
POLITECNICO DI TORINO
MASTER’s Degree in DATA SCIENCE AND

ENGINEERING

MASTER’s Degree Thesis

A Data Driven Approach to Remaining
Time Prediction of Process Instances

Supervisors

Prof. SILVIA A. CHIUSANO

Candidate

MARCO DI NEPI

JULY 2021

Abstract

Large companies usually keep track of internal processes by continuously updating
data in a database in the form of logs. They are crucial to carry out conformance
checks and monitor whether a case is progressing as expected and similarly to
what has happened in the past or, in alternative, detect any errors or unexpected
loops that can negatively affect the performances of a system. Predictive process
monitoring collects a set of techniques and methodologies to analyze event logs,
with the purpose of making predictions on running cases. Being able to predict in
real time the remaining time until the completion of a case is crucial to allow the
user to intervene promptly. A fast response guarantees a reduction in the risk of
delays and slowdowns in the entire workflow, which may occur in any moment, and
an increased awareness on the presence of behaviors that differ from the normal
trend. The problem can be treated as a supervised learning task and in this paper
we propose a methodology based on neural network models. In particular, given
the log structure as an ordered sequence of events, it comes natural to exploit
architectures able to manage data sequences and very long dependencies, such as
recurrent and attentions-based architectures. The goal is to integrate and optimize
the application maintenance service provided by the company through machine
learning algorithms. The case study, the forecasting of job completion time in an
HPC system, covered the entire process from data acquisition to model deployment
and the development of a dedicated web application to provide, in addition to the
prediction, other useful features for improving the system.

ii

Acknowledgements

Vorrei esprimere la mia più sincera gratitudine alle persone che mi hanno accompa-
gnato in questo capitolo della mia vita offrendomi supporto in ogni situazione.

Ringrazio Reply, e in particolare Roberta, Monica e Sara per l’aiuto fornitomi in
questo progetto e per avermi fatto sentire fin da subito parte del team.
Un rigraziamento alla mia relatrice Prof.ssa Anna Chiusano per i suoi preziosi
consigli e al suo contributo per la riuscita di questo lavoro.

Vorrei ringraziare i miei genitori, mio fratello Edoardo, e tutta la mia famiglia per
la presenza constante e per tutto il sostegno che hanno sempre rivolto nei miei
confronti.

Un enorme grazie ai miei amici di sempre, al gruppo Doge, ai miei vecchi compagni
di merenda Ruben e Jacob, ai data scienziati del Cluster con cui ho condiviso
questo percorso e a tutti coloro che, tra Roma e Torino, non hanno mai smesso di
starmi vicino.

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xi

1 Introduction 1

2 Process Monitoring 4
2.1 Process Mining . 4
2.2 Remaining time prediction . 7
2.3 Related Works . 9

3 Machine Learning Algorithms 12
3.1 Tree based algorithms . 12

3.1.1 Random Forest . 12
3.1.2 Boosting . 14
3.1.3 XGBoost . 15

3.2 Recurrent Neural Networks . 17
3.2.1 Long Short-Term Memory Networks 19
3.2.2 Gradient Recurrent Unit . 21

3.3 Transformers . 22

4 Dataset 27
4.1 Data Cleaning . 30
4.2 Exploratory Data Analysis . 31

5 Proposed Approach 38
5.1 Performance Evaluation . 38
5.2 Preprocessing . 39
5.3 LSTM and GRU implementation 42
5.4 Transfomer implementation . 44

v

5.5 Framework overview . 47
5.6 Deployment . 52

6 Experimental Results 55

7 Conclusions and future works 61

Bibliography 64

vi

List of Tables

2.1 Trivial example of an event log . 5

4.1 Features of the process log table . 27
4.2 Features of the scheduling table . 28

5.1 Data after preprocessing . 40
5.2 LSTM best configuration . 42
5.3 GRU best configuration . 43

6.1 Obtained results (in minutes) on the chain dataset 57
6.2 Local results . 58
6.3 Obtained results (in minutes) with selected features 59

vii

List of Figures

2.1 Petri Net example . 6
2.2 Scheme of training and inference phases 7
2.3 Remaining time prediction . 8

3.1 Decision boundaries of a decision tree 14
3.2 Basic structure of a recurrent neural network 18
3.3 Enrolled graph of a RNN . 18
3.4 LSTM’s cell structure . 21
3.5 Transfomer architecture [31] . 23
3.6 Self-Attention and Multi-Head Attention [31] 25

4.1 Example of a chain with three dependencies 29
4.2 Data loading procedure into the corresponding tables 29
4.3 Trend comparison of two chains . 32
4.4 Correlation matrix . 33
4.5 Distribution of execution times . 34
4.6 Mean and standard deviation of execution times during the week . . 35
4.7 Performance before and after migration 35
4.8 Number of chains for each category 36
4.9 Number of scheduled chains for each hour 36

5.1 Overview of the procedure . 41
5.2 LSTM model . 43
5.3 Transformer architecture used for process monitoring 45
5.4 Log-cosh loss function . 46
5.5 Probability density function of Student’s t-distribution 47
5.6 Dependency graph . 50
5.7 Local Outlier Factor intuition . 51
5.8 Developed front-end main page . 53
5.9 Block diagram of the developed framework 54

6.1 Remaining time prediction trend 56

viii

6.2 Feature Importance according to Random Forest 57
6.3 MAE values with different prefix lengths 58

ix

Acronyms

BPM
Business Process Monitoring

HPC
High Performance Computing

RNN
Recurrent Neural Network

LSTM
Long short-term memory

RSS
Residual sum of squares

GRU
Gradient Recurrent Unit

ETL
Extract Transform and Load

MAE
Mean Absolute Error

MSE
Mean Squared Error

NLP
Natural Language Processing

xi

Chapter 1

Introduction

In modern era, companies regularly store in their database systems details about
all the processes executed in the past. These data, which are called logs, are kept
not only to preserve historical information, but are mostly used at run-time to
check that ongoing traces are keeping on regularly and are not affected by problems.
They are crucial indeed to carry out conformance checks and monitor whether a
case is progressing as expected and similarly to what has happened in the past or,
in alternative, detect any errors or unexpected loops that can negatively affect the
performance of a system.

