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Chapter 1

Introduction

Climate change is an important challenge facing mankind [1], which threatens
the lives of many with dangerous side effects that can lead to catastrophic
natural events [2].

A warmer climate increases the likelihood of fires at a wide range of lat-
itudes [3]. These can potentially expand to destroy entire forests, therefore
releasing significant amounts of smoke, carbon dioxide and heat in the pro-
cess. A few instruments have been developed that can provide satellite data
useful to detect thermal anomalies, such as the Moderate-resolution Imaging
Spectroradiometer (MODIS), and the Visible Infrared Imaging Radiometer
Suite (VIIRS). These radiometers acquire data in multiple spectral bands,
or groups of wavelengths, and are mounted on satellites so that the whole
surface of Earth is covered twice a day.

Developing accurate automatic detection systems based on similar instru-
ments could prove to be vital for detecting expanding forest fires in their
early stages, especially when they spark in remote areas that are scarcely
populated, both in order to reduce damage to natural heritage and minimise
the efforts required in the intervention. For this purpose, a few algorithms
have been developed to convert raw measurements into hotspot detections.
It is worth mentioning the work of Giglio et al. (2003) [4] that provided a
good starting point for this and other projects in the same field [5][6] by im-
plementing and improving algorithms to refine Modis and Viirs data, which
is then made available for free to the public.

The adopted algorithm changes depending on the instrument, given that
both the spatial resolution and the observed spectral bands differ, but the
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1 – Introduction

overall approach can be summarised as follows: starting from raw measure-
ments, the areas covered by clouds and water bodies are masked. Then,
potential thermal anomalies are detected based on threshold levels, which
are computed contextually as reference value using the surroundings. Subse-
quently, any areas that could lead to false alarms, like deserts, are excluded,
and an estimation of the power released by each remaining hotspot is made.

When a hotspot is identified, it cannot be located more precisely than
what the spatial resolution of the instrument that detected it allows for. For
this reason, these algorithms divide the projection space in cells in a grid-like
pattern, where the smallest subdivision has approximately the same size as
the spatial resolution of the given instrument. These subdivisions are called
“firepixels”. Each hotspot is therefore assigned to the firepixel where it was
detected, and its position is defined by the coordinates of said firepixel.

This aspect, combined with the relatively low spatial resolution of MODIS
and the long intervals of time between each pass of the instruments, suggests
that there is room for improvement both in terms of i) quality and resolution
of the hotspot data, and ii) frequency of the measurements over a restricted
geographic area. This led to the creation of other projects that aimed to
expand on how satellite data can be used in this field.

One example of this is the adaptation of the aforementioned algorithm
to VIIRS data, to exploit the improved resolution. Two products have been
developed that use different spectral bands of the instrument.

After a hotspot is identified, one further disambiguation is performed to
establish whether it is caused by a wildfire or by another source. One possible
approach to improve on this specific task could be to integrate other data
sources, in order to have a more complete perspective of the area affected by
a hotspot. Possible inclusions that have been considered for this purpose are
i) type of land cover of an area [7], to better evaluate when a hotspot could be
located near vegetation, and ii) other satellite imagery like that obtainable
with Sentinel [8], to capture the effects of a fire at higher resolution.

The goal of this thesis is to explore the results of integrating said data
sources with existing hotspot detection systems, and to evaluate perfor-
mances of common machine learning algorithms for the application of hotspot
disambiguation.

As for similar works, validation is based on preexisting datasets of previous
fire events. The ones that were chosen for this project are obtained from the
Copernicus Emergency Management Service (EMS) [9] and the European
Forest Fire Information System (EFFIS)[10], which roughly cover the entirety
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1 – Introduction

of the European area, that is the focus of this research.

The other parts of this document are organised as follows. In Chapter
2, each adopted data source is introduced and motivated, showing examples
of works that also use them to solve related tasks. In Chapter 3, the way
this data is collected and preprocessed is presented (Section 3.1), leading to
the creation of datasets (Section 3.2). In Chapter 4, a formalization of the
problem is made, and the proposed experiments are described in conjunction
with the validation process (Section 4.3). In Chapter 5, the obtained results
are discussed. In Chapter 6, the author draws some conclusions for the work
done and proposes some improvements for future developments.

7



8



Chapter 2

Data Sources and Related
works

This chapter focuses on describing what data sources have been considered
for inclusion and their motivation, together with examples of works that
employ them for related tasks. In Section 2.1, a commonly used algorithm to
process MODIS data is presented. This approach was the starting point to
develop similar algorithms that are now often employed to process data from
other satellites, including VIIRS, as presented in Section 2.2. In Section 2.3,
two sources of historical data for past fire events are described, in particular
Copernicus EMS and EFFIS. In Section 2.4, a few Sentinel satellite imagery
products are introduced, and their differences presented. Finally, Section 2.5
provides a brief explanation on how land cover can be used for related tasks.

2.1 MODIS

MODIS was one of the first spectroradiometers that were sent in orbit around
the Earth to monitor changes in large-scale global dynamics. One is mounted
on the Terra satellite, which launched in 1999, and one on the Aqua satellite,
launched in 2002. Fire observations are done four times per day, twice from
each satellite. The instruments record data in 36 spectral bands, each with
its respective spatial resolution. 29 out of the 36 have an approximate spatial
resolution of 1 km, including the ones that are used for hotspot detection.

Each raw measurement consists of an unprojected portion of the MODIS
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2 – Data Sources and Related works

orbital swath that spans around 5 minutes, called “granule”. A granule mea-
sures approximately 2340 × 2030 km in the along-scan and along-track direc-
tions, respectively. A good visualization of a granule is displayed in Figure
2 at page 11 of the MODIS Collection 6 Active Fire Product User’s Guide
[11].

Each individual 1-km pixel is processed according to the algorithm de-
scribed in Giglio et al. (2003) [4], which uses brightness temperatures derived
from the 3.9 µm and 11 µm channels of MODIS to detect thermal anomalies,
and those from the 12 µm channel for cloud masking. A brightness temper-
ature, or radiance temperature, is the temperature at which a black body
would need to be in order to emit the same total flux of electromagnetic en-
ergy of the observed object at a given frequency, and is measured in degrees
Kelvin.

Starting from raw measurements, the process follows these steps:

1. any pixel missing valid data is removed from further consideration;

2. an internal cloud mask and a water mask obtained from MODIS geolo-
cation products are used to exclude other obvious non-fire pixels;

3. for remaining potential fire pixels, neighbouring pixels are used to estab-
lish a background value, if a minimum of 8 of those are still valid and
not excluded by previous steps;

4. if the previous step was successful, a series of contextual threshold tests
are applied to verify if the considered brightness temperatures differ from
the estimated background value;

5. further tests are applied to exclude false detections caused by sun-glint,
desert boundaries, and water reflections from areas not included in the
water mask;

6. any remaining hotspot not excluded after previous steps is considered a
fire;

7. Fire Radiative Power (FRP) is approximated for each of these from
brightness temperatures by using a relationship described in Wooster,
Zhukov, and Oertel (2003) [12] and Wooster et al. (2012) [13]. It is a
measure of the rate at which energy is released in the considered firepixel.

As for the validation process, high-resolution fire maps obtained from the
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
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2.2 – VIIRS

were used [14]. This process showed how detection probability varies depend-
ing on fire size and time in the day-night cycle. Smaller fires are harder to
detect also because of the moderate spatial resolution of the instrument.

Further processing, projections, and aggregation can be done to obtain
more products, starting from the output of this algorithm. One of these,
called MCD14ML is used for this thesis, and it will be described in detail in
a later section.

2.2 VIIRS
Starting from the algorithm described for MODIS in the previous section,
an equivalent has been implemented for the VIIRS instrument [15], although
with a slightly higher spatial resolution of 750 m/pixel. The product obtained
from this will be denoted from now on with the “VNP14” nomenclature used
by NASA to refer to it. Performance wise, this product resembles what can
be done with data retrieved from MODIS.

The 375 m/pixel channels of the instrument have also been repurposed
for active fire detection following a similar approach. The product obtained
this way is denoted as "VNP14IMG". However, since these channels saturate
more easily, data has to be handled in a special way to accommodate the
differences with respect to other commonly used channels. The improved
spatial resolution also allows to have better responses for smaller fires than
what can be achieved with MODIS products, although this version of the
algorithm is still experimental and under development. This disparity is
shown in Figure 2.1, which shows the total count of detections over a reference
period of 5 years for each collection, from 2015 to 2019, restricted over the
European macro-area used for this work, which will be characterised in detail
in later sections.

Both products are adopted for this thesis to be used in conjunction with
MODIS hotspots, since none of the three collections completely includes all
the activations detected by the others. Therefore, by having all three, it
could be possible to have a wider coverage.

2.3 Copernicus EMS and EFFIS
In the wide field of fire management, an important role is played by historical
data about previous fires, as it allows to identify their consequences and side
effects. In particular, in order to build a ground truth about which hotspots
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2 – Data Sources and Related works

Figure 2.1. Total count of hotspot detections in the European area, over the
years from 2015 to 2019, separately for the three considered products.

are related to a fire activation, two of the available data sources that cover
Europe are Copernicus EMS and EFFIS.

