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Abstract

The advent of Industry 4.0 has brought manufacturing realities to become more
flexible and prone to reconfiguration in order to adapt to unexpected events and
clients needs. Smart Manufacturing wants to encourage the usage of innovative
technologies to promote the digital transformation, especially exploiting the possi-
bilities offered by cyber physical systems and virtual environments (VEs). Digital
Twins (DTs) have been widely adopted to virtually reproduce the physical world
and to integrate real environments with their digital counterpart.

The development of a DT solution for a production line can be used for mon-
itoring activities, to assess limitations and costs of the real counterpart and to
simulate enhancements before implementing possible solutions in the real world.
Also, the big amount of data that flow between from the physical assets to their
virtual replica can be used to train machine learning systems. Machine Learning
(ML) is widely accepted as a relevant technology for Industry 4.0 but it requires
large datasets for training. Moreover, most ML methods require labelling, which
often has to be manually entered in case of real-world data. DTs can provide a
powerful instrument for training ML systems, since a simulation can generate a
huge amount of data that can be automatically labelled, thus reducing the user’s
effort during the training dataset preparation phase.

This work investigates the creation of a Digital Twin of a real production line for
assembling skateboards. The proposed use case represents a complex system, which
requires both the creation of a VE and the usage of a ML system. The VE has been
developed with Unity 3D as an interactive environment that can be experienced
through immersive virtual reality for training activities as well as for inspection
or analysis activities. The DT of the line has been enhanced with YOLO (You
only look once), a state-of-the-art, real-time object detection algorithm deployed
on Darknet, an open-source neural network framework written in C and CUDA.
The ML system has been trained with a synthetic dataset automatically generated
and labelled with Blender. The proposed system allows plant designers to evaluate
the benefits of introducing a novel, extremely fast and accurate object detection
system on the assembly line. Moreover, the pose detection system performance
enables its usage in the VE for real-time users training.
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Introduction

The process of digitization and the advance of technological progress is bringing
more and more technologies in every day life. Since the beginning of the century
we are facing a new process of industrialization better known as Industry 4.0.
The world of industry has been primarily affected by this revolutionary current
because all the industrial processes are transforming to promote more flexibility,
productivity and overall quality. The manufacturing sector is moving towards
this direction by remodelling their architecture and frameworks to embrace new
technologies such as Internet of Things (IoT), Cyber Physical Systems (CPSs), Big
Data and Artificial Intelligence (AI). This trend will lead to the construction of a
new form of industrial production called Smart Manufacturing.

In this context, the adoption of Digital Twin (DT) solutions is becoming a note-
worthy resource to increase the competitiveness of the Manufacturing Environment.
In most definitions, a DT model means creating a virtual representation of any
production system that interacts with the physical counterpart and provides intel-
ligence for evaluation, optimization, prediction, simulation, etc. DT applications
can support manufacturing industries over the entire product lifecycle, from the
design stage to the maintenance services. In fact, the virtual environment can be
used to improve the requirements, simulate the process, evaluate the performance
of the production system before implementing a real prototype. This pattern leads
to build a more reliable framework at minor cost, thus fulfilling the goals of Smart
Manufacturing.

In addition, DT systems can embrace the employment of various technologies
widespread in the context of Industry 4.0; IoT sensors installed on physical objects,
for example, can exchange data over the internet and update the virtual counterpart
with important information regarding its status or even predict system faults;
Virtual Reality (VR) applications can be deployed to offer an immersive experience
into the production line and also to train technicians managing every machine;
data generated at every stage of the production and exchanged via internet can be
used to train Artificial Neural Network;

Artificial Intelligence (AI) applications based on Machine Learning (ML) are
drawing the attention of manufacturing sector. They can be used to support
manufacturers to facilitate certain task such as the detection of system faults or
to help make determinate decision after analyzing previous data. However, ML
methods require large volume of training datasets that often have to be manually
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labelled in case of real-world data. DTs can provide a powerful instrument for
training ML systems, since a simulation can generate a huge amount of data that
can be automatically labelled, thus reducing the user’s effort during the training
dataset preparation phase.

Many example of DT frameworks can be found in literature, but there are few
real use cases. Alexopoulos et al. [1] proposed a framework for implementing a
DT-driven approach for developing ML models. It explore the possibility to create
a synthetic dataset from the DT model of the production line, thus reducing cost
and time to prepare a suitable training dataset for ML models. The training dataset
is generated automatically and used to train an ANN for vision-based recognition
of parts’ orientation using simulation of DT models, which in turn can be used for
adaptively controlling the production process.

The thesis project
This work starts in collaboration with CIM 4.0 - Competence Industry Manufactur-
ing 4.0 - an Italian organization that aims to provide the strategic and operative
support instruments for manufacturing-oriented enterprises toward the digital
transformation of industrial process, accordingly to the Industry 4.0 vision.

CIM 4.0 propose itself as an integrated reference point in the technological sectors
and industrial areas of the Piedmont region; CIM 4.0 has set up, in its actual
place, two different pilot lines or manufacturing demonstration lines that allows to
illustrate all the innovative technologies that can be developed and integrated to
support the manufacturing companies.

This project’s goal is therefore to provide a DT solution for CIM 4.0 Digital Pilot
line. The proposed system is a novel use case implementing a DT which is used
for both the training of the ML system with synthetic data and for experiencing a
digital production line through immersive virtual reality.

The thesis is split into 5 chapters, whose contents are briefly described in the
following paragraphs.

In the first chapter, the concept of DT has been analyzed starting from its initial
employment and how it has been evolving until now. It contains a description of
the applications and benefits for the manufacturing sector, and its correlation with
other innovative technologies.

The second chapter will contain an overview of the project requirements, along
with a description of the major technologies and tools used throughout the de-
velopment of this thesis, including the Unity game engine and the ML model
adopted.

The third chapter of the thesis will focus entirely on the design process and the
development of the DT model using two different software, providing details about
how the synthetic dataset has been created to train an Object Detection model
and then successfully integrated in the DT application.

Results of this work will be presented in the fourth section, followed by a
comparison between the two different software used to build the DT model. This
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chapter will also contain an analysis of user feedback and the data that was collected
through user tests.

The last chapter of the thesis will explore potential improvements and new
features that could be implemented in the future.

3



Chapter 1

State of the Art

In the recently 10 years, the world of industry has taken a big step forward
connectivity and the upgrading of information systems. With the rapid development
of new technologies, such as cloud computing, Internet of Things (IoT), Big data
analytics, and Artificial Intelligence (AI), the Smart Manufacturing era has arrived.
Industrial companies from all over the world, have been using those technologies
to increase flexibility in manufacturing, along with mass customization, better
quality, and improved productivity. Smart manufacturing plays an important role
in Industry 4.0. Typical resources are converted into smart objects so that there
are able to collect data, process them and behave within a smart environment.
Digital twin (DT) is introduced to develop a smarter manufacturing system with
higher efficiency and reliability.

1.1 Industry 4.0
The Industry 4.0 is a new industrial automation trend introduced at the Hanover
Fair in 2001. Its announcement had, and still has, a dual objective: to define a
development trend in the technological field for companies and systems involved in
industrial production, defining its boundaries with a systematic approach; set a
goal to be pursued for future innovations in the same area.

The term is meant to imply the advent of the fourth industrial revolution. Just
as the first three revolutions have originated from the conjuncture of technological
innovation, new market demands and the need to consolidate entire industrial
sectors in competition with each other, also the fourth industrial revolution follows
this direction.

The First Industrial Revolution is generally considered to be the steam machine
and water power; the Second Industrial Revolution is instead seen as the applica-
tion of electricity to mass production, especially in the new automotive industry;
Third Industrial Revolution, also known as Digital Revolution, is mainly linked to
extensive use of electronics and information technology to automate production.

The Fourth industrial revolution is about connectivity and big data: industrial
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frameworks are evolving from closed system to interconnected systems through
the use of internet. It thus enables companies to cope with the challenges of
producing increasingly individualized products with a short-lead time to market
and higher quality. Today, we are on the cusp of the Fourth industrial revolution
and manufacturing industry is in first place affected by this revolutionary current.
Industry 4.0 attempts to respond to five main requirements that increasingly stand
out as the corner stones for competitiveness among companies worldwide:

• Increased productivity thanks to a decrease in set-up times and a reduction
in errors and machine down-time.

• Increased flexibility in the production of small, possibly customised batches
based on customer requirements.

• Increased speed in developing new products thanks to rapid prototyping
and reconfiguration.

• Increased quality through the analysis of the entire production in real time
thanks to sensors and data collection processed.

• Increased competitiveness thanks to high value products.

1.1.1 Smart Manufacturing
Smart Manufacturing is an emerging form of industrial production integrating
manufacturing assets and technologies with sensors, computing platforms, commu-
nication technology, control, simulation, modelling and predictive engineering. It
utilises the concepts of cyber-physical systems spearheaded by IoT, Cloud comput-
ing, AI and data science. Once implemented and widespread, these concepts and
technologies would make Smart Manufacturing the hallmark of the next industrial
revolution.

Following this paragraph is an overview of the most common technologies covered
by Smart Manufacturing (see figure 1.1). However, the main theme that will be
discussed is DT solution and its connection with the mentioned technologies.

Cyber-Physical Systems Cyber-Physical Systems (CPS) can be considered
as one of the key enabling technologies of the fourth industrial revolution. It
can be defined as a framework where all the physical components have their own
representation in the digital world, to be integrated with assets with computing,
storage and communication capabilities, and to be networked together. This
definition introduces to the Digital Twin: physical components, even entire systems,
reproduced in the digital world in order to reproduce their behaviour and study
their performance.
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Figure 1.1: Smart Manufacturing enabling technologies and concepts

Internet of Thing The concept of IoT (Internet of Thing) exhaustive fits in
the direction of Industry 4.0. Physical objects that are embedded with sensors,
software and other technologies create a network for the purpose of interaction and
exchanging data over the internet. The data generated is collected, analyzed and
cross-processed by computing systems (often installed in a Cloud) which is then
redistributed to all those involved in the productive chain to maximise production
efficiency.

