
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

A new One-Way Delay
measurement system for QUIC

protocol

Candidate:
Saverio Massano

Supervisors:
prof. Riccardo Sisto
prof. Guido Marchetto

Telecom Italia Tutors:
dott. Mauro Cociglio
dott. Massimo Nilo

Academic Year 2020 - 2021

Abstract
The Quick UDP Internet Connection protocol (or QUIC) is a new
transport protocol firstly introduced by Google in early 2010’s for its
needs and recently standardized by the IETF via the RFC 8999, 9000,
9001 and 9002 published in May 2021. The aim with this protocol
is to find a valid, more performing substitute for TCP protocol in all
its internet implications finding then a new base for modern HTTP
protocol versions. A brand new protocol would be a great occasion to
include, as a native feature and in contrast to the TCP, one or more
performance measurement features in order to have a built-in network
monitoring mechanism to check the network health’s status with also
positive effects on the QoS management aspect. As a consequence,
current official IETF QUIC RFCs provide a reserved bit in (of a certain
type) QUIC header packet exploitable in a performance measurement’s
algorithm. Goal of this thesis is to provide an in-depth study of a new
algorithm, proposed by Telecom Italia, able to passively measure the
One-Way Delay of a QUIC connection. A possible implementation
of the theoretical mechanism has been realized and then analyzed by
testing its behavior in different emulated network conditions. Finally,
consideration about the algorithm’s limitations have been discussed
together with some adoptable countermeasures and optimizations.

ii

Table of Contents

List of Figures vi

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and structure of the thesis 3

2 Background 5
2.1 Struggling to keep updated internet’s core protocols . . 5

2.1.1 TCP is not tailored for new HTTP protocol versions 6
2.2 The QUIC protocol . 7

2.2.1 Main characteristics 7
2.2.2 QUIC headers 9

2.3 Network Performance measurement
concepts in a nutshell 12
2.3.1 Network metrics 12
2.3.2 Measurement approaches 13

2.4 The Latency Spin Bit 14
2.4.1 Limitations of the algorithm 15

3 The One-Way Delay algorithm 18
3.1 Preview . 18
3.2 One-Way delay algorithm overview 19
3.3 The Period T0 . 21

3.3.1 Compute the T0 value 21
3.4 The on-path Observer 22
3.5 Algorithm’s optimizations 25

iv

3.6 The Elapse interval . 25
3.6.1 The half period timeout 27
3.6.2 The Waiting Interval 29

3.7 One-Way Delay Implementation 33

4 Evaluation 37
4.1 Software and utilities 37
4.2 Testing Environment 40
4.3 Methodology . 41
4.4 Result . 42

4.4.1 Packet delay variation 42
4.4.2 Packet reordering rate variation 45
4.4.3 Packet loss rate variation 48

5 The Setup Phase 51
5.1 The “classic” spin bit method 51

5.1.1 Implementation 54
5.2 Consideration . 57
5.3 3-Handshake packets method 58

5.3.1 Implementation 59
5.3.2 Consideration 62

6 Conclusions 64

Bibliography 66

v

List of Figures

2.1 Comparison between TCP/IP "classic" stack and current
QUIC stack . 8

2.2 A simplified graphical representation of the short header
format. Between the round brackets, the expected size
in Byte. 9

2.3 A simplified graphical representation of the short header
format. Between the round brackets, the current ex-
pected size in Byte. 10

2.4 Graphical representation of a square wave in different
network’s conditions as described above. 17

3.1 Graphical representation of the basic One-Way Delay’s
marking mechanism in absence of any impairment factors.
The sequence shown is cyclically repeated until the end
of the QUIC connection. 20

3.2 The two possible OWD measurement configurations in
according to where the observer is placed 23

3.3 Graphical representation of half-OWD and OWD mea-
surements exploiting the incoming marked and not-marked
packets. 24

3.4 Graphical representation of the violation of the Elapse
interval constraints in proximity of the generation phase
server-side. Similar situation for the termination phase. 28

3.5 OWD nominal scenario. Both endpoints enters in Gen-
eration Phase and then in Termination Phase. 30

vi

3.6 The server violates the elapse interval constraint. It
doesn’t enter in generation phase until the next period.
Client stops marking packets only after TTimeout instant. 31

3.7 The server fail to enter in termination phase. It continue
to mark packets until the TTimeout instant. 32

4.1 The simplified schematic of the network topology in the
laboratory. The observer result to be placed AFTER
the installed NIE. Packets from the server are detected
BEFORE any impairment factors could be applied on
them. 41

4.2 Periods number and sampling progression in according
to the average downlink delay applied. 43

4.3 Periods number and sampling progression in according
to the downlink packet reordering rate applied. 46

4.4 Periods number and sampling progression in according
to the downlink packet loss rate applied. 49

5.1 Example of the Latency Spin Bit setup phase. The red
arrows represents the market short header packets sent
firstly by the client after the confirm handshake event.
The black arrows represent instead the not-marked packets 53

5.2 l . 61

vii

Chapter 1

Introduction

1.1 Motivation
In a world dominated by an increasing number of interconnected devices
and users, it’s fundamental to constantly monitor and analyze the whole
internet’s infrastructure and keep it updated.

But this is not an easy task. Nowadays, the complexity of internet
is so high that consistent updates on the TCP/IP stack, at the base of
the internet’s core, would require a giant amount of money and huge
difficulties in coordination and interoperation between all the ISPs
involved. The result is a technological standoff lasting almost 20 years
and causing the necessity of found new ways and workarounds to use
internet for every modern purposes.

Hard time also for the performance monitoring and network man-
agement aspects: the TCP/IP stack was born with no built-in func-
tionalities of this kind. Analyze the internet health’s status has almost
always implied the use of different tricks, like compute the RTT values
by tracking the TCP’s handshake packets (the differences between the
sending and receiving packet timestamps). Unfortunately, often these
methodologies are complex and don’t provide enough accuracy in all
the possible network’s conditions.

It’s now clear that something new must be found.
A breath of fresh air might be brought by the QUIC protocol, a new

transport layer protocol recently standardized by the IETF via the

1

Introduction

RFC 8999[1], 9000[2], 9001[3] and 9002[4] published in May 2021. The
aim with this protocol is to find a valid, more performing substitute for
TCP protocol in all its internet implications finding then a new base
for modern HTTP2[5] and the upcoming HTT31[6] protocol versions.

A brand new protocol would be a great occasion to include, as a
native feature and in contrast to the TCP, one or more performance
measurement features in order to have a built-in network monitoring
mechanism useful to analyze the network health’s status with also
positive effects on the QoS management aspect. As a consequence,
current official IETF QUIC RFCs provide a reserved bit in (of a certain
type) QUIC header packet exploitable in a performance measurement’s
algorithm.

The first algorithm of this kind is the Latency Spin Bit imple-
mented by Brian Trammell[7] from the ETH of Zurich and thought to
be used for network latency passive measurements. Unfortunately, due
to the simple idea at the base of the algorithm, it is able to provide
reliability and accuracy only in case of optimal network’s conditions.

For this reason, many other companies and universities tried (and
continue up to the present) to propose new and more sophisticated
passive measurement systems.

1In earlier IETF’s drafts, it used to be called "HTTP over QUIC"

2

Introduction

1.2 Goals and structure of the thesis
Goal of this thesis is to provide an in-depth study of a new algorithm,
proposed by Telecom Italia, able to passively measure the One-Way De-
lay of a QUIC connection. A possible implementation of the theoretical
mechanism has been realized and then analyzed by testing its behavior
in different emulated network’s conditions using the instruments inside
the Telecom Italia’s laboratory in Turin, Italy.

Below, the chapter’s list with a short overview:

• Chapter 2:
This chapter provide a more in-depth description of the limitations
affecting the internet core’s protocols and the reasons why QUIC
protocol would be a valid substitute. An overview of the last official
QUIC protocol version is then reported with a focus on its key
characteristics. Following, some basic notions on network metrics
and network performance measurements are provided. At the end,
the Trammell’s latency spin bit algorithm is explained along with
its limitations.

• Chapter 3:
The theoretical mechanism of the new One-Way Delay algorithm
is described along with an overview of the on-path observer’s role
and what kind of measurement samples it can retrieve. Follow
an introduction to some optimization aspects able to increase the
overall accuracy of the measurement system. Finally, a pseudo-code
implementation is provided with some explained details.

• Chapter 4:
The fourth chapter provide more details about the endpoints soft-
ware and the observer software with a focus on how this last
can manage every tracked packet in according to the algorithm’s
requirements. Follow a quick explanation of the Telecom Italia
laboratory’s testing environment and how it has been configured
for the tests. The remaining part of the chapter is dedicated to the
report of all the meaningful collected measurement samples with
possible considerations on them.

3

Introduction

• Chapter 5:
The two T0’s setup phases, introduced in chapter 3, are discussed
more in-depth with a possible code’s implementation and consid-
erations based on what observed trying to execute them in the
laboratory’s environment.

• Chapter 6:
The conclusions chapter, with an overall recap of the work done
and some final observations.

4

Chapter 2

Background
Since the standardization of the TCP/IP transmission suite in 1982,
internet infrastructure’s diffusion recorded a steady increment all around
the world. Moreover, with the birth of the Web and the standardization
of HTTP protocol in the 90s, tons of new services and applications
running over the internet have been created resulting in an additional
drastic increase of the data traffic volumes.