Processes are made up of an ordered sequence of tasks, each characterized by
its execution timestamp. It is easy to think, for example, of a shipping company
that has to keep track of the status of all orders in progress. A trivial sequence of
tasks could be: 1) Preparing, 2) Sent, 3) Delivering, 4) Delivered. Each of these
operations is then associated with a time indication. At this point, the customer
will want to have a real time estimate of how long after the order will be delivered
to him. This is just one of the possible applications of process mining, a discipline
which aims to create interpretable models of processes and exploit them to obtain
benefits in terms of insights, forecasting capacity and system optimizations.

The increasing popularity of machine learning and deep learning techniques has
given a further boost to this field. Neural Networks, at the expense of the loss of
explainability due to the black box approach, have provided new state-of-the-art
results, achieving a far better accuracy than traditional methods.
In particular, in the last years, several papers have been published on three main
tasks: Next Activity Prediction, Event Time Prediction and Remaining Time
Prediction. This thesis will focus on the last challenge and will analyze and apply
some machine learning algorithms to a dataset based on sequences of software
processes that run daily on a high-performance machine.

1

Introduction

The project has been developed with the support and collaboration of Technology
Reply, one of the companies of the Reply group. Reply is an Italian company based
on a network model, it is made up of a large number of companies, each operating
on specific businesses and headed by a central holding. In particular, Technology is
specialized in the development of innovative solutions based on Oracle technology,
and it mainly deals with data infrastructures, databases and data modeling, also
offering solutions based on the latest big data and machine learning technologies.

Among the activities of the company, an important collaboration with a large
automotive company firm stands out. Technology Reply has developed a multitude
of data pipelines and job sequences used to feed reports for the client. The latter
are used every day by operating directors or engineers to understand the trend of
the business, to organize daily activities and make evaluations.
Given the importance of having these data available with the right timing, all
information related to the monitoring of these loading processes is constantly
collected in a database in the form of logs, in order to keep track of delays and
problems that may occur in any moment.
Subsequently, the need arose to provide the customer with a real-time estimate of
the remaining time of these processes, as well as details and statistics regarding the
impact of scheduling times, days of the week and the amount of data processed.

This thesis tries to fit into the context of process mining and in particular of
business process monitoring, seeking to apply machine learning models in a busi-
ness environment and attempting to integrate these advanced techniques into the
standard workflow. The dialogue with the domain experts, who were able to provide
explanations on the functioning of the processes, was thereby fundamental to the
success of the work.

The objectives proposed by this project can be summarized in:

• Providing a literature review and studying the most recent machine learning
and deep learning technologies applied to the remaining time prediction
problem. After that, building and testing models and providing a benchmark
of the performance of the various methods.

• Building an efficient pipeline to process and store event log data through the
development of new tables and views in the database. Then proceed with
cleaning and processing the data in order to make them suitable for use in
machine learning tasks.

• Providing an accurate data analysis in order to obtain statistics and insights
useful for improving the system and the service provided by the company.

2

Introduction

The document is divided in several chapters and is organized as follows:

Chapter 2 provides an introduction of the goals and main tasks of process mining
and predictive process monitoring. Moreover, a formal statement of the remaining
time prediction problem is given together with an analysis of the state of art and
recent publications.

Chapter 3 describes the theoretical background of machine learning and deep
learning models used and is divided in three main sections: tree based algorithms,
recurrent neural networks and transformers.

Chapter 4 explains the main features of the dataset used in the experiments.
Also, is given an overview of the data acquisition and data cleaning phase. Finally,
the results of a brief exploratory data analysis are presented.

Chapter 5 describes the proposed approach for remaining time prediction.
It is provided a report on the evaluation method, data preprocessing, developed
architectures and training phase. The second part of the chapter is dedicated to
the outline of the framework and how the prediction is inserted in the enterprise
context together with additional functionalities such as anomaly detection and the
construction of confidence intervals. Further space is given to the model deployment
and release of the application.

Chapter 6 finally presents the results of the experiments and the performance
of the tested models according to the metrics used.

3

Chapter 2

Process Monitoring

2.1 Process Mining
Process mining is a discipline that is proposed as a meeting point between data
science and business process management (BPM). If the second is mainly oriented
towards the modeling and optimization of processes within a company, data science
allows for a more data-driven approach aimed at obtaining both powerful insights
and predictions tools. Process mining analyzes business processes through logs,
a popular kind of data indicating the status and progress of an ongoing activity
providing above all a temporal indication of what is happening at a precise moment.

The starting building block of process mining is the Event Log or Process Log. This
object contains information about Cases, single instances of the considered process,
and a sequence of activities within each case.
The elements of an event log table must necessarily satisfy three fundamental
requirements:

• Each event must be associated to a referring timestamp indicating the be-
ginning or the end of the activity. This is a primary information when the
measure of interest is the remaining time of a running case or the analysis of
the performances of the system.

• Events within a case are ordered, there is a precise temporal sequence of
what happened in the past and what will happen in the future. A disordered
sequence would make the whole analysis lose its meaning.

• Events may have attributes or features, as instance the number of resources
used, the priority, the cost, or many others.

4

Process Monitoring

Case-ID Activity Timestamp NRows
101290 Loading Data 30-01-2020:11.02 12030
101290 Transformation-01 30-01-2020:11.25 12030
101290 Case Ended 30-01-2020:11.38 -
101291 Loading Data 31-01-2020:00.15 4
101291 Ended in Error 31-01-2020:03.19 -

Table 2.1: Trivial example of an event log

The previous concepts can be defined in a more formal way:

Definition 1 (Event) An event is a tuple (c, a, t, (v1, v2, ..., vm)) where c is the case
identifier, a is the activity name, t is the timestamp and the vi (where m ≥ 0) are
the values of the attributes.

