
 
Politecnico di Torino  

 

Master’s Degree in Computer Engineering 

A.a. 2020/2021 

 

July 2021 

 

 

 

 

 

Improving company communication 

for remote working: a use case 

 

 

 

 
 

 

 
Supervisors: Candidate: 

prof. Luigi DE RUSSIS  

eng. Marcello CERRI 

Andrea SCIBETTA 



2 
 

 

   



 

3 
 

Table of contents 

 
Chapter 1 Introduction........................................................................................ 7 

1.1 The challenge of COVID-19 .................................................................... 7 

1.2 The importance of communication platforms........................................... 8 

Chapter 2 State of Art ....................................................................................... 11 

2.1 The impact of the pandemic on working from home ............................. 11 

2.2 Working from Home after COVID ......................................................... 13 

2.3 Microsoft Teams as a working from home communication platform .... 14 

2.4 Teams integration with other Microsoft instruments.............................. 16 

2.5 The importance of the Cloud .................................................................. 19 

Chapter 3 Use case ........................................................................................... 22 

3.1 The starting point .................................................................................... 22 

3.2 The innovation steps ............................................................................... 23 

3.3 “As is” and “to be” situation ................................................................... 24 

Chapter 4 Project Design .................................................................................. 26 

4.1 “To be” goals .......................................................................................... 26 

4.2 Two alternative solutions ........................................................................ 26 

4.2 App Integration in Microsoft Teams ...................................................... 27 

4.3 The second alternative ............................................................................ 29 

Chapter 5 Implementation ................................................................................ 34 

5.1 Web Application development ............................................................... 34 

5.2 Connection with the existing infrastructure ............................................ 36 

5.2 Representing data specifically for Teams ............................................... 38 

5.3 “Like” as in modern social network ....................................................... 43 

5.4 The other solution: cloud workflow ....................................................... 45 

Chapter 6 Result ............................................................................................... 55 

6.1 Familiar for editors, familiar for users .................................................... 55 

6.2 Pros and cons of the two solutions ......................................................... 56 

Chapter 7 Conclusion ....................................................................................... 59 

Bibliography ..................................................................................................... 61 



4 
 

 

  



 

5 
 

List of figures 
Figure 1.1 The explosion of remote work in Italy during March 2020. Image 

taken from [12] ................................................................................................... 8 

Figure 2.1 Percent of people WFH. Image taken from [7] .............................. 12 

Figure 2.2 Percent of WFH employee per social class. Image taken from [7] 13 

Figure 2.3 Teams' growth in March 2020 ........................................................ 15 

Figure 2.4 Microsoft Teams app store ............................................................. 16 

Figure 2.5 Microsoft Graph as interface between Microsoft 365 and the Cloud

 .......................................................................................................................... 17 

Figure 2.6 Logic Apps as a connection tool ..................................................... 18 

Figure 2.7 The versatility of Adaptive Cards. Image taken from [13] ............. 19 

Figure 2.8 Azure Active Directory as authentication service .......................... 20 

Figure 3.1 Access to the news in as is situation ............................................... 23 

Figure 3.2 Access to the news in to be situation .............................................. 23 

Figure 3.3 “As is” situation seen by editors that must create a news ............. 25 

Figure 3.4 “As is” situation seen by the final user .......................................... 25 

Figure 4.1 Microsoft Teams’ App Studio ......................................................... 28 

Figure 4.2 The Logic App designer in Microsoft Azure ................................... 29 

Figure 4.3 The Adaptive Cards designer ......................................................... 31 

Figure 4.4 “To be” situation seen by the final user ......................................... 31 

Figure 5.1 Definition of App details in Teams App Studio .............................. 35 

Figure 5.2 Azure Active Directory App Registration ....................................... 35 

Figure 5.3 Retrieving the news in the Intranet Portal ..................................... 38 

Figure 5.4 The different types of Objects used ................................................. 39 

Figure 5.5 an Example of the JSON file containing the news .......................... 42 

Figure 5.6 Retrieving the news in the Intranet Portal ..................................... 42 

Figure 5.7 Publication to Teams with automatic workflow ............................. 46 

Figure 5.8 Schema of our Logic App ............................................................... 46 

Figure 5.9 Definition of the trigger in Logic App Designer ............................ 47 

Figure 5.10 Definition of the action in the Logic App designer....................... 49 

Figure 5.11 The publication of a news ............................................................. 52 

Figure 6.1 Editors’ interface of the portal ....................................................... 55 

Figure 6.2 The News Feed Teams App............................................................. 56 

Figure 6.3 Two views from mobile ................................................................... 58 

 

  



6 
 

  



 

7 
 

Chapter 1  

 

Introduction 
 

1.1 The challenge of COVID-19 

This last year represented a new and difficult challenge for many people and 

companies. With the advent of COVID-19 and many lockdown measures 

implemented by different countries all over the world, the progress of 

digitization of the whole society became a fundamental topic. Many different 

contexts of everyday life were affected by the forced distance. Suddenly 

everyone was stuck at home, from students to workers, both from public and 

private agencies. Every aspect of society needed to be reformed and adapted to 

this new and unique situation where everybody had to stay at home. To keep 

going on with everyday life, Internet communication and the platforms that 

provides specific services in that field were of crucial importance.  

In this context, the discussions about working from home (WFH) became of 

crucial importance. Many companies needed immediate and comfortable 

communication between colleagues and between different areas of the same 

industry, to keep working at the same pace, trying to avoid the social distance 

from becoming also mental distance. The use of platforms to ease 

communication was already growing, but since the stroke of COVID-19 the 

growth became an explosion. And this led to a massive use of this kind of 

services, not only for the exchange of messages inside the same working unit, 

but also from one department to another, for example to speed up 

communication between human resources and the other company employees. 

To allow companies to work remotely a platform for chat and video 

communication is needed. In this complex situation, where the whole society 

was forced to remote solutions, this kind of software assumed great 

importance. In many activities chat platforms were already adopted and used 

for daily communication, but during the long periods of working from home 

they became a constant in the workday of the employees.  

 



8 
 

 

Figure 1.1 The explosion of remote work in Italy during March 2020. Image taken from [12] 

 

The videoconference platforms were something already growing, and the 

massive adoption of this kind of technology was predictable since at least five 

years ago [1]. What was not predictable is the pandemic that struck the world 

during 2020 and is still one of the biggest problems of today’s society.  

 

1.2 The importance of communication platforms 

This situation became fertile ground for platform like Microsoft Teams, Slack, 

Zoom and Google Meet to grow even more, and to become the center of 

coordination and everyday life in many different fields. In this sense, the 

potential of this type of platforms had already been partially explored. For 

example, there was great interest in how chatbots create value [8], considering 

the possibilities to link social interactions within instant messengers, using 

third-party systems and business processes.  

Interesting results were also achieved integrating search engine in Slack [9] by 

using the Slack conversation API. In this way it is possible to avoid that the 

user has to switch many platforms, working in a central hub that can provide 

everything to the worker. Also Zoom had an important role in providing a 

platform for remote work and in particular remote classrooms. It was 

particularly used for online courses, exploiting the asynchronous video that it 

offers [10]. In that context it also marked some interesting advantages with 

respect to the in-person form. 

Among the various solutions provided, Microsoft Teams has been one of the 

main instruments for companies in need of a common space of work, and not 

only. In fact, we have seen many institutional fields adopting Teams as 

platform to provide group chat, shared files and conference calls during this 

tough year. For our concern, where the platform has been particularly efficient 



 

9 
 

was in providing support for companies during the decentralized work period.  

In many cases Teams allowed big and small agencies, sometimes with no IT 

background at all, to have an efficient instrument for different purposes. In this 

way, the platform became used not only for communication, but a central hub 

for daily user activities, giving in the end also the chance for the 

implementation of dedicated app, integrated with the enterprise context of the 

company. 

For all these reasons, the goal of this thesis is to build a solution for the 

integration of an external functionality into one of this communication 

platforms, in particular into Microsoft Teams. We will exploit a real use case, 

the request of a client company with an intranet portal on premises that had to 

be integrated, to explore the potential of these tools. Our fundamental goal is to 

develop new instruments for everyday work following its evolution in relation 

to WFH, instruments that can be integrated and interact with this constantly 

used platforms and still providing additional functionalities, different from the 

communication ones. In this text we will study in deep the technology that 

nowadays we could adopt to develop this kind of solutions, inside chapter 2, 

then we will present the use case and the design between this work (3-4); after 

that, we will focus on the implementation of our solution (5), then the obtained 

result (6) and finally the conclusions and possible evolutions (7).  