Unfortunately, the evolution and growth of the application layer is
not followed by a corresponded evolution of the underlying layers. In
fact, the Internet’s core protocols remained almost the same across the
last forty years leading to a pletore of tricks and hacks in order to adapt
them for all the modern necessities.

But why this is happened?

2.1 Struggling to keep updated internet’s
core protocols

Despite the central role of the TCP protocol in internet infrastructure,
since 1993 no big changes have been done to it. Different extensions
has been released and standardized but de facto, just few of these are
effectively implemented in a protocol version. The standard TCP packet
format provide an option space of 40 Byte exploitable for additional
functionalities. Unfortunately, part of this field is already occupied to

5

Background

provide useful basic information, like timestamp and congestion window
Scale. The remaining part of this field is just not enough for every
needs.

At this point, an idea could be change the original TCP packet
format to gain more space, but this is quite impossible to achieve
on a such a large scale. Internet infrastructure is disseminated of
middleboxes, i.e. devices that manage the known TCP version at
an hardware level. Change the TCP packet’s format would means
change the physical hardware stack of almost all this devices with a
giant economic effort for the ISPs and many difficulties in coordinating
the evolution between them. Something similar is valid also for the
protocol’s implementations in the consumer Operation Systems, where
TCP is implement at kernel level. New kernel iterations require again
time and money. All these constrains are just some of the obstacles
that cause the so-called Internet ossification problem.

2.1.1 TCP is not tailored for new HTTP protocol
versions

From the HTTP/2 version, IETF delivered the ability to multiplex
different HTTP requests within the same TCP connection, allowing
a smarter and more efficient management of network’s bandwidth.
Moreover, multiplexing would theoretically allow to block just one data
stream in case of packets loss or packets reordering, i.e. only the stream
the lost or the reordered packet belong to, continuing to process all the
other streams.

Unfortunately, TCP causes a bottle-neck effect called head-of-line
blocking. All the different streams sent in the same connection are seen
as a unique, opaque stream of packets and a real streams multiplexing
at the transport layer is not possible. In case of packet lost or reordered,
TCP has not chance to detect the specific stream to block during the
recovery phase with the result that all the streams will be blocked. But
this is just an example, the concept is that TCP cannot provide all
the support needed for the new mechanisms thought in recent years to
enhance internet’s performances.

6

Background

2.2 The QUIC protocol
The Quick UDP Internet Connection protocol (or QUIC) is a new
transport protocol, born from decades of network’s knowledge, with the
aim to find a valid, more performing substitute to TCP protocol in all
its internet implications, i.e. it would like to be a possible solution to
the ossification problem cited before. It has been developed firstly by
Google in early 2010’s and just a couple of year later, IETF started to
study it’s own version in order to write standard guidelines and extend
its application area.1.

2.2.1 Main characteristics
To circumnavigate the ossification problem, QUIC protocol is thought
to exploit the UDP transport protocol as a substrate. In this way,
middleboxes will not affect or discard QUIC packets2 and the protocol
could remain compatible with OS kernels and legacy devices. Keep in
mind that UDP is a not reliable protocol by default and this continue to
be true. It’s the QUIC protocol that need to guarantee reliability. For
this reason, the protocol re-implements lot of TCP functionalities like
loss recovery and congestion control. Moreover, it includes a stream-
based approach allowing to send multiple streams in the same QUIC
connection with the possibility, in contrast to what happens with TCP,
to manage them independently exploiting completely the multiplexing
abilities of HTTP/2 and avoiding the TCP’s head-of-line blocking
phenomenon.

Another key aspect of QUIC is the security-by-default approach,
radically different to the principle of TCP. In fact, while TCP packets
are not authenticated nor encrypted by default3, QUIC packets are

1The QUIC protocol developed by Google is known as gQUIC while the counterpart
standardized by the IETF is called iQUIC. Today, the two versions are significantly
different and no more compatible from each other.

2usually internet’s middleboxes affect only TCP packets.
3TLS additional layer[8] can provide security for TCP

7

Background

100% authenticated and almost completely encrypted.
Speaking about the handshake procedure, latest official QUIC proto-

col version integrates all the functionalities of the TLS 1.3 protocol[3].
In this way, it can rely on a well-known and accepted security layer
avoiding, at the same time, to develop of an ad Hoc new protocol as
has happened for the gQUIC versions.

Figure 2.1: Comparison between TCP/IP "classic" stack and current
QUIC stack

8

Background

2.2.2 QUIC headers
QUIC protocol is designed to use packets with two different header’s
format: the long header (figure 2.2) and short header (figure 2.3).

Long header

Packets with long header are used during the handshake’s procedure.
In this category there are the packets: Initial, Handshake, 0-RTT and
Retry.

Figure 2.2: A simplified graphical representation of the short header
format. Between the round brackets, the expected size in Byte.

• Flags Byte: This is the first byte in a long header packet. The
MSB is set to 1. The second bit is the fixed bit with a value of 1.
The third and fourth bits are called Type bits and represent the
long header packet type. The last four bits are encrypted and their
values depend on the packet’s type.

• Version: This field contains the QUIC version information and
determines how the following packets byte need to be interpreted.

• Destination Connection ID Length: This field contains the
length of the next field.

9

Background

• Destination Connection ID: Field containing the unique ID
value given to the destination endpoint in a QUIC connection.

• Source Connection ID Length / Source Connection ID:
Same things as the previous two fields.

• Payload: The encrypted payload, containing the data and control
frames.

Short header

Packets with short header are sent after the QUIC connection is created
and the session encryption keys are available. The Official QUIC version
defines only the 1-RTT packet with the short header, used to exchange
data frames and ack frames.

Figure 2.3: A simplified graphical representation of the short header
format. Between the round brackets, the current expected size in Byte.

10

Background

• Type Byte: The counterpart of the long header’s Flags Byte.
Currently, the IETF RFCs provide the format 01SRRKPP: the
MSB bit is set to 0. The second bit is the fixed bit with value
equal to 1 (as for the long header). The third bit is the Spin
bit (S) (discussed later in this chapter). The fourth and fifth bit
are Reserved bits (RR) for future purposes. The sixth bit is the
Key bit (K), useful to retrieve the used encryption keys. At the
end, there are the Length bits (PP) used to identify the packet’s
length. Currently, only the first three bits are unencrypted (but
authenticated).

• Packet Number Length: Contains the encoded packet number
field’s length, that can be from 1 to 4 Byte long.

• Destination Connection ID: Field containing the unique ID
value given to the destination endpoint in a QUIC connection (same
thing as long header)

• Packet number: Field reporting the current packet number.

• Payload: The encrypted payload, containing data and control
frames.

11

Background

2.3 Network Performance measurement
concepts in a nutshell

A key aspect for a ISP is to analyze the behavior and quality of the
controlled network’s portion. This operation is fundamental in order
to detect and fix issues but also to understand if the infrastructure is
able or not to support the whole expected data traffic volume deciding
then what kind of enhancement could be done.

2.3.1 Network metrics
Networks performances are affected mainly by three aspects[9]:

• Latency: Also called network delay, it represents the time re-
quired for a packet to travel from a source endpoint to the destina-
tion endpoint. More in detail, this metric is the sum of different
delay types:

– Processing delay: total time required to elaborate a packet
from all the network devices between source and destination
endpoint.

– Transmission delay: time required for a packet to cross
the link between the two endpoint, it depends on the link’s
bandwidth and the data traffic volume.

– Propagation delay: time required by the physical signal to
travel inside the physical means of transmission.

– Queuing delay: total time spent by a packet in buffers along
the network path.

• Throughput: The current amount of data transmitted over an
internet connection link in a given amount of time.

• Packet loss rate: Percentage of packets lost during a data trans-
mission, i.e. packets sent by a source host but never received by
the destination host.

12

Background

2.3.2 Measurement approaches
Two way can be followed to measure one or more network’s metrics[9]:

Active measurement

Probe packets are sent through the network in addition to nominal data
traffic. The biggest advantage with this method is the possibility to have
packets flow also in absence of spontaneous traffic. It’s also possible
to mark the probe packets in order to easily recognize them between
the other packets. At the same time, additional packets increase traffic
volume and cause the consumption of more network’s resources. These
two factors can degrade network’s performance and affect negatively
the measurement samples retrieved.

Passive measurement

In contrast with the previous approach, no packets are added to the
expected network traffic. The existing packets are exploited in some
ways in order to compute measurements. For example, RTT values can
be measured by means of the handshake’s packets of a TCP connection,
i.e. taking in account the sending and receiving packet’s timestamps
on the endpoints. Although the traffic volume is not increased, is
more difficult to use the nominal transmission’s packets. More complex
algorithms and more expansive hardware are needed for the purpose.

13

Background

2.4 The Latency Spin Bit
Current official IETF RFCs include in the short header a so-called
Spin Bit, a reserved, not encrypted bit thought to be exploited in a
native measurement performance algorithm.

The first simple algorithm of this kind has been proposed by the
researcher of Zurich’s ETH University Brian Trammel in one of his
drafts [7]. This marking algorithm[10] works in the following way:
Client and server contains an internal spin bit value used to mark4 or
not the outgoing packets.

At the beginning of every QUIC connection, both endpoints set this
value to 0. Then, client and server manages the spin bit in different
ways:

• Client: when it receives a short header packets with an higher
sequence number than the last received, it toggles its spin bit value
to the opposite value stored inside the received packet header.

• Server: when it receives a short header packets with an higher
sequence number than the last received, it toggles its spin bit value
in according to the value stored inside the received packet header.

