Possible
diagnostic methodologies include sigmoidoscopy or colonoscopy. Once cancer
is diagnosed, the prognosis and subsequent treatments depend on the stage
of the disease. The first area in which the malignancy occurs is called a
primary tumor (stage 0). When it begins to spread to other parts of the
body (using the blood or lymph system), it is known as metastasis. The
most common treatment to fight colon cancer involves surgery, removing the
piece of intestine affected by the tumor [8].

2.1.2 DNA methylation
Epigenetics, as a branch of genetics, is concerned with studying gene activ-
ity. Nonetheless, it focuses on any changes resulting from gene expression
not caused by modification of the DNA sequence [11]. An enlightening ex-
ample concerns monozygotic twins, who share the same genotype; despite
this, it may occur that they are not identical and, specifically, do not share
the same epigenome [12]. Epigenetic processes are part of the organism’s
natural mechanisms and can be various. For instance, they may yield mod-
ification of chromatin (composed of the DNA and the proteins originating
chromosomes) in a way that alters its structure and thus affects gene ex-
pression [13]. It is clear that studying epigenomics, with their alterations,
leads to comprehending even some pathologies better, including cancer. The
most known and studied epigenetic process is DNA methylation. As early as
1983, a study analyzed a reduction of DNA methylation for a specific gene
in cells invaded by colon cancer [14]. Over the years, numerous studies have
confirmed the relevance in observing DNA methylation as relating to cancer
origin.

DNA methylation entails attaching a methyl group (-CH3) to carbon 5 of the
cytosine ring preceding guanine (CpG dinucleotides). The process is accom-
plished by a set of enzymes named DNA methyltransferases (DNMTs) that
allow transferring the methyl group from S-adenosyl-methionine to cytosine.
With the term CpG island (CGIs), it is meant all those areas in the DNA
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2.1 – Biological context

that contain a significant presence of such CpG dinucleotides (cytosine fol-
lowed by guanine). In reality, the amount of CpG islands inside the genome
is not very high. They are usually present in the promoter or first exon
region. Under normal conditions, in areas with unmethylated CpG islands,
gene transcription is carried out, whereas, in areas with methylated CpG
islands, transcription is inactivated (Figure 2.2) [15].

Figure 2.2. DNA methylation role in the activation or non-
activation of gene transcription [15].

Therefore, undoubtedly, DNA methylation has a crucial function in the tran-
scriptional regulation of genes, with a remarkable impact on genome sta-
bility. Abnormal conditions recur in two categories: hypermethylation and
hypomethylation, indicating the excessive or poor presence of DNA methyla-
tion; respectively, they consequently lead to alterations of gene transcription.
Several studies reveal how both conditions can be interrelated to the occur-
rence of cancer, demonstrating that cancer cells exhibit a different amount
of methylation than normal ones. Generally, a state of hypomethylation is
observed in cancer. On the other hand, hypermethylation of CGIs may be
responsible for silencing specific genes in regulatory regions, which are not
methylated in normal tissues. In addition, each cancer type may be asso-
ciated with a specific methylome, meaning that methylation alterations are
cancer-specific. Microarray technology makes it possible to examine DNA
methylation values; thus, analyzing the amount of methylation in a cancer
tissue can lead to early diagnosis of the disease and, consequently, essential
in identifying a treatment response.

2.1.3 Histological images
Histology is concerned with studying the structure of cells and tissues, whose
functions and characteristics are analyzed through microscopic investigation.
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2 – Background

Histopathology focuses on studying tissues affected by the disease by exam-
ining a biopsy or surgical tissue specimen.

The digitized histological image is obtained after an initial preparation step
of placing the tissue piece on a glass slide with chemicals or by freezing the
slices. Pigmentation techniques are then employed to detect the different cel-
lular components present within the tissue. Hematoxylin-Eosin (H&E) is un-
doubtedly the most widely used staining method. Other approaches involve
the use of antibodies (immunohistochemistry, IHC) or immuno-fluorescence
labeling. At this point, the slide can be scanned and thereby becomes com-
puter analyzable [31]. The resulting whole slide images (WSIs) may have
strong color differences caused by different scanning rather than staining
procedures. Moreover, they can be explored at different levels of resolution,
depending on different requirements; the higher the resolution level, the more
in-depth inspection of histological features is.

Histopathology has long allowed pathologists to comprehend a disease state
and decipher its progress, as well as confirm a diagnosis.[32]. The human
decision support offered by analyzing histological images with the latest AI
methods has been a hot topic in recent years. In reality, digital images
appeared in the ’80s, but their usability was hampered by the slowness of
scanning equipment and a still scarcity of technological resources that today
we are familiar with. A WSI can be around a dimension of 2 or 3 GB, which
is excessive for the memories of those years. A significant first diffusion oc-
curred from the following decade, in the 1990s, through moderately priced
access to digital cameras, memory, and network resources [33].

Histopathology aims to trail what is already being accomplished by computer-
aided diagnosis (CAD) algorithms, assisting the radiologist in patient prog-
nosis. Similarly, it is possible to leverage technology to assist a pathologist
in analyzing tissues within WSIs and potentially make disease classification
easier [34]. Machine Learning is revolutionizing image processing, allowing
WSIs to be analyzed automatically and harness the full power of their high
resolution. Even if experienced in a particular domain, it is complicated
for a human being to extract information from an extensive dataset. The
MI/DL based approaches come in handy in revealing associations within the
biological tissues that would otherwise be difficult to identify [35]. Image
preprocessing is necessary to identify from the WSI the so-called Regions Of
Interest (ROIs), i.e., areas of tissue consisting of similar features that can
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therefore be univocally labeled. Undoubtedly the power provided by Deep
Learning, specifically Convolutional Neural Networks, allows lightening a
task such as the one just described, which otherwise would be excessively
time-consuming. Specifically, thanks to the CNNs architecture, it is possible
to extract various feature sets at different hierarchy levels (from less to most
specific). While supervised algorithms make it possible to handle the classifi-
cation of a particular disease (leveraging the power of neural networks as well
as using classical Machine Learning algorithms such as KNN, SVM, or RF),
through the unsupervised algorithms, it is possible to extrapolate different
feature sets or clusterize data according to certain similarities. It is apparent
that AI capabilities hold great promise for improving disease diagnosis and
prognosis.

Major issues encountered in histological image analysis include:

• Insufficient or reliable labeled images. Although a global label of the
whole image is provided, the more useful information is typically at
patch levels, which is often unavailable.

• Huge image size that demands high memory resources.

• Magnification levels that imply different levels of information.

• Color variation due to multiple staining methods.

2.2 Machine and Deep Learning for genomics
and images integration

This section describes some of the literature approaches that stand in the
context of this thesis work. As announced in Chapter 1, this is a relatively
emerging and exciting field of research, with a massive range of possibilities
to span. Therefore, it is interesting to understand how researchers are ap-
proaching it and the main strategies employed.

Dai Yang et al. [48] present an Autoencoder-based method, designed to an-
alyze the link between single-cell RNA-seq and chromatin images, aiming to
identify distinct subpopulations of human T-cells ready for activation (that
is critical to understanding the immune response). The method leverages
AE technology to integrate and translate the two data types, mapping each
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data type to shared latent space. Autoencoders are trained independently
and then combined to translate between the different domain pairs. Thereby,
they furnish a methodology for predicting the genome-wide expression pro-
file of a particular cell given its chromatin organization and conversely. It
is valuable for inferring how features in one dataset translate into features
in the other. It is found that classifiers trained to discriminate among sub-
populations in the initial datasets also performed well when assessed on the
translated datasets.
Sun et al. [49] integrate genomic data (gene expression, copy number al-
teration, gene methylation, protein expression) and histological images from
breast cancer patients. They propose a method called GPMKL, based on
multiple kernel learning (specifically simpleMKL) that performs feature fu-
sion coming from the different datasets embedded into cancer classification.
The CellProfiler tool is used to extract features from the images. They fo-
cus on improving the prediction accuracy of breast cancer survival time by
leveraging the information (the features extracted) coming from all types of
data.
Smedley et al. [50] explore the associations between gene expression profiles
and tumor morphology in magnetic resonance (MR) images of glioblastoma
(GBM) patients. In detail, they train a deep neural network with both types
of data to predict tumor morphology features. They exploit an approach
based on transfer learning, initializing the weights (only some layers) of such
network with the ones of autoencoder trained only on the genomic part.
Comparing the results of predicting tumor morphological features with those
obtained by linear regression proves their model achieves lower error levels.
Zhu et al. [51] propose a framework for predicting lung cancer survival by ex-
ploiting gene expression data (RNA) and histological imaging. They extract
the most relevant features from the two data separately and then integrate
them to train the survival model. The results show that the molecular pro-
file information and pathological image information are complementary and,
more importantly, demonstrate the improved prediction performance of the
proposed integration compared to using only genomic or imaging data.
Chen et al. [52] propose a general paradigm that not only predicts cancer
survival time but can also improve patient stratification. To validate their
method, they use glioma and clear cell carcinoma datasets, for which they
have genomics (CNV, mutation status, RNA-seq expression) and histological
images. They extract in parallel two different feature sets from the images:
one based on CNNs and the other exploiting Graph Convolutional Networks
(GCNs), while the genomic features are extracted using Self Normalizing
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Networks (SNNs). They build an ad hoc mechanism to check each extracted
feature set’s expressiveness and then exploit the Kronecker product to model
the pairwise feature interactions from the different networks. They highlight
the high interpretability of their paradigm, which allows one to understand
which features (from the different data sets) are factored into predicting the
survival outcome.
Mobadersany et al. [53] develop a deep learning-based model, named Ge-
nomic Survival Convolutional Neural Network (GSCNN), for survival pre-
diction in brain cancer. In the model architecture, convolutional layers are
succeeded by a sequence of fully connected layers. The framework embodies
genomic data as inputs to the fully connected layers. The last layer enables
the modeling of the survival estimation event. Throughout their model, they
show prediction accuracy that exceeds the current clinical paradigm for pre-
dicting overall survival of patients diagnosed with glioma.
Hao et al. [54] aim to integrate GBM histological images and gene expression
using a DL based approach. Their purpose is to improve survival prediction,
including discovering genetic and histopathological patterns that may re-
sult in different survival rates in patients. They leverage a deep learning
approach, building an architecture that identifies survival-related features
without having hand-labeled ROIs available. Furthermore, they provide a
patch-level feature aggregation strategy to obtain global features.