The former is an on-demand service that provides detailed information
about catastrophic events, primarily ones that take place in the European
area. Albeit very detailed in terms of burned area delineation, the number
of forest fire and wildfire activations is limited and the temporal information
concerning the end of the event is often imprecise or even omitted.

The latter is a service open to all European countries based on cooperation.
There are regulations in place which force Community members to monitor
forests and collect a minimum set of data for each occurring fire. One of the
products offered by this service is the burnt area database, which reportedly
covers on average about 80% of the total burnt areas in the considered region,
focusing on fires covering more than 30ha. This data source is characterised
by a higher number of activations with respect to Copernicus EMS, although
less detailed. Moreover, information about the end date of each event is not
provided.

In Nolde, Plank, Riedlinger (2020) [16] it is shown how data from both of
these services can be used in combination with MODIS data to solve the task
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2.4 – Sentinel imagery usage

of burnt area monitoring. The authors also use the Sentinel-3 OLCI sensor
that will be discussed in the next section.

Similarly, in Farasin et al. (2020) [17], Copernicus EMS is used for the
task of damage severity estimation. It is worth noting that the authors used
data from Sentinel-2, which will be described in the next section as well.

In this thesis both are used in conjunction with hotspot detections in order
to decide which anomalies are linked to forest fires.

2.4 Sentinel imagery usage

A different perspective on the wider context of wildfires management can
be obtained by using higher resolution satellite imagery, or simply different
portions of the electromagnetic spectrum. For this purpose, one of the avail-
able options is using Sentinel missions [8], which offer a variety of products.
Among these, the considered ones are the following:

• Sentinel-2, which provides images with a spatial resolution of up to 10
m/pixel, 20 m/pixel, or 60 m/pixel, depending on the used bands. De-
spite the fact that two satellites of this type orbit the Earth to increase
the revisit frequency, the time between each pass is 5 days, making this
product only viable for non-time-sensitive applications.

• Sentinel-3, which has a significantly lower resolution but shorter time in-
tervals between each pass, especially at latitudes farther from the equa-
tor. For instance, in the European macro-area, the expected revisit time
goes from 0.5 to 1.5 days, depending on the latitude. Among the two
products obtainable from this mission, the one with a higher spatial
resolution of 300 m/pixel was chosen.

• Sentinel-5P, which aims to monitor our atmosphere and its composition
performing measurements at a high spatio-temporal resolution, with 14
passes each day.

Sentinel products were used in other related works [16][17], as previously
discussed.
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2 – Data Sources and Related works

2.5 Land Cover
In order to better characterise an area affected by a hotspot, a valuable
piece of information is what type of terrain it is detected in. Often, instru-
ments used for hotspot detection have bands that can be used dynamically
to detect greenery, like in the cases of MODIS, VIIRS, Sentinel-2, Sentinel-
3.. Nonetheless, having information about other types of terrain can prove
just as useful, for the purpose of disambiguation - especially for those that
are seldom associated with wildfires but can produce hotspots, like densely
populated urban areas.

In the context of the Copernicus project, the first detailed thematic map of
Land Coverage was introduced in 1985. Namely, Corine Land Cover (CLC),
which periodically receives updates to this day, the last of which happened
in 2018. For that last update, high resolution imagery from Sentinel-2 was
the primary data source, which was visually interpreted by the respective
countries to produce the final result [7].

As shown in Sifakis et al. (2004) [18], land cover was used to observe forest
fires in conjunction with AVHRR imagery, which has a lower resolution than
what is available now via MODIS with current technology.
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Chapter 3

Data Preparation

This chapter presents how all the discussed data sources can be retrieved
(Section 3.1) and combined to form a dataset (Section 3.2), before being
loaded and preprocessed (Section 3.3) to be fed to models as presented in
the next chapter.

3.1 Collections and Preparation

3.1.1 Hotspot products
The products in this category provide high-level descriptions of detected
hotspots, and are used as a starting point for the task of disambiguation. The
selected ones are reported in Table 3.1 together with their spatial resolutions.

Product Name Spatial Resolution Angular Approximation
MCD14ML 1 km 0.01°
VNP14ML 750 m 0.007°
VNP14IMGML 375 m 0.0035°

Table 3.1. Spatial resolution of the hotspot products that are used
in this thesis, together with their approximate equivalent in terms of
latitude-longitude.

They are freely distributed by an FTP server hosted by the University of
Maryland, as described in the MODIS and VIIRS user manuals [11][15]. At
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3 – Data Preparation

the time of writing, the chosen collections are available following the directory
tree presented below:

data
MODIS

C6
MCD14ML

VIIRS
C1

VNP14ML
VNP14IMGML

The chosen products are available in the leaf nodes of the tree above, in
aggregated form. Hotspot detections are grouped in textual files in CSV for-
mat on a monthly basis, and then compressed in archives. In order to have
coverage from all the data sources, only data covering the time frame from
January 2012 was considered. At the time of retrieval, the latest month for
which data had already been made available was May 2020. MCD14ML is
the name of the collection obtained from MODIS data. VNP14ML follows
this heritage for VIIRS, while VNP14IMGML is produced using higher res-
olution channels, as previously discussed in Chapter 2. Tables 3.2, 3.3, 3.4,
shown below, present an overview of what attributes are used to characterise
hotspots in the textual files of the respective collections.

16



3.1 – Collections and Preparation

MCD14ML
Attribute Name Description
YYYYMMDD Date of detection (UTC)
HHMM Time of detection (UTC)
sat Satellite which performed the detection
lat Latitude of the center of the firepixel where the hotspot

was detected
lon Longitude of the center of the firepixel where the hotspot

was detected
T21 Brightness temperature of the 3.9 µm channel
T31 Brightness temperature of the 11 µm channel
sample Number of sample within the considered firepixel.

In case of overflow, it starts counting from 0 again
FRP Fire Radiative Power estimation in MW
conf Confidence about the detection. Integer number from 0 to 100
type Class of hotspot, for the disambiguation task
dn Single char to represent if the detection was done during

the day or during the night

Table 3.2. Description of MCD14ML attributes.

VNP14ML
Attribute Name Description
YYYYMMDD Date of detection (UTC)
HHMM Time of detection (UTC)
sat Satellite which performed the detection
lat Latitude of the center of the firepixel where the hotspot

was detected
lon Longitude of the center of the firepixel where the hotspot

was detected
T_M13 Brightness temperature of the 4 µm channel
T_M15 Brightness temperature of the 11 µm channel
sample Number of sample within the considered firepixel.

In case of overflow, it starts counting from 0 again
pixarea Area of the firepixel in km2

FRP Fire Radiative Power estimation in MW
conf Confidence about the detection. Integer number from 0 to 100
type Class of hotspot, for the disambiguation task

Table 3.3. Description of VNP14ML attributes.17
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VNP14IMGML
Attribute Name Description
YYYYMMDD Date of detection (UTC)
HHMM Time of detection (UTC)
sat Satellite which performed the detection
lat Latitude of the center of the firepixel where the hotspot

was detected
lon Longitude of the center of the firepixel where the hotspot

was detected
T_I4 Brightness temperature of the I4 channel
T_I5 Brightness temperature of the I5 channel
sample Number of sample within the considered firepixel.

In case of overflow, it starts counting from 0 again
pixarea Area of the firepixel in km2

FRP Fire Radiative Power estimation in MW
introduced empyrical relationship

conf Confidence about the detection. Categorical attribute,
with values: low, nominal, high

type Class of hotspot, for the disambiguation task

Table 3.4. Description of VNP14IMGML attributes.

Despite some differences, the three collections have several attributes in
common. Among these, the one denoted as "type" is the class assigned by
the current algorithms for the task of disambiguation. It is a numeric integer
value from 0 to 3, extremes included. The meaning of each value is reported
in Table 3.5 below. As will be discussed in detail in later chapters, this label
is not always reliable, and it is in the scope of this thesis to improve this
classification.

Concerning other attributes, the following operations are performed:

• information about date and time of detection are combined to form a
timestamp

• latitude and longitude of the center of the firepixel are combined to form
a so called "POINT ", which is one of the proposed datatypes of the Well-
Known Text representation of geometry objects (WKT), commonly used
by GIS software.

18



3.1 – Collections and Preparation

Attribute Value Description
0 Presumed vegetation fire
1 Active volcano
2 Other static land source
3 Offshore

Table 3.5. Explanation of the possible values for the type categorical at-
tribute, shared among all hotspot data sources.

• any other field is left untouched for the time being

All of this information is then inserted in a spatial-enabled database, which
is a database with GIS extensions to facilitate geo-spatial operations. Refer
to Section 4.2 for what tools have been used. Having hotspot data in such a
database allowed to intersect it and combine it with other types of geo-spatial
data, like burnt areas from past fires.

