
POLITECNICO DI TORINO
Master’s Degree in ICT for Smart Societies

Master’s Degree Thesis

A web-based georeferenced modelling
tool for the Turin tramway network

electrification system

Supervisor

Prof. Enrico PONS

Co-supervisors

Prof. Edoardo PATTI

Prof. Lorenzo BOTTACCIOLI

Dott. Pietro COLELLA

Candidate

Francesco BARLOCCO

JULY 2021

Abstract

This thesis, developed as part of a collaboration between Infra.To and Politecnico
di Torino, describes the development of a web application for the modelling and
simulation of the Turin tramway network electrification system. The destination
of the work is two-fold: on the one hand it should allow network operators to
perform quantitative analyses of the system, in order to support both maintenance
and planning phases by studying hypothetical scenarios. On the other hand, it
should contribute to a research project of the Energy Center Lab at Politecnico di
Torino that aims to provide a comprehensive monitoring of the energy flows in the
city. The tool is structured around a web GIS platform, based on the MapStore
framework, which lets display and edit, on a map, the georeferenced data of the
network infrastructure, imported from the AutoCAD environment. The application
includes a simulator, developed in Python, that builds the steady-state circuital
model of the DC traction system and solves it by means of nodal analysis. The
simulator can either analyse a selected configuration of trams and faults, or compute
the minimum short-circuit current for a given zone of the overhead contact system.
Simulations results have been validated through a comparison with those obtained
on the LTspice software, showing the correctness of the algorithms that build and
solve the circuital model of the network. In general, the criteria of flexibility and
openness are the ones that have mainly driven the design choices: all the software
components are open-source, interact through RESTful APIs and implement the
standard protocols defined by OGC for the sharing of geospatial data through the
web. This should facilitate possible future expansions of the work: for instance,
with the availability of real-time location and current absorption of the trams, a
quasi-real-time monitoring of the tramway network could be achieved. Moreover,
the proposed GIS platform could serve as a hub to integrate additional data sources
and applications.

Acknowledgements

I wish to thank all the technicians at Infra.To with whom I could collaborate during
the development of this thesis, for their availability and interest towards this work,
which has been a valuable learning experience.

i

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Turin tramway network . 1
1.3 Thesis outline . 3

2 State of the art 4
2.1 Railway power network simulators 4
2.2 Comparison of existing software for the simulation of electrical train

power supply systems . 6
2.2.1 OpenTrack and OpenPowerNet 8
2.2.2 eTraX . 8
2.2.3 TPSS . 8

2.3 GIS and power distribution networks 9
2.3.1 Benefits of GIS in power distribution networks 9
2.3.2 GIS models for power distribution networks 10

2.4 Conclusions and project choices . 11
2.5 Requirements . 12

2.5.1 GIS interface . 12
2.5.2 Simulator . 13

3 Enabling technologies 14
3.1 RESTful web services . 14
3.2 Internet Geographic Information Systems 14

3.2.1 OGC standards . 15
3.2.2 Apache Tomcat . 16
3.2.3 GeoServer . 16
3.2.4 PostGIS database . 16
3.2.5 MapStore . 16

3.3 Python . 17
3.4 Docker . 18

ii

4 Application architecture 20
4.1 Overview . 20
4.2 App service . 21
4.3 Db service . 22

4.3.1 Input schema . 22
4.3.2 Network schema . 24
4.3.3 Results schema . 27

4.4 Tomcat service (GeoServer) . 30
4.5 Tomcat service (MapStore) . 33

4.5.1 Additional plugins . 33
4.5.2 Connectivity with other application components 39

4.6 Mapstore db service . 40

5 Network simulator 41
5.1 CherryPy WebServer . 41
5.2 DXF importer . 42

5.2.1 Reading the DXF file . 42
5.2.2 Preprocessing the DXF file 42
5.2.3 Building the circuit layers 44
5.2.4 Uploading layers to GeoServer 45

5.3 Simulator . 45
5.3.1 Single static simulation . 46
5.3.2 Building the circuit . 46
5.3.3 Tracks and negative cables 47
5.3.4 Inserting input . 48
5.3.5 Solving the circuit . 48
5.3.6 Lines simulation . 50
5.3.7 Max resistance point simulation 51

6 Results 52
6.1 Results visualisation in MapStore 52
6.2 Validation with LTspice . 54
6.3 Comparison with previous thesis work 57

6.3.1 Zone 40, Duca d’Aosta, two trams 58
6.3.2 Zone 40, Duca d’Aosta, one fault 59
6.3.3 Zone 40, Sebastopoli, one fault 59
6.3.4 Zone 40, two substations in parallel, one fault 62

7 Conclusions 63

Bibliography 65

iii

Chapter 1

Introduction

1.1 Motivation
The purpose of this thesis is twofold: firstly, it has been developed as part of an
ongoing collaboration between Politecnico di Torino and Infra.To, the company
managing the infrastructure of the tramway network in Turin, with the goal of
delivering a software tool that can carry out simulations on the traction electri-
fication system, to assist the maintenance as well as the design phase of future
works on the network itself. The possibility of computing currents both in normal
operating conditions and in the presence of faults supports the dimensioning of the
network as well as the calibration of protective devices against faults. Specifically,
the problem of distinguishing fault currents from the currents due to the normal
operation is essential to the safety of the system: to this end, the knowledge of the
minimum possible values of fault currents is of great importance.

On the other side, in the framework of the research of the Energy Center Lab
at Politecnico di Torino, the wish is to integrate this tool in a large project that
aims to build a comprehensive mapping of the energy consumption in the city, in
which the tramway network plays a significant role. In terms of project choices,
this has particularly driven the project choices towards the criteria of openness and
flexibility, through the usage of open-source software and a web-based architecture.

1.2 Turin tramway network
An overview of the characteristics of the Turin tramway network can be found in
[1] and [2]. Throughout the city there are around twenty conversion substations,
where AC medium voltage is rectified and transformed to 600V DC. From these
substations, a system of underground cables, consisting of positive cables, feeder
cables and interconnections made of copper bars brings the electrical energy to the

1

Introduction

overhead contact system (OCS), from which tram vehicles absorb power through
their pantographs. Current then flows away from the vehicles through the wheels
and the tracks; a system of negative cables connected to the tracks brings it back
to the substations, closing the circuit. To limit the stray currents dispersed by
the tracks into the ground, negative cables are not connected to the substation
grounding system. A simple diagram representing the network structure is shown
in Figure 1.1. Substations are modelled with their Thévenin equivalent circuit; all
cable elements, as well as OCS conductors and faults, are modelled as resistances;
trams are instead modelled with their Norton equivalent circuit. Lastly, tracks
are modelled as distributed parameters lines, with a longitudinal resistance and
a shunt conductance to ground, to model the dispersion of stray currents. [2] is
taken as reference for the values of the physical parameters.

Figure 1.1: Diagram of the tramway network electrification system.

The network is divided into separate zones: each one is powered by a single
primary substation and one or more backup ones. In turn, each substation can
feed up to 6 or 7 OCS zones. Each zone is protected by an extra-rapid dc circuit
breaker, whose overcurrent settings depend on the size of the zone, as well as on
the forecast number of vehicles circulating in it. Across the OCS, this division is
ensured by the presence of zones dividers, made of insulating materials.

In general, a tramway network differs from railway ones in that it is a meshed
network, with many interconnections even over small distances. Moreover, even if
the OCS zones are independent from each other, the tracks and negative cables
compose a unique meshed network across the whole city. For this reason, tramway
networks are significantly complex from the topological point of view: in turn, this
affects the complexity of the computations required to simulate them.

The network can be configured in different ways, either controlling the switches
of the individual zones (located at the substations), or by physically modifying the
copper junctions present across the network, which determine how positive cables

2

Introduction

and feeder cables are connected to each other.

1.3 Thesis outline
The rest of this thesis is structured as follows: first, Chapter 2 presents the state of
the art of railway systems simulators and of the usage of Geographic Information
System (GIS) in the management of power distribution networks; subsequently,
it motivates the project choices and it details the requirements of the proposed
software tool. Then, Chapter 3 provides some background on the main technologies
employed in the development of the application. Chapter 4 explains the architecture
of the application: how each component is structured and how they interact with
each other; as a deepening, Chapter 5 focuses on the functionalities of the simulator.
Chapter 6 discusses the results obtained with the simulator: it describes the features
of the MapStore interface, a validation performed with LTspice and a comparison
with results obtained in [1] on the same network. Finally, Chapter 7 concludes the
thesis outlining some possible expansions of the work carried out.

3

Chapter 2

State of the art

The literature review starts with the study of existing software tools dedicated to
the simulation of railway systems. None of these were found to address explicitly
the scenario of tramway systems. Nonetheless, it is worth taking them into consid-
eration, in comparison to the requirements of this work. Specifically, Section 2.1
reports an overview of the structure of the existing commercial simulators, while
Section 2.2 provides a brief description of each one of the examined tools and a
comparison among them in terms of key features. Then, Section 2.3 contains a
discussion on the usage of GIS software for the management of electrical power
networks. Section 2.4 draws conclusions based on the previous findings, pointing
out the limits of existing solutions with respect to the use case of this thesis. Finally
Section 2.5 defines the requirements of the project.

2.1 Railway power network simulators
A presentation of the principal components of a railway power network simulator
is given in [3]. The authors describe how a railway system is composed of three
main parts: 1) the signalling system; 2) the power system; and 3) the traction
equipment.

1. The signalling system ensures the safety of train movement and the regula-
tion of traffic flow. It has two main functions: to ensure a safe distancing
between vehicles and to ensure a safe operation of trains at junctions and
track intersections. Depending on the requirement of different systems, the
implementation can be very different.

2. The power network can either be DC or AC. The DC is preferred in metro
systems where lines are shorter, speeds are lower and less power is required;
DC power is derived from the utility AC supply through transformer/rectifier

4

State of the art

substations. In these cases, simulation can be limited to the DC side. When
AC is used to carry power over long distances, booster transformers or auto-
transformers are used to improve the transmission efficiency.

3. Traction drives must provide a flexible speed control. DC motors meet this
requirement easily. AC induction motors have become more popular since the
introduction of advanced high-rating thyristors, which can handle variable-
voltage and variable-frequency input.

Still according to the authors of [3], the main processes to be simulated are: 1)
the train movement; 2) the traction power supply; 3) the traction drives; and 4)
the power network solution.

1. Usually, trains are modelled with an object oriented approach. The network
structure is represented as a graph, i.e. a collection of nodes and a collection
of links joining the nodes. Each of them is itself an object, and their various
properties are encapsulated in the data structure of the object. The simulation
may be either time-based or event-based. In the first case, train movement
is evaluated at predetermined time intervals. This can give a very detailed
account of the system evolution, but can be computationally demanding. On
the other hand, event-based models simulate the system as a sequence of
events, such as arrival and departure at stations. Trains interact via the
signalling system and this allows an event to trigger other ones. If on one side
this can reduce the computational complexity, avoiding the calculation of the
exact movements, on the other it introduces the issue that train movements
are not updated synchronously.

2. The electrified railway line can be schematized as a large circuit where substa-
tions are voltage sources and trains are moving loads. The voltage seen by
the train can vary with time, and this can have an effect on its performance.
Therefore the voltage at nodes must be evaluated at regular intervals. In the
case of a DC feeding system, where the overhead contact system supplies the
current and the rails are used as return paths, all the conductive components
can be assumed linear. Efficient algorithms are needed in order to solve the
matrix equations.

3. A model for the traction equipment is required to provide the current demands
and traction effort output according to the power network calculation and
the input parameters for train movement. The model can either be voltage-
sensitive or not, depending on the required accuracy. The traction systems
are represented with a V-R model, where V and R can vary with the speed
and the operational mode of the train. The model is used to generate look-up
tables of V and R for the different conditions.

5

State of the art

4. This is the most time-consuming step of the simulation. The power network
simulator can either be integrated with the train movement simulator or be
considered as an independent entity. In the first case, there is a feedback of
information from the power network solution to the movement simulation:
if the power network is not able to provide the required power for a train
to sustain the desired speed, this has an impact on the successive step in
the train movement simulation. In the second case, the train movement is
simulated on its own, based on constraints as time-tables and speed limits;
then, the train positions and corresponding velocities (from which power or
current requirements can be derived) are used as input to the power network
simulator at each instant. This feedback of information, which is present in
almost all commercial packages, is needed if the performance limits of the
whole system are to be thoroughly investigated.
The problem can be formulated in a matrix form using nodal analysis. As
described in [4], the main issues to be addressed are: 1) the large dimension of
the admittance matrix; 2) the dynamic topology; 3) the regenerative braking.

2.2 Comparison of existing software for the sim-
ulation of electrical train power supply sys-
tems

There are numerous commercial software tools for the simulation of railway power
supply systems. Some of them are part of broader platforms for traffic planning,
which implement a variety of functionalities that go beyond the analysis of the
power system; some others, instead, focus solely on the electrical infrastructure.