10 
 

  



 

11 
 

Chapter 2   

 

State of Art 
 

2.1 The impact of the pandemic on working from home 

The implications of this particular situation are not yet fully understandable, 

and we will have a clearer view of the consequences during next years. Many 

effects of the pandemic on people working from home (WFH) are strictly 

related to the pandemic itself, but still some effects of the increased WFH can 

be isolated: “increase in block of free time, which people can use to focus on 

their core tasks” and “workers could be collaboratively isolated as meeting 

time decreases” [3]. One of the questions that arise from these is: can 

companies continue to innovate with a different equilibrium between deep 

thought and exchange of ideas? This situation also created the opportunity to 

design new productivity tools specifically for remote work, [3] going beyond 

communication aspect, that is our main topic in this text. 

It is important to also underline the result of some experiments, that marks how 

working from home actually improves productivity. From a Chinese experiment 

[4] we can see a 13% performance increase in a company with 16000 

employees, leading the company itself to roll out the option to work from home 

to the whole firm. 

Beyond the actual productivity increase, during this pandemic period working 

from home has been the only possible choice to keep people safe in many 

different fields. We can see how workers in US have changed their work life 

with some charts [7]. 



12 
 

 

Figure 2.1 Percent of people WFH. Image taken from [7] 

 

From figure 2.1 we can see how the majority of people (42%) is now working 

remotely, while almost the 33% is unemployed due to the recession. The 

implications of this situation are uncountable, and it is possible to analyze it 

from many points of view. Which works can be actually done from home? 

How comfortable is working from home? Which role will WFH have after the 

end of the pandemic? For example, it is interesting that the percentage of 

people working from home is higher in educated higher-income employees, as 

we can see from the figure 2.2 below. 



 

13 
 

 

Figure 2.2 Percent of WFH employee per social class. Image taken from [7] 

 

 

2.2 Working from Home after COVID 

The interesting thing is that working from home is here to stay [7]. It is 

important to understand the impact that this can have on city centers, were 

much of the workers were concentrated in pre-COVID world. This could have 

a big depressing effect on the cities all over the world, reducing the daily 

expenses in bar, restaurants or shops. And obviously this money would impact 

instead on the suburbs and rural areas, inverting a trend going on at least since 

1980s. 

Moreover, WFH have already changed the perspective of work we have today, 

during pandemic, and will change it even more during next years. Before 2020 

only a small percentage of workers have tried work from home, and it was 

generally stigmatized and seen negatively. Nowadays, during pandemic, not 

only it is a perfectly normal situation, lived everyday by a lot of people, but it 

brings also many new problems. For example, many employees have children 

at home, that brings to a lack of space, or quiet space. COVID has forced a lot 

of people to work from home under terrible circumstances, and that’s 

something that must be considered for the future of remote working. 

What is really interesting is thinking to WFH in the post-COVID world, that is 

the new focus around this topic for future years. Before the pandemic on 

average only 5% of working days were spent at home, while now it is about 

40%. After pandemic the number will likely drop to 20% [7]. It is still a lot 

higher than the pre-COVID situation, underlying that, as said, WFH is here to 

stay. While the number of companies that intends to keep full time remote 

work is small, almost every company has been positively surprised by how 



14 
 

well it has worked [7], and has intention to maintain at least some days per 

week of WFH. 

Although, the discussion around the advantages and disadvantages of working 

from home has going on during the last five years, at least. However, many 

points are still definitely open, like safety and health of the worker, or balance 

between work and non-work time. In this sense, we should know in advance 

the tradeoff that working from home implies, and prevent some critical related 

issues [5]. 

The discussion around the remote work is not only about whether working in 

remote or not. An open point of discussion is also on the differences of 

working from home and working from anywhere, and the possible advantages 

of both situations. The second solution, WFA, refers to the possibility that the 

employee works not only from home, but from wherever he or she wants to 

live. This implies that people can live in a very distant place from company’s 

offices, that allows highly skilled workers to choose freely where they want to 

settle down. A particular study on the difference between WFH and WFA [6] 

has underlined an interesting increase in productivity in the second situation of 

a +4.4% in work output. 

 

2.3 Microsoft Teams as a working from home 

communication platform 

In this context, communication platforms have seen an incredible increase in 

daily users, messages and calls. The data about the growth of Microsoft Teams 

(figure 2.3) speak by themselves. According to Microsoft, only in the month of 

March 2020 the daily minutes spent by users on Teams have raise from 560 

million – 12th of March – to 900 million – 16th of March – reaching at the end 

of the month 2.7 billion. These data alone give a clear idea of the exponential 

growth that the WFH periods meant for the platform.  



 

15 
 

 

Figure 2.3 Teams' growth in March 2020 

 

According to another official report [17], on the month of September 2020 

Microsoft Teams had incremented its number of chats per user of the 48% and 

the weekly number of meetings and calls of the 55%. We are talking about a 

platform with more than 110 million daily active user - against the 32 million 

of march - and more than 200 million daily meeting participants. Teams is the 

fastest-growing business application in Microsoft history. 

One of the main strength of Teams, compared to the competition, is being part 

of the Microsoft 365 platform. This service by subscription of the company 

from Redmond, until recently known as Office 365, contains all the main 

software that made Windows the most famous operative system in the world, 

and it integrates those with many other services and functionalities. Thanks to 

this Software as a Service, Microsoft gives to its subscriber all the potential of 

its vast suite. In this way we can integrate the Teams platform with many 

others, like Outlook for mail managing, SharePoint for file sharing, and all the 

classical software of the office packet, from Word to PowerPoint, from Excel 

to OneNote. All of these with the possibility to co-edit in real time the shared 

files. 

Within Microsoft 365, Teams was originally designed to inherit the 

functionalities of Skype for business, with its main focus being 

communication. Afterwards, thanks to some key functionalities, the platform 



16 
 

evolved to become a central hub to everyday work life. Teams became an 

instrument not only for communication, but basically a space of coworking for 

employees' activities related to work, and also a meeting point for colleagues 

where to share everyday life.  

 

 

Figure 2.4 Microsoft Teams app store 

 

The platform allows a variety of operations designed to facilitate the work life 

of the employees. In fact, it becomes a space of work thanks to the possibility 

of creating teams and channel, where not only chat with colleagues, but also 

upload files, automate task using bots, take advantage of the notification 

systems. Teams allows to create shared documents, giving the chance to edit 

them in parallel, using the software of the Office 365 suite, it allows to plan the 

calendar and schedule and monitor teams tasks, as well as team members 

holidays, we can integrate timesheet functionalities, desk/room booking 

functionalities, ticketing and many more. The possibilities are uncountable, 

taking into account also the chance to extend the platform exploiting the 

thousands of Microsoft and third-party applications that we can integrate. 

Moreover, Teams offers social-like functionalities, like profiles, likes, replies, 

GIFs, sticker, emoji.  

 

 

2.4 Teams integration with other Microsoft instruments 

A great advantage of Teams as a communication platform is its being part of 

the Microsoft environment. This opens up to many possible combination with 



 

17 
 

other application and services offered by this environment, in many field. We 

can exploit the powerful tools provided for cloud technology, such as integrate 

with the classic application for everyday work life. 

One of these fundamental instruments, part of Microsoft 365 that is 

fundamental in this technological context is the Graph API. Microsoft Graph is 

a RESTful web API that allows our application to access the resources of the 

cloud. Its use enables us to register the application and exploit an 

authentication system based on tokens generated for a user or service as 

consequence of a request to the Microsoft Graph API. This functionality uses 

the HTTP method of the requests to determine what each one is doing. It 

supports most of the classic HTTP methods, such as GET, POST, PUT or 

DELETE, in some cases allowing the use of a body for the request, usually 

specified in JSON format, that contains additional information on the request. 

 

Figure 2.5 Microsoft Graph as interface between Microsoft 365 and the Cloud 

 

Actually, Teams also allows an easier integration with all the technologies 

offered by Microsoft Azure. For example, we can use the Azure Logic app, a 

platform that exploits the cloud to provide automated workflows that can 

integrates many services and systems. The use of this technology allows to 

easily integrate a scalable solution to connect a local legacy system with the 

environment of Microsoft Teams. But not only: using this technology we could 

integrate action related to any of the applications of Office 365, building an ad-

hoc trigger that will activate after a specified event; finally, we could also use 

the workflow to create a monitorization system, to analyze sentiment on social 

networks or other similar platforms. 



18 
 

 

 

Figure 2.6 Logic Apps as a connection tool 

 

In this context, another interesting technology that could ease our work is the 

Adaptive card. These cards are an open format for the exchange of information 

with graphical user interfaces of many different types, using a unique and 

coherent way. We can use them exploiting JSON object to build contents that 

will be rendered differently depending on the host application to which we will 

send the card. Microsoft Teams will render them coherently with its own 

graphical aspect, familiar to the final user.  



 

19 
 

 

Figure 2.7 The versatility of Adaptive Cards. Image taken from [13] 

 

For these reasons, in many situation companies felt the need to integrate inside 

an all-in-one platform, as Teams, all the tools related to business and 

cooperation.  