Big Data and Artificial Intelligence In manufacturing sector, big data can
include all the data that are collected at every stage of production, including data
from machines, devices, and operator. However, the main problem with big data
is that there is too much of it and storing it is not a trivial challenge due to the
additional cost. This is where AI and big data can work together. The only way to
efficiently deal with this amount of data is to manage it with data-labelling and to
use AI software algorithms. In fact, AI becomes better, the more data it is given.

Cloud Computing Connectivity is already a pillar of efficient manufacturing.
Cloud Computing aims to the delivery of computing services, such as servers,
storage resources, databases, networking, software and intelligence, via the internet
("the Cloud"). Compared to traditional technology that uses individual computers
to have updated software for information processing, cloud computing solution
offers several advantages such as reliability, cost savings, scalability and centralized
management.
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1.2 Digital Twin for Smart Manufacturing
One of the most relevant purpose of Smart Manufacturing is providing the nec-
essary tools to build a framework that aims at cost reduction and performance
improvements. The simplest way to achieve this goal is taking into account the
more parameters as possible, simulate the process and make adjustments until it
reaches the desired behaviour. Once the framework is capable of satisfying all the
requirements set, it is possible to transfer the acquired knowledge to the real world.
Today, it is possible to create this particular workflow by developing a Digital Twin
solution.

1.2.1 Concept of Digital Twin
The concept of the digital twin (DT) was first used by NASA to describe a digital
replica of physical systems in space maintained for diagnosis and prognosis. During
the NASA’s Apollo program, they had two real identical space vehicle. One of them
was launched to perform the mission, while the other stayed on Earth, allowing
engineers to study the performance and mirror the condition of the launched one.
DT was then introduced into the aerospace industry and mainly applied to for
monitoring and optimize the performance of the airspace vehicles by using a digital
mirror model. From 2013, the term Digital Twin has been used for different sectors
and it has been linked to various aspects. A detailed overview of the Digital
Twin history is depicted in [2]. The initial intended use in literature is to monitor
and planning of physical system. Then the focus has shifted to provide virtual
representations of systems along their life-cycle. Eventually, DT have been proposed
to support decision making through engineering and statistical analyses.

Aside from the field of application the definition of DT is associated to a virtual
representation that interacts with the physical object and provides intelligence for
evaluation, optimization, prediction, simulation, etc. In particular, the concept of
DT was defined by three different elements, including a physical entity, a digital
counterpart, and a connection that ties two parts together. In the context of
Industry 4.0, being able to build a DT model of a manufacturing product pilot line,
fulfils the concept of Smart Manufacturing. In fact, having a smart infrastructure
means being able to make smart decision through real-time communication and
cooperation with humans, machine, sensors, and so forth. The goal is to achieve
flexible, smart, and reconfigurable manufacturing processes in order to address a
dynamic and global market.

Nowadays, the advent of technologies such as IoT or Cloud computing can
help the development of a DT and in particular the communication layer between
the cyber and physical worlds. The huge amount of data that come from each
intelligent resource travels through internet and updates the simulation in real
time. On-the-fly changes and updates to the manufacturing process can be firstly
tested in the virtual environment and subsequently implemented in the real world
by evaluating the performances.
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1.2.2 Architecture

The architecture for building a basic framework for a DT solution consists of: a) the
real world, b) the virtual world and c) the connections of information associating
the virtual with the real world, with the DT serving as a digital controller of the
real-world manufacturing system.

The real world is recognized as three-dimension physical space that comprehends
many entities such as employees, machinery, hardware, and infrastructures with
physical features that identify the element (shape, mass, structure, size, etc.). The
entities have practical functions and can be organized in an orderly way to complete
certain tasks considering constraints on time, cost, quality, etc. Data from the
entities are analog data with smoothly varying values.

The virtual world is where the DT truly lives. It is made of a 3D digital mirror
model for each entity, which is similar to the physical counterpart not only in
geometric expression but also in physical properties and behaviors. The environment
build is able to replicates the physical entities and their interaction during their
lifetime, featured by real-time synchronization, significant correspondence and high
fidelity.

Physical world and its virtual replica in the cyber space are linked through
connections made up by a flow of continuous data. On one side, real-time data are
collected from sensors of the physical entity and transmitted to the virtual replica
for model updating and calibration, and on the other side, significant information
generated from virtual simulation is sent back to the physical space to guide and
optimize the equivalent physical entity [3]. The DT forms a closed loop from the
physical space to the virtual space and back to the physical space again.

Recently, Tao et al.[4] from Beihang University proposed an extended five-
dimension definition for the DT. Figure 1.2 illustrates the entities involved in
this framework. Compared with the previous basic framework, this innovative
architecture incorporates two new entities: the DT data and services entity. The
first one combines all the data that are exchanged during the simulation with the
intent of more comprehensive and accurate information capture, while the services
entity want to explore new functions linked to the DT model (e.g. detection,
judgement and prediction).

Although DT concept plays an important role in promoting Smart Manufacturing,
its implementation is very complex as it involves several technologies in dynamic
evolution. Towards this direction, ISO1 is developing a standard “Digital Twin
Framework for Manufacturing” to provide a generic guideline and a reference
architecture for case-specific digital twin implementations (ISO 2020) [5].

1ISO: International Organization for Standardization, an international standard-setting body
composed of representatives from various national standards organizations.
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Figure 1.2: Five-Dimensional Digital Twin Architecture

1.2.3 Value of Digital Twin
DT solutions for manufacturing sector can cover various applications such as
monitoring, diagnostic, prediction and control. However, the architecture of a
DT model itself shows other significant features that makes this solution more
influential.

As the market changes rapidly, industrial companies has to deal with market
demand and adapt to it in a short time. This leads to become more flexible and
prone to reconfiguration. The DT model can provide a chance to develop insights
about how a product behaves even before it is completed through the simulation in
the cyber world. It is possible to reconfigure the whole behaviour of the industrial
framework, eliminate potential failures and adjust the physical resources accordingly.
Moreover, as the virtual models in the DT are kept connected to the physical
counterparts in the physical world, this connection offers a possibility to analyze
how the physical entity performs under different conditions in real-time, and thus
makes in-time adjustments to ensure it works exactly as planned.

Another important aspect is related to the reduction of energy consumption
and maintenance cost. As the states of the physical asset can be analyzed in
real-time, the degraded components can be replaced in a timely manner to avoid
additional energy consumption, or for the same intent, it is possible to start or
close a determinate machine in a orderly way. In addition, from the analysis of data
that flows between real and cyber world, it is possible to predict a breakdown or
maintenance event in advance to largely reduce downtime and maintenance costs.

Finally, the DT can fuse different information technologies, including machine
learning algorithms, IoT, big data, etc., to accomplish complex tasks. For example,
the proposed DT solution integrates an Artificial Neural Network that is capable
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to make real-time object detection during the assembly line process.

1.3 Applications of Digital Twin
In the global economy and in global business operations, we have witnessed that
there has been a need for Industry 4.0 to dramatically increase the overall level of
industrialisation, informatisation and manufacturing digitisation to achieve greater
efficiency, competency, and competitiveness [6]. Digital twin solution is a key enable
for such purposes, as its common applications includes monitoring, diagnostic,
prediction and control. These activities are already used in manufacturing context
but in the most cases after the framework has been built. Having a DT model
instead permits to simulate, monitor and apply changes the production line in a
virtual environment, thus reducing the overall cost and lifting up the efficiency.

This section wants to analyze how DT models can be integrated into the product
lifecycle and provide some use cases.

1.3.1 Digital Twin in Product Lifecycle
Manufacturing industries can adopt DT solution during the three principal stages
of the entire product lifecycle, which are: design stage, production stage, and
service stage. Figure 1.3 illustrates a schematic view of the entire process and the
activities linked to each phase.

Figure 1.3: Product lifecycle Process

Digital Twin in Design Stage

The initial phase of a product lifecycle is the process of designing parts, components
and resources that will be installed in the production line. A general workflow
could be the following: a designer makes a sketch of the process, then tries to create
some physical prototypes for testing and finally assembles the system. However,
using physical prototypes to test the design is very costly.

DT models can overcome this obstacle by simulating the performance of a
model in the virtual space. Virtual tests are performed for detecting interference
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among various components of the equipment, assessing ergonomics, and prediction
equipment. As the simulations and test are conducted only in the virtual space,
a DT model in design phase reduces the time for detecting design errors and
evaluating the system performance. All the data generated from the simulation
can also be used to further improve the requirements and make adjustments in
order to improve the reliability of the final product.

Developing a DT framework that reflects and observes the real-world Smart
Manufacturing System (SMS) behavior and use it in all design procedures is
challenging. Jiewu Leng et al [7] propose an innovative Function-Structure-Behavior-
Control-Intelligence-Performance (FSBCIP) framework to review how digital twins
technologies are integrated into and promote the SMS (Smart Manufacturing
system) design based on a literature search in the Web of Science database. A key
feature in this work is the application of the 5D-DT conceptual model and the
integration of innovative technologies such as IoT and virtual/augmented reality.

Digital Twin in Production Stage

Production is the key stage of the product lifecycle, it puts on practise all the
design choices and it is responsible for the profits and sales of a manufacturing
industry. It is a complex process as it involves materials, energy, and information
that interact synchronously with each other.

DT models in production stage is used to further enhance the performance and
efficiency of the system. IoT and Big Data technologies are the tools to achieve
better performance and optimize the production line. In fact, all the data that
come from sensor and are sent through internet can be used to update the digital
twin that identically behaves like its real counterpart. This allows to control the
behavior of the assets and to obtain validated tests through virtual testing. There
is also the possibility to evaluate the integration of new automation technologies
without disturbing plant output.

S.M. Jeon et al. [8] presents a case study focused on the DT solution to validate
the performance optimization of production lines. The virtual model is created
using Siemens Tecnomatix Plant Simulation software and it is properly aligned
with the real production line by a virtual PLC2 programmed through Siemens
SIMATIC TIA Portal.

As a result, the DT model can offer a bridge to link the physical and virtual
space together. It can make the virtual environment mirror the operations of the
assembly line in a timely manned and control behaviors of the physical assets in
real-time.