In the first case, the train movement simulator is embedded in the traffic
planning tool and exchanges information with the power network simulator. It
is the case, for instance, of the traffic planner OpenTrack and the power network
solver OpenPowerNet.

In general, the train movement simulator takes the following input data:

• the infrastructure, i.e. the network topology, which includes the signalling
systems;

• the timetable data, i.e. the schedule that trains should respect;

• the rolling stock data, i.e. the models of the different types of vehicles to be
simulated.

At each time step of the simulation, the differential equations of the train motion
are solved to calculate the tractive power required to respect the timetable. This,

6

State of the art

together with the train positions, which determine the electrical network topology,
becomes the input of the power network simulator, which solves the circuit model
verifying the feasibility of the power requirement. As already mentioned, in most
software packages, the result of the analysis is fed back to the traffic simulator and
conditions the actual motion of the vehicles.

As reported in Table 2.1, this feature is implemented by the majority of the
examined tools.

Software OpenPowerNet [5] eTraX
[6]

Sidytrac
[7] TracFeed [8]

Manufacturer OpenTrack Railway
Technology Ltd ETAP Siemens Adtranz / Balfour

Beatty Rail AB
DC networks X X X X
AC networks X X X X
Geospatial representation X
Graphical track editor X X X
Retroaction to train driv-
ing dynamic X X X X

Short circuit calculations X X X X
EM field calculation X X X
Optimization of feeding
configuration X X X

Animation during simula-
tion X X

Software SIGNON
Suite [9] FABEL [10] TTS/SIMON

PowerLog [11] TPSS [12]

Manufacturer SIGNON ENOTRAC AG ÅF-
Industriteknik Academic

DC networks X X X
AC networks X X X X
Geospatial representation
Graphical track editor X X X
Retro-action to train driv-
ing dynamic X X X

Short circuit calculations X X X X
EM field calculation X X
Optimization of feeding
configuration X ?

Animation during simula-
tion X

Table 2.1: Feature comparison of existing software.

In the following, three of the analysed tools are discussed in more detail.

7

State of the art

2.2.1 OpenTrack and OpenPowerNet
Begun in the mid-1990s as a research project at ETH, Zurich, OpenTrack is a
railway simulation tool largely used in the industry. It allows the simulation of
a variety of train systems, such as high speed rail, freight, commuter, tram and
underground systems.

It allows to perform several tasks such as headway calculation, timetable con-
struction, rolling stock studies.

OpenPowerNet is its corresponding electric network solver: it is supposed to
determine if a traffic solution suggested by OpenTrack is allowed by the power
system. In OpenTrack, the complexity of the propulsion model can be configured,
so that it fits different scenarios; for instance, the efficiency factors of the propulsion
equipment can be considered constant or voltage dependent.

The feedback of information to the planning software is of particular importance,
especially when DC network are involved, since they have high load dynamics, for
the following reasons: 1) power losses increase with decreasing voltage; 2) when
voltage drops, current and power limitations are activated, with an impact on the
driving dynamics; 3) the network voltage influences the capability of the system to
recover braking energy.

2.2.2 eTraX
eTraX is the software by ETAP for the simulation of rail power systems. It focuses
only on the traction power systems. Among the examined solutions, eTrax is
the only one implementing a geospatial view aside from the one-line diagram, to
represent the network. The two views are automatically kept in sync and both can
be used to design the network, to input data and to view the real time animation
of the vehicles during the simulation.

2.2.3 TPSS
Outside the world of commercial software, a simulator developed in a PhD project
is TPSS (Train Power System Simulator), discussed in [12]. The models, differently
from the previous examples, are fully disclosed. The ultimate goal of the project
is to suggest an investment planning: in this framework, it is useful to perform
a high number of simulations and a number of simplifications are acceptable.
Moreover, in the same project an approximator, called TPSA (Train Power System
Approximator) was developed as a neural network. Given the infrastructure and a
certain level of train traffic, it outputs the performance of the power network. This
is done in order to further reduce the computational complexity of the simulations.

The train model consists in a curve which, for the available voltage and the
desired speed, gives the required power.

8

State of the art

The set of differential equations that give the voltages and power flows in the
networks, as well as the acceleration (when it is positive) of the trains is solved as
an optimization problem in GAMS (General Algebraic Modelling System), where
the power unbalance in the network is minimized. When a train is braking or
proceeding at constant velocity, its acceleration does not depend on the power
system.

2.3 GIS and power distribution networks
The usage of GIS for the management of AC power distribution systems is well
documented. Again, these entail significant differences from the DC tramway
network under study, in terms of topology, equipment to model and analysis
required. Still, a lot benefits are shared with the use case of this thesis and are
worth being examined.

It should be noted that a lot of research has also been done integrating GIS in
the context of city transport systems. However, in this area the focus is on the
services offered rather than on its infrastructure, offering support for applications
such as route planning, fleet management, traffic analysis. As a consequence, this
is less relevant for the purpose of this thesis and it will not be investigated.

2.3.1 Benefits of GIS in power distribution networks
A good description of the role of GIS in the context of smart grids is given in [13].
Smart grids are essentially intelligent electric systems which allow to manage loads
with more efficiency, provide a higher level of automation during service restoration
and enable better interaction between energy providers and consumers, relying on
the synergy between ICT technologies and electric transmission and distribution
networks. To this end, a GIS integrates hardware, software and data to collect,
manage, process and display geo-referenced information.

In general, through the visualisation of data on a map, GIS allows utility
providers to better understand the physical and spatial relationships among network
components and with the surroundings, in comparison to relying only on one-line
diagrams or other abstract models of the network.

GIS is designed to integrate a variety of external data sources, from digital terrain
models to land use data, weather data and so forth. Core business applications
can then merge these sources with data served from SCADA systems, providing
a unified picture for inspection and maintenance and for network analysis and
planning.

In short, GIS can be the hub of all data sources and an efficient output to the
users. In this way, it can improve a variety of tasks, such as:

9

State of the art

• asset management, helping to determine optimal locations to install new
equipment and build new facilities;

• network analysis, visualising either sensor data or simulation results on a map,
thus overcoming the limitations of abstract representations of the network
which lack geographic representation, as one-line diagrams;

• work-force automation, helping to schedule and dispatch utility crews, moni-
toring their location and status;

• outage management and situational awareness, thanks to the availability
of real-time data, graphic outputs and web-based reporting, that improve
monitoring;

• visualise historical events over time, thanks to the support of spatio-temporal
databases [14];

• spatial load forecasting: according to [15], the integration with land use data
and customer records improves the ability to predict the amount and the
location of future load growth. This happens to be of particular relevance in
developing countries, where the annual load growth is of the order of 10%.

2.3.2 GIS models for power distribution networks
As described in [14], since GIS is supposed to be the central hub that gathers all
kinds of data sources, the problem of sharing data with other enterprise applications
is crucial. Moreover, GIS should eliminate the need of maintaining multiple network
models for planning.

Geographic data models are the abstractions used to represent the electrical
distribution facilities: the ones provided by vendors (an example is GIS application
POWERGIS®and the Distribution Network Analysis, Optimisation, Planning
and Design Application POWERNET®, developed by Global Energy Consulting
Engineers Pvt. Ltd. and described in [16]) are proprietary; utilities either have
used them or developed custom ones. As a consequence, ad-hoc interfaces are
often needed when data has to be shared. Indeed, the Open GIS Consortium
(OGC) provides standards for the exchange of geographic data, having defined the
Geographic Markup Language (GML), but lacks semantic models for the electric
utility industry.

Still according to [14], the interface process can be improved by exploiting a
GIS data model based on Common Information Model (CIM) developed by the
International Electrotechnical Commission (IEC). CIM is defined in standards IEC
61970 and IEC 61968: based on UML, its goal is to describe electric networks,
allowing easy exchange of information across different platforms and companies.

10

State of the art

The authors of [17] propose also an extension to CIM to model railway electrified
systems.

Thus, the geographic model provides a spatial representation of the components,
allows the representation of network data on the map and supports a variety of GIS
analysis functions, like spatial queries, thanks to the support of spatial databases,
which allow to store geometry together with attributes. This is then mapped to a
logical model which abstracts the network as a graph, where nodes can represent
sources, switch nodes or other equipment, and edges represent feeder lines. [18]
From this, a variety of algorithms can be applied to perform the analysis of interest.
From the logical network, algorithms can derive automatically the one-line diagram
of the network.

The connectivity rules can be defined either in the geographic model or in the
logical one. For instance, [19] reports the development of an object-oriented
model to represent power network in GIS based on the open-source desktop
application framework uDig that allows to draw standard equipment and determine
the connectivity among components. uDig also allows for customization with Eclipse
Rich Client Platform (RCP) plugins. Instead, in [18] it is the logical network that
implements the connectivity rules and describes the internal behaviour of the
different components.

Finally, another application developed on an open-source GIS platform is [20].
In the thesis, the author makes use of the OpenGeo Suite, which is no longer
maintained. However, some of its standalone components are: namely, PostgreSQL
with the PostGIS extension as geospatial database, GeoServer to make geospatial
data available through the web and a web client for visualisation based on ArcGIS, a
popular commercial GIS platform developed by ESRI. Both PostGIS and GeoServer
will be actually chosen for this work and will be described in Chapter 3.

2.4 Conclusions and project choices
Given this context, a number of reasons advise against the usage of commercial
simulators in our use case. Firstly, their value lies in the fact that they allow
for sophisticated dynamic simulations, with advanced physical models of traction
systems: this is actually not needed for our purpose. The primary goal is rather
to carry out static simulations, solving the network at a particular point in time.
Transients need not to be taken into consideration and modelling traction systems
as constant current sources with a parallel conductances will suffice. Secondly,
railway networks are topologically simpler than the tramway network, in terms
of aerial lines: without some testing, it is not clear whether these applications
would support the different connectivity that the tramway network entails. Thirdly
- and most importantly - being proprietary tools, they are not designed to be

11

State of the art

easily customised nor integrated with other application components. Particularly,
it can be assumed that they would not support the import of line drawings from
AutoDesk AutoCAD, the editor currently used by Infra.To for the design of the
network. Finally, they would not enable a fully web-based solution and they would
be expensive.

Therefore, it seems sensible to develop an application which revolves around
an open-source web-based GIS platform for the storage and the visualisation of
geo-referenced data for both network, vehicles and other external sources. From
this interface, a custom simulator will be accessed through a web API. It will
process the network data, build an object-oriented electrical model of it and solve
it applying nodal analysis, feeding the results to be displayed back in the GIS
interface. As for the geometric model of the network, the simplest solution is
to retain the one used in AutoCAD, preserving the layer definitions as much as
possible. The topological model will be developed inside the simulator; it will be in
charge of defining connectivity and it will be tailored to solve the specific analyses
required in our use case.

2.5 Requirements
From this reasoning, the following requirements for the application are set:

2.5.1 GIS interface
Input

• interface with AutoDesk AutoCAD to import the model of the network; this
is the editor which Infra.To already uses to draw the network elements (cables,
substations, etc.) and its advanced features are needed when significant
changes have to be made to the network;

• apply small changes to the network directly through the GUI (e.g. replace a
cable, or edit its attributes);

• configure the substation switches to choose which zones are powered and from
which point;

• position trams along the network, manually, through the GUI;

• position faults (i.e. short-circuits) along the network, manually, through the
GUI;

• draw tramway lines to simulate multiple static scenarios in sequence.

12

State of the art

Output

When simulating a static scenario:

• display a colour map of the network according to currents and voltages;

• display labels providing detailed information of currents and voltages;

• display summarised information for each substation, tram and fault point;

When simulating the time evolution of the network, in addition to the previous
points:

• move along time to observe the output of each time step;

• show statistics of the whole simulation (i.e. max currents, min voltage).

2.5.2 Simulator
• simulate a single static scenario (i.e. solve the electrical network with some

trams and/or some faults in a fixed position);

• simulate the normal evolution of the system as a sequence of static scenarios
(i.e. simulate the tram movements along the lines);

• for a given zone, determine the point of maximum resistance, which allows to
determine the lowest short-circuit currents.

13

Chapter 3

Enabling technologies

3.1 RESTful web services
The Representational State Transfer (REST) [21] architectural style was developed
as a model for the interactions within web applications. In this model, any piece
of information is considered a resource and has a Uniform Resource Identifier
(URI). The requirement is that resources are acted upon through a set of uniform
interface semantics that allow to exchange resource representations (e.g. HTML or
XML documents, JSON object, JPEG images, etc.). A common implementation of
this architecture is the HTTP protocol with its GET, POST, PUT and DELETE
methods. REST interfaces must be stateless, i.e. each request must include all
information to be fully understood, independently of previous requests [22].

3.2 Internet Geographic Information Systems
Internet GIS can be described as network-based systems that use Internet to access
and distribute information, tools and services [23]. These applications generally
implement the client-server model, where the first makes requests and the second
fulfils them. This model consists of three primary elements: presentation (the
user interface), logic (the processing) and data (a database). Through a browser,
the user can enter the URL corresponding to some spatial data, interrogating a
web server, which will query the database for the requested data and return it
to the browser, after having reformatted it in a way it can understand. Shifting
away from the concept of desktop GIS, that used to stimulate the development
of proprietary programs and data models, Internet GIS encouraged the adoption
of open standards to ease the sharing of data and the interoperability of services
among different providers.

