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Abstract

Due to the social distancing countermeasures recently enforced during the COVID19
pandemic, a lot of effort is being dedicated to provide online support for the daily
activities of musicians, composers, music teachers and students.

Several web-based applications are being developed with the aim of supporting
remote musical interactions in an easy, fast and intuitive way for musicians of all
levels. In such applications, the integration of recommendation and match-making
functionalities are of pivotal importance to allow users to find and get in touch
with other musicians and to collaborate with them for musical content creation
online. The aim of this thesis project is the development of a recommendation
system capable of providing suggestions on similarities between musicians based
on their musical production. The framework is based on using features extracted
from raw audio exploiting algorithm commonly known in the MIR context. After
a preprocessing phase which involves also t-SNE, a method for dimensionality
reduction, the artists are compared against each other through custom-made
distance metrics over the t-SNE space.
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Chapter 1

Introduction

1.1 Context and motivation
This work comes in response to the event that marked the last year: the COVID19
pandemic. The countermeasures adopted caused isolation and, in some cases, the
total inability to practice a job. This happened for musicians, composers, music
teachers and students. In such a scenario, the potential of the Networked Musical
Performance (NMP) becomes more and more crucial.
Assuming the existence of an online platform that allows musicians to meet each
other and play remotely, there would be the need to bring together musicians
with common interests. In other words, artists should be enabled to connect with
someone they would like to play with. This thesis focuses on finding similarities
between artists in order to address this problem.

1.2 Background
Recommendation systems (RSs) are well known in the literature to solve this kind of
tasks. After a dissertation about this topic’s state of the art, by analyzing the pros
and cons of different methodological approaces, we will focus on a recommendation
approach called content-based filtering. This method differs from the collaborative
one because it takes as input features extracted from the audio samples associated
to the artists to be compared, instead of the history of the listeners’ activities.
Later we will talk about the choice of Million Song Dataset as our input and the
criteria adopted to make this choice. We will consider the audio features related to
each song. These features are directly retrieved from the digital waveform through
particular signal processing algorithms. Those algorithms are developed under a
branch of a science called Music Information Retrieval (MIR).

1



Introduction

1.3 Proposed Framework
After understanding which features are most suitable for our task, we will proceed
by identifying what will be our target. The data set we rely on provides different
kinds metadata that are attached to each artist. Given an artist, a set of terms
is provided. A term is a string that semantically links that artist to belong to a
musical, temporal or social context. By starting from numerical features, we want
to compare artists to one another to estimate the level of similarity. After that,
we will intersect term lists to verify if a low level of similarity (e.g. a high level of
distance) corresponds to have few terms in common. Also, Each artist present in
the data set is characterized by a set of songs and has an ordered list of similar
artists associated. Thus we will define our second goal as to find our ranking of
similar artists based on the features extracted from their songs in such a way that
these two rankings are as similar as possible.
Before this, however, we will need to study our feature space in order to understand
how the preprocessing phase could be useful to increase readability and performance.
After usual preprocessing operations like normalization and outlier detection, we
will be addressing the dimensionality problem using a method called t-distributed
stochastic neighbor embedding (t-SNE) in order to work with a 2-dimensional
dataset. At this point, we will also be able to display the songs in a 2-dimensional
space. Firstly, for each artist, we will organize its songs into a fixed dimension
matrix where each cell represents a region of the t-SNE space. We will refer to this
matrix as a heatmap. Secondly we will proceed to compute, for each artist, our
ranking of similar artists by comparing their respective heatmaps. In this phase,
we will have to deal with comparing two ordered lists. After a review of algorithms
and metrics about the topic, we will compare the similarity between rankings using
a simple intersection metric and Rank-biased Overlap (RBO), a similarity measure
for indefinite rankings.

1.4 Results
After generating our rankings of similarity, we will evaluate our result in two ways:
one based on metadata attached to each artist, in particular on tag-lists; the other
based on rankings already provided by the dataset. The evaluation based on tag-
lists will be successful as it will show that, given an artist, the number of common
tags decreases as the position within the ranking increases. The comparison between
rankings will articulate in two approaches, one more strict than the other as it
consider also the order of rankings. The results will be less satisfactory but still
lead to a partially positive confirmation. We will show that the rankings we will
produce will always perform better than random ones.

2



Chapter 2

Literature Review

2.1 Music Information Retrieval
Music Information Retrieval (MIR) is a field of research that aims to fetch music
data in order to obtain useful information. It includes several domains such as
musicology, psychoacoustics, psychology, academic music study, signal processing,
information technology, machine learning, optical music recognition, computational
intelligence [1]. With the increase of computing perfomance, MIR has become
more effective and popular as a knowledge retrieval tool. Firstly the target was to
work with digital music (such as MIDI), then MIR focused on dealing directly with
audio signals. The development of effective music compression algorithms helped
to make this process feasible especially on a large scale.
The information related to music perception is classified as shown in figure 2.1.
Music content based approaches are strictly related to the audio signal while music
context features identifies those data associated with the music but not directly
derived by the audio signal. User context and user properties identify those features
associated with those users who enjoy the contents (the listeners) . The difference
is that the former has a dynamic behavior while the latter are constant or slowly
changing.

2.1.1 Applications
As described by Schedl et al. in [3], the typical usages of MIR approaches are
shown below:

Music retrieval

These applications accomplish the task of helping users to find music in a large
collection. Most of MIR tasks differs according to properties like specificity (a low

3
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Figure 2.1: Categorization of perceptual music descriptors proposed in [2] [3]

value means to get similar music tracks, a high value means to retrieve and identify
the audio track) and granularity (small to identify specific time portions of the file,
large to retrieve a whole music piece). We have some example below.
Audio identification or fingerprinting has high specificity and low granularity. These
kind of task aims to find the exact portion of a given music recording overcoming
issues such as recording noise. The approach shown in [4] is used by the popular
system Shazam1.
Audio ailgnment represents a more complex task than the previous one. The
objective is to identify and link time positions of two audio signals.
In Cover song identification scenario the specificity level is lower. Thus the

model is able to retrieve different versions of the same song. As described in [5],
to accomplish such a task it is useful to work with harmony or melody of audio
signals.
In Query by tapping and query by humming scenarios, the user provide to the
system a recording where they try to reproduce melodically or rithmically a song.

1https://www.shazam.com
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The objective is to retrieve that song. Services such as SoundHound2 made these
implementation commercially available.
All the approaches listed above belong to the same class in which a query is made
by an example. There are other approaches where the query is textual, they are
called Semantic/tag-based retrieval systems.

Music recommendation

Music recommendation systems create a model for each user in order to propose a
list of songs they may like. The main requirements for this kind of tasks, as stated
in [6] and [7], are:

• Accuracy: the proposed songs should match users’ interests.

• Transparency: the user should be aware about why a certain song is recom-
mended.

• Diversity: the recommended songs shouldn’t be too similar to each other.

• Serendipity: the recommender system should surprise the user with its recom-
mendations.

Music playlist generation

The goal of this kind of applications is to build an ordered homogeneous list of songs.
This process is also known as Automatic DJing and differs from a recommendation
system because it creates a playlist without knowing the users preferences or past
activity but only by arranging already known material. Consecutive songs in a
playlist must show a certain trade off between similarity/diversity (we could see the
one as the inverse of the other). The user may feel bored if the level of similarity is
too high. In order to build an effective playlist, [8] and [9] suggest other features
such as familiarity/popularity, hotness/trendiness, recentness and novelty.

2.1.2 Music Feature Extraction
We represent a recording using a time or frequency representation of its audio signal.
We refer to f as the number of cycles per second in Hertz (Hz) while T = 1

f
is the

time taken by each cycle. In time domain, an analog signal x(t) is sampled each Ts
seconds to obtain a discrete digital representation x[n], with n = i · Ts, i = 0,1,2, ....

