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Abstract

The objective of this project is to take the first step towards the definition of a
model of visual-functional reconstruction of the brain’s electrophysiologic activity
without having access to patient-specific structural MRI. The proposed approach
relies on the combination of electroencephalography (EEG) source localization
and machine-learning algorithms for the definition of a standard based on the
comparison of discriminating features between brain models.

EEG source imaging (ESI) aims at identifying the areas of the brain responsible
for potential variations detected by electrodes placed on the scalp of the patient,
and involves the resolution of two fundamental problems: the forward problem
and the inverse problem. ESI has several clinical application ranging from the
pre-surgical localization of epileptic seizure-onset zone, or the treatment of psycho-
logical disorders via neurofeedback. The localization of the sources occurs by first
calculating the electrical potentials resulting from hypothetical neuronal source
activity distributions (forward problem), that are then compared with the real data
recorded by the EEG to obtain an estimate of the activity that best fit these data
(inverse problem). The inverse problem finds its complexity in the ill-posedness
of the problem itself. Only by placing reliable a-priori constraints is therefore
possible to accurately define an electric source, thus solving the inverse problem.
The forward problem, instead is well-posed: it is unequivocally determined by the
morphologic and electric properties of the patient’s head, that can be estimated
e.g. by magnetic resonance imaging (MRI).

By obtaining an accurate estimate of the electrical sources it is possible to
contextualize them in a three-dimensional model derived from the image processing
of a structural MRI. However, the realization of a specific model for a patient for
which an ESI is performed is expensive in terms of time, cost and availability of
medical equipment. We will therefore build a system capable of sidestepping the
need for patient specific MRI head models. We will leverage a structural MRI
dataset and build a new algorithm capable of comparing the discriminating brain
features derived from the mapping of the scalp of a patient with those related to
the three-dimensional models generated by the MRI dataset, and then associate
the model that best fits the patient’s brain. This will lay the foundations for a
new method of EEG source imaging more convenient in economic terms and more
reliable in terms of real-time visualization of electrical sources.
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Chapter 1

Introduction

The complex structure of the brain has been the subject of study and investigation
by several scientists in both medical and engineering fields for decades.

With the advent of new technologies, the visualization and observation of the
mechanisms that regulate this organ have become increasingly accessible and have
led to the creation of various ways to access the data that are regularly produced
by the brain itself.

The goal of this work is to discuss and investigate how, by exploiting cutting-
edge engineering technologies such as Virtual Reality (VR) and machine learning,
basic technologies for the study of electrical signals of the brain such as electroen-
cephalography (EEG) and Neuroimaging technologies such as Magnetic Resonance
Imaging (MRI), it is possible to create a three-dimensional representation system
capable of visualizing in real time the data produced by our brain in the form of
electrical signals.

In particular, from this basis we will delve into the field of EEG Source Imaging,
which combines brain structural imaging with brain functional imaging. The former
involves all the techniques used to map the anatomy of the brain in its temporal
resolution during a mental task, thus without giving information about where
the signals detected are generated. The latter involves the techniques used to
give information about the metabolic representation of brain structures and their
activation based on stimuli. In brief, the aim of EEG Source Imaging is to detect
brain stimuli, which can be recorded by an EEG as an electrical potential, and
then localize the sources where this stimuli are produced.

EEG Source Imaging involves the resolution of two fundamental problems: the
forward problem and the inverse problem. The Forward Problem (FP) consists in
the computation of the electrical potential on the scalp generated from the current
flow of a single dipole. The Inverse Problem (IP) consists in the localization of the
electrical sources by comparing the real potential detected by the EEG with the
potential computed solving the IP.
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Introduction

Through electrical signals we are able to have detailed information on neuronal
activity, which can be useful in the study of diseases such as epilepsy, cortical or
parenchymal lesions of various kinds, or to investigate the secondary nature of
more common situations such as headaches. In particular, we will observe how it is
possible to perform this representation without necessarily having an MRI for a
subject testing our application.

To do this, we will use a large dataset composed of various subjects with related
MRIs, then will discuss about various techniques of selection and discrimination
to associate which one of these subjects has the characteristics that most closely
resemble the brain of a person who in a given moment is wearing our EEG.

The final result will be displayed in our VR application Neurosurf, developed
in Unity Engine, whose objective is to give to all its users the opportunity to see
neurofeedbacks in real-time whithout necessarily having an MRI.
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Chapter 2

Theoretical background

In this chapter we will introduce some theoretical concepts necessary for under-
standing the main topics of this work. We will discuss basic concepts about human
brain physiology (section 2.1) and neuronal activity, then we will introduce the
medical technologies we will use in our experiments, i.e. EEG and MRI.

2.1 Human brain physiology
The brain is the most complex structure of the human body. It is composed of 1010

to 1011 cells, called neurons. Each neuron communicates with thousands of other
cells that can be either nerve cells, precisely neurons, or muscle cells, sensory cells
or endocrine glands. Responsible for this communication are synapses, a structure
of interconnections capable of sending chemical or electrical signals. The number
of synapses present in the human brain is about 1014.

2.1.1 The neuron
Since we are talking about brain impulses, it is necessary to introduce the concept of
neuron. The neuron the main element of the brain, responsible for the transmission
of all information that regulates brain activity. Each neuron is in turn composed
of three components:

• the soma, which is the body of the neuron and contains the nucleus;

• the axon, a branch of the cell body that plays the key role of transporting
nerve signals outside the soma;

• the dendrites, other cellular extensions which receive informations by afferent
neurons and direct them to the soma.

3



Theoretical background

Neurons can be defined as electrical devices, which communicate with each other
via electrical impulses called action potentials and chemical neurotransmitters.

The channels present in the cell membrane of the neuron allow the flow of
positive and negative ions, since the cell membrane itself has its own electrical
potential that oscillates between -70mV and -65mV according to the inputs from
the axons of the neuron itself, which inhibit or promote the generation of action
potentials [1]. The latter are essentials for communication between neurons, and
occur when the electrical potential of the cell membrane reaches -50mV, a limit
that we call action potential threshold. As shown in fig. 2.1 A neuron that reaches
this threshold, graphically speaking, produces a "spike".

Figure 2.1: Graphic description of a spiked neuron. [1]

Neurons communicate with each other through synapses. When an action
potential reaches the presynaptic terminal, a neurotransmitter is released into the
synaptic cleft, which receptors will attach to a transmitter, and depending on the
neurotransmitter released a number of positive or negative ions will cross the cell
membrane. In short, synapses convert the electrical signal into a chemical signal in
the form of neurotransmitter release, and then bring it back again in the form of
an electrical signal.

2.1.2 Hemishperes and lobes of the brain
The cerebral cortex is divided into two cerebral hemispheres connected by the
corpus callosum [2]. Each one of the hemispheres controls the opposite part of the
body (e.g. the left hemisphere controls the right part of the body) and is divided
into four lobes: frontal, parietal, temporal and occipital.

As shown in fig. 2.2, the lobes are in turn divided into different areas specialized
in various brain functions. For example, in the frontal lobe we will find both

4
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functionalities related to movement, and functionalities related to attention or the
ability to speak.

Figure 2.2: Subdivision of the brain lobes. [2]

2.2 Neuroimaging
With neuroimaging we refer to all medical techniques aimed at mapping the anatomy
or physiology of the nervous system (CNS). Neuroimaging techniques are divided
into two macrocategories: structural neuroimaging and functional neuroimaging.
The former refers to the anatomical representation of brain structures, while the
latter refers to the functional, i.e. metabolic representation of brain structures and
their activation based on stimuli.

Regarding on structural neuroimaging techniques, among the most widely used
are Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). On the
other hand, the most widely used functional neuroimaging techniques are functional
MRI (fMRI) and Positron Emission Tomography (PET).

2.2.1 MRI
Magnetic Resonance Imaging finds its basis in atomic composition and atomic
properties. Indeed, all atomic nuclei consist of protons and neutrons, with a
net positive charge. Certain atomic nuclei, such as the hydrogen nucleus or the
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phosphorus nucleus possess a property known as “spin”. This can be conceived as
the nucleus spinning around its own axis [3].

However, the nucleus itself does not spin in the classical meaning, but induces
a magnetic moment and generates a local magnetic field with north and south
poles. These nuclei can be excited within the static magnetic field ( ~B0), that aligns
the hydrogen nuclei along its axis, by application of a second radiofrequency (RF)
magnetic field ( ~B1), applied perpendicular to ( ~B0). The RF energy is usually applied
in short pulses, each lasting microseconds, and its absorption by the nucleus causes
a transition from higher to lower energy levels and vice versa on relaxation. The
energy absorbed and emitted induces a voltage that can be detected, amplified and
displayed as the “free-induction decay”(FID). In absence of continued RF pulsation,
relaxation processes will return the system to thermal equilibrium. Therefore, each
nucleus will resonate at a characteristic frequency when placed within the same
magnetic field.