 

2.5 The importance of the Cloud 

While we already explored the different platforms dedicated to remote and 

immediate communication, we did not talk about the cloud platform dedicated 

to this solution. Nowadays, the cloud technology is widely used in many 

different fields and in many ways. There are many providers of cloud services, 

and three specific models in which we can classify these services: 

Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as 

a Service (SaaS). The differences between these three kinds of services are 

mainly the degree of responsibilities that the final user has. For example, in 

IaaS the service provider offers an empty platform, like a VM, and the user has 

to manage it, installing the operating system and the software needed. On the 

other hand, in the SaaS model the provider can offer to the user a specific 

software, without any customization, used on demand.  

We need to develop an external tool, an app that has to be integrated in a 

communication platform. So, for our purpose the Software as a Service model 

is the perfect choice. We can deploy on a cloud service hosting a custom 

application that we will then integrate in the chosen team speaking software. 

Alternatively, we can use the instruments offered by Cloud to create an 

automated workflow to connect our existing portal directly to Microsoft Teams 



20 
 

The platforms that offer the SaaS hosting are many and different. Among the 

most used we have Amazon Web Services, Google Cloud and Microsoft 

Azure. Each of these platforms can be used for our needs. 

These cloud platforms offer also a lot of interesting services for every needs. 

For example, Microsoft Azure offers Azure Active Directory, a platform 

created to manage and protect identities and all the process related to it. With it 

is possible to provide many functionalities to companies, like the Single Sign-

On and the multi factor authentication. With AAD we can concentrate in a 

single platform all the identities related to our solution, both internal and 

externals, and most importantly for our concern we can integrate in a simple 

way app and services using the same identities. 

 

 

Figure 2.8 Azure Active Directory as authentication service 

 

Starting from this technological context, we thought about something to 

exploit the potential of the videoconferencing and communication 

platforms as an instrument to improve and ease everyday work life. The 

central idea was to enhance the capacity of one of these platforms to 

become a central hub for every activity related to work, and because of 

this we wanted to experiment with the possibilities of integrating 

external services inside this hub. In our idea of remote working, this 

could draw a line in the evolution of the daily routine of the employee 

working from anywhere.  

  



 

21 
 

  



22 
 

Chapter 3  

 

Use case 
 

3.1 The starting point  

It is in this context that a real use case presented to us. A company with more 

than 65 thousand employees, with an intranet portal dedicated to internal 

communication, needed to integrate its functionalities inside a fresh, portable 

and more interactive system. 

The existing portal was used to communicate with the employee daily 

information about the whole company or specific divisions, and at the same 

time to give an instrument to keep updated companies’ departments on the 

latest news. For its purposes, the portal used emails as notification mechanism, 

even though it had social-like integrated functionalities, such as ‘like’ and 

comments. 

The existing intranet portal is built around a web-based application and the 

concept of news. Through the news the company can manage the internal 

communication even though the internal teams are scattered all around the 

world. Inside this intranet the news could be “global”, such as the success of an 

important company’s project, or “local”, such as communication on how to 

behave after a geographically significative event. These news are based on the 

scope of interest and relevance for the end user audience. So, the whole web 

portal is based on a system of audience that allows to show the news to the 

specified group of users. In the “as is” situation the news are just a window on 

some information that the company needs to share with its employees. 

Global news is managed by an internal communication “global” team, that has 

the power to publish also local scoped news or delegate the publication to a 

local team. Local teams take care of internal communication for a specific 

geographic area or production plant. 

The big limit of this configuration is that the Intranet portal is, by definition, 

only accessible from within the borders of the company network. It is not 

possible to access the intranet from home because it is not “published” outside. 

It must be accessed from a private network, physical or virtual. Another limit 

of this intranet, that with our solution we want to overcome, is the missing 

support to mobile devices. 



 

23 
 

 

Figure 3.1 Access to the news in as is situation 

 

 

3.2 The innovation steps 

To overcome the limitation the company decided to investigate possible 

innovation that allow to support modern scenarios, that along with working 

from home are no longer a will but a productivity need. The idea was to allow 

the access to the intranet portal from home, exploiting the new platform offered 

by Microsoft in terms of both security and communication. At the same time 

the access from mobile devices was a desired feature. 

 

 

Figure 3.2 Access to the news in to be situation 



24 
 

In this context, both global and local team are constantly looking for new ways 

to interact with the employees, trying to obtain a more informal and immediate 

communication stream. The company was already using Teams as 

communication platform, and it represented one of the new channels on which 

the communication of the company is focusing.  As a natural and innovative 

extension of the “legacy” web portal approach, MS Teams “chat like” system 

allow a more informal and streamlined communication channel and also a 

change of paradigm of communication. Using MS Teams, it is possible to push 

relevant news directly to the right audience; the end user no longer needs to 

visit the web portal to reach the news feed, they just will change the tab of their 

already opened Teams window. 

Moreover, Cluster Reply’s Microsoft partner and develops in a Microsoft 

environment. For these reasons, we choose to integrate the news mechanism 

into Microsoft Teams, not to totally replace the existing portal, but to provide 

an alternative to the company and its users. In this way we could leave the 

choice to the final user about how to exploit this information. He could 

continue using the existing portal as is, without changing his habits, or 

alternatively he can try the new solution, that gives him the chance to consult 

the news in a quicker and easier way. 

 

3.3 “As is” and “to be” situation 

The “as is” situation of the intranet portal provides a web interface that allows 

editor to create, publish and manage news, giving the possibility to choose 

whether a news must go on the homepage or not. From the news publication 

screen, after choosing a title, the editor is able to edit the details, such as the 

subtitle, the text, the image and other information regarding who can see this 

news, depending on the zones or on the teams. 

 



 

25 
 

 

Figure 3.3 “As is” situation seen by editors that must create a news 

From the final user point of view, he will have access to a personalized screen 

of the portal, showing the news that he’s allowed to see, depending on his 

membership to an audience. This audience, as said, will depend on the region 

where the employee is set and on the teams he is member of. 

 

 

Figure 3.4 “As is” situation seen by the final user 

 

  



26 
 

Chapter 4   

 

Project Design 
 

4.1 “To be” goals 

The goal of this thesis is to explore the potential of video communication 

platforms and the benefits they could involve if adopted in a business context. 

The question is: how can they ease and promote the work from home? In our 

case we thought to a situation where a company was already using some 

software dedicated to communication and wanted to integrate it with some 

external functionalities. 

As said, the company had an existing intranet portal. It was on premises and 

reserved for its employees, and its management was demanded to Cluster 

Reply’s. This allowed us to modify it, creating dedicated functionalities that 

could provide information to an external platform, and so we could think to an 

alternative solution to the existing one, a solution that could be more 

immediate and comfortable. In this sense we could create a hook mechanism 

directly on the portal, with a dedicated endpoint, enriching the existing solution 

with code specific for our needs. 

Regarding the “to be” system, the goal was to provide an alternative and more 

immediate fruition of the news information, without complicating the 

workflow of the publication. So, what we wanted to achieve was an interface 

totally integrated with Microsoft Teams, that could allow to transfer the exact 

same news published on the portal also on a dedicate tab inside the 

communication system. All of this without changing the process of creating 

and publishing the news.  

 

4.2 Two alternative solutions 

The access to the news portal in the as is situation needed to be via web 

browser, while the new philosophy behind the to be solution is to move 

everything into an already work-focused environment. Teams is an always 

open platform for the employees of the company, an instrument that constantly 

ease their work lives, providing them with all the functions that they need. The 

idea behind this project is to adapt to the change of mentality of the company 

and of the whole world of work providing a concentrated, easier and quicker 

environment, that can increase at the same time the productivity and the quality 

of life of the employees. 



 

27 
 

In this thesis we propose two different solutions to solve the problem of 

integrating and improving the news infrastructure. The first one is based on a 

dedicated Teams application, that could interact with the already existing 

services on the old system to get the news and show them exactly as they were 

shown in the original portal. 

 

4.2 App Integration in Microsoft Teams 

Microsoft Teams apps are an instrument that gives developers the chance to 

integrate an existing web app into Teams, or to realize a custom service to 

access common tools or specific information and integrate it in the 

communication platform. Realizing an application for Teams we could 

customize the experience of the employees in many ways. The goal was to 

make their lives easier, concentrating everything they need to work in a single 

place. We can exploit the possibility to use tabs to highlight some important 

content that users will often need handy. These custom tabs are basically 

webpages embedded in Teams, where the domains where to point are declared 

in the manifest of the app. Here, in the manifest, as developers we can choose 

if the app will be used as a channel inside a team, in a group chat or as a 

personal app. The platform gives many tools to develop third party apps or 

integrate an existing one, allowing to embed a new or already existing custom 

functionality to our teams or personal employees’ chats.  

