
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Bridge Aware Clustering with Noise
Detection

Supervisors

Prof. Paolo GARZA

Prof. Luca CAGLIERO

Ing. Luca COLOMBA

Candidate

Christian PAESANTE

July 2021

Summary

This work focuses on improving a density-based algorithm called Bridge Aware
Clustering in terms of scalability, cluster fragmentation robustenss and noise ro-
bustness.
The scalability improvements were conducted by implementing a distributed version
of Bridge Aware Clustering on Spark using Python.
The cluster fragmentation robustness improvements were conducted by integrating
a cluster fusion technique documented in the literature and testing it over different
benchmark datasets.
The noise robustness improvements were conducted by integrating a noise detec-
tion method through an extensive testing campaign aiming to evaluate the noise
robustness over different levels of noise.

ii

Acknowledgements

In producing this work, I would like to express thanks to my supervisors
Prof. Paolo GARZA, Prof. Luca CAGLIERO and Ing. Luca COLOMBA for allowing
me to take this activity and assisting me through this last mandatory step of my
academic career.

I would also like to thank my company Conio, for allowing me to take a month
off to complete this work despite any thesis activity wouldn’t have benefit me or
the company in any future collaboration.

I would like to thank my parents that gave me the opportunity and the necessary
support to pursue my academic career.

The final and deepest thank is given to my girlfriend that has been a certainty
through all the past years and gave me the right ease of mind, necessary for tackling
challenges and for succeeding well above my mere academic career.

An extra thank goes to the Politecnico for forcing the thesis activity as mandatory, providing no value to the student and its future employment, which sums up as a final waste of time, just because we haven’t lost enough time in any useless courses over the course of the last 5 years. Thanks.

iii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1

2 Preliminaries 3

3 Related Work 6

4 Distributed BAC 8
4.1 Distributed LOF . 8
4.2 Points labeling . 9

5 BAC Improvements 11
5.1 Cluster fusion for reduced fragmentation 11
5.2 Noisy dataset detection and noise labeling 12

6 Experiments 16
6.1 Distributed BAC . 16
6.2 BAC improvements . 16

6.2.1 Cluster fusion for reduced fragmentation 17
6.2.2 Noisy dataset detection and noise labeling 20

7 Conclusions and future work 24

Bibliography 25

v

List of Tables

6.1 Scalability tests results . 16
6.2 Dataset summary information . 17
6.3 BAC self-ensemble results . 19
6.4 Algorithms comparisons with 0% of noise 22
6.5 Algorithms comparisons with 5% of noise 23
6.6 Algorithms comparisons with 10% of noise 23
6.7 Algorithms comparisons with 15% of noise 23
6.8 Algorithms comparisons with 20% of noise 23

vi

List of Figures

1.1 Banana using KMeans (partition-based) 2
1.2 Banana using DBScan (density-based) 2

6.1 Banana BAC . 18
6.2 Banana BAC Ensembled . 18
6.3 Cluto-t8-8k BAC . 18
6.4 Cluto-t8-8k BAC Ensembled . 18
6.5 Xclara BAC . 20
6.6 Xclara BAC Ensembled . 20

vii

Chapter 1

Introduction

Clustering is a set of techniques aiming to select and group omogeneous elements in
a dataset. Clustering is a unsupervised technique that allows to discover patterns
and distributions similarities between points in a dataset. Clustering algorithms
are organized in few categories such as:

1. partition-based

2. hierarchical

3. density-based

Between its various applications it allows to group individuals in groups with similar
behaviour or characteristics.

Density-based algorithms are algorithms that rely on detecting highly dense
regions in order to aggregate points in those regions under the same cluster. They
allows to identify clusters of any shape. Indeed partition-based clustering algorithms
fails to clusterize non-globular shaped clusters. An example is the banana cluster
in Figure 1.1 and Figure 1.2.
On the other hand density-based clutering algorithms have some issues in dealing
with multi-density datasets.

Bridge Aware Clustering is a density-based algorithm that relies on identifing
bridge points inside a connectivity graph as points separating different clusters.
These bridge points are identified as points with a high Local Outlier Factor which
is a density-based metric. Some of its issues are that it doesn’t scale very well on
large scale datasets, it doesn’t detect noise points and occasionally suffers of very
light cluster fragmentation.