In practice, multiple RF pulses are applied to obtain multiple FIDs, which are
then averaged to improve the signal-to-noise ratio (SNR). The signal-averaged FID
is a time-domain signal. It will be made up of contributions from different nuclei
within the environment being studied (e.g. free water and 1H bound to tissue).
The signal-averaged FID can be resolved by a mathematical process known as
Fourier transformation, into either an image (MRI).

The peculiarity of MRI is that it can provide a weighted image in different
sequences, since two types of relaxation are verified, the longitudinal and the
transverse relaxation, and they are characterized by two time constants which are,
respectively, T1 and T2. Depending on the constant they are weighted to, details
will appear differently. In T1-weighted images, which we can also call "anatomic
sequences" fats will be brighter while fluids, like water, will be darker and vice
versa in T2-weighted images, since these sequences have opposite gray-scales, as
shown in fig. 2.3.

Techniques such MRI are fundamentals in the field of anatomic studies, but
they don’t have diagnostic implications in the evaluation of functional diseases
(unless they are secondary to organic lesions e.g. secondary epilepsy). For the
evaluation of functional neuronal activity, the gold standard examination is the
Electroencephalogram (EEG).

2.3 EEG
Electroencephalography (EEG) is a non-invasive technique based on the principle
that neurons are interconnected between each other by dendrites, which connect to
form synapses. Therefore, neuronal communication occurs through these electrical
synapses. When a large group of neurons produces electrical activity, a current
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2.3 – EEG

Figure 2.3: On the left: T1 weitghed image, on the right: T2 weighted image. [4]

flow is generated and it causes an electric field and a potential field inside the
human head. When these fields reach the head surface, the electrodes can detect
the electrical potential generating the EEG itself.

The activity recorded by the EEG concerns the events inside a neuron when a
synapses takes place. Indeed, when a neuron is active, it secretes a neurotransmitter
at the synaptical side, where the dendrites are located. A postsynaptic neuron
has a large number of receptors which make contact whit the neurotransmitter
secreted, changing the permeability of the cell membrane. Depending on the
neurotransmitter, two kinds of events can happen [5].

At rest, the cell membrane is characterized by a polarization of about -70mV
due to unequal distribution of Na+, K+ and Cl− ions across it. If the receptor
make contact with a neurotransmitter which let the neuron signals proliferate, an
influx of positive ions will change the permeability of the cell membrane with a
consequent depolarization of the intra-cellular space, from -70mV to -40mV. We
can call this depolarization as Excitatory Postsynaptic Potential (EPSP). If the
receptor make contact with a neurotransmitter which stops the proliferation of
neuron signals, the consequence will be an outflow of positive ions, causing an
hyperpolarization called Inhibitory Postsynaptic Potential (IPSP).

As we mentioned in section 2.1.1, when an intracellular depolarization reaches a
threshold, an action potential is generated and it propagates to other neurons. The
electrodes of the EEG can’t detect the action potentials since they have a small
time course (about 0.3 ms). On the other hand, the postsynaptic potentials have

7
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a larger time course which enables simultaneous activity of neighboring neurons.
These potentials generate the extracellular potential field detected by the EEG.
This current can be modeled by Poisson’s equation.

Electroencephalography provides information that primarily concerns distur-
bances of function rather than structure, such as epilepsy diseases [6]. However,
most EEG applications fail to capitalize on all of the data’s available information,
particularly that concerning the location of active sources in the brain, since this
technique lacks of detailing the spatial resolution of the brain activity.

To investigate the spatial properties of brain activity, we must introduce the
EEG Source Imaging (ESI), which simultaneously details the temporal and spatial
dimensions of brain activity [7].

2.4 EEG Source imaging
The pure electroencephalography itself can’t give accurate information about the
spatial dimension of the brain activity.

EEG Source imaging concerns the field of studies which investigates the local-
ization of the electrical sources which generate the current flow detected by an
electroencephalogram, which means also giving a functional feedback for the brain.
Indeed, functional neuroimaging has the aim of localizing the different modules
of the functional network implicated in a given mental task, but the principal
functional techniques such as functional Magnetic Resonance (fMRI) and Positron
Emission Tomography (PET) are not accurate to answer the question of when the
involved brain areas become active during the mental task. EEG source imaging
finds its applications in several science fields such as neurology, psychiatry and
psychopharmacology and all the sciences which investigate the temporal aspects
of information processing by analyzing event related potentials (ERP). The main
clinical application concerns the localization of epileptic foci [7].

EEG source localization consists on solving two fundamental problems: the
forward problem (FP) and the inverse problem (IP).

2.5 Forward problem
The forward problem consists in the computation of the potential at the electrodes
starting from a given electrical source of a single dipole and its solution is needed
to solve the inverse problem [5].

The electrical activity of groups of neurons can be modeled by means of current
dipoles with moment d, characterized by a magnitude d = ||d|| and an orientation
ed. By solving the Poisson equation we can calculate g(r, rdip,d), the potential

8



2.5 – Forward problem

at an electrode having a position vector r due to a single dipole with moment d
located in rdip, considering the different configurations of rdip and d.

If we consider multiple dipole sources, according to the superposition principle,
the potential at an electrode is

V (r) =
∑

i

g(r, rdipi
,di) =

∑
i

g(r, rdipi
, edi

)di. (2.1)

In practice, the difference between an electrode and a reference is calculated.
The reference could be another electrode or an average reference. For N and p
dipoles we can imagine the potential V as a column vector resulting by the product
between the matrix which describes the different values of g(r, rdip,d) depending
on the value of N and the dipole p and the column vector of the moment d. Then,
given p dipoles, N electrodes, and considering T time samples, the forward problem
can be expressed as

V = GD + n (2.2)
where V indicates the N -by-T matrix of the potentials measured at different

times at the electrodes positions, G indicates the N -by-p gain matrix, D indicates
the p-by-T matrix of the magnitudes of the dipoles at different time instants, and
n is a noise distribution, in particular a Gaussian distribution whit zero mean
and variable standard deviation. This component added to take into account the
possible perturbations of the EEG measurements, even if it does not represent
accurately the real noise which can depend on different factors like the patient’s
pathology or the measurement set up. The gain matrix is also called "lead-field
matrix" and it represents the physical properties of the head.

Solving the forward problem is essential to approach with the inverse problem,
since the estimated potential V is necessary in order to work back and localize the
electrical sources. One of the most used technique to solve the forward problem
and calculate the surface potentials is the Boundary Element Method (BEM). It
is a low computational need technique and for this reason it is widely used. It
consists on calculating the potentials generated by current sources located in a
picewise homogeneous volume conductor [5].

It is based on the fact that a head model is generally composed of 3 surfaces:
brain-skull interface, skull-scalp interface and the outer surface, and the region
between these surfaces are homogeneous and isotropic conducting. This method
provides a solution to a volume problem by calculating the potential values at
the interfaces and boundary of the volume induced by a given current source.
The equations which describe this approach can be resumed into a set of linear
equations:

V = BV + V ′
0 (2.3)
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where V and V ′
0 indicate the column vectors denoting at every node the wanted

potential and the potential value in an infinite homogeneous medium due to a
source [5], B is a matrix whose values depend on the geometry of the surfaces
and the connectivity of each region. The determination of the values of B has an
high computational cost. Moreover, using this matrix the equation has no unique
solution and this means that B must be replaced by

C = B − 1
N

eeT (2.4)

where e is a vector with all is N components, that are all the unknowns, equal
to one. The previous equation become

V = CV + V ′
0 (2.5)

and possesses a unique solution that is also a solution of the original one.
Moreover, in order to reduce the errors that could be generated considering the
difference between the conductivity of the brain and the conductivity of the skull
we can follow the Isolated Problem Approach (IPA) and rewrite V as

V ′(r) = V ′(r) + V ′′(r) (2.6)

where V ′′ is defined as the potential on the surface when the head is a homoge-
neous brain region, thus omitting the skull and the scalp compartments [5]. V ′ is
the correction term.

Another widely used technique to solve the forward problem is the Finite
Element Method (FEM) which solves the Poisson’s equation in a realistic head
model. However, its computational cost is very intensive.

2.6 Inverse problem
Our main objective is to illustrate how to approach with the Inverse Problem (IP).
Solving the Inverse Problem means identifying the electrical sources that generate
the current flow detected by the EEG, starting from the results obtained by solving
the Forward Problem.