2PLC: Programmable logic controller, an industrial mainframe used for industrial control
systems.
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Digital Twin in Service Stage

Service stage comprises all the activities that are adopted to maintain and monitor
the health of a product after its disposal. In this context, Prognostics and Health
Management (PHM) is the process that performs diagnosis and prognosis, and
provides design rules for maintenance strategies. DT solutions can provide useful
tools for maintenance and achieve higher efficiency and accuracy for PHM. By
simulating the system behavior in the virtual space, it is possible to monitor the
health or state of a machine and predict system faults in the early stages of the
process. The field of data analytics can provide value to the PHM community by
analyzing those large amount of data, enabling maintenance decisions to be made
and increasing operational efficiency.

1.3.2 Virtual Commissioning
It has been discussed how design and implementation of a new production solution
is often a time-consuming and costly process. After the design phase is finalized
and the resources are installed, the next phase is project commissioning. It involves
all the procedures to check, inspect and test every operational component of the
system: from individual functions up to complex simulation. Also, operators are
trained on new equipment, new processes or revised procedures. The main purpose
of commissioning is to perform as many test and procedures to guarantee the
operability of the production system in terms of performance, reliability and safety.
So, it is really challenging to plan and can lead to delays in production and even
lost business.

By implementing a DT solution in the early stage of the production, all the
tests and procedures can be performed in a simulated virtual environment. This
enables:

• Simulation of production line and monitor of the behavior.

• Prediction of system faults or incorrect implementations.

• Simulation of the impact of new machinery on the existing operation.

• Training of supervisors and operators in a virtual reality application.

• Evaluate performances and make adjustments according to the requirements.

Therefore, Digital Twin is a key solution in the direction of Virtual commissioning
as it allows manufacturers to monitor and control their installation, as well as
to optimize the process - in both startup and the maintenance phase - before
implementing in the physical world. As is evident, Virtual commissioning plays an
important role in Smart Manufacturing because it contributes the development of
more efficient production systems with fewer costs and in a shorter time.
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1.4 Digital Twin and Virtual Reality
The concept of Virtual reality has started spreading since the beginning of the 20th
century [9]. However, the first real implementations emerged only between 1970
and 1990, thanks to the rapid growth of 3D computer graphics; during these years,
the first devices had a rudimentary form and the VR industry mainly provided
them for medical, flight simulation and military training purposes. Augmented
reality (AR) can be viewed as a variation of VR. In contrast to VR, which creates
a completely virtual environment, AR overlays virtual information on the real
world to augment the reality rather than replace it. VR and AR technologies have
therefore always been showing a lot of potential for transforming many fields of
research and engineering, but since the ’90s the commercial focus of these devices
shifted heavily towards the entertainment industry. It is only in recent years that
these tools began to be used in a more widespread way for scientific and engineering
applications.

The DT concept and the related architecture aims to the fusion between the
physical and virtual worlds. So, the VR and AR technologies can play important
roles because their introduction can further enhance the interaction in the virtual
(VR) and real (AR) world. Also, it is possible to define new higher quality services
in design, planning, guidance and training.

1.4.1 Virtual representation of the manufacturing process
A general workflow is analyzed to efficiently integrate these technologies into the
five-dimension DT to provide users with more interactive and immersive services.
Some key elements in the assembly process are introduced as follows:

• Physical assembly scene: It contains the real assembly machines, tool, opera-
tors, resources, which are organized following a orderly workflow.

• 3D geometric models: All the assets in the real environment have an associated
3D model (CAD or fbx). The virtual environment can be defined using a
software characterized by a graphic engine (Unity or Tecnomatix Process
Simulate).

• VR and AR devices: Devices such as HMDs, gloves or tracksuit are used to
collect data from the physical world and to give the same experience in terms
of interaction and sensorial feedback.

• Virtual models, data and services: All the data collected from the VR and
AR simulation, together with the 3D models of the involved assets manage
to create a visual experience to describe, support and monitor the assembly
process. Simulated data from the visual experience and real data from the
physical entities can be exploit to optimize the assembly process or to test
new features.
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Therefore, developing a DT-based solution in combination with VR and AR for
an assembly process can clearly increase the performance of the application in terms
of human interaction. DT’s virtual space becomes immersive and can simulate the
physical space through senses and perception, thus realizing full body immersion.
The visual experience leads to a more accurate perception of the production line
itself and can be used for training purposes. In a similar way, DT’s physical space
can be featured with AR to show descriptive interfaces or realistic models during
the exploration of the industrial site. Given the advantages brought by VR and
AR, joining with these technologies will be a prevalent and beneficial trend for the
DT.

1.5 Digital Twin and Big Data

The introduction of CPSs, IoT devices, Cloud Computing as novelty technologies
in Industry 4.0 has increased the amount of data generated and sent through
internet. This huge amount of information is vital for the AI area. In particular,
Machine Learning (ML), a subset of AI, is a group of computer techniques that
focus on extracting useful knowledge and letting the ML component deciding. This
can be obtained via learning or training process where large volume of data are
required. Nevertheless, the large amount of data generated everyday during the
testing of real machines and systems is raw and not suitable for AI-ML application.
In fact, ML approaches, such as supervised Artificial Neural Networks (ANN),
are in need of proper quality and quantity dataset and more important those
dataset have to be labelled for training purposes. Even though manufacturing
companies usually have large amount of data, gathering and cleaning them is a
time-consuming process. The process of labelling a dataset is necessary to provide
knowledge over all the variables that should be considered by the model. Manual
labelling is prone to error and it is labour an time-intensive as the manufacturing
environments changes frequently. These limitation may arrest the development of
successful AI applications in several manufacturing cases as both time and cost
required become an obstacle.

Towards that direction, DT models can be utilized to help the training phase
in ML by creating a suitable training datasets as well as by automatic labelling.
This is achievable because DT virtual models contains all the information about
each single asset (position, orientation, shape, color) and also all the data that is
generated can be analyzed and filtered, thus alleviating user’s involvement during
training.

A framework for implementing a DT-driven approach for developing ML models
is presented by [1]. DT models can create a virtual (synthetic) dataset trough
simulation tools and utilize it for training ML models in a cost and time-effective
way. Section 3.3.1 will describe the process that lead to the creation of a synthetic
dataset, using Blender software and then use this dataset to train an ML model.
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1.6 Summary
The advent of Industry 4.0, as the expression of the fourth industrial revolution, is
encouraging the insertion and development of new technologies in the manufacturing
sector with the purpose of increasing flexibility, mass customization, quality and
improving productivity. Smart Manufacturing is an emerging form of industrial
production that integrates new technologies such as IoT, AI, CPS, Cloud Computing,
and Big Data.

In this context, Digital Twin (DT) systems provide a virtual representation of
industrial frameworks along their lifecycle that permits to simulate, monitor and
evaluate performances even before implementing them in the real world. In the
last 10 years, researchers and companies are studying the fields of application for a
DT model and its synergism with other emerging tecnologies.

Table 1.1 below shows some of the definitions and developments of the DT
appeared in literature.

No. Ref Year Description

1 [10] 2015 DT as a digital controller of a real-world
manufacturing system

2 [11] 2015 Investigate the combination of simulation models with real data
through a DT to predict future states of the real system

3 [12] 2018 DT framework to optimize the planning and
commissioning of production process through simulation

4 [13] 2018 DT applications applied in manufacturing processes
to reduce costs and to improve performance

5 [14] [15] 2021 Application of an intelligent DT integrated with ML
for bearing anomaly detection

6 [16] 2020 Deployment of a Dynamic DT
for system optimizations using ML model

7 [17] 2020 DT technology for LEDs lifetime analysis
exploiting ML method for fault detection

8 [1] 2020 Proposed framework for implementing
DT models for training ML models

9 [8] 2020 DT solution to validate the
performance optimization of production lines

10 [7] 2021 Framework to review how DT technologies are
integrated into and promote the SMS (Smart Manufacturing system)

Table 1.1: Applications of Digital Twin in literature
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Chapter 2

Technologies and Tools

2.1 Project requirements
It has been discussed how the development of Digital Twin solutions for a man-
ufacturing company is a key enable to achieve greater efficiency, competency an
competitiveness as well as to promote the application of new technologies that are
spreading in the Smart Manufacturing era. Towards this direction, this work wants
to explore those benefits by presenting a DT solution for CIM 4.0 demonstrative
production line for assembling skateboards.

The main requirements and goals of this work are:

• Inspection of the production line: a Virtual Reality application permits
to navigate through a virtual replica of the production line, interact with the
assets and inspect the main steps for assembling a skateboard.

• Training: as the production line requires the interaction of a technician with
some of the assets, the VR experience can be used to train a generic user
to correctly use and operate the different technologies and their interaction
interfaces.

• Testing of new features: a virtual environment permits to test new func-
tionalities and evaluate their performance prior to implementing them in the
real world. Here it has been tested how the production workflow can change
with the introduction of a Machine Learning model for Object Detection.

2.2 CIM 4.0 Digital Pilot Line
The main goal of this work is to create a DT solution for CIM 4.0’s demonstrative
production line that is being designed to assemble skateboards.

The physical production line consists of three main assets which are shown in
figure 2.1: 1) a Modular Intralogistic Organizer (MIO) by Comau, which operates
as an automated warehouse 2) a Virtual Guidance Interactive Learning (Vir.GIL)
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Figure 2.1: CIM 4.0 Digital pilot line: The Racer 5 and conveyor belt (bot-
tom right), the production pallet (upper right), the MIO (left) and the Vir.GIL
workbench (center)

system by Comau, a complex system which combines together different technologies
to provide digital guidance to the user 3) a Racer 5 by Comau, a 6-axis articulated
robotic manipulator with a 5 kg payload, designed to ensure both industrial
efficiency while providing safe, barrier-free operations.