The aim of this work is to overcome Bridge Aware Clustering limits by imple-
menting a distributed version of it, implementing a noise detection strategy and
exploring existing cluster fusion technique applied to Bridge Aware Clustering.

1

Introduction

Figure 1.1: Banana using KMeans
(partition-based)

Figure 1.2: Banana using DBScan
(density-based)

The scalability of Bridge Aware Clustering will be addressed by implementing
a distributed version on Spark based on [1] for the bridge detection and using
GraphFrame connected components for labeling clusters. The noise detection
will be addressed by labeling bridge points as noise points depending on their
neighborhood. A training a noisy dataset classifier will activates or inactivates
noise detection. Cluster fragmentation will be addressed by using the Cluster
Self-Ensemble technique proposed by [2].

This work proposes a new version of Bridge Aware Clustering capable of detecting
noise and excludes possible paths in addressing scalability and fragmentation
reduction.

2

Chapter 2

Preliminaries

The study and development of clustering algorithms has been of strong interest
from the data science community over the years. Clustering techniques are already
used in a wide range of application sectors. The main strategies used to define
clusters are:

1. partition-based

2. hierarchical

3. density-based

Partition-based strategies rely on the partitioning of the points into clusters by
finding and iteratively updating the cluster centers. An example of this is K-Means.
Hierarchical strategies rely on extracting hierarchical relationships between points.
Density-based strategies rely on detecting highly dense regions in order to aggregate
points in those regions under the same cluster. An example of this is DBSCAN.

DBSCAN, as density-based algorithm, relies on the assumptions that clusters
are dense regions in space separated by regions of lower density. It uses two main
parameters epsilon and minPoint. epsilon is a parameter describing the radius of
the hypersphere in the multidimensional space of the dataset to be centered around
each data point in which there must be at least minPoint points to label the center
point as core point. Any other point that has less than minPoint points in the
hypersphere is labeled as border point. Any other point that has no other points
in the hypersphere is labeled as noise point.

The issues of DBSCAN arise with dataset having multi-density clusters. Indeed,
minPoint is a hard threshold and cannot adapt with different clusters having
different density levels. OPTICS and HDBSCAN tried to solve this, however they
tends to label too many border points as noise.

3

Preliminaries

Another attempt from the data mining community was to deal with density
peaks in order to tackle the problem with multi-density data. Different attempts
leaded to issues of fragmentation: too many undersized clusters.

Bridge Aware Clustering is a density-based clustering technique.
Bridge Aware Clustering rise as a new approach to overcome the traditional

density-based clustering techniques and their evolution to deal with multi-density
clusters.
To effectively deal with multi-density clusters a traditional clustering techniques
tries to first identify border points of clusters by computing statistics about their
neighborhood and then apply a border pealing technique to leave just the cluster
core. The main issues with this technique is that it tends to create too much cluster
fragmentation when either there are multi-density regions in the same cluster or
there are too many noisy points around cluster borders.
Bridge Aware Clustering relies on the concept of "Bridge Points". A Bridge Point
is a point that includes points of different clusters in its neighborhood. The idea of
Bridge Aware Clustering is to rely on the identification of Bridge Points as points
to use to separate clusters.

Bridge Aware Clustering consists of three steps:

1. Identification of candidate bridges

2. Cluster labels spreading as wild-fire

3. Candidate bridges merging into clusters

The identification of candidate bridges is relied on a well known density-based
outlier detection technique: LOF. Empirical analysis has shown that LOF outliers
are a super set of actual Bridge Points. By computing the local outlier factor of
each point, the top 20% are then selected as candidate bridges.
Clusters are then built by spreading labels as a wild-fire in a graph built from
neighbors of each point until a candidate bridge point is found.
Since candidate bridges are not yet labeled, they are then labeled with the same
label of their nearest neighbor.

Bridge Aware Clustering has revealed to be quite resistant to fragmentation,
but there are still some occasional cases where in few datasets a couple of cluster
have been fragmented.

On the other hand Bridge Aware Clustering do not detect noise in datasets,
despite using a outlier detection based algorithm to compute densities.

Another limitation of Bridge Aware Clustering is the possibility to process
datasets of Gigabyte-scale. Indeed in order to compute the LOF score of each
point it requires informations from the point kNN, the kNN’s kNN and the kNN’s

4

Preliminaries

kNN’s kNN. This leads to cubic complexity which do not allow to process large
scale datasets.

