
POLITECNICO DI TORINO

Electronic Engineering
Master degree course in Electronic Systems

Master Degree Thesis

Characterization and
Performance Evaluation of
Programmable Logic in
Memory Architectures

Supervisors
prof. Maurizio Zamboni
Correlators:
prof. Marco Vacca
prof.ssa Giovanna Turvani

Candidate
Giorgio Perrone

matricola: 252969

Academic Year 2020-2021

This work is subject to the Creative Commons Licence

Summary

Nowadays, one task to fulfill is to overcome the bottleneck of the Von Neu-
mann architecture. The most critical aspect of this kind of structure is that
the operating unit has greatly improved its performance in recent years,
while memories couldn’t follow this trend. For this reason, especially in
data-intensive applications, the memory is not able to provide data as fast
as the operating unit can compute them, leading to a worsening of perfor-
mance. A possible solution to this bottleneck is the Logic-in-Memory (LiM)
approach. It consists of merging processing elements and storage together to
get a hybrid memory capable of both storing and computing data. The state-
of-the-art surrounding the Von Neumann Architecture and the LiM idea is
analyzed, trying to find out a set of possible solutions adopted in the past
to overcome this bottleneck. The Programmable Logic-in-Memory (PLiM),
an architecture developed at the polytechnic university of Turin, is taken
into account since it demonstrated to be very efficient to lighten the Von
Neumann limitations. In this approach, the processing unit and the memory
are no longer seen as two different entities, since the memory becomes also
capable of performing some operations directly inside its array. This is ac-
complished by revolutionizing the common memory structure. According to
PLiM approach, the memory is subdivided into a smart section and a stan-
dard section, where the former performs operations within it, while the latter
retains the known classic memory configuration. In particular, the smart
section can be split in different clusters, composed of three memory rows:
one smart row, which is the heart of the cluster, its corresponding UpRow,
and its corresponding DownRow. The real peculiarity of PLiM approach is
that its operating functionalities are provided by hardware blocks, the row
interfaces, instantiated in the smart section, that can make computations
retrieving data from the previously discussed clusters and from the standard
section. In this way, such a structure is ideally suitable for every application
since every function can be implemented through the row interfaces, provid-
ing PLiM the feature of being a general-purpose architecture. The examined

4

structure is a micro-programmed machine where the micro-code written in
a micro-ROM allows to perform the desired operations at each clock cycle.
The smart section has a homogeneous structure in which the same chain of
row interfaces has to be implemented in correspondence of each cluster. As
a consequence, every smart row environment, within a clock cycle, is able to
perform one operation among the ones available thanks to the row interfaces,
inside the memory space. This allows PLiM to exploit the Single-Instruction-
Multiple-Data (SIMD) computing mode; every micro-instruction written in
the micro-ROM is applied to all the smart row environments. If n-smart rows
are instantiated in the smart section, n-parallel operations can be performed
as described by the corresponding micro-instruction.
After PLiM structure is presented, it is tested with different algorithms in
order to check its performance and consumption estimates. The first tested
algorithm is the Advanced-Encryption-Standard 128 (AES128), which is an
encryption algorithm requiring special computations. Since its operations
cannot be parallelized within PLiM environment, the whole encryption pro-
cedure is processed within one smart row environment with some special-
purpose row interfaces. The second examined algorithm is the Approximate-
Message-Passing (AMP), an iterative algorithm belonging to the compressed
sensing world. Here the involved operations are simpler with respect to the
AES case (sums and multiplications are required), therefore the chain of row
interfaces is lighter compared to the AES case, bringing to a faster structure.
For both algorithms, the SIMD feature of PLiM has been exploited, in par-
ticular, for the AES case, it is possible to parallelize the whole algorithm on
the available smart rows. In the AMP, instead, it is possible to parallelize
the execution of one or more operations required by the algorithm, such as
matrix multiplication.
For each benchmark, performance values are evaluated in terms of timing,
power, and energy dissipation. In the end, a comparison between the PLiM
approach and a standard architecture, where memory and processor are kept
separated, is carried out. In particular, considering the implementation of
the same algorithm, PLiM leads to notable advantages compared to a RISC-
V architecture, both in terms of the application execution time and energy
consumption.
Taking into account the AES implementation, the most realistic one, an ex-
tra comparison is made also considering some encryption accelerators found
in the related works. It has been found that the PLiM implementation for
the AES128 can reach a throughput value of 358 Mbs, which is three orders
of magnitude more than the one achieved by the RISC-V processor (264 Kbs)

5

and two or three orders of magnitude less than the highest throughput rates
(up to 275 Gbs) of the deeply pipelined most modern accelerators. Consider-
ing the energy efficiency, which is the ratio between the throughput and the
dissipated power, for the AES specific application, the result obtained for
the PLiM implementation (21 Gbs/W) is just about one order of magnitude
smaller than the one found for modern AES accelerators (about 400-500
Gbs/W) and three orders of magnitude greater than the one achieved by
RISC-V architecture of 63 Mbs/W. PLiM architecture is not built to be an
accelerator, in fact, its performances values are lower compared to the mod-
ern accelerators. However, it has been found that the PLiM approach leads
to great benefits with respect to a classic approach and can be considered as
a general-purpose solution with good performance and efficiency features.

6

Contents

List of Tables 9

List of Figures 10

1 State of the art 13
1.1 Introduction to the Von Neumann Architecture and its bot-

tleneck . 13
1.2 Improvements adopted in the past 14

1.2.1 Memory Hierarchy . 15
1.2.2 Prefetching . 15
1.2.3 Branch Prediction . 15
1.2.4 Loop nest optimization 16

1.3 Most recent developments . 17
1.3.1 Computing-Near-Memory 17
1.3.2 Computing-In-Memory 19
1.3.3 Computing-With-Memory 20
1.3.4 Logic-In-Memory . 21

2 CLiMA as the starting point for PLiM 23

3 PLiM: how it works and its funcionalities 27
3.1 PLiM structure . 27

3.1.1 Smart Section . 28
3.1.2 Standard Section . 31
3.1.3 Memory Interface . 32
3.1.4 Row Interfaces . 32

3.2 Control Section . 35
3.2.1 µROM fields that manage the succession of instructions 37

7

3.2.2 µROM fields containing commands for the operating
unit . 38

4 How to implement an algorithm on PLiM 41
4.1 Source Operands . 42
4.2 Result . 43

4.2.1 Load Function . 44
4.2.2 Store Function . 45

4.3 Step to follow for the implementation of an algorithm 47

5 Algorithms implementation and testing 51
5.1 Advanced Encryption Standard 128 algorithm introduction . . 51
5.2 AES128 operations involved 53

5.2.1 AddRoundKey operation 54
5.2.2 Row Interface required for the Addroundkey operation 55
5.2.3 SubBytes operation . 56
5.2.4 Row Interface required for the SubBytes operation . . . 57
5.2.5 ShiftRows operation 57
5.2.6 Row Interface required for the ShiftRows operation . . 58
5.2.7 MixColumns operation 58
5.2.8 Row Interface required for the MixColumns operation . 59

5.3 AES128 scheduling and implementation choices 60
5.4 Approximate Message Mapping algorithm presentation 63
5.5 Operations and row interface required by the AMP algorithm 65
5.6 AMP algorithm implementation choices 65
5.7 Results . 70

5.7.1 AES results . 70
5.7.2 AMP results . 71
5.7.3 Results Comparison with the RISC-V architecture . . . 73
5.7.4 RISC-V Vs PLiM Vs AES accelerators 75

6 Conclusions and Future Works 83

Bibliography 89

8

List of Tables

5.1 AES128 algorithm encrypting one and four words timing in-
formation . 71

5.2 AES128 algorithm encrypting one and four words power dis-
sipation information . 71

5.3 AMP algorithm iterating one and three times timing information 72
5.4 AMP algorithm, iterating one and three times, power dissipa-

tion information . 72
5.5 Comparison between execution time values regarding algo-

rithm implementations on PLiM and on the RISC-V processor 73
5.6 Comparison between the energy required to implement the

considered algorithms on PLiM and on the RISC-V architecture 74
5.7 Evaluation of some meaningful parameters for AES128 algo-

rithm running on PLiM and on different AES accelerators . . 76

9

List of Figures

1.1 Von Neumann Architecture vs Harvard Architecture 14
1.2 Memory Hierarchy . 16
1.3 Early Systems vs Near Memory Computing 18
1.4 3D stacked memory structure 19
1.5 Computing-With-Memory . 21
2.1 Illustrative overview of a CLiMA cell enriched with some logic 24
2.2 Overview of one possible configuration of a CLiMA array . . . 25
3.1 Structure of the PLiM architecture 28
3.2 PLiM smart section organization 29
3.3 Smart Row and its building block 30
3.4 Division into blocks of the PLiM array 30
3.5 Standard Rows and its building block 31
3.6 Memory Interface as the unit that manages data traffic through

PLiM . 32
3.7 Row Interfaces organized in a chain 33
3.8 Row Interfaces configuration to accomplish a very simple al-

gorithm made of a shift and a sum 34
3.9 The common interface of each RI 35
3.10 The micro-programmed machine that handles the flow of in-

structions in a PLiM . 36
3.11 µROM operative commands and their related decoders 38
4.1 Data movement allowed by load instruction 44
4.2 Data movement allowed by store instruction 46
4.3 Single instruction multiple data protocol to perform opera-

tions inside PLiM . 47
5.1 Encryption-Decryption procedure 52
5.2 The 128-bit word to encrypt as the composition of 16 ASCII

or hexadecimal characters . 54
5.3 AddRoundKey step as a simple xor operation in GF(28) . . . 55

10

5.4 SubBytes step consisting of a LUT access with row and column
address . 56

5.5 Elements switching demanded by the ShiftRows operation . . 58
5.6 MixColumns operation performed between the corresponding

ciphertext matrix and a fixed S_Matrix 59
5.7 PLiM structure to fulfil the AES128 execution on it 61
5.8 AES128 scheduling, in particular with the µinstructions in-

volving the row interfaces to execute round zero and round
one. 62

5.9 Example of standard image compression 63
5.10 Example of a matrix multiplication demanded by the AMP

algorithm . 66
5.11 Parallel multiplication between the corresponding elements of

the considered matrices . 67
5.12 Execution of the first sum between the two first partial products 68
5.14 Execution of the third sum between the partial sum obtained

in the previous step and the fourth partial product 68
5.13 Execution of the second sum between the partial sum obtained

in the previous step and the third partial product 69
5.15 Graphical comparison between the execution time of the in-

volved algorithm running on PLiM and on the RISC-V archi-
tecture . 74

5.16 Graphical overview of the energy consumption of the consid-
ered algorithms on PLiM architecture and on the RISC-V pro-
cessor . 75

5.17 Graphical comparison between the PLiM achieved throughput
and the one achieved by different AES accelerators for the
AES128 application . 77

5.18 Graphical comparison between PLiM achieved throughput and
the one achieved by the RISC-V considering the AES128 al-
gorithm encrypting four 128-bit words 78

5.19 Graphical comparison between the PLiM achieved energy effi-
ciency and the one achieved by different AES accelerators for
the AES128 application . 79

5.20 Graphical comparison between PLiM achieved energy efficiency
and the one achieved by the RISC-V considering the AES128
algorithm encrypting four 128-bit words 80

11

5.21 Graphical comparison between PLiM achieved cycles per byte
value and the one achieved by different AES accelerators, con-
sidering the AES128 application 81

6.1 Example of collecting one data from the standard section to
be saved in a single precise location of the smart section . . . 85

12

Chapter 1

State of the art

1.1 Introduction to the Von Neumann Archi-
tecture and its bottleneck

Historically the Von Neumann architecture has been always compared to the
Harvard one, the main difference between the two approaches stands in the
different structure of the storage section. In a Harvard architecture data and
instructions are stored in two different entities while in a Harvard structure
there is a unique memory that manages both data and instructions as shown
in Figure 1.1.
This aspect implies that the Von Neumann structure is cheaper, occupies
less area, and its control unit is simpler with respect to the Harvard struc-
ture since it has to manage just one memory and for these reasons, modern
computing is based on this architecture. On the other hand, an instruction
fetch and a data operation cannot occur at the same time since they share
a common bus, they must be scheduled and this is a reason that leads to a
limitation of performance. The second aspect which influences most the per-
formance of the architecture is the different operating frequency achievable
by the storage unit and the operating unit. To conclude and clarify this in-
troduction, the Von Neumann Architecture represents the best compromise
between cost and performance. The analysis which is being carried out aims
at improving the speed of the architecture controlling the related growth of
its cost in terms of area and dissipated power. Only in this way, the Von
Neumann architecture can get better remaining the unchallenged solution in
the field of modern computing.