2https://www.soundhound.com
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In order to avoid the aliasing effect, Nyquist-Shannon theorem states that the
minimum sampling frequency is equal to the double of the maximum frequency
present in the audio signal.

Figure 2.2: Time-Domain representation of two signals corresponding to a C4 [3]

The transition to the frequency domain is done via the Fourier Transform (FT).
Since we are dealing with discrete signals and we are interested in seeing changes
over time in terms of frequencies, we use Discrete version of FT on little segments
of the signal called frames (Short Time Fourier Transform - STFT). The discrete
signal x[n] is multiplied by a window function w[n] which has a bell-shape form
and is zero-valued outside.

Low-level descriptors and timbre

Low-level descriptors are essential to build high-level analyses. We refer to the color
of the sound as a mix of loudness and timbre. The timbre depends on three main
features of music signals: Temporal evolution of energy (see figure 2.2), spectral
envelope shape (relative strength of different frequency components, figure 2.3),
and time variation of the spectrum. Low-level descriptors depend on these features.

A common instantaneous (frame-based) temporal descriptor is the short-time
Zero Crossing Rate, that measures the number of times a signal crosses the zero
axis per second and is an indicator of high frequency content and noisiness. Another

6
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Figure 2.3: Frequency-Domain representation. Given a foundamental frequency
f0, an instrument produces also a set of harmonics. Each harmonic is a multiple of
f0, i · f0 where i = 1,2, ... [3]

instantaneous temporal descriptor is the energy, given by the root mean square
(RMS) value of x[n]; it is a measure of loudness. Other used global temporal
descriptors are the log attack time and temporal centroid. Log attack time is the
duration of the note onset while temporal centroid measures the location of the
signal energy and helps to separate sustained from non-sustained sounds.
One of the most common descriptors is Mel-Frequency Cepstrum Coefficients
(MFCCs). It turned to be an efficient and compact way to represent the spectrum
of a signal. The block diagram used to compute the MFCCs is shown in figure 2.5.
The spectrum is filtered with a set of triangular filters that follow a Mel-frequency
scale. The log of each output passes trough a Discrete Cosine Transform operator
in order to obtain a set of coefficients. There are other descriptors such as the
spectral moments (spectral centroid, skewness, spread and kurtosis).
Low-level descriptors are often used to define timbre. Higher-level analyses start

7
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Figure 2.4: Diagram for low-level feature extraction [3]

from these features to discriminate over instrument, genre or rhythm. Since they
have a compact but exhaustive form, they are used for audio fingerprinting.

Figure 2.5: Diagram for MFCCs computation [3]

Pitch content descriptors

In frequency domain, as said before, each sound is composed by its fundamental
frequency plus a set of harmonics whose frequency is a multiple of the fundamental
one f0. In a perceptual context the fundamental frequency is the pitch, which
is a subjective quality often described as highness or lowness. The pitch scale
is logarithmic, the intervals are measured in cents (1 semitone = 100 cents). In
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western music the most common tuning system is the equal temperament. This
systems divides the octave (interval between f0 and 2 · f0) into twelve equally
spaced 100 cents semitones. The set of pitches that are a multiple of an octave
distant are called chroma or pitch class. For instance, the pitch class C consists of
all the C’s in all octaves.
Thus, a pitch content descriptor gives information about melody, harmony, and
tonality. Retrieving pitch descriptors is not an easy task because all f0’s need to
be detected through time and spectrum among a whole set of non-fundamental
frequencies. In addition to that, The more polyphonic the audio fragment is, the
harder the task will be.
Common challenges in this field are:

• the computation of chroma features, all multiple f0 are jointly analyzed

• the extraction of the f0 envelope related to the most important "voice" inside
a complex polyphony (melody extraction).

• the estimation of all f0 in simple polyphonies.

Predominant melody extraction algorithms are an extension of melody extraction
on monophonic music fragments. The assumption is that there is a predominant
source in the spectrum. The objective is to detect it. There are two main approaches
in literature: the first one is salience-based: it estimates the salience of each possible
f0. The second one is based on source-separation: it tries to isolate the predominant
source and then it performs a monophonic melody extraction to retreive f0. A
block diagram of a salience-based algorithm by Salamon and Gòomez is shown in
figure 2.7 [10].
Multi-pitch estimation algorithms try to detect all the pitches within a fragment.
As for melody extraction, the approaches are the same: one is salience-based, the
other is based on source-separation.
Chroma feature extraction methods represent the intensity of each of the 12 pitch
classes of an equal-tempered chromatic scale. The process starts from the frequency
spectrum. Since these methods depend only on pitched sounds, they should be
robust to noise and timbre. Figure 2.6 shows the most common procedures to
realize this kind of task.

Rhythm

Rhythm in an audio fragment depends on periodicity and temporal organization of
musical events. Thus, rhythm descriptors are related to four different characteristics:
timing (when events occur), tempo (how often events occur), meter (what structure
best describes the event occurrences) and grouping (how events are structured in
motives or phrases). The methods used are based on low-level descriptors such as

9
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Figure 2.6: Block diagram with common procedures for computing a chromagram
[3]

Figure 2.7: Block diagram for melody extraction designed by Salamon and Gòmez
[10] [3]

the energy and spectral descriptors. For instance, in figure 2.8, one can notice the
clear relationship between relative peaks and the downbeats. Estimating the beat
becomes a challenge when the audio fragments don’t contain percussive material
(for instance an ensemble of strings or a choir).

10
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Figure 2.8: An Example of beat estimation [3]

2.1.3 Music similarity
Many machine learning tasks have to deal with quantifying similarity. In MIR
context, the term similarity may be refer to two concepts. Self-similarity analysis
corresponds to locate similar fragments of the same musical track. Global similarity
is the distance between two musical pieces. Defining an effective way to measure
such a distance is an open problem still today. Firstly, we need to select the
descriptors involved as input. Secondly, we have to set a proper abstraction level
in order to let some variations be accepted without increasing the false positive
rate too much. Finally, we need to test our predictions. This phase often requires
a human factor that introduces a subjective component not easy to model.
In general we could refer to a music track as a point in a n-dimensional space.
The similarity can be seen as the inverse of the distance between two points in
an hyperspace. Given two points P (P0, P1, ..., Pn) and Q(Q0, Q1, ..., Qn), we report
some measures of distance collected from [11]. Formula 2.1 correspond to City Block
L1 from Minkowsky family Lp, 2.2 is the Soergel distance and 2.3 is a measure of
non-intersection. The euclidean distance is reported in formula 2.4

dCB =
nØ
i=1

|Pi − Qi| (2.1)

dsg =
qn
i=1 |Pi − Qi|qn

i=1 max(Pi, Qi)
(2.2)

dsg = 1 − min(Pi, Qi) (2.3)

11
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deu =
öõõô nØ
i=1

(Pi − Qi) (2.4)
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Chapter 3

Background

3.1 t-SNE

T-distributed stochastic neighbor embedding (t-SNE) is a statistical solution for
dimensionality reduction. It was developed by van der Maaten and Hinton in [12]
in 2008 as a non-linear technique that visualizes high dimensional datapoints in
a two or three-dimensional space. It proved to be more effective than traditional
methods such as such as Principal Components Analysis (PCA; Hotelling, 1933)
and classical multidimensional scaling (MDS; Torgerson, 1952). It represents an
improvement over Stochastic Neighbor Embedding (SNE). Unlike PCA, that tries
to preserve the global shape of the data, tSNE takes into account the local structure
(presence of clusters).
Given a datapoint xi = [xi1, xi2, ..., xid] in a d-dimensional space, we refer to its
neighborhood N(xi) as the set of other datapoints xj = [xj1, xj2, ..., xjd] such that
xi and xj are geometrically close. The term embedding in our case is the topological
representation of a d-dimensional set of points in a different dimensional space
(generally lower) in such a way that the original structure is preserved.