3.1.2 Land Cover
As already discussed in previous chapters, the selected product for Land
Cover is CLC, with its higher resolution version of 2018. It is a mosaic
of multipolygons, each of which covers a certain region of space and has
an associated type of land cover. "MULTIPOLYGON " is another datatype
of the already mentioned WKT representation, which identifies a group of
polygons with a finite number of intersections between each other. The
categories that are used for this classification are organised in a hierarchical
structure on 3 levels, that describe the type of land cover to increasing levels
of detail. The exact structure can be seen in the documentation of CLC
[19]. Only two of the three levels of depth will be used, so that more general
categories are obtained. The resulting tree structure is displayed below. Leaf
nodes are the categories that were adopted.

By adopting this aggregation, many of the small yearly changes in type
of land cover can be accounted for. For this reason, and considering the
higher resolution of this release of the product, the 2018 version was used as
a time-independent indication of the type of terrain.

Artificial Surfaces
Urban fabric
Industrial, commercial and transport units

19



3 – Data Preparation

Mine, dump and construction sites
Artificial, non-agricultural vegetate areas

Agricultural areas
Arable land
Permanent crops
Pastures
Heterogeneous agricultural areas

Forest and seminatural areas
Forest
Shrub and/or herbaceous vegetation associations
Open spaces with little or no vegetation

Wetlands
Inland wetlands
Coastal wetlands

Water bodies
Inland waters
Marine waters

Missing data
NODATA

The mosaic only covers all pan-European countries, therefore creating a
wide Area of Interest (AoI). An AoI can be described as a squared region
that envelopes a geometric element.

As an initial approach, the whole AoI was considered, except for the North-
ernmost portion of the African continent, due to the higher likelihood of false
hotspot detections near desert boundaries. This restriction was particularly
effective for the VNP14IMGML collection, which is more sensitive to smaller
anomalies but is more prone to higher false detection rates. It allowed to
filter out around 97% of the total available hotspots of the collection for the
considered AoI, going from around 170M to about 5M. For the other hotspot
products, MCD14ML went from 1.6M to 1.1M, and VNP14ML from 900k to
750k.

A delineation of the boundaries used for this process is shown in Figure
3.1. A further refinement of the considered bounding-box will be suggested
in Chapter 6, together with other proposed improvements.

The product is made available for free directly on the CLC 2018 website,
and is distributed in three forms which are: i) an RGB raster of the whole
mosaic, ii) an ESRI geodatabase of the multipolygons, or iii) an SQLite

20



3.1 – Collections and Preparation

Figure 3.1. Considered European macro-area. The excluded portion of
the African continent is shown in dark gray. Coloured areas are re-
gions where CLC data is available. The remaining areas with no such
information are represented in light gray.

database. The adopted form is the ESRI geodatabase, as this allows better
flexibility in terms of encoding of the features, with respect to an already
prepared raster. Multipolygons in this product are originally stored using the
ESRI:3035 projection. Therefore, in order to be able to compare these geo-
spatial features with hotspot data, they were reprojected to the same system,
WGS84 EPSG:4326, based on latitude an longitude like hotspot data. All the
multipolygons of the mosaic were then inserted in the geo-spatial database.

At a later stage, during the creation of the dataset as described in Section
3.2, these geometric objects will be rasterized into images, to characterise the
surroundings of a hotspot. Images of this type have 16 channels, one for each
used land cover category, and are generated at a low resolution of 16x16 to

21



3 – Data Preparation

have comparable size with those obtainable from Sentinel-3 imagery. Each
pixel of a channel has a value of 1 if the corresponding area is covered by the
category of terrain represented by the channel, and 0 otherwise.

Even though having one channel for each category allows for a clearer
distinction, it can increase dimensionality. Therefore, by adopting fewer more
general categories, it is possible to fight against the curse of dimensionality
problem, while also improving on generalization.

3.1.3 Sentinel-3 OLCI
The selected product for Sentinel-3 data is based on the Ocean and Land
Colour Instrument (OLCI), which has a spatial resolution of 300-m, higher
than other options.

Data can be freely retrieved from a service named Sentinel-hub [20], which
provides a wide range of utilities and helper functions for the satellite image
retrieval process. Data is available starting from the 26th of April 2016, and
it comes in the form of numpy arrays or geo-tiff images.

The obtained images have 21 channels, one for each band detected by the
instrument. They are reported in Table 3.6 together with common use cases
for each one.

For each request, it is mandatory to specify a few parameters that define
the image, such as:

• bbox: bounding box of the requested area, which also includes informa-
tion about the used reference system. In other words, it is a rectangular
region in the specified projected space.

• size: of the image, in pixels. It can be determined if both the bounding
box and the spatial resolution of the instrument are defined. In case a
resolution different from the one of the instrument is chosen, data will
be interpolated to accomodate the requested size.

• time_interval: it is a time frame, used to restrict the selection of
images to ones that were taken within this interval. It is expressed
as the interval comprised between a start date and an end date, both
included.

The service imposes some restrictions on the number and frequency of
requests that can be made to it. For this reason, all the requests were made
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3.1 – Collections and Preparation

Band λ of the center of the band Example use cases
(nm)

Oa01 400 Aerosol correction
Oa02 412.5 Yellow substance and detrital
Oa03 442.5 Chlorophyll absorption maximum,

biogeochemistry, vegetation
Oa04 490 High Chlorophyll
Oa05 510 Chlorophyll
Oa06 560 Chlorophyll reference

(Chlorophyll minimum)
Oa07 620 Sediment loading
Oa08 665 Chlorophyll (2nd Chlorophyll

absorption maximum), sediment,
yellow substance/vegetation

Oa09 673.75 Improved fluorescence retrieval
Oa10 681.25 Chlorophyll fluorescence peak
Oa11 708.75 Chlorophyll fluorescence baseline
Oa12 753.75 O2 absorption/clouds,

vegetation
Oa13 761.25 O2 absorption band/aerosol

correction
Oa14 764.375 Atmospheric correction
Oa15 767.6 Fluorescence over land
Oa16 778.75 Atmos. corr./aerosol corr.
Oa17 865 Atmos. corr./aerosol corr.,

clouds, pixel co-registration
Oa18 885 Water vapour absorption

reference band, Vegetation
monitoring

Oa19 900 Water vapour absorption
reference band, Vegetation
monitoring (maximum reflectance)

Oa20 940 Water vapour absorption,
Atmos. corr./aerosol corr.

Oa21 1020 Atmos. corr./aerosol corr.

Table 3.6. Description of the bands available in Sentinel-3 OLCI images,
together with some reported example use cases.

23
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after the selection of what data points will be included in a dataset. This
process will be described in the following section, 3.2. The adopted approach
for collection was to request an image for each selected hotspot, centered
around the center of its firepixel, restricted to the date of its detection, using
a squared bounding box in the latitude-longitude projected space with side
equal to double the spatial resolution of its detecting instrument. Resolution
is expressed in degrees. In case no data is available for the selected date, the
time interval is expanded to include the previous day and the one after the
detection date.

However, this approach doesn’t consider that distances behave differently
in a projected space. In other words, the equivalent in meters of 1° of longi-
tude is not uniform at all latitudes. Therefore, despite requesting a squared
bounding box defined using latitude and longitude, images are not squared
in terms of pixels and their sizes vary depending on the latitude. A few
examples of this issue are displayed in Figure 3.2.

Figure 3.2. From left to right: a 6x8 pixels image obtained for a MCD14ML
hotspot at latitude 39.033°; a 3x5 pixels image for a VNP14ML hotspot at
latitude 57.074°; a 1x2 pixels image for a VNP14IMGML hotspot at latitude
60.888°. The displayed images use bands Oa06, Oa04, Oa08 as RGB channels
for visualization purposes only.

Due to the aforementioned restrictions, it was not possible to retrieve new
copies of the images with an adjusted procedure within the time frame for
this thesis. However, after it was verified that none of the selected hotspots
would be so close to the poles to cause degenerate images with width equal to
0 pixels, it was decided that images would be uniformed in size following the
procedure described in 3.3 and used anyway for some experiments, since they
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contain at least some information. The adjusted method will be discussed,
together with other proposed improvements, in Chapter 6.

3.1.4 EFFIS burnt areas
The EFFIS burnt areas product reportedly covers around 80% of the total
burnt area in the covered regions. The remaining 20% is composed of fires
that burn less than 30ha, which are not considered. The product was ob-
tained via a data request form that can be accessed directly from the EFFIS
website [10]. The collection comes packaged as a compressed geo-json file,
in which the geometry of the burnt areas is provided in WKT format, as
well as other attributes as presented in Table 3.7. All geometries in this
product share the same WKT representation, in the MULTIPOLYGON for-
mat. The coordinate reference system adopted by the creators is once again
ESRI:3035. Therefore all points were converted to the same reference system
of the hotspots, WGS84 EPSG:4326, based on latitude and longitude, before
being inserted in the geo-spatial database.

At the time of retrieval, this product included a total of 14914 activations,
which locations can be visualised as displayed in Figure 3.3

Attribute Name Description
id Internal ID of the activation
FIREDATE Date of the activation (UTC)
COUNTRY 2-letter abbreviation of country names
placename Integer number to identify areas
PROVINCE Name of the affected location

was detected
YEARSEASON Legacy attribute, containing info

about year and season of the fire
geometry WKT representation of the burnt area

Table 3.7. Description of EFFIS burnt areas attributes.