The aim of this work is to try to improve performances in the occasional
fragmented clusters, create a noise detection mechanism that allows Bridge Aware
Clustering to label correctly noise points in noisy datasets and bring Bridge Aware
Clustering at Gigabyte scale.

5

Chapter 3

Related Work

The proposed distributed version of Bridge Aware Clustering is similar to other
density-based distributed algorithm such as SP-DBSCAN [3] or RDD-DBSCAN [4].
Indeed it relies on splitting points in sub-regions in order to parallelize computation,
but it differes from them by prioritizing the computation of the outliers in order to
compute the clusters.

SP-DBSCAN [3] instead decompose the DBSCAN clustering problem into smaller
disjoint ones and then merges all the locally computed clusters with the ones in
other partitions. This requires to sacrifice some accuracy in order to be efficient at
the merging step.
RDD-DBSCAN [4] instead relies on the decomposition of the DBSCAN problem
in multiple overlapping regions that allows reduce the tradeoff in accuracy due to
the cross-regions informations. This approach on the other hand suffers on highly
skewed data distributions and thus requires to adopt a even-split partitioning
aiming to keep point distributions across regions as even as possible. However it
still suffers from highly imbalanced data points and data duplication.

The proposed distrubuted Bridge Aware Clustering keeps data duplication
optimization at core. Indeed it relies on splitting data in overlapping regions, but
since it relies on the k-distance of each point, the overlapping regions can be kept
as small as needed, reducing data duplication. On the other hand, the DDEarly
strategy described in [1] allows to further speedup the process and again further
reducing data duplication across partitions.

Bridge Aware Clustering does not recognize noise natively. On the other hand
other algorithms such as DBSCAN detects noise during the clustering step. Indeed,
DBSCAN detect noise as points without any other point withing the distance Ô.

[5] proposed a noise clustering method used to reduce the influence of noise on
clustering results by filtering noise before applying the clustering algorithm. The
method proposed relies on identifying noise points as points whose distance from
their clusters centroids is greater than a parameter δ. Unfortunately, the method

6

Related Work

is partition-based, which means that fails to perform in convex datasets such as
banana. Moreover it requires to know the number of clusters c in the dataset
beforehand.

Bridge Aware Clustering relies determining a fixed percent of the points as
candidate bridges, i.e., lof outliers and a subset of the lof outliers are then marked
as noise depending on how many other lof outliers are there in their neighborhood.
Moreover the noise detection mechanism is a semi-supervised as Bridge Aware
Clustering activates or deactivates the noise detection depending on the dataset
characteristics.

Regarding cluster fusion techniques, [2] describes a cluster self-identification
and then self-ensemble method used to clusterize datasets with multiple density
peaks. The self-identification consists in computing a domain adaptive density
metric and the delta distance and plot on a 2D graph these two metrics for each
point. Depending on the region of these plotted points fall in, cluster centroids are
identified and a kNN connectivity graph is then built around them. This leads in a
better overall results of other density-peak based algorithms, but still far from the
optimal. Indeed, the result is quite fragmented. [2] describes then a self-ensemble
method that allows to merge fragmented clusters and finally compute the final
result.

Bridge Aware Clustering already computes clusters, which means that the self-
identification step is no more required, but it needs to merge the fragmented
clusters. In order to achieve that it uses a modified version of the self-ensemble
which does not relies on border points for merging the clusters but relies on the
previously identified candidate bridges instead.

7

Chapter 4

Distributed BAC

Part of this work included building a distributed version of Bridge Aware Cluster-
ing on Spark. The process included first to build a distributed version of LOF and
then use the GraphFrame connected components to build the connectivity graph
resulting from the KNN from LOF.

4.1 Distributed LOF
For the distributed version of LOF this works relies on [1]. [1] describes a distributed
algorithm for computing the LOF score splitting the procedure in three steps. One
of the problems of parallelizing LOF is that according to [1] "the LOF score of a
point p is determined by its kNN q, its kNN’s kNN qÍ, and its kNN’s kNN’s kNN
q” - in total k + k2 + k3 points". Hence the scalability issues are dramatic pretty
quickly.

[1] describes instead a procedure where the computation of LOF is splitted in
three steps where every steps requires only the kNN of a given point p. The three
step pipeline proposed by [1] is:

1. K-distance Computation

2. LRD Computation

3. LOF Computation

To achieve this it starts by splitting the space in which points live into partitions.
From now on every computation is parallelized at partition level.