The complexity of solving the IP lays in the ambiguity of the problem itself,
since we can’t identify the source as a single dipole and due to this the equation
which describes the problem has infinite solutions. Indeed, while in the Forward
Problem we analyzed the current flow generated from a single dipole with a specific
behavior, in the case of IP we work back from the potential V detected by the
EEG that we can’t consider as a potential coming from a single source but from a
higher amount of electrical sources. The only way to solve this problem is to apply
some reliable constraints which can lead to an accurate result [8].
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As we showed in section 2.5, the neural activity can be modeled by currents.
Considering N electrodes with position vector r, p dipoles with position vector
rdip and moment d, T instants, we obtained the equation

V = GD + n (2.7)

Where V is the column vector of the potentials at different times, G is the
lead-field matrix, D is the matrix describing the dipole moments at different times
and n is the added Gaussian noise which could derive from several factors. However,
we must consider that for the Inverse Problem p >> N and the system becomes
unstable and the solution is non-unique.

Starting from eq. (2.7), the aim is to estimate the matrix D knowing V from
the EEG recordings and G from the Forward Problem. Among the approaches
used to solve the Inverse Problem, we find two main methods:

• non parametric methods, that we also can call Distributed Source Model,
Distributed Inverse Solutions (DIS) or Imaging methods. The use of these
method leads to a linear problem.

• parametric methods. The use of these methods leads to a non-linear problem.

We will focus on non-parametric methods.

2.6.1 Non parametric methods
As we mentioned in section 2.4, dipole sources are assumed as intracellular currents
located in the dendritic trunks which are oriented to the cortical surface.

In this model we consider several dipoles with fixed locations and possibly fixed
orientation. So rdipi

and ei are respectively determined and possibly determined
a-priori. If these dipoles have a fixed orientation it means that they are normally
aligned and then the amplitudes and direction can be estimated. For this reason
we can define this a linear problem. Among these approaches we can find:

• Bayesian methods, based on the probabilistic approach to find a probability
distribution of solutions;

• The Backus-Gilbert method, which finds the approximate inverse operator T
of G to estimate the closest current density to the real current density, using
real EEG data;

• The weighted resolution optimization, an extension of the previous Backus-
Gilbert;
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the Bayesian methods, which focus on finding a probability distribution of solutions
instead of a single one. We will focus on the Bayesian methods, in particular in
the Low resolution electrical tomography (LORETA) and in the Standardized low
resolution brain electrical tomography (sLORETA).

Low resolution electrical tomography (LORETA)

Low resolution electrical tomography is a non-parametric method which combines
the lead-field normalization with the Laplacian operator. It based on the maximum
smoothness of the solution, starting from the constraint of smoothly distribuited
sources. LORETA analyzes all the sources, from the deeper ones to the most
superficial ones and normalizes the columns of the lead-field matrix G to give these
sources the same opportunity of being reconstructed.

ĜLOR = (GT G + αB∆T ∆B)−1GT M (2.8)
Where B is a diagonal matrix for the column normalization of G.
According to the aim of our work, this method is important since it was ana-

lyzed and compared among four other inverse methods (minimum norm, weighted
minimum norm, Backus-Gilbert, weighted resolution optimization) thus resulting
the best one in the localization of the sources in 3D space.

Standardized low resolution brain electromagnetic tomography

Standardized low resolution brain electromagnetic tomography (sLORETA) is a
method which focuses on the source localization based on images of standardized
current density. [9] Despite the name, it is different from LORETA since it does not
use the Laplacian operator and the concept itself is quite different [8]. It uses the
current density ĜMNE estimated by another non-parametric method, Minimum
Norm Estimate (MNE). With sLORETA the variance of this current density is
estimated by referring to the actual source variance, while its variation is estimated
by referring to the noisy measurements. Thus ĜMNE becomes standardized. The
metod can be described by the following equation:

D̂T
MNE,l{[SD̂]ll}−1D̂MNE,l (2.9)

Where D̂T
MNE,l is the current estimate at the lth voxel given by MNE and [SD̂]ll

is the lth diagonal block of the resolution matrix SD̂ [8]. sLORETA selects the
source with maximum normalized power as the centre point for spatial refinement
in the next iteration, where the next decimation is applied. It solves the IP giving
a smooth solution.

sLORETA has zero error localization on single sources, since the maximum
of the current density power estimate corresponds to the dipole location. It has
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also good results in noisy simulations, since it produces results with the lowest
localization errors and least number of ghost sources.

2.7 Brain Computer Interface
Brain-computer interface (BCI) is a method of communication based on neural
activity generated by the brain and is independent of its normal output pathways
of peripheral nerves and muscles [10].

The BCI system is always subject to the conditions in which it operates. There-
fore, an operating enviroment is defined and it indicates the physical location
and the surrounding objects in which the system is used. It involves physical
boundaries, temperature, terrain conditions, external noises. The system must be
able to endure the changing conditions and adapt to them.

Figure 2.4: The BCI cycle. [11]

An user is defined as the entity which intentionally alters his brain state (here
we exclude involuntary changes of the brain state, such as seizures) to give an input
to the BCI system in the shape of control signals.

The cycle of a BCI system can be resumed in 6 phases (fig. 2.4):

• Task and stimuli of the user;
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• Measurement;

• Preprocessing of the detected data;

• Feature extraction;

• Prediction;

• Output.

Task and stimuli

To start the BCI cycle, a mental effort of the user is required to produce a change
of the brain state to be detected. The ideal BCI mental task should be produced
without a great effort to prevent fatigue, so that large brain signal could be generated.
This situation is actually ideal, since the effort required to produce sufficiently
large signal is high and makes the user fatigued. The first device developed in the
field of BCI used volountarily generated brain activity, thus excluding involuntary
changes of the brain state (seizures).

Several recent approaches have focused on instructed cognitive tasks, which
range from perceptual tasks, such as selective attention, via imagery of perception
or movement, to higher level mental tasks such as associating concepts, reasoning
and mental arithmetic Among imagery tasks, Motor Imagery (MI) is currently the
most popular.

Measurement

The measurement techniques of BCI can be divided into invasive techniques and
non-invasive techniques. Non-invasive electroencephalography (EEG) and magne-
toencephalography (MEG) reflect the neuronal activity generated by dipole sources.
The temporal resolution of EEG and MEG to measure changes in neuronal activity
is good but the spatial resolution to determine the precise position of active sources
in the brain is poor. On the other hand, Magnetic Resonance Imaging (MRI) has
optimal results in spatial resolution but lacks of temporal resolution.

Preprocessing and feature extraction

The data detected by the measurement devices must be preprocessed so that
the signal-to-noise-ratio (SNR) is minimized and produces correct brain state
identifications [11]. The most common techniques of preprocessing are artifact
detection, spectral filtering and spatial filtering. Artifact detection detects all the
signals which are not produce by neural activity and then attempts to remove them
from the trial data. Spectral filtering is used to remove noise signals and spatial
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filtering linearly combines signals from multiple electrodes to focus on activity at a
particular location in the brain.

Feature extraction is based on characterizing the signals preprocessed. The
objective in these two phase is to make the raw signals readable for the prediction
phase.

Prediction

This phase is concerned with Machine Learning algorithms. If the output is
continuous, we deal with a regression problem and if the output is discrete we deal
with a classification problem [11]. The prediction is the main phase of the BCI
cycle and its problems consist on the choice of a proper feature selection, in order
to have a good performance on the on-line state estimation and on the adaption of
the BCI system when the brain state changes during the iteration.

Output

The BCI output closes the BCI cycle. It generates information for controlling an
output device which can be a computer application or a physical device like a
wheelchair [11]. The output gives the user a feedback about the predicted intention
that was produced by the mental task of the user. Output can take a wide range
of output modalities, such as text, auditory output or graphica representations of
brain activity for neurofeedback, such as in our work.
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Chapter 3

Description of the Project

In this chapter we will have an overview of all the assets and devices used to
develop the application, from the hardware components to the software for the
data processing.

3.1 Hardware
The hardware components used for the realization of the application Neurosurf
characterize a fundamental part of the project. In particular, to achieve the data
detection and the volume tracking of the user’s scalp were used:

• Electroencephalograph;

• OptiTrack system.

EEG

Two systems for EEG were used:

• g.HiAmp, a high-performance biosignal amplifier with 256 channels for invasive
and non-invasive measurements. The 256 channels can be analyzed in real-
time.

• g.Nautilus, which is a wearable EEG headset to record brain activity in medical
and clinical environments. The different electrode strands hold 8/16/32 EEG
electrodes.

Both use active electrodes and wet measurements.
Figure 3.1 shows the EEG setting used for g.HiAmp and the cap on which the

electrodes for the EEG are positioned.

17



Description of the Project

Figure 3.1: EEG setup. On the left: g.HiAmp; on the right: EEG cap.