Unquestionably, putting together imaging data and omics is not a trivial
task. The approaches described focus primarily on the use of histological
images, but if one were to consider all categories of bioimaging combined
with the various omics, the variability is large. Therefore, the proposed so-
lutions are commonly based on feature extraction from the different types
of data and subsequent integration to summarize the reported integrative
methods. Besides the standard classification (tumor/non-tumor) and sur-
vival time prediction, the paradigms are often designed to be biologically
interpretable, thus allowing a better study of the heterogeneity of the tissues
present in the images (with a more comprehensive targeting of cell types),
rather than seeking to improve patient stratification, treatment response,
and treatment resistance.
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Chapter 3

Method

In this chapter, after an accurate description of the data structure, I focus on
the preliminary data preparation operation. First, I analyze the methylation
dataset, showing that the genomic classifiers trained on it are strong and
reliable. Then, I describe the methods used to extract the features and to
validate them.

Figure 3.1. High level workflow. After a preliminary preprocessing phase,
the most significant features are extracted and correlated with each other.
The ultimate goal is to analyze how the integration between the two data
types impacts the results of the image classification model.
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As already anticipated in Chapter 1, the steps of preprocessing, feature
extraction, and feature validation are performed, albeit with different ap-
proaches, for both data types (Figure 3.1). In this way, I describe how I
realize the image classification model and where I exploit the correlation be-
tween the extracted features from the two data types to make changes to the
prediction results of that model.

3.1 Data description
The data to be integrated come from The Cancer Genome Atlas (TCGA), a
well-known archive featuring over 20,000 primary cancer samples and matched
healthy samples covering 33 cancer types. The data are freely accessible on-
line at the GDC Data Portal [3], thanks to the efforts of a research program
of the National Cancer Institute. As for the images, I also have an additional
set of ROIs derived from a set of colon cancer histology images available on
the University of Leeds Virtual Pathology Project website [4], cleaned and
labeled in a previous study according to the presence of healthy or tumor
tissue [5].

An overview of available data follows:

• TCGA repository source:

– Methylation samples. Each sample represents a specific patient for
which the label (tumor or healthy) is provided.

– Whole slide images. Each image represents a specific patient, for
which a global label (tumor or healthy) is provided. Only for tumor
slides can one get the percentage of tumor cells, healthy cells, or any
other tissue, occurring in each slide.

• External source:

– Region Of Interests. Each ROI carries an assigned label (tumor or
healthy). As each of them stems from a Whole Slide, different ROIs
may belong to the same patient.

In each case, I examine patients who have been diagnosed with colon cancer.
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3.1.1 Methylation dataset
I collect data by selecting methylation beta values produced with Illumina
Human methylation platform 450 and Illumina Human methylation platform
27 on the GDC Data Portal. I construct the dataset in such a way to have
on the rows the patients and the columns the features (CpG islands).
The dataset has a size of (534, 25978). That is 534 patients by 25978 features.
As can be noticed in Figure 3.2, it is strongly unbalanced between the healthy
and tumor class: 460 tumor samples (86.14%) to 74 healthy (13.86%).

Figure 3.2. On the left, you can see the classes division in the methy-
lation dataset. On the right, a visualization of the entire dataset using
PCA is shown.

3.1.2 Images datasets
Regarding the data coming from the TCGA repository, I download slide
images, considering tissue slides as an experimental strategy. As a sample
type, I select "primary tumor" to collect images labeled as tumor; "solid tissue
normal" to obtain images labeled as healthy.
Both the TCGA slides and ROIs are files saved in SVS format and therefore
in multi-resolution. To open them, I use OpenSlide Python [59], a Python
interface to the OpenSlide library that allows reading a small volume of image
data at the resolution closest to a preferred zoom level.
The Table 3.1 shows, for the two datasets, the number of patients available
and their division into tumor and healthy class. In TCGA images, one slide
is associated with one patient, so I have 556 starting images. In the second
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Size Class
# Patient Tumor Healthy

Whole slides 556 462 94
ROIs 18 9 9

Table 3.1. Number of patients for each set of images and relative class division.

case, several ROIs can belong to the same patient; therefore, I have 80 ROIs
available, belonging to 18 distinct patients.

3.2 Data preprocessing

Figure 3.3. Venn diagrams show patients in common between the two
TCGA datasets. (i) Number of tumor patients belonging to the methyla-
tion dataset.(ii) Number of tumor patients belonging to the image dataset.
(iii) Number of healthy patients belonging to the methylation dataset. (iv)
Number of healthy patients belonging to the image dataset.
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As a preliminary action, I check TCGA patients for whom I have both the
methylation and image data:

• Number of patients for whom methylation and images are available in
the tumor class: 459.

• Number of patients for whom methylation and images are available in
the healthy class: 74.

The Venn diagrams in the Figure 3.3 display the number of shared patients
among the two types of data for the tumor class (red) and the healthy one
(blue).

3.2.1 Train and test set preparation
Given the samples in common between the two TCGA datasets, I create a
train set and a test set for methylation, and I do the same for the images.
They address the following criteria:

• The methylation test set and the images test set contain the same pa-
tients.

• The methylation train set and the images train set also contain the
same patients. The train set is generated from a subset of the remaining
samples, making the two classes balanced.

• If both tumor and healthy data are available for the same patient, they
are included in the same set.

External ROIs are used as an additional train set available.

The Table 3.2 shows the division of the samples between train and test set
and the corresponding division in the two classes.

Size Class
# Patient Tumor Healthy

TCGA Train set 86 43 43
Test set 149 119 30

ROIs ext. Train set 18 9 9

Table 3.2. Number of patients in train and test set and relative class division.
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3.2.2 Methylation analysis
The methylation dataset contains real values in a range [0.0031, 0.995]. No 0
values are present, although there is a significant number of missing values.
Since the number of features is high, I decide to remove all columns for which
at least one value is missing (3839). The dataset shape after removing the
missing values becomes (534, 22139). Next, the samples are divided into
train and test set as described in the previous paragraph.

Genomic classifiers

It is necessary to prove that the methylation data works well in the classifica-
tion task to achieve the stated goal. For this reason, I implement a pipeline
that consists of:

• Scaling the data: standardize features by removing the mean and scaling
to unit variance (Formula 3.1), in order to work with data at a common
scale of values.

x̄i = xi − µi

σi
(3.1)

Where µi is the mean value and σi the standard deviation of the i-th
feature.

• Dimensionality reduction: reduce the number of features by applying the
PCA technique so that the amount of variance explained by the selected
components reaches 65%.

• Training of 4 different supervised classifiers I will indicate as genomic
classifiers: K-Nearest Neighbors (KNN), Support Vector Machine, Ran-
dom Forest (RF), and Multi-Layer Perceptron.

• Evaluating the prediction results produced by the 4 genomic classifiers
on the test set using the following scores: accuracy, precision, recall, and
f1.

To optimize the parameter search of each classifier during the training phase,
I perform 5-fold cross-validation by dividing the train set in an 80%-20% pro-
portion. The train/validation set splitting is made to ensure that patients
with both tumor and healthy samples are available are part of the same set.
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I report as follows a table of optimized parameters1 for each classifier, as well
as the best ones highlighted in gray.