It should be noted how the only temporal information provided for each
fire is one date, without any further specifications on whether it represents
the starting date or the ending date of the activation, or anything about
the duration of the fire. However, since this work requires to be able to
intersect hotspots and past fire events both spatially and temporally, this
attribute plays an important role. For this reason, an extra analysis has
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been performed to better evaluate the ending date of each activation, and it
will be discussed in 3.2.1.

Figure 3.3. Location of EFFIS activations. Each coloured point represents
the center of a burned area.

3.1.5 Copernicus EMS burnt areas
Some data about previous forest fires and wildfires can be freely downloaded
from the Copernicus EMS rapid mapping service [9]. For each activation,
some information is provided about location, affected countries, and starting
date of the fire, optionally seldom including an indication of the time of
day. Since little to no indication about the end dates is provided, data
from this source went through an extra analysis step similarly to what was
mentioned for EFFIS in a previous subsection. The details of this process
will be discussed in 3.2.1.

The service offers four types of products:

• referecence products establish the situation before the event;

• first estimates roughly identify and assess the most affected locations;

• delineation products assess the extent of the event;
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• gradings evaluate the intensity and scope of the damage.

Both delineation and grading types happen after the event, with gradings
being more definitive. If data is only of medium quality, multiple releases are
produced. Moreover, more versions are published if errors are found. How-
ever, since products are created on-demand, not every activation contains
the same types of products, with some activations not including any.

For the purpose of this thesis, reference products have been excluded, as
they don’t bring direct information about a fire event on their own. For
each activation, grading products were given the highest priority, followed
by delineation, and finally first estimates.

Products are distributed in the form of compressed archives, each contain-
ing shapefiles about a variety of related aspects to the fire, like the AOI for
the event, or information about the local hydrography.

Unfortunately, there is no uniformity in terms of what aspects are covered
by a product. Some of these even lack the delineation of the burnt area,
only providing the AOI. Any activation for which neither the delineation or
the AOI were provided was excluded from further consideration. For the
remaining ones, the most detailed available shapefile was considered, and
every POLYGON and MULTIPOLYGON therein contained was considered
as a portion of the burnt area for the activation. They were then inserted in
the geo-spatial database, where they were subsequently combined together in
order to form a unique geometric representation of each activation, similarly
to how EFFIS data is provided, instead of a fragmentized one.

This filtering process left only around 80 activations out of the 117 that
were reported at the time of the data retrieval. Their locations can be visu-
alised as shown in Figure 3.4.

3.2 Dataset Creation

3.2.1 Ground Truth
In order to build a ground truth for the hotspot disambiguation task, which
establishes whether a hotspot is connected to a fire event or not, the adopted
approach was to perform an intersection between detected hotspots and avail-
able previous fire events. More in detail, both of the following conditions need
to be met in order to have a match between the two:
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Figure 3.4. Location of Copernicus EMS fire activations. Each point repre-
sents the center of a burned area.

• Temporal intersection: the considered hotspot has to be detected at a
time comprised between the starting date and the ending date of the
given fire event.

• Spatial intersection: the center of the hotspot firepixel has to be detected
in the area affected by the given fire event, barring the spatial resolution
of the hotspot.

If both conditions are met, the considered hotspot is assigned to the positive
class. Otherwise, it will be considered as part of the negative one. This
technique has at least two critical points that need to be considered.

Firstly, it is required that most of the fire events in the considered time
interval are detected, if not all. This implies that hotspots that cannot be
linked to a fire event can only be in the negative class. Unfortunately, the
available data sources cover for only about 80% of the burnt areas, mostly
caused by bigger fires, since tracking damage of smaller ones is a harder
task for satellite data. This also means that some noise is inevitable with the
provided context, as hotspots related to those fires causing the remaining 20%
will be assigned a negative label, therefore being false negatives. However,
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it should be noted that there is no information about what is the percentage
of hotspots that is linkable to those fires.

Secondly, if criteria for intersection are not correctly defined, those hotspots
that fall near the decision boundary could be classified with the wrong label,
adding to the noise problem that was mentioned.

In terms of spatial comparisons, this issue is accounted for by including
a buffer region surrounding the burnt area of a fire, with minimum size
comparable to the uncertainty of measurements. This way, if a hotspot is
detected in a firepixel that is centered outside of a burnt area, but near to it
and in the right time frame, it will be included in the positive class.

Concerning the temporal aspect, the duration of fire events from the
adopted products is not clearly defined. As already discussed in previous
sections, both Copernicus EMS and EFFIS report only a single date for any
fire event. Considering that big fire events such as those covered by these
products can last more than a single day, each hotspot detected after the
reported date would be assigned to the negative class and act as noise.

For this reason, one further analysis was performed for both of the EFFIS
and Copernicus EMS burnt areas products, with the goal of inferring a likely
end date for each activation. The chosen strategy can be described as follows.

For each activation, starting from the reported date of the fire, the number
of hotspots intersecting the burnt area in the given date is counted, including
all three hotspot collections. If the total for that date is higher than or equal
to a minimum threshold level, then the considered day is included as part
of the fire event. The process stops when it finds a date with a count lower
than the threshold, which is meant to be seen as a hyperparameter.

In order to find a reasonable value, a few alternatives have been considered:
{1, 2, 3, 5, 10}. In Figure 3.5 it is shown how using different values as
threshold influences the inferred fire duration for EFFIS activations.
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Figure 3.5. Effect of threshold (number of hotspots) on the inferred fire du-
ration, focusing on the more numerous EFFIS activations. A higher threshold
leads to reduced inferred durations.

Even by employing this technique, the majority of the fire activations
has an inferred duration of one day. Nonetheless, it can be seen that low
thresholds allow to reveal the longer duration of a significant portion of the
recorded fire events. The adopted threshold was 2, as a trade-off between
sensitivity and resilience to false detections.

Following this step, the intersection between hotspots and burnt area prod-
ucts was made once again in order to assign each hotspot to a class, therefore
obtaining what will be used as ground truth in later sections.

The location of all positive hotspots is shown in Figure 3.6. In order to
adjust for the sheer number of detections, they are visualised in an aggregated
form via a hex-bin plot, color-coding each region based on the number of
hotspots it contains.

While the same approach can be used for the negative class, it is necessary
to perform a random sampling for visualization purposes due to the signif-
icantly larger number of entries. The results with a reduced sample size of
1/10 are shown in Figure 3.7. The disparity between the two classes will be
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addressed in Subsection 3.2.2.

Figure 3.6. Hexbin plot of positive hotspot locations. Each bin is
color-coded to represent the number of contained hotspots, with a
logarithmic scale.

Figure 3.7. Hexbin plot of negative hotspot locations, sampled to a 1/10
of the available amount. Each bin is color-coded to represent the number of
contained hotspots, with a logarithmic scale.
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3.2.2 Dataset Balancing
Data collected in the way described in previous sections leads to a severely
unbalanced distribution between positive and negative class, as shown in
Figure 3.8. In order to prevent a situation where a model can classify each
sample as negative and score over 99% accuracy, a balancing operation has
been performed to get closer to a 50%-50% distribution.

Figure 3.8. Initial balancing of the positive and negative hotspot classes.
The negative class is over-represented for every hotspot collection.

In particular, a sampling of the negative class was performed to reduce
its size to be comparable with the positive one. While doing so, a secondary
goal that was kept in consideration was to maintain a similar geographic
distribution of hotspots in the negative class. To achieve this objective, a
stratification based on latitude and longitude coordinates of detection was
done.
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Since they are continuous attributes, it was required to first perform a
discretization of these variables. The procedure can be described with the
following steps.

Starting from the bounding box of the considered pan-European area,
projected in the WGS:84 space, its width (longitude) is subdivided in 2684
splits, so that each one measures approximately 0.03°. The number of height
subdivisions (latitude) is computed by using 0.03° as measure of each split,
rounding up, obtaining a grid with squared cells in the projected space. Since
the number of intervals along the latitude direction was rounded up, the size
of this grid is greater than the size of the bounding box. Therefore, an offset
is applied in the latitude direction to adjust for the excessive height. Finally,
each hotspot is assigned to the cell of the grid that contains its location.

A visual representation of how the created stratification grid compares to
the starting bounding box is shown in Figure 3.9.

The value of 0.03° was chosen to be comparable with the minimum approx-
imate spatial resolution out of the three hotspot collections, which is 0.01° for
the MCD14ML product obtained from MODIS, while being slightly greater
in order to reduce the number of cells in the grid to be lower than the number
of hotspots. This approach allows to transition to coarser aggregations, if
required by future studies.

The selection process is performed separately for each hotspot product, so
that a dataset built after this selection can be balanced on all three collections
and can consider each of them independently. This allows to adjust for the
different quantities of data of the three collections, as previously discussed.

The steps are as follows. For each cell containing positive hotspots, include
all of them. After that, create a ranking of the negative hotspots in the same
cell, based on their temporal distance from any of the positives. Then, pick
as many negative hotspots as the positive ones, prioritising those detected
not close to positives.