All the process is managed by a Manufacturing Execution Process (MES), a
proprietary software that can control the PLC. It sends the inputs to go through
each step of the production line and collects the feedback from each state. The MIO
rotates its eight shelves providing, one at a time, all the part required to assemble
the skateboard: boards, trucks and wheels of different colors. The Vir.GIL system
guides the operator through the preparation of the production pallet: it has a a
visual system able to track the operator’s position and body orientation; also has
a laser pointer and a vocal system that gives hints to suggest where and how to
correctly place the components. For the third step of the procedure, the pallet is
manually moved by the operator from the Vir.GIL workbench to a conveyor belt
where the Racer 5 is installed. It is a collaborative robot so it can co-operate with
human interaction. In fact, it is equipped with a sensor that tracks the operator
position and adapt its working speed accordingly. After a manual input from the
operator, the cobot starts to pick each component and to assembly the skateboard.
Since the skateboard’s component has been placed to a specific point of the pallet,
the cobot knows where it has to find the correct part. A proper visual system is
used to facilitate the picking process. It is not able to distinguish among different
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component, but it searches for a certain shape in the acquired frame using an
image processing algorithm. For example, if it has to pick a wheel it will search
for a circle shape on the captured frame, and when precision is above a certain
threshold, it is ready to pick the component and place it to the correct position.
Finally, after the assembly process is completed the pallet is transported to the end
of the conveyor belt, collected by the operator, and placed again to the Vir.GIL
station that will guide the operator through the process of fasten the screws and
complete the mounting sequence.

During the preparation of the production pallet the Vir.GIL system indicates
the operator to place the four wheels with their face up, as it is possible to see
in figure 2.1 (upper right). This is realized because the Racer 5 cobot has been
programmed for picking the wheels only if they are faced up and it will fail the pick
and place task if this particular requirement is not satisfied. To improve this task
it has been created a custom object detection module that is able to predict the
position of the wheel (up, back or side), thus increasing the flexibility of the cobot’s
vision system. These new feature has been then tested in the virtual environment
to evaluate how the process can be further optimized.

2.3 Blender
Blender [18] is a free open source software that provides all the tools for 3D
modelling, rigging, animation, compositing and rendering. It is a cross-platform
and runs equally well on Linux, Mac OS X, and Windows on 32-bit and 64-bit
platform. The graphical user interface (GUI) is very intuitive, as it resembles an
animator’s production workflow and also provides a Python application program
interface (API) for scripting.

Blender creation suite has been adopted for the creation of a DT application for
two main reasons: it allows to create complex 3D models that will represent the
virtual replica of physical assets for a generic production line; thanks to its render
engine it is possible to generate a syntetic dataset that will be used to train an
object detection model. The modelling interface (figure 2.2) includes various editing
methods: the most important are Object Mode and Edit Mode; the former is used to
modify a single object properties (e.g. position, rotation) while the latter modifies
the geometry of the mesh by adding vertex, faces, and so on. Materials, lights
and backgrounds are all defined using a network of shading nodes. These nodes
output values, vectors, colors and shaders. The result is being able to reproduce the
same appearance of any existent material by creating the so-called PBR1 materials.
Other Blender’s feature includes UV unwrapping, texturing, modifiers, sculpting
and particle simulation.

1PBR: Physically Based Rendering materials allow to simulate almost any existing material
with a single unified format.
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Figure 2.2: Screenshot of the Blender modelling interface

Once the 3D model’s appearance is similar to the real counterpart, it might
be featured with an animation that wants to replicate the asset’s behaviour. In
particular, Blender provides the tools to create an animation and attach it to the
object. An animation can be created by changing specific parameters over time,
such as the object’s position, color, material or even its shape. However, if the
object that has to be animated is too complex, as for example an human body or
a robotic arm, first it is necessary to create a virtual armature and then define
constraints for each existent joint. This process is called rigging and it is a common
technique in computer animation. Section 3.2.1 will describe how the cobot’s 3D
model has been properly rigged in order to replicate its behaviour and how its
animation is being imported in the Unity environment.

Blender version 2.8 introduced a new rendering engine called Eevee. It is a render
engine built using OpenGL2 focused on achieving high speed and interactivity
during the 3D pipeline process. Eevee uses a process called rasterization via
OpenGL 3.3, which estimates the way light interacts with objects and materials
using numerous algorithms. Although the performance are better (in terms of
speed) the accuracy is lower compared to Cycles, which is a raytrace render engine.
Cycles uses NVIDIA’s OptiX ray-tracing renderer to deliver more realistic effects
like subsurface scattering and motion blur.

The creation of a synthetic dataset can be addressed to a Python script. In fact,
Blender has an embedded Python interpreter and provides two modules (bpy and
mathutils) that are able to access to every Blender’s data, classes and functions. So,
it is possible to run a script that takes the camera, select the desired render engine
and produces as many rendering as needed for the creation of the synthetic dataset.

2OpenGL: cross-platform API for rendering 2D and 3D vector graphics [19]
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The selection of the render engine is related to the needs of the ML model that
is being trained. Generally, if the renderings needs to be more realist as possible,
because the scene consists of transparent objects or global illumination has an high
impact, it may be necessary to use Cycles render engine. On the other hand, if
the creation of the dataset has to favor performance over accuracy, Eevee render
engine could offer a fair tradeoff.

2.4 Unity
Unity [20] is a cross-platform game engine (figure 2.3) that can be used to create
2D, 3D, Virtual Reality and Augmented Reality applications such as games, simu-
lations and other experiences. It combines several tools and libraries to make the
development of said applications easier, and provides support for deploying the
final product to over 25 different platforms. The engine itself has been written
using the C++ programming language, but the development of applications using
Unity is done through C# scripting.

The Unity game engine has been chosen for the development of a DT application
because it provides a simple and flexible all-in-one framework for creating complex
VR interactive experience. Also Unity provides access to an Asset Store, where
members of the community can share their own packages (free or paid) which
implement custom solution or contain pre-made content that can be easily reused. In
addition, 3D models created in other software can be easily imported by converting
them into a FBX format. As the main field of application is video games, Unity
game engine is suitable to recreate ad-hoc interaction that are typical for the
manufacturing process such as grab object, place into the correct place or even
simulate the whole process. In addition it is possible to incorporate elements of
online games, such as points, leaderboards, and badges into non-game context, in
order to improve engagement with both employees and consumers (Gamification
[21]).

Each element on the Unity’s scene is considered as a separate GameObject with
its components such as Transform, Box collider, Mesh rendered, or Rigid Body that
are unique. All the interactions between the user and the objects of the environment
or between the objects can be configured through a C# script that is attached to
an object as one of the other components. Each script creates a connection with the
internal workings of Unity by implementing a class which derives from the built-in
class called MonoBehaviour. There are two main functions that can be defined in
a script: the Update function is responsible to handle the frame update for the
GameObject. Here it is possible to define all the actions, triggers and behaviours
that an object should handle over time during gameplay; the Start function
instead is called during startup and is responsible of the initialization of local or
global variables. An important aspect is the possibility of activate/deactivate any
GameObject during the execution of the application itself. In this way it is possible
to test functionality or even add other game objects as the application is running,
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Figure 2.3: Screenshot of the Unity 3D Editor

thus enhancing the flexibility of the application during its developing.
Of course, using a general purpose game engine like Unity to build a DT solution

also has some drawbacks: collecting data from IoT sensors and transfer them to
the digital model in the virtual environment is not trivial and requires a specific
communication protocol; by simulating the behavior of the system it is difficult
to retrieve information such as usury of machines or predict when a system fault
occurs. However, an immersive VR experience developed in Unity can be used to
inspect the production line and for training purposes. Section 3.2.2 will describe
the process for developing a DT solution for a real production line using Unity
game engine. The VR experience developed focuses on training technicians to
correctly interact with certain assets and also to test a possible upgrade to the
production vision system by introducing a ML Object Detection.

2.5 Tecnomatix Process Simulate Software
Process Simulate is one of the Tecnomatix application suites proprietary to Siemens
company [22]. It is a digital manufacturing solution for manufacturing process
verification in a 3D environment. It requires a license server configuration to being
installed and can only run on Windows platform. Figure 2.3 shows the GUI of the
sofware.

The Process Simulate suite is one of the best solution to develop a complex
DT solution for a manufacturing process. In fact, it provide capabilities to design,
analyze, simulate and optimize manufacturing processes from the factory level down
to lines and work cells. The 3D models of a manufacturing site has to be imported
on a CAD format and then it is possible to configure their behavior and interaction
with the whole system. Process Simulate provides also other features such as
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Figure 2.4: Screenshot of the Process Simulate Editor

ergonomics analysis, performance analysis, VR experience, analyze kinematics,
robot movements and human motion, as well as determine the optimal tool, robot
or device needed for the assembly process.

As a result, developing a DT solution on Process Simulate software for a
manufacturing process can provide: detection of design errors at early planning
stages; reduction of the number of physical prototypes; increase of overall system
performance. However, the usage of the software itself and all the related features
is not self-explanatory and requires an ad-hoc formation by Siemens in order to
fully exploit the capabilities of the software. In this work, it has been set up a
virtual environment on Process Simulate that comprises the main assets of the
production line analyzed. It is possible to explore and inspect the production line
through an immersive VR application and test the cobot inverse kinematic (IK)
solver.

2.6 Darknet framework

The ML system was deployed on Ubuntu using Darknet, an open source neural
network framework written in C and CUDA [23]. Darknet is mainly used for
Object detection, and have different architecture, features than other deep learning
frameworks. It can be used on CPU but it reaches maximum performance on CPU
computation. To this end, it is necessary to install the NVIDIA CUDA Toolkit
and NVIDIA cuDNN, which are GPU-accelerated libraries of primitives for deep
neural networks. In addition, OpenCV library is needed for data augmentation of
the dataset during the training phase of the neural network.
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Figure 2.5: YOLO model

2.6.1 YOLOv3 real-time object detection system
The Darknet ANN was deployed to use You Only Look Once (YOLO), a state-of-
the-art, real-time object detection system [24]. An Object detection system provides
the tools to find all the objects in an image and draws the so-called bounding
boxes, which is an area defined to surround an object. YOLO algorithm is based
on regression, a technique of image processing that predicts classes and bounding
boxes for the whole image in one run of the algorithm. This is a common approach
for real-time object detection as, in general, trades a bit of accuracy for large
improvements in speed.