 



28 
 

 

Figure 4.1 Microsoft Teams’ App Studio 

 

Our work for this first solution is focused on the design of a dedicated web 

application that could replicate the interface of the existing intranet portal 

inside a tab on Microsoft Teams. To obtain this result, we had to realize an 

authentication system that could connect the users directly with their MS 

credentials to the web app, and that could also use those credentials to 

automatically log him on the intranet portal in the background to retrieve his 

personal news. This crossed authentication was realize using Microsoft Graph 

API, that could allow us to reach our goal and automatically authenticate the 

user to the external web app with his Teams credentials, connecting the app 

with his teams, channels and others information related to the communication 

platform. To obtain the cross connection we needed Graph, as said, and to use 

it in combination with our Teams App we needed Azure Active Directory. 

From the intranet portal point of view, with this solution we would have to 

create an ad hoc endpoint on the news service to manage this external access to 

information. Since the news are stored in the database of the existing web 

portal and all the infrastructure of it will remain unchanged, the best solution to 

obtain the data is to create specific methods to call, or to modify the existing 

one. In this sense we thought about creating dedicated functions to retrieve the 

data for the Teams App, since we need to manage calls coming from outside 

the portal, without an already authenticated user defined in the context. In this 

way we could have send the credentials of the user from the app inside a 



 

29 
 

header of the REST call and manage the authentication of the user in an 

invisible way inside the specific method. 

 

4.3 The second alternative 

This other solution is based on a different approach to integration. Instead of 

integrating an application that manages the interaction with the user and with 

intranet portal, here the goal is to simply push the news automatically as post in 

a dedicated channel. In this way, all the logic remains in the portal and we need 

less changes to the code. Still we need to create an external mechanism that 

triggers on publication and react recreating the news inside Teams. 

Taking advantage of the already mentioned Logic Apps we could realize an 

automated and scalable workflow that could be triggered by a specific action. 

Logic Apps are a cloud service from Azure, an instrument to automate 

company processes and workloads. They expose a range of API as Connectors 

in order to define these automated workflows. With them we can plan and send 

notification using emails through Office 365 as a consequence of a specific 

event; we can elaborate customer’s orders and send them on local or cloud 

services; we can move files on SFTP or FTP server to Azure storage; we can 

monitor tweets and other kinds of post on social networks, in order to analyze 

the sentiment and give advice and activities for elements that need to be 

monitored. 

 

 

Figure 4.2 The Logic App designer in Microsoft Azure 

 



30 
 

The instruments offered by these Logic Apps are basically of three types: 

Triggers, Connectors and Actions. The first ones are the starting point for the 

workflow of an Azure Logic App; they will fire when new data or a specific 

event that meets the trigger specification occur. We can create custom trigger 

or simply exploit the basic one offered by the service, and we can also use 

multiple triggers to activate our app. A Connector is used to create the real 

flow to perform actions or processes and connect users’ data to the advanced 

operations of the flow. Actions are instead the actual operations that must be 

performed by the App after it gets triggered. They can compute and elaborate 

data for the next Actions, in a sort of chain that finally will generate the 

expected result. Speaking of Logic Apps, we should not forget to mention also 

the possibility to integrate them with many Microsoft technologies, in single or 

multi-tenant environment, that makes them extremely versatile and powerful. 

About the available actions that a Logic App can perform there is also the 

possibility to send some Adaptive Cards to different external platforms, as for 

example our beloved Microsoft Teams. This technology was released by 

Microsoft in 2017 and is basically a universal Card user interface framework. 

Its objective is to provide a standard way of defining cards, independently from 

the platform. In this way we could build the body of the card just once and then 

use it on different platforms: it will automatically adapt to the graphical 

interface on which it will be sent, if this supports the Adaptive Card. These 

cards are written in JSON and they are basically a recipe on how to structure 

the card, that will be interpreted by the platform where it will be sent. So, the 

same card could have a different look depending on where it will be showed, 

while providing the exact same functionality. 

These cards offer a lot of functionalities, not only about showing information 

but also about retrieving it and allowing the user to interact with the server. 

Moreover, they allow to simply embed in the card the data from the JSON that 

will define the card. Adaptive Cards are a very powerful instrument that also 

offers a very simple user interface to design them. In our case, we could use the 

dedicated website to build the perfect card for our needs and then simply copy 

and paste it on our Logic App workflow, so that the action will send the cards 

to Microsoft Teams. 



 

31 
 

 

Figure 4.3 The Adaptive Cards designer 

 

Exploiting the logic app and the adaptive cards we can obtain this automated 

solution, that should in the end show an interface as the one in figure 4.4. This 

tab inside the selected channel will be filled with the news after each new one 

is published. 

 

 

Figure 4.4 “To be” situation seen by the final user 

 

If we want to replicate the system of audience, we should prepare a set of 

different channels, publishing the news through our logic app based on which 

users should have access to them. Also, we should give access to these 

channels respecting the user who should see the news contained inside it. 

While this solution need less changes to the intranet portal with respect to the 



32 
 

first one, it will need an extra effort to recreate this kind of “profiling” solution 

on the external platform.  

After the researches that brought us to design these two solutions and define 

the technologies needed to develop them, we started working on the real 

implementation of them. 

 

  



 

33 
 

  



34 
 

Chapter 5  

 

Implementation 
 

At this point we had a clear overview of the technologies that could help us to 

fulfill our goal, and some ideas on how to build a solution. At the beginning we 

started working on the idea of building a Teams App, that as we said is 

basically a web application integrated in Microsoft Teams through its App 

studio.  

 

5.1 Web Application development 

Starting from a simple application, built following the proper guide [15], we 

studied how to enable the mechanism of integration at its core, and how to 

create an authentication system connecting our Teams app with the intranet 

portal through Microsoft Graph API. 

We deployed the application to Azure, to have a unique address to reach it and 

connect it to other systems. After that, we could follow the procedure to define 

the Teams App Studio association, so that our web application could be 

installed into different teams or channels. Following the steps, we had to save 

some specific data from the Manifest Editor that will be needed to enable the 

authentication with Teams Credentials. 

At this point we define all the information related to our App, from the 

necessary and fundamental details, such as the name, icon or ID, to additional 

one, such as tabs definition, with their route, or bots. These last one, such as 

Connectors and Messaging Extensions, are instruments that we will not use in 

this project, but could be very useful to implement other functionalities in the 

future and improve the existing one. Using them we could also provide a better 

integration with the platform. 



 

35 
 

 

Figure 5.1 Definition of App details in Teams App Studio 

 

To enable this crossed authentication we must go through the Microsoft Graph 

API, as explained previously. To do this, we also need to create an App 

Registration into Azure Active Directory. This component of Microsoft’s 

Cloud gives to developers the Microsoft Identity Platform, a service of 

authentication that offers many open-source libraries and others instruments to 

manage applications. Combining these tools, we decided to create an App 

Registration in Azure Active Directory, and use it to connect our deployed App 

Service with our Teams application, automatically authenticating the user on 

our application in the background using their Teams credentials. 

 

 

Figure 5.2 Azure Active Directory App Registration 

 



36 
 

5.2 Connection with the existing infrastructure 

We have created the structure for our Teams integrated application: we have a 

web app deployed to Azure with its own reachable address, linked to Microsoft 

Teams App Studio as an installable add on and with authentication permission 

on Microsoft Graph API through Azure Active Directory platform. What is still 

missing is the connection with the existing portal. We need a way to define a 

hook on the intranet portal that can recognize the user and allow him to obtain 

the basics information, such as the news and the related social interactions. 

To build our custom code, we obviously had to rely on the existing software 

context of the intranet portal. The core functionality that we needed to recreate 

was the method that allow to retrieve the news. Since we were starting from the 

web portal home page, we tried to replicate the behavior of it on our Teams 

application. So, we took as a base for our developments the existing Get News 

method, that was retrieving that information to the pages of web portal. 