K-Nearest Neighbors

metric manhattan euclidean minkowski
n_neighbors 3 5 7

Table 3.3. Grid-search parameters for KNN

Support Vector Machine

kernel rbf poly
C 0.1 1 10
gamma scale auto

Table 3.4. Grid-search parameters for SVM

Random Forest

criterion gini entropy

Table 3.5. Grid-search parameters for RF

Multi Layer Perceptron

learning_rate_init 0.01 1e-03

Table 3.6. Grid-search parameters for MLP

Nevertheless, I cannot assume that all the predictions will be correct. I
have to take into account that the models are subject to prediction errors.
Therefore, a so-called confusion matrix (Figure 3.4) can be considered for
each classification model: TP (True Positives) and TN (True Negatives) are
respectively the quantity of tumor and healthy samples that are correctly

1For any clarification on the meaning of the optimized parameters consult the scikit-
learn library [60], the tool used to implement the experiments.
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predicted. Analogously, FP (False Positives) and FN (False Negatives) are
respectively the quantity of tumor and healthy samples that are wrongly
predicted. In the ideal case, FP and FN are zero.

Figure 3.4. Confusion matrix.

From the confusion matrix I easily derive some useful predictive performance
scores for each model: accuracy, precision, recall and f1-score. In detail:

• Accuracy = T P +T N
T P +T N+F P +F N

• Precision = T P
T P +F P

• Recall = T P
T P +F N

• f1 = 2 · precision·recall
precision+recall

Accuracy is undoubtedly the most general measure for evaluating the clas-
sification performance of a model. However, other measures are frequently
considered because they better show how the model performs on only one
of the two classes. For example, to minimize FNs, it is appropriate to focus
on recall. If, on the other hand, one wants to minimize FPs, precision is
the most recommended. The f1 is defined as the harmonic mean between
the two previous measures. Therefore, it allows obtaining a balance between
precision and recall.

As noted in Table 3.7, all trained classifiers make predictions on the test set
that achieve more than 94% accuracy. When looking at the other scores,
the results are similar. It demonstrates that the methylation data allows for
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the training of robust genomic classifiers, and it is, therefore, suitable for the
idea of integration with the image data.

KNN SVM RF MLP
accuracy 94.6% 99.3% 99.3% 98.7%
precision 100% 100% 100% 100%
recall 93.3% 99.2% 99.2% 98.3%
f1 98.7% 99.7% 100% 100%

Table 3.7. Accuracy, precision, recall and f1 score for each genomic classifier.

3.2.3 Images: preliminary operations
Processing image data requires preliminary steps. The whole slides can reach
huge dimensions since it is essential to inspect the tissues in detail. For this
reason, the technology used to create those slides grants to obtain different
levels of magnification and, therefore, read them at different levels. For
example, it is possible to inspect the same image at a deeper level, taking
advantage of a higher pixel resolution or at a lower level, depending on one’s
needs (Figure 3.5). With the previously mentioned OpenSlide library, images
from both datasets (TCGA and external ROIs) are opened at level 0, the
deepest level possible.

Figure 3.5. A whole slide example from the TCGA dataset showing
the advantage of having multi-resolution images to inspect tissues at
different zoom level.
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Cropping

To build an image classifier model, whole slides need to be cut into smaller
crops because of their high resolution. I develop a custom script in Python
able to:

• Generate non-overlapping crops of 500x500 pixels size from each whole
slide.

• Resize each crop to 64x64 pixels, using the thumbnail method provided
by Python Imaging Library (PIL). With the before-mentioned method,
obtaining a thumbnail version of a given image in a requested size is
possible.

• Convert the RGBA image into an RGB one, to not consider the Alpha
channel (it represents the degree of transparency).

In the end, each crop has a size of (64, 64, 3). The first two quantities
represent the pixels array size, while the last one is the number of channels,
which govern the color combination.

Background removal

As you can see from Figure 3.5, in TCGA whole slides, it is also neces-
sary to deal with the background presence. The approach used foresees
the discarding of all those crops whose average number of pixels is above a
certain threshold, optimized based on different experiments. For example,
given 255 color levels, for tumor slides, the chosen threshold is 232, while for
healthy ones is 235. Even though many background crops are discarded with
this approach, a background presence will likely remain in all crops cut on
the boundary of the whole slide. Extracting crops accurately is a resource-
intensive, mostly hand-crafted, and consequently time-consuming operation.
So, you have to consider that the presence of background residue is a sure
source of noise.
In the ROIs the background issue has already been managed in a previous
study. So I only have to deal with cropping.

3.2.4 Final datasets
Table 3.8 summarizes the final size and relative class division for the methy-
lation, images and ROIs datasets after the preprocessing step. Both patient-
level and crop-level information are shown for images.
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Size Class
# Patient / # Crops Tumor Healthy

Methylation Train set 86 43 43
Test set 149 119 30

Whole slides
Train set 86 43 43

122018 77250 44768

Test set 149 119 30
339148 296726 42422

ROIs Train set 18 9 9
14623 7971 6652

Table 3.8. Final datasets size and relative class division.

3.3 Feature extraction
At this stage, for both types of data, I evaluate multiple models aiming to
extract different feature sets, which will be successively validated.

3.3.1 Methylation
The goal is to find an acceptable trade-off between the quality and the number
of features extracted from the methylation dataset. I consider two different
approaches that both lead to reduce the dimensionality of the dataset: the
PCA based and the Autoencoder2 based one [62]. The former is nowadays
intensively used for this kind of task while the latter is more challenging.

Principal Component Analysis approach

The flow is the following:

• Scaling the data: standardize features by removing the mean and scaling
to unit variance in order to work with data at a common scale of values
(Formula 3.1).

2the Autoencoder is a Neural Network composed of an Encoder block (mapping data in
a latent space) and a Decoder block (mapping data in original space) built in a customized
manner.
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• Extraction of 3 different feature sets by performing a PCA, such that the
number of selected components for each feature set achieves a percentage
of explained variance of 65%, 80%, and 99%.

The Table 3.9 describes the number of features extracted for each feature
extractor model exploiting PCA.

% Explained variance # Feature extracted (PCA)
Model 1 65 9
Model 2 80 23
Model 3 99 76

Table 3.9. Methylation: feature sets evaluated with PCA approach.

Autoencoder approach

The flow is the following:

• Scaling the data: normalize all features into a range [0,1], meaning that
any given value may assume a value between the minimum value, 0,
and the maximum value, 1. The mathematical formulation is as follows
(Formula 3.2):

x̄i = xi −min(xi)
max(xi)−min(xi)

(3.2)

Wheremin(xi) andmax(xi) are respectively the minimum and the max-
imum of the i-th feature.

• Feature selection by exploiting the chi-square statistical test, in order to
restrict the number of initial features to be fed to the Autoencoder.

• Developing the Autoencoder architecture, assessing the following hyper-
parameters on the train set:

– Loss function
– Optimizer
– Learning rate
– Number of epochs
– Batch size
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• Autoencoder training. In this process, I employ a tool provided by
Keras called EarlyStopping. It is essentially a callback that enables the
monitoring of a selected metric, and it stops training when such metric
stops improving. I keep a 10% percentage of the train set as a validation
split. The callback monitors the validation loss to evaluate the number
of useful epochs and prevent the overfitting effect.

• Extracting from AE the Encoder block that will be the feature extractor.

According to the pipeline outlined above, I create 4 different models, leading
to 4 different feature sets. All models share these choices:

• The number of input nodes is equal to the number of features selected
in the feature selection step.

• Use of Rectified Linear Units (ReLU) as non-linearities.

• Use of the batch normalization technique during training. It stabi-
lizes the learning procedure and sharply reduces the number of training
epochs, thus avoiding model overfitting.

• Use of a linear activation function in the output layer.

The Table 3.10 summarizes the hyper-parameters adopted for each Autoen-
coder.

Loss function Optimizer Learning rate Epochs Batch size
AE 1 MSE Adam 1e-4 60 16
AE 2 MSE Adam 1e-4 40 16
AE 3 MSE Adam 1e-4 40 16
AE 4 MSE Adam 1e-5 60 16

Table 3.10. Hyper-parameters for each AE.

The Table 3.11 describes the number of features selected in the preliminary
phase and the number of features extracted for each feature extractor model
exploiting Autoencoders.

3.3.2 Images
The approach adopted in creating the feature extractor model for images is
incremental. I first evaluate the model architecture, optimizing the search

37



3 – Method

# Feature selected (FS) # Feature extracted (Encoder)
Model 1 15000 20
Model 2 15000 150
Model 3 15000 512
Model 4 4000 20

Table 3.11. Methylation: feature sets evaluated with the Autoencoder approach.

for hyper-parameters on the train set of ROIs. Successively, after choosing
the architecture and optimal parameters, I get two models: the first one is
trained on the ROIs themselves; the second model is a further fine-tuning
of the first model on a part of the train set derived from TCGA. From the
models mentioned above, I derive the two possible convolutional-based fea-
ture extractor models in-pipelined to ultimately perform a PCA and reduce
the number of extracted features more efficiently. I will subsequently validate
those feature extractor models to determine which one should be used.