13

1 – State of the art

Figure 1.1. Von Neumann Architecture vs Harvard Architecture

1.2 Improvements adopted in the past
Different solutions have been proposed and adopted in order to overcome the
bottleneck, some of these ideas have a long history, others belong to a more
recent past.
Complementary Metal–Oxide–Semiconductor (CMOS) technology has spread
since the early ’70s and according to Moore’s predictions, transistors have
been scaled in the following years and their number has grown accordingly.
As a consequence, Central Processing Units (CPUs) have become faster while
memories did not, this is due to the need for more storage space, applica-
tions require larger memories and as a conclusion, they have turned into very
expensive entities in terms of energy and time. If memories get huger their
access time increases and also the energy required to perform this kind of

14

1.2 – Improvements adopted in the past

operation.

1.2.1 Memory Hierarchy
The goal of the Memory Hierarchy technique is to build a memory that is
able to work almost at the same speed of the CPU and the information that
the processor needs in a precise moment must already be saved inside it.
This purpose has been achieved thanks to cache memories that exploit the
concepts of spatial and temporal locality.

• Temporal locality When the processor accesses a location, it is likely
that it will access it shortly after.

• Spatial localityWhen the processor accesses a location, it is very likely
that shortly thereafter it will need to access nearby locations.

When the CPU has to run a program, all the information required is copied
from the secondary memory (Hard Disks) to the main memory (RAM) and
then provided to the processor. The idea, according to these two concepts,
is to copy blocks of information in smaller and faster memories called cache
memories in order to let the processor work just with this performing storage
element. A hierarchy is therefore built as shown in Figure 1.2; here elements
at the top of the pyramid are smaller and faster while the ones at the bottom
are bigger and slower. The processor will look for data first in registers, if
there is a miss, it will consult caches and so on until the bottom of the
hierarchy is reached.

1.2.2 Prefetching
Prefetching consists of getting data from the main memory before it’s actu-
ally needed and storing it in cache memory. Every x86 CPU has a bit of
circuitry called prefetch unit which runs in the background, scanning both
the CPU’s internal registers and any cached instructions to determine what
the execution unit is likely to need from memory next.

1.2.3 Branch Prediction
The environment which surrounds the Branch predictions technique is very
vast, a lot of different methods of prediction have been developed. Basically,

15

1 – State of the art

Figure 1.2. Memory Hierarchy

A CPU tends to execute instructions one after another, it goes through a
section of memory in sequence, picking out instructions as it goes along until
it has to choose between two paths of execution; a branch predictor is a
digital circuit that tries to guess which way a branch will go before this is
known definitively in order to improve the flow in the pipelined structure of
modern processors. Branch prediction and prefetching are strictly linked to
each other.

1.2.4 Loop nest optimization

Loop nest optimization is a technique that applies a set of loop transforma-
tions in order to improve cache performance and make effective use of parallel
processing capabilities.

16

1.3 – Most recent developments

1.3 Most recent developments
Programs have grown in their complexity bringing to the demand for more
capacious memories, in addition to this, technology scaling exploited to the
limit has enabled the Arithmetic Logic Unit (ALU) to reach important peaks
of speed. Therefore, the previously listed approaches have led to some im-
provements which are not sufficient to guarantee the same performance be-
tween memory and operating unit. Thus the modern concept of computation
in memory has been taken into analysis.
In this review just the idea behind Computation In Memory is explained,
the state of the art surrounding this topic is extremely wide, and extremely
detailed architectural and technological aspects are presented. Four branches
of the Computation In Memory subject are proposed according to the liter-
ature:

• Computing Near Memory

• Computing With Memory

• Computing In Memory

• Logic In Memory

This digression is meaningful since it clarifies the starting point and what
this work of thesis aims at. The first three approaches are still comparable to
a Von Neumann type architecture while the last one, the Logic-in-Memory
approach, is the most modern one, it goes beyond the classical Von Neumann
architecture in which CPU and memory are kept separate. It is the skeleton
of the Programmable LiM architecture examined and tested in this work.

1.3.1 Computing-Near-Memory
Today’s memory hierarchy is usually composed of multiple levels of cache, the
main memory, and a non volatile storage element. The traditional approach
consists of moving data from the storage to the cache levels and then pro-
cessing them. Near memory computing, instead, aims at processing close to
where data resides. An illustrative scheme is shown in Figure 1.2 to underline
the difference with the traditional approach. The Computing Near Memory
approach has spread starting from the first decade of the 21st century as a
consequence of the appearance of heterogeneous 3-D integration of logic dies
and memory dies based on Through-Silicon-Vias (TSV). This technique has

17

1 – State of the art

Figure 1.3. Early Systems vs Near Memory Computing

permitted to build memory cubes made of vertically stacked thinned mem-
ory dies. An accomplished project that has represented an important turning
point is the Hybrid-Memory-Cube (HMC) [1] whose structure allows the in-
tegration of a memory cube stacked on top of a logic die called logic base
(LoB). A simplified scheme of this is reported in Figure 1.4 The benefits of
performing such operations closer to the disk are manifold: energy is saved
by not having to move data through the memory hierarchy, interconnections
get shorter, functionality over occupied area ratio increases, and the memory
bandwidth requirements are reduced.
Other two related works found in the literature are the High-Bandwidth-
Memory, [3] whose structure is composed of four layers of Hi-core DRAM
stacked over a base logic die at the bottom and the Samsung Mobile Wide-
I/O DRAM project [2], where high data bandwidth is achieved by adopting

18

1.3 – Most recent developments

Figure 1.4. 3D stacked memory structure

a large number of I/O pins, memory density expansion is realized by stacking
multiple chips using TSV technique. In this environment, Low-Power Double
Data Rate memories have emerged to satisfy both demands for speed and
power consumption.

1.3.2 Computing-In-Memory
Computing-Near-Memory (CNM) allows to move computing logic near mem-
ory by integrating DRAM with a logic die using 3D stacking; this approach
has recently opened new opportunities in this area since memory can eas-
ily interact with logic. However this technique requires massive through-
silicon-vias to connect logic to multi-layer memory stack and this could affect
costs. Since data-intensive applications, such as artificial intelligence or real-
time video streaming, require big computational capabilities, In-Memory-
Computing (IMC) solutions have been proposed as a method for substan-
tially increasing computational capabilities while simultaneously reducing
energy consumption. In [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24] different methods to perform bitwise and more complex operations com-
pletely inside DRAM are presented; these techniques exploit the sense ampli-
fiers, which is the peripheral circuitry used to extract data from the DRAM
cells. Resistive RAMs (ReRAM) are taken into account to accomplish this

19

1 – State of the art

project, they are based on resistive switching nanodevices (memristors or
memristive devices) and represent one of the most promising candidates
for next-generation nonvolatile memory (NVM) applications. These mem-
ories are also compatible with the current Complementary Metal-Oxide-
Semiconductor (CMOS) fabrication process that enables their easy integra-
tion with the existing technology. It is noticeable that the memory structure
has not been altered, it just exploits its analog features to process and sense
data within it, processing is not performed outside memory hence the In-
Memory-Computing name.

1.3.3 Computing-With-Memory
The Computing-With-Memory approach exploits the associative memory
processing, here computations are transformed into Look up table opera-
tions employing a non-volatile memory. If a function has to be executed on
two n-bit data, all the 22n possible patterns of the inputs can be mapped in
a truth table. The different related works focus their attention on how to
realize this idea in the best way. It is common to read among the related
works that the two building blocks of this kind of processing are a Ternary
Content-Addressable Memory (TCAM) and a memory, where a set of input
patterns and their corresponding outputs are respectively stored. When a
computation has to be performed, the input pattern is searched for in the
TCAM, if there is a match, the corresponding result is returned from the
memory. This process can be seen as a cooperation between the two storage
elements from which the name Computing-With-Memory derives as concep-
tually depicted in figure 1.5.
The dense structure of CAMs allows to store a great number of patterns in the
same unit of silicon. Memory-based computing has been shown significant
energy efficiency for emerging non-CMOS memories, particularly well suited
for dense non-volatile memory design. Several TCAM and CAM cells based
on new technologies have been recently suggested to improve the density of
pattern matching circuitry. In [9], [10] Resistive RAM (ReRAM) and Spin-
Transfer-Torque RAM (STT-RAM) are presented as high speed and reliable
non-volatile memories based on memristive devices and magnetic tunneling
junctions, included in interesting applications such as real-time network in-
trusion detection, network packet routing, DNA sequence alignment. In [12]
and [13] a 2T2R (two transistors, two resistors) TCAM memory is taken into
account as the best possible solution to build a non-volatile memory that
accomplishes the associative memristive computing.

20

1.3 – Most recent developments

Figure 1.5. Computing-With-Memory

1.3.4 Logic-In-Memory
This is the newest and most revolutionary concept. The Von-Neumann
paradigm is broken since memory and logic are no longer separated but
merged into a single entity. Simple logic is integrated into the memory cell
itself, these operations will not be performed outside the structure or in pe-
ripheral circuits but directly inside the memory array. In [25] CMOS logic
for in-place data processing is integrated into the typical 6T SRAM array,
memory structure is enriched with XOR and Look-Up-Tables (LUT) based
units. In [26] a comparison between a Nano-Magnet-Logic (NML) LIM ar-
chitecture and a CMOS one is presented to evaluate these two possible ways
to realize the Logic-In-Memory concept. In [27] a hybrid MJT-CMOS archi-
tecture is shown, here magnetism and electronics are combined to develop
next-generation Non-Volatile-memories, exploiting spintronic devices to over-
come the issues of static power dissipation and volatility suffered by the
complementary metal-oxide-semiconductor (CMOS) industry. To complete
the historical picture in [28] the focus shifts completely to Complementary-
MAgnetic-Tunnel junction logic (CMAT) which is meant to start the devel-
opment of novel non-von Neumann architectures that may replace CMOS for
general purpose computing.

21

22

Chapter 2

CLiMA as the starting
point for PLiM

Configurable-Logic-in-Memory-Architecture (CLiMA) is an approach in which
the cells of a memory array can be configured in order to perform different
operations thanks to the logic integrated within them.
In Figure 2.1 a view of the cell filled with logic is portrayed, in this example,
the basic cell can be seen as a box that no longer contains only a storage
section but also units capable of performing some simple operations. The
blocks are connected to each other, in Figure 2.1 this is not shown since
it is simply explanatory and does not refer to any specific implementation
of an architecture. Besides the introduction of extra logic, another novelty
lies in the possibility to take as inputs data coming from other cells and
therefore performing operations with them. The operations that can be per-
formed and data exchange between cells are handled and determined by a
proper pre-configuration of every single cell. In this way, according to the
Logic-in-Memory (LiM) principle, the cell becomes capable of performing
logic and arithmetic operations without moving data outside the memory
array, reducing the number of accesses that are expensive in terms of per-
formances and energy. In Figure 2.2 an illustrative possible layout of the
memory array is reported; it shows how cells can be configured and inter-
connected in order to exploit more complex functions to satisfy the demand
of different algorithms. Flexibility is another positive feature of CLiMA
where intra-row, intra-column, inter-row, and inter-column communication
can be achieved through interconnections. The weak point of this structure
is that cells configuration is extremely application dependent, in other words,
a specific configuration may be chosen to optimize one algorithm but it is

23

2 – CLiMA as the starting point for PLiM

Figure 2.1. Illustrative overview of a CLiMA cell enriched with some logic

likely that it may make the execution of another algorithm slower with re-
spect to a conventional approach. In particular, in [7] a configuration that
optimizes a Convolutional Neural Network (CNN) network is analyzed and
taken into account. Programmable Logic-in-Memory (PLiM) architecture
aims at overcoming this weakness of the CLiMA idea by providing the ar-
chitecture maximum flexibility in order to ideally make it suitable for each
kind of algorithm. The key point is that memory cells, memory rows are
not pre-configured to satisfy the execution of a specific algorithm but some
of them are provided the feature to be smart. Being smart means to be
capable of performing operations directly inside the array, not just one kind
of operation depending on a predetermined configuration but ideally all of
them. This is achieved by adding to these smart rows some building blocks,
called Lego-LiM or Row Interfaces which can be seen as extensions of the
smart rows capable of performing an operation. For instance, three Lego-Lim
blocks could be: a full adder, a multiplier, and a shifter. Now the difference
between CLiMA and PLiM approaches becomes clearer: with CLiMA two

24

2 – CLiMA as the starting point for PLiM

Figure 2.2. Overview of one possible configuration of a CLiMA array

different algorithms involving sums, multiplications and shifts may require a
totally different configuration of the memory array, with PLiM instead, each
algorithm can exploit the instruction set established by the type of Row Inter-
faces chosen to perform the available operations directly inside the memory
array. It is clear that PLiM approach is heavier in terms of extra-hardware
with respect to the CLiMA one, in fact, each smart row is enriched with one
or more computational blocks with the same parallelism of memory. The
goal of this work of thesis is to understand if the impact due to the extra
hardware is balanced by a speedup of the application made possible by re-
ducing the number of memory accesses. In chapter 3 PLiM is described, its
structure, its features, and its functionalities are taken into account to make
clear what executing an algorithm on this architecture means and to discuss
the positive and negative aspects of this kind of solution.