 

static object lockObj = new object(); 
        public GetNewsResponse GetNews(string Filter, SortDirection Sort, int Page, int MaxItem) 
        { 
            try 
            { 
                GetNewsResponse resp = new GetNewsResponse(); 
 
                bool cacheEnabled = ListHelper.GetConfig<bool>(ConfigCategory.Cache, ConfigKey.News, false); 
                string cacheKey = string.Empty; 
                if (cacheEnabled) 
                { 
                    CacheB2EHttpApplication c = new CacheB2EHttpApplication(); 
                    cacheKey = c.GetVaryByCustomString(System.Web.HttpContext.Current.ApplicationInstance, 
HttpContext.Current, "Audience;Lang"); 
                    cacheKey = string.Format("news_{0}_{1}_{2}_{3}_{4}", 
NavigationHelper.GetNavigationCacheKey(cacheKey), Page, Sort, MaxItem, Filter); 
                    resp = HttpContext.Current.Cache.Get(cacheKey) as GetNewsResponse; 
                } 
 
                if (resp == null || !cacheEnabled) 
                { 
                    lock (lockObj) 
                    { 
                        if (resp == null || !cacheEnabled) 
                        { 
                            resp = new GetNewsResponse(); 
 
                            int NewsTotalNumber; 
                            List<News> newsList = EntityManager.GetNewsHomePage(Page, Sort, Filter, out 
NewsTotalNumber); 
 
                            resp.TotalNewsNumber = NewsTotalNumber; 
                            resp.HtmlResponse = BuildNewsHtml(newsList); 
 
                            if (cacheEnabled) 
                            { 
                                HttpContext.Current.Cache.Add(cacheKey, resp, null, 
DateTime.Now.AddMinutes(ListHelper.GetConfig<int>(ConfigCategory.Cache, ConfigKey.NewsDuration, 10)), 
System.Web.Caching.Cache.NoSlidingExpiration, System.Web.Caching.CacheItemPriority.Default, null); 
                            } 
                        } 
                    } 
                } 
                return resp; 
            } 
            catch (Exception ex) 
            { 
                LogHelper.Log(ex, LogCategory.B2E, LogSeverity.Error, ex.Message); 
                throw; 
            } 
        } 
 

 



 

37 
 

From the code we can see how this method worked. After a check on the 

cache, it was defining a structure for the response and then demanding the 

search of the news to the GetNewsHomePage method of the Entity Manager, 

passing to it also the parameter on how to filter the result. On this method we 

faced our first problem in connecting directly Teams to the existing portal. In 

fact, as we can see in the code below, the Entity Manager GerNewsHomePage 

function is taking the user id of the current user from the context. This is 

obviously a problem, since we want to access this service endpoint directly, 

and not going through the definition of a context, such as it happens after 

opening the website homepage. 

 

 /// <summary> 
        /// get news filtered for homepage 
        /// </summary> 
        /// <returns></returns> 
        public static List<News> GetNewsHomePage(int Page, SortDirection SortDir, 
String Filter, out int NewsTotalNumber) 
        { 
            //get max numeber of allowed news in home (1 page) 
            int NewsPerPage = 
ListHelper.GetConfig<int>(ConfigCategory.NewsContentViewer, ConfigKey.MaxNews, 5); 
 
            //get 1 page of not pinned news 
            List<News> newsList = null; 
            if (Filter == "Local") 
                newsList = GetNews(DateTime.MinValue, DateTime.MaxValue, Page, 
NewsPerPage, false, false, null, null, true, SortDir, 
EntityManager.CurrentUser.Uid, out NewsTotalNumber); 
            else 
            { 
                newsList = GetNews(DateTime.MinValue, DateTime.MaxValue, Page, 
NewsPerPage, false, false, null, null, null, SortDir, 
EntityManager.CurrentUser.Uid, out NewsTotalNumber); 
                //merge with pinned 
                newsList = MergePinnedNewsForHome(newsList, Page, NewsPerPage); 
            } 
            LogHelper.Log(string.Format("GetNewsHomePage: News from query {0}", 
newsList.Count())); 
 
            return newsList; 
        } 
 

 

We needed to find a workaround for this obstacle, and so we created an 

alternative chain of calls on the web portal, that can retrieve from a single 

endpoint all the information needed about the news. We started from the 

existing GetNews and we developed our GetNewsFromTeams. 



38 
 

   

 

Figure 5.3 Retrieving the news in the Intranet Portal 

 

5.2 Representing data specifically for Teams 

To do this we started creating a dedicated class to contain our return value, 

since the original GetNewsResponse contained directly the html that would be 

rendered in the website. In our class we needed instead the list of the news, that 

can be returned inside a JSON file in the HTTP response. So we defined our 

GetNewsForTeamsResponse class that contains a list of our NewsForTeams 

class. In this last data structure, we store all the information needed on our 

Teams application to show the news: the title, the text, an optional image, and 

other useful information such as the publication date, the number of likes and 

the link to the news, so that we can keep a sort of continuity with the original 

web portal. In this way, with just a click on the news rendered inside Teams we 

can redirect the user to the web browser, so that he can see the news directly on 

the intranet, if we want. In this way we keep the two as alternative, not 

substituting the old interface with the new one. 



 

39 
 

 

Figure 5.4 The different types of Objects used 

 

After defining our classes, we needed to define our chain of calls, that can 

build the list of news and send them as a response to the calling Teams 

application. In the GetNewsForTeams method we elaborated the information to 

build this response as we needed it. To obtain the information about the news 

we used two methods from the Entity Manager service, but for both of them we 

needed a small redesign. So we built the GetNewsTeams, which will return the 

fundamental information, and the  GetNewsInstanceWithUser, which will give 

us information on secondary aspects, such as the social information. After 

obtaining this information of the requested news, we can build our response 

taking what we need. From the “news” object we can obtain the id, the title and 

the publication date; from the “news instance” we can obtain the text, the 

image, the URL and the social information. 



40 
 

public GetNewsForTeamsResponse GetNewsForTeams(string Filter, SortDirection Sort, int Page, int MaxItem, string 
User) 
        { 
            try 
            { 
                GetNewsForTeamsResponse resp = new GetNewsForTeamsResponse(); 
 
                lock (lockObj) 
                { 
                    resp = new GetNewsForTeamsResponse(); 
                    resp.NewsList = new List<NewsForTeams>(); 
 
                    User currUser = EntityManager.GetUserByEmail(User); 
 
                    int NewsTotalNumber; 

                    List<News> newsList = EntityManager.GetNewsTeams(Page, Sort, Filter, out NewsTotalNumber, 
currUser); 
                     
 
                    foreach (News tempNews in newsList) 
                    { 
                        NewsForTeams tempNewsForTeams = new NewsForTeams(); 
                        tempNewsForTeams.Id = tempNews.IdNews; 
                        tempNewsForTeams.Title = tempNews.Title == null ? "Titolo Nullo" : tempNews.Title; 
                         
                        tempNewsForTeams.PublishDate = tempNews.PublishDate; 
                        try{ 
                            System.Text.StringBuilder sb = new System.Text.StringBuilder(); 
                            NewsInstance nIstance = new NewsInstance(); 
 
                            nIstance = EntityManager.GetNewsInstanceWithUser(tempNews, currUser); 
                            if (nIstance != null) 
                            { 
                                tempNewsForTeams.Text = nIstance.ShortText == null ? "No text" : 
nIstance.ShortText; 
                                byte[] imageArray = nIstance.ImgUrl == null ? null : 
System.IO.File.ReadAllBytes(nIstance.ImgUrl); 
                                tempNewsForTeams.Image = imageArray == null ? "No image" : 
Convert.ToBase64String(imageArray); 
                                tempNewsForTeams.LinkUrl = nIstance.LinkUrl; 
                            } 
 
                            if (tempNews.FlagSocial) 
                            { 
                                GetLikeRequestWithUser newsLikeRequest = new GetLikeRequestWithUser(); 
                                newsLikeRequest.url = new List<string>(); 
                                newsLikeRequest.url.Add(nIstance.LinkUrl); 
                                newsLikeRequest.user = User; 
                                LikeService likeService = new LikeService(); 
                                GetLikeResponse newsLike = likeService.GetLikeWithUser(newsLikeRequest); 
                                tempNewsForTeams.NLike = newsLike.NLike[0]; 
                            }                             
                        } 
                        catch (Exception ex) 
                        { 
                            LogHelper.LogError(ex, "ERROR BUILDING NEWS", tempNews.NewsInstance.LinkUrl); 
                        } 
 
                        resp.NewsList.Add(tempNewsForTeams); 
                    } 
                } 
                return resp; 
            } 
            catch (Exception ex) 
            { 
                LogHelper.Log(ex, LogCategory.B2E, LogSeverity.Error, ex.Message); 
                throw; 
            } 
        } 
 

 

For both the two methods for the news and the news instance, we operated a 

redesign from two original endpoints, and in both of them we inserted the 

current user passed as a parameter. This is due to the fact that we must retrieve 

the user with a dedicated method. This method is the GetUserByEmail, that 

will receive a string and retrieve the User object with all its information. 