As a starting point, I evaluate two well-known CNN architectures in liter-
ature: VGG16 and ResNet50 [64] [65]. Typically, those CNN architectures
provide two macroblocks for the sake of image classification:

• Convolutional block, mainly composed of the convolutional and pooling
layers, which allows feature extraction.

• Classifier block, for classifying the images according to the discovered
features.

It is a common practice to use pre-trained models on a huge reference dataset
built to solve a similar problem to the one we would like to address; this lever-
ages prior learning and avoids training the model from scratch. Specifically,
I consider the two CNNs pre-trained on ImageNet, a huge dataset consisting
of over 14 million images with associated labels, aiming to perform a fine-
tuning on my work dataset. I exploit the implementation of the two CNNs
made available by Keras [66], an open-source software library that provides
a Python interface to many Convolutional Neural Network architectures de-
scribed in the literature. Keras serves as an interface to the TensorFlow
library.
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After realizing the classification model eventually fine-tuned on the train set,
it is possible to exploit it as a feature extractor by removing the classification
block.

With this background, I realize a custom model in the following way:

• Select the CNN architecture model (VGG16 or ResNet50) pre-trained
on ImageNet.

• Remove the classifier block included on the top.

• Adjust input data shape that the model expects according to the size of
my working dataset.

• Add a preprocessing layer specific to the architecture selected.

• Choose the classifier to be placed on top of the convolutional macroblock.
Rather than exploiting the standard approach of using a stack of fully
connected layers, I add a global max-pooling layer.

• Add a dropout layer to avoid overfitting.

• Place the softmax layer at the end for classification.

To optimize the parameter search of each classifier, I decide to use the train
set consisting of ROIs, which are finely cleaned and therefore less noisy than
the images coming from TCGA. Thus, I perform 5-fold cross-validation by
dividing the train set in a 90%-10% proportion. The train/validation set
splitting is made to ensure that patients for whom both tumor and healthy
samples are available are part of the same set and always guarantee that
different patients belong to different sets.

I choose the following settings:

• Loss: categorical cross-entropy, since I use softmax activation function
in the output layer.

• Batch size: 32

• Epochs: 20

I assess the following hyper-parameters on the train set:

• Network layer from which to start fine-tuning.
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• Dropout rate

• Optimizer

• Learning rate. It is a good practice to use small learning rates in the
fine-tuning process. Otherwise, the knowledge gained previously may be
useless.

I report as follows a summary (Table 3.12) of optimized parameters3. I use
the term "None" in the table to indicate that a complete fine-tuning has been
performed. The last two columns represent the cross-validation scores (mean
train score and mean test score) obtained with the best hyper-parameters,
intentionally highlighted in grey.

Model Layer FT LR Optimizer Dropout rate Mean train score Mean test score
None 1e-4 SGD 0.5
11 1e-5 Adadelta 0.2VGG16
15 1e-6 Adam

0.9528 0.8924

None 1e-4 SGD 0.5
81 1e-5 Adadelta 0.2ResNet50
143 1e-6 Adam

0.9724 0.8738

Table 3.12. Hyper-parameters for each CNN architecture evaluated and
scores achieved with best parameters.

Taking advantage of the results presented in the Table 3.12, I decide to use
the model that leverages the VGG16 architecture, which proves to achieve a
higher score on the test set than the ResNet50 based one. As anticipated,
I train two image classification models that I will refer to as Base model
1 and Base model 2. In Figure 3.6 you can visualize a block diagram of
the architecture used to obtain the two models, in which I decide to insert
also two additional layers for the data augmentation, always to prevent the
overfitting. Specifically, I harness two Keras modules that are designed to
perform a random flip of the input image horizontally and vertically and a
counterclockwise rotation by a factor of 0.2.

Base model 1

The model is built by performing a complete fine-tuning of the architecture
presented in the Figure 3.6 on the full ROIs train set, as established via the

3For any clarification on the meaning of the other optimized parameters consult the
Keras library [66].
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Figure 3.6. Image classification model block diagram and variation of the
image size as it flows through the different layers. From this architecture I
realize both Base model 1 and Base model 2.

cross-validation technique. Other parameters follow:

• Learning rate: 1e-6

• Optimizer: Adam

• Dropout rate: 0.2

• Loss: categorical cross-entropy

• Batch size: 32

• Epochs: 20

Base model 2

I perform a further complete fine-tuning of the Base model 1 on a part of
TCGA train set (whole slides); for this reason, it is necessary to use a lower
learning rate than those used to train Base model 1. As noted in Table 3.8,
the train set is balanced in terms of patients, but after cropping, it turns
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out that the tumor class is in a clear majority. I then perform a random
undersampling, removing part of the crops belonging to the majority class to
make a more balanced train set. The Table 3.13 shows the size and balance
of the classes before and after undersampling.

Size Class
# Patients / # Crops Tumor Healthy

Whole slides
Train set 86 43 43

122018 77250 44768

Train set used 73 30 43
91734 46966 44768

Table 3.13. Train set undersampling to build Base model 2.

The settings selected for training the model follow:

• Learning rate: 1e-7

• Optimizer: Adam

• Loss: categorical cross-entropy

• Batch size: 32

• Epochs: 90

Feature extraction pipeline

For either Base model 1 and Base model 2, I carry out the following steps:

• Removing of the classifier block by cutting the model on the Global
max-pooling layer. In this way, I get the convolutional-based feature
extractor model that, starting from input data4 of size (64, 64, 3) brings
out a set of 512 features.

• Scaling the data: standardize features by removing the mean and scaling
to unit variance in order to work with data at a common scale of values
(Formula 3.1).

4Input data will be the individual crops belonging to each Whole slide.
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• Extraction of 2 different feature sets by performing a PCA, such that
the number of selected components for each feature set is equal to 9 and
20.

The Table 3.14 summarizes the feature sets evaluated using the procedure
just outlined.

Pipeline # feat. extr. after CNN # feat. extr. after PCA
Base model 1 + PCA(n_comp=9) 512 9
Base model 1 + PCA(n_comp=20) 512 20
Base model 2 + PCA(n_comp=9) 512 9
Base model 2 + PCA(n_comp=20) 512 20

Table 3.14. Images: feature sets evaluated.

3.4 Feature validation
This stage aims to validate the feature sets extracted in the previous step,
either for methylation or for images from TCGA, to be later integrated. First,
I train some models using each extrapolated feature set to achieve the aim
and classify the test set (both images and methylation). Then, depending
on the results obtained, I decide which extracted feature set should be used
for any two data types.

3.4.1 Methylation
It is needed to evaluate the extracted feature sets shown in the Table 3.9 and
Table 3.11. I opt to train a Support Vector Machine per feature set since it is
recognized as one of the most robust prediction methods. Like any classifier,
it is essential in the training phase to optimize the hyper-parameters. Table
3.15 shows the parameter grid I select to optimize for SVM on each feature
set.

For each feature set, the flow is:

• Optimization of the hyper-parameters shown in the Table 3.15 through
a 5-fold cross-validation technique, maximizing the f1-score.

• SVM training with the best parameters.
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kernel rbf poly
C 0.1 1 10
gamma 1e-2 1e-4 scale auto

Table 3.15. Grid search parameters for SVM.

• Evaluating the prediction results produced by the SVM on the test set
using the following scores: accuracy, precision, recall, and f1.

• Picking the feature set that achieves the highest scores.

3.4.2 Images

Concerning the images, the extracted feature sets shown in the Table 3.14
must be evaluated.

For either Base model 1 and Base model 2 :

• I classify the test set images, obtaining baseline results. Each slide is
made up of multiple crops and, therefore, the results are single-crop
level. In a nutshell, for each crop belonging to a specific slide I have the
healthy/tumor prediction.

• Considering the feature sets obtained after applying PCA, I train a
Multi-Layer Perceptron for each of them.

• For each MLP obtained, I classify the test set, obtaining crop-level pre-
dictions within a whole slide.

• I aggregate the results from crop-level to slide-level, in two ways: a slide
is globally classified as tumor if at least 10% of the crops composing
it are classified as tumor. I also consider a majority voting approach,
whereby a whole slide is classified as tumor if at least 50% of the crops
it is composed of are classified as tumor.

• I analyze the results obtained and pick the feature set that classifies the
test set in a way most closely resembling its baseline.
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MLPs details

From Baseline model 1 and Baseline model 2, I get two different feature sets
after applying PCA. This aspect means that I have to validate four different
feature sets and thus train four MLPs. I describe the architecture details for
each of them based on the input feature set.