After the split it applies KNN algorithm on each partition in parallel in order
to compute the local kNN of each point. The problem indeed is that points on the
border of a partition may have a few actual neighbors that are in another partition.

8

Distributed BAC

[1] refers to points belonging to the partition as core points, whereas the remaining
kNN outside a partition are referred as support points.

[1] shows as support points, if exist, are in a predictable area outside the
partitions limit. Given a point p, its local kth nearest neighbor q and its k-
distance dk, and given the partition space defined, for simplicity, as an hypercube
[llow, lhigh]n, [1] shows how the actual neighbors can be found in an hypercube
[min(llow, pi − dk), max(lhigh, pi + dk)]n, where pi is the ith component of the vector
describing the point p. This means that a generic partition Pi requires a very
limited number of support points from contiguous partitions, hence improving the
scalability of the distributed KNN computation.

Support points used by a partition are just a local copy of points existing in
another partition. This means that in subsequent calculation their properties have
to updated.

After having computed the actual k-distance of each core point and retrieving
the k-distance of the support point computed in parallel in other partitions, the
next step is to compute the LRD score.

After having computed the LRD of each core point and retrieving the LRD
of the support point computed in parallel in other partitions, the next step is to
compute the LOF score.

[1] propose also an optimization for reducing the amount of support points as
computations goes on and cross-node communication called "Early Termination".
It consists at every step of trying to compute for each point its LOF score directly
with just with the data available locally in the partition. Indeed a lot of core points
in the partition are not on the border an thus may not require support points for
computing their LRD or LOF score.
This means that at each step we can get rid of core points that do not serve anymore
as support points of other partitions, further enhancing performances.

4.2 Points labeling
After having computed the LOF score of every point we detect the outliers picking
the top 20% points with higher LOF score, using spark DataFrame approxQuantile.
After that we build a GraphFrame connectivity graph by keeping track of each
point KNN from the beginning of the LOF computation. By cutting the outbound
edges from the detected outliers and detecting the connected components, for each
node we get its cluster label by using its connected component label.

The resulting algorithm is illustrated in Algorithm 1.

9

Distributed BAC

Algorithm 1 Distributed BAC
X: The initial RDD of the dataset points D: The hypercube limits of the dataset np:
The number of partitions per hypercube dimension K: The number of neighbors
for the distributed KNN. CF : Contamination factor.

1: Compute partitions: P ← computePartitions(D, np)
2: Compute core points RDD: core_points← computeCorePoints(X, P)
3: Compute local knn RDD: local_knn ← KNN(core_points, K)
4: Compute expanded partitions: P ← expandPartitions(P , core_points, lo-

cal_knn)
5: Compute core support points RDD: core_support_points
← computeCoreAndSupportPoints(X, P)

6: Compute actual knn and k-distance RDDs: actual_knn, k_dist
← KNN(core_support_points, K)

7: Compute global points state RDDs: all_points ← computeGlobal-
PointsRDD(core_support_points.filter(x -> x is core))

8: Update support points: core_support_points_updated ← up-
date(core_support_points, all_points)

9: Compute LRD score RDDs: lrd ← LRD(core_support_points_updated, ac-
tual_knn)

10: Compute global points state RDDs: all_points ← computeGlobal-
PointsRDD(lrd.filter(x -> x is core))

11: Update support points: lrd_support_updated ← update(lrd, all_points)
12: Compute LOF score RDDs: lof ← LOF(lrd_support_updated, actual_knn)
13: Compute global points state RDDs: all_points ← computeGlobal-

PointsRDD(lof.filter(x -> x is core))
14: Compute lof threshold: θLOF ← all_points.map(x -> x.lof).quantile(1-CF)
15: Compute outliers: outliers ← all_points.filter(x -> x.lof > θLOF)
16: Compute non-outliers: not_outliers ← all_points.filter(x -> x.lof <= θLOF)
17: Compute connectivity graph: graph ← Graph(not_outliers, actual_knn)
18: Compute labels: labels ← graph.connectedComponents()
19: Compute final labels: labels ← labels.union(outliers.map(x -1))

10

Chapter 5

BAC Improvements

5.1 Cluster fusion for reduced fragmentation
In this section the cluster fusion strategy used to reduce fragmentation in some
dataset is going to be described. It was inspired from the Cluster Self-Ensemble
strategy used in [2].