 

41 
 

public static User GetUserByEmail(string userLogin) 
        { 
            //userlogin can be domain\\username or username  
            User output = null; 
            string uid = userLogin.Split(new char[] { '@' }, StringSplitOptions.RemoveEmptyEntries)[0];     
 
            if (!String.IsNullOrEmpty(userLogin)) 
            { 
                try 
                {  
                    if (output == null) 
                    { 
                        output = CacheManager.getObject(EntityType.User, userLogin) as User; 
                        if (output == null) 
                        { 
                            // if not in cache load from DB. 
                            using (DBHelper dbHelper = new DBHelper()) 
                            { 
                                output = dbHelper.GetUser(uid); 
                            } 
 
                            // get field from sharepoint 
                            if (output != null) 
                            { 
                                CacheManager.addObject(EntityType.User, output.UserLogin, output); 
                                CacheManager.addObject(EntityType.User, output.Uid, output); 
                            } 
                            else 
                            { 
                                // assign a default profile 
                                output = new User(); 
                                output.Name = userLogin; 
                                output.Surname = String.Empty; 
                                output.Uid = uid; 
                                output.IsServiceUser = true; 
                            } 
 
                        } 
                    } 
                } 
                catch (Exception ex) 
                { 
                    LogHelper.Log(ex.ToString()); 
                } 
            } 
            return output; 
        } 
 

 

Having this User object, we can use it in our personalized endpoints in the 

Entity Manage, GetNewsTeams and GetNewsInstanceWithUser, to reconnect 

our flow to the already existing chain of calls. In this way, just personalizing a 

three methods on the intranet portal, and creating a bunch of dedicated class, 

we obtained as a result that calling an endpoint from our Teams application we 

can retrieve a JSON file containing all the needed information about the 

requested news.  



42 
 

{ 

    "NewsList": [ 

        { 

            "Id": 175, 

            "Image": "No image", 

            "LinkUrl": "/en/Pages/news/news2.aspx", 

            "NLike": 2, 

            "PublishDate": "/Date(1479976911507+0100)/", 

            "Text": "test 12 short text homeless", 

            "Title": "news2" 

        }, 

… 

   ] 

} 

 

 

Figure 5.5 an Example of the JSON file containing the news 

 

So, now we have an alternative flow of information that will take the user 

logged in Microsoft Teams and communicating with the intranet portal will 

obtain the needed data about the user and then retrieve to our external 

application the JSON containing the information on the news. With that, the 

application integrated in Teams will render the news in the dedicated tab. 

 

 

Figure 5.6 Retrieving the news in the Intranet Portal 

 



 

43 
 

 

5.3 “Like” as in modern social network 

At this point, in our Teams application we have all the information needed to 

build a page that can replicate the homepage of the web portal inside Microsoft 

Teams. We closed the circle, for the moment: we realized a version of the 

homepage of the web portal that is accessible from withing Teams. At this 

point we can focus on some secondary functionalities that we wanted to 

integrate in the app, such as the “social-like” aspect. 

In a similar way to what we have done with the news, we have to replicate the 

existing endpoints to avoid the problem of the user not existing in the context. 

So we defined also the AddLikeFromTeams method inside the LikeService of 

the intranet existing portal, that similarly to what we have for the news must 

contain also the information about the user. Also here we can call the 

GetUserByEmail method to retrieve the User object related to the calling user, 

but in this case we cannot reconnect to existing flow to obtain the information 

about the likes of the news. 

In fact, to retrieve the information regarding the like of the news we needed 

also to build a fictitious token, that was needed at a deeper level in the chain of 

calls in the existing web portal. After the EntityManager, we needed to call the 

SocialHelper that would take the token regarding the logged user again from 

the context. 



44 
 

public static bool AddLike(Uri url) 
        { 
            try 
            { 
                Uri absUri = url; 
                string connectionstring = string.Empty; 
 
                // normalize url 
                LogHelper.Log("url - " + absUri.ToString()); 
                if (!url.IsAbsoluteUri) 
                { 
                    string webAppUrl = 
SPContext.Current.Site.WebApplication.GetResponseUri(SPUrlZone.Default).AbsoluteUri; 
                    string absUriString = webAppUrl.TrimEnd('/') + url.ToString(); 
                    absUri = new Uri(absUriString); 
                } 
 
                connectionstring = ConfigurationManager.ConnectionStrings["SocialConn"].ToString(); 
                SPSecurity.RunWithElevatedPrivileges(delegate() 
                { 
                    Read.EnQueueLike el = new Read.EnQueueLike(); 
                    
                    el.EnqueueOperation(DataContract.SocialAction.ADD, 
                        absUri.ToString(), 
                        EntityManager.UserTokenBinary, 
                        SocialHelper.LikeGuid, 
                        SocialMethods.AddTag, 
                        new object[] { PartitionID, CorrelationID, connectionstring, 
EntityManager.CurrentUser.UserProfile.RecordId, EntityManager.CurrentUser.UserProfile.ID}); 
                }); 
                 
                return true; 
            } 
            catch (Exception ex) 
            { 
                LogHelper.Log(ex, LogCategory.B2E, LogSeverity.Error, "Unable to add like"); 
                return false; 
            } 
        } 
 

 

As we can see from this block of code, that shows us the existing AddLike 

method inside the SocialHelper, inside the function that will enqueue the 

operation of adding the like is required a UserTokenBinary, that will be taken 

from the context, passing for the EntityManager. 

public static byte[] UserTokenBinary 
        { 
            get 
            { 
                return SPContext.Current.Web.CurrentUser.UserToken.BinaryToken; 
            } 
        } 
 

 

Again, we cannot take this token from the context, so we had to find another 

workaround, creating it on the fly for our needs. So, we defined also a custom 

AddLikeFromTeams inside the SocialHelper that generates inside it the needed 

token. 



 

45 
 

public static bool AddLikeFromTeams(Uri url, User CurrentUser) 
        { 
            try 
            { 
                Uri absUri = url; 
                string connectionstring = string.Empty; 
                LogHelper.Log("url - " + absUri.ToString()); 
                if (!url.IsAbsoluteUri) 
                { 
                    string webAppUrl = 
SPContext.Current.Site.WebApplication.GetResponseUri(SPUrlZone.Default).AbsoluteUri; 
                    string absUriString = webAppUrl.TrimEnd('/') + url.ToString(); 
                    absUri = new Uri(absUriString); 
                } 
 
                connectionstring = 
ConfigurationManager.ConnectionStrings["SocialConn"].ToString(); 
 
                 
 
                SPSecurity.RunWithElevatedPrivileges(delegate() 
                { 
                    using (SPSite site = new SPSite(siteUrl)) 
                    { 
                        using (SPWeb web = site.OpenWeb()) 
                        { 
                            var userName = "B2E\\" + CurrentUser.UserLogin; 
                            var token = web.AllUsers[userName].UserToken.BinaryToken; 
                            Read.EnQueueLike el = new Read.EnQueueLike(); 
                             
                            el.EnqueueOperation(DataContract.SocialAction.ADD, 
                                absUri.ToString(), 
                                token, 
                                SocialHelper.LikeGuid, 
                                SocialMethods.AddTag, 
                                new object[] { PartitionID, CorrelationID, connectionstring, 
CurrentUser.UserLogin, CurrentUser.UserLogin }); 
                        } 
                    } 
                }); 
                return true; 
            } 
            catch (Exception ex) 
            { 
                LogHelper.Log(ex, LogCategory.B2E, LogSeverity.Error, "Unable to add like"); 
                return false; 
            } 
        } 
 

 

Using siteUrl global variable we defined the SPsite manually and then using 

the username of our user we could obtain his token and go on with the enqueue 

operation that will add a like. 

At this point, the external application is integrated in Teams and working, it is 

showing the news as in the intranet portal homepage and giving us the 

possibility to add and remove like from there. 

 

5.4 The other solution: cloud workflow 

With this solution we thought we could get the concept of integration even 

further. While in the first case we created a web application that is showed as a 

tab inside Teams, with our graphical interface, with the news rendered in our 

web page, as external object with respect to Teams, in this second case we 

want to use a different approach.  



46 
 

We thought about creating the news inside Teams as automatically generated 

posts on a dedicate channel. As we explained in previous chapters, Microsoft 

Azure offers a specific tool to create personalized workflow, using triggers and 

action: the Logic Apps. For our goal, another efficient and simple solution that 

fit our needs was to build a logic app. We should trigger it during publication 

of a news on the intranet portal so that it can send out that news in real time 

also to a selected channel.  

In this second solution, we also thought to a way to render the news with 

Teams proper graphical interface. To realize it and show them as posts, we 

used the Adaptive Cards. 

  

 

Figure 5.7 Publication to Teams with automatic workflow 

  

To obtain this result we needed to create a Logic App in the Azure 

environment. Our workflow will be quite simple, actually: we just need to 

connect a trigger to an action. So, basically we have one trigger, that will 

activate after receiving an HTTP POST, and one action, that will send the 

Adaptive Card to Teams. 

 

 

Figure 5.8 Schema of our Logic App 



 

47 
 

The simplest way to activate our Logic App from the intranet portal is with a 

HTTP call containing the information about the news to publish on Teams. So, 

we can define this trigger expecting a JSON containing the information about 

the news, such as the one we already were using to retrieve the data to our 

application. 