Feature set 1: Base model 1 + PCA(n_comp = 9)

• Input layer: 9 nodes

• Hidden layers: 9 → 6 nodes

• Output layer: 2 nodes (softmax activation function)

Feature set 2: Base model 1 + PCA(n_comp = 20)

• Input layer: 20 nodes

• Hidden layers: 10 → 6 nodes

• Output layer: 2 nodes (softmax activation function)

Feature set 3: Base model 2 + PCA(n_comp = 9)

• Input layer: 9 nodes

• Hidden layers: 9 → 6 nodes

• Output layer: 2 nodes (softmax activation function)

Feature set 4: Base model 2 + PCA(n_comp = 20)

• Input layer: 20 nodes

• Hidden layers: 10 → 6 nodes

• Output layer: 2 nodes (softmax activation function)

The Table 3.16 summarizes the parameter choices for each feature set.
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Loss Learning Rate Optimizer Epochs Batch Size

Feature set 1 categorical
cross-entropy 1e-4 Adam 50 32

Feature set 2 categorical
cross-entropy 1e-4 Adam 40 32

Feature set 3 categorical
cross-entropy 1e-4 Adam 30 32

Feature set 4 categorical
cross-entropy 1e-4 Adam 40 32

Table 3.16. Parameters used for each MLP.

3.4.3 Image classification model
The validation of the extracted features allows to figure out the feature set
that is most representative over its respective baseline in predicting the im-
age test set. Since I will correlate these features with those extracted from
the methylation dataset, the final image classification model is precisely the
MLP that achieves the best results, meaning it predicts the test set similar
to the respective baseline. To assess the similarity among the different pre-
dictions, I aggregate the results at the slide level and construct a confusion
matrix, from which I then derive the accuracy, recall, precision, and f1-score.
I compare the scores obtained from each MLP with the respective baseline
and evaluate the most likely ones.

In making the decision, I evaluate an additional factor: the baseline results
cover both tumor and healthy slides belonging to the image set test. In de-
scribing the data, I mentioned that I have access to more detailed information
only for the tumor slides, that is, the percentage of tumor cells present in
each slide. I decide to leverage this information to do a follow-up on the base-
line that most closely matches the actual information in predicting the slides.

In short, to obtain the actual image classification model, I evaluate:

1. The baseline that most likely5 predicts the tumor images of the test set
concerning the available tumor percentage information.

5Whose percentage of crops classified as tumor is in a range [% tumor cells - 10, %
tumor cells + 10]. Where "% tumor cells" is the available information about the percentage
of tumor tissue in a given Whole slide.
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2. The MLP that most likely classifies the entire test set as its respective
baseline.

3.5 Integration method

At this point, I have at disposal the best feature set extracted from the
methylation data and the best feature set extracted from the image data (for
both the train and the test sets). The goal here is to understand whether or
not there is some form of interdependency between the two types of data by
exploring the correlation between them. To conduct such analysis, I exploit
two distinct statistical methods: Pearson correlation and Mutual Informa-
tion. I choose these two methods precisely to generate a more comprehensive
analysis: the former is widely used for its simplicity but requires some as-
sumptions about the distribution of data and measures linear relationships;
the latter is undoubtedly more generic, free-distribution and able to measure
nonlinear relationships, but its implementation is not trivial.

3.5.1 Correlation threshold based approach

I perform the correlation for both the train and the test sets. In detail, for
each of the crops belonging to each whole slide, I have a vector of extracted
features; even if one image is divided into multiple crops, it belongs to a
single patient. Instead, in the methylation dataset, each patient is associ-
ated with a single sample, and therefore a single vector of extracted features
is available. Therefore, the correlation is performed between all the crops
of a specific patient with his/her methylation data. The crops belonging to
the tumor images are correlated with the corresponding tumor methylation
sample, similarly for the healthy data. Of course, the two vectors to be cor-
related have to be of the same size (Figure 3.7).

Correlation values are used to discard all those image crops with a correla-
tion value below a certain threshold: in the case of Mutual Information, I
choose a threshold value equal to 0; as for Pearson, I discard crops that have
a correlation value below the first quartile (25%) of the maximum correlation
value.
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Figure 3.7. Correlation method. Each crop belonging to a given whole
slide is correlated with the corresponding methylation value (derived
from the same patient). The vectors are composed of the extracted
features for both data types.

Correlation impact on image classification model

I compare the test set prediction results from the baseline image classification
model with those obtained from the same predictive model, but without
accounting for the under-threshold crops described above. Therefore, I obtain
three different sets of prediction scores on the test set (Baseline case, MI case,
and Pearson case). As discussed previously, classification results are crop-
level. To be consistent, I aggregate all result sets from the crop-level to the
slide-level in two ways: a slide is globally classified as tumor if at least 10%
of its component crops are classified as tumor. I also consider a majority
approach, whereby an entire slide is classified as tumor if at least 50% of
its constituent crops are classified as tumor. I construct the usual confusion
matrix for both aggregation strategies and calculate for each of the three cases
accuracy, precision, recall, and f1-score. Observing these measures enables
the assessment of which of the three cases achieves the best results.

Correlation and prediction heatmaps

To visualize the correlation values simultaneously, I reconstruct each image
from the crops that compose it. Therefore, I generate a heatmap of correla-
tion values, having a width and a length equal to the corresponding image
to be reconstructed. The heatmap is helpful to observe, for each crop, the
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correlation value associated with it and get a slide-level view of the correla-
tion values distribution. Furthermore, I follow the same procedure for the
classification results. This way, one can quickly check how the crops of a
given slide have been classified and how many of them have been discarded
because of the sub-threshold correlation value.

Pearson correlation details

In statistics, Pearson’s correlation coefficient enables to measure a linear re-
lationship between two sets of data.

Given two random variables X and Y , it is defined as the covariance of such
variables, divided by the product of their standard deviation.

ρ = cov(X, Y )
σxσy

(3.3)

Where cov(X, Y ) is the covariance of X and Y , σx is the standard deviation
of X and σy s the standard deviation of Y .

Pearson’s correlation between the two vectors yields outcomes in a range
[-1, 1]. Values around zero indicate weak or non-existing correlation, while
values of -1 or +1 involve an exact linear relationship. Specifically, if two
variables have a correlation equal to 1, they are positively correlated. In-
stead, if they have a correlation value equal to -1, they are negatively corre-
lated (the relationship is inversely proportional). I exploit the Pearson cor-
relation implementation provided by the SciPy library in its module named
scipy.stats.pearsonr [67].

Mutual Information details

Mutual Information enables the measurement of nonlinear relationships be-
tween two random variables. As a concept closely related to entropy, it points
out how much information can be gained from one random variable through
observing another random variable. Specifically, it determines how different
the joint distribution of the pair (X, Y ) is from the product of the marginal
distributions of X and Y .

Mathematically speaking, in terms of PDFs for continuous distributions:

I(X;Y ) =
Ú

Y

Ú
X
p(X,Y )(x, y) log

A
p(X,Y )(x, y)
pX(x) pY (y)

B
dx dy (3.4)
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Where p(X,Y )(x, y) is the joint probability density function, pX(x) and pY (y)
are respectively the marginal probability density functions of X and Y .

The main Mutual Information properties are:

• I(X;Y ) ≥ 0, that means it is a non-negative quantity.

• I(X;Y ) = I(Y ;X), than indicates symmetry.

• If I(X;Y ) = 0 means thatX and Y are independent, because p(X,Y )(x, y) =
pX(x) · pY (y)

Hence, The MI method returns only non-negative values; results equal to 0
indicate that the feature vectors are independent of each other. The scikit-
learn library provides an implementation of the method (the module name
is sklearn.feature_selection.mutual_info_regression), which enables estimat-
ing mutual information for a continuous target variable. As described in the
documentation, the implementation is based on nonparametric methods rely-
ing on entropy estimation from k-nearest neighbors distances [68] [69]. Both
methods are grounded on the original idea first proposed in [70]. Considering
the methylation feature vector as the target vector, the method checks how
much dependence exists between the image feature vector and such target
vector.
In the implementation provided by scikit-learn, it is required to choose an
appropriate value for the parameter k, representing the number of neighbors
to use for MI estimation for continuous variables. Higher values reduce the
variance of the estimation but might introduce a bias. The default value
proposed by the library is 3.

Therefore, I optimize the parameter search on the train set by evaluating a
value of k equal to 1, 3, and 5. For each value of k, the flow is as follows:

• Perform feature correlation.

• Following the approach described previously, classify the train set using
the image classification model, discarding the crops of a given slide whose
correlation value is below the chosen threshold, that is 0.

• Evaluate aggregate classification results to choose the best k, considering
both the 10% based and majority voting based global classification of a
whole slide.
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The Tables 3.17 and 3.18 reveal, for each evaluated value of k, respectively,
the train set scores considering both the 10% based and majority voting
based global classification of a whole slide. From the results, I infer that the
best k to use is 5.

accuracy precision recall f1
MI (k=1) 0.860465 1.0 0.781818 0.877551
MI (k=3) 0.930233 1.0 0.877551 0.934783
MI (k=5) 0.965116 1.0 0.934783 0.966292

Table 3.17. Accuracy, precision, recall and f1 score for each value
of k, 10% based.

accuracy precision recall f1
MI (k=1) 1.0 1.0 1.0 1.0
MI (k=3) 1.0 1.0 1.0 1.0
MI (k=5) 1.0 1.0 1.0 1.0

Table 3.18. Accuracy, precision, recall and f1 score for each value of k,
majority voting based.
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Chapter 4

Results

In this chapter, I present all the results obtained. Starting from validating
the feature sets resulting from the extraction phase, I illustrate all the classi-
fication results for methylation and image data. Then, using the prediction
results of the model selected to classify the images, I point out how the
integrative method described in the previous chapter impacts these results.