The result is the generation of a periodical square wave signal ex-
ploitable by an on-path observer placed between the two endpoints and
able to measure the RTT value by measuring the length of this detected
signal5. Notice that by paying attention to the packet number received,
is possible to avoid the reflection of a reordered packets sequence and
then filter the signal from the spurious edges (see Section 2.4.1).

Moreover, an observer can works in one-way mode (it can only detects
packets travelling in one direction, from client to server or vice versa)
or in two-way mode (it is placed symmetrically on both upload and
download directions). In this second case, its also possible to compute

4the operation of toggle to 1 the header’s spin bit
5It retrieves the RTT by computing the difference in time between the first incoming

marked packet timestamp and the first incoming not-marked packet timestamp.

14

Background

the half-RTT components by measuring the delay between the square
wave edge6 observed in the upload direction and the square wave edge
detected in the download direction (and vice versa).

2.4.1 Limitations of the algorithm
Due to the simplicity behind the algorithm, its only possible to retrieve
RTT values with sufficient accuracy in optimal network conditions. In
fact, there are some factors, called network impairments, that would
degrade seriously the measurement system’s accuracy:

Delays

RTT and half-RTT values are computed via the distance in time of
two square wave’s edges. What could happen is that an observer
overestimate the RTT value due to a longer square wave’s length (the
two wave’s edges are more distant in time due to the additional delay),
maybe because of the activation of the QUIC congestion control or in
presence of traffic holes.

Packet reordering

Client and server checks the correctness of the packet’s number se-
quencing every time a packet is received. If there’s no reordering
events, endpoints toggle the internal spin bit value accordingly to the
algorithm’s logic continuing to mark (or not) the packets as required.
Notice that the sequence number is readable only after removing the
encryption layer over the packet’s field where it is embedded, operation
possible only for the two endpoints involved in the connection.

6An edge represent the time instant at which the square wave change its status
from high to low and vice versa

15

Background

This means that an observer cannot access the packet number’s field.
Without any additional precaution there is the possibility to detect one
or more Spurious square wave edge 7with the result of an higher
number of underestimated RTT samples.

Packet Loss

A packet could be lost somewhere between the source host and the
destination host. Also this event could affect negatively the latency
spin bit accuracy. Packets lost on the square wave edges, would cause
an underestimation of the RTT sample (the square wave is shorter than
the expected one).

7If the reordered packets are on the border of the square wave, one or more marked
packets could be detected after one or more not-marked packets

16

Background

(a) No impairments affecting the square wave generated by the marked packets.

(b) An addition delay is present between the marked packets, maybe due to a traffic
hole. The observer overestimate the RTT value.

(c) The reordered packet 06 generates a spurious edge detected by the observer.

(d) A lost marked packet at the square wave’s border causes an underestimation of
the current square wave’s length and then an underestimation of the RTT sample.

Figure 2.4: Graphical representation of a square wave in different
network’s conditions as described above.

17

Chapter 3

The One-Way Delay
algorithm

3.1 Preview
From Chapter 2, is clear that the Latency Spin Bit is not an accurate
algorithm in a wide range of network’s scenarios. Accordingly, many
other performance measurement algorithms have been proposed to the
IETF by universities and research group. In this research context is
located Telecom Italia, that already proposed valid new performance
measurement systems also in collaboration with the Politecnico di
Torino University.[11] [12]

In this chapter, a theoretical explanation of the One-Way Delay
algorithm, one of the latest algorithm proposed by the company to the
IETF, is provided with a possible pseudo-code implementation.

18

The One-Way Delay algorithm

3.2 One-Way delay algorithm overview
It’s possible to divide the algorithm in two main phases: Generation
Phase and Termination Phase. Optionally, it is possible to con-
sider an initial setup phase before the first generation phase starts.
Both client and server needs to be strictly synchronized to each other
externally 1. A QUIC connection is divided in measurement periods,
everyone long T0 , i.e. everyone long a value that need to be a divider
of number 1000 (if T0 is expressed in milliseconds, microseconds or
nanoseconds) or a divider of number 60 (if T0 is expressed in seconds).
In any case, the T0 value must be decided before the first generation
phase starts and must be the same on both client,server and observer.
An internal spin bit value is stored for every QUIC connection on both
endpoints and used to properly mark the outgoing packets but also used
to keep track of the current algorithm’s phase in which the endpoint is.
At the beginning, both endpoint initialized the spin bit to 0.

When a new period starts at Ti instance, both client and server
enters in the generation phase and toggle to 1 their own spin bit value.
From this moment, they will mark every outgoing packets generating
in this way a square wave signal. Then, when the first marked packet
is detected by the endpoint in generation phase and it has the highest
sequence number received until that moment, the endpoint toggles back
to 0 it’s internal spin bit value entering in the termination phase and
stopping then to mark the outgoing packets. Now it will wait for new
incoming Ti instance.

1For example via NTP time protocol.

19

The One-Way Delay algorithm

(a) Both endpoints are waiting for next Ti. No
marked packets until at least that time instance.

(b) Ti arrives, both endpoints enter in Generation
Phase. A square wave is present on both directions.

(c) The square wave is detected by the opposite
endpoint that enters in termination phase and stop
to mark outgoing packets. The square waves termi-
nate.

(d) T0 is long enough to avoid overlapping of con-
tiguous periods. Endpoints are waiting for next
Ti. No square waves on both links until that time
instant.

Figure 3.1: Graphical representation of the basic One-Way Delay’s
marking mechanism in absence of any impairment factors. The sequence
shown is cyclically repeated until the end of the QUIC connection.

20

The One-Way Delay algorithm

3.3 The Period T0

Due to the periodical nature of the measurement methodology, it’s
important to decide and set on both endpoints (and also on the observer)
the length of time that every period lasts. A valid T0 value’s constraint
would be T0 > RTTmax. In order to be sure that the previous period
is already terminated and no marked packet are still travelling between
the two endpoints, is better to consider the more stronger constraints
T0 > 2OWDmax, (or T0 > 2RTT if no previously collected values of
OWD are available), or even more T0 > 3OWDmax (or T0 > 3RTT).
In addition, as already said, T0 need to be a divider of number 1000 or
60 (in according to the time unit considered).

3.3.1 Compute the T0 value

There could be two ways to measure T0 value:

• T0 “A priori”: The easiest way to decide a sufficient higher value
for T0 is to manually set it on the involved actors. A reasonable,
safe value could be T0 = 1 second with the only drawback to
have a low number of measurement’s samples performed in a single
connection.

• Setup Phase: An additional initial phase for the OWD algorithm
can be considered. The basic idea is to compute the RTT value
between client and server and then to compute T0 accordingly to
the constraints. In this way, there is the possibility to set a more
tailored T0 value with the aim to retrieve more samples. This phase
would also allow to perform a rough synchronization between client
and server, reducing the possibility that one of the endpoints will
start the first generation phase a period before the other endpoint.
More details about this topic will be provided in chapter 5.

21

The One-Way Delay algorithm

3.4 The on-path Observer

The endpoints marking mechanism alone is not enough, an on-path
observer between client and server must exploits the square waves on
the links in order to retrieve the measurement samples as allowed by
the OWD methodology.

The biggest challenge with an observer software is the impossibility
for it to access to all the information stored in a QUIC packet due to
the security-by-design approach described previously and the lack of
the encryption keys2.

Fortunately, for the One-Way Delay algorithm only the the third
MSB is involved in the marking process as for the Latency spin bit (see
Section 2.4). The observer should know the same T0’s value known
also by the endpoints. In according to the strategy adopted, this value
is stored "A priori" or after partecipating to the implemented setup
phase with client and server.

The observer OWD algorithm is then able to compute two types of
measurements:

Half-OWD measurement

The observer computes the delay between the beginning of the current
measurement period Ti and the detection time instance of the square
wave sent by the endpoint. If the observer is placed on the upstream
direction, it is able to compute the uplink half-OWD. Vice versa, an
observer sniffing packets on the downlink direction can compute the
downlink half-OWD. It’s clear that half-OWD measurement samples
can be retrieved only if the observer is synchronized with the two
endpoint knowing the current Ti period’s starting time instance and
then also T0’s length.

2only the endpoints partecipate to the QUIC connection handshake

22

The One-Way Delay algorithm

OWD opposite measurement

Firstly, the observer is place on the upload link or on the download
link waiting for the square wave edge coming from one endpoint. When
it detects the first marked packet coming from the client (if placed
on the uplink) or the server (if placed on the downlink), it stores the
detection timestamp. Then, the square wave terminates and from the
same endpoint the observer will receives the first not-marked packet.
It stores the second detection timestamp. The OWD measurement
sample is then the distance in time between the two stored timestamp.
As a constraint, the observer stores all the OWD measurement samples
with a value not around the 50% T0 length’s value.

Figure 3.2: The two possible OWD measurement configurations in
according to where the observer is placed

23

The One-Way Delay algorithm

Figure 3.3: Graphical representation of half-OWD and OWD mea-
surements exploiting the incoming marked and not-marked packets.

24

The One-Way Delay algorithm

3.5 Algorithm’s optimizations
The basic algorithm’s mechanism explained could be enough in not-
impaired network conditions. But as already said speaking about
the Latency Spin Bit (see Chapter 2.4), a QUIC connection could be
affected by one or more factors and for this reason a measurement
algorithm should provide some countermeasures.