14

Enabling technologies

3.2.1 OGC standards
In this context, it is essential that information exchanged is machine independent:
to achieve this, the Open GIS Consortium (OGC), which is the primary standards
issuing entity for the GIS community, has defined GML, an open-source markup
language based on XML. GML objects encode together feature geometries (e.g.
Line, Points, Collections thereof), properties (numeric, text, boolean fields), spatial
reference (coordinate reference system). Among the OGC Web Service (OWS)
standards, a series of protocols that can be implemented as WebAPIs are defined
[24]. Here two of the most used ones are described: the Web Map Service and the
Web Feature Service.

Web Map Service (WMS) WMS provides an HTTP-based interface for re-
questing map images from a geospatial database [24]. The request defines the layers
and the area of interest. The response is one or more map images (in formats as
JPEG, PNG, etc.) that can be displayed in a browser application. Parameters
as the transparency of the image can be specified. In particular, the following
operations are supported:

• GetCapabilities: it lists the data that is available on the server in an XML
document;

• DescribeLayer: it provides a description of a given dataset;

• GetMap: it returns the map image described in the request.

Web Feature Service (WFS) WFS provides interfaces for querying and mod-
ifying geospatial information [25], [26]. In particular it offers data manipulation
operations on geographic features, as: creating, deleting, updating and getting
features, with the possibility of specifying spatial or non-spatial filters. Among the
supported operations, the principal ones are:

• GetCapabilities: receiving this request, the WFS server returns an XML
document that describes the feature types it can offer and the operations
defined on each one of them;

• Describe Feature Type: it provides a schema description of the supported
feature types;

• GetFeature: it returns the GML data of the features specified in the request;

• LockFeature: it sets a lock that prevents a feature from being edited;

• Transaction: it allows to create new features, as well as to update and delete
existing ones.

15

Enabling technologies

3.2.2 Apache Tomcat
Apache Tomcat is a free, open-source HTTP web server that allows to host and
run Java web applications [27]. Tomcat is developed and maintained by an open
community of developers which the supported by the Apache Software Foundation.
It is released under the Apache License 2.0 license.

3.2.3 GeoServer
GeoServer is an open-source software server that allows to share and edit geospatial
data [28]. Started in 2001 by The Open Planning Project (TOPP), a non-profit
technology incubator based in New York who envisioned the development of an
easily accessible Geospatial Web analogous to the World Wide Web, it is specifically
designed for interoperability and the use of open standards.

It offers a Web administration interface for extensive configuration, from which
it is possible to handle the publication of vector and raster layers from a variety of
data sources, including databases like PostGIS, MySQL, Oracle and many more.

3.2.4 PostGIS database
PostGIS is a spatial database extension for the object-relational database Post-
greSQL, which enables it to store data for GIS [29]. It is an open-source project
started by Refractions Research and continues to be developed by a group of
contributors led by a Project Steering Committee.

3.2.5 MapStore
MapStore is an open-source WebGIS framework developed by GeoSolutions that
allows to create, manage and share maps, integrating remote content from providers
such as Google Maps, OpenStreetMap, Bing or other servers compliant to OGC
standards (e.g. GeoServer) [30].

As a standalone product, MapStore is a powerful and interactive geospatial
WebGIS, with access to geospatial data warehouses through the most common
standards and advanced spatial analysis capabilities; it can also be expanded
adding plugins. As a framework, it can be integrated in a project to develop custom
applications.

The main technologies used in the front-end are ReactJS and Redux. As for the
map libraries, MapStore is map agnostic, meaning it supports both OpenLayers
(which is the default map library for desktop devices), LeafletJS (used by default
for mobile devices) and Cesium 3D viewer.

16

Enabling technologies

React React is a JavaScript library for building user interfaces, i.e. the view
of the application [31]. This is done through the composition of components,
which are written with JSX, a sort of composition of HTML and Javascript code.
Components can be passed properties and can have a state. The basic idea is that
whenever the state of a component changes, it gets re-rendered, without the need
of updating the whole web page.

Redux Redux is a state container for Javascript applications [31]. It allows to
centralize the application’s state and logic, helping to write consistent and easy to
test applications. The glue library React Redux makes it possible to bind Redux
state to React components. It defines a single, global Store that contains the whole
state of the application. Actions can be dispatched to the store in order to change
the state: when this happens, reducer functions are called. Reducers are passed
the action and the current state: from these, they produce a new state. React
components can be connected to the Redux store, notified of state changes so that
they can be re-rendered. Two types of middlewares, called Redux thunks and
Redux Observables, allow to perform asynchronous data calls, like Ajax requests.

3.3 Python
Python is a popular general-purpose programming language that offers efficient
high-level data structures and a simple approach to object-oriented programming
[32]. It is an interpreted language, meaning program development does not require
compilation and linking. It offers a wide range of libraries to approach countless
tasks, from scientific and numeric applications, to machine learning, web develop-
ment and so forth. In the following, a brief description of some of the libraries used
in the project is given.

GeoPandas GeoPandas is an open-source project for the processing of geospatial
data in Python. It extends the datatypes used by pandas to enable spatial operations
on geometric types. It leverages the shapely library to perform geometric operations.
It also depends on fiona for file access and matplotlib for plotting. In this way, it
allows to perform spatial analysis in Python without having to rely on a spatial
database.

NumPy NumPy is a library for scientific computing in Python. It supports
multidimensional array objects, which provide better performance compared to
working with native Python objects as lists.

17

Enabling technologies

CherryPy CherryPy is a minimalist Python web framework. It allows to develop
web applications with an object-oriented approach.

3.4 Docker
Docker is an open platform for developing, shipping and running applications that
allows to separate the application from the infrastructure by providing a loosely
isolated environment called container [33]. Containers embed everything is needed
to run the application, with no dependencies on the host environment, but are
lightweight: compared to hypervisor-based virtual machines, they are faster to be
deployed and require less space. In this way Docker platform increases both the
portability of the application and its scalability, making it easier to scale up or tear
down services as needed.

Docker implements a client-server architecture, where the server is the Docker
daemon, which is responsible for managing images, containers, networks and
volumes, while the client is the tool through which users can interact with Docker,
sending REST API requests to the daemon.

Docker has a public registry called Docker hub where users can pull existing
images. Private registries can also be configured to store and share images. Images
are read-only templates of instructions for creating a container. They are built
through Dockerfiles, which are text files that contain a list of commands for Docker
to build the image. Each instruction in the Dockerfile corresponds to a layer of
the image. Altogether, they completely define the configuration of the container
that will be created. New images can also be built from the running state of a
container. When a container is removed, changes to its state disappear: to persist
storage beyond the life-cycle of a container, either volumes or bind mounts can be
used. In bind mounts a path in the container file system is mapped to a path on
the host file system (this solution is therefore dependent on the host file system
and it is discouraged in production). Using volumes, a path on the container file
system is assigned a name (i.e. the name of the volume) and stored on the host in
a way that is internally managed by Docker, and can be referenced through the
name. Moreover, volumes allow to share data among containers.

Docker Compose is a particular client that allows to work with applications
consisting of a set of containers, coordinating their deployment through a con-
figuration file (.yml), called compose file, which defines the list of services and
the configuration which would usually be provided at run time. For instance, the
docker-compose file is used to define the following elements: the port mapping,
i.e. how some ports in the container are mapped to the host; the docker volumes,
which allow to persist data outside the container filesystem; environment variables,
that allow to change some parameters with which the images are built; finally, it

18

Enabling technologies

allows the creation of a Docker network through which containers can communicate.
Beside this general configuration file, each service has its own Dockerfile which
specifies how to build each single image.

19

Chapter 4

Application architecture

4.1 Overview
The system is organised as a multi-container Docker application, orchestrated
with Docker Compose. A graphical representation of its services is reported in
Figure 4.1.

Figure 4.1: Architecture of the application.

With Docker Compose, the highest level of configuration is provided in the
docker-compose.yml file, which defines the list of services (i.e. of containers)
included in the application. In this case, the services are:

20

Application architecture

• app, which is the CherryPy server that hosts the simulator;

• tomcat, an Apache Tomcat server that hosts both the GeoServer and MapStore
applications, which are distributed as web application resource (WAR) files;

• db, a PostGIS database that stores all the layers published in GeoServer;

• mapstore_db, a PostgreSQL database that stores the configuration of MapStore,
including both users and maps.

From the point of view of communications, the containers are all inside a
Docker network that allows them to reference each another using service names
as host names. All communications among the containers, with the exception of
those involving the front-end of the MapStore application, take place in this way.
Whenever this is the case, access is provided directly to the internal container ports
(and not to the host ones to which container ports can be mapped). For instance,
the simulator fetches layers from GeoServer at: http://tomcat:8080/geoserver/
turin_tramway_network/wfs, where 8080 is the container port exposed by Tomcat.
Similarly, GeoServer connects to the PostGIS database using host db and port 5432,
while the MapStore backend connects to its own database with host mapstore_db
and port 5432.

Additionally, each container exposes some ports that are mapped to host ports,
which are accessible from outside the Docker network. Specifically, the app service
maps the container port 8084 to the host port 8084; the tomcat service maps its
container port 8080 to the host port 8085. Therefore, 8085 is the port at which
both GeoServer and MapStore can be accessed from the browser. Furthermore,
whenever the MapStore front-end code references the other containers, to connect
to GeoServer and to the simulator, it does so by specifying their ip addresses and
the host ports.

As for data storage, each container mounts a Docker volume that allows to
persist critical data beyond the life cycle of the containers themselves.

In addition to the docker-compose configuration file, each service has its own
Dockerfile which specifies how the image should be built.

4.2 App service
This image is created starting from the python:3.9.5 image. On top of that, a
list of libraries is installed. Namely, they are: cherrypy, cherrypy-cors, shapely,
requests, pandas, numpy, geopandas. Then, the source code of the simulator
is loaded, together with the default configuration file and the (empty) default
switches configuration file. An environment file is provided to load some environ-
ment variables: specifically, the authentication key to access the Cherrypy server

21

Application architecture

functionalities and the key that the CherryPy server uses to contact GeoServer in
the tomcat container. Moreover, a Docker volume, called app_data, is mounted,
to persist the configuration file and the Circuit object file, which is saved and
updated when simulations are carried out. Finally, the main script, App.py, that
loads the Cherrypy server, is called: the application is deployed and the server
starts listening to requests.

4.3 Db service
This image is built from the image postgres:12. On top of it, the PostGIS
extension (version 3) is installed. An initialisation script is then called, which does
the following: firstly, it creates a database called turin_tramway_network; secondly,
it creates a user called geoserver, which is then used by GeoServer to connect
to the database, use it as a data store and publish its content; thirdly, in the
database it creates three schemas: input, network and results, whose content will
be described in detail in the rest of this section.

An environment file loaded in the initialisation script defines the credentials
to the database, as well as the coordinate reference system to be used for all the
tables, which in this way can be easily modified. The /var/lib/postgresql/data
directory is mounted on a volume called db_data, so that all data is persisted on
the host filesystem, outside the Docker container.

4.3.1 Input schema
The input schema contains three tables: trams, faults and lines. They host the
input to be used for the simulations.

Trams The structure of the trams table is reported in Table 4.1.

Field gid model serial_number line
Type serial varchar varchar varchar
Field current included notes geom

Type real boolean varchar geometry
(Point, crs)

Table 4.1: Fields of table input:trams.

• gid: it is the primary key of the table, i.e. a unique identifier for each record;

• model: it indicates the model of the tram;

22

Application architecture

• serial_number: it indicates the serial number of the vehicle;

• line: it indicates the tramway line on which the vehicle is located;

• current: it is the amount of current absorbed by the tram, expressed in
ampere;

• included: it indicates whether the tram is to be included in the simulation
or not;

• notes: it contains comments for the record;

• geom: it contains the spatial coordinates of the vehicle, relative to the specified
coordinate reference system.

Faults The structure of the faults table is reported in Table 4.2. The description
of fields already mentioned in previous tables is omitted when the meaning is the
same.

• resistance: it is the value of the resistance that fault has, expressed in ohm.

• geom: it contains the spatial coordinates of the fault, relative to the specified
coordinate reference system.

Field gid resistance included notes geom

Type serial real boolean varchar geometry
(Point, crs)

Table 4.2: Fields of table input:faults.

Lines The lines table structure is given in Table 4.3:

Field gid number direction notes geom

Type serial varchar varchar varchar
geometry
(MultiLineString,
crs)

Table 4.3: Fields of table input:lines.

• number: it is the identifier of the tramway line;

• direction: it identifies the travel direction along the line;

• geom: it contains the coordinates of all the segments that make up the line.
It is a collection of LineString elements.