25

26

Chapter 3

PLiM: how it works and
its funcionalities

The key idea of Programmable Logic-in-Memory (PLiM) approach is to pro-
vide the system maximum flexibility, to make it able to execute several fam-
ilies of algorithms thanks to a technological independent and open-source
library of components (Lego-Lim or Row Interfaces). In [8] a detailed expla-
nation of PLiM following step by step each design evaluation is given. This
work aims at testing its functionalities and for this reason schemes and figures
sometimes will be illustrative, they will not report each signal or component
of a specific section of the architecture but they will explain its working prin-
ciple. In this chapter the PLiM memory structure is taken into account first,
then the control part with the task of managing the flow of instructions is
presented.

3.1 PLiM structure
In this section, the innovative memory structure that accomplishes the tar-
gets aimed by PLiM is presented and explained step by step to make clear
what are the potentialities of the memory array to be exploited for the im-
plementation of an algorithm.
The basic principle of PLiM is to have the main memory subdivided into a
Smart section and a standard section as shown in Figure 3.1 The smart sec-
tion is capable of managing both storing and computational functions thanks
to Row Interfaces, logic or arithmetic blocks added in this special part of the
main memory, the reason why the number of smart rows must necessarily be

27

3 – PLiM: how it works and its funcionalities

Figure 3.1. Structure of the PLiM architecture

restrained. On the other hand, the standard section almost retains its classic
conformation to perform only a store function.

3.1.1 Smart Section
The smart section, the way it is managed, and the connection implemented
between neighboring rows represent the novelty of this architecture. The
number of smart rows chosen by the designer defines the smart section layout,
each of them is surrounded by the corresponding UpRow and DownRow
and then can communicate with them as shown in Figure 3.2. For sake
of clarity every DownRow, except for the last one of the smart section, is
also the UpRow of the next smart row but they are not different entities;
while implementing an algorithm the same row will be labeled as UpRow or
DownRow depending on the operation required at that specific step. Only

28

3.1 – PLiM structure

Figure 3.2. PLiM smart section organization

the smart rows are built with special cells called arithmetic cells (A-cells)
as conceptually reported in Figure 3.3, with this configuration and plugged
with the RCA row interface they become capable of managing many logic and
arithmetic operations. It is noticeable how the cell, apart from the storage
unit, is filled with a full adder a logic unit that filters the cell output. UpRows
and DownRows , as standard sections rows are built with M cells.

29

3 – PLiM: how it works and its funcionalities

Figure 3.3. Smart Row and its building block

Figure 3.4. Division into blocks of the PLiM array
30

3.1 – PLiM structure

One other feature of PLiM is that smart rows can be grouped in blocks,
the designer can choose how many blocks the smart section has to be divided
into and as a consequence the number of smart rows contained in each block.
In Figure 3.4 a PLiM structure with four blocks each containing two smart
rows is shown. This extra feature in some cases could be useful since makes
it possible to deactivate some portions of PLiM if some computations are not
required by the algorithm in a specific point of its run.

3.1.2 Standard Section

Figure 3.5. Standard Rows and its building block

The structure of the standard section is similar to that of normal memory,
here standard rows, as UpRows and DownRows of the standard section, are
built with M-Cells as conceptually portrayed in Figure 3.5; it is noticeable
that the only difference with respect to a common memory cell stands in the
integration of the logic unit that manages the output filtering. The standard
section can communicate and provide data to the smart section thanks to
the memory interface.

31

3 – PLiM: how it works and its funcionalities

3.1.3 Memory Interface

Figure 3.6. Memory Interface as the unit that manages data
traffic through PLiM

The memory interface administrates the traffic of data through the PLiM
structure. As it is noticeable from Figure 3.6, it is basically composed of
multiplexers and registers that work like a cache. Figure 3.6 just provides
an idea of the possible communications between memory rows, the impor-
tant point to highlight is that a direct communication, that is within one
clock cycle, is permitted just between rows belonging to the same smart row
environment (UpRow n, Smart row n, DownRow n)

3.1.4 Row Interfaces
Row Interfaces (RIs) represent the engine of PLiM, they are extra hardware
added to smart rows that can perform operations directly inside the memory.

32

3.1 – PLiM structure

Figure 3.7. Row Interfaces organized in a chain

Row Interfaces set the type of instructions that can be handled in LiM mode
depending on the application purpose. Visual feedback of RIs organization
and management is reported in Figure 3.7. For design choices, the first RI
must be the RCAandLogic block, which is able to perform a lot of logic
functions, additions, and subtractions while the last block of the chain must
be the Input/Output buffer, which is used to store the output of previous
blocks and to manage load and store operations. The designer builds the Row
Interfaces chain depending on the application, in this example a block able
to perform shift operations and, a block able to count the number of ones of
data are added to the structure. The chain sets the order of the operations
that can be handled in one single instruction of the uROM section 3.2. Once
again referring to Figure 3.7, this configuration allows PLiM to perform in
one instruction, so within a clock cycle, a sum with the RCAandLogic block,
a shift of the result, the count of ones of the shifted data. The final result of
a PLiM instruction is always saved in the Output buffer with the exception
of Load and store operations. The user is not forced to use all the blocks
that compose the chain; if one or more of them are not needed in a precise
algorithm step, they can become transparent during the execution of a LiM
instruction. The execution of a very simple algorithm is reported in Figure 3.8
to better understand this point. The algorithm requires first a shift operation
of the content of the smart row and then to sum the shifted data with the
original content of the smart row; the algorithm cannot be executed in one
instruction since the two operations do not respect the order of blocks but

33

3 – PLiM: how it works and its funcionalities

Figure 3.8. Row Interfaces configuration to accomplish a very simple algo-
rithm made of a shift and a sum

in two steps:

• Shift: RCAandLogic and 1counter are not needed, they become trans-
parent, only the shifter is active and it takes as input the content of the
smart row, the result of the shift operation is stored in the output buffer.

• Sum : The RCAandLogic block is the only one to be active and it takes
as inputs the content of the smart row and the data previously stored in
the output buffer. The result of the sum is stored in the output buffer.

In the example of Figure 3.8 the same smart row is taken into account and it is
shown how PLiM handles concatenated operations with the storage of partial
results. RIs also shares the great feature to all have the same interface as
shown in Figure 3.9 In this way for a user, for a designer adding a RI becomes
very intuitive and simple, the steps to follow are:

34

3.2 – Control Section

Figure 3.9. The common interface of each RI

• Define the operational functionality of the row interface : The
block with the interface shown in Figure 3.9 is built describing the op-
eration it is able to perform.

• Add the new block to the chain of RIs As discussed before, RIs
are organized in a chain; to insert a new block its inputs have to be
connected to the outputs of the previous block and its outputs have to
be connected to the inputs of the following block.

• Add the Opcodes Since a new operation has been introduced, it is
necessary to add the Opcode for the single operation itself and all the
opcodes linked to all the concatenated operations in which the new RI
can be involved.

3.2 Control Section
In this section, the unit that manages the flow of instructions through the
PLiM structure is analyzed. The PLiM is a micro-programmed machine and
an illustrative scheme that depicts its way of operating is reported in Fig-
ure 3.10, again it is not a perfect portrait of the real implementation but it
clarifies its working mode.
A micro-programmed machine is able to execute programs thanks to the
micro-instructions stored in the µROM, a program is a set of instructions

35

3 – PLiM: how it works and its funcionalities

Figure 3.10. The micro-programmed machine that handles the flow of
instructions in a PLiM

and a lot of them can be stored in the µROM . When a specific program has
to be executed, the µAR (Micro Address Register) is filled with the address
that points at the location where the first micro-instruction of that program
is stored, then this address is copied into the µPC (Program Counter) that
accesses the proper µROM location. After the execution of the first instruc-
tion, the machine will evolve according to what has been previously stored
in the memory. Evolving through instructions means updating at each al-
gorithmic step the content of the µ PC with the address of the instruction
that has to be executed at each specific point. Every time the µROM is
accessed by the address stored in the µPC, the addressed content is taken
from the memory and copied in the µIR(Micro-Instruction-Register). The
rules that manage the succession of instructions are set in some of the µIR
fields; the remaining fields are filled with the commands that have to be
sent to the PLiM to make it perform the proper operation at each step. In
general, programming a machine by compiling a µROM is extremely flexible

36

3.2 – Control Section

and user-friendly since this operation consists just of writing zeros and ones
in the right fields.

3.2.1 µROM fields that manage the succession of in-
structions

Once more referring to Figure 3.10, the first five fields of the µROM deal
with the evolution of instructions and programs and they are:

• SEQ: It gives information about the next instruction to execute, it is
composed of two bits and therefore it can assume four possible configu-
rations:

– When SEQ = "00" The content of the µAR is copied into the µPC
to let a program start with its first instruction.

– When SEQ = "01" The machine fills the µPC with the content of
the NextAdd field.

– When SEQ = "11" it means that a subroutine call has to be per-
formed, the µPC is filled with the address at which the subroutine
begins, this is always stored in the NextAdd field, and the return
address is stored into the RAR (Return-Address-Register). Once
the machine has satisfied the subroutine execution, the µPC will be
filled with the content of the RAR to continue the normal execution
of the program.

– When SEQ = "10" it indicates that the subroutine has terminated
its execution and that the µPC has to be filled with the content of
the RAR whatever the content of the NextAdd field is.

• CC: It is the conditional code and it indicates if a jump has to be
taken or not. In this architecture, it has to be asserted just for the wait
instruction.

• NextAdd: The micro-programmed machine is based on explicit ad-
dressing, therefore each instruction contains in this field the address of
the next instruction to execute.

• EndFlag:It is needed to handle the flow of different programs and it
alerts the control unit when the last instruction of a program is being
executed.

37

3 – PLiM: how it works and its funcionalities

• FetchEn: Also this field manages the protocol to start the execution of
a new program, its function is to update the content of the µAR to start
the execution of a new program.

Summarizing the crucial points of this section, it is important to understand
that PLiM is able to execute instructions in sequence, to perform jumps to a
subroutine, to return to the normal application execution that was running
before the subroutine call.

3.2.2 µROM fields containing commands for the oper-
ating unit

Figure 3.11. µROM operative commands and their related decoders

The µROM fields left to be explained are those that manage the actions to
be carried out by PLiM; they are coded commands to be sent to the PLiM
structure to let it work in the desired way, after a decoding phase. This
section of the µROM is composed of 5 fields but just four of them need to

38

3.2 – Control Section

be decoded, a representation is provided in Figure 3.11. More in detail the
fields with their function are:

• Opcode It represents the coded string to refer to a specific operation
that PLiM has to perform through the row interfaces or the input/output
buffer. This field of the µROM manages the activation and deactivation
of row interfaces as discussed in subsection 3.1.4. For instance, if the
Opcode of a µinstruction is "RCAandLogic", the adder is the only active
row interface required by that instruction, all the other blocks become
transparent and the Opcode decoder translates the string "RCAand-
Logic" into its associated operative code. Every single operation and
every possible chained operation must be associated with an operative
, which is a set of bits whose length depends on the number of row
interfaces inserted by the designer.

• Operands This field refers to the operand or to the two operands sent
as input to the block that is meant to be used for the corresponding
µinstruction. All the possible patterns regarding this section will be
discussed more in detail in chapter 4. Each possible input pattern for a
row interface is coded with a literal string and associated to a string of
bits, the literal string has to pass through the operand decoder before
being sent to PLiM structure in order to command it.

• Result This is the field with the fewest possible options, in fact it es-
tablishes where the final result of an operation has to be stored, the
two possible alternatives are the input buffer or the output buffer. The
input buffer is linked to the "StoreExt" literal string while the output
buffer is linked to the "StoreBuff" literal string; the result decoder trans-
lates these two strings into their associated operative code in order to
let PLiM understand where the result has to be saved.

• Address This field does not require to be decoded, it provides PLiM the
functionality to take operands stored in the standard section as possible
inputs for the row interfaces. The field, in particular, indicates to the
structure the address where the desired data is stored in order to retrieve
it.

• Function This field is linked just to the RCAandLogic block; when the
adder has to be used, in the last field of the µROM the function that it
has to accomplish has to be specified. The RCAandLogic block is capable
of performing sums, three types of subtractions (A-B, B-A, -A-B), and

39

3 – PLiM: how it works and its funcionalities

the most common logic functions such as AND, XOR, OR functions.
Once again, all the possible operations the adder is able to perform
are coded with meaningful names such as "SUM", "XORop", "SUB1",
"SUB2", "SUB3", they are sent to the function decoder that translates
them into the operative commands to let PLiM understand the kind of
operation the RCAandLogic block has to accomplish. When the row
interface involved in a µinstruction is different from the RCAandLogic
one, the function field has to be filled with the "nullFunc" literal string.