3.6 The Elapse interval
Spontaneous traffic is not always available in proximity of a Ti time
instant. A Traffic hole in this case could add an unpredictable delay to
the first marked packet sent by an endpoint in generation phase and
then detected by the observer. As a consequence, the observer will
overestimate the half-OWD sample. In the same way, a traffic hole
could happen in proximity of a termination phase. The first not marked
packet sent by an endpoint could be affected by an unpredictable delay.
As a consequence, the observer computing the OWD sample, will receive
the first not-marked packet with an unpredictable delay resulting again
in an overestimation of the current OWD sample.

A possible countermeasure could be the addition of a time threshold
to decide if enter in the generation phase and if enter in the termination
phase. When Ti instant comes, an endpoint enters in generation phase
if and only if the first outgoing packet is sent at Tout between Ti and
Ti + E, where E represents the Elapse Interval. If the condition is true,
endpoint toggles the internal spin bit to 1 starting the square wave
signal. Otherwise, the endpoint will wait for next Ti instant without
mark any packet. Instead, speaking about the the termination phase,
it is triggered on the endpoint in generation phase if and only if the
first outgoing packet is sent at Tout between the arrival timestamp of
the first incoming marked packet Tin and Tin + E time instant. If
the condition is NOT true, the endpoint leaves its internal spin bit
to 1 reflecting then the square wave and continuing to mark outgoing
packets.

25

The One-Way Delay algorithm

An observer computing the OWD sample, will receive marked packet
at least until half of the T0’s length and the current sample will be
discarded as discussed earlier.

It’s clear that in both cases, another termination condition need to
be adopted in addition to the detection of the opposite square wave. In
the first case, if only one of the endpoints enter in generation phase, it
will never receive any marked packets from the opposite side and there
will never the condition to try to enter in termination phase3. Instead,
in the second case, if the termination phase is aborted, the endpoint
still in generation phase will continue to mark packets indefinitely.

3Important to keep in mind is that an endpoint, with spin bit to 0, will not toggle
its value to 1 also if a marked packet is detected.

26

The One-Way Delay algorithm

3.6.1 The half period timeout
When an endpoint is still in generation phase after TTimeout = Ti + ½
T0 , then it stops to mark outgoing packet forcibly.

More in details, TTimeout must be half of period’s length for a couple
of reason:

• In order to leave the time to compute the OWD sample:

TTimeout > OWDmax

• In order to avoid previous period’s marked packet detected by
the observer after the successive Ti instance that could cause an
anticipated termination phase4:

T0 > (TTimeout + OWDmax) => T0 > (½ T0 + OWDmax) =>
T0 > 2OWDmax

Considering this optimization, it’s possible to define acceptable error
ranges for both OWD and half-OWD measurement values:

• Half-OWD Errormax = Elapse Interval ± client-server sync error.

• OWD Errormax = 2∗Elapse Interval ± client-server sync error.

4In addition, the termination phase happens if only if a marked packet is detected
after a not-marked one paying attention to their sequence number.

27

The One-Way Delay algorithm

(a) Before the Ti, the client is sending some packets
while server register a traffic hole after it has sent
some other packets.

(b) Ti arrives, suppose that the client has sent the
first packet in the interval between Ti and Ti + E
and then enters in generation phase. The server is
still not sending packets.

(c) The server starts sending packets but the send-
ing timestamp of the first packet is outside the
acceptable interval. Server doesn’t enter in genera-
tion phase for the current period.

(d) After the 50% of the T0 value, TTimeout goes
off and client stop marking outgoing packets.

Figure 3.4: Graphical representation of the violation of the Elapse
interval constraints in proximity of the generation phase server-side.
Similar situation for the termination phase.

28

The One-Way Delay algorithm

3.6.2 The Waiting Interval
Packet reordering is a big threat for an observer. If this event happens,
the observer could interpret a spurious edge as the end of the square
wave resulting in the underestimation of the OWD sample. Moreover,
observer will detect more than one square wave in the same period,
saving multiple underestimated OWD samples. Due to the impossibility
for an intermediate node to access to the sequence number field, a
possible trick could be the so-called Waiting Interval (W). When
the first marked packet is detected, the observer starts a timer5. During
this length of time, if not-marked packet are detected, they are not
considered as the termination of the squared wave, rejecting de facto
every possible spurious edges. Only after the timeout goes off the
observer will consider the first not-marked incoming packets as the end
of the wave computing then the OWD value.
In order to avoid overestimation of the OWD, the value of the waiting
interval must respect the constraint:

W < OWDmin

Clearly, the longer is the waiting interval’s length, the higher is the
filter effect against spurious edges.

5The timer duration is set a priori.

29

The One-Way Delay algorithm

Figure 3.5: OWD nominal scenario. Both endpoints enters in Gener-
ation Phase and then in Termination Phase.

30

The One-Way Delay algorithm

Figure 3.6: The server violates the elapse interval constraint. It
doesn’t enter in generation phase until the next period. Client stops
marking packets only after TTimeout instant.

31

The One-Way Delay algorithm

Figure 3.7: The server fail to enter in termination phase. It continue
to mark packets until the TTimeout instant.

32

The One-Way Delay algorithm

3.7 One-Way Delay Implementation

The following pseudo-code is a possible implementation of the OWD
algorithm considering the elapse interval optimization (elapse) and a
T0 value set a priori.
1: spinBit← 0
2: generationPhase← false
3: lastSpinBitReceived← 0
4: endingGenerationPhase← false
5: waitNextPeriod← true
6: periodStart← 0
7: halfPeriodT imeout← 0
8: highestPktNum← 0
9: t0← t0_val
10: elapse← elapse_val

11: procedure On_Outgoing_Pkt(hdr)
12: if hdr.isLongHeader then
13: return ó Marking logic affects only short header packets
14: end if
15: out_timestamp← time.Now()
16: if waitNextPeriod == false AND
17: out_timestamp > halfPeriodT imeout then

18: generationPhase← false
19: spinBit← 0
20: waitNextPeriod← true
21: periodStart← roundUpper(t0, out_timestamp)
22: end if

23: if waitNextPeriod == true then
24: if periodStart == 0 then
25: periodStart← roundNear(t0, out_timestamp)
26: end if
27: if out_timestamp ≥ periodStart then

33

The One-Way Delay algorithm

28: if out_timestamp ≤ (periodStart + elapse) then
29: waitNextPeriod← false
30: generationPhase← true
31: spinBit← 1
32: halfPeriodT imeout← (periodStart + t0/2)
33: else
34: periodStart← roundUpper(t0, out_timestamp)
35: end if
36: end if
37: end if
38: if endingGenerationPhase == true then
39: if (out_timestamp− terminationDetected) ≤ elapse then
40: generationPhase← false
41: spinBit← 0
42: waitNextPeriod← true
43: periodStart← roundUpper(t0, out_timestamp)
44: end if
45: endingGenerationPhase← false
46: end if
47: hdr.SpinBit← spinBit

48: end procedure
The procedure above is called every time one of the endpoints is

sending a packet to the opposite endpoint. First of all, the IF BLOCK
on line 12 allows to returns immediately from the procedure if the
current outgoing packets has long header.

It’s possible to divide the procedure in 3 parts:

• From line 23 to 37: this part manages the start of a new gener-
ation Phase. The "waitNextPeriod" need to be true, meaning that
the endpoints is not marking yet. On line 24 there is a nested IF
block that allows to compute the nearest measurement period’s
starting instance (called once as initialization of the variable). With
this pre-computed reference value, it is possible to verify if the
current packet is going to be sent before or after the expected

34

The One-Way Delay algorithm

period’s starting instance. In the first case, noting happen, other-
wise: if the packet is going to be sent in the interval between the
expected starting period’s instance and the elapse interval, then
the Generation Phase can start. If the elapse interval constraint is
not satisfied instead, a new reference value is computed as the next
expected period’s starting point (the generation phase is aborted,
the endpoint will wait for the next period).

• From line 16 to 22: this block is executed in case of the generation
phase is lasting more than T1 = 50%T0. The generation phase
is aborted and the next expected period’s starting instance is
computed.

• From line 38 to 46: this last part decides if the termination phase
can occurs or not. If the packet is sent within the expected time
interval in according to the Elapse Interval, then the Generation
Phase is interrupted and endpoints will wait for the new starting
period’s instance. Otherwise, the generation phase will continue
and will be interrupted thanks to part 2 of the algorithm. Notice
that this part is called only once per period.

35

The One-Way Delay algorithm

1: procedure Handle_Incoming_Packet(hdr)

2: if hdr.isLongHeader then
3: return
4: end if
5: if hdr.pktNum > highestPktNum then
6: highestPktNum← hdr.pktNum
7: if generationPhase == true then
8: if hdr.SpinBit == 1 AND
9: lastSpinBitReceived == 0 then

10: terminationDetected← hdr.rcvT ime
11: endingGenerationPhase← true
12: end if
13: end if
14: lastSpinBitReceived← hdr.SpinBit
15: end if
16: end procedure
This procedure is called by both client and server when a packet is

received and, as the previous procedure, it affects only short header
packets. The packet number is checked as a protection against packet
reordering. If the endpoint is in generation phase, then the current
incoming packet’s timestamp is saved and it will be used to decide if
the generation phase would terminate or not in according to the Elapse
Interval optimization.

36

Chapter 4

Evaluation

4.1 Software and utilities
The QUICGO. A GO implementation of the protocol

The QUICGO 1 is a Go 2 written, open source implementation of the
latest official IETF RFCs QUIC version. By extending this project, it’s
possible to insert the OWD algorithm logic enabling then the marking
mechanism as required. All the lines of code added in the QUICGO,
are concentrated mainly in the procedures to manage the incoming
and outgoing packets but modifications in the encryption layer over
the packet header could be necessary in order to free one or both the
reserved bit. For the OWD algorithm, the only bit used for marking is
the spin bit, already not encrypted. Clearly, all this code modifications
shouldn’t interfere with the protocol’s core functionalities.