OptiTrack

OptiTrack is a motion capture system. It works by placing multiple markers on a
defined volume and executes a sub-millimetre tracking of these markers, with a
frequency up to 240Hz.

In our asset, the tracking was realized with 8 OptiTrack Prime 13W cameras
with 1.3MP resolution, a vertical FoV of 58◦ and a horizontal FoV of 70◦. These
cameras are placed over a 5m x 5m x 3m metallic cage (see fig. 3.2) and they work
by detecting the positions of the reflections in the infrared (IR) spectrum. Then
the 3D locations of the markers are computed and the mesh of the tracked volume
is generated.

3.2 Software
The software used to process the data and to visualize our outputs is described in
the following sections.

Unity Engine

Unity Engine is a cross-platform game engine developed by Unity Technologies. It
is the leading platform for creating 2D, 3D and VR interactive/real-time content.
The project in Unity is organized in scenes, which include an interface to interact
with the possible commands and the game itself, where the user can experience
the intracranial exploration through the GameObjects present in the scene. The
visualization of the scenes while using an Unity application is made possible by set-
ting a Camera. Also the User Interface (UI) is a GameObject called Canvas, where
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Figure 3.2: OptiTrack system setup used.

all the elements of the UI should be placed. The interaction with GameObjects is
managed by the scripts which describe and regulate their behavior.

The Unity application can be used as an executable file after having built the
project, assuming that all the scripts that regulate the world have no errors.

MatLab and Simulink

MATLAB, an abbreviation of "matrix laboratory" is a programming language
and numeric computing environment developed by MathWorks. MATLAB allows
matrix manipulations, plotting of functions and data, implementation of algorithms,
creation of user interfaces, and interfacing with programs written in other languages.

Simulink is a MATLAB-based graphical programming environment for modeling,
simulating and analyzing multidomain dynamical systems. Its primary interface
is a graphical block diagramming tool and a customizable set of block libraries.
Simulink is widely used in automatic control and digital signal processing for
multidomain simulation and model-based design.
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SimNIBS

SimNIBS is a free and open source software package for the Simulation of Non-
Invasive Brain Stimulation. It allows for realistic calculations of the electric field
induced by transcranial magnetic stimulation (TMS) and transcranial electric
stimulation (TES).

We used this software to process the MRIs collected, trough the command
headreco. Headreco reconstructs a tetrahedral head mesh from T1- and T2-
weighted structural MR images. All the head meshes reconstructed in our dataset
were processed with headreco.

MRtrix3

MRtrix3 provides a set of tools to perform various types of diffusion MRI analyses,
from various forms of tractography through to next-generation group-level analyses.
It is developed and maintained by a team of experts in the field, fostering an
active community of users from diverse backgrounds. It was used to generate the
streamlines, starting from T1-weighted MRI and diffusion tensor.

Gmsh

Gmsh is an open source 3D finite element mesh generator with a built-in CAD
engine and post-processor. Gmsh is built around four modules: geometry, mesh,
solver and post-processing. The specification of any input to these modules is done
either interactively using the graphical user interface, in ASCII text files using
Gmsh’s own scripting language (.geo files), or using the C++, C, Python or Julia
Application Programming Interface (API) [12].

We used Gmsh either for the visualization of the brain models generated and
for the simulations performed to place the electrodes and calculate the lead-field
matrices.

Blender

Blender is an open source environment which deals with 3D modeling, animation,
rigging, compositing and video editing. We used this software to visualize and
manipulate the 3D models generated as an output from processed MRIs. In
particular, we used Blender to apply modifiers in order to subsample the meshes
generated with Simnibs and to separate and manipulate the various layers that
were given as an unique output.
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3.3 Neurosurf
Neurosurf is an interactive VR application developed and built in Unity Engine.
The application allows an user to experience an intracranial exploration based on
the recording of his electrical activity, which can be visualized in real-time.

As we mentioned in section 3.1, the electrical activity is recorded with an
EEG. The main problem of this technique is due of its lack of spatial resolution,
which is on the other hand a characteristic of Magnetic Resonance Imaging. The
goal of Neurosurf is to combine the temporal resolution of the EEG with the
spatial resolution of MRI, giving the user the opportunity of a structural-functional
analysis of his brain. It could help in the study of functional diseases such as
ADHD, schizophrenia or epilepsy.

The EEG measurements (pre-recorded or real-time) are processed with a Python
script, which sends the data to the application and the elements in the scene
become active. These elements are the different layers which compose a human
head. Neurosurf receives the data that are linked to some of these layers (e.g. brain,
fibers) and their activation is represented by flashing lights and colors belonging to
a specific colormap selected by the user. The areas which become active correspond
to the electrical sources localized. In particular, the elements in the scene are:

• User Interface (UI);

• Scalp;

• Skull;

• Brain;

• Fibers;

• Game controller, lights and Camera.

User Interface

The Neurosurf environment starts, pauses and stops with the User Interface’s Main
Menu. The UI also offers the access to the Colormap Gallery fig. 3.4, where the
user selects the colormap to visualize the electrical activity, and to the Opacity
Settings where an user can set the opacity of the different layers in the scene.

Scalp

The scalp is the most external layer which corresponds to the surface where the
electrodes are placed. Thus, here the electrical potential V is detected. The scalp
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Figure 3.3: An overview of the Neurosurf User Interface.

Figure 3.4: Neurosurf’s Colormap Gallery.

is a 3D mesh generated from the processing of MRI images, and in our work is the
unique layer which remain fixed. The most internal layers change according to the
brain model selection, that we will discuss in the following chapters.

Skull

The skull is the intermediate layer which separate the Scalp from the internal layers,
Brain and Fibers. It is a kind of "obstacle" for the potential detection, since its
conductivity is significantly lower than the conductivity of the brain. Therefore,
this causes an amplification of the numerical errors in the calculation of the electric
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potential.

Brain

The brain is the most important element in the scene. It is also generated with
MRI image processing and it is a complex and very defined 3D mesh: without any
kind of subsampling, its vertex-count reaches up to one million. In the brain, the
electrical sources are localized by solving the Inverse Problem (section 2.6) of EEG
Source Imaging.

Fibers

While Scalp, Skull and Fibers are generated together with the MRI image processing,
the Fibers require a more complex pipeline to be reconstructed.We will talk about
this pipeline in the following chapter (section 4.2).

The fibers are the most internal layer of the whole mesh present in the scene.
They connect the cortical areas of the brain where the impulses are visualized.

Game Controller, Lights and Camera

The game controller is a kind of ’remote’ used to interact with the VR system. The
camera object is necessary to determine what can be seen by the user and how it
appears in the viewport.

The lights are GameObject which produce light. They are essential in order to
see the environment. Indeed, even if the camera is present it is impossible to see
the scene without some lights.
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Figure 3.5: The electrical activity in Neurosurf, seen with different colormaps.
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Chapter 4

3D representation of Brain
Models

In this chapter we will show how to represent correctly the corresponding 3D model
of an MRI. To do this, we will distinguish two kind of informations given from the
same subject.

T1 Weighted Images: thought of as the most ’anatomical’ of images, T1
weighted sequences result in images that most closely approximate the appearances
of tissues macroscopically, although even this is a gross simplification. The dominant
signal intensity of different tissues are:

• Fluid (low intensity, black color)

• Muscle (intermediate intensity, grey color)

• Fat (high intensity, white color)

• Brain - gray matter (intermediate intensity, grey color)

• Brain – white matter (hyperintense, white color)

Diffusion Weighted Images: Diffusion Weighted Imaging (DWI) assesses the
ease with which water molecules move around within a tissue. It represents the
combination of actual diffusion values and T2 signal.

To get a complete brain model including anatomy and tractograms we need
both these two data. A complete dataset is given from OpenNeuro [13] which offers
anatomical images (T1W) and diffusion weighted images (DWI). Indeed, we can
divide the work in two phases:
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• Head and brain model processing using T1w images through SimNIBS

• Tractogram processing using DWI images through the software MRtrix3, DIPY
library

4.1 Head and Brain model reconstruction
SimNIBS offers several tools to analyze brain images. In particular, the python
code that is able to reconstruct the head model is called headreco. It works with
T1w images and it gives as a result the 3D model of a head, including skin, skull
and brain. An example of how the code works is:

headreco.py all CERL_head sub-CON02_ses-preop_T1w.nii.gz

Figure 4.1: Image processing in Matlab.
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4.2 – Tractogram reconstruction

Figure 4.2: 3D model output in Blender 2.9.

where the argument “all” tells headreco to run all the step of the reconstruction
including volume meshing, and the argument is the T1w file corresponding to an
MRI of a subject. CERL_head is the destination folder. Headreco processes the
images in Matlab (fig. 4.1) and provides the report of the analysis. The output
corresponds to a .msh file including all the meshes processed by headreco and a
.stl file for every component of the whole mesh.