3.1.1 SNE

Stochastic Neighbor Embedding (SNE) starts with defining the similarity between
two points not in terms of Euclidean distance but in terms of conditional probability.
The similarity of datapoint xj to datapoint xi is the conditional probability, pj|i ,
that xi would choose xj as its neighbor if neighbors were picked in proportion to
their probability density under a Gaussian centered at xi. Thus, the closer will be

13
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the points, the higher pj|i will be.

pi|j =
exp

3
−ëxi−xjë2

2σ2
i

4
q
k /=i exp

3
−ëxi−xkë2

2σ2
i

4 (3.1)

σi is the variance of the Gaussian centered on xi, while value for pi|i is set to
zero by definition. Let be yi and yj the low-dimensional counterparts for datapoints
xi and xj. We compute the similar conditional probability, this time we set the
variance of the Gaussian to 1√

2 .

qi|j = exp (−ëyi − yjë2)q
k /=i exp (−ëyi − ykë2) (3.2)

Even in this case qi|i = 0.
The goal of SNE is to find a low-dimensional representation that minimizes the
difference between pj|i and qj|i. An appropriate metric to estimate this difference
is the Kullback-Leibler divergence. SNE minimizes the sum of Kullback-Leibler
divergences over all datapoints using a gradient descent method. The cost function
C is given by

C =
Ø
i

KL(Pi||Qi) =
Ø
i

Ø
j

pj|i log pj|i
qj|i

, (3.3)

where Pi and Qi are the conditional probability over all datapoints xi and yi
respectively. The Kullback-Leibler divergence is not symmetric. This means that a
mismatch given by two points distant from each other in the original space but
closer in the new one will be barely penalized. A mismatch of two points from the
same neighborhood placed far from each other in the new space, in contrast, will be
heavily penalized. This behavior explains why SNE preserves locality of datapoints.
An important parameter to set is the value of σi of the Gaussian centered over each
datapoint xi in the original space. Usually, the optimal value for this parameter
depends on the density of the data. In dense regions, a smaller value of σi is usually
more appropriate than in sparser regions. As the value of σi increases, the entropy
of the probability distribution Pi increases too. SNE performs a binary search for
the optimal value of σi based on a perplexity that is a tunable input parameter.
The perplexity is given by

Perp(Pi) = 2H(Pi), (3.4)

where H(Pi) is the Shannon entropy of Pi, expressed in bits

H(Pi) = −
Ø
j

pj|i log2 pj|i. (3.5)
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Typical values for perplexity are between 5 and 50. It can be seen as a measure
of the effective number of neighbors. The minimization of the cost function 3.3 is
done through the gradient descent method

δC

δyi
= 2

Ø
j

(pj|i − qj|i + pi|j − qi|j)(yi − yj). (3.6)

Firstly, the gradient descent is initialized by sampling map points randomly from
an isotropic Gaussian with small variance that is centered around the origin. At
each time step, the gradient is updated following the formula

Y(t) = Y(t−1) + η
δC

δY
+ α(t)

1
Y(t−1) + Y(t−2)

2
. (3.7)

In 3.7, Y(t) represents the solution at iteration t while η is the learning rate
multiplied by the gradient of the cost function. In addition to that, a momentum
term α(t) is added to the gradient in order to speed the optimization up and avoid
poor local minima.

3.1.2 t-Distributed Stochastic Neighbor Embedding
t-Distributed Stochastic Neighbor Embedding or t-SNE comes to alleviate two issues
of SNE: the optimization difficulty and the so-called crowding problem. The cost
function of t-SNE differs from the one used in SNE because it is symmetric and it
uses a Student-t distribution rather than a Gaussian to compute similarity between
two points in the low-dimensional space. Student-t distribution has longer tails
with respect to a Gaussian distribution and this helps to keep clusters farther from
each other.

3.1.3 Symmetric SNE
A first change is to compute a single Kullback-Liebler divergence between joints
probabilities P and Q instead of computing a sum of multiple Kullback-Liebler
divergences between conditional probabilities pj|i and qj|i. The cost function
becomes

C =
Ø
i

KL(P ||Q) =
Ø
i

Ø
j

pij log pij
qij

, (3.8)

where pii and qii are set to zero. The cost function is symmetric because pij = pji
and qij = qji. The symmetry results in a simpler form of the gradient, which is
faster to compute. It is given by

δC

δyi
= 4

Ø
j

(pij − qij)(yi − yj). (3.9)
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3.1.4 The crowding problem
Sometimes it is not possible to preserve distances in all the neighborhoods. For in-
stance, suppose that we want to represent a 2-dimensional square in a 1-dimensional
space. Each vertex will have the two adjacent vertexes in its neighborhood and
the opposite one left out. There is no low dimensional representation that could
satisfy the constraints on all of the neighborhoods. Generally, this phenomenon
happens when dealing with mutually equidistant data points and it is known as
crowding problem. SNE reacts to this problem crushing together the points in the
center of the map, which prevents from forming gaps between the natural clusters.
According to Cook et al.(2007), adding a slight repulsion can address this problem.
Using a uniform backgorund model with a small mixing proportion, ρ, with n
representing the number of points, helps qij never fall below 2ρ

n(n1) . In this technique,
called UNI-SNE, qij will be larger than pij even for the far-apart datapoints.
SNE in general uses probability distributions to convert distances into probabilities.
In order to alleviate the crowding problem it could be effective to use a Gaussian
distribution for the high dimensional points and to use another distribution with
heavier tails in the low dimensional space. This allows a moderate distance in the
high-dimensional space to be faithfully modeled by a much larger distance in the
map and, as a result, it eliminates the unwanted attractive forces between map
points that represent moderately dissimilar datapoints [12]. t-SNE uses a Student
t-distribution with one degree of freedom. The joint probabilities qij are defined as

qij = (1 + ëyi − yjë2)−1q
k /=l (1 + ëyk − ylë2)−1 . (3.10)

Figure 3.1: Gradients of three types of SNE as a function of high dimensional
distance and the corresponding low dimensional distance [12]

At this point, the gradient of the Kullback-Leibler divergence between P and Q
(Student-t based) is given by

δC

δyi
= 4

Ø
j

(pij − qij)(yi − yj)
1
1 + ëyi − yjë2

2−1
. (3.11)
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3.2 Probability Distributions
3.2.1 Gaussian distribution
The Gaussian distribution (or normal) is by far the best known in literature.
We will use such a distribution later in this work, for instance in the normalization
phase. It is used to describe a real-variable random variable and its general form
is:

f(x) = 1
σ

√
2π

e− 1
2(x−µ

σ )2

(3.12)

where µ is the mean and σ is the standard deviation.

3.2.2 t-distribution
Student’s t-distribution is a generalized version of the normal distribution that
aims to deal with situation where the sample size is small and standard deviation
is unknown. The density function has the following form:

f(t) =
Γ(ν+1

2 )√
νπΓ(ν2 )

A
1 + t2

ν

B− ν+1
2

(3.13)

where ν is the number of degrees of freedom and Γ(n) = (n − 1)! is the gamma
funcion.

3.3 Rank Similarity Measures
A ranking is an ordered list of items. There are several ways in literature to estimate
the similarity of two rankings. The key concepts behind a comparison between
ranked lists are:

• The top of each ranking is more important than the bottom. This property is
called top-weightedness.

• Most of the time we need estimate the similarity of two rankings that don’t
contain the same elements. In these circumstances we define the two rankings
as non-conjoint.