4.1 Methylation: extracted feature sets

As reported in Table 3.9 and Table 3.11, I evaluate multiple feature sets
extracted from methylation data, exploiting two different approaches, one
based on PCA and the other based on Autoencoder. Table 4.1 shows, for
each feature set, the best parameters, assessed with cross-validation, used
to train the Support Vector Machine. Table 4.2 displays the scores derived
from the methylation test set classification for each feature set. The highest
scores are marked in grey.
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SVM_kernel SVM_C SVM_gamma
PCA (0.65) poly 10 0.0001
PCA (0.80) rbf 1 scale
PCA (0.99) rbf 1 scale
Encoder 1 poly 0.1 auto
Encoder 2 poly 0.1 0.01
Encoder 3 poly 0.1 0.01
Encoder 4 poly 0.1 auto

Table 4.1. Best SVM parameters for each methylation extracted feature set.

# feat. extr. accuracy precision recall f1
PCA (0.65) 9 0.993289 1 0.991597 0.995781
PCA (0.80) 23 0.986577 1 0.983193 0.991525
PCA (0.99) 76 0.986577 1 0.983193 0.991525
Encoder 1 20 0.973154 1 0.966387 0.982906
Encoder 2 150 0.986577 1 0.983193 0.991525
Encoder 3 512 0.979866 1 0.97479 0.987234
Encoder 4 20 0.986577 0.983471 1 0.991667

Table 4.2. SVM classification scores for each methylation extracted feature set.

4.2 Images: extracted feature sets
The organization is as so: for both Base model 1 and Base model 2, I report
the histograms of the test set classification results, keeping the tumor slides
separate from the healthy slides. Next, just for the tumor slides, I display
in a bar chart how the percentage of tumor cells, healthy and belonging to
another tissue (the stromal one), is distributed based on the information
collected by the GDC Data Portal (the ground-truth). Then, I compare
that information with the classification results of the two models mentioned
above. Lastly, for all MLPs trained on the extracted feature sets, I show the
classification results aggregated on slide-level via tables. Then, as described
in the previous chapter, I present both results using aggregation 10% based
and majority voting based.
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4.2.1 Base model 1
Figure 4.1 presents the classification results for tumor slides belonging to the
test set. Whereas Figure 4.2 shows the results for healthy slides.

Figure 4.1. Base model 1 classification results for tumor slides. For each
patient (each WSI), the stacked bar plot reveals the number of crops classified
as tumor (in red) and the number of crops classified as healthy (in blue).

Figure 4.2. Base model 1 classification results for healthy slides. For each
patient (each WSI), the stacked bar plot reveals the number of crops classified
as tumor (in red) and the number of crops classified as healthy (in blue).
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4.2.2 Base model 2
Figure 4.3 presents the classification results for tumor slides belonging to the
test set. Whereas Figure 4.4 shows the results for healthy slides.

Figure 4.3. Base model 2 classification results for tumor slides. For each
patient (each WSI), the stacked bar plot reveals the number of crops classified
as tumor (in red) and the number of crops classified as healthy (in blue).

Figure 4.4. Base model 2 classification results for healthy slides. For each
patient (each WSI), the stacked bar plot reveals the number of crops classified
as tumor (in red) and the number of crops classified as healthy (in blue).
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4.2.3 Tumor slides groundtruth

The Figure 4.5 indicates the percentage of tumor cells, healthy cells, or cells
belonging to stromal tissue in each whole slide for tumor slides. This infor-
mation is considered a ground truth (GTH) more detailed than the global
label associated with the entire slide I have available.

Figure 4.5. Tumor slides. For each patient (each slide) the percent-
age of tumor (red color), healthy (blue color) and stromal cells (green
color) as provided by the GDC Data Portal is shown. This information
is considered as a groundtruth.

Figure 4.6. Tumor slides. Percentage of crops classified as tumor for each
patient (each slide) by using Base model 1 (green color) and Base model 2
(red color), in relation to groundtruth information (blue color).
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In Figure 4.6, it is visible how Base model 1 and Base model 2 classify tumor
slides, compared to ground truth. In detail, for each slide, the percentage
of crops classified as tumor is reported concerning the percentage of tumor
cells provided by ground truth. To provide a qualitative description of the
obtained results, I assume that a prediction is comparable to the ground
truth if it is included in a range [% tumor cellsGT H - 10, % tumor cellsGT H

+ 10]. Therefore, it is inferred that Base model 1 classifies 37/119 slides in a
comparable way to the ground truth information, while the number of slides
for Base model 2 increases to 44/119.

4.2.4 Comparison results

The resulting tables allow a compact assessment of how significantly the pre-
dictions of the feature-trained models deviate from the corresponding base-
line models. The confusion matrix is the tool that most allows observing
in a straightforward way how each model behaves. As anticipated in the
previous chapter (Figure 3.4), TP (True Positives) and TN (True Negatives)
are the amount of tumor and healthy samples that are correctly predicted,
respectively. Similarly, FP (False Positives) and FN (False Negatives) are the
amount of tumor and healthy samples that are mispredicted, respectively.

The Tables 4.3 and 4.4 report the classification results in terms of confusion
matrices, while the Tables 4.5 and 4.6 output all the scores derived from such
matrices.

Tumor slides (119) Healthy slides (30)
# feat. extr. TP FN TN FP

Base model 1 None 115 4 6 24
MLP - Feature set 1 9 119 0 0 30
MLP - Feature set 2 20 119 0 0 30

Base model 2 None 119 0 9 21
MLP - Feature set 3 9 118 1 9 21
MLP - Feature set 4 20 118 1 11 19

Table 4.3. Confusion matrix (flattened in a row) for Base models and MLPs
trained on extracted feature sets, assuming 10% threshold.
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Tumor slides (119) Healthy slides (30)
# feat. extr. TP FN TN FP

Base model 1 None 83 36 30 0
MLP - Feature set 1 9 105 14 12 18
MLP - Feature set 2 20 109 10 26 4

Base model 2 None 112 7 27 3
MLP - Feature set 3 9 113 6 27 3
MLP - Feature set 4 20 110 9 27 3

Table 4.4. Confusion matrix (flattened in a row) for Base models and MLPs
trained on extracted feature sets, assuming 50% threshold (majority voting).

# feat. extr. accuracy precision recall f1
Base model 1 None 0.812081 0.966387 0.827338 0.891473

MLP - Feature set 1 9 0.798658 1.0 0.798658 0.88806
MLP - Feature set 2 20 0.798658 1.0 0.798658 0.88806

Base model 2 None 0.85906 1.0 0.85 0.918919
MLP - Feature set 3 9 0.852349 0.991597 0.848921 0.914729
MLP - Feature set 4 20 0.865772 0.991597 0.861314 0.921875

Table 4.5. Prediction scores for Base models and MLPs trained on extracted
feature sets, assuming 10% threshold.

# feat. extr. accuracy precision recall f1
Base model 1 None 0.758389 0.697479 1.0 0.821782

MLP - Feature set 1 9 0.785235 0.882353 0.853659 0.867769
MLP - Feature set 2 20 0.90604 0.915966 0.964602 0.939655

Base model 2 None 0.932886 0.941176 0.973913 0.957265
MLP - Feature set 3 9 0.939597 0.94958 0.974138 0.961702
MLP - Feature set 4 20 0.919463 0.92437 0.973451 0.9482

Table 4.6. Prediction scores for Base models and MLPs trained on extracted
feature sets, assuming 50% threshold (majority voting).
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4.2.5 Final image classification model
The selected image classification model is derived from Base model 2. Specif-
ically, I decide to use the MLP trained on Feature set 3. Histograms in Figure
4.7 and Figure 4.8 bring out the classification results of the selected model
for tumor and healthy slides at crop level.

Figure 4.7. Baseline classification results for tumor slides. For each patient
(each WSI), the stacked bar plot reveals the number of crops classified as
tumor (in red) and the number of crops classified as healthy (in blue).

Figure 4.8. Baseline classification results for healthy slides. For each patient
(each WSI), the stacked bar plot reveals the number of crops classified as
tumor (in red) and the number of crops classified as healthy (in blue).
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4.3 Integration method: comparison results
The comparative results reveal how the image classification model behaves
after discarding those sub-threshold correlation crops. Specifically, after cor-
relating each crop of each slide with its respective methylation sample, I
classify test set slides in three different ways:

1. Not discarding any crops (Baseline case).

2. Removing crops below Pearson’s correlation threshold (Pearson case).

3. Removing crops below MI’s correlation threshold (MI case).

The Tables 4.7 and 4.8 report the classification results in terms of confusion
matrices, while the Tables 4.9 and 4.10 output all the scores derived from
such matrices.