As described before the Cluster Self-Ensemble relies on computing three main
metrics:

1. Inter-cluster Density Similarity (IDS)

2. Cluster Crossover Degree (CCD)

3. Cluster Density Stability (CDS)

Inter-cluster Density Similarity (IDS) is described in [2] as "Inter-cluster density
similarity between two clusters refers to the degree of similarity degree of their
cluster densities. The average density of a cluster is the average value of the domain
densities of all data points in the cluster."

It was defined as Sa,b =
2

ñ
KDenca ×KDencb

KDenca + KDencb

where KDenca = 1
|ca|

Ø
i∈ca

KDeni

and KDeni = Kq
j∈N(xi) dij

and dij is the distance between the point xi and xj

and N(xi) is the set of K-nearest neighbors of xi.
Cluster Crossover Degree (CCD) is described in [2] as "Cluster crossover degree

Ca,b of two clusters ca and cb is calculated by the sum of the crossover degrees of
all crossing points between ca and cb."

11

BAC Improvements

It was defined as Ca,b =
Ø

xi∈CP(a→b)

c(i,a→b) +
Ø

xj∈CP(b→a)

c(j,b→a)

where c(i,a→b) =
2

ò---N(i,a)

---× ---N(i,b)

------N(i,a)

--- +
---N(i,b)

and N(i,a) is the set of points in N(xi) belonging to cluster ca.

Cluster Density Stability (CDS) is described in [2] as "Cluster density stability
is the reciprocal of the cluster density variance, which is calculated by the deviation
between the domain density of each point and the average domain density of the
cluster. The larger the CDS of a cluster, the smaller domain density differences of
each point in the cluster."

It was defined as Da,b = da+b

da

× da+b

db

where da = log
öõõôØ

i∈ca

1
KDeni −KDenca

22


and da+b represent the CDS of the cluster resulting from merging ca and cb.
All of these contributes to the Cluster Fusion Degree (CFD), described in [2] as

"Cluster fusion degree of two clusters is the degree of the correlation between
the clusters in terms of the location and density distribution, which is calculated
depending upon the values of IDS, CCD, and CDS. Two clusters with a high degree
of fusion should satisfy the following conditions: (1) having a high value of IDS,
(2) having a high value of CCD, and (3) the CDS of the merged cluster should be
close to the average value of the two initial clusters’ CDSs. If two adjacent and
crossed clusters hold a high IDS and similar CDS, they have a high fusion degree."

It was defined as Fa,b =
√

3
4 (Sa,b × Ca,b + Ca,b ×Da,b + Da,b × Sa,b).

The Self-Ensemble process consists then to compute Fa,b for each couple of
clusters ca and cb and whenever Fa,b is bigger than a threshold θF merge ca and cb

in a single cluster. The procedure is illustrated in Algorithm 2.
The Self-Ensemble procedure relies on crossing points. Bridge Aware Cluster-

ing detects some candidate bridges that should be exactly that kind of points. For
this reason, the crossing points used will be the candidate bridges detected by
Bridge Aware Clustering.

5.2 Noisy dataset detection and noise labeling
Bridge Aware Clustering use a density-based outlier detection algorithm, LOF,
to determine candidate bridges. Candidate bridges are selected from the points
with higher LOF score, hence representing possible outliers. Hence it comes
straightforward attempt to apply some decision rules on how to mark candidate
bridges as noise or not.

In Bridge Aware Clustering candidate bridges are labeled after the wild-fire

12

BAC Improvements

Algorithm 2 Cluster self-ensemble of DADC
ICX : The initial clusters of X
θF : the threshold value of the cluster fusion degree for cluster self-ensemble.
MCX : the output merged clusters of dataset X

1: while ICX /= ∅ do
2: get the first cluster ca from ICX

3: for each cb with cb /= ca in ICX do
4: calculate the inter-cluster density similarity Sa,b

5: calculate crossing points c(i,a→b) and c(j,b→a)
6: calculate cluster crossover degree Ca,b

7: calculate cluster density similarity da, db, and da+b

8: calculate cluster density similarity Da,b

9: calculate cluster fusion degree Fa,b

10: if Fa,b > θF then
11: merge clusters cÍ

a ← merge(ca, cb)
12: remove cb from ICX

13: end if
14: end for
15: if ca = cÍ

a then
16: append ca to the merged clusters MCX

17: remove ca from ICX

18: end if
19: end while

13

BAC Improvements

spreading of labels used to build the cluster cores. This means that after building
the cluster cores candidate bridges are added to cluster cores based on the nearest
neighbor cluster label. This candidate labeling policy will be referred from now on
as nearest.