3.3.1 Ranked Biased Overlap
Rank Biased Overlap (RBO) is a similarity measure for indefinite rankings.
This is an overlap-based metric [13].
Let S and T be two infinite rankings, and let Si be the element at rank i in list
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S. Denote the set of the elements from position c to position d in list S, that is
{Si : c ≤ i ≤ d}, as Sc:d. Let S:d be equivalent to S1:d, and Sc: be equivalent to
Sc:∞. At each depth d, the intersection of lists S and T to depth d is:

IS,T,d = S:d ∩ T:d (3.14)

The size of this intersection is the overlap of lists S and T to dept d,

XS,T,d = |IS,T,d| (3.15)

and the proportion of S and T that are overlapped at depth d is their agreement,

AS,T,d = XS,T,d

d
. (3.16)

From now on we will refer to Id Xd Ad for the sake of brevity. The average overlap
is defined as:

AO(S, T, k) = 1
k

kØ
d=1

Ad (3.17)

where k is the evaluation depth. The overlap-based rank similarity measures have
the form

SIM(S, T, w) =
∞Ø
d=1

wd · Ad (3.18)

where w is a vector of weights. wd is the weight at position d. Then 0 ≤ SIM ≤q
1 wd, and if w is convergent, each Ad has a fixed contribution wd/

q
1 wd. An

example of convergent series is the geometric progression, where the d term has
the value pd−1, for 0 < p < 1, and the infinite sum is:

∞Ø
d=1

pd−1 = 1
1 − p

. (3.19)

Setting wd to (1 − p)ṗd−1, so that qd wd = 1, derives rank-biased overlap:

RBO(S, T, p) = (1 − p)
∞Ø
d=1

pd−1 · Ad. (3.20)

RBO assume values in the range [0,1], where 0 means disjoint, and 1 means identical.
The parameter p is called persistence and determines the top-weightedness aspect.
The smaller p is, the more importance the top positions have in relations to the
latest ones. When p = 0 only the first element is considered and RBO can assume
value 0 or 1. On the other hand, when p goes to 1 the weights become more flat
and all positions assume the same importance.
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3.4 Cross-correlation
In signal processing, cross-correlation is a measure of similarity of two series as
a function of the displacement of one relative to the other. This is also known
as a sliding dot product or sliding inner product. As an example, consider two
real-valued functions f and g differing only by an unknown shift along the x-axis.
One can use the cross-correlation to find how much g must be shifted along the
x-axis to make it identical to f . The formula essentially slides the g function along
the x-axis, calculating the integral of their product at each position. When the
functions match, the value of (f õ g) is maximized. For continuous function f and
g the cross correlation is given by

(f õ g)(τ) ,
Ú +∞

−∞
f(t)g(t + τ)dt (3.21)

where f(t) represents the complex conjugate of f(t) while τ is the displacement or
lag. [14]

3.4.1 Cross-correlation between two 2-dimensional arrays
To compute the cross-correlation of two matrices, compute and sum the element-
by-element products for every offset of the second matrix relative to the first. This
can be used to calculate the offset required to get 2 matrices of related values to
overlap [15]. The 2-D cross-correlation of an M-by-N matrix X, and a P-by-Q
matrix, H, is a matrix C, of size (M + P ) − 1 by (N + Q) − 1. Its elements are
given by

C(k, l) =
M−1Ø
M=0

N−1Ø
n=0

X(m, n)H̄(m − k, n − l) (3.22)

where
−(P − 1) < k < M − 1

−(Q − 1) < l < N − 1

and H̄ is the complex conjugate of H. From a practical point of view, the output
matrix, C(k, l) has negative and positive row and column indices:

• A negative row index corresponds to an upward shift of the rows of H.

• A negative column index corresponds to a leftward shift of the columns of H.

• A positive row index corresponds to a downward shift of the rows of H.

• A positive column index corresponds to a rightward shift of the columns of H.
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3.5 Hungarian Algorithm
The Hungarian Matching Algorithm is an optimization method to solve the assign-
ment problem in polynomial time. The method was developed by Harold Kuhn in
1955 who gave the name "Hungarian method" because the algorithm was largely
based on the earlier works of two Hungarian mathematicians: Dénes Kőnig and
Jenő Egerváry.

3.5.1 The assignment problem
An allocation problem is defined on a bipartite graph e.g. a graph G = (N, A)
where N = N1 ∪ N2 and A ⊆ N1 × N2. Each arc (i, j) ∈ A has a cost ci,j . The goal
is to find the lowest-cost matching set B ⊆ A such that:

B = {C(AÍ) : AÍ ⊂ A, ∀i ∈ N1 : ∃j ∈ N2 : (i, j) ∈ AÍ∀j ∈ N2 : ∃i ∈ N1 : (i, j)},
(3.23)

and
C(AÍ) =

Ø
(i,j)∈AÍ

ci,j. (3.24)

3.5.2 The Algorithm
In its original form (the one presented in 1955), given n the number of nodes of
each part, the algorithm has time complexity O(n4) while another more recent
implementation has a time complexity of O(n3). The implementation shown below
is the 1955 one. Let be C the (n × n) cost matrix. Let be C the (n × n) cost
matrix.

• Step 0 (initialization). Subtract the least element of each row from that row
of C. Then, do likewise for each column. The resulting matrix, C0 has a zero
in every row and column. (Further, a least-cost assignment for C0 is also a
least-cost assignment for C) Redefine C = C0.

• Step 1 (cover zeros). Draw the minimum number of lines through the rows
and columns to cover all zeros in C. If that minimum is n, you can assign i
to j such that Cij = 0; then you can remove row i and column j, repeating
the process to obtain an optimal assignment. Otherwise, if that minimum is
greater than n, continue.

• Step 2 (revise C). Select the minimum uncovered element. Subtract this from
each uncovered element and add it to each twice-covered element (i.e., to those
with both horizontal and vertical intersecting). Return to step 1 [16].
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Chapter 4

Proposed Framework

4.1 Million Song Dataset
Million Song Dataset (MSD) is a collection of one million contemporary popular
music tracks. It is presented by Bertin-Mahieux et al in [17]. It is by far the largest
dataset available. Instead of including raw audio of tracks, MSD contains audio
features for each song in an array format for legal reasons. In addition to that,
MSD includes also metadata of each song and artists. The dataset was built by
exploiting the API of The Echo Nest [18], a music intelligence platform acquired
by Spotify in 2014 [19]. From a practical point of view, the whole dataset was
obtained using a python wrapper called pyechonest [20].

4.1.1 Content
The MSD contains audio features and metadata for a million contemporary popular
music tracks. It contains:

• 280GB of data

• 1,000,000 songs/files

• 44,745 unique artists

• 7,643 unique terms (Echo Nest tags)

• 2,321 unique musicbrainz1 tags

• 43,943 artists with at least one term (i.e. a terms list associated with at least
one tag)

1https://musicbrainz.org/
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• 2,201,916 asymmetric similarity relationships

• 515,576 dated tracks starting from 1922

The data are stored using the HDF5 format2, which is one of the most suitable
file formats for storing efficiently heterogeneous data. Each .hdfs file represents a
song and contains multiple tree-organized binary arrays. The feature content of
each song is listed in table 4.1. The main acoustic features are pitches, timbre and
loudness. Pitches and timbre are a set of 12 values for each segment, a segment is
a portion of the track, the segments are usually delimited by note onsets, or other
discontinuities in the signal. Figure 4.1 shows a representation of these three main
features.

Figure 4.1: Example of audio features (timbre, pitches and loudness max) for
one song from the MSD dataset

4.1.2 Usage
The dataset is useful for many purposes:

• Metadata analysis.

• Artist recognition.

• Automatic music tagging, each artist has a variable number of tags called
terms.

• Recommendation, the one we are interested in.

• Cover song recognition (see section 2.1.1).

2http://www.hdfgroup.org/HDF5/
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• Lyrics analysis using the associated dataset musiXmatch. This type of analysis
is useful, for instance, for mood prediction.

4.1.3 Terms overview
Table 4.2 shows the most common terms in descending order of occurrence, as they
appear in the whole dataset.

4.1.4 Retrieval
Due to its considerable size, the whole dataset is only available through as an
Amazon Public Dataset snapshot which can easily be attached to an Amazon EC2
virtual machine3. There is also a reduced version of the MSD called MillionSong-
Subset which contains 1000 songs (1% of the whole dataset). The general rule of
thumb is to develop code on the subset, then port it to the full dataset.