Tumor slides (119) Normal slides (30)
TP FN TN FP

Baseline 118 1 9 21
Pearson 118 1 12 18

MI 118 1 20 10

Table 4.7. Confusion matrix (flattened in a row) for Baseline, Pearson and
MI case, assuming 10% threshold.

Tumor slides (119) Normal slides (30)
TP FN TN FP

Baseline 113 6 27 3
Pearson 100 19 13 17

MI 101 18 30 0

Table 4.8. Confusion matrix (flattened in a row) for Baseline, Pearson and
MI case, assuming 50% threshold (majority voting).
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accuracy precision recall f1
Baseline 0.852349 0.991597 0.848921 0.914729
Pearson 0.872483 0.991597 0.867647 0.92549

MI 0.926174 0.991597 0.921875 0.955466

Table 4.9. Prediction scores for Baseline, Pearson and MI case,
assuming 10% threshold.

accuracy precision recall f1
Baseline 0.939597 0.94958 0.974138 0.961702
Pearson 0.758389 0.840336 0.854701 0.847458

MI 0.879195 0.848739 1.0 0.918182

Table 4.10. Prediction scores for Baseline, Pearson and MI case, assuming
50% threshold (majority voting).
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Chapter 5

Discussion

This chapter focuses on interpreting the results presented previously by mo-
tivating all decisions that have been taken.

5.1 Methylation: final extracted feature set
As demonstrated in the preliminary part of the method, methylation is a
data type that can address well the classification task among the two classes
(tumor, healthy). As a matter of fact, in Table 3.7, I emphasize that it is
possible to train four different genomic classifiers and achieve very high levels
of accuracy with each of them. It should be argued that methylation data
is not the only genomic source available. However, after carefully evaluating
other omic data types (e.g., transcriptomics), I chose methylation data due
to the reliability of the obtained models. In addition, although methylation
and histological images refer to the same patient and tumor, DNA methyla-
tion data could not refer precisely to the same piece of tissue used to get the
histological image but to a very close area.

Regarding the feature sets extracted by methylation, I note from Table 4.2
that the PCA-based approach with explained variance equal to 65% is the
best. The SVM trained on this feature set achieves better accuracy, preci-
sion, and f1 scores than the other evaluated approaches. It is also challenging
to work on such a small number of features, which is representative of the
dataset; this number is the same used to reduce the dataset before training
the genomic classifiers. From the same table, I note that the feature ex-
traction approach through Encoder 4 allows reaching the maximum level of
recall, going to extract 20 features. It is the initial reason that leads me to
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evaluate for the image data a set of extracted features equal to 9 and equal
to 20 to perform the integration process with two equal-sized vectors.

5.2 Images: final extracted feature set
The image data is undoubtedly more challenging to handle than the methy-
lation one. The slides collected from the TCGA repository were revealed
to be highly noisy, with a presence of tissue types not referable to the only
two classes healthy or tumor. Figure 4.5 emphasizes how for every tumor
slide, there is often a non-negligible amount of stromal tissue present. Un-
fortunately, this information is not known for healthy slides. This issue has
a substantial impact on the performance of the convolutional network devel-
oped for feature extraction since I train a classifier on two classes, not having
the correct labeling of each crop, but only the global label of the whole slide.

The first point to consider to evaluate the best set of features extracted from
the images is how Base model 1 and Base model 2 behave in the classification
task. Regarding tumor slides, it is evident (Figures 4.1 and 4.3) that Base
model 2 has a tendency to classify more crops as tumor than Base model
1. It is justified by the fact that Base model 1 is not trained on the TCGA
train set images but has learned to recognize only the information provided
by the external ROIs set. For the healthy slides (Figures 4.2 and 4.4) the
two models behave in a rather similar way, even if Base model 1 tends to
classify more crops as tumor in the slides of smaller size. As for the slides
of larger size, it is evident from both models (more so in Base model 2) that
a large part of the crops is not considered healthy, but this is right because
those slides are extremely noisy and contain a significant amount of tissue
that is neither healthy nor tumor.
From Figure 4.6, I note that the two models behave quite similarly to the
ground truth information in classifying tumor slides. However, as antic-
ipated, Base model 2 proves to be slightly more likely to agree with the
ground truth information. To select the set of extracted features to be used
in the integrative approach, I check how far the predictions of the trained
models on such extracted features deviate from the respective Base mod-
els. The confusion matrices shown in the Table 4.3 and in the Table 4.4
clearly demonstrate how Feature set 3 (obtained from the Base model 2 +
PCA(n_comp=9) pipeline) turns out to be the most representative of the
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respective Base model. In fact, with the 10%-based global slide prediction
approach, it behaves exactly like Base model 2, except for one tumor slide.
The same holds by considering the majority voting approach. The tables
showing the scores (Table 4.5 and Table 4.6) bring a further support to the
observation just given. I consequently decide to select Feature set 3 since:

1. Base model 2 used to obtain this feature set predicts tumor slides more
accurately than Base model 1 compared to ground truth data.

2. It is the most representative feature set in comparison to its Base model.

3. It consists in getting, for each crop of each whole slide, a number of
features equal to 9, that is, the same amount of features extracted from
the methylation dataset for each sample.

The histograms in the Figures 4.7 and 4.8 show the classification results of
what I consider the actual image classification baseline model, meaning the
Multi-Layer Perceptron trained on the selected Feature set 3. Observing the
bar charts, one can notice that they are almost identical to the classification
results presented previously (Figure 4.3 and 4.4), which concern the Base
model 2.

5.3 Integration method
From the analysis of the results described above, it is inferred that to perform
the correlation task, each methylation sample is characterized by a number
of features extracted equal to 9 and each crop from each slide image. The
classification results for each slide are reported in an aggregate form to decide
whether a slide is globally classified as tumor or not, based on the number
of crops classified as tumor. Assuming a 10% crop threshold, as shown in
the Table 4.7, for tumor slides, the 3 cases analyzed behave in the same way,
classifying 118/119 tumor slides (TP). The MI method differs in healthy
slides, increasing the number of TNs compared to Baseline. In the Pearson
case, there is a slight increase in TNs, but in a smaller form. This finding
indicates that the Mutual Information-based method is more successful in
identifying crops classified as tumor in the healthy slide case, thus allowing
them to be eliminated and improving performance. This result is confirmed
in the case of the global classification of the slide through majority voting,
as shown in Table 4.8. However, in such a table, it can be noted that, the
performance decreases using the Pearson and MI methods, compared to the
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5 – Discussion

Baseline considering the majority voting approach. This point indicates that
in many cases, crops that the model classifies as tumor are discarded. The
tables (Table 4.9 and 4.10) showing the scores derived from the confusion
matrices confirm what has to be stated. Based on the results, I conclude
by saying that assuming the 10% threshold, the MI based method guaran-
tees better performance, whereas assuming the 50% threshold, the Baseline
achieves the highest scores in the classification task.

5.3.1 Main issues and possible improvement solutions
Using the majority voting approach allows one to understand if there is an
excessive number of crops in a certain slide that is inconsistently classified
concerning the original global label. However, the results are presented in
aggregate form, based on the assumption that the Baseline model can identify
accurately whether a certain crop is healthy or tumor. As anticipated above,
this is the real challenge. In the supplementary material at the end of the
work, I show for some interesting example cases how the image classification
model behaves by reconstructing each slide through the heatmaps. I realize
that exploiting the correlation between the image and the methylation, crop
by crop, has positive feedback because, in many cases, it leads to identifying
the areas of the slide where there is tumor tissue (or not). In addition,
where the removal technique fails to identify the background, I find that
the approach employed succeeds in identifying such background areas and
consequently removing them. However, having such noisy slides, with tissues
differing from healthy or tumor one, undermines the image feature extractor
model (and therefore also the image classification model) in some cases.
The main issues I notice through the heatmaps are:

• The model associates the other tissue types (predominantly stromal
cells) either with the healthy class or the tumor class without a well-
identified criterion. This aspect influences the classification results quite
dramatically.

• As a ripple effect of the prior issue, the correlation succeeds in identifying
areas of different tissue from each other, however correlating positively
with the wrong areas of tissue.

Possible strategies for improvement are:
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5.3 – Integration method

• Collect images to learn a three-case problem, providing material to make
the model learn other tissue besides healthy and tumor ones.

• Consider an approach that modifies classification results not only on the
discard of sub-threshold correlation crops. Specifically, the correlation
value might be used to give more or less weight to the predictions made
by the model.
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Chapter 6

Conclusions

This work stands within an emerging interdisciplinary research field, dis-
cussing an approach for integrating two types of biomedical data: histo-
logical images and DNA methylation. The latter can reveal transcriptional
regulation mechanisms and, consequently, it is suitable to study pathological
conditions, particularly cancer.
The objective is to train an image classification model to predict malignancy
in histological images and investigate how methylation data affects prediction
performance by exploiting the correlation between features extracted from
the two data types. To validate the approach, I use colon cancer patient
data (methylation samples and whole slide images) from TCGA repository
and ROIs from a previous case study.
Key steps are:

• Preprocessing of both data types. At this stage, the images are cut into
smaller sized crops, discarding the background.