Definition 2 (Trace) Let E be the event universe, the set of all possible events in
the process, and let c be a case. A trace is a sequence σi =< e1, e2, ..em > of events,
such that ∀i ∈ [1, n], ei ∈ E and ∀i, j ∈ [1, n] if ei ∈ c then ej ∈ c

Definition 3 A trace is completed when each event in the trace has been completed
and fully handled in the past. If a trace is still ongoing, it is called partial trace

Process mining has applications in countless industries or companies that rely on
log data to monitor the status of the internal processes. Examples of processes
in which this type of data can be found are hospitals, following all the activities
within the whole treatment path of a patient, such as the transition from booking
to visit and final control with the doctor, or the management of a ticketing service
considering information as open, in progress, pending or closed, or even more, as
in the case of this project, a sequence of jobs concerning ETL operations running
on a computer system.
In literature, three main types of analysis that can be applied to event logs are
defined:

• Discovering: These techniques are used to build a model exploiting only the
data logs. The result is typically a model in the form of a Petri net, as in
the case of the α − algorithm. Petri nets are a particular type of oriented
graph, composed of places, transitions and arches, used to represent a discrete
distributed system. Once the output is ready, it can be used to retrieve useful
insights.

5

Process Monitoring

• Conformance: The goal of this type of process mining is to compare an event
log to another of the same type or to an existing model in order to check the
differences and reveal the presence of unusual behaviours or deviations with
respect to the sequence of reference. This approach can be exploited in many
applications, for example to build a complex rule based system.

• Enhancement: The last group of techniques includes a set of tools to improve
and modify the extracted model, extending it with new event logs and find-
ing, as instance, bottlenecks, correlations or performance indicators to make
predictions. An example of enhancement is the repairing, that is the update
of a model to better suit existing logs.

Figure 2.1: Petri Net example 1

This thesis will elaborate deeper the last category, enhancement, and in particular
the subfield known in literature as predictive process monitoring, concerned about
forecasting and predictions on the ongoing cases. The modeling component is
therefore lost to the benefit of the individual instances, on which analysis and
statistics can be made. Thanks to Deep Learning, in addition to the classical
machine learning techniques, this field has gained a lot of attention in the last
years, and many challenges as well as many different approaches have been studied.

Besides the remaining time prediction, which will be discussed in more detail
shortly, the most common problems that predictive process monitoring tries to
solve [3] are all related to some aspects of a partial trace. The prediction of
next activity of a running case, when the order of the events is not fixed and
there exist different paths with different outcomes, can certainly be an interesting
task, especially in cases where there are complex systems such as logistics or the
management of a ticketing system. A variant of this last task is the prediction of
the entire suffix of the case, but it is a more advanced problem and good results
are difficult to be obtained. In the same way, the next timestamp prediction, that
is the ending time of the following activity, can be crucial in a system strongly

1Source: https://upload.wikimedia.org/wikipedia/commons/f/fe/Detailed_petri_net.png

6

Process Monitoring

based on timing optimization and is widely studied in literature. Even more, it is
also possible to define a classification problem regarding the outcome of a trace
based on the sequence of the logs, for example accepted or rejected in the case of
an online request. In general, the goal is to identify the processes which create
problems and slowdowns and which can also become expensive to maintain.

A further problem lies in the fact that, since the prediction must be done on-
line and give results in the shortest possible time, the model must be ready and
fast in the inference and able to analyze even large amounts of logs in a short time
to reduce risks. A static analysis, based only on historical data, would not be
sufficient and would not allow humans to intervene promptly.

2.2 Remaining time prediction
When dealing with processes in a dynamic system, it is essential to be able to
accurately estimate at what time of day the results will be available. A generic
prediction based solely on past day averages, as instance providing only a range of
the typical execution time, is usually not accurate enough. On the contrary, it is
necessary to take into consideration many variables: On the one hand, there is the
sequence of events, which gives a clear indication of how a process is taking place.
On the other hand, the attributes of the case and features previously mentioned,
which cannot be ignored, also play an important role.

Let ei = (ci, ai, ti, vi) be an event and consider an operator π that extract an
element of the tuple in a specific event: As instance πa(ei) = ai πc(ei) = ci and so
on. Given a trace σ =< e1, ..., en >, the total execution of the case would be the
difference between the last recorded timestamp, and the timestamp associated to
the first event. Formally: et(σ) = πt(en)− πt(e1).

Figure 2.2: Scheme of training and inference phases2

7

Process Monitoring

Definition 4 (Head and Tail) Given a trace σ, the head operator of length k
hdk(σ) is defined as the sequence of the first k events of the trace such that
hdk(σ) =< e1, ..., ek >. The tail operator tailk(σ) defines the last k events in
the trace: tailk(σ) =< en−k+1, ..., en >

We can now consider a partial trace, that is a trace that has started but is not
ended yet e∗ =< e1, ..., ek >. Our goal will be to predict the remaining time of the
case, that is the difference between the timestamp of the event ek and the one of
the unknown event en.

Definition 5 (Remaining time of a running case) Given a trace σ, the remaining
time of a running case is the difference between the the execution time of the
complete trace and the time that has passed since the first event. et(σ)−et(hdk(σ)) =
et(tailn−k(σ)).

This information has a high value for a twofold reason. On one hand, it allows the
customer to know how much he should still wait, on the other hand, managers and
engineers can look for delays or unexpected behaviors and try to react in time in
order to avoid low performances of their systems. Note that we are not interested
in predicting what the next activity will be, but only measuring the time until the
final completion.