40

Chapter 4

How to implement an
algorithm on PLiM

When an algorithm has to be implemented, the µROM has to be filled in
the proper way and the Programmable-Logic-in-Memory (PLiM) structure
has to be suitable for the requirements of the algorithm. The µROM is the
heart that moves the structure and the algorithm must be precisely described
within it, µinstruction after µinstruction. It is significant to specify what are
the possibilities that the µROM offers, but at the same time also what it is
not intended to achieve, it is a crucial point to have a broad vision on all the
ways in which an algorithm could be implemented to choose the best one. A
generic µROM instruction with the attention focused on the field of major
interest can be the following one:

Multiplier & Bo_OthR & StoreBuff & "111111" & nullFunc

As it is noticeable these are the five fields discussed in subsection 3.2.2 and
represent the commands that has to be sent to PLiM to make it perform
the desired operation. The paths to follow in the algorithm implementation
phase, and as a consequence PLiM functionalities will be listed and explained
through these µROM fields. The first field is related to the specific opera-
tion that has to be performed at a specific algorithmic step, it can be filled
with each available operation depending on the instruction set determined
by the row interfaces added to the structure. The fourth field (address field)
and the fifth field (function field), have been discussed in subsection 3.2.2
The second filed related to the source operands and the third one related to
the final destination of data have to be analyzed more in detail since they

41

4 – How to implement an algorithm on PLiM

represent part of the novelties proposed by PLiM.

4.1 Source Operands
This is the field that establishes what is the operand or what are the two
operands to be sent as input to the row interface chosen in the opcode field.
There are a lot of possible patterns and therefore many different ways of
implementing an algorithm.
First of all, when in the operand field just one input data is declared, it is
understood that the other input is always the content of the smart row. The
following operand patterns belong to this category:

• ROW The input of the Row Interface is only the content of the smart
row.

• UpR The first input of the row interface is the content of the smart row
while the second one is the content of the UpRow.

• DwnR The first input of the row interface is the content of the smart
row while the second one is the content of the DownRow.

• BuffO The first input of the row interface is the content of the smart row
while the second one is the content stored, from a previous operation, in
the output buffer.

• BuffI The first input of the row interface is the content of the smart row
while the second one is the content stored, from a previous operation, in
the input buffer.

• Othr The first input of the row interface is the content of the smart row
while the second one is the content of the shared section location whose
address is retrieved from the address field of the µROM.

Then, considering the case in which two inputs are declared in the operand
field of the µROM, the possible combinations are:

• Bo_UpR The first input of the row interface is the content stored in
the output buffer, the second one is the content of the UpRow.

• Bi_UpR The first input of the row interface is the content stored in
the input buffer, the second one is the content of the UpRow.

42

4.2 – Result

• Bo_DwnR The first input of the row interface is the content stored in
the output buffer, the second one is the content of the DownRow.

• Bi_DwnR The first input of the row interface is the content stored in
the input buffer, the second one is the content of the DownRow.

• Bo_Othr The first input of the row interface is the content stored in
the output buffer, the second one is the content of the shared section
location whose address is retrieved from the address field of the µROM.

• Bi_Othr The first input of the row interface is the content stored in
the output buffer, the second one is the content of the shared section
location whose address is retrieved from the address field of the µROM.

When mentioning UpRow, DownRow, BuffO, BuffI, they are referred to the
same smart row, it is not possible to make operations between elements
belonging to different smart rows directly. Each smart row has its UpRow,
DownRow, Input/Outbuffer whose content can be sent as input to the row
interfaces linked to the smart row they are associated with. As it is noticeable
PLiM does not allow to perform directly, that is within a single µinstruction,
operations between:

• The UpRow and the DownRow

• The UpRow and a data coming from the shared section

• The DownRow and a data coming from the shared section

These mentioned interactions are anyway achievable in two instructions thanks
to Load and Store functions, explained in detail in section 4.2.

4.2 Result
This is the µROM field that specifies where the result of a Lim instruction
has to be stored. It could be filled with the literal string "StoreExt", which
is referred to the input buffer, or with the literal string "StoreBuff", which
is referred to the output buffer. Every time an operation involving row
interfaces is performed, the result has always to be stored in the output
buffer. In order to clarify this concept, when a computational block is used
during the execution of a µinstruction such as the "RCAandLogic" block
or the Multiplier block, the field of the µROM has to be filled with the

43

4 – How to implement an algorithm on PLiM

"StoreBuff" text. When a move operation has to be performed, that is a
store or a load function, the result filed has to be thought in a different
way. Load and store functions are very useful in this kind of architecture
for managing data organization and movement inside PLiM. One algorithm
likely needs to make an operation between two data to be retrieved from
precise locations of the smart section; without the move function this is not
achievable, for this reason, it is meaningful to understand how PLiM manages
these two functions.

4.2.1 Load Function

Figure 4.1. Data movement allowed by load instruction

Load function allows to perform operations cited in section 4.1 that are
not achievable directly within one µinstruction. In particular, this function
enables all the data movements marked in Figure 4.1, it is able to manage the

44

4.2 – Result

transfer of data from a location of the shared section, from the UpRow, or
from the DownRow to the input buffer. As a consequence, the result of a load
instruction has always to be stored in the input buffer, therefore the related
result field of the µROM must be filled with the "StoreExt" text. Summing
up, load instruction takes charge of data movement from the memory array
to the buffer.
For instance the two following instructions shows how it is possible to make
an operation involving the content of the UpRow and a shared data in two
instructions.

Load & Othr & StoreExt & "11111" & nullFunc
RCAandLogic & Bi_UpR & StoreBuff & nullAdd & nullFunc

The firts instruction retrieves the data stored at address 31 and moves it
towards the input buffer, then the second instruction perform a sum between
the content of the input buffer, which corresponds to the desired shared data,
and the content of the UpRow. The final result as explained is stored in the
output buffer.

4.2.2 Store Function
The Store function manages data movement in the opposite direction with
respect to the load function, that is from the buffer to the memory array as
shown in figure Figure 4.2. As it is noticeable, it allows to copy data from
the buffer to the UpRow, to the DownRow, or to the smart row itself. The
syntax to be used in the µROM for this kind of instruction is particular and
it represents the only exception to the rules listed in this work. For instance
two instructions accomplishing to store in the DownRow the result of a sum
are reported.

RCAandLogic & Othr & StoreBuff & "11111" & SUM
Store & DwnR & StoreExt & nullAdd & nullFunc

The first instruction performs the sum between the content of the smart
row and the data located at address 31 of the memory and stores the final
result in the output buffer, the second instruction copies this result from the
buffer to the Down row. As it is noticeable, the fields function seems to be
inverted in this specific case, in fact, the operand field, the second one in the
order, has to be filled with the location in which the data coming from the

45

4 – How to implement an algorithm on PLiM

Figure 4.2. Data movement allowed by store instruction

buffer has to be stored, the result field instead becomes now the source from
which data has to be retrieved. In order to perform the store instruction, the
result field has to be filled with the "StoreExt" literal string.

46

4.3 – Step to follow for the implementation of an algorithm

4.3 Step to follow for the implementation of
an algorithm

Figure 4.3. Single instruction multiple data protocol to perform
operations inside PLiM

Once all the PLiM functionalities and capabilities have been explained, all
the steps required for the implementation of an algorithm on it are listed.
One important concept has to be underlined; PLiM handles SIMD opera-
tions (Single-Instruction-Multiple-Data), that is that all the commands sent
by the µROM to the PLiM has to be applied to the whole memory unless
some blocks are deactivated subsection 3.1.1. Smart section division into
blocks is limited and tricky to manage, for this reason, blocks deactivation is
not suggested unless the number of smart rows is restricted or it is strictly
necessary. For instance the following µinstruction is considered:

47

4 – How to implement an algorithm on PLiM

RCAandLogic & OthR & StoreBuff & "11111" & nullFunc

It makes PLiM perform, at the same time, the sum between each smart row
content and the data stored at address 31 of the standard section as concep-
tually depicted in Figure 4.3, the final result is, as usual, stored in the output
buffer related to each smart row. Summing up PLiM is able to apply the
same operative commands described by one µinstruction to every smart row
composing the smart section array. If n smart rows have been instantiated in
the architecture, PLiM can achieve to carry out n identical operations; iden-
tical means same involved row interface, same source operands, same result
location, in case of RCAandLogic is involved, the same operation among the
possible ones this block is able to achieve. As a consequence, for instance, it
is not possible to make a sum within one smart row and one subtraction in
another one at the same time, it is not possible to use two different shared
data within one single µinstruction, it is not possible to realize a shift oper-
ation within one smart row and simultaneously a multiplication in another
one. This sometimes represents an advantage since it allows to parallelize
some steps of one algorithm, sometimes it may force PLiM to realize un-
wanted computations or data movement, for this reason, data organization
is fundamental in this architecture.
There could be a lot of different ways to implement one specific algorithm
on PLiM, some common steps of evaluation in order to choose the optimum
are presented:

1. Analyze the algorithm that has to be implemented in PLiM and all the
operations required to execute it.

2. Considering an architecture with only the "RCAandLogic" row interface
and the input/output buffer instantiated by default for design choices,
give PLiM the capability of performing such operations by inserting the
row interfaces to accomplish the desired functions. Row interfaces have
to be described in their functionality and with the same default interface
as discussed in subsection 3.1.4.

3. Examine the algorithm in order to understand which steps can be par-
allelized and which cannot.

4. Schedule operations on the basis of the considerations made in the pre-
vious point relying on all the features of PLiM. All the possibilities de-
scribed in section 4.1, subsection 4.2.1, subsection 4.2.2, have to be taken

48

4.3 – Step to follow for the implementation of an algorithm

into account to exploit the entire solution space provided by PLiM.

5. Modify the PLiM structure in order to make it suitable for executing the
algorithm. The PLiM architecture is described with a full parametric
code, as a consequence, its conformation can be easily modified to adapt
it to every demand. Different algorithms may require a different number
of smart rows to be implemented, the smart section size and the shared
section depth can be easily changed depending on the requirements.

6. Fill properly through the data maker both the smart section and the
standard section.

7. Write the µROM instructions in order to give PLiM commands to exe-
cute each required algorithmic step.

8. If necessary modify the µROM size if a specific algorithm needs more
memory space to write the µcode to execute it.

9. Simulate the algorithm to check if it has been implemented in the correct
way checking the final result.

49

50

Chapter 5

Algorithms
implementation and
testing

In this chapter, the implementation of different algorithms on Programmable-
Logic-in-Memory (PLiM) is presented in order to evaluate how they fit the
architecture, how the structure has to be shaped in order to execute them.
In the end, the system is evaluated in terms of performance through some
meaningful parameters to check if some benefits may come from this new
approach.

5.1 Advanced Encryption Standard 128 algo-
rithm introduction

The first algorithm to consider is the Advanced-Encryption-Standard 128
(AES128), it is the standard set by the U.S. National Institute of Standards
and Technology in 2001 for the encryption of electronic data. Before ana-
lyzing in detail the algorithm, the steps of an encrypted communication are
presented in order to clarify the context and the reason why the AES128 has
been taken into account in this thesis work. As depicted in Figure 5.1, an en-
crypted communication starts with the exigency of sending a message called
plain text. In order to be sure that the message can only be understood by
the intended recipient, the sender modifies it using a key, the cipher text is
sent to the other user who is able to decode it since he knows the key and

51

5 – Algorithms implementation and testing

Figure 5.1. Encryption-Decryption procedure

the rules of encryption applied by the sender. In particular, when the key
used in the encryption phase is the same involved in the decryption phase,
the communication is fulfilled with a so called symmetric key. Symmetric
encryption is faster and more efficient than asymmetric one, therefore it is
typically used for encrypting large amounts of data, e.g. for databases. The
AES is a symmetric encryption algorithm where the word to encrypt, that
is the plain text is 128 bit long, while the key can vary depending on the
degree of security required, it may be 128, 192, or 256 bit long. In this work
the AES128, where 128 is referred to the key length, is considered. The AES
is based on a substitution and permutation network that accomplishes the
Shannon’s cryptographic principle of "confusion and diffusion" to provide the
algorithm the desired security. In most of the cases and also for the AES, the
substitution boxes (S-Box) and the permutation boxes (P-Box) are made of
simple operations. As a consequence, the AES algorithm is fast whether if it

52

5.2 – AES128 operations involved

is developed in software or in hardware. It is relatively simple to implement,
requires little memory and offers a good level of protection, reasons why its
implementation has been preferred to other encryption algorithms.

5.2 AES128 operations involved
The AES algorithm is composed of a number of iterations called rounds in-
volving the same operations; since AES128 is being analyzed, the number of
rounds is fixed to ten. The algorithm can be summed up by the following
pseudocode:

Addroundkey0

for(j = 1; j = 9; j + +){
SubBytes()
ShiftRows()
MixColumns()
AddRoundkey(j)}

SubBytes()
ShiftRows()
AddRoundkey10

As it is noticeable the round zero is composed of only the "Addroundkey"
operation while the last round does not require the "MixColumns" operation.
Before explaining all the operations involved the role of the key in this algo-
rithm has to be clarified. The 128-bit long key is used to generate the eleven
sub-keys required in the eleven Addroundkey operations; the sub-keys are
only functions of the original key and they are processed through the "Rijn-
dael key schedule" whose composition will not be analyzed in this work since
it is not meaningful for the final implementation and results. However the
whole AES128 algorithm with the sub-key generation has been implemented
in Matlab environment to check if the encryption has been carried out in the
correct way. In order to make everything clear, the 128-bit plain text can
be seen as a sequence of 16 ASCII characters, each represented on 8 bits,
which compose a short sentence or a word, translated in their corresponding
hexadecimal format as shown in Figure 5.2. The 128-bit word will be always
considered as a sequence of 16 hexadecimal characters. ASCII elements will

53

5 – Algorithms implementation and testing

Figure 5.2. The 128-bit word to encrypt as the composition of 16 ASCII
or hexadecimal characters

be handled in the hexadecimal format during the whole algorithm analysis
for the features of this representation format which is convenient for the al-
gorithm development.
Another important concept to be underlined is that the AES128 is made
of simple operations unique to this algorithm, for this reason, special pur-
pose row interfaces have to be instantiated in the architecture in order to
implement it.