1https://github.com/lucas-clemente/quic-go/
2https://golang.org/

37

Evaluation

The On-path observer software

The observer used to perform tests is an extensions of the software
implemented by Fabio Bulgarella in his master’s degree thesis[13]. This
software is completely developed in C++ language and for all its core
features exploits the PcapPlusPlus library 3, a cross-platform framework
born with the aim to wrap the most popular packet processing engines4

providing easy-to-use C++ APIs and simplified data structures for
capture, process and analyze all the packets sniffed from a network
link.

The observer is then thought to work in two different modes:

• Live Traffic Packets Analysis: Traffic packets are captured
asynchronously during the QUIC connection, stored and analyzed
sequentially in real-time without wrote them on a dedicated file.

• Traffic Packets Capture and then Analysis: Packets are cap-
tured via a sniffing tool like Tcpdump 5, stored in a .pcap file on
the local disk and then analyzed sequentially at the end of the
QUIC connection, in second time.

In both modes, observer can sniff in one or both up and down
directions6. Every time a packet is captured directly from a link or is
retrieved from the .pcap file in which it has been stored previously, all
the useful information in the header are stored in a C++ structure and
then exploited by the OWD algorithm’s logic.

3https://pcapplusplus.github.io
4The laboratory’s testing environment is hosted over a Unix environment that

provide the libpcap packet processing engines
5https://www.tcpdump.org/
6for the OWD measurement it needs to sniff traffic data only over one of the two

links

38

Evaluation

More in details, from every packets analyzed are retrieved the fol-
lowing field’s values:

• The MSB header byte used to decide whether the current packet
has a long header, and then discard it, or a short header and then
extract other information from it. Notice that long header packets
would be kept for additional computation only if the 3-packets
handshake setup phase is present as discussed in Chapter 5.

• Incoming timestamp i.e. the time instant when the packet is
sniffed from a link and stored in a .pcap file or directly managed
asynchronously in real-time.

• Spin bit by which is possible to distinguish between marked and
not-marked packets.

39

Evaluation

4.2 Testing Environment
In a first phase of the evaluation, the correctness of the endpoint’s
marking mechanism implementation and the observer measurement’s
capabilities have been tested on a local machine without impairment
or by means of Mininet 7, a powerful network emulator tool able to
emulate a whole virtual network topology on a single machine with or
without the addition of one or more impairment factors.

Then, the algorithm’s evaluation has been performed using the hard-
ware installed inside the Telecom Italia’s testing laboratory in Turin,
Italy, with the possibility to test its behavior by applying different
pseudo-real network conditions analyzing then the measurement’s sam-
ples retrieved by the observer.

Here, all the QUIC packets exchanged between client and server pass
through a Network Impairment Emulator (NIE), a network device able
to apply to all or part of them the configured impairment’s factors.

7http://mininet.org

40

Evaluation

Figure 4.1: The simplified schematic of the network topology in the
laboratory. The observer result to be placed AFTER the installed NIE.
Packets from the server are detected BEFORE any impairment factors
could be applied on them.

4.3 Methodology
Firstly, no variations have been done to the QUIC protocol’s core
implemented in the QUICGO. This means that the congestion control
mechanism is left as-is without additional customization as also the
resizing management of the transmission window.

On both upload and download links a minimum 10 ms packet delay
has been setup, value considered truthful for a real network link while
the links bandwidth is limited to 1 Gbps. The observer has been
placed on the upstream link enabling the measurement of the upload
half-OWD component and the download OWD values.

To generate network traffic, the QUICGO client sends download
and upload HTTP requests for a certain amount of data to the HTTP
server wrapped inside the QUICGO server. For all the performed tests,
download requests of 400 MB have been sent to the server. The T0
value has been set to 1 second a priori, length of time already identified
as long enough to avoid overlapping of consecutive periods. The Elapse
time has been set to 1 ms for both generation and termination phase.
Accordingly to what reported in section 3.6.1, the half-OWD and OWD
samples errors is expected to be:

• Half-OWD Errormax = +1ms ± client-server sync error.

• OWD Errormax = +2ms ± client-server sync error.

41

Evaluation

Three impairment factors have been taken in account: packets
delay, packets reorder rate and packet loss rate. The value of
these factors has been varied progressively one at a time following
a Fibonacci’s Series-like progression and for every emulated network
condition, the algorithm has been tested multiple times. All the valid
measurement’s samples8 retrieved by the observer have been stored and
used to compute the MAX, MIN and AVG value of both half-OWD
and OWD.

Another analysis has been performed over the progression of the
periods number in a QUIC connection and on how the number of valid
OWD and half-OWD samples retrieved have been changed increasing
the impairment factors one by one. For this last analysis, a single QUIC
connection has been taking in account and represented graphically via
charts.

4.4 Result
Below, the results of the tests divided by applied impairment factor:

4.4.1 Packet delay variation
The download link delay is increased from 10 ms up to 31 ms.

Periods number and valid / discarded samples progression

For all the delay values configured, the total number of periods remained
from 11 to 14 with at most one period skipped, i.e. no OWD or half-
OWD sample has been retrieved during all the period. This would
happens due to a traffic hole that blocks the generation phase on the
client (no incoming square wave detected) and, as a consequence, no
OWD is stored. In this situation, the server could either not enter in

8sample’s value must be not around the half period’s value. A 6% margin has
been considered.

42

Evaluation

generation phase as the client or not enter in termination phase after
the half period timeout goes off.

In general, the algorithm can retrieve a valid OWD and half-OWD
sample from every periods in which the QUIC connection is divided.
Only with higher value of delay, near the 50% T0 value will be discarded.
But due to the T0 value set to 1 second, in a real network situation
packets delayed of a length of time around 500 ms would be considered
as a failure somewhere along the network link taken in account.

Figure 4.2: Periods number and sampling progression in according to
the average downlink delay applied.

43

Evaluation

OWD and half-OWD evaluation

From all the tests performed, the observer has been able to provide an
half-OWD and OWD AVG values near the ideal values expected. The
OWD AVG trend is from 0.7% to 2% higher than ideal. Instead, the
half-OWD trend is 3% to 5% higher the half-OWD ideal trend. It is
then observable that half-OWD samples are a little bit less accurate
than the OWD samples. In general half-OWD samples are a bit more
susceptible to variations in synchronization between the three involved
actors.

Reasonable values also for MIN e MAX values: for every delay sce-
narios, the MAX value remain inside the interval between the OWDmin
set and the Errormax. More interesting to notice the MIN value, that in
some cases is lower that the expected OWDmin. This fact put evidence
on the synchronization error component, unpredictable and causing a
contraction / dilatation of the measured square wave’s length.

Delay(ms) 10 11 12 13 15 18 23 31

max (ms) 10,664 10,925 10,929 10,711 10,903 10,467 10,641 10,605
min (ms) 10,264 10,227 10,241 10,244 10,282 10,244 10,250 10,176
avg (ms) 10,376 10,483 10,452 10,405 10,427 10,319 10,340 10,326
ideal (ms) 10 10 10 10 10 10 10 10

Table 4.1: Uplink half-OWD values in according to the downlink
delay applied.

Delay(ms) 10 11 12 13 15 18 23 31

max (ms) 10,437 11,507 12,399 13,457 15,983 18,495 23,646 31,458
min (ms) 9,952 10,739 11,857 12,972 14,527 18,003 23,099 31,039
avg (ms) 10,143 11,155 12,109 13,224 15,289 18,234 23,265 31,22
ideal (ms) 10 11 12 13 15 18 23 31

Table 4.2: Downlink OWD values in according to the downlink
delay applied.

44

Evaluation

4.4.2 Packet reordering rate variation
In order to test the behavior of the algorithm with packet reordering, the
NIE has been configured to apply a uniform packets distribution
reordering i.e. the NIE try to uniformly distribuite the reordered
packet over a configured number of packet. For the executed tests,
N packets have been uniformly distributed over every 1000 packets
received and then forwarded after forwarding up to 4 following packets.

Uniform Reorder rate is varied from 0.1% to 0.8% . Higher rates have
been tested but not reported in the following tables, mainly because
with higher reorder rates the number of measurements samples will
be to small to compute meaningful AVG, MIN, MAX values (always
considering T0 = 1 second).

Periods number and valid / discarded samples progression

Increasing the packet reorder rate, the periods number during the same
QUIC connection also increased with instead a decreased percentage of
valid half-OWD and OWD samples retrieved. For OWD samples, the
retrieved percentage decrease drastically from 73%, with a reorder rate
equal to 0.1%, to 32% in the last case with a slightly fluctuation in
the middle. The percentage of stored half-OWD samples has changed
from 80%, in the first case considered, to a percentage between 50%
and 57% in the last cases.

The packet reorder event triggers the congestion control mechanism
with a consecutive reduction of the transmission window’s size causing
then a longer QUIC connection and clearly an higher number of periods.
Less packets are sent in every periods in comparison with a not reordered
scenarios. This would cause the violation of the Elapse Interval’s
constraints in a higher number of periods. It is then less probable that
a packet is sent and/or reflected inside the acceptable length of time.

45

Evaluation

Figure 4.3: Periods number and sampling progression in according to
the downlink packet reordering rate applied.