Figure 2.3: Remaining time prediction [4]

There exist various traditional methods to generate predictions, for example the
ones based on Petri Nets or annotated transition systems and extraction of explicit

2©Process Mining, Data Science in action. Wil van der Aalst 2011,2016

8

Process Monitoring

models for the logs. However, the remaining time prediction task can be defined
as a regression problem, hence a supervised learning task, having a well defined
target variable. The results, as a consequence, are evaluated through well known
metrics like Mean Absolute Error and Mean Squared Error. Considering the natural
sequential structure of traces, the use of neural networks is worth investigating.
Natural Language Processing, in particular, makes heavy use of recurrent neural
networks, such as long-short term memory networks, but also new transformer-
based architectures are also receiving a lot of attention in recent times. In the next
section, some of the papers published in recent years will be illustrated in depth.

2.3 Related Works
Several authors tried to address the problem of remaining time prediction. One
of the first contributions is from Wil Van der Aalst et al.[5]. This paper from
2008 shows how to make a prediction using a non-parametric regression, taking
into account the duration of all the activities within a case together with other
case-related data. Differently, Polato et al. in [4] proposed an explicit model for
the process given by a transition system based on log abstractions. The prediction
is computed joining a regression model combined with the likelihood of the next
events given the data until a certain moment. Updates to overcome the limitation
of transition systems are presented in [6] and [7].

Interestingly, Guo et al in [8] analyzed jobs logs for a HPC (high performance
computing) system using standard machine learning algorithms such as random
forest and boosting techniques, with a particular focus on the prediction of jobs
whose duration has been underestimated and which will then be terminated auto-
matically by the machine. A similar approach was followed by Di Francescomarino
and Senderovich in [9], which also made use of inter-case features. Their intuition
was mainly based on the fact that cases run concurrently and are not independent.
As a consequence, they introduce additional features such as the case type, in
order to categorize cases with similar behaviors, and the number of cases currently
running in parallel.

The great breakthrough in the state of the art came with the introduction of
deep learning techniques. Inspired by successes achieved in the fields of time series
analysis and computer vision, recurrent neural networks have seen their popularity
grow rapidly to establish themselves as the new standard for predictive monitoring.
The following papers have made experiments on the BPI challenge dataset, a set
of real life log form different domains used to test process mining and machine
learning approaches for time based and event based predictions.

9

Process Monitoring

Among the different alternatives, remarkable is the work of Tax [10], which ex-
ploited LSTM not only for the remaining time prediction but also for suffix and
next activity prediction through a multi-layer multi-task architecture. Similarly,
the model proposed by Camargo et al in [11] is trained to predict the execution
time of each event separately and then joins them together to predict the total
remaining time. Although the results obtained with this procedure are satisfactory,
they have a strong limitation with cases that have repeated attributes and seem to
be worse than those obtained by Navarin in [12]. The main difference between this
last paper and the previous ones is that the network is trained to directly predict
the remaining time of a case, thus avoiding accumulating errors at each step and
achieving a lower mean absolute error.

Considering the architecture used, in [13] have also been used the memory aug-
mented neural networks, which exploit an external memory unit to overcome the
limitations of LSTM and better remember long dependencies. Notwithstanding the
advantages, these networks are typically hard to train and slow. Other solutions
have been explored by Pasquadibisceglie in [14], that proposed a set of operations
to convert historical log to spatial data and threat them as images in order to make
predictions with a convolutional neural network. Taymouri et al. [15] adapted a
Generative Adversarial Networks with an encoder-decoder architecture to gener-
ate a sequence of events and related timestamps. Finally, Bukhsh et al. in [16]
developed a transformer, a purely attention based network, for remaining time
prediction and next activity prediction.

As far as the encoding of the variables is concerned, a machine learning algo-
rithm must be trained with a fixed-size input vector. There exist in literature
two main strategies. The first is the one-hot encoding, used in [12] and [13],
which consists in representing the feature as a binary vector of length equal to
the number of possible values for that feature. A possible alternative is a more
advanced entity embeddings[17], as proposed by [11], [18], [19], where categorical
attributes are mapped into an Euclidean space whose dimensionality becomes a new
hyperparameter of the model. The mapping can be learned with back propagation
together with the rest of the network, with the advantage of reducing memory use
and speeding up the training phase. Moreover, the learned embeddings have been
shown to be able to extract the semantic meaning of words, mapping attributes
that have a similar meaning close in the space.

The works mentioned above are also distinguished by how they manage the se-
quences: LSTM and RNN networks are conventionally trained with prefixed padded,
hence for each trace every possible set of prefixes is considered and the resulting

10

Process Monitoring

vector is padded with zeros when its length is shorter than the maximum possible
length of a case ([12], [16], [10], [13]). [20] proposed instead a timed state encoding
that represents the inner state of an existing model, like a Petri Net, after being
applied to a partial trace. [18], in alternative, takes into account only a single
event at time, obtaining a simpler architecture but losing the dependencies within
a case. Another encoding commonly used in language processing and adapted in
this context in [21] consists in treating the event logs as if they were text and using
a sliding window to extract events even from different cases. This allows for a
faster training but long dependencies are not properly recognized.

11

Chapter 3

Machine Learning
Algorithms

This chapter will provide the main theoretical background behind the use of some
popular machine learning algorithms. Starting from tree based methods, we will
then move on to the deepening of recurrent neural networks. Finally, transfomers
will be introduced.

3.1 Tree based algorithms

3.1.1 Random Forest
Random forest is a simple supervised learning algorithm commonly used for both
classification and regression tasks. The procedure, proposed for the first time by
Ho in 1995 [25], was then formalized in the paper [26] written by Breiman. The
algorithm is based on a ensemble of decision trees, trained with the bagging, or
bootstrap aggregation, technique.
Decision trees model a set of sequential and hierarchical decision rules so that
the predictor space is divided in non-overlapping regions (boxes or rectangles). If
the relationship between dependent and independent variables is not linear, they
outperform methods as Linear Regression.