Figure 2.4 shows the steps of the YOLO algorithm for object detection. As input
YOLO requires an image 3(RGB) × 416px × 416px. The model segments an image
into a S x S grid and for each grid cell predicts B bounding boxes, confidence for
those boxes, and C class probabilities. The bounding boxes is composed with 5
values: (dx, dy, dw, dh, c): dx and dy are the coordinates of the bounding box center
relative to the grid cell; dw and dh are respectively the width and the height of the
bounding box; c is the confidence value than an object exist within the bounding
box. These prediction are then encoded as an S × S × (B ∗ 5 + C) tensor3. Most of
these cells and bounding boxes will not contain an object. Therefore, the model
predicts the value c, which serves to remove boxes with low object probability
and bounding boxes with the highest shared area in a process called non-max
suppression. Finally, the bounding boxes with higher confidence are drawn into
the original image.

3Tensor: container that store data in N-dimensions.
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Design and Development

3.1 Architecture

The main goal of this work, as already mentioned, is to create a Digital Twin
solution for CIM 4.0 demonstrative production line for assembling skateboards.
The proposed DT was developed and deployed on a workstation equipped with an
Intel Core i7 CPU, an NVIDIA GeForce Quadro 4000 Graphic Card and 128 GB
RAM with dual boot for either Windows 10 or Ubuntu 20.04 LTS. Figure 3.1 shows
the software layers. The DT was developed in Unity 3D on Windows: the SteamVR
plugin enables the application to run on the HTC VIVE Pro (2018) immersive
Virtual Reality headset, whereas the Barracuda plugin is used to integrate the
Neural Network, exported in the Open Neural Network Exchange (ONNX) format,
into Unity 3D. The ML system was deployed on Ubuntu using Darknet, an open
source neural network framework written in C and CUDA. The Darknet neural
network was deployed to use You Only Look Once (YOLO), a state-of-the-art,
real-time object detection system, to recognize the pose of the wheels for the pick
and place task. To this end, it was necessary to install the NVIDIA Cuda Toolkit,
the Cuda Deep Neural Network library and the OpenCV library. The synthetic
dataset used to train the Neural Network was generated through Blender, an open
source 3D modeling software.

3.2 Unity DT application

The DT model had to provide the tools to navigate and inspect the industrial
production line, to train a generic user to correctly use each component of the
system and finally to test new features in the virtual environment. Towards this
direction, it has been developed a complex VR interactive experience using Unity
game engine.
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Figure 3.1: Software layer overview

The overall design of the application can be subdivided into three main phases:

1. Asset Modelling: all the 3D models that are involved in the production
system have been created using Blender, featured with animations to represent
their behavior

2. Design of the Virtual Environment: set up of a Unity scene and the
integration with SteamVR plugin that enables the application to run on the
HTC VIVE Pro, immersive Virtual Reality headset

3. Interaction design: definition of the application’s flow of execution and C#
scripts for implementing interactions between the user and the environment

3.2.1 Asset Modelling
The first phase takes into account the generation of a virtual replica for each
physical component of the production line. Most of the component can be retrieved
from the vendor’s web site, where it is possible to download the specific CAD file.
Unity assets needs to be a FBX format and the conversion is done by most of the
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Figure 3.2: 3D model of the production line
site

Figure 3.3: Shader edi-
tor in Blender

3D modelling software. However, some vendors do not provide the model for some
resources. It is possible to overcome this lack by reproducing the model in a 3D
modelling software like Blender. It provides all the tools to create high-detailed
3D model starting from primitive mesh shapes such as: plane, cube, circle, UV
sphere, etc. With the combination of the two main editing method: Object mode
and Edit mode it is possible to modify the object properties (shape, rotation) and
the geometry of the mesh to accomplish a digital replica of the desired asset.

The first 3D model created was the site of the production line (figure 3.2). In
order to preserve the real scale of the object it has been imported a 2D map of
the real site as a background image. Also, Blender has a functionality in Edit
mode that shows the length of each edge of the object in meters, useful to have an
indication about the dimensions in real scale.

After the modelling phase it is necessary to define a material for each component
of the 3D model. Blender provides a network of shading nodes to produce materials
using the Shader Editor (figure 3.3). The Principled BSDF node combines multiple
layers into a single easy to use node. By tuning parameters some of the parameter
on this node (Specular, Roughness, IOR, Transmission) it is possible to create
PBR materials, thus produce a specific material which is similar to the real ones.
Also, combining "Image texture" nodes with Principled BSDF node can attach a
specific texture to an object. Generally the level of detail (LOD) of the 3D model
together with the generation of a specific material, has to be compliant with quality
of visual experience it wants to offer. The more realistic is the 3D model created,
the more immersive the VR experience will be.
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Figure 3.4: 3D model of MIO

Figure 3.5: 3D model of Vir.GIL

The physical production line consists of three main assets (figure 2.1): 1) a
Modular Intralogistic Organizer (MIO) by Comau, which operates as an automated
warehouse 2) a Virtual Guidance Interactive Learning (Vir.GIL) system by Comau
3) a Racer 5 by Comau together with a conveyor belt. Only the MIO has been
created completely in Blender, the other models has been retrieved from vendor
website and converted from CAD file to FBX format. As both the MIO and Racer
5 perform always the same task, their 3D models have been featured with a custom
animation using Blender.

The MIO has eight shelves that rotates into a circular shape and provides, one
at a time, all the components that are needed for assembling a skateboard (board,
trucks and wheels). The animation created is simple: each shelf has an Object
Constraint to an unique Bezier circle, used as target but with different offset (figure
3.4). As a result each shelf will follow the Bezier circle, thus fulfilling its real
behavior. The bezier circle is then animated for 100 frames. Also each single shelf,
during its circular path, has been featured with four different keyframes that are
needed to reproduce its rotation as soon as it approaches to the bottom and the
top of the MIO’s structure.

Simulate the robot’s behaviour is instead more complex, as it is made of six
different joints and each one of them has its own kinematic. The solution explored
is to provide a rig for the robot. The rigging process attaches an armature to
the robot, composed of 6 bones (figure 3.6). Each one of the bones has a Bone
Constraint of Limit rotation accordingly to its technical specifications provided
by Comau web site [25] and it controls a specific part of the robot. The robot
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Figure 3.6: Blender interface for 3D modelling of Racer 5

was animated using Forward Kinematics (FK), thus each single bone has been
manipulated individually based on parent-child relationships. Every time the robot
assumes a different pose a new keyframe is created and the armature is modified
to achieve the desired robot pose. This solution comes from the lack of the IK
(Inverse Kinematics) solver of the Racer 5, so the movements of the robot will not
adapt dynamically to the position of the components in the production pallet. The
animation will instead simulate the exact behaviour of the robot in the production
process.

Vir.GIL’s behavior cannot be resolved with an animation. It is a digital assistant
that combines speech and gesture to guide the worker or teach itself new sequences
for new tasks. Its behaviour will be implemented directly into the Unity application
(see section 3.2.3).

3.2.2 Design of the Virtual Environment
The next phase for the creation of the DT model involves the setup of the Virtual
Environment (VE). The Unity project of the proposed application consist of a
single scene, which contains all the 3D models that have been created in the
previously step exported in a FBX format. Every model imported in the Unity
scene is displayed in the Hierarchy and handled as a GameObject (figure 2.3). The
Inspector panel on the right of the GUI is used to view and edit properties and
setting for all the GameObjects in the Unity editor, but also assets, materials and
in-Editor settings and preferences. The VE is then prepared using the Editor tools
that Unity provides such as Rotate, Move, and Scale Tool that operates for the
single GameObject.
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Once the scene is ready and all the components of the production line are
at the correct position, it was necessary to download and install the SteamVR
plugin from the Unity Asset store. The SteamVR plugin enables the application
to run on the HTC VIVE Pro (2018) immersive Virtual Reality headset from
VALVE company. This plugin provides to developers an integration for a variety
of controllers and input devices in a VR application. A proper window (see figure
3.7) will load a default SteamVR Input JSON1 file that defines the actions and
bindings for the VR controllers. It is possible to customize these bindings and
create a new configuration using the binding UI and then save them to generate a
new JSON file. Also, SteamVR plugin provides virtual examples of interacting with
the virtual environments along with prefabs and scripts to develop VR applications.
The prefabs employed in the DT application are: Player and Teleporting. The
first one identifies the user of the VR experience. It has attached a script that
implement a singleton class representing the local VR player with methods for
getting the player’s hand, head and tracking origin. The Teleporting prefab binds
a button of the controller to the action of virtually teleport from one point of the
room to another. Teleporting is allowed only in a certain area that can be defined
using a plane GameObject and assign the TeleportingArea script to it. When the

1JSON: JavaScript Object Notation is a file format suitable for data interchange

Figure 3.7: SteamVR plugin settings inside Unity
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teleport button is pressed it shows a parabolic shape laser that points to the new
destination. If the laser color turns from green to red color, it indicated that the
pointed destination is outside the room or an invalid position.

3.2.3 Interaction Design
So far, the user/player of the VR experience is capable of navigating through the
site of CIM 4.0 production line, inspect each component and teleport from one
point to another. The next step for the development of a DT model is giving the
user the opportunity to interact with the virtual environment and the resources
available.

The virtual environment has been organized into three different area that
simulates the workflow of the production line: 1) customization of the skateboard
2) preparation of the production pallet 3) assembly of the skateboard .

Customization of the skateboard

To begin with, the first task that the user has to perform is to customize the
skateboard accordingly to its preferences.

Figure 3.8: Screenshot of the VR application during the customization of the
skateboard

Figure 3.8 shows the point of view of the user while performing the first step. It
is possible to grab the skateboard GameObject with one hand and use the other
hand to push certain buttons that dynamically change the color of each component
of the skateboard. The action of grabbing a GameObject is possible thanks to
a script attached to the object called Interactable (see figure 3.10), provided by
SteamVR plugin. At run-time, when the hand move close to any GameObject with
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an Interactable component, the script will highlight that it is possible to perform a
grab action. If the user triggers the corresponding button on the controller that is
binded with grab action, the object will be picked up and then dropped once the
controller button is released. Also, in order to simulate the physic of throwing an
object, two other scripts are being used: Throwable and Velocity Estimator.