For other cells that only contain negative hotspots, if their number of
hotspots is below a threshold, exclude them from further consideration. Oth-
erwise, perform a random sampling without repetition, to reduce sample size
to a factor of 1/threshold.
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Figure 3.9. Representation of the stratification grid. The bounding box of
Europe is shown in black, while the stratification grid is in green.

The ranking described above aims to exclude those hotspots that were left
out of the positive class during the inferral of end dates for fire events: by
prioritizing those that are detected farther from the decision boundary, there
is a higher chance they are true negatives. This approach would allow to
characterise an area both during a fire event and farther from it. However, if
only this step was adopted, not enough negative hotspots would be available
to balance the positive class, as displayed in Figure 3.10.

Therefore, with the adjustments adopted for other cells, it is possible to
include extra negative hotspots, while adding a threshold to exclude areas
with false detections, and reducing their count.
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Figure 3.10. Resulting balancing of only taking cells which contain at
least one positive hotspot.

As will be described in Subsection 3.2.3, two versions of the dataset were
created, denoted as "v2 " and "v3 ". Each version has its specific threshold
values, because different groups of positive hotspots are considered during
stratification, leading to a different selection. The values used for each are
reported in Table 3.8. They were chosen empirically with the two goals
of i) having the two classes represented as close as possible to a 50%-50%
split for each hotspot collection, and ii) not having a selection with more
positive hotspots than negative ones, since this would hint an underlying
data distribution that doesn’t match the whole collection. Considering that
these threshold levels are integer numbers, the chosen values are the closest
ones to achieve these objectives.

The results of the balancing process are reported in Figure 3.11 and Figure
3.12 respectively.

Dataset version MCD14ML VNP14ML VNP14IMGML
v2 9 7 20
v3 6 5 11

Table 3.8. Threshold levels used to evaluate cells in the stratification grid.
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Figure 3.11. Resulting balancing of the v2 version of the dataset.

Figure 3.12. Resulting balancing of the v3 version of the dataset.
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3.2.3 Incremental Data Integration

In order to assess the effects spawned from integrating land cover and Sentinel
imagery together with hotspot data, an incremental approach was adopted.
Considering the time availability of each collected data source, reported in
Table 3.9, it can be seen that there is no data for Sentinel-3 before April
2016.

Data Source Time Coverage
MCD14ML 2012 - May 2020
VNP14ML 2012 - May 2020
VNP14IMGML 2012 - May 2020
CLC2018 Considered time-invariant
Sentinel-3 OLCI April 2016 - Present

Table 3.9. Time availability of the adopted data sources.

For this reason, two versions of the dataset were created, named "v2"
and "v3" after one first failed attempt. Each version underwent a separate
process of stratification, as presented in previous sections, due to the differing
selection of available hotspots.

v2 covers from year 2012 to May 2020, and it includes hotspot data and
land cover, but no data from Sentinel sources. The reasoning behind this
version is to have a wider sample size in terms of hotspot data, while still
being able to assess the impact of land cover for the disambiguation task.

v3 covers from year 2017 to May 2020, in order to facilitate future inte-
gration with other Sentinel products that may not be available before. It
includes all sources that were used for v2, while adding Sentinel-3 OLCI im-
agery. Images were retrieved after the stratification process for hotspot data
had taken place, as a way to accommodate for the restrictions on requests
for Sentinel imagery, as already presented in Subsection 3.1.3.

Similarly, images for land cover were rasterized at this point in time, start-
ing from the geometry objects obtained in Subsection 3.1.2, to represent the
surroundings of the area impacted by a hotspot.

The important differences between the two versions are described in Table
3.10.
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v2 v3
Total number of hotspots 553157 284636
MCD14ML positive-negative count 54415-60444 25078-28197
VNP14ML positive-negative count 41313-49708 19629-21762
VNP14IMGML positive-negative count 167074-180203 82879-106155
Overall class balancing 47.5%-52.5% 44.9%-55.1%
Time coverage 2012 - May 2020 2017 - May 2020
Includes land cover yes yes
Includes Sentinel-3 OLCI no yes

Table 3.10. Main differences between the two versions of the dataset.

3.3 Further Preprocessing and Encodings
As a last step before being used for experiments, data is loaded from the
dataset and encoded. Each data source is first addressed separately, before
being combined with the rest and normalized to zero mean and unit variance.

Although the three hotspot collections can be treated separately, one of
the considered approaches is to combine them in one, exploiting the fact that
they share the majority of attributes. In particular, since each hotspot col-
lection uses brightness temperatures based on different spectral bands, these
represent physical measurements with different meanings and they cannot
be considered as shared. Therefore, a conventional value of 0 was used as a
way to represent missing brightness temperature values. This is visualized in
Figure 3.13. The next paragraphs contain a description of the preprocessing
performed for each source.

Hotspot Data
All three hotspot collections go through the same processing, which can be
summarised as follows:

• Any attribute that was used as an identifier is removed, namely id and
sample;

• Latitude and longitude attributes are removed;

• Any remaining categorical attribute is one-hot encoded;

• Information about the year of detection is removed;
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Figure 3.13. Adopted approach to combine all hotspot collections for a
unified model. MCD14ML features are represented in yellow, VNP14ML
is in green, VNP14IMGML is in orange. On the left: attributes of the
three hotspot collections, with FRP and time features in common. On
the right: 0-padding is added to represent missing data, and the three
collections are combined.

• Remaining information about date and time of detection is encoded with
a periodical sinusoidal representation;

• Other numerical attributes are left untouched.

The year of detection was removed in order to facilitate the learning of
year-invariant features and to avoid potential shortcuts. Similarly, latitude
and longitude were removed with a similar concern in mind, considering how
most available fire activations are clustered in the Mediterranean area.

Regarding the sinusoidal representation, it is used as a way to express
periodicity: for each point in time, its progression over a period can be
represented with a polar parametrization to encapsulate the ciclic nature of
the attribute, in the same way as sine and cosine functions can be used to
draw circles.

The considered periodicities are: i) hour progression over 24-hour cycle,
ii) day progression over 366-day cycle, iii) week number over 53-week cycle.
For each, 2 features are extracted starting from the detection timestamp, for
a total of 6 features.

Figure 3.14 shows how this encoding can be applied for the week number,
as an example.

39



3 – Data Preparation

Figure 3.14. Encoding of time attributes in a sinusoidal representation.
Above: the ciclic nature of this encoding can be visualized as a circle. Below:
two features are obtained starting from the week number.
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Sentinel-3 OLCI
Sentinel-3 OLCI images obtained during collection (Section 3.1) are char-
acterised by varying image size, going from 1 to 7 pixels on the horizontal
direction, and from 2 to 8 pixels on the vertical one. The number of channels
is fixed and is equal to 21.

In order to obtain a consistent number of features from these images, while
maintaining a low dimensionality, the used approach was to average all the
pixels in each band, obtaining a total of 21 features.

Land Cover
Images obtained in previous sections have a resolution of 16x16, with 16
bands - one for each used land cover category. Each channel was then down-
sampled to 4x4x16, to further reduce dimensionality, in analogy to what was
performed for Sentinel imagery.

Finally they were flattened to a one-dimensional array.
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Chapter 4

Methodology

This chapter focuses on formalizing the addressed problem, as well as defining
a proposed solution and the adopted methodology. In particular: Section
4.1 describes the used models; Section 4.2 details what external frameworks
and tools were used in the context of this thesis; Section 4.3 presents the
performed experiments and the validation process.

The focus of this work is to disambiguate hotspot detections that are re-
lated to wildfires from ones that are not. More formally, given a hotspot
detection, characterised with:

• timestamp of detection;

• brightness temperature measurements obtained from two spectral bands;

• the estimation of its Fire Radiative Power;

• (optionally) a raster of the surrounding land cover (an image with 16
channels);

• (optionally) a Sentinel-3 OLCI acquisition of the same area (an image
with 21 channels);

the goal is to assign a numeric label in {0, 1} ⊂ N, in order to establish
if it belongs to the class of hotspots related to wildfires or not. The problem
is therefore structured as a binary classification task. A set of hotspots, for
which the class is known, is used to train a classification model in a supervised
way, which is then evaluated against a different set of hotspots.
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4.1 Adopted Models
For the purpose of this thesis, two models were adopted. For both, different
sets of hyperparameters were considered. The best for each experiment set
was chosen following the validation approach described in Section 4.3.

The first model is a Random Forest Classifier, an ensemble of Decision
Trees where each tree is built from a subset of the total available features.
Individual trees look for boundaries in the feature space that would allow to
reduce impurity. In order to contain overfitting, it is possible to limit the
growth of a tree. One of the ways to do so is to impose a minimum number
of samples required for a leaf, therefore stopping any further split for that
branch.

This type of model is known for its interpretability: a ranking of feature
importance for classification can be obtained after training, and individual
decision trees of the ensemble can be visualized. An example of application
of this model in a related field can be found in Ramo and Chuvieco (2017)
[21], which addresses the burnt area monitoring task.