The main intuition behind bagging is that a learning method reduces its vari-
ance if the prediction is made taking the average of n different models trained
separately on different datasets. In fact, considering n independent observation of
a population, the variance of the sampling distribution is computed as σm = σ/n
where σ is the variance of the population. Since getting n different datasets is not
trivial, what is done in practice, instead, consists in generating B bootstrapped

12

Machine Learning Algorithms

datasets from the original one, using a resampling with replacement strategy. A
rule of thumb is taking 2

3 of data, leaving out the remaining part. The final result
can be computed taking the average of the B models as follows:

f(x) = 1
B

BØ
i=1

fi(x) (3.1)

The remaining 1
3 of data that is not used to train a specific tree is commonly defined

as out-of-bag. These data can be used to make an estimate of the error: For each
sample, we can compute the response of each tree for which that sample has not
been used yet and average them. This would be a good estimate and would likely
replace the use of a validation set or a more expensive cross validation.

In order to obtain a good reduction of the variance, it is also needed to avoid high
correlation between trees: when a split in a certain tree is considered, only few of
the predictors are taken into account. In other words, if there exist m predictors,
at each split p of them are randomly chosen, typically

√
m. With this simple trick,

the trees become different from each other and, as a consequence, the performances
are improved.

Another advantage of tree-based algorithms, in addition to their easiness of use, is
the interpretability: in fact, it is trivial to directly extract the rules to partition
the space (if the tree is not too deep). Features that are near the root of the tree
are the ones that contribute most to the division of the dataset. On the other
hand, an ensemble of trees sacrifices part of the interpretability for better accuracy.
However, it is still possible to obtain a global estimate of the importance of the
features for the regression (or classification) task computing for each predictor the
corresponding decreasing of residual sum of squares (RSS) averaged over every tree
in the forest according to the following formula:

RSS =
JØ
j=1

Ø
i∈Rj

yi − ŷj (3.2)

where the Ri are the high-dimensional rectangles in the feature space and ŷj is the
mean response of the i-th rectangle.

13

Machine Learning Algorithms

Figure 3.1: Decision boundaries of a decision tree

Despite its simplicity, the random forest, thanks to its ability to be robust with
respect to outliers and the risk of overfitting, is widely used in practice. However,
due to the slowness of the training phase and the difficulty of exploiting it with
linear data, it is not suitable to be used in every case.

3.1.2 Boosting
A worthy of notice alternative to bagging is boosting. This second approach,
however, is not based on the training of a certain number of independent decision
trees with bootstrapped datasets. On the contrary, trees are fitted sequentially
so that each tree learns from the mistakes of the previous ones, improving their
performances where they do not achieve good results.

The trees resulting from this process typically have low complexity and a lim-
ited number of nodes. The training phase is therefore rather slow but the results
obtained are often better than those of a random forest.
The training algorithm of a tree based model that exploits boosting is composed
as follows:

1. Initialize f̂(x) = 0 and ri = yi ∀i ∈ Training-Set

2. Set B as the number of the trees

3. For b in range (0,B):

(a) train a tree fb with d splits on the dataset using r as response

(b) Compute: ˆf(x) = ˆf(x) + λfb(x)
(c) Compute the new residuals: ri = ri − λfb(x)

4. The final model is given by qB
b=1 λfb(x)

Is easy to notice that residuals are used as response instead of the labels (or
outcomes) yi of the dataset. The result is again an ensemble model but the function

14

Machine Learning Algorithms

is built gradually with small updates.

Wrapping up, the main hyperparameters that must be tuned are:

• The number of trees B. Compared to random forests, boosted models are more
prone to overfitting and therefore it is a crucial parameter

• The number of splits in a tree d, that controls their complexity shapes. It is
not uncommon to set it to 1. In this way the fb only takes into account a
single variable (stump).

• The shrinkage parameter λ, that controls the learning rate of the model: if it
is set too small the training would be slower and would require an higher B, if
it is set too big the model would fit faster but the generalization error will be
higher.

3.1.3 XGBoost
A boosting application that has met with considerable success and excellent results
is eXtreme Gradient Boosting [27], known in literature as XGBoost. The authors
proposed a solution that is able to scale to billions of samples thanks to several
optimizations that make it extremely efficient and also suitable to be used in
parallel on multiple machines to greatly speed up the training.
The algorithm solves an optimization problem minimizing:

ζ(φ) =
Ø
i

l(yi, ŷi) +
Ø
k

Ω(fk)

where Ω(f) = γT + 1
2λ||ω2||

(3.3)

This object represents the objective function of the problem. The term l is the
considered loss function that measures the ’distance’ between the predicted value
and the observed value. Ω is an additional regularization term that depends on T ,
the number of leaves in a tree, and the leaf weights (output) ω .
Reminding that a boosting model is trained incrementally, at each step the pre-
diction is updated with the contribution of one additional tree. The equation
becomes:

ζ(t) =
nØ
i=1

l(yi, ŷt−1
i + ft(xi)) + Ω(ft) (3.4)

In other words, at each step t, it is added the ft that most improve the model
according to a greedy approach. In order to exploit optimization techniques in

15

Machine Learning Algorithms

euclidean space, it is necessary to transform the objective function: with a Taylor
expansion to the second order, f can be approximated to a simpler linear form.

ζ(t) ≈
nØ
i=1

[l(yi, ŷt−1
i) + gift(xi) + 1

2hif
2
t (xi)] + Ω(ft) (3.5)

Where gi and hi are the first and second derivative of the loss respectively. By
removing the constant term we finally obtain the simplified objective function, that
will be the new starting point:

ζ̃(t) =
nØ
i=1

[gift(xi) + 1
2hif

2
t (xi)] + Ω(ft) (3.6)

The last object can be rewritten expanding Ω and computing the products. Defining
Ij = {i : q(xi) = j}, it becomes:

ζ̃(t) =
TØ
j=1

[(
Ø
i∈Ij

gi)wj + 1
2(

Ø
i∈Ij

hi + λ)w2
j] + γT (3.7)

Finally, by computing the fist derivative, it is possible to obtaining the optimal
weight for the leaf j with:

w∗
j = −

q
i∈Ij giq

i∈Ij hi + λ
(3.8)

And by replacing it in (3.6) we can obtain the optimal value for tree q:

ζ̃(t)(q) = −1
2

TØ
j=1

(q
i∈Ij gi)2q

i∈Ij hi + λ
+ γT (3.9)

The formally derived formula cannot be used easily in practice since it is not
possible to obtain all possible trees. Instead, the best split candidates are derived
with:

ζsplit = 1
2

C
(q

i∈IL gi)2q
i∈IL hi + λ

+ (q
i∈IR gi)2q

i∈Ir hi + λ
− (q

i∈I gi)2q
i∈I hi + λ

D
− γ (3.10)

Where Il and Ir are the left and right nodes after the split and I = Il
t

Ir. This
means that the procedure is iterative and it only considers one node ad time, adding
greedily a new branch.