23

Application architecture

4.3.2 Network schema
The network schema includes ten tables that together compose the different layers
of the tramway network infrastructure. In general they are in correspondence with
the layers defined in the AutoCAD drawing file, with some exceptions that will be
described in detail. Since the AutoCAD layers are labelled in Italian, the database
tables keep the Italian names. The translation in English is always reported in the
following discussion.

Positive cables, feeder cables, OCS cables Positive cables, feeder cables and
overhead contact system (OCS) cables each have their own table. Here there is a
first difference compared to the AutoCAD layers, where each OCS zone was stored
in a separate layer. In the database they are stored together, but the Layer field
preserves the original layer information (e.g. LA_20, LA_55, where LA stands for
“Linee Aeree” - Italian for OCS.). This simplifies the layer management in the
maps, where an excessive amount of items to import would be cumbersome. When
needed, filtering can be applied to identify all the OCS features related to a single
zone.

A common structure is shared among the tables cavi_positivi (positive ca-
bles), cavi_alimentazione (feeder cables) and linee_aeree (OCS cables) and it is
reported in Table 4.4.

Field gid Layer zone EntityHandle
Type serial varchar varchar varchar
Field Linetype length notes geom

Type varchar real varchar geometry
(LineString, crs)

Table 4.4: Fields of tables network:cavi_positivi, network:cavi_alimentazione
and network:linee_aeree.

• Layer: it is the name of the AutoCAD layer to which the object belongs;

• zone: it indicates the network zone to which the cable belongs;

• EntityHandle: it is a unique identifier assigned by AutoCAD: in the simulator
it is used, together with the Layer field value, as a unique id for each object;

• Linetype: it contains information on the size of the section of the cable: for
some layers it is expressed numerically in squared millimetres, for others as a
code that has a mapping in the configuration file;

24

Application architecture

• geom: it contains the coordinates of the line that represents the cable. Each
cable record is structured as a single LineString, with no discontinuities.

Negative cables, tracks Being cables themselves, these two layers have the
same fields of the other cable types discussed above, with only one exception: in
these two tables, called cavi_negativi (negative cables) and binari (tracks), the
zone field is not defined, since the ‘negative’ side of the network forms a unique
mesh that does not reflect the division into zones of the ‘positive’ side of the
network. The structure of the tables is given in Table 4.5.

Field gid Layer EntityHandle
Type serial varchar varchar
Field Linetype length notes geom

Type varchar real varchar geometry
(LineString, crs)

Table 4.5: Fields of tables network:cavi_negativi and network:binari.

Junction boxes This table contains the junction boxes elements. Originally, the
AutoCAD layer with this name (cassette in Italian) included also the substations
from which positive cables start. In the database these are stored separately in
the cabine table (Italian for “substations”), since from the point of view of the
simulator they are handled in a totally different way. Indeed, junction boxes have
no functional role in the simulator: they are just included to be displayed on the
map, together with the text labels that are attached to them (which are stored in a
separate table themselves). Table 4.6 reports the structure of this database table.

Field gid Layer label
Type serial varchar varchar
Field EntityHandle notes geom

Type varchar varchar geometry
(LineString, crs)

Table 4.6: Fields of table network:cassette.

• label: some text that describes the junction box, which is useful to be
displayed on the map;

• geom: it contains the square or rectangular box that identifies the perimeter
of the junction box.

25

Application architecture

Substations As mentioned above, this layer is not present in the AutoCAD
drawing file, but it is created from the cassette (junction boxes) layer, with the
subset of junction boxes that represent the substations from which positive cables
start. The structure of the table, which takes the Italian name cabine (equivalent
to “substations”) is reported in Table 4.7.

Field gid Layer name code
Type serial varchar varchar varchar
Field EntityHandle notes geom

Type varchar varchar geometry
(LineString, crs)

Table 4.7: Fields of table network:cabine.

• name: it is the name of the substation, written as a label in AutoCAD;

• code: an additional string label that identifies the substation, along with the
name;

• geom: it contains the square box that identifies the perimeter of the substa-
tion.

Junctions This table hosts the junctions of the circuit, i.e. the copper bars,
physically hosted in a junction box in the ground, that connect cables together,
allowing for different configurations. Table 4.8 gives the structure of the table,
which retains the Italian name lame (equivalent of junctions).

Field gid Layer zone EntityHandle
Type serial varchar varchar varchar
Field length notes geom

Type real varchar geometry
(LineString, crs)

Table 4.8: Fields of table network:lame.

Labels Finally, there are two tables that contain respectively the labels of the
OCS zones and of the junction boxes.

The first table, called labels_la has one point-like feature for each zone in the
circuit, reporting the number of the zone: in AutoCAD it corresponds to the layer
LA_ETI (where ETI is short for “etichette” - Italian for “labels”).

26

Application architecture

The second, called labels_cassette has one or more points for each junction
box, each containing a text field that indicates the code of the junction box, the
street name, or some other identifier. The reason why there is a dedicated layer and
the labels are not all included in the layer cassette itself is that when the AutoCAD
drawing file (DWG) is exported to the DXF format, the junction boxes objects
are exploded and the GeoPandas library is not able to retrieve the association
between the geometric object of the perimeter of the junction box (stored in the
layer cassette) and the point-like features of the labels, which get stored in the
generic layer 0. Since the labels are mapped as points outside the perimeter, trying
to associate them with the junction boxes (i.e. with the perimeter objects) could
generate errors when more boxes are close to each other. The simplest way to
reproduce the labels is then to keep them in a separate layer. Furthermore, this
ensures that they can be easily activated or not on the map. Table 4.9 reports the
common structure of the two labels tables.

Field gid Layer text geom

Type serial varchar varchar geometry
(Point, crs)

Table 4.9: Fields tables network:labels_la and network:labels_cassette.

• text: it is the content of the label, the text that should be displayed on the
map;

• geom: it contains the coordinates of the point at which the label should
appear.

4.3.3 Results schema
Lastly, the results schema defines tables to store the results of the simulations. In
this case, the division into tables does not reflect the network schema, but another
approach is used.

Links To further simplify the display of the results on the map, all cable objects
are grouped in one unique table, called links, that contains only the links where
there is a flow of current. This is done to limit the amount of result features stored
for each simulation. The table structure is given in Table 4.4.

• Layer: it is always the name of the AutoCAD layer to which the object
belongs; in this table it is of particular importance to distinguish e.g. positive
cables from OCS cables, which are stored together;

27

Application architecture

Field gid Layer EntityHandle zone
Type serial varchar varchar varchar
Field length current voltage_drop power
Type real real real real
Field notes Date geom

Type varchar timestamp
with time zone

geometry
(LineString, crs)

Table 4.10: Fields of table results:links.

• current: it contains the amount of current flowing through the link, expressed
in ampere;

• voltage_drop: it contains the voltage drop that takes place on the link,
expressed in volt;

• power: it contains the amount of power flowing through the link, expressed
in watt;

• Date: it contains the timestamp of the simulation. This field is fundamental
to distinguish records of different simulations;

• geom: it contains the coordinates of the line that represent the cable. Each
cable record is structured as a single LineString, with no discontinuities.

Nodes This table contains the list of the nodes of the circuit that are either start
or end points of a link in which there is a flow of current. The structure of the
table is given in Table 4.11.

Field gid zone voltage
Type serial varchar real
Field notes Date geom

Type varchar timestamp
with time zone

geometry
(Point, crs)

Table 4.11: Fields of table results:nodes.

• voltage: it contains the voltage level of the node, expressed in volt;

• geom: it contains the coordinates of the node, in correspondence to an
end-point of a link.

28

Application architecture

Trams The trams table contains the results for all the trams included in the
simulation. Table 4.12 reports its structure.

Field gid model serial_number line
Type serial varchar varchar varchar
Field zone current voltage
Type varchar real real
Field notes Date geom

Type varchar timestamp
with time zone

geometry
(Point, crs)

Table 4.12: Fields of table results:trams.

Faults Similarly, the faults table contains the results for all the faults included
in the simulation. The structure is reported in Table 4.13.

Field gid resistance zone current
Type serial real varchar real
Field voltage notes Date geom

Type real varchar timestamp
with time zone

geometry
(Point, crs)

Table 4.13: Fields of table results:faults.

• resistance: as in the corresponding table in the input schema, it indicates
the resistance of the fault.

Max resistance nodes Lastly, this table is dedicated to store the results of
the simulation task where, for a given zone, the point of maximum resistance is
evaluated. Table 4.14 reports its structure.

• zone: the zone for which the point of maximum resistance is evaluated;

• substation: the name of the substation from which the zone is powered;

• fault_resistance: the value of resistance (expressed in ohm) given to the
test fault;

• equivalent_resistance: the value of equivalent resistance present between
the generator and the fault point, expressed in ohm;

29

Application architecture

Field gid zone substation fault_
resistance

Type serial varchar varchar real

Field equivalent_
resistance

min_
current

voltage_
drop power

Type real real real real
Field notes Date geom

Type varchar timestamp
with time zone

geometry
(LineString, crs)

Table 4.14: Fields of table results:max_resistance_nodes.

• min_current: the amount of current that flows at the fault point, expressed
in ampere. It is the smallest value across the zone, for the given powering
substation;

• voltage_drop: the value of voltage drop across the fault resistance, expressed
in volt;

• power: the amount of power that flows through the fault, expressed in watt;

• geom: the coordinates of the fault point at which the minimum fault current
is found;

4.4 Tomcat service (GeoServer)
The tomcat service is built on top of the official tomcat image. In addition, the Dock-
erfile simply contains the command to copy into the container the geoserver.war
file, together with the pre-configured data folder and the expanded geoserver
folder, that contains some extensions not included in the basic installation. Namely,
these plugins are: the key authentication module, the CSS Styling extension and
the WMTS multidimensional extension. The version used for the application is
GeoServer 2.19.0. By default, when the container starts, the Tomcat server is
started and the GeoServer application is deployed.

As for the configuration of GeoServer, a first aspect to consider is authentication.
By default, GeoServer comes with an administrator user, called admin. An additional
user, called simulator-user is defined: this is to allow the simulator app to
authenticate to the server; the user is associated to a newly defined EDITOR role,
for which read and write privileges on all layers are granted.

To authenticate themself, each user has their own credentials: username and
password. This is the so called basic authentication system. Besides this, an

30

Application architecture

alternative that is compatible with the simulator app, which is a simple OGC client
that cannot handle any kind of security protocol, is needed. This is addressed by
the key authentication extension, which allows to generate a key for each user:
when the key is appended to an URL request, GeoServer recognises the user and
fulfils the request, if it is within the privileges of the role associated to that user.
Clearly, this authentication technique is exposed to security token sniffing and it
should only be used with HTTPS connections: this has not been implemented yet
and should be object of future work.

On the contrary, technique does not work with the MapStore client, which,
too, requires access to the server. To allow MapStore to make authenticated
requests, GeoServer should be configured so that it recognises MapStore users,
according to the procedure described in [34]. However, this functionality has not
been implemented yet.

For the purpose of the application, this GeoServer instance features a single
workspace, called turin_tramway_network. For each workspace, a list of stores can
be defined: they act as data sources from which GeoServer can load raster or vector
layers to publish. A store can be a directory of shapefiles, a CSV file, a schema of a
geospatial database, or an external Web Feature Service. In this case, three stores
are defined, which correspond to the input, network and results schemas of the
turin_tramway_network PostGIS database described in the previous section. For all
three schemas, GeoServer connects to the database as user geoserver (who has read
and write privileges): the service name db, specified in the docker-compose.yml file,
is used to identify the host of the database and connect to it through its internal
container port 5432.

Once a store is connected, GeoServer can publish one layer for each table included
in the schema of the store: in this way it can publish the content of the three input
tables, the ten network tables and the five results tables detailed in Section 4.3.
Figure 4.2 shows a screenshot of the interface with the list of published layers.

In addition to the layers, a list of styles is defined and associated as default to
the different layers. Styles are defined in CSS. For the input layers, they specify
special icons for trams and faults, so that they can be easily recognised on the map;
for the network layers, they provide different colours for each layer and configure
the display of substation names and OCS zones; for the results layers, they colour
the links differently based on the current field value, displaying small arrows that
indicate the direction of the flow.

This whole configuration is loaded when the tomcat image is built. Afterwards,
the GeoServer web user interface allows to customise all aspects, from security to
the publication of the layers and their styles. Namely, Geoserver data directory is
mounted on a Docker volume, that ensures its persistence beyond the life-cycle of
the container. For reference, the complete documentation for GeoServer 2.19.0 can
be found at [35].

31

Application architecture

Figure 4.2: Layers list from the GeoServer web interface.

32

Application architecture

4.5 Tomcat service (MapStore)
In the same tomcat container described in Section 4.4, the MapStore application
is deployed as well. The previously described Dockerfile includes also a line that
imports the mapstore.war file and, separately, the mapstore folder, from which
some configuration files can be edited.