The second model is a Multi Layer Perceptron (MLP), defined as an en-
semble of neurons, organised in feed-forward fully-connected layers, where
each node in a layer is connected to all the nodes in the following. The
minimum number of layers is equal to 3, considering that one is an input
layer, and one is the output one; every other one in-between is denoted as
"hidden". Unlike a linear perceptron, each node introduces non-linearities by
adopting a non-linear activation function. The higher is the layer count, the
more non-linearities can be represented.

This model was chosen in place of convolutional neural networks due to the
limited amount of features that are available with respect to other common
applications in the field of image processing, for both Sentinel-3 OLCI and
Copernicus EMS.

4.2 Frameworks and Tools
In this section, the software components used for this work are introduced,
as well as details on the hardware of the machine that ran the experiments.

The whole project was developed in Python with the aid of the following
external libraries. Geo-spatial data was processed with shapely, Fiona and
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GeoPandas, and then inserted in a PostgreSQL database with GIS exten-
sion enabled (referred to as PostGIS), where it was handled via SQLAlchemy
and GeoAlchemy2. Rasters produced starting from geometry objects con-
tained therein were obtained via rasterio. Sentinel imagery was obtained via
Sentinel-Hub. TIF images were loaded in memory via scikit-image and tifffile.
Pre-processing and visualization were performed with Numpy, Pandas, Mat-
plotlib. Training of models and validation were performed with scikit-learn.
All the versions are specified in Table 4.1.

Software Package Version
Python 3.6.9
shapely 1.7.1
Fiona 1.8.18
GeoPandas 0.8.1
PostGIS 13.0
SQLAlchemy 1.3.20
GeoALchemy2 0.8.4
rasterio 1.2.2
Sentinel-Hub 3.2.1
scikit-image 0.17.2
tifffile 2020.9.3
numpy 1.19.4
Pandas 1.1.4
Matplotlib 3.3.4
scikit-learn 0.24.2

Table 4.1. Versions of adopted software.

The experiments were run on a workstation with an Intel Core i9-7940X
@ 3.10GHz with 128GB of RAM.

4.3 Experimental Design and Validation Pro-
cedure

This section presents and motivates all the considered experiments (Subsec-
tion 4.3.1) as well as the validation process, and provides the used values for
hyperparameters (Subsection 4.3.2).
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4.3.1 Experimental Design
The first experiments are focused on determining a baseline - a reference value
to be used for comparison with all later experiments. In particular, it was
obtained starting exclusively from hotspot data, with different combinations
of attributes. The following scenarios have been considered for both versions
of the dataset:

• Comparing the classification label provided by the existing hotspot de-
tection algorithms (attribute type) with the constructed ground truth.
No models were trained for this;

• Using exclusively FRP and time features, to assess the performance of
using only attributes that are not collection-specific, separately for each
hotspot collection;

• Using FRP and time features combined with collection-specific bright-
ness temperatures, separately for each hotspot collection, to check if
they could bring any improvements;

• Using FRP, time features, brightness temperatures and including the
type attribute, together with its reported confidence. The goal of this
experiment is to verify that this label negatively influences generality of
the learned features for classification by being used as a shortcut, and
it was therefore excluded from further considerations. More on this in
Chapter 5. This was done by training a random forest with the selected
features and plotting the resulting feature importance. No MLP was
trained for this purpose;

• Using FRP, time features and brightness temperatures of all three col-
lections combined in one as previously described, in order to evaluate
the option of having a single unified model.

The second batch of experiments focuses on the introduction of land cover
data as further characterisation of a hotspot, available for both versions of
the dataset. Therefore the following scenarios were considered for both:

• Using FRP, time features, brightness temperatures of hotspots and adding
the land cover of the considered area, separately for each hotspot collec-
tion;

• Using FRP, time features, brightness temperatures and land cover of all
three hotspot collections combined in one.
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The third batch focuses on the introduction of Sentinel-3 OLCI data, only
available for version v3, which is therefore the only version considered for the
following experiments:

• Using FRP, time features, brightness temperatures of hotspots, com-
bined with land cover of the surroundings, and adding Sentinel-3 OLCI
imagery of the same area, separately for each hotspot collection;

• Using FRP, time features, brightness temperatures of hotspots, with
land cover and Sentinel-3 OLCI data of the area, combining all three
hotspot collections in one.

All experiments were performed with both presented models, except for
the two for which it was specified otherwise. The results are presented and
discussed in Chapter 5.

4.3.2 Validation Procedure
For each described experiment that required training a model, the dataset
was randomly divived in two splits, stratified for class: one for training and
hyperparameter tuning, and another for testing purposes. The proportions
of the two are respectively 90%-10% of the total.

Then, for the training and tuning of each model, a grid search with K-fold
cross-validation was performed using the f1-score as guiding metric for the
process. The number of folds K is equal to 5. Finally, the best performing
model is evaluated against the testing split in terms of accuracy, precision,
recall, and f1-score.

The considered values for hyperparameters are shared among all exper-
iments that use the same model. They are reported in Table 4.2 for the
Random Forest Classifier, and in Table 4.3 for the Multi-Layer Perceptron.

An early-stopping criterion is adopted for the training of MLPs: a small
fraction of the available data is set aside, and the model is evaluated against it
at each epoch. If several epochs bring no improvements, the training process
is stopped.
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Hyperparameter Considered values
Impurity criterion {GINI, entropy}
Number of trees 100
Samples per leaf (minimum) {2, 5, 10, 20}
Number of considered features

√
feature_count

random_state 42
Number of parallel jobs 4

Table 4.2. Considered values for the hyperparameters of Random Forests.

Hyperparameter Considered values

Hidden Layer sizes
{(100),
(128, 24),
(100, 32, 8)}

Activation Function ReLU
Solver SGD
Batch size 200
Initial learning rate 1× 10−3

Learning rate 1/5
Momentum 0.9
Max number of epochs 200
Early stopping enabled
Number of unsuccessful epochs 10

before early stopping
Validation fraction for early 0.05

stopping
random_state 42

Table 4.3. Considered values for the hyperparameters of MLPs.
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Chapter 5

Results

This chapter focuses on reporting the obtained results from the experiments
presented in Chapter 4 and discussing them. In particular: Section 5.1 defines
what will be considered as baseline; Section 5.2 presents the performances
after integrating land cover data; Section 5.3 describes the results obtained
after adding Sentinel-3 OLCI imagery; Section 5.4 reports the results aggre-
gated by hotspot collection and model, instead of by experiment, to better
visualize improvements.

5.1 Baseline
In Table 5.1 the results of evaluating the labels provided by existing algo-
rithms against the proposed ground truth are shown.

The constructed ground truth is obtained based on the hypothesis that
burnt areas as provided by EFFIS cover on average about 80% of the total,
as reported in their statistics. If this holds true, then the vast majority of
hotspots related to those fire events will be assigned to the positive class.
Although admittedly a part of positive hotspots are left out and assigned to
the negative class in this work, the results above show how existing algorithms
lie heavily on the opposite side, with a very high recall on the positive class
at the expenses of accuracy and recall for the negative class.

All the following experiments are to be interpreted while bearing in mind
that models trained in this thesis use f1-score as guiding metric, therefore
aiming to balance the two classes. More on this point will be discussed in
Chapter 6.

In Table 5.2 the results of only using time features and FRP are shown.
This experiment represents the starting point for all the following ones, which
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Dataset Hotspot Acc. Precision Recall f1
version Collection (pos) (neg) (pos) (neg)

v2
MCD14ML .6334 .5646 .9692 .9889 .3134 .7188
VNP14ML .4548 .4543 .9578 .9999 .0018 .6247
VNP14IMGML .6914 .6117 .9610 .9815 .4224 .7537

v3
MCD14ML .6554 .5788 .9672 .9863 .3605 .7295
VNP14ML .4753 .4749 .9411 .9999 .0015 .6440
VNP14IMGML .7101 .6047 .9642 .9760 .5029 .7467

Table 5.1. Comparison between pre-existing labels and the pro-
posed ground truth.

incrementally add more features and are expected to improve performances.

Dataset Model Hotspot Acc. Precision Recall f1
version Collection (pos) (neg) (pos) (neg)

v2

RF
MCD14ML .7912 .7736 .8077 .7907 .7917 .7821
VNP14ML .7983 .7777 .8155 .7781 .8151 .7779
VNP14IMGML .7973 .7772 .8176 .8113 .7843 .7939

MLP
MCD14ML .7642 .7566 .7709 .7407 .7854 .7486
VNP14ML .7777 .7559 .7956 .7533 .7978 .7547
VNP14IMGML .7498 .7296 .7703 .7626 .7380 .7458

v3

RF
MCD14ML .8019 .7866 .8160 .7956 .8076 .7911
VNP14ML .8074 .7899 .8239 .8095 .8054 .7996
VNP14IMGML .8147 .7791 .8441 .8051 .8222 .7919

MLP
MCD14ML .7570 .7442 .7682 .7380 .7739 .7411
VNP14ML .7652 .7545 .7747 .7491 .7797 .7518
VNP14IMGML .7606 .7290 .7848 .7214 .7911 .7252

Table 5.2. Performances by using only FRP and time features.
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As expected, recall for the positive class dropped, while accuracy increased
together with performance on the negative class.