The action of pushing a button is another important interaction that has been
implemented. Each button is a different GameObject with an Interactable script
attached to it, as it is triggered likewise the grabbing action. But it also has a
UI Element script (see figure 3.9). This script will run a specific function to be
called when the game engine identify a grab action for that particular button. Here,
when the button is pressed it will call a proper function called changeColor with a
parameter that indicates the color that will be given to the object.

Preparation of the production pallet

During the preparation of the production pallet there are two entities involved: the
MIO and the Vir.GIL. The first one is an automated warehouse that contains all the
components needed to assembly the skateboard in different coloration, organized in
eight different shelves; the latter is instead a digital assistant that combines speech
and gesture to guide the worker and to teach him new sequences of operations to
resolve specific tasks. Its goal in this specific production line is to guide an operator
to take the skateboard components into the MIO and place them to a particular
point of the production pallet.

The same behavior has been recreated in Unity with a combination of two

Figure 3.9: Editor settings of an
interactable button

Figure 3.10: Editor settings of an
interactable object
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different visual feedbacks (see figure 3.11). The first one are UI windows that
pop up and describe with a text the operation to accomplish, while the other
are bouncing arrows that point to the exact position where the action has to be
performed. UI windows are realized with Unity Canvas GameObject, one for each
step of the process. A Canvas object is shown as a rectangle in the Scene View of
Unity and UI elements such as Text or Image must be children of such a Canvas. In
order to define an ordered sequence of steps, UI windows and arrows are controlled
by a specific script and the user can switch from one step to another using a proper
button triggered with the grab gesture.

The sequence of operation that has to be performed by the user to correctly
prepare the production pallet are the following:

1. Pick a board from the MIO and place it in the green area

2. Pick two supports from the MIO and place them in the green area

3. Pick four wheels from the MIO and place them in the green area

4. Pick four screws from the boxes and place them in the green area

Figure 3.11: Screenshot of the VR application during the preparation of the
pallet

The green area, is a 3D cube with a transparent green material that helps the
user to identify the location where to put the object. As for the bouncing arrows,
these object are shown and hidden by the script that controls the steps for the
preparation of the production pallet.

The behavior of the MIO have been developed in Blender with a custom
animation that simulate the rotation of its eight shelves (see section 3.2.1). The
animation is handled in Unity with the creation of an Animation controller (see
figure 3.13). This asset manages various animation clips of a specific GameObject
(as for the MIO) using a State Machine Diagram, which describes the sequence of
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Figure 3.12: Interaction with the MIO asset
seen from the VR application

Figure 3.13: Animation
controller for the MIO

events that an object goes through during its lifetime in response to events. The
event that triggers the start of the MIO’s animation is the pushing of the red button,
placed in the front of the MIO object (see figure 3.12). When the button is pushed,
a script will access to the Animation Controller and by setting a boolean parameter
(isActive) it will start the animation of the MIO. The subsequent pressure of the
same button will stop the animation.

Assembly of the skateboard

In the final phase of the production line the production pallet is moved to a conveyor
belt and shifted beneath the Racer 5 collaborative robot, that is responsible of
assembling the skateboard. The 3D model imported in Unity has been animated
to simulate the cobot movements (see section 3.2.1). So, the GameObject has
an Animation Controller, similar to the one implemented for the MIO, that will
start and stop the animation as soon as the user pushes the green or red button
on the conveyor belt (see figure 3.14). A collaborative robot adjusts its speed
depending on the operator distance from the operative area. The same function is
realized in Unity with a proper script. A parallelepiped is added into the scene for
the corresponding operative area of the cobot. When the game engine detects a
collision between the user position (Transform component) and the parallelepiped,
it adjusts the animation’s speed to a reasonable value.

The animation realized in Blender cannot pick the object in the Unity envi-
ronment but only simulate the cobot movement. The pick and place operations
has been implemented by exploiting the Fixed Joint component, that restricts
an object’s movement to be dependent upon another object. Therefore, all the
objects that are needed to be picked up by the cobot’s arm (wheels, trucks and
board) have a Fixed Joint component along with a proper Box collider. When
the animation starts the field "Connected Body" of the Fixed joint component is
empty, but as soon as the game engine detects a collision between the cobot’s arm
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Figure 3.14: Screenshot of the VR application during assembly phase

and the object to be picked up (e.g. a truck), a proper script will fill that empty
field with the Rigid body of the cobot GameObject. As a result that object will
follow the movement of the cobot’s arm as it is parented to it. In addition when
the truck reaches the point where it should be released, the script will delete the
"Connected Body" field and the object will be no more parented to the cobot’s arm.
Another script (Lock To Point) is responsible to snap the object to the correct
location; at run time the script computes the distance of the object from the target
location and if the distance is below a certain threshold the object will be snapped
accordingly.

The solution implemented to simulate the cobot’s behaviour has some limitation
as it is not flexible and it relies on finding the skateboard component always in the
same location. An upgrade of this solution can be to simulate an IK solver in Unity
so that the cobot’s arm will adjust his movement accordingly to the component’s
position. However, such a solution is not trivial and should exploit external libraries
such as ROS or MoveIt.

Finally, the application has been featured with a humanoid avatar as a virtual
assistant. The goal is to guide the user through each step of the production line,
giving also detailed information about the components. The avatar model and the
animations have been retrieved from Mixamo [26] a digital library of 3D characters
and animations provide by Adobe. The avatar is able to walk into the virtual space
and to vocally describe by a synthetic voice the steps of the assembly process. A
script controls the avatar behavior, activating the right animation and reproducing
the correct sentence at the right time. In this case, the Animator Controller is more
complex (see figure 3.16) because the avatar has to switch between four different
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states: idle, greeting, talking and walking. Along with the audio feedback, there
are also UI windows that pop up describing the task that needs to be done (see
figure 3.15).

Figure 3.15: Virtual avatar in the VR
application

Figure 3.16: Animation controller
for the virtual avatar

3.3 Object Detection model
DT models can greatly benefit production lines when it comes to testing new
functionalities before implementing them in the real-world environment. Therefore
the DT solution proposed in this work want to investigate new features and upgrades
for the physical assembly line.

The last phase of CIM 4.0 production line involves the pick and place task
performed by the Racer 5 collaborative robot to assembly the final skateboard.
Before picking each component from the production pallet, the current vision
system mounted on the cobot tries to detect the position searching their shape
in the framed image. However, the system cannot distinguish if the wheels are
faced up, down or they lean sideways. In addition, the Vir.GIL does not integrate
a vision system able to detect the correctness of the operations performed by the
user. As a result, when the pallet is placed under the cobot the wheels may be on
the wrong side. To improve the pick and place task and make it flexible to this
type of errors, an Object Detection module has been deployed to correctly detect
the orientation of the wheels.

The following sections describes all the steps performed to create a synthetic
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dataset that will be used to train a custom YOLO Object Detection module and
finally how to integrate this system into the DT application.

3.3.1 Synthetic Dataset Creation

Machine Learning methods usually requires large volumes of quality training
images to perform well. Synthetic datasets are an emerging trend in the context of
supervised ML because the process of generating and labelling images is faster and
more reliable. The dataset used for this work was generated with Blender, using
the wheel 3D digital model created for the DT.

The object detection model has been thought to be deployed on the Racer 5
vision system, so the Blender scene is composed of the production pallet and the
wheels. Figure 3.17 shows the corresponding Blender project: on the right the 3D
Viewport containing the assets, while on the left it is shown the Text Editor to
load and modify Python scripts. The selection of material and the lightning are
important parameters in setting up the rendering simulation and should simulate
the same condition of the real environment. In fact, the renderings produced during
this phase will be used to train the Object Detection module so photorealistic
pictures of the real setting will make the vision system more reliable. Also, for the
same reason the resolution and focal length of the virtual camera has been set up
to resemble the behaviour of the real camera mounted on the robotic system.

The Training Dataset is generated by a proper script. YOLO should be able
to recognize three classes: wheel top, wheel back and wheel side. Thus, the script
creates 150 renderings for each class, for a total of 450 images with resolution 960 x
540 pixels (two samples are depicted in figure 3.18). To make the detection system
more reliable and flexible, variations have been introduced for each class in term
of colors of the wheels and cameras perspective (orthographic and perspective).
In fact, Blender provides Python APIs to access every scene’s object and change
their properties such as position, orientation and even the associated material.
Also, the dataset is not composed by only images; the supervised ML algorithm
needs annotations for each image of the dataset that indicate where each object is
located in the image and provide a class label for each object. The script exploits a
proper function (see code in Appendix A.1.1) that returns camera space bounding
boxes of the mesh object. The bounding box is expressed as combination of four
values: the x-axis and y-axis position coordinates and the width and height for
each object detected in a given frame. These values, along with the label for the
class (integer value from 0 to 3) are written in a ’txt’ file corresponding for the
rendering analyzed.

The created Training Dataset is then used as input for the YOLO Object
Detection system.
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Figure 3.17: Blender scene for the creation of the synthetic dataset

Figure 3.18: Samples from the training dataset

3.3.2 Neural Network Training and Testing
The training phase requires the definition of three important files:

• Configuration file: contains the definition of the ANN properties such as
the batch size, the subdivisions and the number of epochs, filters and classes.

• Data file: needed to define the folder path of the dataset and to specify the
path for saving new weights

• Pre-trained weights: this file contains the initial weights for the YOLOv3
architecture.

The Darknet provides some guideline for the definition of the configuration file.
YOLO has to predict between three different classes: wheel-top, wheel-back and
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wheel-side. Consequently, the number of epochs for the training phase has been set
to 6000 (2000 × numberofclasses), while the number of filter for the convolutional
layers is set to 24, following the expression: (numberofclasses + 5) × 3.