OWD and half-OWD evaluation

From the tables below is possible to notice that the AVG values are
not far from the ideal expected values. The OWD AVG trend is from
2.5% to 3.8% higher than the ideal expected trend while the half-OWD
trend is about 4.8% to 7% higher than the expected one. As for the
delay scenarios, half-OWD AVG is a bit more inaccurate than OWD
AVG. Again, this could be caused firstly by the synchronization error
component, variable along all the tests performed in an unpredictable
way.

Speaking about the OWD, especially the MIN values retrieved, it is
noticeable that all of them tend to be lower than the OWDmin. The
reason could be found again in the sync error component but there is
also the spurious edges threat in presence of border reordered packet,
causing an underestimation of the samples. The Waiting Interval W
has been set to 9 ms during the tests. With an higher value, the MIN

46

Evaluation

values could be a bit more higher and near the ideal values expected.

Unif. Reorder rate(%) 0,10% 0,20% 0,30% 0,50% 0,80%

max (ms) 11,114 11,139 11,235 11,428 11,331
min (ms) 10,092 10,144 10,196 10,202 10,085
avg (ms) 10,475 10,578 10,639 10,700 10,582
ideal (ms) 10 10 10 10 10

Table 4.3: Uplink half-OWD values in according to the downlink
packet reorder rate applied.

Unif. Reorder rate(%) 0,10% 0,20% 0,30% 0,50% 0,80%

max (ms) 11,367 11,243 11,244 11,349 11,343
min (ms) 9,475 9,452 9,275 9,265 9,378
avg (ms) 10,338 10,248 10,289 10,262 10,376
ideal (ms) 10 10 10 10 10

Table 4.4: Downlink OWD values in according to the downlink
packet reorder rate applied.

47

Evaluation

4.4.3 Packet loss rate variation
As for packet delay and packet reorder, it is interesting to test the
algorithm’s behavior with different packet loss rates. The NIE has been
configured to apply a uniform packet loss distribution, i.e. it drops N
packets uniformly distributed over every 1000 packets received.

The rate has been varied from 0.1% to 2%. Some tests have been
performed also with higher packet loss rates, but just in a few of these
the QUIC connection is effectively started and terminated with the
possibility to store OWD and half-OWD samples. In most of the cases,
the QUICGO reacted to the increased number of lost packets by cutting
off the starting or already established QUIC connection 9

Periods number and valid / discarded samples progression

The number of periods is higher than an impaired network conditions
with just a fixed delay of 10 ms per links. Valid OWD samples are
retrieved only from a portion of all the QUIC connection’s periods,
from a minimum of 24% to a maximum of 35% of all the periods
depending on the packet loss rate applied for that sequence of tests.
Better for the half-OWD samples where in the worst case, the‘47% of
all the period provided a valid samples while for the best case up to
60% of all the periods provided a valid sample. Moreover, is possible
to notice a steady trend in both total periods number, OWD and
half-OWD samples by increasing the packet loss rate (in contrast with
what happened increasing the packet reorder rate).

QUICGO protocol’s implementation is an experimental trial to realize
a client and a server able to communicate by means of this protocol still
in developing. It could be just less optimized to manage packet reorder
scenarios than packet loss scenarios at the moment. In any case, packet
reordering in a QUIC connection is a common situation, more than in
a TCP connection and a bit more complex to manage. In fact, because
the almost total encryption of every packets, no reordering action can

9QUICGO could decide to interrupt the connection returning a no recent net-
work activity error.

48

Evaluation

be computed by any of the possible intermediate nodes between the
endpoints.

Figure 4.4: Periods number and sampling progression in according to
the downlink packet loss rate applied.

OWD and half-OWD evaluation

The algorithm provides reasonable AVG value in every tested packet
loss rates for both half-OWD and OWD metrics.

In the first case, the AVG trend is from 6% to 7% higher than the
ideal expected AVG values while in the second case, the AVG trend is
from 2.6% to 3.9% higher than ideal values. As for the packet reorder
and delay, half-OWD values are a bit more inaccurate in relation to
the ideal values expected.

The synchronization error component also with packet loss rates is
not negletable and more evident in half-OWD sampling.

Speaking about the MIN values, for the OWD measurements are
reported underestimated values in all the cases. This could happen

49

Evaluation

by computing one or more OWD samples using a square wave shorter
than the expected one due to a square wave’s border packet lost.

Unif. Loss rate(%) 0,10% 0,20% 0,30% 0,50% 0,80% 1% 2%

max (ms) 11,269 11,252 11,204 11,193 11,321 11,264 11,257
min (ms) 10,263 10,261 10,241 10,174 10,210 10,159 10,185
avg (ms) 10,700 10,674 10,645 10,656 10,686 10,600 10,674
ideal (ms) 10 10 10 10 10 10 10

Table 4.5: Uplink half-OWD values in according to the downlink
packet loss rate applied.

Unif. Loss rate(%) 0,10% 0,20% 0,30% 0,50% 0,80% 1% 2%

max (ms) 11,024 11,204 11,024 11,265 11,269 11,353 11,251
min (ms) 9,724 9,403 9,556 9,403 9,529 9,393 9,464
avg (ms) 10,348 10,312 10,265 10,384 10,336 10,337 10,386
ideal (ms) 10 10 10 10 10 10 10

Table 4.6: Downlink OWD values in according to the downlink
packet loss rate applied.

50

Chapter 5

The Setup Phase
Period’s length T0 is a central aspect for the OWD algorithm and must
to be known from both client, server and observer BEFORE the first
measurement period. It’s very easy to set the T0’s value "A priori".
The overall OWD algorithm implementation complexity remains the
same without any additional line of code. The main drawback is the
impossibility to set a tailored value in according to the current network
conditions and the probability to store an overestimated T0 value.

For this reason, an initial setup phase would be a valid idea in order
to try to retrieve an higher number OWD and half-OWD samples
during the same QUIC connection.

5.1 The “classic” spin bit method
This is quite the same algorithm of the latency spin bit algorithm
described by Brian Trammell[7]: At the beginning of the new QUIC
connection, both endpoints set its own internal spin bit value to 0 and
then:

1. After the Handshake is confirmed on client-side 1, client toggles its
spin bit value to 1 starting a square wave in direction of the server.
It saves the timestamp of the first outgoing marked packet.

1this happens when client receive the HANDSHAKE-DONE frame

51

The Setup Phase

2. Server detects the square wave edge from the upload link and
toggles it’s spin bit value from 0 to 1 starting reflecting back the
square wave on the download link. It saves the timestamp of the
first incoming marked packet.

3. Client receives the first reflected packets. It toggle back to 0 its
internal spin bit value interrupting the square wave on the uplink
in direction to the server. It saves the incoming timestamp of the
first reflected marked packet received.

4. Server receives the first not-marked packet, i.e. the second square
wave’s edge meaning the end of the square wave itself. It then
toggles back the internal spin bit value to 0 interrupting the square
wave on the download link. It saves the incoming timestamp of the
first not-market packet.

When an endpoints has both the timestamps, it can compute the
RTT value as the difference between the two stored timestamp values
and then compute the T0 value accordingly to the constraints (see
Chapter 3). Now, they will wait for the first Ti instant to try to enter
in the first generation phase.

Important to notice that client needs to wait a length of time equal
to ½ RTT after computing the T0 value and then before waiting
the first Ti instance. In fact, the server will compute RTT value
approximately ½ RTT after the client and this detail could provide a
rough synchronization between the two endpoint avoiding the client to
start the first generation phase a period before the server.

52

The Setup Phase

Figure 5.1: Example of the Latency Spin Bit setup phase. The red
arrows represents the market short header packets sent firstly by the
client after the confirm handshake event. The black arrows represent
instead the not-marked packets

53

The Setup Phase

5.1.1 Implementation

1: generationPhase← false
2: setupPhase← false
3: endingGenerationPhase← false
4: waitNextPeriod← true
5: periodStart← 0
6: halfPeriodT imeout← 0
7: highestPktNum← 0
8: spinBit← 0
9: rtt← 0
10: lastSpinBitReceived← 0
11: t0← t0_val
12: elapse← elapse_val

13: procedure On_Handshake_confirmed(hdr)
14: if hdr.isLongHeader then
15: return
16: end if
17: if isClient then
18: setupPhase← true
19: end if
20: end procedure

21: procedure Handle_Outgoing_Packet(hdr)

22: if hdr.isLongHeader then
23: return ó Marking logic affect only short header packets
24: end if

25: out_timestamp← time.Now()
26: if periodStart == 0 then
27: if setupPhase == true then
28: if isClient AND rtt == 0 then

54

The Setup Phase

29: spinBit← true
30: rtt← out_timestamp
31: end if
32: end if
33: else
34:
35:
36: end if
37: header.SpinBit← spinBit

38: end procedure
Comparing this procedure with the same procedure without the setup

phase, is possible to notice that there is a IF-THEN-ELSE block to
decide if a periodStart value is already stored2 or not and so if the client
need to start the setup phase or not. Instead, the ELSE statement from
line 31 wraps all the basic OWD algorithm’s logic as seen in previous
pseudo-code (for both client and server).