Table 5.3 shows the scores obtained by adding collection-specific brightness
temperatures as features for the respective models.

Dataset Model Hotspot Acc. Precision Recall f1
version Collection (pos) (neg) (pos) (neg)

v2

RF
MCD14ML .8117 .7930 .8294 .8153 .8084 .8040
VNP14ML .8142 .7912 .8339 .8025 .8240 .7968
VNP14IMGML .8052 .7843 .8263 .8208 .7907 .8021

MLP
MCD14ML .7727 .7709 .7742 .7402 .8020 .7552
VNP14ML .7880 .7692 .8033 .7614 .8101 .7653
VNP14IMGML .7589 .7536 .7637 .7413 .7752 .7474

v3

RF
MCD14ML .8254 .8103 .8392 .8219 .8285 .8160
VNP14ML .8199 .8046 .8343 .8197 .8201 .8121
VNP14IMGML .8261 .7937 .8525 .8146 .8350 .8040

MLP
MCD14ML .7693 .7644 .7735 .7380 .7973 .7510
VNP14ML .7727 .7500 .7948 .7816 .7646 .7655
VNP14IMGML .7675 .7437 .7848 .7157 .8079 .7294

Table 5.3. Performances by using only FRP, time features and
brightness temperatures.

There are slight improvements in terms of accuracy and recall for the
negative class, more pronounced for the MODIS collection than for the others.
It is also important to note how performances are comparatively slightly
higher on v3 than on v2, presumably due the reduced sample size.
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Dataset Model Hotspot Acc. Precision Recall f1
version Collection (pos) (neg) (pos) (neg)

v2

RF
MCD14ML .8314 .8038 .8593 .8523 .8127 .8273
VNP14ML .8185 .7938 .8399 .8107 .8250 .8022
VNP14IMGML .8374 .8024 .8763 .8783 .7994 .8386

MLP
MCD14ML .7989 .7739 .8237 .8131 .7861 .7930
VNP14ML .7886 .7689 .8049 .7640 .8091 .7664
VNP14IMGML .8037 .7655 .8479 .8535 .7575 .8071

v3

RF
MCD14ML .8480 .8244 .8709 .8608 .8366 .8422
VNP14ML .8230 .8058 .8394 .8263 .8201 .8159
VNP14IMGML .8617 .8182 .9005 .8798 .8477 .8479

MLP
MCD14ML .8108 .7839 .8373 .8262 .7970 .8045
VNP14ML .7616 .7467 .7752 .7532 .7692 .7499
VNP14IMGML .8219 .7679 .8728 .8503 .7998 .8070

Table 5.4. Performances obtained by using FRP, time features, brightness
temperatures and pre-existing labels.

Table 5.4 shows the effects of adding the pre-existing label and its con-
fidence to the set of features. Some extra minor improvements appear. In
order to explore the impact these features have in terms of decisions for the
models, feature importance as learned by the Random Forest during train-
ing is plotted. Figure 5.1 focuses on MODIS, and also shows this ranking as
obtained for the previous experiments for reference.
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5.1 – Baseline

Figure 5.1. Comparison of feature importance using different sets of at-
tributes. It is computed as Mean Decrease in Impurity (MDI) from the
trained Random Forest models. The adopted impurity measure for these
experiments was Entropy.

When included, the provided label obtains a significant importance, and
in some trees it is even higher than any other feature. Since previous experi-
ments have shown how other features can be sufficient on their own to train
a rudimentary model, and considering how they can get obscured when the
label is included, it will be excluded from further considerations.

The last experiment of this batch tries to combine all hotspot data sources
to create a unified model. The results are displayed in Table 5.5.
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Dataset Model Acc. Precision Recall f1
version (pos) (neg) (pos) (neg)

v2 RF .8109 .7924 .8286 .8157 .8066 .8039
MLP .7572 .7391 .7742 .7556 .7586 .7473

v3 RF .8229 .8021 .8400 .8044 .8380 .8033
MLP .7593 .7351 .7787 .7264 .7863 .7307

Table 5.5. Performances obtained by using FRP, time features and bright-
ness temperatures, while combining all hotspot collections.

5.2 Land Cover experiments

The second batch of experiments assesses the effects of the addition of land
cover data for the surroundings of the area affected by a hotspot. Results
are shown in Table 5.6.

For both versions of the dataset, there are improvements with respect
to the baseline results. While these are more marked for the recall of the
positives, this metric increased for both classes, leading to an improvement
on accuracy as well. In particular, the drop in recall of the positive class
is now limited, when compared to the baseline. The obtained results even
show better performances than what was achieved with models including
pre-existing labels.

5.3 Sentinel-3 OLCI experiments

The last batch of experiments incorporates Sentinel-3 OLCI imagery to the
previous ones. It is only available for the v3 dataset version, since v2 doesn’t
include this data source. The results are reported in Table 5.7.
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Dataset Model Hotspot Acc. Precision Recall f1
version Collection (pos) (neg) (pos) (neg)

v2

RF

MCD14ML .8714 .8137 .9419 .9448 .8052 .8744
VNP14ML .8836 .8236 .9490 .9462 .8316 .8807
VNP14IMGML .8608 .7985 .9442 .9505 .7776 .8679
Combined .8634 .8020 .9416 .9459 .7887 .8681

MLP

MCD14ML .8624 .8094 .9256 .9283 .8031 .8648
VNP14ML .8693 .8120 .9307 .9264 .8218 .8655
VNP14IMGML .8460 .7859 .9264 .9346 .7639 .8538
Combined .8515 .7910 .9289 .9344 .7766 .8567

v3

RF

MCD14ML .8928 .8376 .9573 .9582 .8345 .8939
VNP14ML .9081 .8516 .9756 .9766 .8462 .9098
VNP14IMGML .8948 .8248 .9682 .9646 .8404 .8892
Combined .8999 .8351 .9706 .9687 .8438 .8969

MLP

MCD14ML .8898 .8396 .9468 .9471 .8388 .8901
VNP14ML .9043 .8521 .9650 .9660 .8486 .9055
VNP14IMGML .8869 .8178 .9592 .9544 .8344 .8808
Combined .8907 .8233 .9654 .9635 .8312 .8879

Table 5.6. Performances obtained by adding land cover information
to hotspot data.

Dataset Model Hotspot Acc. Precision Recall f1
version Collection (pos) (neg) (pos) (neg)

v3

RF

MCD14ML .8949 .8351 .9665 .9677 .8301 .8965
VNP14ML .9082 .8506 .9771 .9780 .8451 .9099
VNP14IMGML .9031 .8374 .9705 .9668 .8535 .8975
Combined .9088 .8490 .9720 .9697 .8590 .9053

MLP

MCD14ML .8855 .8321 .9474 .9482 .8298 .8863
VNP14ML .8964 .8449 .9562 .9572 .8415 .8975
VNP14IMGML .8907 .8330 .9471 .9389 .8531 .8828
Combined .8962 .8407 .9535 .9491 .8530 .8916

Table 5.7. Performances obtained by integrating Sentinel-3 OLCI imagery
with hotspot data and land cover.
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The values show very minor improvements for Random Forest in terms
of positive class recall, although consistently on all hotspot products. This
could possibly be caused by the limited quantity of information due to the
spatial resolution of the instrument and the adopted collection process for
this work. On the other side, performances for MLP show a minor decline
for the MCD14ML and VNP14ML products, but a minor improvement on
VNP14IMGML and the combination of all hotspot products. Further inves-
tigation focused on the learning process for this model would be needed, and
it will be suggested in Chapter 6.

5.4 Aggregation by hotspot collection and model

This section presents the obtained results aggregated by collection and model,
so that the incremental improvements brought by the integration of the
adopted data sources are visible, and adds some considerations to summarize
them.

In particular: Tables 5.8 and 5.9 focus on the MCD14ML product; Tables
5.10 and 5.11 are for VNP14ML; Tables 5.12 and 5.13 are for VNP14IMGML;
Tables 5.14 and 5.15 are for combined hotspots.

MCD14ML, Random Forest
Dataset v. Experiment Accuracy Precision Recall f1-score

(pos) (neg) (pos) (neg)

v2

Baseline .6334 .5646 .9692 .9889 .3134 .7188
FRP + time .7912 .7736 .8077 .7907 .7917 .7821
Brightness temp. .8117 .7930 .8294 .8153 .8084 .8040
Landcover .8714 .8137 .9419 .9448 .8052 .8744

v3

Baseline .6554 .5788 .9672 .9863 .3605 .7295
FRP + time .8019 .7866 .8160 .7956 .8076 .7911
Brightness temp. .8254 .8103 .8392 .8219 .8285 .8160
Landcover .8928 .8376 .9573 .9582 .8345 .8939
Sentinel .8949 .8351 .9665 .9677 .8301 .8965

Table 5.8. Progressive changes in performances for Random Forest models
on the MCD14ML product in the presented experiments.
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MCD14ML, Multi-Layer Perceptron
Dataset v. Experiment Accuracy Precision Recall f1-score

(pos) (neg) (pos) (neg)

v2

Baseline .6334 .5646 .9692 .9889 .3134 .7188
FRP + time .7642 .7566 .7709 .7407 .7854 .7486
Brightness temp. .7727 .7709 .7742 .7402 .8020 .7552
Landcover .8624 .8094 .9256 .9283 .8031 .8648

v3

Baseline .6554 .5788 .9672 .9863 .3605 .7295
FRP + time .7570 .7442 .7682 .7380 .7739 .7411
Brightness temp. .7693 .7644 .7735 .7380 .7973 .7510
Landcover .8898 .8396 .9468 .9471 .8388 .8901
Sentinel .8855 .8321 .9474 .9482 .8298 .8863

Table 5.9. Progressive changes in performances for MLP models on the
MCD14ML product in the presented experiments.