We can substitute/extend that step with different policies aiming to detect noise
points. In this work 4 different policies are illustrated:

1. majority

2. single outlier

3. all

4. all except 3

Majority labels a candidate point based on the label most common in its
neighborhood of non-candidates. If the number of candidates is higher than the
count of the most common label, then the point is labeled as noise, otherwise it is
labeled with the most common label.

Singleoutlier labels a candidate point as noise if there is at least one other
candidate in its neighborhood. Otherwise the nearest non-candidate neighbor
cluster label is used.

All labels a candidate point as noise if and only if all its neighbors are candidates.
Otherwise the most common label is used.

All except 3, is similar to all. It labels a candidate point as noise if and only if
at least K-3 of its neighbors are candidates. Otherwise the most common label is
used. The number 3 has been chosen arbitrarily for exploring something less strict
than all.

Despite all was the most conservative one, it leaded to the best results.
Always using a noise detection strategy is not the optimal way. For this reason

comes natural to attempt to predict when to activate the noise detection and when
not to.
For this purpose a Decision Tree was used to predict which datasets are noisy and
which not. The feature extracted from a dataset and used by the decision tree to
detect whether the dataset is noisy or not are the following:

1. Min KNN distance with K = 10

2. Max KNN distance with K = 10

3. Mean KNN distance with K = 10

4. Min KNN distance with K = 15

14

BAC Improvements

5. Max KNN distance with K = 15

6. Mean KNN distance with K = 15

7. Min KNN distance with K = 20

8. Max KNN distance with K = 20

9. Mean KNN distance with K = 20

10. Min cluster cohesion without noise detection

11. Max cluster cohesion without noise detection

12. Mean cluster cohesion without noise detection

13. Min cluster cohesion with noise detection

14. Max cluster cohesion with noise detection

15. Mean cluster cohesion with noise detection

16. Number of clusters without noise detection

17. Number of clusters with noise detection

The most relevant features resulted being:

1. Mean KNN distance with K = 20

2. Mean cluster cohesion without noise detection

3. Max cluster cohesion with noise detection

15

Chapter 6

Experiments

6.1 Distributed BAC
The scalability tests have been conducted on a PySpark cluster with the following
hardware characteristics:
1. 48 CPU Threads

2. 120 GB memory
Distributed BAC was tested on Open Street Map dataset and GeoLife dataset,

starting from their undersampling denoted with x% of the total size.
The results obtained are summarized in Table 6.1. The results have shown some

difficulties in scaling which have been encountered at the outlier identification step,
which required computing an approximated quantile.

Dataset Time
geolife 1% 26m 30s
geolife 25% 72h+

open street map 1% 26h+

Table 6.1: Scalability tests results

No further tests have been conducted since already with over-reduced in size of
large datasets Distributed BAC has proven to be very slow.

6.2 BAC improvements
All the experiments were run on a workstation with an AMD Ryzen 5 2600X, 16GB
of RAM and 1TB of SSD storage. The code was tested Windows 10 (20H2, build

16

Experiments

19042.1052).
All the tests have been conducted over 25 synthethic bi-dimensional bench-

mark datasets used in the Bridge Aware Clustering work, which were selected
from the public GitHub repository https://github.com/deric/clustering-benchmark.
Datasets characteristics are summarized in Table 6.2.

Dataset Number of points Number of clusters
2d-20c-no0 1517 20
2d-3c-no123 715 3
2d-4c-no4 863 4
2d-4c-no9 876 4
aggregation 788 7
banana 4811 2

cluto-t8-8k 8000 9
complex8 2551 8
complex9 3031 9

cure-t0-2000n-2D 2000 3
cure-t1-2000n-2D 2000 6

cure-t2-4k 4200 7
diamond9 3000 9
disk-4000n 4000 2

elliptical_10_2 500 10
fourty 1000 40
long1 1000 2

longsquare 900 6
spiralsquare 1500 6
triangle1 1000 4
wingnut 1016 2
xclara 3000 3
zelnik1 299 3
zelnik5 512 4
zelnik6 238 3

Table 6.2: Dataset summary information

6.2.1 Cluster fusion for reduced fragmentation

The improvement investigation has been made on all 25 original datasets (without
any injected noise).