The batch size represents the number of samples processed before the model
is updated, while the subdivisions are how many mini batches the model splits
the batch in. The value of batch size (64) and subdivisions (8) parameters have
been fine-tuned through several tests on the specific hardware to achieve better
performances. So, YOLO will load 64 images per interaction, split the batch into 8
"mini-batches" and sent them to the GPU for process.

Also, YOLO performs a data augmentation step which enlarges the training
dataset by a large number of variations obtained through cropping, scaling and
other visual artifacts and transformations applied to the original images.

The training process is started through a shell prompt and it takes about twelve
hours to complete using the cuDNN acceleration for NVIDIA GeForce Quadro 4000
graphic card. Once the training phase was completed, the model was tested with
both images and a video of the real production line. The video was provided as a
parameter to the YOLO system via a shell prompt. The YOLO system is able to
grab each frame of the video, make the prediction and show the result in real-time
as a new, labelled video. Figure 3.19 shows an example of real-time detection on
the real production pallet.

Figure 3.19: Detection sample of YOLO model for a real image

The accuracy of the YOLO object detector is estimated by calculating the
mean average precision (mAP) during the training phase. The mAP compares the
ground-truth bounding box to the detected box and returns a score. The higher
the score, the more accurate the model is in its detection. For this purpose, it
has been set up a Validation Dataset of 55 images taken from the real world and
manually labelled using YOLO mark [27]. Every 4 epoch of the training phase the
average precision is being calculated using images from validation dataset.

Figure 3.20 shows the loss function in blue and mAP trend in red. As it is
evident, loss function is very high at the very beginning and rapidly goes down as
the model approaches to its true value. Otherwise, the mAP increases during the
epochs and picks its best value as it approaches to the 2400 epoch.
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Figure 3.20: Performances of the detection system in terms of mean Average
Precision (red line) and loss function (blue line)

Validation dataset and the corresponding trend of mAP are useful to select
proper parameters of the system. In this case, the mAP indicates that the best
weights are around the 3000 step of the training phase. Therefore, the model has
been tested in the real environment using those specific weights with an industrial
video camera and it achieves an accuracy of 85%.

3.3.3 Unity Barracuda and ONNX
To use the trained neural network in the DT Unity application it was necessary
to export it to the ONNX format. ONNX (Open Neural Network Exchange) is
an open format for ML models which allows to easily interchange models between
various ML frameworks and tools. The conversion process was possible following the
process described in one of the many GitHub repository discussing these conversions.
It was necessary to provide the configuration file and the file containing the weights
of the ANN to generate a file with onnx extension.

This particular file has been imported in the proposed DT application using
Barracuda [28], a lightweight and cross-platform Neural Net inference library for
Unity that permits to run ANN on both GPU and CPU. Through a control script
it is possible to perform the object detection inside the DT using the ONNX model
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on a snapshot of the wheels taken with an invisible camera in the VE, at the
same position and perspective of the real one. The result of the detection will
be a tensor, a container that stores data in N-dimensions. The trained YOLO
system generates an output of dimension 24 × 52 × 52 containing the results of
the detection, given by the bounding boxes and the confidence of the detection.
For each object detected in the input image, the output tensor saves the x-axis
coordinate, the y-axis coordinate, width, and height. After filtering these results by
selecting the ones with higher confidence, it is possible to draw the corresponding
bounding box to the snapshot used as input, using different colors to distinguish
the three classes (top, back, side).

Inside the VE, a GUI panel displayed near the cobot shows at each frame both
the acquired snapshot and the detection result, whereas the user can restart the
detection by a button (e.g., after correcting the pose of a misplaced wheel). The
ONNX module is able to run YOLO algorithm and give back the results in about
2 seconds, which is a reasonable delay for testing the behavior of the cobot inside
the DT. Figure 3.21 shows an example of the detection output inside the VR
application.

Figure 3.21: Screenshot of YOLO detection result inside the VR application

3.4 Process Simulate DT application
Alongside the Virtual Reality experience developed in Unity, this work presents a
native DT model for the same production line developed on Tecnomatix Process
Simulate software by Siemens. Process Simulate is one of the best solution to
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develop a complex DT solution for a manufacturing process due to its capabilities
to analyze ergonomics for human workstation, recreate robot movements and
moreover to simulate the entire process by collecting data from physical assets.
The application developed for this work does not implement this features yet, but
it focuses of providing a VR experience of the production line to navigate and
analyze the main assets and to test the Inverse Kinematics (IK) solver of the Racer
5 robot.

3.4.1 Design of the Virtual Environment

The virtual environment has been set up by importing the CAD files for each
component of the production line; a 2D map of the real site has been used to
replicate the exact position and proportion of the assets. Figure 3.22 illustrates how
the Process Simulate GUI is organized: the VE comprehends the MIO automated
warehouse, the Vir.GIL digital assistant and the Racer 5 robot installed above the
conveyor belt; there are two virtual human models that represent the operators
responsible for the interaction with the Vir.GIL and the cobot; the Object Tree panel
on the left contains a hierarchy of the objects in the scene, organized in different
directories; the upper part displays many panels (Robot, Process, Operation) that
permits to access to specific features and properties of the software.

Figure 3.22: Screenshot of the DT model in Process Simulate
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When the Racer 5 CAD model was imported, it was identified as a Robot
component; the Robot panel on the top of the GUI provides all the tools for editing
and validating robotic tasks in a 3D engineering environment. The first step was
to define its kinematics through the Kinematics Editor panel (see figure 3.23). The
Racer 5 is composed of 6 joints; by consulting the datasheet on the vendor’s website
it is possible to retrieve the rotations limits for each joint and set them accordingly.
To perform the pick and place operation, the Racer 5 has a gripper mounted on the
last joint; after importing the specific CAD model the Mount tool panel enables to
install this tool for the robot; the gripper also has his specific kinematics to open
and close itself for the pick and place operations. Once completed, the robot has
been successfully set up and can be manipulated through the Robot Jog window
(see figure 3.24). The All Joints area enables to adjust the values of each robot’s
joint in Forward Kinematics (FK), while the Manipulation area permits to exploit
the Inverse Kinematics (IK) solver. Therefore, each translation or rotation of the
gripper (end effector) will adjust each joint of the Racer 5 accordingly.

Figure 3.23: View of the Process Simulate Kinematics
Editor

Figure 3.24: View
of the Process Simu-
late Robot Jog Panel

3.4.2 Interaction Design
This stage of the DT model refers to the development and simulation of each
asset’s behaviour including the human tasks and the interaction with the machines’
GUI. In particular, this section will describe how the Racer 5 movement have been
recreated after setting up its kinematics.

Process Simulate provides tool to create a digital simulation of the production
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line. Figure 3.25 shows the two panels involved: Operation Tree and Path Editor.
From the former panel a new Operation is defined. In this case the simulation
wants to illustrate the operations conducted by the Racer 5 robot to pick and place
the trucks and the board. The movements of the robot are defined from the Robot
Jog panel exploiting the IK solver and being registered in the Path Editor that
provides an easy way to visualize and manipulate path data by displaying detailed
information about paths and locations. It is possible to specify the Motion Type
for the interpolation between two position (PTP, LINEAR) and also define some
macros to control the tool mounted on the robot. For example, the #Drive CLOSE
macro will close the gripper when the robotic arm is approaching to the component
to be picked up.

Figure 3.25: Process Simulate panels for setting up a simulation

In addition, Process Simulate offers the possibility to load the virtual environment
created into a Virtual Reality world. It supports only the HTC VIVE Pro headset
and the SteamVR plugin, the same used for the Unity application. In particular,
after setting up the robot kinematics it is possible to interact with it and simulate
the IK solver by grabbing the end-effector. Another important feature allows to
generate a VR Invitation to collaborate in a virtual reality session, event if the
guest machine does not run Process Simulate. The collaboration can begin after
the host submits an invitation file. After the guests open the invitation file, they
share the same virtual environment of the host and can interact with the same
assets.
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Results and Analysis

4.1 Performance analysis

Considering that the proposed DT solution provides a real-time Virtual Reality
experience developed in Unity 3D, performance characteristics play a key role.
In fact, low framerate or excessive memory usage would affect the immersive
gameplay and will end to not meet the desired requirements. As already mentioned
the main goals of the proposed VR experience are: to navigate and analyze the
production line; train the user to correctly perform a certain task; test a new
functionality modifying the current vision system mounted on the Racer 5 robot.

For a good VR experience that feels responsive and doesn’t cause any sickness,
the framerate should be at least 60 FPS. Two aspect can be responsible of a serious
drop of FPS during the VR experience: 1) the number of polygons of the 3D
objects imported in the Unity scene 2) the complexity of the code in the C# script
attached to the GameObjects.

When running the VR application and approaching to a virtual asset that has a
large number of polygons, the system may experience a significant drop of FPS. To
overcome this problematic is necessary to simplify the mesh of that particular 3D
object. Blender provides a decimate tool to reduce the polygon count by merging
vertices based on their relative distance. If correctly used the mesh would appear
almost the same and the Unity engine will render the corresponding object without
further troubles.

The second issue that may decrease the framerates can be easily resolved by
analyzing the structure of a C# script in Unity. When running the application,
the Unity pipeline will perform the Update methods before displaying each frame
in the game. If the VR experience runs at 60 FPS the Update function will run
60 times per second. Therefore, it is necessary to avoid heavy nested loops in the
Update function with unnecessary calculations else the delay times will become
exponential. To prevent this behaviour, it can be useful to run these processes in a
co-routine to have the processing spread over many frames.
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4.2 Comparison between the proposed solution
This work proposes two different implementation for a DT model made with Unity
3D (section 3.2) and Tecnomatix Process Simulate (section 3.4). The real difference
between the two solution lies in the type of application that they can offer. In
fact, Unity 3D is a cross-platform game engine that is mainly used to create games
and complex 3D application, while Process Simulate is a digital manufacturing
solution for process simulation in a 3D environment. Therefore, it is evident that
the best solution to develop a complete Digital Twin solution is to use Process
Simulate. However, as the requirement of this project heads towards the creation
of a complex VR interactive experience, Unity 3D fully satisfies those expectations.