5.2.1 AddRoundKey operation
After having separately generated the eleven sub-keys starting from the 128-
bit long key chosen, the AddroundKey operation simply consists of perform-
ing a sum between the subkey of the corresponding round and the cipher text
at that specific algorithmic step. Since the AES128 operation are thought in
the GF(28), which is a finite element field, the result of a sum corresponds
to the modulo 2 operation of its result. The sum in this field behaves in the
following way:

• 0 + 0 = 0mod2 = 0

• 1 + 0 = 1mod2 = 1

• 0 + 1 = 1mod2 = 1

• 1 + 1 = 2mod2 = 0

As is noticeable considering all the possible input patterns, working on the
single bit, the sum operation is completely equal to a bitwise XOR operation

54

5.2 – AES128 operations involved

Figure 5.3. AddRoundKey step as a simple xor operation in GF(28)

and it can be performed directly between the ciphertext and the correspond-
ing sub-key as clarified in Figure 5.3. If round zero is considered, the plain
text, which is the original word to encrypt, has to be summed with the sub-
key zero and this is achieved by a simple bitwise XOR operation between each
bit of the plaintext and the corresponding bit of the sub-key. If a round dif-
ferent from round zero is considered, the text that has to be put in XOR with
the corresponding sub-key is obviously the output of previous operations.

5.2.2 Row Interface required for the Addroundkey op-
eration

As discussed in subsection 3.1.4, the architecture is provided by default the
RCAandLogic row interface which is capable of performing sums, subtrac-
tions, and several bitwise logic functions, including the XOR one. For this
reason, no extra row interface is required to achieve the Addroundkey oper-
ation and it is also performed within a single clock cycle with the following
µinstruction:

RCAandLogic & OthR & StoreBuff & "11111" & XORop

55

5 – Algorithms implementation and testing

For convenience the eleven sub-keys have been stored in eleven different lo-
cations of the shared section, therefore considering round zero, the XOR
operation is performed between the plain text to encrypt, stored in the first
smart row, and the sub-key zero stored at address 31.

5.2.3 SubBytes operation

Figure 5.4. SubBytes step consisting of a LUT access with row
and column address

The SubBytes operation consists of substituting each hexadecimal char-
acter, composing the 128-bit long word, with another hexadecimal value
retrieved by a special Look-Up-Table proper of the AES algorithm. The
Look-Up-Table under exam and the way each data is substituted is illus-
trated in Figure 5.4. As previously discussed, each hexadecimal character is
composed of eight bits, the first four bits select the row address of the LUT
while the last four bits select the column address, in this way the LUT is

56

5.2 – AES128 operations involved

accessed in a univocal way for all the possible 256 input patterns. In Fig-
ure 5.4, the substitution of just one element is depicted but this operation
has to be performed sixteen times for all the elements that compose the 128-
bit long input word of the block. This is an example of a Substitution Box
previously discussed in section 5.1. In particular, considering the scheduling
of the algorithm, the input of the SubBytes operation of round n is always
the output of the AddroundKey operation of round n-1.

5.2.4 Row Interface required for the SubBytes opera-
tion

The AES is an algorithm that requires computations unique to this algorithm,
therefore special purpose blocks are mandatory to be instantiated. In the
SubBytes case, a block capable of performing simultaneously all the sixteen
substitutions is needed; this means that for each 128-bit word or sentence to
encrypt, sixteen Look Up Tables are required. It may be possible to schedule
the whole SubBytes process in sixteen consecutive steps by sharing a single
LUT, but this has not been achieved because of synthesis issues, and because
of PLiM intrinsic features. The management of single vector elements turn
out to be difficult considering that every row interface must have the same
parallelism of the memory; the hexadecimal characters that compose the
complete word can be considered elements of a vector.

5.2.5 ShiftRows operation
The ShiftRows operation is the simplest to implement among the ones re-
quired by the AES algorithm, it just consists of switching the position of
some of the elements composing the 128-bit word according to some fixed
rules. The process is shown in Figure 5.5. The input to the ShiftRows row
interface fills by column a 4x4 matrix, then the following rules are applied to
the resulting matrix:
1. The first is not shifted

2. The Second row is circularly shifted left by one position

3. The Third row is circularly shifted left by two positions

4. The Fourth row is circularly shifted left by three positions
After these operations are performed, the output is reconstructed in its for-
mat following the same rules with which it has been organized in a matrix.

57

5 – Algorithms implementation and testing

Figure 5.5. Elements switching demanded by the ShiftRows operation

5.2.6 Row Interface required for the ShiftRows oper-
ation

The row interface required to accomplish this operation is very light in terms
of extra hardware and it implements a very simple function. As it is notice-
able from Figure 5.5, each hexadecimal character is always substituted with
an element in a specific position, the substitution criterion is fixed, therefore
the implementation of the functionality of this block just consists in swapping
wires in the proper way.

5.2.7 MixColumns operation
MixColumns operation is the primary source of diffusion within the AES
algorithm and it is also the trickiest one to handle in PLiM environment. It
consists of performing a multiplication between a fixed S_Matrix, proper of
the algorithm, and the 4x4 matrix made up of the sixteen hexadecimal ele-
ments coming in input to this block organized by column. The order of this
matrix multiplication and the S_Matrix layout are shown in Figure 5.6. The

58

5.2 – AES128 operations involved

Figure 5.6. MixColumns operation performed between the corresponding
ciphertext matrix and a fixed S_Matrix

MixColums is an AxB operation where the A matrix is always the S_Matrix
of Figure 5.6, its elements are fixed and do not change along with the algo-
rithmic rounds. The S_Matrix demands to perform multiplication by one,
two, or three, this represents a huge advantage for how multiplications are
meant in the GF(28) finite element field. In particular, considering a general
hexadecimal element "FF":

• FF * 01 = FF

• FF * 02 = LeftShiftByOne(FF)

• FF * 03 = (FF * 02) XOR FF = LeftShiftByOne(FF) XOR FF

It is also necessary to take into account when multiplying by two or by three
that overflow may occur. When an overflow case is detected the final result
of these multiplications has to be corrected with an extra XOR operation
with the decimal number "27" or the corresponding hexadecimal value "1B".

5.2.8 Row Interface required for the MixColumns op-
eration

As discussed in subsection 5.2.7, the mixcolumns matrix multiplication can
be translated into left shift and xor operations due to the features of the
finite element field in which the AES algorithm works. Despite this, PLiM
architecture does not allow to handle the whole mixcolumns computation

59

5 – Algorithms implementation and testing

by splitting it into different algorithmic steps, relying on the already exist-
ing RCAandLogic row interface for XOR operation and on a Left Shift row
interface, which may be easily implemented, to manage the required shift
operations. This happens for two main reasons, the first one is linked to the
conditional overflow detection that can only be managed by a special purpose
block, the second one is linked to the fact that the AES cannot be paralleliz-
able at all in PLiM architecture since each hexadecimal character is subjected
to different operations. The final choice is to build a special purpose mix-
columns block that is able to compute, within one single µinstruction, four
elements of the resulting 4x4 matrix. In order to compute all the sixteen
elements, the mixcolumns process is subdivided into four steps all of them
involving the mixcolumns row interface. This special purpose block does not
integrate a multiplier within it but just XOR functions and shift operations.

5.3 AES128 scheduling and implementation
choices

As discussed in section 4.3, after having instantiated the required row inter-
faces, the structure must be adapted to the algorithm demands. The PLiM
layout that fits these exigences is portrayed in Figure 5.7. Since the AES
cannot be parallelized according to PLiM features, the choice is to perform
the entire encryption of a word in a single smart row. If one word has to be
encrypted, one smart row is required, if three words have to be encrypted,
three smart rows are needed to cipher all the 128-bit input words at the
same time. Hence the n-smart rows have to be filled with the n-words to
encrypt while all the UpRows and DownRows are left uninitialized and their
functionality is not exploited in the implementation of this algorithm. The
standard section has to be filled with the eleven sub-keys required for the
AddRoundKey operation and with the other four data necessary to schedule
into four steps the MixColumns operation. The parallelism of the memory
and of each row interface must be 128.
In order to make everything clear, in Figure 5.8 the scheduling of round

zero and round one is provided where the operation involved are all referred
to the same word, to the same smart row. A brief description of these five
steps is reported:

• AddRoundKeyRound0 Only the RCAandLogic block is active to per-
form the XOR operation between the sub-key0 retrieved from the stan-
dard section and the original word to encrypt stored in one smart row.

60

5.3 – AES128 scheduling and implementation choices

Figure 5.7. PLiM structure to fulfil the AES128 execution on it

As usual, the final result is stored in the output buffer.

• SubBytesRound1 The result of the previous operation is retrieved
from the output buffer and it is sent as input of the SubBytes row
interface, the only one active within this step, and the substitution of
all the sixteen hexadecimal characters is performed through the LUTs
at the same time. The final result is stored in the output buffer.

• ShiftRowsRound1 The result of the ShiftRows operation, stored in
the output buffer is sent as input to the ShiftRows row interface, where
the position of all the sixteen hexadecimal elements is switched at the
same time. The resulting string is saved into the output buffer.

• MixColumnsRound1 The operation is performed in four µinstructions
time, the first input of the MixColumns row interface is taken from the

61

5 – Algorithms implementation and testing

Figure 5.8. AES128 scheduling, in particular with the µinstructions involv-
ing the row interfaces to execute round zero and round one.

output buffer while the second one is a selection signal retrieved from
the standard section whose function is to schedule the matrix elements
computation.

• AddRoundKeyRound1 The first input of the RCAandLogic block is
the sub-key1, retrieved from the standard section, while, unlike round
zero, the second input is no longer coming from the smart row but from
the output buffer, since the result of MixColumns operation is needed.
The final result is stored in the output buffer and a new round is ready
to start

All the remaining rounds are managed as round one with the exception of
the last one where the MixColumns operation is not required.

62

5.4 – Approximate Message Mapping algorithm presentation

5.4 Approximate Message Mapping algorithm
presentation

The Approximate Message Mapping (AMP) algorithm belongs to the com-
pressed sensing world, a sort of evolution of the classic compression mecha-
nism. Image compression is useful since it allows to save data reducing the
storage space required by a certain file. Considering an image, it is com-
posed of millions of pixels, if the information of each pixel should be saved,
the image file would occupy so much memory space, therefore it has to be
compressed in order to be stored. In particular, in Figure 5.9, the compres-

Figure 5.9. Example of standard image compression

sion and the reconstruction of an image using a common method is provided.
The 2D Fast Fourier Transform (FFT) is applied to the original image in
order to obtain millions of Fourier coefficients; most of the coefficients com-
posing an image are very very small, therefore they can be truncated. Despite

63

5 – Algorithms implementation and testing

this truncation, it is possible to reconstruct the original image, it is just a
little bit blurred.
The key idea of compressed sensing, instead, is to start with a massively
downsampled version of the original image; a brief and simplified explana-
tion of this is reported since it has been found very interesting, and more
details about this are available in [29]. If one signal, data is expressed in an
appropriate chosen basis, only a few parameters are necessary to characterize
the active modes. Compressed sensing is based on the sparsity principle for
which a generic compressible signal x can be expressed as a sparse vector s
within a transformation basis Ψ, that is:
x = Ψs
A vector is considered sparse when most of its elements are zero.
The difference with respect to the classic compression method is that, instead
of directly measuring the signal x, of collecting all the Fourier coefficients, it
is possible to reconstruct a signal by taking fewer random measurements and
then solve for the sparse vector s. In other words, the compressed sensing
consists of collecting some few measurements y of the original signal x where
y = Cx and as a consequence
y = CΨs where C is called measurement matrix
and then from these measurements infer how the sparse vector should look to
be consistent with these measurements; in the end from the inferred sparse
vector s, the full signal x can be reconstructed. The reconstruction is usually
performed through convex algorithms and in this subject the AMP is intro-
duced. These convex algorithms may be very expensive in large-scale data
applications and for this reason, fast iterative thresholding algorithms have
been analyzed as alternatives to convex procedures. The AMP algorithm
belongs to this category and it may lead to important improvements since it
is fast and the operations involved are not so complex. A simplified version
of the AMP algorithm is described by the following formulas:

AMP =
x

t+1 = η(A∗zt + xt)
zt = y − Axt

(5.1)

Where:

• y is the Nx1 matrix containing the acquired measurements of the original
signal X according to y = Ax

• xt is the Mx1 estimation matrix of signal X at iteration t

• A is the measurement matrix of dimensions NxM, where N<M

64

5.5 – Operations and row interface required by the AMP algorithm

• A* is the transposed A matrix of dimensions MxN

• η is a scalar threshold function

In [30], besides the algorithm explanation, a possible implementation of the
AMP using memristive crossbar arrays to perform matrix-vector multiplica-
tions is presented.