The standard installation of MapStore includes two users, one called admin,
another called guest. Once they are logged in, users can setup their “context”,
which is a map environment with a specific configuration of plugins. Once inside
the map screen, through the “catalog” feature the user can search for layers, in
WMS, WFS and other formats, and add them to the map. Once they are added,
layers appear in the panel on the left side of the screen. A screenshot of this
interface can be seen in Figure 4.3. A complete description of the features offered
by the interface can be found in the MapStore User Guide, available at [36].

Figure 4.3: Map view of the MapStore interface: the left-side panel shows the
list of layers that have been added to the map.

4.5.1 Additional plugins
The front-end of the MapStore application is organised as a composition of plugins.
This makes it modular and rather easy to be expanded with new functionalities. The
version of MapStore included in the application contains four plugins in addition to

33

Application architecture

the ones included in the distributed version. As a lot of the built-in plugins, these
can be enabled or disabled from the MapStore GUI itself, during the configuration
of the context. They are called DxfImporter, Simulation, SwitchesConfig and
SimulationConfig.

The architecture of the four plugins is essentially the same. All four of them
add a button in the burger menu, located in the top-right corner of the map page.
When selected, each one opens a window through which the user can interact with
the Simulator application. Each plugin defines a window component, connected to
the Redux store, which is activated when the menu button is pressed. Embedded
in the window component there is a form, written with the Formik library, which
provides the actual interface with the simulator.

DxfImporter plugin Of the four, the first plugin to be used is the DxfImporter
which allows to upload a DXF file to the CherryPy server. Its interface is displayed
in Figure 4.4. When the application is loaded and the plugin component is mounted,
it downloads the configuration file of the simulator with an AJAX GET request.
The form has a box to select a DXF file to upload, browsing through the filesystem,
and a field where the Coordinate Reference System parameter of the configuration
file can be edited. When a file is selected and the form submitted, the plugin
makes two AJAX requests of type POST to the server, the first with the updated
configuration file, the second uploading the DXF file itself. When the upload is
complete, the server automatically starts processing it, creating the circuit model,
uploading the layers to GeoServer and creating the switches configuration file. A
simple animation in the window indicates when the import process is complete and
when it is safe to launch a simulation.

SwitchesConfig plugin The SwitchesConfig plugin allows to modify the status
of the switches that enable the voltage sources in the network. It shows a list of
all the substations present in the network and, for each substation, a list of the
switches corresponding to all the zones powered by the given substation. The
interface can be seen in Figure 4.5.

When the application is loaded and the plugin component mounted, the switches
configuration file is downloaded with an AJAX GET request from the CherryPy
server. If it is empty, when the plugin window is opened, a message is displayed,
suggesting to upload a DXF file first. If it is not empty, it shows the switches
panel, with check marks reporting their current status, which can be edited. A
‘save’ button at the end of the list allows to submit the form, triggering an AJAX
POST request that uploads the updated switches configuration file to the server.

It should be underlined that the switches panel is dynamically displayed based
on the content of the switches configuration file, which is generated upon the
import of a DXF. Successive imports would overwrite the configuration file and

34

Application architecture

Figure 4.4: Interface of the DxfImporter plugin.

35

Application architecture

the switches panel would be updated accordingly. By default, all switches are set
to false, i.e. the corresponding voltage sources are turned off.

Figure 4.5: Interface of the SwitchesConfig plugin.

SimulationConfig plugin The SimulationConfig plugin allows to interact with
all the editable sections of the configuration file, which are: ‘Generators’, ‘Substa-
tions’, ‘Cables’, ‘Trams’, ‘Faults’ and ‘GeoServer’. For the most part, these contain
parameters that affect how the circuital model of the network is built; the last
section instead allows to configure the connection of the simulator to GeoServer.
The list of editable fields is shown in Figure 4.6, Figure 4.7 and Figure 4.8. Again,
when the application is loaded and the plugin is mounted the configuration file is
downloaded; when the plugin is opened the current values of the parameters are
displayed as default values in the form. The ‘save’ button, i.e. the form submission,
triggers a POST request to the server that uploads the updated version of the
configuration file.

Simulation plugin Lastly, the Simulation plugin is the one that allows the user
to launch simulations. The plugin interface is shown in Figure 4.9. When the
window is opened, the configuration file is downloaded with an AJAX request. The
form allows to choose the task of the simulation, which is inserted in the URL of
the GET request to the simulator, while all the other parameters are stored in the

36

Application architecture

Figure 4.6: Interface of the SimulationConfig plugin (1/3).

Figure 4.7: Interface of the SimulationConfig plugin (2/3).

37

Application architecture

Figure 4.8: Interface of the SimulationConfig plugin (3/3).

38

Application architecture

configuration file. When the launch button is pressed, first the configuration file is
uploaded with a POST request, then a GET request calls the simulator, starting
the specified task, which can either be a simulation or the computation of the point
of maximum resistance for a given zone.

Figure 4.9: Interface of the Simulation plugin.

4.5.2 Connectivity with other application components
The plugins are part of the MapStore front-end code, that runs in the browser.
As already described, these plugins need to perform various AJAX calls to the
CherryPy server hosting the simulator; therefore, they need to be aware of its
URL. Ideally, this should be indicated in the localConfig.json file (located in
the mapstore/config/ folder), which stores the configuration of all the MapStore
plugins, and which can be edited after MapStore has been built and deployed.
However, despite several trials, it was not possible to successfully make these
requests when passing the simulator URL from the configuration files. At the
moment, the simulator URL is hard-coded in the source code of the plugins. The
fact that in this case it is not possible to reference it with its service name, as
provided by the Docker network, is an additional inconvenience. As of now, the
MapStore application has to be built embedding the URL for the simulator: further
work should be carried out to solve this issue. On the other hand, the connectivity
with the database, hosted in the mapstore_db service does not present the same

39

Application architecture

problem. The database configuration is specified in another configuration file,
geostore-datasource-ovr.properties (located in the mapstore/WEB-INF/classes/
folder), which can be edited after the deployment, and, being run on the server, it is
able to exploit the Docker network host naming system. It specifies the connection
as: geostoreDataSource.url=jdbc:postgresql://mapstore_db:5432/geostore.

4.6 Mapstore db service
The mapstore_db service is built upon the postgres:13.2 image. In addition, two
scripts provided by MapStore are run; they create a database called geostore
and the tables required to store users, maps and other configuration of MapStore.
The procedure is explained in detail in [37]. Lastly, this enables the integration
of MapStore and GeoServer, which allows MapStore users to authenticate to
GeoServer as well. However, as already mentioned, this is not part of the current
configuration, since it caused issues with the management of the key authentication
service required for the GeoServer simulator-user.

40

Chapter 5

Network simulator

This chapter describes the structure of the simulator used to build and solve the
circuital model of the Turin tramway network. As already anticipated, the simulator
is a Python application exposed on the web through a CherryPy web-server, hosted
in a Docker container.

5.1 CherryPy WebServer
The server hosts a single application, called App, which is written as a Python class
with the same name. The App class defines five objects as attributes:

• the configuration file, a JSON object that stores all the settings for the
application;

• the switches configuration file, a JSON object that stores the list of the switches
in the network, along with their status;

• an object of the DxfImporter class, that implements all the methods to import
a DXF file;

• an object of the Simulator class, that implements all the methods of the
simulator;

• a dictionary containing a key-value pair that should be used in the URL as
authentication token to access the server functionalities.

Following the REST approach, the server exposes the following methods:
• GET: it allows to call the simulator, to retrieve the configuration file or to

retrieve the switches configuration file;

• POST: it allows to upload the configuration file, the switches configuration file
(both in JSON format), or a DXF file with the network data.

41

Network simulator

5.2 DXF importer
The DxfImporter class allows to: process a DXF file; build an electrical model of
the tramway network as an object of the Circuit class; and upload to GeoServer
the network layers, so that they become available to be visualised on a map, as
well as to be accessed by the simulator.

When a DXF file is uploaded through a POST request, a sequence of operations
is performed: first, the configuration file is loaded and the DXF file is read; then
some pre-processing tasks are performed and the circuit model is built. Finally,
the newly created network layers are uploaded to GeoServer.

5.2.1 Reading the DXF file
A DXF file is not meant to be understood when opened directly with a text
editor. In Python, it can be read with the library GeoPandas, that imports it as a
GeoDataFrame. Each record of the GeoDataFrame has the following attributes:

• Layer: indicates the AutoCAD layer to which the record belongs. A complete
list of the layers present in the file is reported in Table 5.1;

• PaperSpace: it is empty and it is discarded;

• SubClasses: it contains information on the AutoCAD object class it belongs
to; it is not needed and it is discarded;

• Linetype: when the geometry is of type LineString, it specifies a property of
the line: in the layers corresponding to cables, it gives the section of the cable
in mm2; in the other cases it is ignored;

• EntityHandle: it is a unique identifier given by AutoCAD to each record,
which will be used to identify each feature;

• Text: it can contain a text label attached to the feature;

• Geometry: it contains the geometry of the feature, which can be of type Point
or LineString.

5.2.2 Preprocessing the DXF file
Firstly, the GeoDataFrame is assigned a coordinate reference system, specified in
the configuration file; secondly, the fields PaperSpace and SubClasses are dropped,
since they do not contain relevant information; thirdly, the records are divided
into distinct GeoDataFrames according to their layer; the complete list of layers is
reported in Table 5.1, which shows also which ones are discarded (a lot of layers

42

Network simulator

are not relevant to the purpose of the simulator); finally, the layers corresponding
to the different zones of the overhead contact system (OCS) (e.g. LA_02, where LA
stands for Linee Aeree, Italian for OCS and 02 is the zone number) are merged
into a single layer, named LINEE_AEREE. This is done to reduce the overall number
of layers to be handled.

Layer Geometry Retained
CASSETTE GeometryCollection X
LAME LineString X
CAVI_POSITIVI LineString X
CAVI_NEGATIVI LineString X
CAVI_ALIMENTAZIONE LineString X
LA_* LineString X
BINARI LineString X
LA_ETI Point X
0 Point X
PALI_ATM_ALIM GeometryCollection
USCITE_ALIM GeometryCollection
GIUNTI LineString
_cavi-appoggio LineString
_Varie_Ruby LineString
CODCAVI Point
ASSE_CAVIDOTTO LineString
PALI_ATM GeometryCollection
PLANIMETRIE Point
QUOTE LineString
DEFPOINTS Point
SEZIONI LineString
CAVIDOTTI LineString
TESTO_CART Point
RETE_5000 Point
BOTOLE LineString
TESTI Point
CAVI-POS_NEW LineString
MOTRICI GeometryCollection
FS_Definitivo LineString

Table 5.1: Layers in the DXF file.

43

Network simulator

5.2.3 Building the circuit layers
Creating equipment objects At this point, the different GeoDataFrames are
processed and each record is transformed into a Python object. Records of the Geo-
DataFrames positive cables, feeder cables, OCS cables, negative cables and tracks
are stored as objects of the Cable class; records of the junctions GeoDataFrame are
stored as objects of the Junction class; finally, records of the junction boxes Geo-
DataFrame are stored as objects of the JunctionBox class. As already mentioned
in Chapter 4, this layer (originally named cassette) actually contains, other than
the proper junction boxes, also the blocks which correspond to the substations.
These two kinds of objects are distinguished based on their size: the substations
are squares of side 15 m, while junction boxes never exceed a side length of 3 m.
Based on this, a list of objects of the Substation class is created. All these objects
are stored as lists into the Circuit object.

Determining connections Once all the features have been scanned, connections
must be established. As they are extracted from AutoCAD, the features do not
contain information on which other elements they are connected to. In fact, all the
classes mentioned up to now (Cable, Junction, JunctionBox, Substation) constitute
simply the physical model of the network. The connectivity model, instead, is
implemented with two different classes: Node and Link.

First, the Junction objects are processed: for each of them, an object of the
Node class is created.

Once this is done, the cables are scanned (only those of layers positive cables,
feeder cables and OCS cables: at this stage tracks and negative cables are ignored).
For each of them, the following algorithm is executed: first, the start point of the
cable is considered. If it is in the neighbourhood (with a tolerance of 2 cm) of an
already defined node, that node is assigned as start node. Otherwise, a new node is
created with the coordinates of the start point. The same is done for the end point
of the cable. Once the start and end nodes are defined, an object of the Link class
is created. Each link contains references to both its start and end nodes; similarly,
each node object contains references to all the links which either enter or exit it.

In addition, Link objects embed the Cable object from which they have been
created: through this association, each one defines its own resistance as:

R = ρ · l
A

(5.1)

where ρ is the resistivity of the cable, l its length and A its section.

Assigning zones At this point, the information on the zones of the circuit is
only contained in the Layer field of the cables belonging to the OCS (e.g. LA_19).

44

Network simulator

By exploring the graph made of links and nodes, a zone is assigned to each link;
the zone attribute should be unique, since each zone should be electrically isolated
from the others. The only exception was found for zones 10 and 49, which appear
to be connected in parallel. This information has then be confirmed by Infra.To.
It should be pointed out again that zones are not defined for negative cables and
tracks, which have not been considered yet.