 

 

Figure 5.9 Definition of the trigger in Logic App Designer 

 

As we can see from the figure, we can define an endpoint for the HTTP POST 

call and a schema for the expected JSON body, that as a class in a 

programming language state what properties will be expected. This schema in 

the end is basically another JSON file, that defines the parameters and their 

types. As we can see, we defined it very similar to the one sent back from the 

intranet portal to our Teams application, because it will activate this trigger 

exploiting the same data class used to return that news. 



48 
 

{ 

    "properties": { 

        "Image": { "type": "string" }, 

        "LinkUrl": { "type": "string" }, 

        "NLike": { "type": "integer" }, 

        "PublishDate": { "type": "string" }, 

        "Text": { "type": "string" }, 

        "Title": { "type": "string" } 

    }, 

    "type": "object" 

} 
 

 

In the end we can simply call that endpoint in a POST request including the 

news in the body, and like that we have triggered our logic app. At this point, 

we need to define an action that can send out the news to our selected channel 

in Microsoft Teams. The Logic App actions came in help in this case! In fact, 

Azure gives as the chance to define an action that will post an adaptive card to 

Teams as the flow bot. It gives us the possibility to choose the team and the 

channel where to publish the post, and then to define a message, as an Adaptive 

Card obviously.  

What is interesting is that the Logic App designer provides to the developer an 

autocomplete functionality, that designing the adaptive card suggest to the user 

the dynamic content to use in it, based on the schema defined in the trigger. So, 

while building our adaptive card we will be suggested with the values of the 

title, image, link and others that we defined in the first block of the app. A 

powerful instrument that helped us filling our adaptive card with the data 

coming from the intranet portal. 

 



 

49 
 

 

Figure 5.10 Definition of the action in the Logic App designer 

 

To define the adaptive card we used the dedicated designer, provided by 

Microsoft. With it is possible to test different version and see the different 

possible output that will result, also seeing how it will look in the possible host 

app, such as Microsoft Teams, both in light and dark theme. This designer 

allows to work with the code, writing down directly the JSON that will define 

the card, or exploiting its graphical interface, drag and dropping the component 

in the dedicated box, and then writing directly inside them. 

 

   



50 
 

With this instrument we defined an example of the card how we wanted it to 

look, and then we transferred it inside the action in our Logic App designer. As 

we can see from the JSON file below, we can reference the properties of the 

trigger that preceded the action with the code triggerBody that makes simpler 

to build the response. 



 

51 
 

{ 

    "type": "AdaptiveCard", 

    "body": [ 

        { 

            "id": "Title", 

            "type": "TextBlock", 

            "size": "ExtraLarge", 

            "weight": "Bolder", 

            "text": "@{triggerBody()?['Title']}" 

        }, 

        { 

            "id": "PublishDate", 

            "type": "TextBlock", 

            "spacing": "None", 

            "text": "@{triggerBody()?['PublishDate']}", 

            "isSubtle": true, 

            "wrap": true 

        }, 

{ 

"type": "Image", 

"url": "data:image/gif;base64,@{triggerBody()?['Image']}" 

}, 

        { 

            "id": "Text", 

            "type": "TextBlock", 

            "text": "@{triggerBody()?['Text']}", 

            "wrap": true 

        } 

    ], 

    "actions": [ 

        { 

            "id": "LinkUrl", 

            "type": "Action.OpenUrl", 

            "title": "View", 

            "url": "/@{triggerBody()?['LinkUrl']}" 

        } 

    ], 

    "$schema": "http://adaptivecards.io/schemas/adaptive-card.json", 

    "version": "1.2" 

} 
 

 

At this point we have finished the development of our automatic workflow, and 

we can test it by triggering it, calling that endpoint with an external call.  



52 
 

Now, we must create a connection between the existing intranet portal and our 

Logic App. Clearly, we have to think something different, because in this case 

we do not have to send each time the block of news that must be seen in home 

page, since what will be published in the Teams channel will remain there. We 

need instead to trigger the app on publication of each news.  

 

Figure 5.11 The publication of a news 

 

So, we have to modify the existing endpoint that manages it in the existing 

portal, so that we can add a parallel mechanism that will create a JSON and call 

the logic app endpoint in POST with the news in the body. In this case we 

don’t have any problem of authentication, we just need to add a piece of code 

to the existing method that adds this mechanism. 



 

53 
 

        static object publishNewsLock = new object(); 
        public PublishNewsResponse PublishNews(string Url) 
        { 
            PublishNewsResponse response = new PublishNewsResponse(); 
            try 
            { 
                lock (publishNewsLock) 
                { 
                    // Get News from page. 
                    News news = EntityManager.GetNewsFromPage(Guid.Empty, 
Guid.Empty, Guid.Empty, 0, Url); 
                    // check if news exist in db 
                    // if(exist) 
 
                    if (EntityManager.ExistsNews(news)) 
                    { 
                        news.FlagDeleted = false; 
                        EntityManager.UpdateNews(news); 
                    } 
                    else 
                        EntityManager.InsertNews(news); 
 
                    /*** New mechanism ***/ 
                    string postUrl = "https://prod-
127.westeurope.logic.azure.com:443/workflows/39..."; 
 
                    news.PublishDate = news.PublishDate.Date; 
                    string singleNewsJson = JsonConvert.SerializeObject(news); 
 
                    var httpWebRequest = 
(HttpWebRequest)WebRequest.Create(postUrl); 
                    httpWebRequest.ContentType = "application/json"; 
                    httpWebRequest.Method = "POST"; 
 
                    using (var streamWriter = new 
StreamWriter(httpWebRequest.GetRequestStream())) 
                    { 
                        streamWriter.Write(singleNewsJson); 
                    } 
 
                    var httpResponse = 
(HttpWebResponse)httpWebRequest.GetResponse(); 
                    using (var streamReader = new 
StreamReader(httpResponse.GetResponseStream())) 
                    { 
                        var result = streamReader.ReadToEnd(); 
                    } 
                    /*** End of new mechanism ***/ 
 
                } 
                response.Status = 0; 
            } 
            catch (Exception ex) 
            { 
                response.Status = -1; 
                response.ErrMsg = ex.ToString(); 
                LogHelper.Log(ex, LogCategory.B2E, LogSeverity.Error, "PublishNews 
failed"); 
            } 
            return response; 
        } 
 

 

 



54 
 

So, we basically just need to build a JSON from the single news that is being 

published and then call the endpoint of the Logic App with a HTTP POST that 

has it in the body. This will automatically trigger our workflow and make the 

news appear also as a post in our Teams channel. In this way we basically 

created an alternative to the integrated app.  

 

   



 

55 
 

Chapter 6   

 

Result 
 

6.1 Familiar for editors, familiar for users 

The goal of this project was to emphasize the importance of tools that can ease 

the work life of employees in a context of always working from home, due to 

COVID or to its impact. As we said, working from home is something that will 

remain even after, and because of that we must think to solutions that can 

improve this reality. For this reason, we took an old web-based portal used to 

keep employees up to date on the company’s news and decided to realize a 

quicker and simpler to use alternative. 

Our goal was to make the change invisible for editors of the company, and we 

managed to do it. In fact, the interface to publish will not be changed; both 

local and global communication teams of the company will continue to take 

care of the news in the exact same way as they did in the past, nothing will 

change from that point of view.  

 

 

Figure 6.1 Editors’ interface of the portal 

 

What instead will change is the final user point of view. While the user in the 

past used to access to a web portal from a browser, needing an extra login and 

some loading time, with the new configuration will not have to do anything, 

just log in the same platform used every day to communicate with its 



56 
 

colleagues. There they will find also a dedicated tab or a dedicated channel, 

that shows all the same news of the web portal. The company managers will 

have the possibility to use the news interface in each team or channel where 

they want to show it.  

 

6.2 Pros and cons of the two solutions 

In the first solution, the users of the teams that access this tab will 

automatically see a personalized screen, as the old homepage of the intranet 

portal was. In fact, each user will be recognized by the account email, and the 

news showed will be based on the audience they belong to. We created an 

alternative to the old news system that basically works in the same way, but 

that is easier to access and consult. 

 

 

Figure 6.2 The News Feed Teams App 

 

On one hand we have the first solution, that is clearly a transposition of the 

existing web portal homepage; on the other hand, we have the second 

alternative that instead work in a slightly different way. In that case we choose 

the channel where our logic app will post the news, and they will be published 

there in real time after the publication on the web site. 

In this second possibility, the effect is of a perfectly integrated flow of Teams 

post, self-generated, with the possibility to add reaction and comment, and 

sharable on private chat. Clearly a solution that is distant from the original 

portal interface, but that can encourage a different way of fruition of the news 

system. With this implementation the notification system of Teams will be 

exploited to notify the user about new posts in the dedicated tab or channel. 