5.5 Operations and row interface required by
the AMP algorithm

As shown in section 5.4, the operation involved in the AMP algorithm are
sums, subtractions, and multiplications, in particular, all of these computa-
tions are performed between matrices. Even if such operations are difficult
to handle within PLiM environment, because of data dependencies, it has
been achieved to implement the whole algorithm by using the already in-
stantiated RCAandLogic row interface and a multiplier, whose functionality
has been easily described. The multiplier row interface simply performs the
multiplication between the two incoming inputs.
In order to iterate the algorithm multiple times, some data have to be saved,
since more storage space than the one provided by the input/output buffer
is required, two temporary registers have also been introduced in the row
interface chain. The first register is used to store the A matrix elements
required at each iteration, the second one is used to store the xt elements

5.6 AMP algorithm implementation choices
In order to implement this algorithm on PLiM architecture, some assump-
tions have to be done; the two matrices multiplications Axt and A∗zt set
the PLiM structure that satisfies the algorithm demands. A matrix multi-
plication is composed of two phases, row-column multiplication and sum of
the partial results. Since all the multiplications can be parallelized, all the
partial results have to be computed at the same time therefore the structure
must have enough smart rows to achieve this kind of parallelization. In a real
application of the AMP algorithm, all the matrices involved have conspicu-
ous dimensions, in the provided PLiM application instead, some limitations
have to be applied to the amount of data. In particular the following starting
conditions have been chosen:

65

5 – Algorithms implementation and testing

• y is a 2x1 matrix

• xt is a 4x1 matrix

• A is a 2x4 measurement matrix

• A* is 4x2 matrix

• η is just a constant

The subtractions and the sums are simply performed relying on the RCAand-
Logic functionality while the procedure to handle the matrix multiplications
is explained in detail since it makes the most of PLiM functionalities exploit-
ing UpRow, Smart row, DownRow exchange of information. For the chosen
measurement matrix, eight smart rows are required to obtain all the partial
results to be summed at the same time, the following four images clarifies the
entire process. Considering the first iteration where x0 is required, in Fig-

Figure 5.10. Example of a matrix multiplication demanded by the
AMP algorithm

ure 5.10, the matrix multiplication to be performed is shown, in particular,
both the first and the second row of the A matrix have to be multiplied by
the only column of x, as a consequence eight partial results are produced and
six sums, three for each element of the resulting matrix, have to be carried
out. In Figure 5.11, the way the smart section is filled to achieve the desired
operation is reported. The x matrix data are stored in the eight smart rows
in a redundant way since they are multiplied twice by the two rows of the A
matrix and thanks to the following µinstruction:

Multiplier & UpR & StoreBuff & Nulladd & nullFunc

66

5.6 – AMP algorithm implementation choices

all the smart rows contents, highlighted in red, are multiplied by their cor-

Figure 5.11. Parallel multiplication between the corresponding ele-
ments of the considered matrices

responding UpRow content and the eight partial results are stored in the
output buffers. Then after having stored all the partial results in the output
buffers, thanks to the store function subsection 4.2.2, these values are copied
in each smart row and DownRow as shown in Figure 5.12. It is important
to underline that after this operation, smart section data are lost since an
overwrite occurs, for this reason, it is mandatory to store the A matrix coef-
ficients and the xt elements that will be used for further computations within
the algorithm.
In Figure 5.12, the first sum between partial results is performed; the two
inputs to the row interface are once again the content of each smart row and
the content of their corresponding UpRow. The only useful partial sum is
obtained in the second and sixth smart row groups.

67

5 – Algorithms implementation and testing

Figure 5.12. Execution of the first sum between the two first partial products

Figure 5.14. Execution of the third sum between the partial sum obtained
in the previous step and the fourth partial product

68

5.6 – AMP algorithm implementation choices

Figure 5.13. Execution of the second sum between the partial sum obtained
in the previous step and the third partial product

The second and the third sums of the partial results are handled as re-
ported in Figure 5.13 and Figure 5.14; now the store function copies the
result of the previous µinstruction only in each DownRow, in this way with
two equal procedures the other two partial results are added to the sum of
the first two partial results. In the end, the elements of the resulting matrix
are located in the output buffer of smart row number four and smart row
number eight. As it is noticeable from this scheduling, when making sums,
just one of them is really required, the others are completely useless but in
any case, they are performed because of the Single-Instruction-Multiple-Data
(SIMD) feature of the architecture. On the one hand, in the case of the ini-
tial multiplication, the SIMD feature is fully exploited and it turns out to be
very useful, from the other hand in some cases it might even be destructive
since it leads to unwanted computations or worse to the overwrite of useful
stored data. For this reason, the trickiest aspect in the implementation of
the AMP algorithm is data movement and management in order to handle
all the data dependencies and to make the architecture suitable for iterating

69

5 – Algorithms implementation and testing

the algorithm as many times as required. In order to achieve this, most of
the µinstructions are store and load functions. The last parameter to con-
sider is the parallelism of the memory and as a consequence of all the row
interfaces, a 32-bit parallelism has been chosen since it is compliant with a
real application.

5.7 Results
In this section, the different PLiM structures built to implement the described
algorithms are evaluated in terms of performance and consumption. For each
algorithm the followed procedure steps are:

1. Modelsim simulation to check if with given inputs the structure provides
the correct outputs.

2. Synopsys Design Compiler synthesis to extract timing parameters and a
first consumption evaluation. Then the Back Annotation of simulation
signals is performed to perform a more accurate power analysis that
takes into account a more realistic activity of nodes through the whole
algorithm execution time.

3. Thanks to the netlist obtained with the Back Annotation, the structure
is synthesized with Innovus where the Place and Route procedure is
applied, this step consists of placing all the circuitry, logic in a limited
amount of space, and of establishing all the interconnections. With
the new netlist, obtained after Place and Route a more accurate power
estimation is performed.

5.7.1 AES results
Two different AES128 implementations are analyzed in this section; the first
one encrypts just one 128-bit word, the second one encrypts four 128-bit
words. From an architectural point of view, the first implementation re-
quires one single smart row while the second one needs four smart rows; this
last approach is clearly heavier in terms of extra hardware since all the row
interfaces presented in section 5.2 have to be instantiated for every smart row
composing the PLiM structure. As a first analysis, some information about
performance is provided in table Table 5.1

As it is noticeable, in terms of timing, the extra hardware, implemented di-
rectly inside the memory array to encrypt four words at the same time, forces

70

5.7 – Results

Algorithm nInstructions Max Frequency Execution Time
AES128_1_WORD 70 56 MHz 1245 ns
AES128_4_WORDs 70 49 MHz 1430 ns

Table 5.1. AES128 algorithm encrypting one and four words timing information

the structure to work at a slightly lower maximum operating frequency com-
pared to the case with a single smart row. However, the µcode written in
the µROM is exactly the same for both the implementations that require the
same number of µinstructions to complete the algorithm run.
In terms of consumption, the results after Innovus Place and Route are re-
ported in Table 5.2. These values are taken considering for each implementa-

Algorithm Power Consumption after P&R nSmart rows
AES128_1_WORD 6.9 mW 1
AES128_4_WORDs 16.64 mW 4

Table 5.2. AES128 algorithm encrypting one and four words power
dissipation information

tion its corresponding maximum operating frequency of Table 5.1. The power
consumption value encloses both the total dynamic power and leakage power
and as expected a growing number of smart rows leads to a corresponding
increase of the dissipated power.

5.7.2 AMP results
Also for the AMP analysis, two different implementations are considered; in
particular, the first one provides just one iteration of the algorithm, that is
until x1 is obtained, the second implementation is made of three iterations,
that is until x3 is processed. From an architectural point of view, the two
different implementations rely on the same structure, the same number of
smart rows, same kind of row interfaces, the only different aspect lies in the
µROM filling. However the µROM size is almost equal in the two cases since
each full iteration of the AMP algorithm is handled as a subroutine, so really
little extra µcode has to be written. In table Table 5.3 timing information
about the synthesized structure that fulfills the AMP implementation is re-
ported As expected, since the involved structure is exactly the same for the

71

5 – Algorithms implementation and testing

Algorithm nInstructions Max Frequency Execution Time
AMP_1_ITERATION 59 158 MHz 373 ns
AMP_3_ITERATIONS 174 158 MHz 1100 ns

Table 5.3. AMP algorithm iterating one and three times timing information

two algorithms, the maximum achievable frequency is also the same, the only
difference is obviously the number of instructions required and as a conse-
quence the execution time.
Considering the power consumption after the place and route procedure the
results are shown in Table 5.4. Also in this case the estimates are carried out

Algorithm Power Consumption after P&R nSmart rows
AMP_1_ITERATION 35.66 mW 8
AMP_3_ITERATIONS 55.44 mW 8

Table 5.4. AMP algorithm, iterating one and three times, power
dissipation information

considering the maximum operating frequency Table 5.3 achievable by the
structure. It is evident that the growing number of iterations leads to more
pins commutation and therefore to an increase of the total dynamic dissi-
pated power. Even if it is not so meaningful to make comparisons between
different algorithms implemented on PLiM architecture since the parameters
that most affect performance are completely different, some considerations
can be done. At first, the maximum achievable frequency, so the clock pe-
riod, is strongly affected by the row interfaces chain, in fact, the critical path
for the AMP implementation, where just registers, a multiplier, and an adder
are instantiated, is minor with respect to the AES128 case, where heavy, high
parallelism blocks have to be integrated.
Considering instead power values of Table 5.2 and Table 5.4, the AMP con-
sumption is major compared to the AES128 one, since a higher clock fre-
quency has been taken into account. However, the smart section impact is
appreciable, in fact, the minor complexity of AMP row interfaces instan-
tiated, anyway brings to a power consumption comparable to AES128 ap-
proach even if the AES128 works with higher parallelism and with more

72

5.7 – Results

complex blocks. This is linked to the AMP demand for a deeper smart sec-
tion that brings with it a major number of interconnections to be performed,
more row interfaces to be integrated, more pins switching at the same time
because of the SIMD feature of PLiM.

5.7.3 Results Comparison with the RISC-V architec-
ture

The main purpose of this work of thesis is to understand if PLiM architec-
ture may bring some advantages compared to a standard memory-processor
working system. In particular, the attention will be focused on the compari-
son of the same algorithm running on PLiM and on the RISC-V architecture.
RISC-V performance values have been extracted and a comparison, in terms
of execution time, is shown in Table 5.5 As it is noticeable, in almost ev-

Algorithm Exe Time PLiM Exe Time RISC-V
AES128_1_WORD 1.245 µs 706.08 µs
AES128_4_WORDs 1.430 µs 1940 µs
AMP_1_ITERATION 0.373 µs 0.054 µs
AMP_3_ITERATIONS 1.100 µs 2564 µs

Table 5.5. Comparison between execution time values regarding algorithm
implementations on PLiM and on the RISC-V processor

ery case, the algorithm runs much faster on the PLiM with respect to the
RISC-V architecture. Considering the AMP implementation iterating just
one time, the separate memory processor approach still wins, but if the algo-
rithm is iterated three or more times all the PLiM advantages come out and
the profit in terms of execution time becomes evident. Graphical feedback
of these results is provided in Figure 5.15.
Then the consumption parameters are taken into account in order to check
if the execution benefits achieved are balanced or lead to disadvantages in
terms of consumption. Rather than making a comparison in terms of dissi-
pated power, it is more meaningful if it is made in terms of energy; power is
the amount of energy transferred per unit time, that is:

Power[W] = Energy[J]
T ime[s]

73

5 – Algorithms implementation and testing

Figure 5.15. Graphical comparison between the execution time of the in-
volved algorithm running on PLiM and on the RISC-V architecture

By multiplying the obtained execution time and power consumption val-
ues for PLiM, the architecture energy amount required for the execution of
all the involved applications is calculated and displayed in Table 5.6 where
the RISC-V energy estimates are reported too.