17

Experiments

The metrics used for the performance evaluation is the mean Adjusted Rand
Index (ARI) over all 25 original datasets.

As can be seen in Figure 6.1, Figure 6.2, Figure 6.3, Figure 6.4, Figure 6.5 and
Figure 6.6, the self-ensemble strategy proposed by [2] resulted to be too much
aggressive when adopted in Bridge Aware Clustering. This happened in the totality
of the datasets.
This obviously impacted quite hard on the mean adjusted rand index over all 25
datasets comparing BAC without cluster fusion vs BAC with cluster fusion. The
results are illustrated in Table 6.3.

Figure 6.1: Banana BAC Figure 6.2: Banana BAC Ensembled

Figure 6.3: Cluto-t8-8k BAC Figure 6.4: Cluto-t8-8k BAC Ensem-
bled

18

Experiments

Algorithm Mean ARI
BAC 0.96

BAC with self-ensemble 0.35

Table 6.3: BAC self-ensemble results

19

Experiments

Figure 6.5: Xclara BAC Figure 6.6: Xclara BAC Ensembled

6.2.2 Noisy dataset detection and noise labeling

Noisy datasets were synthetized starting from the original 25 datasets. The noise
injection procedure consisted in "disturbing" a given percentage of randomly selected
points using a gaussian noise. The procedure is illustrated in Algorithm 3.

Algorithm 3 Cluster self-ensemble of DADC
σ: The std dev of the gaussian noise
amount: The amount of noisy points
X: the original dataset
XN : the noisy dataset
d: number of dimensions of a single point x of the dataset X

1: for each x in X do
2: if U(0,1) > amount then
3: append x to XN

4: continue
5: end if
6: xN ← x+ Normal(mean=0, std=, num_dim=d)
7: append xN to XN

8: end for

The competitors considered as comparisons are two traditional density-based
algorithm, i.e., DBScan, OPTICS, the recently proposed Border Peeling as well as

20

Experiments

the original Bridge Aware Clustering. For DBScan and OPTICS the implemen-
tations available under the scikit-learn library were used, for Bridge Aware Clus-
tering the implementation made by Prof. Paolo GARZA, Prof. Luca CAGLIERO
and Ing. Luca COLOMBAwas used, while for Border Peeling the implementation
provided by the original author was used.

Different configurations of the algorithms were used for each level of noise in
the 25 datasets. These optimal configurations were found through a grid search
over each level of noise separately as it follows.

The configurations setting for the noise level of 0% are listed below:

1. DBScan: min points = 5.

2. OPTICS: cluster method =Í xiÍ, min samples = 40.

3. Border Peeling: no parameters are provided as the method is parameter-less.

4. BAC: contamination factor = 0.2, k for kNN = 15, k for labeling = 10.

5. BACNoise: contaminationfactor = 0.2, kforkNN = 15, kfor labeling = 10.

The configurations setting for the noise level of 5% are listed below:

1. DBScan: min points = 5.

2. OPTICS: cluster method =Í xiÍ, min samples = 35.

3. Border Peeling: no parameters are provided as the method is parameter-less.

4. BAC: contamination factor = 0.2, k for kNN = 20, k for labeling = 10.

5. BACNoise: contaminationfactor = 0.2, kforkNN = 20, kfor labeling = 10.

The configurations setting for the noise level of 10% are listed below:

1. DBScan: min points = 5.

2. OPTICS: cluster method =Í xiÍ, min samples = 40.

3. Border Peeling: no parameters are provided as the method is parameter-less.

4. BAC: contamination factor = 0.2, k for kNN = 20, k for labeling = 10.

5. BACNoise: contaminationfactor = 0.2, kforkNN = 20, kfor labeling = 10.

The configurations setting for the noise level of 15% are listed below:

1. DBScan: min points = 5.

21

Experiments

2. OPTICS: cluster method =Í xiÍ, min samples = 30.

3. Border Peeling: no parameters are provided as the method is parameter-less.

4. BAC: contamination factor = 0.2, k for kNN = 20, k for labeling = 10.

5. BACNoise: contaminationfactor = 0.2, kforkNN = 20, kfor labeling = 10.

The configurations setting for the noise level of 20% are listed below:

1. DBScan: min points = 5.

2. OPTICS: cluster method =Í xiÍ, min samples = 35.

3. Border Peeling: no parameters are provided as the method is parameter-less.

4. BAC: contamination factor = 0.2, k for kNN = 20, k for labeling = 10.

5. BACNoise: contaminationfactor = 0.2, kforkNN = 20, kfor labeling = 10.

The metrics used for the performance evaluation is the mean Adjusted Rand
Index (ARI) over each noise-group of 25 datasets.