The best way to visualize the output is the software Gmsh, where it is possible to
visualize all the volumes and to export them in different file extension supportable
by 3D environment softwares (e.g Unity, Blender).

4.2 Tractogram reconstruction

To analyze the DWI data to get a 3D tractogram, the software used was MRtrix3.
All the steps did in MRtrix3 to generate the 3D tractogram were inspired form
Andy’s Brain Book [14].

The first step consists on converting the files on a file extension which MRtrix3
can understand, using the command mrconvert inputfile outputfile it is possible
to convert the file extension of the data into .mif, the main file extension of the
software. With the command mrwiew, it is possible to visualize the MRI images
through the viewer (fig. 4.3).
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Figure 4.3: MRI image displayed with mrview.

Figure 4.4: Denoised MRI.

Preprocessing

The further step consists in a phase of preprocessing, which includes denoising and
the extraction of the reverse-phase encoded images.
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Before talking about preprocessing, we need to introduce two factors: bval and
bvec files. The bvals contain a single number per volume that indicates how large
of a diffusion gradient was applied to the data; and the bvecs contain a triplet of
numbers per volume that shows in what directions the gradients were applied. In
general, volumes with larger b-values will be more sensitive to diffusion changes,
but the images will also be more susceptible to motion and physiological artifacts.
The diffusion dataset is composed by two separated imaging files: one that is
acquired with primary phase encoding direction and another acquired with reverse
phase encoding direction.

The primary phase-encoding direction is used to acquire the majority of the
diffusion images at different b-values. The reverse-phase encoded file, on the other
hand, is used to unwrap any of the distortions that are present in the primary
phase-encoded file. Indeed, what we need is to get an average of the images acquired
from the two files, and to do this we have to extract and concatenate the b-values
of the two images, that are separated and opposite, and create an average b=0
images for both phase encoded images.

Once this phase is done we have all the files we need to preprocess them. This
can be done through the command dwipreproc, which gives as an output all the
denoised and preprocessed images (fig. 4.4). To restrict the analysis to the brain
voxel, we can use the command dwibiascorrect which removes inomogenities to
get a better mask estimation, and then use dwi2mask which restricts the mask to
the brain voxels within the brain.

Basis Function and FOD

In order to determine the orientation of diffusion within each voxel, we will create
a basis function from the subject’s own data. MRtrix derives the basis function
from the diffusion data using the command dwi2response, which deconvolves the
fiber orientation distribution. In other words it decomposes the diffusion signal
into a set of smaller individual fiber orientations. The output shows which voxels
were used to generate the basis function for each tissue (fig. 4.5).

The basis function can be used to get the Fiber Orientation Density (FOD), that
is an estimate of the amount of the diffusion in each of the three ortogonal directions.
To do this we can use the command dwi2fod to apply the basis functions to the
diffusion data (fig. 4.6).

Creation of the tissue boundary

The creation of the tissue boundary between the grey matter and the white matter is
necessary to avoid the streamlines to terminate in uncorrect points. The anatomical
image will be segmented in five different tissue types: grey matter, subcortical grey
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Figure 4.5: Red: CSF voxels; Green: Grey Matter voxels; Blue: White Matter
voxels.

Figure 4.6: Fiber Orientation Density (FOD) in the 3D space.

matter, white matter, cerebrospinal fluid and pathological tissue. This will be done
using the command 5ttgen.

After having created the tissue boundary, we can use it as a mask to restrict the
area where we will place the seeds from where the streamlines will grow and trace
a path. The output of 5ttgen shows four tissue types in fig. 4.7 (no pathological
tissue detected).

The next step is to coregister the anatomical and DWI images to ensure that
the boundaries of the tissue types are aligned with the boundaries of the diffusion

30



4.2 – Tractogram reconstruction

Figure 4.7: Tissue types generated with 5ttgen. From the left: grey matter,
subcortical grey matter, white matter, cerebrospinal fluid.

weighted images. The commands used will be dwiextract and mrmath to average
the B0 images from the diffusion data. The first one takes the preprocessed
diffusion-weighted image as an input and extracts the B0 image, the second one
takes the output of dwiextract and computes the mean along the 3rd axis which
indicates the time dimension. The prefix B0 indicates that a diffusion gradient was
not applied during the acquisition of the images, so the b-value is zero.

To use the coregistration command we will use FSL’s flirt. This command uses
the grey matter segmentation as the reference image, and moves the B0 images to the
best fit with the grey matter segmentation. The output will be the tranSformation
matrix that was used to overlay the diffusion image on top of the grey matter
segmentation. Once this is done we can coregister the anatomical image to the
diffusion image taking the inverse of the trasformation matrix with mrtransform.
The output must be visualized to check the quality of the coregistration. The next
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Figure 4.8: Seed boundary.

step is to create the seed boundary separating the grey matter from the white
matter with 5tt2gmwmi which takes as an input the coregistered image and gives
as output the seed boundary image (fig. 4.8).

Generation of the Streamlines

Figure 4.9: Streamlines generated with tckgen.

MRtrix3 uses ACT (Anatomically Constrained Tractography). This method
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will exclude each streamline which is not biologically plausible e.g. if it terminates
in a tissue that is not the gray matter.It is included in tckgen, which generates the
streamlines. MRtrix uses the probabilistic tractography: multiple streamlines are
generated from seed region all along the boundary between grey matter and white
matter, their direction will follow the predominant fiber orientation density. In this
case we will generate 10 million streamlines with tckgen.The complete code is:

tckgen -act 5tt_coreg.mif -backtrack -seed_gmwmi gmwmSeed_coreg.mif
-nthreads 8 -maxlength 250 -cutoff 0.06 -select 10000000
wmfod_norm.mif tracks_10M.tck

where -act specifies that we are using anatomically segmented images, -backtrack
forces the current streamline to go back and run the same streamline again if it ter-
minates in a wrong area, -maxlenght sets the maximum track lenght permitted and
-cutoff specifies the FOD amplitude for terminating a tract. -seed_gmwmi takes
as an input the grey matter/white matter boundary generated with 5ttgmwmi.
-nthreads is used to specify the number of processing cores you want to use,
-select indicates how many streamlines to generate. The output is shown in
fig. 4.9.

3D representation of the Streamlines

To get a 3D model of the streamline, we first need to resample them and then
convert them into a 3D readable file extension. To do this, we will use some DIPY
libraries and tools. DIPY is an imaging library in python which contains specialized
method for computational anatomy including diffusion, perfusion and structural
imaging. The first step is to load the tck file we got with the command tckgen,
then resample it and apply a cluster algorithm, in this case DIPY’s QuickBundles.

The source code for this script is presented in appendix A and the output images
are shown in fig. 4.10, fig. 4.11 and fig. 4.12.

Now that we have a subsampled set of streamlines, we can convert them in
the .ply file extension through MRtrix’s mrconvert and then import the mesh in
Blender, where we can manipulate it.
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Figure 4.10: Initial display of the 3D track.

Figure 4.11: Track after clustering, with random colors.

34



4.2 – Tractogram reconstruction

Figure 4.12: Different clusters by random colors.
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Chapter 5

Brain features for brain
model selection

As we mentioned in chapter 1, the aim of this work is to give a real-time 3D
representation of the brain during a mental task recorded by an EEG, without
necessarily having a patient-specific MRI.

The idea was to find a way to give the Neurosuf user the opportunity to see
a brain model which is not properly his brain (since an MRI was not performed)
but is the brain which best fits his one. The first step is then to dispose of several
brain models in order to select the most similar to the user’s brain. To do this,
we used an open-source dataset given by OpenNeuro composed of 145 subject (79
females, 66 males) aged 17-35 (median 23.46) [13].

This dataset provides all the data we need to reconstruct a 3D model of a human
head, for each subject. The typical output of the model reconstruction is shown in
fig. 5.1 and is composed by five layers. All the models of the dataset were generated,
using the command headreco (section 4.1) of the software SimNIBS section 3.2 to
create the meshes and an automation algorithm to iterate the reconstruction.

Once we had all the models, the second step was to find the discriminating
features to assign a brain model to the user’s head. Afterwards several researches
in the literature, we found that the discriminating factors for a reliable brain model
association are generally:

• Brain volume;

• Head circumference;

• Body Mass Index (BMI).
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Figure 5.1: An overview in Blender of the different layers generated with headreco.
From the left: gray matter, scalp, white matter, skull, cerebrospinal fluid.

5.1 Brain Volume
As we must assign the brain which most fits the user’s brain, the main thing is
to find which characteristics are discriminating to define the structural-functional
similarities between a brain and another. Brain volume is assumed to be strictly
related to functional activity and behavioral abilities, which are in turn related
with neural activity.