4.2 Pipeline Structure
In this section we provide a general overview of the approach chosen to retrieve
ranking lists starting from the raw data set. Figure 4.2 shows the main phases of
the process. The principal reference is a .pkl file that is initially built during the
Data Acquisition phase. Then it is gradually updated. The framework needs to be
executed on a machine equipped with at least 350 GB of RAM in order to work
on the whole dataset. On the other hand, while working on the subset, 16 GB of
RAM will be enough. A public repository is available on GitHub4. The following
sections give a more detailed view of the main phases.

4.2.1 Data Acquisition
As mentioned in 4.1.4, MSD is available as an Amazon Public Dataset snapshot.
To get the whole data, it is necessary to instantiate an EC2 machine with the
MSD snapshot5 attached. At this point, if you have enough computational power,
you might prefer to download the data. This can be done by relying on SSH File
Transfer Protocol. Once downloaded, 106 .hdf5 files, one per song, are organized in
a tree structure.

3http://millionsongdataset.com/pages/getting-dataset/
4https://github.com/gigpir/MSD_Environment.git
5https://aws.amazon.com/it/datasets/million-song-dataset/
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Field name Type Description
analysis sample rate float sample rate of the audio used

artist 7digitalid int ID from 7digital.com or -1
artist familiarity float algorithmic estimation
artist hotttnesss float algorithmic estimation

artist id string Echo Nest ID
artist latitude float latitude
artist location string location name
artist longitude float longitude
artist mbid string ID from musicbrainz.org
artist mbtags array string tags from musicbrainz.org

artist mbtags count array int tag counts for musicbrainz tags
artist name string artist name

artist playmeid int ID from playme.com, or -1
artist terms array string Echo Nest tags

artist terms freq array float Echo Nest tags freqs
artist terms weight array float Echo Nest tags weight

audio md5 string audio hash code
bars confidence array float confidence measure

bars start array float beginning of bars, usually on a beat
beats confidence array float confidence measure

beats start array float result of beat tracking
danceability float algorithmic estimation
duration float in seconds

end of fade in float seconds at the beginning of the song
energy float energy from listener point of view
key int key the song is in

key confidence float confidence measure
loudness float overall loudness in dB
mode int major or minor

mode confidence float confidence measure
release string album name

release 7digitalid int ID from 7digital.com or -1
sections confidence array float confidence measure

sections start array float largest grouping in a song, e.g. verse
segments confidence array float confidence measure

segments loudness max array float max dB value
segments loudness max time array float time of max dB value, i.e. end of attack
segments loudness max start array float dB value at onset

segments pitches 2D array float chroma feature, one value per note
segments start array float musical events, ∼note onsets
segments timbre 2D array float texture features (MFCC+PCA-like)
similar artists array string Echo Nest artist IDs (sim. algo. unpublished)
song hotttnesss float algorithmic estimation

song id string Echo Nest song ID
start of fade out float time in sec
tatums confidence array float confidence measure

tatums start array float smallest rythmic element
tempo float estimated tempo in BPM

time signature int estimate of number of beats per bar, e.g. 4
time signature confidence float confidence measure

title string song title
track id string Echo Nest track ID

track 7digitalid int ID from 7digital.com or -1
year int song release year from MusicBrainz or 0

Table 4.1: List of the 55 fields provided in each per-song HDF5 file

One one side, having multiple small files guarantees a certain degree of flexibility,
since it allows to load and release just the needed ones without having to allocate

24



Proposed Framework

Term Occ. Term Occ. Term Occ. Term Occ.
rock 27272 deep house 4677 acid jazz 2544 dancehall 1527
electronic 24072 80s 4623 power pop 2469 doom metal 1506
pop 19635 french 4588 hard house 2458 gothic rock 1504
alternative rock 15372 ballad 4517 oldies 2440 beats 1482
hip hop 13836 industrial 4298 dj 2388 melodic 1481
united states 13512 trip hop 4274 canada 2368 english 1466
house 11835 progressive house 4249 lo-fi 2307 spanish 1446
jazz 11671 male vocalist 4185 german 2299 gothic 1436
alternative 11089 minimal 4180 70s 2238 happy hardcore 1433
indie 11043 heavy metal 4126 new york 2225 funky 1433
electro 10972 90s 4082 bass 2180 uk garage 1418
experimental 10009 psychedelic 4076 60s 2179 england 1406
indie rock 9987 easy listening 3991 remix 2166 world music 1395
pop rock 9731 funk soul 3965 spain 2082 male 1394
punk 9692 soft rock 3771 chanson 2081 tribal 1388
techno 9599 00s 3771 thrash metal 2062 heavy 1388
folk 9101 progressive rock 3758 fusion 2057 underground 1346
downtempo 8952 indie pop 3719 singer 1996 swedish 1345
ambient 8285 r&b 3673 party music 1945 group 1329
soul 8181 progressive trance 3639 british pop 1944 ebm 1324
germany 8074 noise 3537 acid 1939 canadian 1318
electronica 7494 drum and bass 3463 dark 1893 groove 1312
trance 7445 emo 3438 mellow 1884 latin jazz 1306
disco 7427 california 3437 urban 1880 world reggae 1304
american 7282 british 3411 original 1880 metalcore 1299
synthpop 7138 abstract 3347 art rock 1879 grindcore 1286
world 7080 intelligent dance music 3312 big beat 1868 progressive metal 1261
funk 6908 beautiful 3252 black 1862 glitch 1260
blues 6824 classic 3206 grunge 1846 contemporary jazz 1250
hardcore 6670 club 3125 smooth jazz 1831 mix 1244
country 6509 progressive 3019 italian disco 1815 japanese 1240
dance 6502 hard trance 2973 alternative pop rock 1812 relax 1235
acoustic 6497 ska 2947 japan 1807 german pop 1219
breakbeat 6122 death metal 2933 cover 1770 pop punk 1217
reggae 6105 blues-rock 2919 sexy 1747 underground hip hop 1210
female vocalist 6012 post rock 2876 rock ’n roll 1695 stoner rock 1207
classic rock 5920 psychedelic rock 2873 sweden 1691 alternative country 1192
metal 5895 europop 2863 jazz funk 1678 political 1189
vocal 5756 pop rap 2857 black metal 1669 comedy 1187
latin 5633 female 2816 rockabilly 1649 hardcore punk 1182
singer-songwriter 5630 classical 2797 jungle music 1647 old school 1181
folk rock 5623 country rock 2706 avant-garde 1613 deep 1174
hard rock 5614 lounge 2679 belgium 1600 female vocals 1169
instrumental 5581 future jazz 2677 soul jazz 1598 gospel 1161
rap 5538 los angeles 2676 americana 1579 garage 1155
chill-out 5452 euro-house 2674 shoegaze 1578 london 1154
dub 5449 italy 2660 beat 1574 free jazz 1145
guitar 5428 nederland 2650 swing 1573 drums 1132
new wave 5163 european 2642 tribal house 1544 nu metal 1126
tech house 5057 piano 2588 christian 1539 roots reggae 1124
soundtrack 4938 garage rock 2554 broken beat 1528 modern classical 1121

Table 4.2: List of the most common terms in the dataset
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Figure 4.2: Main pipeline

a considerable amount of memory. On the other side, I/O operations are known to
be slow. Every time you need data for a certain song you will perform an I/O task.
Also, it is likely that you will need the same resource in different moments in time.

26



Proposed Framework

This means that you will perform multiple I/O operations on same resources and
this is potentially inefficient.
A solution, resources permitting, is to have data coming from all files condensed in
one. Loading and saving is easier and faster. Furthermore, having all data saved
in RAM means that you can take advantage of the efficient search by key feature
provided by the python associative arrays6 better known as dictionaries.
Each element of the dictionary is a custom object of type Artist. Each artist
contains some fields plus another dictionary of custom objects of type Song. Tables
4.4 and 4.5 show information about fields and types of these two classes.
Every file is saved through serialization, therefore it is a valid alternative with
respect to .hdf file format in terms of time. The tables represented in figures 4.4
and 4.5 show the fields we kept to build our version of the dataset. The downside
of this approach is that a considerable amount of RAM is essential.