As before, in addition to the split finding algorithm, XGBoost also takes advan-
tage of several methods to reduce overfitting: Shrinkage and feature subsampling
(similarly to random forest).

16

Machine Learning Algorithms

We can now consider a setting where data is too big to be fitted into mem-
ory, or it is distributed. In these cases, the proposed algorithm cannot be proposed
as it is and an approximated version of the procedure must be exploited. In fact,
instead of testing every single threshold, data can be divided in quantiles that may
be used as candidates. In practise, in order to make it scalable and distributed, it is
exploited an algorithm called Quantile Sketch, which is able to merge data coming
from different sources to build an approximate histogram over which calculate
the quantiles. More formally, we can define a rank function r that measure the
proportion of samples whose feature k has value below a threshold.

rk(z) =
q

(x,h)∈Dk,x<z hq
(x,h)∈Dk h

(3.11)

The goal is to find splits {sk1, ..., skl} that satisfy the following property:

|rk(skj)− rk(sk,j+1)| < Ô and sk1 = mini(xk), skl = maxi(xk) (3.12)

Finally, the last optimizations implemented are a Sparsity-aware split finding, which
makes the algorithm choose the best default path for missing data depending on
the loss of the training data, and a compression-decompression method to reduce
the usage of the hard drive and maximize the use of cache.

In conclusion, XGBoost has proven to be one of the best machine learning algo-
rithms for structured data, both in terms of accuracy, training time and scalability.
However, it lost to neural networks in tasks like time series forecasting, not excelling
in managing long sequence dependencies or spotting trends.

3.2 Recurrent Neural Networks
Among the most interesting problems that can be solved through the use of machine
learning are those using sequential data. Classical examples are speech recognition,
time series analysis, natural language processing or video processing. Traditional
neural networks architectures are not able to handle sequential data well, since
they cannot model long sequences dependencies but instead treat each sample
independently. Feedforward neural networks are then called stateless. At this point,
it becomes necessary to use a new architecture that allows information to persist
over time: Recurrent Neural Network (RNN).

The intuition is that the network has an internal state that is updated at each
time step through a parameterized function of the old state and the current input:
ht = fW (ht−1, xt).

17

Machine Learning Algorithms

During the training process the weights W are learned through backpropagation.
It is important to notice that the same matrix is used at every time step.

Figure 3.2: Basic structure of a recurrent neural network

A straightforward way to implement this behaviour is to use two separate weight
matrices for the input xt and for the state ht−1 and then apply a nonlinearity to
the sum of the two contributions.

ht = tanh(W T
hhht−1 + W T

xhxt) (3.13)
The output vector instead, is again computed from the new resulted state:

ôt = W T
htht (3.14)

Internally an RNN can be represented as a sequence of cells, each producing an
output and passing a message to the next cell based on the internal state. The
final loss is then the sum of the loss of the single cells.

Figure 3.3: Enrolled graph of a RNN

However, in order to minimize the loss, errors are back propagated at each indi-
vidual time step and across all the time steps to the beginning of the sequence.

18

Machine Learning Algorithms

Remembering that the cell update results from a non linearity and a matrix multi-
plication, the gradient computation requires many repeated derivatives [28]. For
instance:

L =
TØ
t=1

l(yt, ot)

∂L

∂W
=

TØ
t=1

∂l(yt, ot)
∂W

=
TØ
t=1

∂l(yt, ot)
∂ot

∂ot
∂ht

∂ht
∂W

While the first two terms can be easy to compute, the third one can be trickier,
since ht depends on W and ht−1.

∂ht
∂W

= fW (ht−1, xt)
∂W

+ fW (ht−1, xt)
∂ht−1

∂ht−1

∂W

The final result comes from the aggregation of the gradients of the whole sequence
with respect to the weight matrix.
At this point, two bad scenarios can happen:

• Exploding gradients: the involved values become too large and impossible
to be optimized. Large errors lead to large updates and less stable, or not
convergent, models

• Vanishing gradients: the values get smaller and smaller, losing the contribution
of the first states and making the training extremely difficult.

These issues could be partially solved using different activation functions, for
instance ReLU, and parameter initialization. Moreover, new architectures with
more complex recurrent units have been proposed.

3.2.1 Long Short-Term Memory Networks
Proposed by Hochreiter and Schmidhuber in 1997, nowadays LSTM networks[29]
are widely used in many applications. The key building block of LSTM is a structure
called gate. Gates enable the network to better control information in within its
cell, selectively adding or removing it when needed. Each gate is composed by a
layer (e.g sigmoid or tanh) and a point-wise multiplication.
The computations of each unit are typically divided in four steps:

1. Forget: Decide what is the relevant information and remove what is not worth
to be remembered through a sigmoid function, that puts to zero what is
forgettable.