 

57 
 

Regarding this second solution, it would be more difficult to provide the 

audience system. It would require differentiating the channels where to post the 

news in form of Adaptive Cards from our automated workflow. We should 

create many channels related to the different users and publish each news on 

the proper ones, and in parallel allow the proper users to see the proper 

channels. Basically, it means to almost recreate the audience system from a 

different perspective and with different technologies. 

Two different solutions that are both easier and quicker to use with respect to 

the original one, as we wanted, but also portable. The old intranet portal was 

only accessible by the private network of the company, and so not simple to 

reach from the external and in particular was very uncomfortable to use from 

mobile devices. With a solution based on Microsoft Teams instead, we can 

consult the news information from anywhere and from any device, such as a 

mobile phone or a tablet. 

 



58 
 

  

Figure 6.3 Two views from mobile 

    



 

59 
 

Chapter 7  
 

Conclusion 
 

These two solutions follow two very different approaches, one more 

conservative while the other more progressive. Both changes the perspective of 

the employee that consult the news, while maintaining unchanged the point of 

view of editors that publish and manages them. Although in both cases the 

desired result is obtained, there are important differences between them. 

The main advantage of the first solution is the repurposing of the same 

identical interface in an external environment. It can fulfil the desire of 

maintaining a coherence with the existing portal and it will automatically show 

the news based on the audience of the user. Its disadvantages are related to the 

extended modifications to the existing infrastructure, providing each 

functionality to an external application, and limited possibilities of interaction 

with other Teams services.  

Regarding the second solution, with it is simpler to automate the publication of 

the news on Teams, and it provides a full integration of them with the 

communication platform functionalities, since they are proper posts. The main 

disadvantages are related to the profiling, since it requires the creation of many 

channels where to publish the news, and to management of the news after 

publication. 

From this work, what is evident is that the fruition of the news from Teams is 

quicker and allow a different way of interacting with the news. This highlight 

that the integration of external services into communication platform could 

make the consultation more comfortable for final users. As we enriched our 

news infrastructure with the functionalities offered for Microsoft Teams for its 

propriate post, this kind of integration can actually provide interesting new 

features to web based system. Obviously, each case should be analyzed 

differently, to evaluate pros and cons of the two solutions presented here, if 

they are feasible and which of them can bring more advantages to the system 

we need to integrate. 

Future research on this topic should focus on implementing this solution in real 

scenarios. During this work we developed two demonstrative proof of concept 

to demonstrate the feasibility and the implementation of the two designed 

projects. A real use of these two solutions, realize ad hoc on a vast scale to 

evaluate the improvements, would give more definitive and precise result on 



60 
 

which one is better and how both affect everyday use of the news interface by 

users.  

A real implementation of these solutions with a real test on companies’ 

employees will give the possibility to realize some statistics and to analyze 

empirically the obtained results. 

 
  



 

61 
 

Bibliography  
 

[1] https://www.sylamtechgroup.com/wp-content/uploads/2019/04/intro-video-

conferencing-wp-engb.pdf 

[2] R. Singh, S. Awasthi, August 16, 2020, Updated Comparative Analysis on 

Video Conferencing Platforms- Zoom, Google Meet, Microsoft Teams, WebEx 

Teams and GoToMeetings, CS Department, MSI, New Delhi, India 

[3] L. Yang, S. Jaffe, D. Holtz, S. Suri, S. Sinha, J. Weston, C. Joyce, N. Shah, 

K. Sherman, CJ Lee, B. Hecht, J. Teevan, July 30, 2020, How Work From 

Home Affects Collaboration: A Large-Scale Study of Information Workers in a 

Natural Experiment During COVID-19, Microsoft Corporation, from 

https://www.microsoft.com/en-us/research/publication/how-work-from-home-

affects-collaboration-a-large-scale-study-of-information-workers-in-a-natural-

experiment-during-covid-19/ 

[4] N. Bloom, J. Liang, J. Roberts, Z. J. Ying, February 1, 2015, Does Working 

from Home Work? Evidence from a Chinese Experiment, The Quarterly 

Journal of Economics 130, 165-218, https://doi.org/10.1093/qje/qju032 

[5] T. D. Allen, T. D. Golden, K. M. Shockley, October 2, 2015, How Effective 

Is Telecommuting? Assessing the Status of Our Scientific Findings, Psychol Sci 

Public Interest 16, 40–68, https://doi.org/10.1177/1529100615593273 

[6] P. Choudhury, C. Foroughi, B. Larson, 2019, Work-from-anywhere: The 

Productivity Effects of Geographic Flexibility, SSRN Journal,  
https://doi.org/10.2139/ssrn.3494473 

[7] https://siepr.stanford.edu/research/publications/how-working-home-works-

out 

[8] E. Stoeckli, F. Uebernickel, W. Brenner, 2018, Exploring Affordances of 

Slack Integrations and Their Actualization Within Enterprises –Towards an 

Understanding of How Chatbots Create Value, Proceedings of the 51st Hawaii 

International Conference on System Sciences, 
http://128.171.57.22/handle/10125/50142 

[9] S. Limkar, S. Baser, Y. Jhamnani, P. Shinde, R. Jithu, P. Chinchmalatpure, 

18 February 2020, Chatbot: Integration of Applications Within Slack Channel, 

International Conference on Intelligent Computing and Communication, 

Intelligent Computing and Communication,  551-558, 
https://link.springer.com/chapter/10.1007/978-981-15-1084-7_53 

[10] P. Lowenthal , J. Borup, R. West, L. Archambault, February 18, 2021, 

Thinking Beyond Zoom: Using Asynchronous Video to Maintain Connection 

and Engagement During the COVID-19 Pandemic, Journal of Technology and 

https://www.sylamtechgroup.com/wp-content/uploads/2019/04/intro-video-conferencing-wp-engb.pdf
https://www.sylamtechgroup.com/wp-content/uploads/2019/04/intro-video-conferencing-wp-engb.pdf
https://www.microsoft.com/en-us/research/publication/how-work-from-home-affects-collaboration-a-large-scale-study-of-information-workers-in-a-natural-experiment-during-covid-19/
https://www.microsoft.com/en-us/research/publication/how-work-from-home-affects-collaboration-a-large-scale-study-of-information-workers-in-a-natural-experiment-during-covid-19/
https://www.microsoft.com/en-us/research/publication/how-work-from-home-affects-collaboration-a-large-scale-study-of-information-workers-in-a-natural-experiment-during-covid-19/
https://doi.org/10.1093/qje/qju032
https://doi.org/10.1177/1529100615593273
https://doi.org/10.2139/ssrn.3494473
https://siepr.stanford.edu/research/publications/how-working-home-works-out
https://siepr.stanford.edu/research/publications/how-working-home-works-out
http://128.171.57.22/handle/10125/50142
https://link.springer.com/chapter/10.1007/978-981-15-1084-7_53


62 
 

Teacher Education, 28(2), 383-391,  

https://www.learntechlib.org/primary/p/216192/ 

[11] https://www.channele2e.com/wp-content/uploads/2020/11/canalys-cloud-

research.jpg 

[12] https://www.bitmat.it/blog/internet/connettivita/marzo-2020-il-traffico-

internet-globale-e-aumentato-del-30/ 

[13] https://www.npmjs.com/package/adaptivecards/v/2.7.0 

[14] https://www.adenin.com/blog/adaptive-cards/ 

[15] https://docs.microsoft.com/en-us/microsoftteams/platform/get-started/get-

started-dotnet-app-studio?tabs=AS 

[16] https://docs.microsoft.com/en-us/microsoftteams/platform/concepts/build-

and-test/app-studio-overview 

[17] https://tomtalks.blog/2020/12/microsoft-teams-statistics/ 

https://www.learntechlib.org/primary/p/216192/
https://www.channele2e.com/wp-content/uploads/2020/11/canalys-cloud-research.jpg
https://www.channele2e.com/wp-content/uploads/2020/11/canalys-cloud-research.jpg
https://www.bitmat.it/blog/internet/connettivita/marzo-2020-il-traffico-internet-globale-e-aumentato-del-30/
https://www.bitmat.it/blog/internet/connettivita/marzo-2020-il-traffico-internet-globale-e-aumentato-del-30/
https://www.npmjs.com/package/adaptivecards/v/2.7.0
https://www.adenin.com/blog/adaptive-cards/
https://docs.microsoft.com/en-us/microsoftteams/platform/get-started/get-started-dotnet-app-studio?tabs=AS
https://docs.microsoft.com/en-us/microsoftteams/platform/get-started/get-started-dotnet-app-studio?tabs=AS
https://docs.microsoft.com/en-us/microsoftteams/platform/concepts/build-and-test/app-studio-overview
https://docs.microsoft.com/en-us/microsoftteams/platform/concepts/build-and-test/app-studio-overview
https://tomtalks.blog/2020/12/microsoft-teams-statistics/