Table 4.3: Description of custom classes fields

Table 4.4: class Artist

Fields Type
name str
id str
terms list<str>
similar_artists list<str>
song_list dict<Song>
tsne_heatmap matrix(20, 20)
my_similar_artists list<str>

Table 4.5: class Song

Fields Type
id str
name str
loudness float
segments_pitches matrix(n, 12)
segments_timbre matrix(n, 12)

4.2.2 Preprocessing
The main goal of this phase is to transform the input (timbres, pitches, loudness
and tempo) in order to obtain an output which is better suited to large-scale data
processing. As shown in figure 4.4, this stage articulates as follows:

1. For each song, transform the initial input format into an n-dimensional feature
vector.

2. Arrange data as a matrix where each row represents a song and each coloumn
represents a feature in the n-dimensional space.

6https://docs.python.org/3/tutorial/datastructures.html
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Figure 4.3: Data acquisition pipeline

3. Perform outlier remotion.

28



Proposed Framework

4. Standardize data.

5. Apply t-SNE to map the n-dimensional space to a reduced 2-dimensional
feature space.

Transforming initial input format

As shown before, the selected features are Loudness (dB), Tempo (BPM), seg-
ments_pitches and segments_timbre. The latters two are matrices where each row
refers to a particular time segment of the track. This means that the number of
rows is variable while the number of columns is fixed to 12 for both matrices.
In order to create a proper space for the representation. The songs in the dataset
must have a fixed number of features. The 1-dimensional features (loudness and
tempo) are directly ported into the new space while the two matrices need to be
transformed (e.g. reduced) without losing too much information. From a practical
point of view, each column of the matrices indicates the changes of a certain
indicator over time segments. For instance, if we just take the average of each
column we would neglect all information about the evolution of that indicator over
time. On the other side, adding certain personalized features might damage the
clarity of the dataset.

In this regard, we propose four different configurations:

• Mode 0 (m0). This configuration includes 24 mean values, loudness and
tempo (26 features).

• Mode 1 (m1). This configuration includes 24 mean values, 24 variance values,
loudness and tempo (50 features).

• Mode 2 (m2). This configuration includes 24 mean values, 24 variance values,
24 first derivatives, loudness and tempo (74 features).

• Mode 3 (m3). This configuration includes 24 mean values, 24 variance values,
24 first derivative, 24 second derivatives, loudness and tempo (98 features).

Where:

• The mean values are the average terms. Each one is computed over its
respective column.

• The variance values represent the variance of each column.

• The first derivative terms are computed by averaging the gradient vector of
each column. The gradient vector is computed using central differences in the
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interior and first differences at the boundaries. This means that, given a n
sized vector x, the interior values of the gradient vector g will be given by:

g[i] = x[i + 1] − x[i − 1]
2 ,

while the elements at the boundaries are given by:

g[0] = x[1] − x[0];

g[n − 1] = x[n − 1] − x[n − 2].

• The second derivatives values are retrieved by computing the gradient two
times and then by averaging it.

Arrange data as a matrix

Once selected a configuration, the matrix X is generated such that each row
represents a song as a n-dimensional point.

Outlier remotion

At this point, since the features might have different scales, the outlier remotion is
performed on each feature separately. The chosen criterion to define if an element
is an outlier is quite common. Given a distribution X, its mean µ and its standard
deviation σ, x ∈ X is considered an outlier if x /∈ [µ − τσ, µ + τσ], where τ is an
arbitrarily threshold (in this framework it is set to 3.5). A song is classified as
outlier if at least one of its feature is an outlier.

Normalization

With the aim of reducing the dimensionality, the features must be on a common
scale. The method used for normalization is called robust scaler 7. It is similar to
a standardization where, given an element of a distribution x ∈ X, it is converted
to a standard score z following the formula

z = x − µX
σX

. (4.1)

The standard distribution Z has µZ = 0 and σZ = 1. The robust scaler process
differs because µX and σX are computed only by taking into account those values
that are included into an arbitrarily chosen quantile range. We tune this interval
to [15, 85] as an optimal trade-off between stability to anomalies and consistency.

7https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
RobustScaler.html
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Dimensionality reduction with t-SNE

At this stage the framework relies on implementation of t-SNE algorithm (see
section 3.1) provided by scikit-learn8. An effective configuration of the paramenter
is the following:

1 sklearn . manifold .TSNE( n_components =2, learning_rate =1000 , n_jobs =-1,
perplexity =30)

2

It is essential to tune properly these parameters, especially the learning rate. Indeed,
a certain value that fits on a dataset with a specific number of points might perform
poorly on a larger dataset. In these cases, you may notice that all data points are
heavily condensed in a small region of the t-SNE space therefore they look "like a
ball".

By applying t-SNE algorithm on the four configurations mentioned in section
4.2.2, we get four different versions of t-SNE coordinates. We adopt this approach
to understand if a configuration performs better than the others in the further
steps. Now we attach t-SNE coordinates to each song and we update and save four
versions of the dataset.

4.2.3 Heatmap creation
Figure 4.6 shows the main phases of the heatmap creation process. The main goal
is to find a way to compare artists without involving a variable amount of songs
(points in tSNE space). The idea is to create a map for each artist and to populate
it with its songs. The process starts by retrieving the range values over each of the
two t-SNE coordinates i.e. the minimum and the maximum values. Then, for each
artist, a matrix of zeros is created. The code below shows how the matrix is filled.

1 for a_id in artists_ids :
2 if len( artists [a_id ]. song_list . values ()) != 0:
3 # the artist a_id has actually >0 songs associated
4

5 n_outlier = 0
6 # initialize heatmap to all zeros
7 result [a_id] = np.zeros (( dimension , dimension ))
8 for song in artists [a_id ]. song_list . values ():
9 # check if song is an outlier

10 if song.tsne != None
11

12 # assign to coordinates tsne_0 and tsne_1
13 # a row and a column index respectively
14 # max and min are the boundaries

8https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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15 # of the t-SNE space
16 row_idx = int ((( song.tsne [0] + abs(min [0]))
17 / (max [0] + abs(min [0]))) * dimension )
18 col_idx = int ((( song.tsne [1] + abs(min [1]))
19 / (max [1] + abs(min [1]))) * dimension )
20

21 # add a song to that region
22 result [a_id ][ row_idx , col_idx ] += 1
23 else:
24 #song is an outlier
25 n_outlier += 1
26

27 # check if the the artist a_id has
28 # at least one inliner song
29 if len( artists [a_id ]. song_list ) - n_outliers != 0:
30

31 # normalize by number of artists inliner songs
32 result [a_id] /= len( artists [id]. song_list )
33 - n_outliers
34 else:
35 # The artist is considered as an outlier
36 # -> set its heatmap to null value
37 result [a_id] = None
38

39 else:
40 # The artist is considered as an outlier
41 # -> set its heatmap to null value
42 result [a_id] = None
43 return result
44

Listing 4.1: Heatmap generation function

Figure 4.5 shows some sample heatmaps.

4.2.4 Ranking generation
At this point, the framework aims to compare heatmaps (which represent artists)
to each other to state if they are similar or not. Figure 4.7 shows the main
phases. In terms of metrics, if the distance between two heatmaps is sufficiently
small, then those two associated artists will be similar to each other. After an
extensive research about metrics of distance between matrices, we propose two
custom metrics:

• cc_peak_1. It is a metric that exploits cross-correlation. Identifies the
coordinates of the peak of the resulting matrix and computes a version of the
euclidean distance between this point and another reference point.