The definition of the zone is of particular importance for the positive cables.
These are the ones that exit from the substations, the first portion of the path that
leads to the OCS. Since the substation features contain no data as to which zone
they power, this key piece of information is determined in the following way: the
end points of all positive cables are scanned. When one of these points is found
to be in the neighbourhood of a substation (considering a radius of 12 m from
the centre of the substation), it means that this substation actually powers the
zone of that positive cable. Therefore, an object of the Generator class is created,
embedded in the Substation object.

Creating the switches configuration file In the end, by scanning the list of
substations and, for each of them, the list of its generators, the switches configuration
file is created and saved as a JSON file. This file is exposed by the server and the
status of the switches can be toggled from the GUI in MapStore.

5.2.4 Uploading layers to GeoServer
The last operation to perform is the upload of all the layers to GeoServer. To
accomplish this, the DxfImporter uses the GeoServerClient class, that allows to
connect to GeoServer using its REST API and the WFS protocol. It can be used
to retrieve layers from the server (as done by the Simulator class), even applying
filters, to upload layers (as in this case), to update specific values, or to delete
records.

When a new DXF file is imported, the old content of the layers is deleted first,
ensuring that only the latest version of the network is present.

5.3 Simulator
The simulator operates under the assumption that a network file has already been
imported in the DXF format and that the corresponding layers have been published
to GeoServer.

The simulator allows to perform two different tasks: either a simulation, or the
determination of the point of maximum resistance for a given zone. Considering
the simulation task, two main possibilities are given: the first is to perform a single

45

Network simulator

static simulation, the second to perform a series of static simulations, where tram
vehicles move along a predetermined path.

5.3.1 Single static simulation

When the simulator is launched specifying the “simulation” task and the “manual”
tram mode, firstly it loads the configuration file, which includes all parameters for
the simulation. Secondly, it retrieves the input from GeoServer. In this scenario, the
input is given by the layers input:trams and input:faults. Both represent point-
like features that have been manually drawn on the map through the MapStore
GUI, indicating the required attributes, like absorbed current for the trams and
resistance values for the faults. They are downloaded from GeoServer and stored in
GeoPandas GeoDataFrames. Then, the network layers (those that were uploaded
as a result of the import of the DXF file) are downloaded from GeoServer and
stored in GeoDataFrames, too. This is again accomplished with the support of the
GeoserverClient class.

5.3.2 Building the circuit

At this point, some of the operations already described in Section 5.2.3 are executed
again. Namely, all the GeoDataFrames are scanned and Cable and Junction objects
are built; the difference is that this time the network:cassette (junction boxes)
layer is not considered, but rather the network:cabine (substations) layer is: the
distinction among them does not have to be repeated.

Then, Node and Link objects are built analysing Junction and Cable objects;
zones are assigned and Generator objects are built. In this case, the generators are
assigned a status, based on the switches configuration file, that determines whether
they are active or not.

As already explained, each substation has a number of generators, one for each
zone that it powers. Each generator embeds a link, that on the positive pole is
connected to the positive cables of that zone that arrive at the substation. On the
negative pole, all the generators of a given substation are connected together in a
unique substation negative node. If tracks (and negative cables) are included in
the model, all negative cables arriving at the substation will also be connected to
that node. If tracks are not included in the model, the substation negative node
will simply be the ground node, which would be therefore shared with all the other
substations in the city.

46

Network simulator

5.3.3 Tracks and negative cables
Indeed, one of the parameters that has to be chosen when launching the simulation
is whether to include the tracks (and, consequently, the negative cables) or not
in the model. To include them means having a more accurate electrical model at
the expense of a greater computational cost and thus time required to carry it out.
Indeed, the network:binari (tracks) layer is by far the heaviest one, counting more
than 24000 features. If included, they are processed in the following way: first,
the tracks GeoDataFrame is scanned, Cable objects are created for each record
and are stored in a separate list. Then, a new set of nodes and links is created:
indeed, tracks cannot be connected with the ‘positive’ side of the network. The
same algorithm previously described for the creation of standard nodes and links is
used.

Then, the negative cables GeoDataFrame is scanned: as for the tracks, Cable
objects are created and stored separately from the others. Then, nodes for the
negative cables are created according to the following algorithm:

• if a cable is in the neighbourhood of a substation, it is connected to the
substation negative node;

• otherwise, a connection is searched with other existing negative cables nodes.
Here a larger radius is used, namely 2 m, because it happens that multiple
negative cables arrive at a negative cables junction box, but these were not
drawn in the AutoCAD file. In this case, they should be connected together;

• otherwise, a connection is searched with track nodes. Here a very large radius
is used (100 m), since it happens that tracks are defined in long segments and
the extremity of a negative cable is far away from its end points;

• otherwise, as a last option, a new negative cable node is created.

Once the connectivity model for tracks and negative cables is complete, an
algorithm is implemented to reduce its number of features: by analysing the track
links, it can be seen that almost two out of three are connected in series, i.e. there
are over 16000 track nodes that have one link coming in and one coming out. These
two links can be merged, by deleting the node in the middle, the two original
links and adding a new one that has the geometry of the two original links merged
together.

Finally, if tracks are included, the presence of stray current that is dispersed
to the ground must be modelled as well. This is done by adding, for each track
node, i.e. at both ends of each track link, an additional link to the ground, with a
resistance that depends on the length of the track.

47

Network simulator

At this point, the circuit is built. The heaviest step is the one in which the
tracks network is built. This alone takes around ten minutes, while all the other
operations require less than a minute in total. Considering this, it is useful to store
the Circuit object using pickle, a Python library that allows to store Python
objects into binary files and load them when needed. In this way, unless some
features in the circuit have been edited, the simulator can simply load this circuit
file and reload the configuration file, thus saving the whole building time.

5.3.4 Inserting input
In the case of a single static simulation, the following operations are performed:
first, the generators are updated, based on the status indicated in the switches
configuration file. According to it, the system determines which are the active
zones, and therefore which are the active links and nodes. Those that are not
active (with the exception of tracks and negative cables links, for which the active
property is not defined) are not included in the simulation. Again, this is useful to
simplify the calculations and to speed up the solution of the network.

Then, faults are inserted, if there are any. Geometrically, they are defined
as points. As attributes, they include the resistance value, a flag that allows to
specify individually which ones should be included in the simulation and some other
descriptive field. For each fault feature, an object of the Fault class is created;
essentially, it embeds a link with the specified resistance value. If an already defined
circuit node is found to be within a radius of 1 m around the position of the fault,
the fault is connected to that node. Otherwise, the fault point is projected onto the
nearest link, which is then divided in two, creating a new node in correspondence
to the point of minimum distance to the fault. The fault is then inserted into this
newly created node.

As for the negative pole of the fault, if tracks are included and the positive pole
belongs to the OCS, the fault is connected to the nearest track node. If tracks are
not included, or if the fault is associated to a node on positive cables or feeder
cables, the negative pole of the fault will simply be the ground node.

The same procedure is then followed to add trams to the circuit: the only
differences are that the positive pole of a tram can only be associated to a node
that lies on the OCS, and that the tram link contains a current generator in parallel
to the resistance.

5.3.5 Solving the circuit
Once all the input elements have been inserted, the circuit can be solved by means
of nodal analysis. The first matrix to be built is the link admittance matrix G. It
has dimensions L×L, where L is the number of links in the circuit, considering the

48

Network simulator

active links (i.e. those that belong to an active zone), plus, if tracks are included,
all track links, negative cables links and the links that model stray currents from
tracks to ground. Active links include both tram links and fault links, if they are
connected to an active network zone. The matrix is diagonal and each entry Gi,i is
the total conductance of the ith link.

Vector vs is defined as the voltage sources vector. It has dimensions L× 1: it
indicates the value of the voltage source contained in each link, in series to the
link resistance. Generator links of active zones are the only non-zero entries of this
vector.

Similarly, vector js is defined as the current sources vector. It has dimensions
L× 1 as well: it indicates the value of current sources contained in each link, in
parallel to the link resistance. Tram links are the only non-zero entries of this
vector.

Then, matrix A is defined as the reduced incidence matrix. It has dimensions
N × L, where N is the number of nodes in the circuit minus one. The reference
node not included in the matrix is the ground node. In the model, N is the sum
of all active nodes, plus - if tracks are included - all track nodes, negative cables
nodes and substation negative nodes. Each entry Ai,j takes value: 1 if link j exits
node i; -1 if link j enters node i; 0 otherwise. In this way, each column (i.e. each
link) contains exactly one entry equal to 1 (on the row corresponding to the start
node of the link), an entry equal to -1 (corresponding to the end node of the link)
and all other entries are equal to zero.

Once all these matrices are defined, the nodal admittance matrixYn is computed
as:

Yn = AGAT (5.2)

The two unknown vectors j, with dimensions L×1 and e, with dimensions N ×1
are defined, representing respectively the current at each link and the voltage at
each node, i.e. the voltage difference relative to the reference (ground) node.

The KCL matrix formulation reads:

Aj = 0 (5.3)

The vector of voltage drops across each link, v, with dimensions L× 1 is defined
as:

v = ATe (5.4)

The link currents vector can be expressed as the sum of the admittance matrix
multiplied by the voltage drop across the links and the total current sources vector:

j = G(v − vs) + js (5.5)

49

Network simulator

Rewriting (5.5) substituting v with the expression of (5.4), and multiplying left
by A, gives:

Aj = AG(ATe − vs) + Ajs (5.6)
where each side is equal to zero, by (5.3). Therefore, (5.6) can be rewritten in

the form:

Yne = is (5.7)
where

is , AGvs − Ajs (5.8)
The unknown node voltage vector is then found as:

e = Y−1
n is (5.9)

Finally, the link voltage vector v is found from (5.4) and the link current vector
j is found from (5.5).

Of all these computations, the most expensive one is clearly (5.9), which requires
the inversion of matrix Yn, which has dimensions N ×N .

To invert the matrix, first numpy.linalg.inv is tried. If tracks are included, this
often fails, raising the error of non invertibility of the matrix. In this case, the
exception is caught and the numpy.linalg.lstsq algorithm is used, a least square
implementation that provides an approximate solution of the linear system, trying
to minimise the total squared error.

The results (currents, voltages, power) are stored in the Link, Node, Tram and
Fault objects. For each one of these classes, a GeoDataFrame is built, with only
the features included in the calculations. Each record contains also a timestamp,
that allows to distinguish features of different simulations. Lastly, the result
GeoDataFrames are uploaded to GeoServer.

5.3.6 Lines simulation
An alternative to the single static simulation is to perform “lines” simulations,
which can be specified by setting the “tram input mode” parameter to “lines”.
The difference lies in the tram vehicles input. Instead of the trams with their
fixed positions drawn on the map, some lines (defined in the input:lines layer)
are chosen. From each of these, a sequence of tram positions is generated, that
correspond to a series of steps that are simulated in sequence. With the current
implementation, this mode supports only a constant value of absorbed current
for each vehicle. A future improvement would be to enable the import of a
velocity/current profile that models the variation of current absorbed along the
line.

50

Network simulator

The setup of this simulation requires to: download the lines features, create the
set of tram coordinates for all steps, and then perform a single static simulation
for every set of coordinates, each corresponding to a given moment in time. On
one side, faults, if included, are kept statically throughout all the steps. Tram
vehicles, on the other side, are inserted and removed after each step, using the set
of locations defined for each step.

To remove a tram from the circuit essentially means removing the tram link: if
an additional node was created for it, dividing an OCS link in two, the original
link is restored, removing the two halves and the node in the middle, thus restoring
the initial configuration.

When the results are uploaded to GeoServer, they look simply as a sequence
of static simulations results, which differ in the position of the tram vehicles by a
certain amount. Different parameters, such as the maximum number of steps, or
the maximum spacing between steps, are specified in the configuration file and can
be modified from the MapStore interface.

5.3.7 Max resistance point simulation
Alternative to the “simulation” task is the “max resistance point” task. This
functionality allows to compute, for a given zone specified as input parameter, the
point of maximum resistance. This corresponds to computing the lowest value of
short-circuit current that can occur in that zone.

The build process of the circuit is the same described for the other simulations,
with the only difference that here the switches are not setup based on the configu-
ration file. Instead, they are initially all turned off, with the exception of one of the
switches that control the zone to be simulated. Then, the OCS links are split into
shorter segments, so that all links are shorter than a maximum length, specified as
input parameter. Then, a fault is placed at one node of the zone and a standard
simulation is carried out. After having stored the results and removed the fault
from the circuit, the simulation is repeated moving the fault to another node of the
zone. If the fault current is found to be lower than the previous one, the result is
updated. After having iterated over all the nodes of the zone, the minimum value
of fault current, corresponding to the point of maximum resistance, is determined.
To have a more accurate result, at the expense of greater computational cost, it is
sufficient to reduce the maximum allowed link length with which OCS links are
split at the beginning of the algorithm.