Algorithm Energy PLiM Energy RISC-V
AES128_1_WORD 8.59 nJ 1690 nJ
AES128_4_WORDs 23.79 nJ 8118 nJ
AMP_1_ITERATION 13.3 nJ 95.44 nJ
AMP_3_ITERATIONS 60.9 nJ 4780 nJ

Table 5.6. Comparison between the energy required to implement the con-
sidered algorithms on PLiM and on the RISC-V architecture

Also considering the architecture consumption, great benefits are accom-
plished, in most cases, the energy consumption of the PLiM is several orders
of magnitude lower than the RISC-V processor. This can be appreciated in

74

5.7 – Results

Figure 5.16. Graphical overview of the energy consumption of the considered
algorithms on PLiM architecture and on the RISC-V processor

the graphic in Figure 5.16

5.7.4 RISC-V Vs PLiM Vs AES accelerators
In order to check how a PLiM application may behave in the real world, an
extra comparison is made between the PLiM structure encrypting four 128-
bit words at the same time and some encryption accelerators found among the
related works, specifically proposed for the AES algorithm. Since the AES128
algorithm developed in Electronic-Codebook (ECB) mode has been tested,
the comparison is done considering this specific context. Some meaningful
parameters have been extracted to make a comparison with the RISC-V
processor, in this section some extra meaningful values are needed and in
particular:

• Throughput It is the data amount that is processed or transmitted
in the unit of time, it can be calculated considering the amount of the
output data of the system and the interval of time with which they are
provided. Considering the AES128 implementation on PLiM encrypting
four words the throughput expressed in Megabit per second(Mbs) is 358
Mbs

75

5 – Algorithms implementation and testing

• Cycles per Byte It is commonly used as a partial indicator of per-
formance in the cryptographic world and it indicates how many clock
cycles are needed by the processor to computed a byte within the in-
volved algorithm. For the AES128 PLiM application that encrypts four
words, the cycles per byte value is 1.07.

• Energy Efficiency It correlates the dissipated power with the achieved
throughput, it gives information about the rate at which the processor
can provide data in output per Watt. For the AES128 PLiM application
encrypting four words, the energy efficiency is 21.5 Gbs/W

In table Table 5.7 the PLiM AES128 application is compared to some archi-
tectures found among the related works. Considering the AES128 implemen-
tation on PLiM encrypting four words, the energy efficiency is 21.5 Gbs/W.

Design Tech Frequency Voltage Throughput Power
PLiM 45 nm 48 MHz 1.1 V 358 Mb/s 16.64 mW

Erbaagci [31] 65 nm 2.2 GHz 1.0 V 275 Gb/s 524 mW
Aesthetic arch [32] 0.25 µm 66 MHz 1.0 V 844 Mb/s 260 mW
Verbauwhede [33] 0.18 µm 125 MHz 1.8 V 1.6 Gb/s 56 mW

Shan [34] 28 nm 875 MHz 0.9 V 991 Mb/s 3.8 mW
Mathew [35] 28 nm 2.1 GHz 1.1 V 53 Gb/s 125 mW
Mangard [36] 0.6 µm 64 MHz NA 241 Mb/s NA

Chih-Pin Su [37] 0.35 µm 200 MHz NA 2.28 Gb/s NA
Intel Westmere [38] 32 nm 2.67 GHz NA 16 Gb/s NA

Table 5.7. Evaluation of some meaningful parameters for AES128 algorithm
running on PLiM and on different AES accelerators

It is noticeable that the results for the examined application on PLiM are
comparable in terms of throughput with the oldest works, the ones which
exploit a wider CMOS technology. If modern applications are considered,
in particular, specific chips with the goal of speeding up the AES execu-
tion, PLiM implementation is not able to reach their throughput level. In
Figure 5.17 the difference in terms of throughput is appreciable, PLiM per-
formance are two or three orders of magnitude minor compared to the most
modern applications. If a comparison considering the throughput as a figure
of merit between the RISC-V processor and PLiM architecture is performed,
the obtained result for the RISC-V approach is three orders of magnitude

76

5.7 – Results

Figure 5.17. Graphical comparison between the PLiM achieved throughput
and the one achieved by different AES accelerators for the AES128 application

lower with respect to the PLiM approach. This is visually shown in the
graphic of Figure 5.18. Considering performance, on the one hand, PLiM
architecture implementing the AES algorithm leads to great benefits with
respect to a RISC-V processor, on the other hand, it cannot achieve the rate
of most modern, deeply pipelined accelerators.
If besides the throughput, also the dissipated power of the structures is taken
into account, a meaningful comparison can be made in terms of energy ef-
ficiency. The results, considering the information reported in Table 5.7, are
visually shown in Figure 5.19. It is noticeable how the energy efficiency,
which is the ratio between the throughput and the dissipated power, for the
AES specific application, does not follow the throughput trend. The result
obtained for the PLiM implementation is at most about one order of mag-
nitude minor compared to modern AES accelerators. Considering instead
the comparison between the PLiM energy efficiency and the RISC-V energy

77

5 – Algorithms implementation and testing

Figure 5.18. Graphical comparison between PLiM achieved throughput
and the one achieved by the RISC-V considering the AES128 algorithm
encrypting four 128-bit words

efficiency, the trend is the same found for the throughput, that is that also
in this case PLiM performs three orders of magnitude better, as shown in
Figure 5.20.

Analyzing the last figure of merit, the cycles per byte parameter, the result
obtained for the PLiM implementation is compared to the results obtained
for the considered AES accelerators. In particular, the smaller the value of
this parameter, the more efficient the encryption algorithm is. As it is shown
in Figure 5.21, even if PLiM is not a pipelined structure, it can accomplish a
good outcome in general and in particular not so far even from the modern
applications exploiting a similar technology.
These estimates are interesting because they give an idea of the potential
of the PLiM structure. It aims at overcoming the Von Neumann bottleneck
of the typical architecture with separate memory and processor and for the
considered applications, it accomplishes to do that. Besides this, it may
be seriously taken into account as a general purpose system with average
performance and good efficiency. Considering the AES128 approach, it can
be inferred that PLiM may adapt to different demands; in particular, if a
higher throughput is required, the structure can be enriched with more smart

78

5.7 – Results

Figure 5.19. Graphical comparison between the PLiM achieved en-
ergy efficiency and the one achieved by different AES accelerators for
the AES128 application

rows. The consequence of this is the reduction of the maximum operating
frequency, a growing need for power but in terms of efficiency, these elements
may be balanced by the higher throughput.

79

5 – Algorithms implementation and testing

Figure 5.20. Graphical comparison between PLiM achieved energy efficiency
and the one achieved by the RISC-V considering the AES128 algorithm
encrypting four 128-bit words

80

5.7 – Results

Figure 5.21. Graphical comparison between PLiM achieved cycles per
byte value and the one achieved by different AES accelerators, consider-
ing the AES128 application

81

82

Chapter 6

Conclusions and Future
Works

Programmable-Logic-in-Memory (PLiM) structure represents a novelty to
exploit the Logic-in-Memory principle, it allows the execution of an algo-
rithm by processing all the required operations directly inside the memory
space. While other possible solutions belonging to this environment focus
their attention on configuring and interconnecting cells together in order to
accomplish more complex functions, the real peculiarity of PLiM approach
is that its operating functionalities are provided by hardware blocks, the row
interfaces, instantiated in the smart section. In this way, such a structure ide-
ally is suitable for each application since every function can be implemented
through the row interfaces. Being a general-purpose solution is the primary
goal of PLiM and it accomplishes to be that. PLiM structure can also rely on
its feature of handling Single-Instruction-Multiple-Data (SIMD) computing
mode, that is that every µinstruction targets all the smart section elements.
This may be useful to parallelize some operations within the execution of one
single algorithm, as it happens for the Approximate-Message-Passing (AMP)
case, or to parallelize the execution of the same algorithm multiple times, as
it happens for the Advanced-Encryption-Standard (AES) case. In particular,
referring to the AMP implementation, and in general, to all the applications
whose operations may be broken in parallel steps, PLiM architecture presents
some limitations. The problem is that the smart section size directly depends
on the input data amount, considering the following examples:

• if a multiplication between a 3x3 matrix and a 3x2 matrix has to be per-
formed, 18 smart rows are needed to compute all the 18 partial products

83

6 – Conclusions and Future Works

at the same time.

• if a multiplication between a 4x4 matrix and a 4x2 matrix has to be per-
formed, 32 smart rows are needed to compute all the 32 partial products
at the same time.

• if a multiplication between a 5x5 matrix and a 5x2 matrix has to be per-
formed, 50 smart rows are needed to compute all the 50 partial products
at the same time.

It is clear that:

• Similar operations require very different structures and µcode.

• Even operations involving small vectors or matrices require a very heavy
smart section configuration.

Therefore in the case of parallelizing one or more operations within one single
algorithm, it is evident that PLiM architecture is not suitable for each pos-
sible application since the smart rows number grows with the parallelization
demand. If one PLiM architecture is enriched with n smart rows, n oper-
ations can be performed in parallel at maximum, algorithms that require
more operations to be carried out in parallel cannot run. As a consequence,
considering this aspect, the PLiM configuration can be extremely application
dependent, considering the AMP synthesized structure, it allows to run the
algorithm just for the input data chosen for that particular implementation.
One possible solution is to perform all the operations that must be par-
allelized not all at the same time but in different algorithmic steps. The
following example is considered:

Y = A[0]∗X[0]+A[1]∗X[1]+A[2]∗X[2]+A[3]∗X[3]+A[4]∗X[4]+A[5]∗X[5]

Imagining that the structure does not have six smart rows but just three, it
is possible to break this operation into two main steps:

1. The three available smart rows are filled respectively with X[0], X[1],
X[2] while the three UpRows are filled with A[0], A[1], A[2], the three
multiplications are performed in parallel and the two required sums are
calculated. The sum of the first three partial results will be stored in a
temporary register.

84

6 – Conclusions and Future Works

Figure 6.1. Example of collecting one data from the standard section to be
saved in a single precise location of the smart section

2. By relying on move functions (Load and Store) and by deactivating
blocks subsection 3.1.1, it is possible, as shown in Figure 6.1, to retrieve
the unused A and X coefficients, previously stored in the shared section,
and to store them, one data per clock cycle, in the appropriate way in
the available UpRows and smart rows as done in step number 1, then the
multiplications are performed and the sum A[3]*X[3]+A[4]*X[4]+A[5]*X[5]
is computed. In the end, this sum is added to the other partial sum re-
trieved from the temporary register.

It must be clear that without the block deactivation this is not achievable be-
cause of the SIMD feature of PLiM. The SIMD feature always represents an
advantage when an operation can be parallelized but it is harmful with data
movements and management within the smart section. In order to remain
inside the memory space, all the required operands that will be used in the
latter algorithmic steps have to be saved in the shared section and from there
retrieved when they are needed. The problem is that without the possibility
of activating just one smart row environment within one clock cycle, it is not
possible to store one precise data in one precise location leading to the im-
possibility of managing the demanded parallel computations with the desired
data. In particular, the examined PLiM structure permits to subdivide the
smart section into four blocks at maximum. As a consequence, if one PLiM
structure has eight smart rows, there could be 4 groups with 2 smart rows

85

6 – Conclusions and Future Works

each, 2 groups with 4 smart rows each, or just one group containing all the
smart rows. Anyway in the best case, each operation, every data movement
must be applied at least to two smart rows environments making the algo-
rithm implementation impossible or not effective. When an operation has to
be split into parallel computations within PLiM environment, data organi-
zation is fundamental, all the data that must be computed together with the
same row interface must be stored accurately in the corresponding locations
(UpRows, Smart rows, Down rows). Data organization in the middle of the
algorithm execution time is not achievable without the maximum granularity
in terms of Smart rows activation or deactivation. The tested architecture
can handle in parallel not more than four smart row environments in an ef-
fective way, that is four parallel computations at each clock cycle; if a higher
parallelization is required to speed up the algorithm or to handle more input
data, the subdivision of the smart section in n blocks where n is the number
of smart rows is mandatory to give the architecture the maximum flexibility
it wants to achieve. This feature has an impact on the µinstruction length
where an activation/deactivation bit has to be associated with each smart
row. In order to clarify the concept, the current PLiM implementation is
able to perform more than four operations within one single µinstruction,
but not in an effective way since mandatory data movements are applied to
more than the single smart row group and this in almost all the cases is
destructive. The approach used for the AES implementation instead is com-
pletely different, here there is no communication among different smart row
environments, the whole algorithm is computed in one single smart row and
all the involved operations can be applied to all the other smart rows com-
posing the smart section in order to encrypt as many words as many smart
rows are available. Since parallelization cannot be achieved, the AES does
not have particular structural demands besides the required row interfaces;
simply the PLiM is able to encrypt in parallel n-words where n is the number
of available smart rows. Anyway, considering both the two different tested
approaches, it has been shown that PLiM performs better than the RISC-V
processor in terms of performance and consumption, therefore the examined
logic-in-memory approach may lead, for some applications, to some advan-
tages with respect to a common approach based on separate processor and
memory structures. Considering the modern architectures found in the re-
lated works, exploiting a technology similar to the one with which PLiM has
been synthesized, it is clear that the tested structure cannot challenge them,
this happens for different reasons. First of all, PLiM is not built with the
specific intent of speeding up one particular application but it is thought to

86

6 – Conclusions and Future Works

be a general purpose structure. Actually, the configuration chosen to imple-
ment the AES algorithm is application-specific but it has been implemented
following the PLiM rules that are thought for a general purpose architecture.
Then the considered accelerators are deeply pipelined, as a consequence, the
rate at which they can provide data in output is greater than the one PLiM
can achieve since it is not pipelined, therefore a new word encryption within
a smart row can begin only once the previous one has finished. It must be
also taken into account that the maximum operating frequency is set by the
chain of row interfaces; despite just one row interface is involved in each
µinstruction, the critical path is always the one that runs through the entire
chain of RIs. This considerably limits the maximum operating frequency of
the implemented structure, the problem is that the whole chain of RIs is
not broken by registers and it sets the critical path of the system even if
it is never taken. However, in general, it has been found that the Logic-in-
Memory (LiM) principle exploited following PLiM rules can lead to notable
advantages compared to a RISC-V architecture and that it may be consid-
ered as a valid general-purpose solution that can rely on good performance
and efficiency statistics.