32



Proposed Framework

• biv_hun. It is a metric that builds an adjacency matrix of the complete
bipartite graph where the nodes are non-zero cells of each heatmap. The
matrix is then filled with the weighted version of the euclidean distance between
positions of the nodes. Then it solves a combinatorial optimization algorithm
using the Hungarian algorithm and retrieves the minimal cost associated and
returns it as a distance between matrices.

cc_peak_1 metric

Given two 20 × 20 matrices (or heatmaps), the cross-correlation matrix is retrieved
(see section 3.4). The cross-correlation matrix has dimension 39 × 39. At this point,
the algorithm retrieves the position in which the cross-correlation matrix reaches
the maximum value. Practically, the position of this value reveals the entity of
the shift to applying to one of the heatmaps to make it as similar as possible to
the other one. At this stage, if the peak value is larger than the mean of all other
values of the cross-correlation matrix the entity of the shift is taken as distance.
Otherwise, the distance is set to the largest possible value for this metric. Here is
the code:

1

2 # define the coordinates of the point
3 # corresponding to feeding the algorithm
4 # with identical matrices
5 shft_0 = np.array ([19 , 19])
6

7 # compute cross correlation matrix
8 X = signal . correlate2d (h1 , h2)
9

10 # find peak in matrix
11 peak = find_peaks (data=X, threshold =0, box_size =1, npeaks =1)
12 try:
13 # retrieve the value of the peak
14 peak_value = p[’peak_value ’]
15

16 # compute the mean of cross - correlation
17 # matrix excluding the peak
18 X[p[’x_peak ’], p[’y_peak ’]] = 0
19 mean = np.sum(X) / (39 * 39 - 1)
20

21 if peak_value > mean:
22 # compute the entity of the shift
23 # as an euclidean distance
24 dist = np. linalg .norm(np.array ([p[’x_peak ’], p[’y_peak

’]]) - shft_0 )
25 else:
26 # otherwise set to maximum shift possible
27 dist = np.sqrt ((19 ^ 2) + (19 ^ 2))
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28 except :
29 print("NO PEAK FOUND")
30 dist = np.sqrt ((19 ^ 2) + (19 ^ 2))
31

32 return dist
33

34

Listing 4.2: cc_peak_1 metric function

biv_hun metric

Given two 20 × 20 matrices (or heatmaps), firstly, for each heatmap, the number
of non zero values are retrieved. Then an adjacency matrix is instantiated and
filled with a weighed version of euclidean distances between non-zero nodes. The
Hungarian algorithm (see section 3.5) is fed with the adjacency matrix. The total
distance is given by the sum of the cost plus a penalty for non-matching nodes.
Here is the code:

1

2

3 # find non -empty bins number for each heatmap
4 non_zero_h1 = np. count_nonzero (h1)
5 non_zero_h2 = np. count_nonzero (h2)
6

7 # instantiate adjancency matrix
8 # of complete bipartite graph
9 distances = []

10

11 count1 = 0
12 # fill in adjacency matrix with link lengths
13 for i in range(dim):
14 for j in range(dim):
15 if h1[i, j] > 0:
16 count2 = 0
17 row = []
18 for k in range(dim):
19 for w in range(dim):
20 if h2[k, w] > 0:
21 # compute euclidean distance considering
22 # also the diffenence between
23 # 2 heatmap values * w
24 row. append ( np.sqrt(
25 (k - i) ** 2 + (w - j) ** 2 +
26 (w *(h2[k, w] - h1[i, j])) ** 2))
27 count2 += 1
28 count1 += 1
29 distances . append (row)
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30 distances = np.array( distances )
31

32 if non_zero_h1 > non_zero_h2 :
33 distances = distances . transpose ()
34

35 # compute hugarian algorithm
36 row_ind , col_ind = linear_sum_assignment ( distances )
37

38 # retreive non matched columns
39 non_matched_distances = np. delete (distances , col_ind , 1)
40 cost = distances [row_ind , col_ind ]. sum ()
41 penalty = 0
42 # there is a penalty only if the adjacency
43 # matrix is not squared
44 if non_zero_h1 != non_zero_h2 :
45 penalty = np.amin( non_matched_distances ).sum ()
46 total = cost + penalty
47 return total

Listing 4.3: biv_hun metric function

4.2.5 Evaluation
The evaluation phase is based on two different approaches.

1. By comparing our ranking with the one provided by the MSD accessible
through the field similar_artists attached to each artist object.

2. By comparing the tags lists associated with each artist accessible through the
field terms. For instance, one could see if, given an artist, the other artists
at the top of our ranking have more tags in common than those ones at the
bottom.

comparing rankings

This paragraph addresses point 1 of the list above. Given an artist A with its
ranking of similar artists GT and the ranking computed using this framework R,
we propose to compare two rankings are:

• Rank-biased Overlap (RBO) (see section 3.3.1), is a method for comparing
undefined ordered lists giving more weight to top-ranked items.

• Computing the size of the intersection between GT and the first i elements
of R and dividing the result by the size of GT , by increasing i, one can see
how many positions are required to reach the maximum intersection. This
approach doesn’t consider the order of rankings of list GT .
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comparing tags

The tags list is unordered, thus the framework propose:

• To compute the size of the intersection between the tags of an artist A and the
tags of the artist Ar(i) picked from position i of the ranking of A (not_norm).

• Same as before but, in addition, the final result is divided by the number of
tags of artist A (norm_std).

• Same as first point but, in addition, the final is divided by the number of tags
of artist Ar(i) (norm_other).
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Figure 4.4: Preprocessing pipeline
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Figure 4.5: some examples of heatmaps
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Figure 4.6: Heatmap generation pipeline
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Figure 4.7: Ranking generation pipeline
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Chapter 5

Numerical Assessments

5.1 Tag-lists comparison

Since we widely discussed the methodological approaches used in chapter 4, here
we summarize the main steps to properly present our results. By starting from
four different sets of t-SNE coordinates, four sets of heatmaps are produced. By
comparing heatmaps with one another using two metrics, we got distances that
were arranged as a symmetric matrix of distances. By sorting in ascending order
each row of the matrix, a full ranking of similar artists is obtained, one for each
artist. At this point, for each artist, we compare its terms list with those of the
artists in its ranking and we plot the result as an average value over artists.

Briefly, we have:

• 4 sets of t-SNE coordinates: m0, m1, m2 and m3 (described in 4.2.2).

• 2 heatmap distance metrics: biv_hun and cc_peak_1 (described in 4.2.4).

• 3 tag list comparison techniques: norm_std, norm_other and not_norm
(described in 4.2.5).

• A filter to consider only the most common tags, i.e. those tags having a
number of occurrences in the lists greater than a value n (see table 4.2 for an
overview of the most common tags in the MSD).
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(a) Full ranking plot (b) First 500 ranking positions

Figure 5.1: intersection vs position mode: m3, metric: biv_hun, norm-std, terms
with at least 100 occurrences

(a) Full ranking plot (b) First 500 ranking positions

Figure 5.2: intersection vs position mode: m3, metric: biv_hun, norm-other,
terms with at least 100 occurrences
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(a) Full ranking plot (b) First 500 ranking positions

Figure 5.3: intersection vs position mode: m3, metric: biv_hun, not-norm, terms
with at least 100 occurrences

(a) Full ranking plot (b) First 500 ranking positions

Figure 5.4: intersection vs position mode: m3, metric: cc_peak_1, norm-std,
terms with at least 100 occurrences
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(a) Full ranking plot (b) First 500 ranking positions

Figure 5.5: intersection vs position mode: m3, metric: cc_peak_1, norm-other,
terms with at least 100 occurrences

(a) Full ranking plot (b) First 500 ranking positions

Figure 5.6: intersection vs position mode: m3, metric: cc_peak_1, not-norm,
terms with at least 100 occurrences
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(a) Full ranking plot (b) First 500 ranking positions