1: procedure Handle_Incoming_Packet(hdr)

2: if hdr.isLongHeader then
3: return
4: end if
5: if hdr.pktNum > highestPktNum then
6: if periodStart == 0 then
7: Handle_Setup_Phase(hdr)
8: end if
9:

10:
11: lastSpinBitReceived← hdr.SpinBit
12: end if
13: end procedure

2start time instant of the nearest measurement’s period

55

The Setup Phase

14: procedure Handle_Setup_Phase(hdr)
15: out_timestamp← time.Now()
16: if isClient then
17: if setupPhase == true AND hdr.spinBit == 1 then
18: spinBit← 0
19: setupPhase← false
20: rtt← (out_timestamp− rtt)
21: t0← computeT0(rtt)
22: t1← (out_timestamp + rtt/2)
23: periodStart← roundUpper(t0, t1)
24: waitNextPeriod← true
25: end if
26: else
27: if setupPhase == false AND hdr.spinBit == 1 then
28: setupPhase← true
29: spinBit← 1
30: rtt← out_timestamp
31: else if setupPhase == true AND hdr.spinBit == 0 then
32: spinBit← 0
33: setupPhase← false
34: rtt← (out_timestamp− rtt)
35: t0← computeT0(rtt)
36: periodStart← roundUpper(t0, out_timestamp)
37: waitNextPeriod← true
38: end if
39: end if
40: end procedure

The procedure handling the incoming packet calls another procedure
in order to manage the initial setup phase. There is a different behavior
in according to the endpoint’s side. In case of client side, the procedure
decide if the setup phase is completed or not and compute the first
periodStart timestamp. In case of server side, both start and end of
the setup phase is managed here.

Also for the observer the RTT value follow the latency spin bit

56

The Setup Phase

algorithm: firstly, it is placed on the uplink direction sniffing traffic
incoming from the client. When the first marked packet is detected,
the packet’s incoming timestamp is stored. Then, when the first not
marked packet is received after the last marked one detected, the second
timestamp is stored and the RTT value is computed as the difference
between this two values. The T0 value is derived as for client and
server.

5.2 Consideration
Being that this mechanism derive from the classical latency spin bit,
both client and server need to take care about the packets sequence
number. For the same reason, the observer need to use the waiting
interval tricks trying to avoid spurious edges as already discussed in
chapter 3. Another aspect to take in account is that QUIC protocol allow
to coalesced an application packets (1-RTT) to a long header packet
during the handshake phase 3. What could happen is that the endpoint
has not yet the required cryptographic keys4 for different reason (maybe
a delayed packet during the handshake). In this situations, the 1-RTT
packet cannot be processed and can be stored temporary in a buffer or
even discarded.

This factor could lead to a more variable RTT values computed
on the two endpoint. For this reason, is better to wait to receive the
HANDSHAKE_DONE frame and then the handshake confirm event
before allow the client to send the first marked packet.

3in this case, the short header packet is the last in the UDP datagram due to the
lack of length field in the header’s format

4available after the handshake confirmed event

57

The Setup Phase

5.3 3-Handshake packets method
This second method uses packets sent in the normal QUIC connection’s
handshake, based on the TLS 1.3 handshake[4]. The basic idea is the
following:

1. Client sends a first long header packet to start a QUIC connection
with the server and saves the outgoing packet’s timestamp.

2. Server receives the first packet and, in nominal case, sends back
a second long header packet as a response saving the sending
timestamp.

3. Client receives the second packet, saves the receiving timestamp
and computes RTT with the two timestamp provided by the 1°
and 2° packet. The endpoint continues the handshake by sending
a third packet to the server.

4. Server receives the third packet and saves the timestamp. Now
also the server can compute its own RTT value via the difference
in time between timestamps retrieved from 2° and 3° packet.

The Observer need to be placed on the uplink in order to detect the
first packet sent by the client signalling a new tentative of connection
between the two endpoint). The RTT value is computed taking in
account the detection timestamp of the first packet and of the third
packet (the second packet sent by the client after receiving the first
packet from the server).

But what packets to consider for the timestamps?
Firstly, QUIC protocol allows to send coalesced packets in a UDP

datagram with the aim to reduce the number of in-fight packets and
accelerate the handshake procedure. Then, different packets can be ex-
change in according to the QUIC implementations and the information
already stored on the endpoints5.

5For example, is possible to anticipate some 1-RTT packets via the 0RTT packet,
but to do that, information from a previously established connection need to be stored
on the endpoints

58

The Setup Phase

Speaking about the QUICGO, during the tests emerged that after
the first Initial packet, server always sends a retry packet (type 0x3)
in response to the client with the goal to provide a unique identifica-
tion token for security purposes and forcing the client to restart the
connection trial by sending a new Initial packet6.

The following simple implementation of the setup phase is thought
to exploit this common exchange packets sequence for the RTT and
the T0 values.

5.3.1 Implementation
1: procedure Handle_Outgoing_Packet(hdr, rcvTime)

2: if hdr.isLongHeader then
3: if isClient then
4: if hdr.LongType == InitialType then
5: if firstResponseRecv == false then
6: rtt← rcvT ime
7: end if
8: end if
9: else

10: if hdr.longType == initialType OR hdr.longType ==
retryType then

11: if firstResponseRecv == false then
12: rtt← rcvT ime
13: end if
14: end if
15: end if
16: end if
17: end procedure
18: procedure Handle_Incoming_Packet(hdr, rcvTime)
19: if hdr.isLongHeader then

6If the client receives the NONCE token, it will attach a copy of it in every
successive outgoing packets.

59

The Setup Phase

20: if isClient then
21: if hdr.longType == initialType OR hdr.longType ==

retryType then
22: if firstResponseRecv == false then
23: firstResponseRecv ← true
24: rtt← rcvT ime− rtt
25: t0← computeT0(rtt)
26: end if
27: end if
28: else
29: if hdr.longType == initialType then
30: if firstResponseRecv == false then
31: if rtt == 0 then
32: return
33: end if
34: firstResponseRecv ← true
35: rtt← rcvT ime− rtt
36: t0← computeT0(rtt)
37: end if
38: end if
39: end if
40: end if
41: end procedure

Notice that the "firstResponseRecv" flag is required in order to avoid
multiple computations of the RTT and then T0 value every time a long
header packet is sent and/or received.

60

The Setup Phase

Figure 5.2: QUIC handshake’s packets proposed for the setup phase
as tracked with QUICGO

61

The Setup Phase

5.3.2 Consideration

This method doesn’t require to add information to any packet’s header,
like the first setup phase reported and avoid to "waste" a couple of
initial measurement periods for this scope. Comparing the pseudo-code
of the two setup phases, this second is simplest but is more difficult to
track the meaningful same three packets also due to the lack of any sort
of marking strategy. After the first initial packet different coalesced
packet are send, fact more evident in case of packet reorder and packet
loss during this phase.

By using the three proposed packet, additional unpredictable delay
could be present due to the different processing delay required by the
two packet’s type but also due to the processing delay required to
manage the NONCE token.

Another packet that the server can send after receiving the first
Initial packet is the Version packet7, a special long header packet sent
to the client with the aim to signal what QUIC versions it should
consider and interrupting, de facto, the connection trial. The client
will try then to send another Initial packets as a way to restart the
handshake procedure. This last packet could be used instead of the
retry packet 8.

The Observer, in the basic setup phase’s idea, is only sniffing on
the uplink direction. This means that it will compute RTT value
considering the distance in time between the first incoming Initial
Packet and the second Initial Packet from the client. The problem
is the impossibility for it to know if the second Initial packet is in
response to a server packet (Initial, version or a retry packer) or it
represents the first long header’s packet for a new handshake trial.
This could cause an overestimation of the RTT value on the observer.
The two endpoint will compute the RTT value in a second connection
tentative while observer will already store a T0 value waiting for the
first square wave signal. A possible optimization could be place the

7Not considered in the pseudo-code
8Option not considered in the pseudo-code above

62

The Setup Phase

observer on both the directions. Until now observer has been place on
the upload link OR on the download link, but this because is one of
the requirements of the OWD methodology. Usually, an ISP is able
to monitor both the directions of the managed network’s portion and
then is also able to configure an on-observer to sniff packets in two-way
mode. In this way, if the observer sniff a long header packet on the
downlink after the detection of a first long header packet on the uplink,
then the second Initial packet should be considered as the response of
the server to the client meaning that the handshake is ongoing between
the two endpoints. It’s anyway possible that the detected packet on
the downlink could be lost before be received by client and AFTER
be detected by the observer causing again an erroneous RTT value
computation on stored on the observer.

63

Chapter 6

Conclusions
This work wants to evaluate the theoretical validity of a new algorithm
proposed by Telecom Italia with the goal to provide the QUIC protocol
of a new One-Way Delay measurement system exploitable by a passive
on-path observer placed on the upload link or on the download link
between two endpoints. The mechanism has been implemented by
extending the QUICGO project, i.e. an experimental running imple-
mentation of the QUIC protocol, and then tested in Telecom Italia’s
laboratory emulating different network conditions.

The One-Way Delay would like to be a replacement of the Latency
Spin Bit proposed by Brian Trammell able to provide accurate mea-
surements only in optimal network scenarios. For this reason, the new
algorithm exploits the spin bit considering some additional mechanism
in the trial to overcome (most of) Trammell’s algorithm limitations.

The main drawback with the One-Way Delay algorithm is the need
of a strong time synchronization between client, server and the observer,
aspect that could introduce a not negletable error component and an
increasing of inaccuracy in OWD and half-OWD samples as reported
mainly performing tests in presence of packet reorder rates and packet
loss rates.

In general, what emerged analyzing the results obtained, is that the
OWD algorithm is able to provide valid OWD and half-OWD samples
with more than acceptable accuracy in every tested conditions.

The Elapse interval optimization on the endpoints provide high

64

Conclusions

protection against traffic holes occurring during the generation phase
and the termination phase of the marking logic allowing to define
acceptable error ranges in both OWD and half-OWD samples but also
to discard the overestimated samples.