VNP14ML, Random Forest
Dataset v. Experiment Accuracy Precision Recall f1-score

(pos) (neg) (pos) (neg)

v2

Baseline .4548 .4543 .9578 .9999 .0018 .6247
FRP + time .7983 .7777 .8155 .7781 .8151 .7779
Brightness temp. .8142 .7912 .8339 .8025 .8240 .7968
Landcover .8836 .8236 .9490 .9462 .8316 .8807

v3

Baseline .4753 .4749 .9411 .9999 .0015 .6440
FRP + time .8074 .7899 .8239 .8095 .8054 .7996
Brightness temp. .8199 .8046 .8343 .8197 .8201 .8121
Landcover .9081 .8516 .9756 .9766 .8462 .9098
Sentinel .9082 .8506 .9771 .9780 .8451 .9099

Table 5.10. Progressive changes in performances for Random Forest models
on the VNP14ML product in the presented experiments.
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VNP14ML, Multi-Layer Perceptron
Dataset v. Experiment Accuracy Precision Recall f1-score

(pos) (neg) (pos) (neg)

v2

Baseline .4548 .4543 .9578 .9999 .0018 .6247
FRP + time .7777 .7559 .7956 .7533 .7978 .7547
Brightness temp. .7880 .7692 .8033 .7614 .8101 .7653
Landcover .8693 .8120 .9307 .9264 .8218 .8655

v3

Baseline .4753 .4749 .9411 .9999 .0015 .6440
FRP + time .7652 .7545 .7747 .7491 .7797 .7518
Brightness temp. .7727 .7500 .7948 .7816 .7646 .7655
Landcover .9043 .8521 .9650 .9660 .8486 .9055
Sentinel .8964 .8449 .9562 .9572 .8415 .8975

Table 5.11. Progressive changes in performances for MLP models on the
VNP14ML product in the presented experiments.

VNP14IMGML, Random Forest
Dataset v. Experiment Accuracy Precision Recall f1-score

(pos) (neg) (pos) (neg)

v2

Baseline .6914 .6117 .9610 .9815 .4224 .7537
FRP + time .7973 .7772 .8176 .8113 .7843 .7939
Brightness temp. .8052 .7843 .8263 .8208 .7907 .8021
Landcover .8608 .7985 .9442 .9505 .7776 .8679

v3

Baseline .7101 .6047 .9642 .9760 .5029 .7467
FRP + time .8147 .7791 .8441 .8051 .8222 .7919
Brightness temp. .8261 .7937 .8525 .8146 .8350 .8040
Landcover .8948 .8248 .9682 .9646 .8404 .8892
Sentinel .9031 .8374 .9705 .9668 .8535 .8975

Table 5.12. Progressive changes in performances for Random Forest models
on the VNP14IMGML product in the presented experiments.
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VNP14IMGML, Multi-Layer Perceptron
Dataset v. Experiment Accuracy Precision Recall f1-score

(pos) (neg) (pos) (neg)

v2

Baseline .6914 .6117 .9610 .9815 .4224 .7537
FRP + time .7498 .7296 .7703 .7626 .7380 .7458
Brightness temp. .7589 .7536 .7637 .7413 .7752 .7474
Landcover .8460 .7859 .9264 .9346 .7639 .8538

v3

Baseline .7101 .6047 .9642 .9760 .5029 .7467
FRP + time .7606 .7290 .7848 .7214 .7911 .7252
Brightness temp. .7675 .7437 .7848 .7157 .8079 .7294
Landcover .8869 .8178 .9592 .9544 .8344 .8808
Sentinel .8907 .8330 .9471 .9389 .8531 .8828

Table 5.13. Progressive changes in performances for MLP models on the
VNP14IMGML product in the presented experiments.

Combined hotspots, Random Forest
Dataset v. Experiment Accuracy Precision Recall f1-score

(pos) (neg) (pos) (neg)

v2 Brightness temp. .8109 .7924 .8286 .8157 .8066 .8039
Landcover .8634 .8020 .9416 .9459 .7887 .8681

v3
Brightness temp. .8229 .8021 .8400 .8044 .8380 .8033
Landcover .8999 .8351 .9706 .9687 .8438 .8969
Sentinel .9088 .8490 .9720 .9697 .8590 .9053

Table 5.14. Progressive changes in performances for Random Forest models
on combined hotspots in the presented experiments.
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Combined hotspots, Multi-Layer Perceptron
Dataset v. Experiment Accuracy Precision Recall f1-score

(pos) (neg) (pos) (neg)

v2 Brightness temp. .7572 .7391 .7742 .7556 .7586 .7473
Landcover .8515 .7910 .9289 .9344 .7766 .8567

v3
Brightness temp. .7593 .7351 .7787 .7264 .7863 .7307
Landcover .8907 .8233 .9654 .9635 .8312 .8879
Sentinel .8962 .8407 .9535 .9491 .8530 .8916

Table 5.15. Progressive changes in performances for MLP models on com-
bined hotspots in the presented experiments.

In general, better performances were obtained on the v3 version of the
dataset, presumably both due to the reduced sample size and better data
quality.

The results show an overall improvement with each additional characteri-
zation of the affected area, hinting that further refinements in terms of data
cleaning and adopted data sources could be beneficial to better solve the
task.

In terms of models, Random Forests performed better than their MLP
counterparts in any given experiment, although they all followed the same
general trend. This suggests that a finer tuning could be needed to fully
harness its effectiveness.

60



Chapter 6

Conclusions

This work explored a different perspective on the task of hotspot disambigua-
tion, albeit incomplete on some aspects and improvable on many. Firstly, it
asserted that pre-existing techniques are unbalanced on this specific task,
although very good at detection. While this means that most fire events will
be observed, it also implies that further inspections are needed before calling
for an intervention.

Secondly, it showed how integrating more and more data sources for better
characterisation of an area can prove to be beneficial for the task. The fact
that performances for both classes increase by adding more characterising
data sources suggests that they bring useful information for the addressed
problem. Overall, this study was successful in its attempt, but several aspects
could be improved upon in its future developments.

Starting from data sources, a valid idea would be to use hotspot detec-
tions performed by satellites that can provide data for the considered area
of interest with a higher frequency. An example of this would be to adopt
data from geo-stationary satellites, assuming that the whole area could be
covered. This would allow quicker response times in case of a fire, and reduce
the cost of misclassifying a single data point.

Considering those sources that were adopted in this work, one further piece
of information that could prove useful is raw imagery of the affected area,
with measurements from all bands. As discussed in related works, a fire event
alters the affected area with respect to the surroundings, and Giglio et al.
(2003) [4] use this to define contextual thresholds for the detection. Instead,
the current implementation only has access to absolute features, which allow
for quick identification but do not provide a complete characterization of the

61



6 – Conclusions

context.
One further refinement would be to more precisely define the boundaries

of the considered European macro-area, in order to exclude any hotspot
detection for which no land cover information is available, and therefore
further reducing noise.

Another interesting idea would be to use satellite data with higher spatial
resolution, both for hotspot data and other characterizations. As an example,
Sentinel-5P imagery could be evaluated for integration.

Last but not least, having verified data for the entirety of the fire acti-
vations in the considered area would make the definition of a ground truth
much easier and more sound, even if made available only for a short time
interval.

Considering data preprocessing and preparation, geo-spatial features could
be reprojected to a different reference system that better represents the Pan-
European area at all latitudes, like ESRI:3035.

Related to this, and independently from the adopted reference system, it
would be appropriate to always have a consistent number of features at all
coordinates. In particular, for land cover rasters and sentinel imagery, an
improvement could be made by ensuring that the considered region has the
same required linear size independently from its latitude.

In terms of models and methodology, an improvement could be made in
terms of performances by further fine-tuning each model. A possible exper-
iment could be to use different metrics to guide training, assigning different
weights to the positive and negative classes, in order to have more fair com-
parisons with the baseline and put more emphasis on the positives.

In regards to combining data from multiple hotspot collections for a unified
model, the presented experiments couldn’t find any significant changes in
terms of performances with respect to the split counterparts. More detailed
investigation would be required.

One further experiment could be to adopt neural networks combined with
all the previous suggestions as a possible model, as a way to address this
non-linearly-separable problem.
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