Zhao Qing [15] studied the relationship between brain volume and the amplitude
of low frequency fluctuation (ALFF), which is said to be related with cognitive
performance. Indeed, in specific disease processes (such as epilepsy) these two
factors change in a proportional and synchronous way. Qing led an experiment to
test the correlation between brain volume and ALFF in two large and indipendent
groups of young adults. For each subject a structural MRI to determine the brain
volume and a resting state-fMRI to extract the ALFF measures were performed.
From the MRI images three categories of data were extracted:

• grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) proba-
bility/density map in the T1 native space;

• spatial transformation from the MNI space (which defines the boundaries
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around the brain) to the T1 native space;

• GM, WM and CSF probability/density or volume maps in the MNI space.

Then, a whole-brain ALFF was calculated to compare it with the brain volume.
The results obtained comparing the brain volume and the ALFF (fig. 5.2) were
consistent and showed a linear correlation between the factors.

Figure 5.2: Correlations between intracranial volume (ICV) and whole-brain
ALFF, for the two groups tested. [15]

The brain volume can be then defined as a discriminating factor to associate
with functional neuronal activity. In the following sections we will therefore discuss
the methods to predict brain volume.
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5.2 Head circumference
This topic has been investigated by several scientist, and there are different con-
straints to consider in order to choose the head circumference as a discriminating
factor.

The first thing we must regard is the age of the patient. Indeed, the growth
of the brain is strictly related to the growth of the head, but only in infancy and
early childhood. From the adolescence onward, the brain starts his volume loss and
decreases, while the head does not. This does not mean that head circumference
and brain volume are not related, but it means that to use properly the head
circumference as a discriminating factor to predict the brain volume, we must
consider the age of the patient.

To explain better this topic, we could say that we cannot compare the brain
of a child to the brain of an adult with a small head, since we have to take into
account that the adult’s brain started its volume loss from his adolescence, thus
its brain will have a smaller volume. Only grouping by age we can use the head
circumference as a discriminating factor, especially if we use a dataset with a large
range of age.

H.H. Bartolomeusz [16] deepened this topic by taking an experiment which
involved 76 subject with a large range of age (from 1,7 to 46). The aim was to
quantify the relationship between head circumference and brain volume, and to
show how this relationship is affected by age. Axial MR images were performed to
all the subjects either.

To calculate the head circumference, the MR T2-weighted images were compiled
to get a 3D representation of the head, which was re-sliced axially at the level
and angle of maximal distance between frontal and occipital lobes. The plane
obtained included the occipital protuberance and the most prominent part of the
forehead, superior to the eyebrows. Then the comparison between the circumference
calculated and the brain volume was performed, taking into account the age, the
linear head circumference and the quadratic head circumference. The results
obtained are shown in fig. 5.3 and fig. 5.4.

At this point, we can say that brain volume is a reliable discriminating factor,
since it is strictly related with neuronal activity as showed in the previous section.
We also saw that head circumference computation helps in predicting brain volume
if constraints like the age of the subject is considered.

5.3 Body Mass Index
The Body Mass Index (BMI) is another factor which could be taken into account to
predict the brain volume or the brain weight. In fact, given the strong correlation
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Figure 5.3: Relationship between head circumference and brain volume, not
grouped by age. [16]

Figure 5.4: Relationship between head circumference and brain volume, grouped
by age. [16]
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between height and weight, these measures could be interchangable for relating
body size and head size. However, this factor is influenced by several other factors
including the age which was also a constraint on predicting the brain volume
starting from the head circumference.

In particular, if we consider the BMI as a discriminating factor we also should
take into account the ethnicity and the gender of the subject. In fact, certain ethnic
groups which are typically tall and slender have a different relationship between
BMI and brain weight than ethnic groups which are more heavily built [17].

Feature selection problems

This is the theoretical background concerning the association of brain models on
the basis of functional characteristics. In reality, these concepts are more easily
applicable from a purely medical point of view than from an engineering point of
view. The main problem in applying these techniques in a context like that of
an interactive application is clearly that of having to guarantee to each user the
possibility to have a correct measurement of the circumference of his own head.
In fact, the circumference of the head is not a parameter that can be expressed
in computational terms in a standard way, as it would be if it were a perfect
circumference. There are several irregularities and variable factors that require a
precise measurement, which would be effective in an experiment involving a certain
number of people, as in the experiments just analyzed. We have also seen that
the head circumference is strongly constrained by factors such as the age of the
subject in question, which is essential for a correct evaluation of the association of
the models.

The aim of this work is to have a dataset of brain models that is as large
as possible in order to have as correct an association as possible, which makes
grouping by age difficult. Thus, this kind of approach is not the one which suits the
best to our project. To predict the best brain fitting we will use then techniques
which are most application-oriented, there is to say that we will approach with a
computational selection based on algorithms which refer to the Forward Problem
(section 2.5) and the Inverse Problem (section 2.6).
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Chapter 6

Application-Oriented Model
Selection

In the previous chapter, we introduced the theoretical methods to define the
discriminating features of the brain and to predict the brain volume. In this
chapter, we will give an overview of the computational methods we used to do
an Application-Oriented association. In particular, we will focus on the topics
examined in chapter 2 for the EEG Source Imaging. The equation which describe
the potential on the electrodes starting from a distribution of current dipole sources
is

V = GD + n. (6.1)

where V indicates the N -by-T matrix of the potentials measured at different
times at the electrodes positions, G indicates the N -by-p gain matrix, D indicates
the p-by-T matrix of the magnitudes of the dipoles at different time instants, and
n is a noise distribution. Starting from this point, we will do a model association
based on the solution of the Forward Problem (FP) and Inverse Problem (IP).

6.1 Focal Seizures and single dipole sources
Focal Seizures, or localized seizures are epileptic attacks which affect only one
hemishpere of the brain. The brain is subdivided into two hemishperes, and a focal
seizure can affect a lobe of the hemisphere where the seizure starts or the whole
hemisphere. If we could sample the brain activity while a seizure is in progress we
could observe a very focal activity that we could model, in first approximation, with
an active dipole in the interested region while all the other dipoles in the model
are inactive. In terms of coefficients, in the previous equation this is translated in
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a column of D with all zeros except the coefficient of the active dipole that will
have a magnitude relative to the one of the noise component.

In the Forward Problem, the electric potential V is calculated starting from an
hypothetical single dipole with a specific behavior. V is represented as a matrix of
the potentials measured at different times. We will focus on focal seizures, thus
calculating the potential starting from a single epileptic dipole source. We will call
v the vector which indicates the potential measured at one generic time instant.
To get v, the gain matrix G or lead-field matrix is multiplied by the column vector
d of the single epileptic dipole. Then, considering the potential detected at one
generic time instant, starting from a single epileptic dipole source we have:

v = Gd + n. (6.2)

6.2 Electrical Potential determination with a ref-
erence dipole

To introduce our technique of source localization using a reference model, we will
first approach with the Forward Problem.

As we mentioned in chapter 4, through MRI processing techniques it is possible
to get a complete and reliable 3D model which represents the various head layers of
the subject for which the MRI was performed. Then, we suppose that this subject
is affected by Focal Epilepsy (seizures). This subject will be our reference.

In the previous section, we said that the behavior of an electric dipole which
generates a seizure can be predicted. To calculate the lead-field matrix G, which
is necessary to obtain the potential v at a determined point in the surface of the
head, we need:

• the head volume, generated with MRI processing;

• a given electrode setup.

The electrode setup can be reliably estimated through a specific software e.g.
Simnibs, which refers to the volume generated by the MRI processing (fig. 6.1).

The EEG position are calculated by visually determining the positions of the
nazion (Nz), left preauricular point (LPA), right preauricular point (RPA) and
inion (Iz). These are the 4 fiducial points based on the UI 10/10 definition. Thus,
running the command

eeg_positions -m CERL.msh -o CERL_10_10_10 -Nz 7.24 100.12 1.64
-LPA -72.03 10.38 -5.00 -Iz -6.20 -79.49 4.26 -RPA 73.83 2.36 -9.85

44



6.3 – Model association

Figure 6.1: Calculation of the 10/10 EEG positions based on 4 fiducial points
based on the UI 10/10 definition.

The EEG positions are generated and the lead-field matrix can be calculated.
The reason why we need this electrode setup is that the lead-field G is the matrix
which takes into account all the position vectors r referring to the real positions of
each electrode in the head surface, referring to a determined dipole with a position
vector rdip and orientation e. Without the electrode setup referring to the head
model, we can’t determine the position vector r. At this point, we have the vector
d of the epileptic dipole, which will be placed in the layer of the cerebral cortex,
the lead-field matrix G and we can calculate the potential v for the subject affected
by focal seizures.