The simulation is then repeated for all the different substations that can power
the zone. Finally, for each substation a result record is uploaded to GeoServer,
including the location of the point, the fault current value and the equivalent
resistance seen from the substation.

51

Chapter 6

Results

This chapter presents some results obtained with the simulator. Section 6.1 shows
the features offered by the MapStore interface; Section 6.2 presents a validation
of the results obtained on zone 20 conducted with LTspice; finally, Section 6.3
compares some results related to zone 40 with the ones obtained by the simulator
presented in [1].

6.1 Results visualisation in MapStore
Once a simulation is completed, the results are uploaded to GeoServer and can be
accessed from the layers of the results group. Each simulation is timestamped:
in this way, through the timeline feature of MapStore, it is possible to navigate
through the results of different simulations, which are stored in the same layers.

As an example, we take a simulation on zone 20. This zone is powered by the
two substations “Trapani” and “San Paolo”. The scenario is the presence of a
fault between the OCS and ground (in this case, tracks are not included), located
at the farthest point from the two substations. The zone is powered in parallel
by the two substations. Their voltage sources are set to Vcc = 635 V, with series
resistance Rser = 16.7 mΩ. The resistance of the fault is set to Rf = 1 nΩ. As
already mentioned, tracks and negative cables are not included in the simulation. A
screenshot of the MapStore interface is shown in Figure 6.1: the links and faults
layers are visible.

By selecting the links layer and clicking on the map, a panel appears on the
right side of the screen, displaying information on the selected features. Figure 6.2
shows an example of this for the links layer. The point in correspondence of the
fault is selected, and the info of two cables appear: their original layer is the LA_20
(i.e. they are OCS cables) and the EntityHandle field reads: 46323D_p0001 and
46323D_p0002. Indeed, this was initially a unique cable, which was split in two

52

Results

Figure 6.1: Visualisation of the results on MapStore.

53

Results

during the simulation to insert the fault at that precise point; it was then stored as
two separate features in the results layer. The arrows drawn along the link show
how current flows from both directions into the fault and into the ground node.
The two current values are respectively I1 = 3,623 A and I2 = 3,643 A.

Figure 6.2: Visualisation of results on MapStore: details of two features of the
links layer.

Figure 6.3 shows instead information on the faults layer: the current value,
absorbed by the fault is indeed the sum of the two previous values, being:

If = I1 + I2 = 7,266 A (6.1)

Lastly, opening the attribute table of one of the layers allows to inspect all the
features, which can be filtered and localised on the map by clicking on the lens
at the left side of each row. The attribute table for the links layer is shown in
Figure 6.4.

6.2 Validation with LTspice
To validate the results of the simulation described in the previous section, zone 20
is drawn on LTspice. The circuit diagram is shown in Figure 6.5. The resistance
values are taken from the simulator, taking significant digits up to the microhm
order of magnitude.

54

Results

Figure 6.3: Visualisation of results on MapStore: detail of one feature of the
faults layer.

Figure 6.4: Visualisation of results on MapStore: attribute table of the links
layer.

55

Results

V
1

63
5

R
1

0.
01

67

R
2

0.
00

50
13

R
3

0.
00

19
18

R
5

0.
02

36
49

R
6

0.
00

13
45

R
7

0.
00

03
78

R
8

0.
00

04
36

R
10

0.
02

03
96

R
12

0.
09

62
05

R
9

0.
00

08
42

R
4

0.
00

03
17

R
11

0.
02

27
97

R
13

0.
09

60
69

R
14

0.
00

50
69

R
15

0.
00

42
61

R
16

0.
10

80
69

R
17

0.
10

91
97

R
18

0.
00

00
00

00
1

R
19

0.
02

19
17

R
20

0.
01

49
23

R
21

0.
00

35
70

R
22

0.
04

70
89

R
23

0.
04

37
71

R
24

0.
00

70
68

R
25

0.
07

08
84

R
26

0.
07

05
87

R
27

0.
00

15
29

R
28

0.
00

20
53

R
29

0.
00

14
94

R
30

0.
00

20
00

R
31

0.
00

02
10

R
32

0.
00

04
85

R
33

0.
01

43
77

R
34

0.
01

09
89

R
35

0.
00

51
20

V
2

63
5

R
36

0.
01

45
34

R
37

0.
03

73
80

R
38

0.
02

54
14

R
39

0.
02

26
78R

40

0.
00

73
45

R
41

0.
01

53
47

R
42

0.
01

67

.tr
an

 0
.0

01

 --
-

C
:\U

se
rs

\A
dm

in
\D

ro
pb

ox
 (P

ol
ite

cn
ic

o
di

 T
or

in
o

St
af

f)\
Te

si
\T

es
i_

B
ar

lo
cc

o_
Fr

an
ce

sc
o_

gi
s-

tr
am

\F
ra

nc
es

co
\z

on
e2

0.
as

c
 --

-

Figure 6.5: Circuit diagram of zone 20, on LTspice.

56

Results

Three different simulations are carried out, for the different configurations of
powering substations: in the first simulation, zone 20 is powered by the “Trapani”
substation; in the second, it is powered by the “San Paolo” substation; in the
third, both substations power the zone. The tran directive is used: it performs
the transient analysis of the circuit. This requires to set a time interval for the
analysis: 1 ms is chosen. Actually any small interval would be sufficient, since the
circuit reaches instantly its steady state, not having any reactive element. The
comparisons of the results between the simulator and the LTspice analysis for the
three simulations are given respectively in Table 6.1, Table 6.2 and Table 6.3. Each
one reports the values of current in the fault, as well as the currents exiting the two
substations; plus, they report the voltages at all the junction points in the zone
where feeder cables are connected to the OCS. Since junctions are not labelled in
the simulator, the id of the OCS features that start at those points are used to
identify these nodes.

ID Results
Simulator LTspice Simulator LTspice
Ifault IR18 6,614 A 6,617 A
IT rapani IR1 6,614 A 6,617 A
ISanP aolo IR42 0 A 0 A
VLA_20−46322E VN009 479 V 479 V
VLA_20−46322F VN010 488 V 488 V
VLA_20−463231 VN027 489 V 489 V
VLA_20−46322C VN029 370 V 370 V

Table 6.1: Simulation of zone 20 powered by the “Trapani” substation: comparison
of the results.

6.3 Comparison with previous thesis work
As already mentioned, a MATLAB simulator for the Turin tramway electrification
system had been developed in [1]; Chapter 5 of the work reported the results of
four different simulations. The same simulations have been carried out on the new
application and a comparison of the results is given.

57

Results

ID Results
Simulator LTspice Simulator LTspice
Ifault IR18 5,858 A 5,860 A
IT rapani IR1 0 A 0 A
ISanP aolo IR42 5,858 A 5,860 A
VLA_20−46322E VN009 424 V 424 V
VLA_20−46322F VN010 464 V 464 V
VLA_20−463231 VN027 505 V 505 V
VLA_20−46322C VN029 328 V 328 V

Table 6.2: Simulation of zone 20 powered by the “San Paolo” substation: com-
parison of the results.

ID Results
Simulator LTspice Simulator LTspice
Ifault IR18 7,266 A 7,269 A
IT rapani IR1 4,430 A 4,432 A
ISanP aolo IR42 2,836 A 2,838 A
VLA_20−46322E VN009 526 V 526 V
VLA_20−46322F VN010 552 V 552 V
VLA_20−463231 VN027 572 V 572 V
VLA_20−46322C VN029 407 V 407 V

Table 6.3: Simulation of zone 20 powered by the “Trapani” and “San Paolo”
substations in parallel: comparison of the results.

6.3.1 Zone 40, Duca d’Aosta, two trams
The first scenario includes two trams, located in zone 40, both of which absorb
1,000 A of current. The zone is powered by substation “Duca d’Aosta”: its voltage
source is set to Vcc = 600 V, with a series resistance Rser = 16.7 mΩ. The MATLAB
simulator of [1] reported voltages of 562 V and 547 V for the two trams. The results
of the Python simulator developed in this thesis are shown in Figure 6.6 and
Figure 6.7. The voltages of the two trams are respectively 562 V and 547 V,
matching the others.

The simulation is repeated changing only the current absorption of the two
trams to −1,000 A, which would represent injection of power into the network,
due to regenerative braking. In this simulation, the power is then absorbed by
the substations. It should be noted that it is not a feasible scenario, since the
substations cannot absorb power: the only way regenerative braking could be
exploited would be if other vehicles were present in the same zone and could absorb

58

Results

the power released by the ones that are braking. Also in this case the results of
the two simulators match, with voltages respectively of 638 V and 653 V.

Figure 6.6: Simulation results of zone 40, powered by “Duca d’Aosta”: voltage of
the first tram.

6.3.2 Zone 40, Duca d’Aosta, one fault

Zone 40 is then simulated in presence of a fault, located almost where the second
tram of the previous simulation was, right before the zone divider, which separates
zone 40 from zone 30. First, substation “Duca d’Aosta” is considered active. In this
simulator, the fault resistance was set to Rf = 1 nΩ, whereas in the previous work
it was taken as a true short-circuit, with Rf = 0 Ω. As shown in Figure 6.8, the
current through the fault is evaluated at If = 17,520 A. [1] reported it at 17,474 A.

6.3.3 Zone 40, Sebastopoli, one fault

The same simulation is then repeated, replacing the substation “Duca d’Aosta”
with the “Sebastopoli” one. The Python simulator gives If = 16,066 A, while [1]
reports If = 14,934 A. The results are shown in Figure 6.9.

59

Results

Figure 6.7: Simulation results of zone 40, powered by “Duca d’Aosta”: voltage of
the second tram.

Figure 6.8: Simulation results of zone 40, powered by “Duca d’Aosta”: current
through the fault.

60

Results

Figure 6.9: Simulation results of zone 40, powered by “Sebastopoli”: current
through the fault.

61

Results

6.3.4 Zone 40, two substations in parallel, one fault
Finally, the simulation is repeated considering both the “Duca d’Aosta” and the
“Sebastopoli” substations active, powering zone 40 in parallel. The results are:
If = 26,611 A for the Python simulator, If = 25,854 A for the MATLAB one. The
results are shown in Figure 6.10.

Figure 6.10: Simulation results of zone 40, powered by “Duca d’Aosta” and
“Sebastopoli” in parallel: current through the fault.

62

Chapter 7

Conclusions

The proposed software tool satisfies the requirements set in Chapter 2, both in
terms of the features of the simulator and in terms of the architecture of the whole
application. The validation of the results performed with the LTspice simulator
proves the correctness of the algorithms that build and solve the circuital model
of the network. Additional tests should be carried out to verify the quality of the
results of simulations that include tracks and negative cables in the model. To
this end, given the difficulty of reproducing the complete network in a simulation
environment, a comparison with some experimental data retrieved on the field
could be the best approach.

As for possible improvements of the work, firstly the authentication and connec-
tivity issues described in Chapter 4 should be addressed, in order to enhance the
security and the flexibility of the system.

Moreover, as far as the simulator is concerned, a simple yet effective optimisa-
tion of the function that computes the point of maximum resistance for a given
zone would be to first estimate the point without taking tracks into account and
then redo the simulations including tracks, but testing just the nodes in a small
neighbourhood of the previously estimated point, without having to iterate over
the whole zone, a task that is very time consuming when tracks are included in the
model. Furthermore, according to the need of addressing specific problems, the
internal models of the trams, of the substations, and so forth, could be made more
complex.

The way in which simulations results are outputted could be improved by
developing a plugin that reports some text based messages, alerting the user in
case of particular events, such as the occurrence of voltages or currents over given
thresholds, or the presence of anomalies in the connections (disconnected cables,
zones in parallel, etc.).

More in general, two considerations could still be made with respect to the
applications of this platform: the first is that it could support quasi-real-time

63

Conclusions

simulations of the network, provided that real-time data of location and current
absorption of the vehicles are available. This could greatly enhance the level of load
monitoring on the different network zones. The second is that the proposed GIS
platform could be used to integrate both other data sources, in the forms of layers,
and other applications, in the form of MapStore plugins, following the approach
already used in this thesis.

64

Bibliography

[1] Lorenzo Bertolone Citin. «Procedura automatica per il calcolo delle correnti di
cortocircuito e dei flussi di potenza nella rete tranviaria torinese = Automatic
procedure for calculating the short circuit currents and the power flows in
the Turin tramway network». Luglio 2018. url: http://webthesis.biblio.
polito.it/7666/ (cit. on pp. 1, 3, 52, 57–59).

[2] Enrico Pons, Riccardo Tommasini, and Pietro Colella. «Fault Current De-
tection and Dangerous Voltages in DC Urban Rail Traction Systems». In:
IEEE Transactions on Industry Applications 53.4 (2017), pp. 4109–4115. doi:
10.1109/TIA.2017.2692202 (cit. on pp. 1, 2).

[3] T.K. Ho, Baohua Mao, Z.Z. Yuan, H.D. Liu, and Yu-Fai Fung. «Computer
simulation and modeling in railway applications». In: Computer Physics
Communications 143(1) (Feb. 2002), pp. 1–10. doi: 10.1016/S0010-4655(01)
00410-6 (cit. on pp. 4, 5).