Interesting protection also in presence of packet reordering rates,
thanks to the introduction of the waiting interval, with the possibility
to filter an high percentage of spurious edges during the sample compu-
tation. Unfortunately, if the reordered packet are on the square wave’s
borders, the OWD sample will be underestimated in any case, fact
noticeable also in case of marked packet lost in proximity of the borders.
In this case the OWD algorithm cannot provide more protection than
the Trammell’s algorithm. A possible solution could be the use of a
second bit, maybe using one of the reserved bit in the short header
packet, with the goal to add another mark over the already marked
packets on the square wave’s borders and then uniquely define the
expected signal’s length. Unfortunately, this algorithm is thought to
use only one bit and so this optimization cannot be considered.

Speaking about the retrieved samples performing the tests, the
number of valid measurements decrease mainly with the increasing
of packet reorder and packet loss rates. This phenomenon can be
attributed principally to the activation of the congestion control and the
reduction of the transmission window’s size causing then an important
reduction in the number of packets sent during a measurement period
and a more probability to violate the constraints imposed by the
Elapse interval to avoid overestimated samples. The solution could
be reduce the length of every measurement periods T0 in which the
QUIC connection is divided, maybe via an initial setup phase, paying
attention to avoid the overlapping of contiguous marking phases.

65

Bibliography
[1] Martin Thomson. Version-Independent Properties of QUIC. RFC

8999. May 2021. doi: 10.17487/RFC8999. url: https://rfc-
editor.org/rfc/rfc8999.txt (cit. on p. 2).

[2] Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multi-
plexed and Secure Transport. RFC 9000. May 2021. doi: 10.17487/
RFC9000. url: https://rfc-editor.org/rfc/rfc9000.txt (cit.
on p. 2).

[3] Martin Thomson and Sean Turner. Using TLS to Secure QUIC.
RFC 9001. May 2021. doi: 10.17487/RFC9001. url: https:
//rfc-editor.org/rfc/rfc9001.txt (cit. on pp. 2, 8).

[4] Jana Iyengar and Ian Swett. QUIC Loss Detection and Congestion
Control. RFC 9002. May 2021. doi: 10.17487/RFC9002. url:
https://rfc-editor.org/rfc/rfc9002.txt (cit. on pp. 2, 58).

[5] Mike Belshe, Roberto Peon, and Martin Thomson. Hypertext
Transfer Protocol Version 2 (HTTP/2). RFC 7540. May 2015.
doi: 10.17487/RFC7540. url: https://rfc-editor.org/rfc/
rfc7540.txt (cit. on p. 2).

[6] Mike Bishop. Hypertext Transfer Protocol Version 3 (HTTP/3).
Internet-Draft draft-ietf-quic-http-34. Work in Progress. Internet
Engineering Task Force, Feb. 2021. 75 pp. url: https://datatr
acker.ietf.org/doc/html/draft-ietf-quic-http-34 (cit. on
p. 2).

66

https://doi.org/10.17487/RFC8999
https://rfc-editor.org/rfc/rfc8999.txt
https://rfc-editor.org/rfc/rfc8999.txt
https://doi.org/10.17487/RFC9000
https://doi.org/10.17487/RFC9000
https://rfc-editor.org/rfc/rfc9000.txt
https://doi.org/10.17487/RFC9001
https://rfc-editor.org/rfc/rfc9001.txt
https://rfc-editor.org/rfc/rfc9001.txt
https://doi.org/10.17487/RFC9002
https://rfc-editor.org/rfc/rfc9002.txt
https://doi.org/10.17487/RFC7540
https://rfc-editor.org/rfc/rfc7540.txt
https://rfc-editor.org/rfc/rfc7540.txt
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34

BIBLIOGRAPHY

[7] Brian Trammell and Mirja Kühlewind. The QUIC Latency Spin
Bit. Internet-Draft draft-ietf-quic-spin-exp-01. Work in Progress.
Internet Engineering Task Force, Oct. 2018. 8 pp. url: https:
//datatracker.ietf.org/doc/html/draft-ietf-quic-spin-
exp-01 (cit. on pp. 2, 14, 51).

[8] Eric Rescorla. The Transport Layer Security (TLS) Protocol Ver-
sion 1.3. RFC 8446. Aug. 2018. doi: 10.17487/RFC8446. url:
https://rfc-editor.org/rfc/rfc8446.txt (cit. on p. 7).

[9] Kim Ervasti. A Survey on Network Measurement: Concepts, Tech-
niques, and Tools. 2017. url: https : / / www . cs . helsinki .
fi / u / kervasti / projects / A % 20Survey % 20on % 20Network %
20Measurement % 20 - %20Concepts , %20Techniques , %20and %
20Tools%20-%20Kim%20Ervasti%20-%2031-12-2016.pdf (cit.
on pp. 12, 13).

[10] Giuseppe Fioccola, Alessandro Capello, Mauro Cociglio, Luca
Castaldelli, Mach Chen, Lianshu Zheng, Greg Mirsky, and Tal
Mizrahi. Alternate-Marking Method for Passive and Hybrid Perfor-
mance Monitoring. RFC 8321. Jan. 2018. doi: 10.17487/RFC8321.
url: https://rfc- editor.org/rfc/rfc8321.txt (cit. on
p. 14).

[11] Mauro Cociglio, Alexandre Ferrieux, Giuseppe Fioccola, Igor
Lubashev, Fabio Bulgarella, Isabelle Hamchaoui, Massimo Nilo,
Riccardo Sisto, and Dmitri Tikhonov. Explicit Flow Measure-
ments Techniques. Internet-Draft draft-mdt-ippm-explicit-flow-
measurements-02. Work in Progress. Internet Engineering Task
Force, July 2021. 40 pp. url: https://datatracker.ietf.org/
doc/html/draft-mdt-ippm-explicit-flow-measurements-02
(cit. on p. 18).

[12] Fabio Bulgarella, Mauro Cociglio, Giuseppe Fioccola, Guido Marchetto,
and Riccardo Sisto. «Performance Measurements of QUIC Com-
munications». In: Proceedings of the Applied Networking Research
Workshop. ANRW ’19. Montreal, Quebec, Canada: Association for
Computing Machinery, 2019, pp. 8–14. isbn: 9781450368483. doi:

67

https://datatracker.ietf.org/doc/html/draft-ietf-quic-spin-exp-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-spin-exp-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-spin-exp-01
https://doi.org/10.17487/RFC8446
https://rfc-editor.org/rfc/rfc8446.txt
https://www.cs.helsinki.fi/u/kervasti/projects/A%20Survey%20on%20Network%20Measurement%20-%20Concepts,%20Techniques,%20and%20Tools%20-%20Kim%20Ervasti%20-%2031-12-2016.pdf
https://www.cs.helsinki.fi/u/kervasti/projects/A%20Survey%20on%20Network%20Measurement%20-%20Concepts,%20Techniques,%20and%20Tools%20-%20Kim%20Ervasti%20-%2031-12-2016.pdf
https://www.cs.helsinki.fi/u/kervasti/projects/A%20Survey%20on%20Network%20Measurement%20-%20Concepts,%20Techniques,%20and%20Tools%20-%20Kim%20Ervasti%20-%2031-12-2016.pdf
https://www.cs.helsinki.fi/u/kervasti/projects/A%20Survey%20on%20Network%20Measurement%20-%20Concepts,%20Techniques,%20and%20Tools%20-%20Kim%20Ervasti%20-%2031-12-2016.pdf
https://doi.org/10.17487/RFC8321
https://rfc-editor.org/rfc/rfc8321.txt
https://datatracker.ietf.org/doc/html/draft-mdt-ippm-explicit-flow-measurements-02
https://datatracker.ietf.org/doc/html/draft-mdt-ippm-explicit-flow-measurements-02

BIBLIOGRAPHY

10.1145/3340301.3341127. url: https://doi.org/10.1145/
3340301.3341127 (cit. on p. 18).

[13] Fabio Bulgarella. «QUIC Performance Measurement Algorithms to
evaluate connection delay and loss rate». MA thesis. Politecnico
di Torino, 2019, pp. 47–48. url: http://webthesis.biblio.
polito.it/id/eprint/10904 (cit. on p. 38).

68

https://doi.org/10.1145/3340301.3341127
https://doi.org/10.1145/3340301.3341127
https://doi.org/10.1145/3340301.3341127
http://webthesis.biblio.polito.it/id/eprint/10904
http://webthesis.biblio.polito.it/id/eprint/10904

	List of Figures
	Introduction
	Motivation
	Goals and structure of the thesis

	Background
	Struggling to keep updated internet's core protocols
	TCP is not tailored for new HTTP protocol versions

	The QUIC protocol
	Main characteristics
	QUIC headers

	Network Performance measurement concepts in a nutshell
	Network metrics
	Measurement approaches

	The Latency Spin Bit
	Limitations of the algorithm

	The One-Way Delay algorithm
	Preview
	One-Way delay algorithm overview
	The Period T0
	Compute the T0 value

	The on-path Observer
	Algorithm's optimizations
	The Elapse interval
	The half period timeout
	The Waiting Interval

	One-Way Delay Implementation

	Evaluation
	Software and utilities
	Testing Environment
	Methodology
	Result
	Packet delay variation
	Packet reordering rate variation
	Packet loss rate variation

	The Setup Phase
	The “classic” spin bit method
	Implementation

	Consideration
	3-Handshake packets method
	Implementation
	Consideration

	Conclusions
	Bibliography