6.3 Model association
Once we have calculated the electric potential v by solving the Forward Problem,
our aim is to find the model which is the most similar to our reference, considering
all the model present in our dataset. To do this, we will approach with the Inverse
Problem. We suppose to have all the lead-field matrix G referring to each brain
model, and the same dipole d we used to solve the FP. Now, we will call vref , Gref
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and dref respectively the electrical potential vector of the reference, the gain matrix
of the reference and the electrical source dipole of the reference. The dipole has a
position of (xref , yref , zref ) = rref . We now suppose to have 3 models referring to 3
different subject in the dataset. The four equations corresponding to the current
flow model of the subjects will be:

vref = Grefdref + n; (6.3)

v1 = G1d1 + n; (6.4)

v2 = G2d2 + n; (6.5)

v3 = G3d3 + n. (6.6)
Then, we assign to each model the electrical potential vref of the reference, since

we want to compute where would be the dipole source if the electrical potential
detected on the scalp was the same of the reference. In other words, we are
supposing that all the four subjects are affected by seizures and that the potential
v detected is generated by the same epileptic dipole source. So we have that

v1 = v2 = v3 = vref . (6.7)
In order to find the positions (x, y, z) of the dipole sources of each subject, we

have to approach with the Inverse Solution and compute

d1 = G−1
1 vref ; (6.8)

d2 = G−1
2 vref ; (6.9)

d3 = G−1
3 vref . (6.10)

With d1, d2 and d3 respectively in (x1, y1, z1) = r1, (x2, y2, z2) = r2 and
(x3, y3, z3) = r3. By solving these equations, we find 3 different value of each
dipole. At this point we calculate

err1 = rref − r1; (6.11)

err2 = rref − r2; (6.12)

err3 = rref − r3; (6.13)
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Where err1, err2 and err3 are the distance between the reference position vector
of the dipole and the position of respectively r1, r2 and r3.

At this point we can say that the minimum error distance will correspond to
the model which has the most similar brain structure, since its dipole source is
localized as the nearest to the original reference. Thus, its corresponding brain
model can be assigned to our reference.

6.4 Computational substitution of brain models

In the previous section we defined a model to compute an association based on
source localization. In this section we will discuss the parameters to take into
account in order to do a physical substitution in a 3D environment.

Each mesh in the 3D space is localized with a center in (x, y, z) which can
correspond to the center of mass of the volume or to the center of the object, there
is to say the medium point of the mesh. The mesh has also a scale property which
indicates its size in the 3D space. Thus, to give a correct description of a mesh in
the 3D space we must consider:

• its center;

• its bounding box.

Where the bounding box (fig. 6.2) is the sphere where all the vertices of the
mesh are contained and where the distance between the center of the mesh and
the farthest vertex of the mesh corresponds to the ray of the sphere.

As we mentioned in the previous section, the basic idea for the model association
is to leave the external layer (the scalp) fixed. This is because the scalps generated
with MRI image processing are not - in most cases - defined meshes. The image
processing of MRI is detailed for what concerns the internal layers of the head
(skull, CSF, grey matter and white matter) but it lacks of precision in the scalp
models.

This happens because the scalps are not as important as the internal layers for
a structural/functional analysis and because in the MRI present in the open-source
datasets the visibility of the scalp is sort of "cut", due to privacy reasons. Thus, we
chose a fixed external layer which corresponds to the most accurate we found in
the dataset. Leaving fixed the external layer means that all the models we put into
that layer should have its center and a precise scaling factor which exactly adapts
with the layer of the scalp selected.
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Figure 6.2: Example of a 3D model with its bounding box in the 3D space.

6.5 Sphere fitting algorithms
In order to center and scale the brain models inside the fixed scalp, an algorithm
which re-centers and re-scales all the spheres in a sphere with ray r = 1 in the
center of the 3D space (0,0,0). The first step is to convert the file extension of
each mesh, wich is a volumetric mesh .msh, into its .stl (Standard Triangulation
Language) version:

The script take the .msh file as input and gives the .stl format as output. Then,
the .stl output is given as input to the script which re-centers and re-scales the
mesh. This script is presented in appendix B.

The codes are written in python and use mathematical libraries such as NumPy
and mesh-manipulating libraries such as mesh.io. In this way, all the 3D models
of the dataset have the same center in (0,0,0) and the same bounding box with
unitary ray. Thus, all the internal layers can be put into the reference scalp. This
model selection that has been presented includes the presence of the MRI of the
subject reference.

As we told introducing this project, our objective is to define an algorithm
which does not require a patient specific MRI. Indeed, this technique we presented
characterize the first step in the definition of a standardized algorithm of brain
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selection, which requires a large model library and some machine-learning training.
However, in the following chapters we will discuss the results we got so far and our
objective for the future.
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Chapter 7

Results

The subjects used for testing our algorithms were taken from the dataset described
in chapter 4.

7.1 Selection of the scalp
As mentioned in the previous chapter, the first thing is to select a scalp which remain
fixed while the internal layers change according to the discriminating features of the
brain models. After an overview of all the scalp models, we selected the subject011
which appears the most accurate among 145 subjects.

Figure 7.1: On the left: subject 11. On the right: Scalp of subject 11, subsampled
with ratio 0.2 (Blender 2.9).

The original mesh is very refined (its vertex-count overcomes 400.000 vertices),
and using a mesh with this complexity to get the lead-field matrix would result
time-consuming. To make the mesh compatible with the electromagnetic solver to
generate the lead-field matrix, we used the Blender modifier "Decimate". It allows
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to subsample the mesh reducing its vertices given a ratio, which in this case is
0.2 in a range from 0 to 1. In (fig. 7.1), the mesh before and after subsampling is
shown.

In our algorithm, this is the layer which remain fixed. It has no internal layers
since its task is to be a "container" for all the other subjects’ internal layers.
Therefore, the sphere-fitting scripts we discussed in the previous chapter were
applied to this layer. Thus, it is centered in (0,0,0) and its bounding box has
unitary ray.

In the following section, we will give an example of a brain model substitution.

7.2 Internal layers substitution
Once we selected and subsampled the scalp, the next step is to try the real
sphere-fitting by putting another group of internal layers in the scalp selected.

We will put the internal layers of subject012 inside the scalp reference to verify
the success of the sphere-fit algorithm, after having subsapmled the mesh.

Figure 7.2: Scalp of subject012.

As we mentioned in the previous chapters, the reason why we choose to keep
a fixed scalp is that some errors can occur during the generation of scalps during
the MRI image processing. For example, as we can see in (fig. 7.5), an accidental
plane in the bottom of the head was generated for the subject012.

The sphere-fitting script is applied to subject012 so that its center is (0,0,0) and
its bounding box has ray 1. Its internal layers (skull, cerebrospinal fluid, grey
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matter and white matter) are put into the reference scalp. The internal layers are
shown in fig. 7.3

Figure 7.3: From the left: Skull of subject012 and Brain of subject012, subsampled
with ratio 0.2.

Figure 7.4: Scalp of subject012 with its internal layers.

As we can see in (cref) and (cref), the fitting works. The image show also that
the pairing is not comfortable, since the shape of the head is completely different
from the shape of the internal layers. This is not a problem for us since the task
of the reference scalp is just to be an "aesthetic container" and does not have any
influence on the source localization. This also confirms that the internal layers of a
scalp are strictly related with head circumference and Body Mass Index, that are
in fact visually different in subject011 and subject012.

53



Results

Figure 7.5: Reference Scalp with the internal layers of subject012.

7.3 Tests of brain model association
Once we assumed that we can work with sphere-fitting, the further step is to try
an association of two brain models based on the techniques discussed in chapter 6.

Two subjects were used to test the association. The 3D models were subsampled
with ratio 0.05 in order to get a complete 3D model with a maximum amount of
10.000 vertices. The first step consists on calculating the potential at the electrodes
with hypothetical dipoles considering:

• original EEG positions;

• EEG positions associated to the vertices of the mesh after the subsampling;

• position of the dipoles;

• moment of the dipoles;

• conductivity of the layers.

The original EEG positions correspond to the electrode setup we discussed
in the previous chapter. The reason why we need the EEG positions after the
subsampling lies in the fact that the vertices change their position in the 3D space
after the subsampling. This means that if we have an electrode associated to a
vertex v, v could have been deleted after the subsampling or could have changed
its position.
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The solution to this problem is to find the nearest vertex to v, and to associate
the electrode to that vertex. To do this, we used a python script which is presented
in appendix C. The position of the dipoles corresponds to the vertices of the mesh
were we can place the epileptic dipole source, there is to say the position of the
vertices of the white matter. To get these position, a brief python script is presented
in appendix C.