19

Machine Learning Algorithms

2. Input: Select the relevant part of new information that will be stored into the
new cell state.

3. Update: Modify the internal state using both the relevant parts of current
information and current input

4. Output: select which part of the information should be sent to the next cell
and exposed to the outside.

The computations performed by the gates are reported below. At each time step
there are two states, the hidden state ht, similar to what the vanilla RNN does,
and the cell state ct. Only the first is exposed, while the other is kept hidden and
only flows from one cell to the next one.

f = σ(Wf · [xt, ht−1] + bf) (3.15)

i = σ(Wi · [xt, ht−1] + bi) (3.16)

o = σ(Wo · [xt, ht−1] + bo) (3.17)

g = tanh(Wi · [xt, ht−1] + bi) (3.18)

ct = f ¤ ct−1 + i¤ g (3.19)

ht = o¤ tanh(ct) (3.20)

In simpler words, the gates are used to compute the new states ht and ct. Inter-
estingly, ct is the results of two contribution, the previous ct−1, multiplied by the
forget gate, and the new input, correctly filtered by the other two gates. It can be
noticed that two different types of nonlinearity are exploited. The sigmoid shrinks
the input between 0 and 1. This is useful since the information that is not useful
can be simply put to zero. The tanh, instead, lies between -1 and 1 and is used
to compute ht. Therefore, ct−1 is multiplied by a number between 0 and 1 and is
increased or decreased by one in the most extreme cases.

20

Machine Learning Algorithms

Figure 3.4: LSTM’s cell structure 1

The most important property of LSTM is that cell states can flow through the
network without being interrupted: cell states and output are independent making
the training with backpropagation through time more efficient with respect to
vanilla RNN and solving the vanishing gradient issue.

The main reasons for these improvements are that, on one hand, there is an
element-wise multiplication between ct−1 and f , that works way better than a full
matrix multiplication. Also, the forget state can vary at each time-step instead
of having multiplication with the same matrix over and over again, allowing for
better numerical properties. The second reason is that the tanh used of computing
the output, only multiplies ht. During the backward pass the gradients do not flow
through the non linearity at each time step but only once.

During the years, many variants of this type of network have been developed.
For instance, GRU and LSTMs with Attention.

3.2.2 Gradient Recurrent Unit
With respect to LSTM cells, GRU [30] cells are simpler and do not have a separate
memory cell. Therefore, they allow to generalize better with few examples and

1Source: colah.github.io/posts/2015-08-Understanding-LSTMs

21

Machine Learning Algorithms

are computationally more efficient, without the need of learning extra gates. Also,
GRUs expose the full hidden state without an output gate and only have two gates:

• The reset gate, that selects the proportion of past information that will be
forgotten.

• The update gate, which has a similar behaviour of LSTM’s forget and input
gate.

u = σ(Wu · [xt, ht−1] + bu) (3.21)

r = σ(Wr · [xt, ht−1] + br) (3.22)

hÍ
t = tanh(Wh · [xt, ht−1 ¤ r] + bh) (3.23)

ht = ht−1 ¤ ut + (1− ut)¤ hÍ
t (3.24)

In terms of formulas, first the results of update and reset gate are computed
similarly as before. Then, the state is updated at the new time step partially taking
information from the past state and the current one, through the use of the update
gate.

3.3 Transformers
Introduced as an alternative to RNN, transformer is an architecture widely used in
natural language processing. In Attention is all you need[31] the authors developed
a novel method for the sequence to sequence task (a neural network that transforms
a sequence into another one, for instance translation) purely based on the attention
mechanism. Transformers have provided improvements in many different tasks and
in managing long data sequences way better and more efficiently than LSTM.
The major limitations of recurrent neural networks which transformers try to solve
are:

• No parallelization is possible and critical use of memory

• Difficult to learn very long dependencies

• Very hard to train, a large number of parameters to learn, and slow computa-
tions

22

Machine Learning Algorithms

Figure 3.5: Transfomer architecture [31]

The self attention mechanism is a process that encodes a sequence X = (x1, ...xn)
into another sequence Y = (y1, ..., yn). The elements of the resulting sequence yi
contains both the contributions of the original information xi and the relationships
that xi has with the other elements. It is computed as a simple weighted sum.

yi =
Ø
j

wijxj

23

Machine Learning Algorithms

wij is derived by the input itself through a softmax operation and is not a parameter
of the model, so it is not learned by backpropagation.

wij = exp(xTi xj)q
j exp(xTi xj)

Hence, for a given input it is computed a weight for each other vector, including
itself. In terms of matrices the operations can be rewritten a follows.

W = softmax(XTX)

Y T = WXT

The second one is fundamentally a linear operation, which means non vanishing
gradients with the last matrix multiplication. The first part instead, takes into
account a non linearity and potentially vanishing gradients. The main advantage is
that with self attention there is no problem at looking far into the sequence since
all the inputs are used to compute the output at the same time and the sequential
structure, that is present in recurrent neural networks is lost so far. Thinking the
vectors as sequences of words, the intuition is that each word is dependent on each
other and we are trying to understand how much attention a word xi should pay
with respect to itself and all the other ones in the set. This is a big advantage over
bag of words, which considers the words independently.

To make the mechanism more flexible and powerful, the dot product can be
replaced with a scaled version with the input dimension to keep the weights in a
certain range, that otherwise will increase, and avoid vanishing gradients:

wÍ
ij = xTi xj√

k

Another important point that should be noticed is that every vector appears in
three different positions: First in the weighted sum for output computation, then
in the weights computation matched with all the other vectors and finally as a
match in the exponential. These are respectively called Value, Query and Key. It
works like a (soft) dictionary where keys are mapped to values and can be retrieved
through queries, but every key matches the query partially.
Therefore, three new matrices can be introduced for the linear transformations and
the resulting values will replace the xi in the previous passages.

ki = Kxi + bk

qi = Qxi + bq

vi = V xi + bv

24

Machine Learning Algorithms

In this way, with backpropagation, we can now also train these parameters in or
The final step is the introduction of multi-head attention. The idea is that different
words relate to each others with different relationships. For instance, in the phrase
’The food was not good’, the words ’good’ and ’not’ have a relationship of inversion,
while ’good’ and ’food’ have a relationship of property, in the sense that ’good’ is
an attribute of ’food’.
As a consequence the self attention layer can be separated in several parallel layers,
that take as input a different projection in a lower dimensionality of the original
sequence, and concatenate the output in a second moment.