[4] Mehmet Söylemez and Süleyman Açıkbaş. «Multi-train Simulation of DC
Rail Traction Power Systems with Regenerative Braking». In: vol. 15. May
2004 (cit. on p. 6).

[5] OpenPowerNet. url: https://www.openpowernet.de (visited on 07/12/2021)
(cit. on p. 7).

[6] Rail Power Systems - eTraX™. url: https : / / etap . com / solutions /
railways (visited on 07/12/2021) (cit. on p. 7).

[7] Consulting and planning for rail electrification. url: https://www.mobility.
siemens.com/global/en/portfolio/rail/electrification/planning-
and-consulting.html (visited on 07/12/2021) (cit. on p. 7).

[8] TracFeed products. url: https://www.tracfeed-produkte.de/en/ (visited
on 07/12/2021) (cit. on p. 7).

[9] Signon - Portfolio. url: https://en.signon-group.com/en/products
(visited on 07/12/2021) (cit. on p. 7).

[10] Fabel. url: https://www.enotrac.com/en/software-tools/fabel.php
(visited on 07/12/2021) (cit. on p. 7).

65

http://webthesis.biblio.polito.it/7666/
http://webthesis.biblio.polito.it/7666/
https://doi.org/10.1109/TIA.2017.2692202
https://doi.org/10.1016/S0010-4655(01)00410-6
https://doi.org/10.1016/S0010-4655(01)00410-6
https://www.openpowernet.de
https://etap.com/solutions/railways
https://etap.com/solutions/railways
https://www.mobility.siemens.com/global/en/portfolio/rail/electrification/planning-and-consulting.html
https://www.mobility.siemens.com/global/en/portfolio/rail/electrification/planning-and-consulting.html
https://www.mobility.siemens.com/global/en/portfolio/rail/electrification/planning-and-consulting.html
https://www.tracfeed-produkte.de/en/
https://en.signon-group.com/en/products
https://www.enotrac.com/en/software-tools/fabel.php

BIBLIOGRAPHY

[11] Anders Nyman. «TTS/SIMON Power Log - A Simulation Tool For Evaluating
Electrical Train Power Supply Systems». In: WIT Transactions on The Built
Environment 37 (1998), pp. 427–436. doi: 10.2495/CR980411 (cit. on p. 7).

[12] Lars Abrahamsson. «Railway Power Supply Models and Methods for Long-
term Investment Analysis». PhD thesis. Sept. 2008. doi: 10.13140/RG.2.1.
1258.7040 (cit. on pp. 7, 8).

[13] Alekhya Datta and Parimita Mohanty. «Enterprise GIS and Smart Electric
Grid for India’s power sector». In: 2013 IEEE PES Innovative Smart Grid
Technologies Conference (ISGT). 2013, pp. 1–7. doi: 10.1109/ISGT.2013.
6497806 (cit. on p. 9).

[14] P. A. Parikh and T. D. Nielsen. «Transforming traditional geographic infor-
mation system to support smart distribution systems». In: 2009 IEEE/PES
Power Systems Conference and Exposition. 2009, pp. 1–4. doi: 10.1109/
PSCE.2009.4839979 (cit. on p. 10).

[15] Najmeh Rezaei, Majid Nayeripour, A Roosta, and Taher Niknam. «Role of GIS
in Distribution Power Systems». In: World Academy of Science, Engineering
and Technology 36 (Dec. 2009) (cit. on p. 10).

[16] M.V. Krishna Rao, B.S. Varma, and C. Radhakrishna. «Experiences on
implementation of GIS based tools for analysis, planning and design of
distribution systems». In: 2008 IEEE Power and Energy Society General
Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.
2008, pp. 1–8. doi: 10.1109/PES.2008.4596690 (cit. on p. 10).

[17] R. Santodomingo, Eduardo Pilo, J.A. Mondejar, and M. García-Vaquero.
«Adapting the CIM model to describe electrified railway systems». In: Aug.
2008, pp. 381–390. isbn: 9781845641269. doi: 10.2495/CR080381 (cit. on
p. 11).

[18] Xianqi Li, Xiaoliang Feng, Zhiyuan Zeng, Xuejun Xu, and Yongchuan Zhang.
«Distribution feeder one-line diagrams automatic generation from geographic
diagrams based on GIS». In: 2008 Third International Conference on Electric
Utility Deregulation and Restructuring and Power Technologies. 2008, pp. 2228–
2232. doi: 10.1109/DRPT.2008.4523781 (cit. on p. 11).

[19] Yuxing Duan, Chengyou Wang, and Wenjun Zhou. «Topology modeling of
distribution network based on open-source GIS». In: 2011 4th International
Conference on Electric Utility Deregulation and Restructuring and Power
Technologies (DRPT). 2011, pp. 527–530. doi: 10.1109/DRPT.2011.5993948
(cit. on p. 11).

[20] Sundara Bharathi Dhamotharan. GIS based web application for Electricity
Asset Management System. July 2015. doi: 10.13140/RG.2.1.1811.1843
(cit. on p. 11).

66

https://doi.org/10.2495/CR980411
https://doi.org/10.13140/RG.2.1.1258.7040
https://doi.org/10.13140/RG.2.1.1258.7040
https://doi.org/10.1109/ISGT.2013.6497806
https://doi.org/10.1109/ISGT.2013.6497806
https://doi.org/10.1109/PSCE.2009.4839979
https://doi.org/10.1109/PSCE.2009.4839979
https://doi.org/10.1109/PES.2008.4596690
https://doi.org/10.2495/CR080381
https://doi.org/10.1109/DRPT.2008.4523781
https://doi.org/10.1109/DRPT.2011.5993948
https://doi.org/10.13140/RG.2.1.1811.1843

BIBLIOGRAPHY

[21] R.T. Fielding and R.N. Taylor. «Principled design of the modern Web ar-
chitecture». In: Proceedings of the 2000 International Conference on Soft-
ware Engineering. ICSE 2000 the New Millennium. 2000, pp. 407–416. doi:
10.1145/337180.337228 (cit. on p. 14).

[22] Web Services Architecture, W3C Working Group Note 11 February 2004. url:
https://www.w3.org/TR/ws-arch/ (visited on 06/09/2021) (cit. on p. 14).

[23] David Moretz. «Internet GIS». In: Encyclopedia of GIS. Ed. by Shashi Shekhar
and Hui Xiong. Boston, MA: Springer US, 2008, pp. 591–596. isbn: 978-
0-387-35973-1. doi: 10 . 1007 / 978 - 0 - 387 - 35973 - 1 _ 648. url: https :
//doi.org/10.1007/978-0-387-35973-1_648 (cit. on p. 14).

[24] Christopher D. Michaelis and Daniel P. Ames. «Web Feature Service (WFS)
and Web Map Service (WMS)». In: Encyclopedia of GIS. Ed. by Shashi
Shekhar, Hui Xiong, and Xun Zhou. Cham: Springer International Publishing,
2017, pp. 2485–2488. isbn: 978-3-319-17885-1. doi: 10.1007/978-3-319-
17885- 1_1480. url: https://doi.org/10.1007/978- 3- 319- 17885-
1_1480 (cit. on p. 15).

[25] OpenGIS Web Feature Service 2.0 Interface Standard. Open Geospatial Con-
sortium Inc. url: https://www.ogc.org/standards/wfs (cit. on p. 15).

[26] Abhinaya Sinha. «Web Feature Service (WFS)». In: Encyclopedia of GIS. Ed.
by Shashi Shekhar, Hui Xiong, and Xun Zhou. Cham: Springer International
Publishing, 2017, pp. 2481–2485. isbn: 978-3-319-17885-1. doi: 10.1007/978-
3- 319- 17885- 1_1479. url: https://doi.org/10.1007/978- 3- 319-
17885-1_1479 (cit. on p. 15).

[27] Apache Tomcat. url: http://tomcat.apache.org (visited on 07/11/2021)
(cit. on p. 16).

[28] GeoServer. url: http://geoserver.org (visited on 07/11/2021) (cit. on
p. 16).

[29] PostGIS. url: http://postgis.net/ (visited on 07/11/2021) (cit. on p. 16).
[30] MapStore. url: https://mapstore.readthedocs.io/en/latest/ (visited

on 07/11/2021) (cit. on p. 16).
[31] MapStore - Main Frontend Technologies. url: https://mapstore.readthedo

cs.io/en/latest/developer-guide/reactjs-and-redux-introduction.
html (visited on 06/08/2021) (cit. on p. 17).

[32] Python. url: https://www.python.org (visited on 07/11/2021) (cit. on
p. 17).

[33] Docker. url: https://docs.docker.com/get-started/overview/ (visited
on 06/08/2021) (cit. on p. 18).

67

https://doi.org/10.1145/337180.337228
https://www.w3.org/TR/ws-arch/
https://doi.org/10.1007/978-0-387-35973-1_648
https://doi.org/10.1007/978-0-387-35973-1_648
https://doi.org/10.1007/978-0-387-35973-1_648
https://doi.org/10.1007/978-3-319-17885-1_1480
https://doi.org/10.1007/978-3-319-17885-1_1480
https://doi.org/10.1007/978-3-319-17885-1_1480
https://doi.org/10.1007/978-3-319-17885-1_1480
https://www.ogc.org/standards/wfs
https://doi.org/10.1007/978-3-319-17885-1_1479
https://doi.org/10.1007/978-3-319-17885-1_1479
https://doi.org/10.1007/978-3-319-17885-1_1479
https://doi.org/10.1007/978-3-319-17885-1_1479
http://tomcat.apache.org
http://geoserver.org
http://postgis.net/
https://mapstore.readthedocs.io/en/latest/
https://mapstore.readthedocs.io/en/latest/developer-guide/reactjs-and-redux-introduction.html
https://mapstore.readthedocs.io/en/latest/developer-guide/reactjs-and-redux-introduction.html
https://mapstore.readthedocs.io/en/latest/developer-guide/reactjs-and-redux-introduction.html
https://www.python.org
https://docs.docker.com/get-started/overview/

BIBLIOGRAPHY

[34] MapStore Developer Guide - MapStore2 users GeoServer integration with
Authkey. url: https://mapstore.readthedocs.io/en/latest/developer-
guide/integrations/users/geoserver/ (visited on 07/07/2021) (cit. on
p. 31).

[35] GeoServer User Manual. url: https://docs.geoserver.org/master/en/
user/index.html (visited on 06/24/2021) (cit. on p. 31).

[36] MapStore User Guide. url: https : / / mapstore . readthedocs . io / en /
latest/user-guide/home-page/ (visited on 06/08/2021) (cit. on p. 33).

[37] MapStore Developer Guide - Database Setup. url: https : / / mapstore .
readthedocs.io/en/latest/developer-guide/database-setup/ (visited
on 07/07/2021) (cit. on p. 40).

68

https://mapstore.readthedocs.io/en/latest/developer-guide/integrations/users/geoserver/
https://mapstore.readthedocs.io/en/latest/developer-guide/integrations/users/geoserver/
https://docs.geoserver.org/master/en/user/index.html
https://docs.geoserver.org/master/en/user/index.html
https://mapstore.readthedocs.io/en/latest/user-guide/home-page/
https://mapstore.readthedocs.io/en/latest/user-guide/home-page/
https://mapstore.readthedocs.io/en/latest/developer-guide/database-setup/
https://mapstore.readthedocs.io/en/latest/developer-guide/database-setup/

	Introduction
	Motivation
	Turin tramway network
	Thesis outline

	State of the art
	Railway power network simulators
	Comparison of existing software for the simulation of electrical train power supply systems
	OpenTrack and OpenPowerNet
	eTraX
	TPSS

	GIS and power distribution networks
	Benefits of GIS in power distribution networks
	GIS models for power distribution networks

	Conclusions and project choices
	Requirements
	GIS interface
	Simulator

	Enabling technologies
	RESTful web services
	Internet Geographic Information Systems
	OGC standards
	Apache Tomcat
	GeoServer
	PostGIS database
	MapStore

	Python
	Docker

	Application architecture
	Overview
	App service
	Db service
	Input schema
	Network schema
	Results schema

	Tomcat service (GeoServer)
	Tomcat service (MapStore)
	Additional plugins
	Connectivity with other application components

	Mapstore db service

	Network simulator
	CherryPy WebServer
	DXF importer
	Reading the DXF file
	Preprocessing the DXF file
	Building the circuit layers
	Uploading layers to GeoServer

	Simulator
	Single static simulation
	Building the circuit
	Tracks and negative cables
	Inserting input
	Solving the circuit
	Lines simulation
	Max resistance point simulation

	Results
	Results visualisation in MapStore
	Validation with LTspice
	Comparison with previous thesis work
	Zone 40, Duca d'Aosta, two trams
	Zone 40, Duca d'Aosta, one fault
	Zone 40, Sebastopoli, one fault
	Zone 40, two substations in parallel, one fault

	Conclusions
	Bibliography