Figure 5.7: intersection vs position mode: m2, metric: biv_hun, norm-std, terms
with at least 100 occurrences

(a) Full ranking plot (b) First 500 ranking positions

Figure 5.8: intersection vs position mode: m2, metric: biv_hun, norm-other,
terms with at least 100 occurrences
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(a) Full ranking plot (b) First 500 ranking positions

Figure 5.9: intersection vs position mode: m2, metric: biv_hun, not-norm, terms
with at least 100 occurrences

(a) Full ranking plot (b) First 500 ranking positions

Figure 5.10: intersection vs position mode: m2, metric: cc_peak_1, norm-std,
terms with at least 100 occurrences

46



Numerical Assessments

(a) Full ranking plot (b) First 500 ranking positions

Figure 5.11: intersection vs position mode: m2, metric: cc_peak_1, norm-other,
terms with at least 100 occurrences

(a) Full ranking plot (b) First 500 ranking positions

Figure 5.12: intersection vs position mode: m2, metric: cc_peak_1, not-norm,
terms with at least 100 occurrences

All the plots shown from figure 5.1 to figure 5.12 show a mostly decreasing trend.
Globally, the results show that the metric cc_peak_1 does a better job in terms of
extension and regularity of the curve. All m3 plots are characterized by a more
regular curve than the m2 ones as they generally present fewer spikes. On the other
hand, since we are interested mostly in the left side of the plot, which represents
just the top-ranked items, m2 plots show a stronger descent at the beginning. The
plots computed with norm-std have similar shape than the ones computed with no
normalization not-norm. This phenomenon happens because norm-std approach
(see 4.2.5) divides the intersection size by the number of tags of the reference artist,
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which is constant along x-axis. The norm-other approach, instead, divides the
intersection size by the tag-list size of the artist at position x. Therefore it could
potentially modify the behaviour of the curve with respect to not-norm method.
Similar results are obtained with configuration m0 and m1, which are omitted for
the sake of conciseness.

5.2 Rankings comparison
In this section, the rankings retrieved through the process described in section
4.2.4 are compared with the rankings provided by the MSD contained in the
field similar_artists attached to each Artist object. As shown before, the field
similar_artists contains an ordered list of 100 artist ids. Since not all of these
ids are present in the MSD, a filter was applied to remove those ids that have no
occurrences in the MSD changing the relative order of the ids in the list. According
to the notation used in section 4.2.5, for each artist, we have its ranking of similar
artists attached GT and 8 full-length rankings computed with all combinations of
the parameters below:

• 4 sets of t-SNE coordinates: m0, m1, m2 and m3 (described in 4.2.2).

• 2 heatmap distance metrics: biv_hun and cc_peak_1 (described in 4.2.4).

5.2.1 Comparison through RBO
As mentioned before, RBO (see 3.3.1) is a method that takes into account the order
of the two ranked lists to be compared giving more importance to first positions
rather than the last ones. For each artist, the RBO between GT and its sub-ranking
of size 100 is computed. Note that, given an artist and its distance values with
respect to other artists, its full-length ranking is obtained by sorting all these values
in ascending order. A sub-ranking of size n is a subset of the full-length ranking
truncated at position n. The final result is displayed in table 5.1 as an average.
The results are not satisfactory at all. Results for configurations m0 and m1 are
not reported as they are even less significant. Unfortunately, there is no available
information on the methodological approach used to build up the GT rankings.
As far as we know, the GT rankings are provided by The Echo Nest1 and the
algorithm used to perform such this operation is not public. Since the criterion
used to build up the GT rankings is not known, it would seem unlikely that the
similarity criteria involves only the musical features. It’s much more likely that this
process involves a mix of musical features plus other data coming from different

1http://millionsongdataset.com/pages/example-track-description/
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contexts such as the users’ listening history. It is known that Spotify2, which
acquired The Echo Nest, uses a recommendation algorithm based on a mixture of
collaborative filtering models, natural language processing and audio models.

mode / metric biv_hun cc_peak_1
m3 0.003532 0.009022
m2 0.004604 0.009569

Table 5.1: RBO average scores

5.2.2 Comparison through intersection

The plots shown below represent the trend of the intersection percentage with
respect to the GT. The x-axis represents the considered size x of the sub-ranking
(i.e. the full-length ranking truncated at position x). Of course, the sub-ranking
tends to the full-length ranking as x-value reaches the maximum value. The value
read on y-axis is given by the formula

y(x) = 1
N

NØ
i=1

|GTi ∩ Ri
x|

|GTi|
, (5.1)

where N represents the total number of artists in the dataset, GTi is the ground
truth ranking of artist i and Ri

x is the sub-ranking of size x relative to artist i.

As described in the formula above, the curve represents an average over all
artists. These data are reasonably encouraging because, if the full-length rankings
were randomly populated, the curve would degenerate into a straight line. Indeed,
the more concave the curve is, the better the results are.

2https://www.spotify.com/
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(a) metric: biv_hun (b) metric: cc_peak_1

Figure 5.13: Intersection percentage with respect to portion of predicted ranking
(mode: m3 )

(a) metric: biv_hun (b) metric: cc_peak_1

Figure 5.14: Intersection percentage with respect to portion of predicted ranking
(mode: m2 )

The plots in figures 5.13 and 5.14 show that, for all configuration seen so far, the
proposed model gives promising results as the curve maintain its concavity without
degenerating into a straight line. Also in this case the best results are obtained
with the metric cc_peak_1, which shows a more evident concavity. However, these
results are not sufficient to say that one metric is better than the other. In fact,
the metric biv_hun, as described in section 4.2.4, allows one to modify a weight
parameter to give greater value to the differences between the non-zero values of
the heatmap rather than to the relative positions of the non-zero points on the
heatmap.
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Chapter 6

Conclusions

In this thesis, we addressed the problem of comparing artists based on their musical
production. We deliberately chose to not consider other kinds of features except
that the one that comes from raw audio. The task was to compare our results with
a ground truth that was not necessarily generated with inputs of the same type as
ours. A discussion on different approaches has been provided. In particular, the
main process was, firstly, to arrange features extracted from raw audio in a lighter
and readable way using t-SNE. Secondly, the task was to use those preprocessed
data to estimate distance relationships between artists by using two different novel
approaches. After generating our rankings of similarity, we chose two ways to
evaluate our results: one based on metadata attached to each artist, in particular on
tag-lists; the other based on rankings already provided by the Million Song Dataset
used for our study. The evaluation based on tag lists has led to encouraging results
since it is evident that as the position within the ranking increases, the number
of tags in common decreases accordingly. The evaluation based on a comparison
between rankings didn’t go as well. Generating a ranking with the same elements as
the reference one (the GT one) turned to be not an easy task, especially because of
the large number of artists involved. A solution to this problem was to consider the
full-length ranking in order to see if Artists present in GT list were concentrated
mostly in the head of the ranking rather than the tail. This approach led us to a
partially positive confirmation. The comparison between GT rankings and ours
using RBO (see 3.3.1) produced poor results with no exceptions. One of the main
causes could be the different nature of the ranking generation process.

6.1 Future works
Future works should aim to fine-tune the parameter w of metric biv_hun to find an
optimal trade-off between shift and difference of non-zero values of two heatmaps.
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Future research could also examine metric cc_peak_1 to explore different scenarios
where multiple peaks of the cross-correlation matrix are handled. Moreover, since
the number of unique tags is more than 7500, it often happens that many tags have
almost the same meaning for discovering similarities (e.g. "jazz piano" and "piano
jazz"). Mapping those tags to a set of macro-tags might lead to more consistent
results Another interesting research could use this framework on other datasets to
provide benchmarking results.
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Acronyms

MIR
Music Information Retrieval

GT
Ground Truth

RS
Recommendation System

MSD
Million Song Dataset

API
Application Program Interface

MFCCs
Mel-frequency cepstral coefficients
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