Manufacturing companies can evaluate to develop a DT application using Unity
3D or Process Simulate by taking into account various aspect. Unity 3D is a
free software and allows to set up a VE for any production line in shorter time;
virtual models can be created and animated using a third-part 3D modelling
software and imported into the Unity scene; the design of the interactions for
the VR application can be implemented by a programmer with experience in C#
programming language. On the other hand, the usage of Process Simulate requires
a licence and moreover an ad-hoc formation by Siemens in order to fully exploit
the capabilities of the software.

However, it has been analyzed that the key factor of a DT model comprehends
the exchange of data between the physical assets and its virtual counterpart to
update the simulation and retrieve significant information about the whole process.
This aspect can be covered using Tecnomatix Process Simulates suite, as mentioned
by [8]. Moreover, the Siemens product also provides the tools to evaluate human
ergonomics and to extract important variables that can optimize the performance
of the production line.

To sum up, both Unity 3D and Process Simulate are valid solutions for the
creation of a DT model for a production line, but the level of detail that they can
offer is very different. A manufacturing company should prefer one solution over
the other according to its needs and expectation.

4.3 Subjective evaluation tests
After the development of the DT solution in Unity 3D, a group of 12 people was
asked to test the VR experience in order to obtain a subjective quality assessment
of the application and collect feedbacks for further improvements.

The test group was composed of 8 male and 4 female subjects, with an age
between 21 a 44 years, selected to have a wide variety of skills and different
professional backgrounds. The application was tested in CIM 4.0 digital site, where
the real production line is located, so the subjects have had a chance to examine
the real assets and their appearance; this allowed to better evaluate the digital
representation as compared to the real site.
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The subjects were asked to answer a questionnaire (see A.2), that collects the
user’s opinion and impression about the system usability, intuitiveness of the
navigation tools, realism of the VE as compared to the real production line and
the perceived performance characteristics.

The survey consists of three parts: the first one collects general information
about the test subject, such as age, sex and previous VR experiences; for the second
part the used is asked to perform 2 different tasks and reply to few questions taken
from the NASA TLX tool [29] for assessing the perceived workload of the proposed
actions and check if the user have suffered from any nausea or sickness during the
VR experience. The first task consists in launching the application and explore the
Virtual Environment of the production line using the teleportation function, inspect
the virtual assets by checking if the dimensions, the materials and the lightning
resemble the real site and perform the first step of the simulation (customize
the skateboard); the second task requires the user to complete the simulation by
performing the training task to prepare the production pallet, followed by the
assembly phase of the skateboard. During the execution of the tasks the user can
meet all the features that have been developed such as the interaction with the
UI windows, the presence of the humanoid avatar and the interaction with objects
and buttons.

Figure 4.1: Average results for perceived workload, self-evaluation and sickness
in both tasks
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After completing each task, the user has to record his impression answering 5
question about the physical and mental workload, time to get used to the commands
and complete the task, success in performing the actions and sickness or nausea
felt. The answers are expressed by choosing a value between 1 and 10. Figure 4.1
reports the average result for each of these questions, showing positive results for
both task. A noteworthy outcome is the absence of nausea or sickness experienced
by test subjects (probably due to the good performance of the VR headset and
the optimizations performed), while the increase of physical and mental workload
score of task 2 can be reasonable because the user had to follow visual instructions
and complete the training procedure to prepare the production pallet.

The third and last section of the survey, contains questions about the system
usability and quality assessment of the VR experience. The user is asked to rate
the intuitiveness, usability, realism and performance of the system when performing
the tasks. Each question can be answered with a scale of five values, from strongly
disagree to strongly agree to evaluate different aspects of the user experience.

At the end, the user also has the chance to suggest any improvements for further
increase the overall experience of the DT application.

Figure 4.2: User evaluation of navigation intuitiveness and system usability

The graph in figure 4.2 shows the scores assigned by users to the intuitiveness
of the teleportation tool in the VE, as well as a usability score which refers to
the application as a whole. Test subjects were very satisfied with the navigation
tools (66.7% “Good” and 33.3% “Very Good”), so the teleportation seems to be a
valid tool to navigate around the VE, and also the overall system usability was
appreciated by the mayority of the users (58.3% “Very Good” and 41.7% “Good”).

When questioned about the realism of the 3D models as compared to the real
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Figure 4.3: Evaluation of the perceived performance and realism compared to
the real production line

assets, and the application’s performance (framerate and responsiveness) users
also answered rather positively. Figure 4.3 shows that test subjects were very
satisfied with the application’s performance (83.3% “Very Good” and 16.7% “Good”
answers), while the realism of the virtual assets was also mostly positive (58.3%
“Good” and 33.3% “Very Good”) but also included a 8.3% of lower “Accepatble”
scores. In fact from the questionnaire emerged 2 suggestions to further improve
the ambient details and the textures of the objects.

Other important aspects that were asked to rate were the effectiveness of the
training task and the accuracy of the Object Detection module, which is integrated
in the VR experience. Figure 4.4 highlights a very positive result: the majority of
the users (66.7%) found the accuracy of the detection “Good” and the remaining
33.3% answered “Very Good”, so the delay for computing the prediction did
not preclude the visual experience. Also the training task was considered “Very
Effective” from the 66.7% of the users, with a lower 8.3% “Acceptable” and 25%
“Good” scores. Probably some of the steps should be explained more in detail.

Finally, the users were asked to judge the intuitiveness of the grabbing actions
performed to collects virtual objects and also to interact with some buttons,
together with the usefulness of the humanoid virtual assistant (vocal feedback and
UI windows). As it can be seen in figure 4.5, the vast majority of the users (83.3%)
didn’t have trouble to interact with the virtual objects and the buttons, and also
the 66.7% of the users felt that the virtual assistant was “Very Useful”. So, the
choice of guiding the user through each step of the simulation turned out to be
good, even though a lower 8.3% found it “Acceptable”, suggesting to increase the
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voice commands of the virtual assistant by providing a virtual UI interface for
asking some default questions.

Figure 4.4: Subjective scores evaluating the training task and the accuracy of the
Object Detection model

Figure 4.5: Evaluation of the usefulness of the humanoid virtual assistant and
the intuitiveness of UI interactions
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Chapter 5

Conclusions and Future
Work

The proposed research describes the development and deploy of a Digital Twin of a
production line for assembling skateboards, deployed at the Competence Industry
Manufacturing 4.0 (CIM 4.0) Center. The production line combines together
different recent technologies such as collaborative robots, an intelligent warehouse
system, digital guidance for the operator and image-processing algorithms, especially
to assist a cobot in a pick and place task. Since this step of the procedure rely
on a detection approach prone to errors, the DT was exploited to simulate and
evaluate a possible upgrade for the production line. To this end, the DT integrates
a recent image-processing system based on a ML convolutional neural network
trained on a synthetic dataset. Moreover, the neural network can provide real-time
performances, thus the DT can be used not only for automatic simulations but
also for real-time immersive virtual reality sessions. Overall, all the technologies
provided in the physical line have been successfully digitalized in the DT, resulting
in a compelling and valuable tool that will be used to visualize, navigate and inspect
the production line through immersive VR and train technicians to correctly interact
and operate the different technologies and their interfaces. The proposed upgrade
to the image-processing system clearly enhances the system reliability and will lead
to a physical update of the real-world system.

Future works will be aimed at further testing and evaluating possible upgrades
to the physical line in the VE prior to implementing them in the real world. Further
digitalizing physical upgrade of the line may be necessary: e.g., an automated
ground vehicle (AGV) is currently been integrated in the physical line to move the
pallet from the Vir.GIL workbench to the Racer 5 assembly line.

Regarding the Unity 3D application, it would be useful to develop new features
aimed to make the VR experience more immersive, for example:

• investigate the digitalization of the IK solver for the Racer 5 into the DT,
since it could lead to higher level of collaboration between the cobot and the
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final user, which could be tested in a simulated, immersive environment.

• integrate a motion tracking technology to stream the movements of the user
body, including the hands and evaluate how the experience may increase the
value of the training task

• develop a framework to make the application suitable to support the collab-
oration between two different user in the same virtual reality session and
communicate among them with a vocal or textual channel

Further improvements will also aimed to upgrade the current version of the
application developed in Process Simulate in order to evaluate the ergonomics
for the human workstation and also to integrate the YOLO algorithm within the
simulation.

Finally, the YOLO development has recently moved to Ultralytics, thus, it would
be interesting to update and test a more recent version of YOLO into the DT.
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Appendix

A.1 Synthetic Dataset Creation
A.1.1 Calculate Bounding Box function

1
2 def calculateBoundingBox (scene , camera_object , mesh_object ):
3 # Get the inverse transformation matrix
4 matrix = camera_object . matrix_world . normalized (). inverted ()
5 # Create a new mesh data block , using the inverse transform matrix to undo any

transformations
6 mesh = mesh_object . to_mesh ()
7 mesh. transform ( mesh_object . matrix_world )
8 mesh. transform ( matrix )
9

10 # Get the world coordinates for the camera frame bounding box
11 frame = [-v for v in camera_object .data. view_frame ( scene = scene ) [:3]]
12
13 lx = []
14 ly = []
15
16 for v in mesh. vertices :
17 co_local = v.co
18 z = -co_local .z
19
20 if z <= 0.0:
21 # Vertex is behind the camera ; ignore it
22 continue
23 else:
24 # Perspective division
25 frame = [(v / (v.z / z)) for v in frame ]
26
27 min_x , max_x = frame [1].x, frame [2].x
28 min_y , max_y = frame [0].y, frame [1].y
29
30 x = ( co_local .x - min_x ) / ( max_x - min_x )
31 y = ( co_local .y - min_y ) / ( max_y - min_y )
32
33 lx. append (x)
34 ly. append (y)
35
36 min_x = np.clip(min(lx), 0.0 , 1.0)
37 max_x = np.clip(max(lx), 0.0 , 1.0)
38 min_y = np.clip(min(ly), 0.0 , 1.0)
39 max_y = np.clip(max(ly), 0.0 , 1.0)
40
41 return min_x , max_x , min_y , max_y
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A.2 User survey
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