87

88

Bibliography

[1] E. Azarkhish, C. Pfister, D. Rossi, I. Loi and L. Benini, "Logic-Base Inter-
connect Design for Near Memory Computing in the Smart Memory Cube,"
in IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 25, no. 1, pp. 210-223, Jan. 2017, doi: 10.1109/TVLSI.2016.2570283.

[2] J. -S. Kim et al., "A 1.2 V 12.8 GB/s 2 Gb Mobile Wide-I/O DRAM
With 4 × 128 I/Os Using TSV Based Stacking," in IEEE Journal
of Solid-State Circuits, vol. 47, no. 1, pp. 107-116, Jan. 2012, doi:
10.1109/JSSC.2011.2164731.

[3] D. U. Lee et al., "25.2 A 1.2V 8Gb 8-channel 128GB/s high-bandwidth
memory (HBM) stacked DRAM with effective microbump I/O test meth-
ods using 29nm process and TSV," 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 432-
433, doi: 10.1109/ISSCC.2014.6757501.

[4] Bong Hwa Jeong et al., "A 1.35V 4.3GB/s 1Gb LPDDR2 DRAM with
controllable repeater and on-the-fly power-cut scheme for low-power and
high-speed mobile application," 2009 IEEE International Solid-State Cir-
cuits Conference - Digest of Technical Papers, 2009, pp. 132-133, doi:
10.1109/ISSCC.2009.4977343.

[5] R. Nair, "Evolution of Memory Architecture," in Proceedings of
the IEEE, vol. 103, no. 8, pp. 1331-1345, Aug. 2015, doi:
10.1109/JPROC.2015.2435018.

[6] G. Singh et al., "A Review of Near-Memory Computing Architec-
tures: Opportunities and Challenges," 2018 21st Euromicro Con-
ference on Digital System Design (DSD), 2018, pp. 608-617, doi:
10.1109/DSD.2018.00106.

[7] Santoro, G., Exploring new computing paradigms for data-intensive ap-
plications, 2019.

[8] Casale U.,Programmable LiM: a modular and recon
gurable approach to the Logic in Memory, 2020

89

Bibliography

[9] F. Alibart, T. Sherwood and D. B. Strukov, "Hybrid CMOS/nanodevice
circuits for high throughput pattern matching applications," 2011
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2011,
pp. 279-286, doi: 10.1109/AHS.2011.5963948.

[10] R. Kaplan, L. Yavits, R. Ginosar and U. Weiser, "A Resistive
CAM Processing-in-Storage Architecture for DNA Sequence Align-
ment," in IEEE Micro, vol. 37, no. 4, pp. 20-28, 2017, doi:
10.1109/MM.2017.3211121.

[11] M. Imani and T. Rosing, "CAP: Configurable resistive associative
processor for near-data computing," 2017 18th International Sympo-
sium on Quality Electronic Design (ISQED), 2017, pp. 346-352, doi:
10.1109/ISQED.2017.7918340.

[12] A. Rahimi, A. Ghofrani, M. A. Lastras-Montano, K. Cheng, L. Benini
and R. K. Gupta, "Energy-efficient GPGPU architectures via collabora-
tive compilation and memristive memory-based computing," 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), 2014, pp. 1-
6, doi: 10.1109/DAC.2014.6881522.

[13] Y. Chen, L. Lu, B. Kim and T. T. -H. Kim, "Reconfigurable
2T2R ReRAM Architecture for Versatile Data Storage and Comput-
ing In-Memory," in IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 28, no. 12, pp. 2636-2649, Dec. 2020, doi:
10.1109/TVLSI.2020.3028848.

[14] M. Imani, Y. Kim and T. Rosing, "MPIM: Multi-purpose in-memory pro-
cessing using configurable resistive memory," 2017 22nd Asia and South
Pacific Design Automation Conference (ASP-DAC), 2017, pp. 757-763,
doi: 10.1109/ASPDAC.2017.7858415.

[15] C. Eckert et al., "Neural Cache: Bit-Serial In-Cache Acceleration of
Deep Neural Networks," 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), 2018, pp. 383-396, doi:
10.1109/ISCA.2018.00040.

[16] V. Seshadri et al., "Ambit: In-Memory Accelerator for Bulk Bitwise
Operations Using Commodity DRAM Technology," 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2017, pp. 273-287.

[17] W. Simon, J. Galicia, A. Levisse, M. Zapater and D. Atienza, "A Fast,
Reliable and Wide-Voltage-Range In-Memory Computing Architecture,"
2019 56th ACM/IEEE Design Automation Conference (DAC), 2019, pp.
1-6.

90

Bibliography

[18] M. Imani, S. Gupta and T. Rosing, "Ultra-efficient processing in-
memory for data intensive applications," 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), 2017, pp. 1-6, doi:
10.1145/3061639.3062337.

[19] D. Bhattacharjee, R. Devadoss and A. Chattopadhyay, "ReVAMP:
ReRAM based VLIW architecture for in-memory computing," Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017,
2017, pp. 782-787, doi: 10.23919/DATE.2017.7927095.

[20] P. Chi et al., "PRIME: A Novel Processing-in-Memory Architecture for
Neural Network Computation in ReRAM-Based Main Memory," 2016
ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA), 2016, pp. 27-39, doi: 10.1109/ISCA.2016.13.

[21] M. Soeken, P. Gaillardon, S. Shirinzadeh, R. Drechsler and G. De
Micheli, "A PLiM Computer for the Internet of Things," in Computer,
vol. 50, no. 6, pp. 35-40, 2017, doi: 10.1109/MC.2017.173.

[22] W. Qian, P. Chen, R. Karam, L. Gao, S. Bhunia and S. Yu, "Energy-
Efficient Adaptive Computing With Multifunctional Memory," in IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 2,
pp. 191-195, Feb. 2017, doi: 10.1109/TCSII.2016.2554958.

[23] G. Papandroulidakis, I. Vourkas, A. Abusleme, G. C. Sirakoulis and A.
Rubio, "Crossbar-Based Memristive Logic-in-Memory Architecture," in
IEEE Transactions on Nanotechnology, vol. 16, no. 3, pp. 491-501, May
2017, doi: 10.1109/TNANO.2017.2691713.

[24] S. Angizi, Z. He and D. Fan, "PIMA-Logic: A Novel Processing-in-
Memory Architecture for Highly Flexible and Energy-Efficient Logic
Computation," 2018 55th ACM/ESDA/IEEE Design Automation Con-
ference (DAC), 2018, pp. 1-6, doi: 10.1109/DAC.2018.8465706.

[25] K. Yang, R. Karam and S. Bhunia, "Interleaved logic-in-memory archi-
tecture for energy-efficient fine-grained data processing," 2017 IEEE 60th
International Midwest Symposium on Circuits and Systems (MWSCAS),
2017, pp. 409-412, doi: 10.1109/MWSCAS.2017.8052947.

[26] Pala, Didem and Causapruno, Giovanni and Vacca, Marco and Riente,
Fabrizio and Turvani, Giovanna and Graziano, Mariagrazia and Zam-
boni, Maurizio, "Logic-in-Memory architecture made real," Circuits and
Systems (ISCAS), 2015 IEEE International Symposium on security and
privacy, 2015, pp. 1542-1545, doi: 10.1109/ISCAS.2015.7168940.

[27] V. K. Joshi, P. Barla, S. Bhat and B. K. Kaushik, "From MTJ Device
to Hybrid CMOS/MTJ Circuits: A Review," in IEEE Access, vol. 8, pp.
194105-194146, 2020, doi: 10.1109/ACCESS.2020.3033023.

91

Bibliography

[28] J. S. Friedman and A. V. Sahakian, "Complementary Magnetic Tunnel
Junction Logic," in IEEE Transactions on Electron Devices, vol. 61, no.
4, pp. 1207-1210, April 2014, doi: 10.1109/TED.2014.2306395.

[29] Steven L. Brunton and J. Nathan Kutz, "Data Driven Science & En-
gineering, Machine Learning, Dynamical Systems, and Control", Seattle,
WA, March 2018.

[30] Manuel Le Gallo , Abu Sebastian, Giovanni Cherubini, Heiner Giefers,
Evangelos Eleftheriou, "Compressed Sensing With Approximate Mes-
sage Passing Using In-Memory Computing", IEEE TRANSACTIONS ON
ELECTRON DEVICES, VOL. 65, NO. 10, OCTOBER 2018.

[31] B. Erbagci, N. E. C. Akkaya, C. Teegarden and K. Mai, "A 275 Gbps
AES encryption accelerator using ROM-based S-boxes in 65nm," 2015
IEEE Custom Integrated Circuits Conference (CICC), 2015, pp. 1-4, doi:
10.1109/CICC.2015.7338448.

[32] M. Wang, C. Su, C. Horng, C. Wu and C. Huang, "Single- and Multi-core
Configurable AES Architectures for Flexible Security," in IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 4, pp.
541-552, April 2010, doi: 10.1109/TVLSI.2009.2013231.

[33] I. Verbauwhede, P. Schaumont and H. Kuo, "Design and perfor-
mance testing of a 2.29-GB/s Rijndael processor," in IEEE Journal
of Solid-State Circuits, vol. 38, no. 3, pp. 569-572, March 2003, doi:
10.1109/JSSC.2002.808300.

[34] W. Shan, A. Fan, J. Xu, J. Yang and M. Seok, "A 923 Gbps/W, 113-
Cycle, 2-Sbox Energy-efficient AES Accelerator in 28nm CMOS," 2019
Symposium on VLSI Circuits, 2019, pp. C236-C237, doi: 10.23919/VL-
SIC.2019.8778189.

[35] S. K. Mathew et al., "53 Gbps Native GF(24)2 Composite-Field AES-
Encrypt/Decrypt Accelerator for Content-Protection in 45 nm High-
Performance Microprocessors," in IEEE Journal of Solid-State Circuits,
vol. 46, no. 4, pp. 767-776, April 2011, doi: 10.1109/JSSC.2011.2108131.

[36] S. Mangard, M. Aigner and S. Dominikus, "A highly regular and scalable
AES hardware architecture," in IEEE Transactions on Computers, vol. 52,
no. 4, pp. 483-491, April 2003, doi: 10.1109/TC.2003.1190589.

[37] Chih-Pin Su, Tsung-Fu Lin, Chih-Tsiun Huang and Cheng-Wen
Wu, "A high-throughput low-cost AES processor," in IEEE Com-
munications Magazine, vol. 41, no. 12, pp. 86-91, Dec. 2003, doi:
10.1109/MCOM.2003.1252803.

92

Bibliography

[38] S. Gueron, “White Paper: Advanced Encryption Standard (AES) In-
struction Set,” July 2008, Intel Mobility Group, Israel Development Cen-
ter.

93

	List of Tables
	List of Figures
	State of the art
	Introduction to the Von Neumann Architecture and its bottleneck
	Improvements adopted in the past
	Memory Hierarchy
	Prefetching
	Branch Prediction
	Loop nest optimization

	Most recent developments
	Computing-Near-Memory
	Computing-In-Memory
	Computing-With-Memory
	Logic-In-Memory

	CLiMA as the starting point for PLiM
	PLiM: how it works and its funcionalities
	PLiM structure
	Smart Section
	Standard Section
	Memory Interface
	Row Interfaces

	Control Section
	ROM fields that manage the succession of instructions
	ROM fields containing commands for the operating unit

	How to implement an algorithm on PLiM
	Source Operands
	Result
	Load Function
	Store Function

	Step to follow for the implementation of an algorithm

	Algorithms implementation and testing
	Advanced Encryption Standard 128 algorithm introduction
	AES128 operations involved
	AddRoundKey operation
	Row Interface required for the Addroundkey operation
	SubBytes operation
	Row Interface required for the SubBytes operation
	ShiftRows operation
	Row Interface required for the ShiftRows operation
	MixColumns operation
	Row Interface required for the MixColumns operation

	AES128 scheduling and implementation choices
	Approximate Message Mapping algorithm presentation
	Operations and row interface required by the AMP algorithm
	AMP algorithm implementation choices
	Results
	AES results
	AMP results
	Results Comparison with the RISC-V architecture
	RISC-V Vs PLiM Vs AES accelerators

	Conclusions and Future Works
	Bibliography