• Feature extraction, evaluating the extraction of different feature sets for
both data types, exploiting various ML/DL based approaches.

• Feature validation. The extracted feature sets are used to train genomic
and image classifiers separately. For each of the two data types, the
classifier that achieves better performance in predicting the test set is
chosen, and, consequently, the best set of extracted features is elected.
The selected image classification model becomes the Baseline.

• Feature correlation between the best set of extracted features for images
and the best set of extracted features for methylation, by employing
two statistical methods: Pearson correlation and Mutual Information.
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6 – Conclusions

Specifically, each crop of each whole slide of a given patient is correlated
with the respective methylation sample.

• Implementation of an approach that modifies the image classification
results (Baseline case) based on the crop correlation value: the crop is
discarded if its correlation value is below the first quartile (25%) of the
maximum correlation value (Pearson case) or equal to 0 (MI case).

• Analysis of the prediction results obtained for all three cases discussed
aforementioned. Considering that, for each slide, the classification pro-
vides crop-level results, I consider two aggregation strategies:

1. A whole slide is globally labeled as tumor if at least 10% of the crops
are labeled as tumor.

2. A whole slide is globally labeled as tumor if at least 50% of the crops
are labeled as tumor (majority voting).

• Whole slide image reconstruction using correlation and prediction heatmaps
to observe, for each crop, the associated correlation value and prediction
provided by the image classification model, respectively.

From the results analysis, I derive that:
• Assuming a 10% based threshold, the MI based method guarantees bet-

ter performance in classifying healthy slides, while the tumor slide classi-
fication is equal for the three cases. Therefore, considering both classes,
the MI-based method guarantees better performances.

• Assuming a majority voting based threshold, the Baseline achieves the
highest scores in the classification task.

I gather from the slide reconstruction that:
• Exploiting the correlation between the image and the methylation, crop

by crop, has positive feedback because in many cases leads to identify
the areas of the slide where there is tumor tissue (or not).

• TCGA images contain tissue that cannot be associated with the healthy
class or tumor class. The model assigns the other tissue types present
(predominantly stroma) to either the healthy or tumor class without a
well-identified criterion. This point affects the classification results quite
dramatically. As a ripple effect of this issue, the correlation succeeds in
identifying areas of different tissue from each other, however correlating
positively with the wrong areas of tissue.
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6 – Conclusions

The main challenges of this analysis mainly derive from the image data com-
ing from the TGCA repository. Although the database provides a global
label for each image, there is often a non-negligible percentage of other tis-
sues inside (e.g., stromal tissue), which adds noise and introduces an error
in the training of the models. In detail, it would be necessary to have at
least a third-class available to distinguish between healthy, tumor, and other
tissue types to improve the reliability of the results. In addition, it could
improve the performance of the feature extractor model and, consequently,
the correlation values.
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Appendix A

Example slides

This appendix is meant to illustrate some example slides, by showing for each
of them the original image and classification results considering Baseline,
Pearson and MI case. I also display the correlation and prediction heatmaps.
In correlation heatmaps, the higher the correlation of the crop the lighter its
color will be. In classification heatmaps, each crop is colored red if it has
been predicted as tumor, blue if the prediction is healthy. Getting a visual
of the reconstructed image permits an immediate view of how the approach
works, which is definitely useful to observe crop by crop the correlation values
and, clearly, also the predictions of the image classification model. In the
original images can be observed the presence of areas of tissue that cannot
be associated with either the healthy or tumor class. This phenomenon is
particularly impactful in the prediction of healthy slides, as the presence of
unknown tissue confuses the classifier and leads to incorrect predictions.
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A – Example slides

A.1 Tumor slide 1
The slide has a dirty background, and the removal approach did not com-
pletely remove it, as can be seen in the Figure A.2 (left). The example shows
how both methods detects dirty background areas and removes them. In this
specific case, Pearson method succeeds in cleaning the slide better.

Figure A.1. Original image.

Figure A.2. On the left, the heatmap shows how the Baseline model classifies
each crop on the slide. On the right is a stacked bar chart showing how the
predictions vary in the Baseline, Pearson, and MI case.
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A.1 – Tumor slide 1

Figure A.3. Pearson case. On the left, the heatmap illustrates how the
model classifies each crop on the slide, not considering sub-threshold correla-
tion crops. On the right is shown the correlation value heatmap.

Figure A.4. MI case. On the left, the heatmap illustrates how the model
classifies each crop on the slide, not considering sub-threshold correlation
crops. On the right is shown the correlation value heatmap.
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A – Example slides

A.2 Tumor slide 2
This slide shows one of the main issues encountered: Pearson based approach
identifies a correlation with the methylation sample, but comes out negative.
For this reason in the final analysis almost all the crops are thrown away,
penalizing such approach compared to the one based on MI.

Figure A.5. Original image.

Figure A.6. On the left, the heatmap shows how the Baseline model classifies
each crop on the slide. On the right is a stacked bar chart showing how the
predictions vary in the Baseline, Pearson, and MI case.
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A.2 – Tumor slide 2

Figure A.7. Pearson case. On the left, the heatmap illustrates how the
model classifies each crop on the slide, not considering sub-threshold correla-
tion crops. On the right is shown the correlation value heatmap.

Figure A.8. MI case. On the left, the heatmap illustrates how the model
classifies each crop on the slide, not considering sub-threshold correlation
crops. On the right is shown the correlation value heatmap.
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A – Example slides

A.3 Tumor slide 3
In the slide, it is noted that the Pearson-based approach is more successful
in cleaning up the slide of values predicted as healthy than the MI-based
approach.

Figure A.9. Original image.

Figure A.10. On the left, the heatmap shows how the Baseline model clas-
sifies each crop on the slide. On the right is a stacked bar chart showing how
the predictions vary in the Baseline, Pearson, and MI case.
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A.3 – Tumor slide 3

Figure A.11. Pearson case. On the left, the heatmap illustrates how the
model classifies each crop on the slide, not considering sub-threshold correla-
tion crops. On the right is shown the correlation value heatmap.

Figure A.12. MI case. On the left, the heatmap illustrates how the model
classifies each crop on the slide, not considering sub-threshold correlation
crops. On the right is shown the correlation value heatmap.
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A – Example slides

A.4 Healthy slide 1
The slide visibly shows a presence of different tissues (the healthy one is on
the left). The MI-based correlation heatmap exhibits this diversity, whereas
Pearson strongly negatively correlates also the healthy area.

Figure A.13. Original image.

Figure A.14. On the left, the heatmap shows how the Baseline model clas-
sifies each crop on the slide. On the right is a stacked bar chart showing how
the predictions vary in the Baseline, Pearson, and MI case.
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A.4 – Healthy slide 1

Figure A.15. Pearson case. On the left, the heatmap illustrates how the
model classifies each crop on the slide, not considering sub-threshold correla-
tion crops. On the right is shown the correlation value heatmap.

Figure A.16. MI case. On the left, the heatmap illustrates how the model
classifies each crop on the slide, not considering sub-threshold correlation
crops. On the right is shown the correlation value heatmap.
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A – Example slides

A.5 Healthy slide 2
This example shows a very noisy slide, making it difficult to classify the
different tissue zones correctly. Correlation values are also affected.

Figure A.17. Original image.

Figure A.18. On the left, the heatmap shows how the Baseline model clas-
sifies each crop on the slide. On the right is a stacked bar chart showing how
the predictions vary in the Baseline, Pearson, and MI case.
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A.5 – Healthy slide 2

Figure A.19. Pearson case. On the left, the heatmap illustrates how the
model classifies each crop on the slide, not considering sub-threshold correla-
tion crops. On the right is shown the correlation value heatmap.

Figure A.20. MI case. On the left, the heatmap illustrates how the model
classifies each crop on the slide, not considering sub-threshold correlation
crops. On the right is shown the correlation value heatmap.
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A – Example slides

A.6 Healthy slide 3
The Pearson correlation succeeds in identifying areas of healthy tissue, but
the classifier identifies those areas as tumor. What this example demonstrates
is how correlation (Pearson’s in this case) can be used to adjust classification.

Figure A.21. Original image.

Figure A.22. On the left, the heatmap shows how the Baseline model clas-
sifies each crop on the slide. On the right is a stacked bar chart showing how
the predictions vary in the Baseline, Pearson, and MI case.
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A.6 – Healthy slide 3

Figure A.23. Pearson case. On the left, the heatmap illustrates how the
model classifies each crop on the slide, not considering sub-threshold correla-
tion crops. On the right is shown the correlation value heatmap.

Figure A.24. MI case. On the left, the heatmap illustrates how the model
classifies each crop on the slide, not considering sub-threshold correlation
crops. On the right is shown the correlation value heatmap.
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