The conductivity of the layers defines the way a tissue in the human head is
more or less resistant to the electrical flow and is expressed in Siemens/meter. It is
assumed that the conductivity is 0.41 S/m for the scalp, 0.02 S/m for the whole
skull and 0.47 S/m for the grey matter. These are the three layers we will use to
test the brain model association.

In our test, we chose to use 3 dipoles generating a seizure as the electrical source.
This is because an epileptic dipole source corresponds to an hyperintense neural
activity, thus it is easier to record the activity more reliably. Therefore, as we said
in the previous chapters, we know the behavior of this kind of dipoles.

The dipoles were placed in the cerebral cortex of the subjects. The Forward
Problem is then solved, and for each subject we obtained a matrix that is not
properly the gain-matrix G. Indeed, the gain-matrix can be evaluated considering
all the dipole sources which generate a current distribution reaching each electrode
on the scalp. In this case, we have only 3 dipoles for each electrode.

The column vectors corresponding to the potential detected for each dipole were
plotted and are shown in fig. 7.6, fig. 7.8 and fig. 7.10 for the first subject, and in
fig. 7.7, fig. 7.9 and fig. 7.11 for the second subject.

The plots show that, for these dipoles, the potential generated is different even
if the dipoles used are the same in both the subjects. This happens because we
should consider one dipole for every vertex got from the white matter, then about
three thousand dipoles. By doing this, the current distribution detected would
be similar for each dipole, the gain-matrix G would be completed and the Inverse
Problem could be solved.

However, to find the Inverse Solution a further work on the meshes is required.
The association can be completed by using all the dipoles got from the white matter
and it requires an enormous precision on the definition and the manipulation of
the meshes that will be included in our future work.
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Figure 7.6: Plot of the potential detected from the first dipole source (first
subject).

Figure 7.7: Plot of the potential detected from the first dipole source (second
subject).
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Figure 7.8: Plot of the potential detected from the second dipole source (first
subject).

Figure 7.9: Plot of the potential detected from the second dipole source (second
subject).
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Figure 7.10: Plot of the potential detected from the third dipole source (first
subject).

Figure 7.11: Plot of the potential detected from the third dipole source (second
subject).
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Chapter 8

Conclusions and future
work

From the beginning of this project, the aim was to simplify the techniques of
structural and functional analysis of the neural activity. We examined the techniques
of EEG Source Imaging to solve the Forward Problem and the Inverse Problem and
we combined the source localization with MRI image processing to give a complete
experience of VR visualization in real-time.

However, the work done so far requires a further improvement since it is only
the starting point to be defined a standardized model of functional and structural
reconstruction of brain activity.

We studied the constraints and the limits of brain models association, including
the theoretical constraints deepened in chapter 5 and the physical constraints as
the ones we examined in the mesh-fitting and brain model association. In chapter 6
we tried to demonstrate how to match the structure of two brain models by solving
the Forward Problem and the Inverse Problem, thanks to the theoretical basis
which characterize the properties of dipole sources in Focal Epilepsy. However,
in this case a patient-specific MRI was included and a deeper work on the brain
mapping is required to solve the Inverse Problem.

The further work will be characterized by an accurate definition of the brain
mapping based on the improvement of mesh processing and by a phase of Machine-
Learning, where the training will be based on the analysis of the known cases
we built with our model library. The system will be the trained to extract and
recognize the localization errors in order to use them as a metric to be minimized.
The error minimization, as explained in chapter 6, is the key step which enables
the association of brain models based on source localization. The result would be
the reconstruction of the brain’s electrophysiologic activity without having access
to patient-specific MRI.
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The development of an automated system based on EEG Source Imaging would
be useful in furthering studies regarding mental diseases such as Epilepsy and ADHD.
EEG-based analyses, as pointed out many times, are not efficient in their spatial
resolution, making a structural-functional study of this kind of diseases difficult.
The localization of the sources obtained by EEG Source Imaging would instead
allow to recover this spatial resolution, thus enabling non-invasive intracranial
explorations with visual neurofeedbacks.
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Appendix A

Subsampling and Clustering

import os
import numpy as np

from dipy.io.stateful_tractogram import Space, StatefulTractogram
from dipy.io.streamline import load_tractogram, save_tractogram
from dipy.io.utils import (create_nifti_header, get_reference_info,
is_header_compatible)
from dipy.tracking.streamline import select_random_set_of_streamlines, Streamlines
from dipy.tracking.utils import density_map
from dipy.data.fetcher import (fetch_file_formats, get_file_formats)
from dipy.viz import window, actor
from dipy.segment.clustering import QuickBundles

track = load_tractogram("smallerTrack_200k.tck", "reference_anatomy.nii.gz")
#loading the tractogram

affine, dimensions, voxel_sizes, voxel_order =
get_reference_info("reference_anatomy.nii.gz")

#getting the informations from the reference anatomy

track=to_voxmm()

#moving the streamlines to the voxel space

track.tovox()
track.tocorner()

#accessing volume informations in a grid
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track_vox=select_random_set_of_streamlines(track.streamlines,10000)

#subsampling the streamlines in 10k streamlines

affine, dimensions, voxel_sizes, voxel_order = track.space_attributes
track_density = density_map(track_streamlines_vox, np.eye(4), dimensions)
track = StatefulTractogram(cc_streamlines_vox, reference_anatomy, Space.VOX)
save_tractogram(track, "track_1000.tck")

#apply the clustering algorithm

streamlines=track.streamlines
qb=QuickBundles(threshold=10.)

#performing QuickBundles using MDF metric and a 10mm distance threshold
#automatic downsampling to 12 points

clusters=qb.cluster(streamlines)

interactive=True
scene=window.Scene()
scene.SetBackground(1,1,1)
scene.add(actor.streamtube(streamlines, window.colors.white))
window.record(scene, out_path='track_initial.png', size=(4096,2160))

#initial track dataset

colormap = actor.create_colormap(np.arange(len(clusters)))
scene.clear()
scene.SetBackground(1, 1, 1)
scene.add(actor.streamtube(streamlines, window.colors.white, opacity=0.05))
scene.add(actor.streamtube(clusters.centroids, colormap, linewidth=0.4))
window.record(scene, out_path='track_centroids.png', size=(4000, 4000))
if interactive:

window.show(scene)

#centroids of the track after clustering with random colors

colormap_full = np.ones((len(streamlines), 3))
for cluster, color in zip(clusters, colormap):

colormap_full[cluster.indices] = color
scene.clear()
scene.SetBackground(1, 1, 1)
scene.add(actor.streamtube(streamlines, colormap_full))
window.record(scene, out_path='track_clusters.png', size=(4000, 4000))
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if interactive:
window.show(scene)

#showing the different clusters
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Appendix B

Sphere-Fitting

B.1 Conversion from .MSH to .STL
import sys
import os

for filepath in sys.argv[1:]:
new_filepath_split = filepath.split('/')
new_filepath_split[-1] = new_filepath_split[-1].split('.')[0] + '.stl'
new_filepath = '/'.join(new_filepath_split)
s = 'meshio-convert {0} {1}'.format(filepath, new_filepath)
os.system(s)

B.2 Centering and Scaling
import sys
import numpy as np
import meshio

for mesh_filename in sys.argv[1:]:

m = meshio.read(mesh_filename)

p_max = np.max(m.points, axis=0)
p_min = np.min(m.points, axis=0)

scale_factor = 1 / np.linalg.norm((p_max - p_min) / 2)
m.points = scale_factor * m.points

p_max = np.max(m.points, axis=0)
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p_min = np.min(m.points, axis=0)

filename_split = mesh_filename.split("/")

filename_split[-1] = "scaled_" + filename_split[-1].split('.')[0] + '.gmsh'

new_filename = "/".join(filename_split)
print(new_filename)

m.write(new_filename, file_format='gmsh')
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Appendix C

Position of the Dipoles and
Conversion of EEG
positions

C.1 Positions of the Dipoles
import bpy
ob = bpy.data.objects["whitematter"]
for v in ob.data.vertices:

print(v.co.x, v.co.y, v.co.z)

C.2 Conversion of EEG Positions
import sys
import meshio
import numpy as np

# reading subsampled mesh
m = meshio.read(sys.argv[1])

# reading original EEG positions
f = open(sys.argv[2], 'r')

# output file
fo = open(sys.argv[3], 'w')

outputlines = []
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for line in f.readlines():
l = line.split(",")
p = np.array(l[1:4], dtype=np.float64)
idx = np.argmin(np.linalg.norm(m.points - p,axis=1))
new_p = m.points[idx]
l[1:4] = ["%.16f" % pi for pi in new_p]
outputlines.append(",".join(l))

fo.writelines(outputlines)
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