Results are illustrated in Table 6.4, Table 6.5, Table 6.6, Table 6.7 and Table
6.8.

Results shows as BAC with noise detection performs better than alternatives
such as DBSCAN, OPTICS and BorderPeeling and slightly better than BAC
without noise detection.

Algorithm Mean ARI
DBSCAN 0.8096
OPTICS 0.6195

BorderPeeling 0.5522
BAC 0.9579

BAC with noise detection 0.9584

Table 6.4: Algorithms comparisons with 0% of noise

22

Experiments

Algorithm Mean ARI
DBSCAN 0.7558
OPTICS 0.5842

BorderPeeling 0.4934
BAC 0.8734

BAC with noise detection 0.8752

Table 6.5: Algorithms comparisons with 5% of noise

Algorithm Mean ARI
DBSCAN 0.6874
OPTICS 0.5035

BorderPeeling 0.4627
BAC 0.7933

BAC with noise detection 0.7951

Table 6.6: Algorithms comparisons with 10% of noise

Algorithm Mean ARI
DBSCAN 0.6190
OPTICS 0.4518

BorderPeeling 0.4120
BAC 0.7128

BAC with noise detection 0.7146

Table 6.7: Algorithms comparisons with 15% of noise

Algorithm Mean ARI
DBSCAN 0.5523
OPTICS 0.4279

BorderPeeling 0.3827
BAC 0.6325

BAC with noise detection 0.6343

Table 6.8: Algorithms comparisons with 20% of noise

23

Chapter 7

Conclusions and future
work

In this work few improvements on Bridge Aware Clustering have been proposed. The
improvements have been implemented and measured their performances. Eventually
the proposed noise detection method applied to Bridge Aware Clustering has proven
to be slighly better than the version without it, reducing the influence of noise on
its performances.

As future work, alternative methods aiming to solve the still open problems of
Bridge Aware Clustering in scalability and cluster fragmentation robustness should
be attempted.

24

Bibliography

[1] Yan Y. Cao L. Kuhlman C. Rundensteiner E. «Distributed Local Outlier
Detection in Big Data». In: KDD 2017 Research Paper (2017), pp. 1226–1231
(cit. on pp. 2, 6, 8, 9).

[2] Chen J. and Yu P. «A domain adaptive density clustering algorithm for data
with varying density distribution». In: IEEE Transactions on Knowledge and
Data Engineering (2019), p. 4 (cit. on pp. 2, 7, 11, 12, 18).

[3] Wei-Keng Liao Dianwei Han Ankit Agrawal and Alok Choudhary. «A Novel
Scalable DBSCAN Algorithm with Spark». In: Proc. 2016 IEEE Intl Sympo.
on Parallel and Distributed Processing (2016), pp. 1393–1402 (cit. on p. 6).

[4] Irving Cordova and Teng-Sheng Moh. «DBSCAN on Resilient Distributed
Datasets». In: Proc. 2015 Intl Conf. on High Performance Computing &
Simulation (2015), pp. 531–540 (cit. on p. 6).

[5] Kei Kitajima and Yasunori Endo. «Even-Sized Clustering with Noise Clustering
Method». In: (2018), pp. 837–842. doi: 10.1109/SCIS-ISIS.2018.00138
(cit. on p. 6).

25

https://doi.org/10.1109/SCIS-ISIS.2018.00138

	List of Tables
	List of Figures
	Introduction
	Preliminaries
	Related Work
	Distributed BAC
	Distributed LOF
	Points labeling

	BAC Improvements
	Cluster fusion for reduced fragmentation
	Noisy dataset detection and noise labeling

	Experiments
	Distributed BAC
	BAC improvements
	Cluster fusion for reduced fragmentation
	Noisy dataset detection and noise labeling

	Conclusions and future work
	Bibliography