Self-attention has proved to be extremely efficient, due to the simple structure
and simple operations that are carried out. In addition, it allows for parallel
computation, since the lost of the sequential structure and statelessness, and have
a major advantage in an almost perfect long-term memory.

Figure 3.6: Self-Attention and Multi-Head Attention [31]

A transformer is defined as a model that used self-attention to propagate infor-
mation along the time dimension. The original structure is mainly composed by
two parts. The encoder takes an input sequence and maps it into a continuous
representation, next the decoder takes the extracted information and generates a
single output step by step.
The first step is passing the input to an embedding layer, that learns a vector
representation for each word. Since these models have no recurrence, with the
positional encoding the embeddings are expanded with also the information about
the position of each word in the input. This is done by exploiting the sine and
cosine functions for odd and even time steps respectively. According to the authors

25

Machine Learning Algorithms

[30], this representation allows the network to easily learn relative positions due
to their linearity properties. Being also periodic functions, they benefit from not
having to know in advance the length of the sequence. The positions are then
added to the output of the embedding layer.

PE(pos, 2i) = sin(pos

10000
2i

dmodel

)

PE(pos, 2i + 1) = cos(pos

10000
2i

dmodel

)

The encoder is made of two sub modules, a multi-headed attention and a fully
connected network, which consists of two linear layers separated by a ReLU
activation. There are also residual connections to help the gradients to flow directly
through the network. The decoder, instead, is auto-regressive and takes as input
not only the current words (the output of the encode) but also the previous output.
In order to prevent the network from learning from future words, in the first multi
head attention module of the decoder it is also used a mask to avoid computing
attention scores for subsequent tokens. This is done by replacing the true value
with negative infinity, which the softmax activation will automatically put to zero.

W Í
ij ← −∞ if j > i

In the second multi head attention, the encoders output are used as queries and
keys, while the values are the output of the previous layer. Finally, a linear layer
works as a classifier and its size is the same of the dictionary. The predictions goes
on until an end token is generated.

As far as the activation functions are concerned, LSTM networks suffered from
an overuse of tanh and sigmoid functions. The main disadvantage of these non-
linearities is that they have an upper bound. Here instead is used a ReLU activation,
that allows the values to scale off to infinity since it does not saturate and is less
sensitive to random initialization. Wrapping up, Transformers are very efficient
and can be trained quickly even with a huge amount of data, thanks to the boost
given by parallelization. Moreover, they can be finetuned and reused for new tasks,
while for recurrent neural networks transfer learning it is not easily doable.

26

Chapter 4

Dataset

The study has been carried out in collaboration with the company, which manages
the database of an important firm in the automotive sector. For the purpose of
this thesis, event log data related to processes scheduled on a machine were used.
These processes are formally called chains. A chain is a sequence of sub-processes
that define a single flow of an ETL process. Each sub-process can be a bash script,
a python module, or any PL/SQL procedure. Sub-processes are build to run in
parallel or as a sequence. The log table stores the information of all the scheduled
jobs which can be exploited to make predictions and analyzes. Its structure is
shown in the table below.

Name Description

catena_id Unique identifier of the process

cd_job_catena_id Corresponding name of the chain

cd_parent_job_id Name of the sub-job within the chain

cd_lob_name_id Activity done by the sub-job

source Source Table

destination Destination Table

nm_rows Amount of data that is being processed

ds_status Current status of the job

dt_mod Timestamp associated to the entry

Table 4.1: Features of the process log table

27

Dataset

A second dataset, concerning the scheduling of the processes, was provided. Each
scheduling associates a calendar and a starting time to a chain.

Name Description

scheduling_code Unique identifier of the scheduling

calendar Schedule days

early time Schedule start time

description Description of the scheduling in italian

command Command launched on terminal

Table 4.2: Features of the scheduling table

As we will see later, the early time is not necessarily corresponding to the actual
start of the chain. Instead, it is the minimum time from which the chain can start.
The effective starting hour relies on file availability and on the end time of the
chains on which it depends.
The chains can be divided into six categories according to their calendar (figure
4.8):

• Hourly: Very frequent chains that are scheduled more than once a day.

• Daily: Chains that are scheduled exactly once a day.

• Weekly: Chains scheduled only in one day of the week.

• Monthly: Chains that run once a month, typically the first or the fifth day of
the month or the first working day of the month.

• Occasional: Chains that run on some specific days, as instance 2020-08-02.

• Manual: Chains that are not scheduled and are manually launched by the
engineers when needed.

The two tables are not easily associable. The join key can be extracted from the
command column of the scheduling table, in cases where it is set with ’launch main
<chain-name>’

Finally, each chain is associated to a set of dependencies such as the presence
of files in the corresponding folder or the termination of one or more previous

28

Dataset

chains. Hence, while some chains have no predecessors, others cannot start if their
requirements are not met. In that cases, the true starting time of a chain will suffer
a delay due to the slowdowns of the processes that occur during the day.

Figure 4.1: Example of a chain with three dependencies

The analyzed dataset is initially composed of 4 million rows with historical logs
from January to April 2021.
For the purposes of this thesis and as a reference to what is illustrated in Chapter
2, the individual chains will be considered as the cases of the event log, while the
jobs will be the events of the trace.

Figure 4.2: Data loading procedure into the corresponding tables

29

Dataset

4.1 Data Cleaning
The quality of the data is crucial for any machine learning algorithm and it is
important to detect issues and correct them in order to have a cleaner dataset,
which means to respect the criteria of Validity, Completeness, Consistency and Uni-
formity. The dialogue and confrontation with the domain experts was fundamental
to understand how the data was collected and what problems occurred during the
acquisition.

The first problem is related to duplicate values. These can occur due to hu-
man errors or bugs in loading data. According to the assumption made before, the
attribute catena_id is a unique identifier of a chain. In other words, there cannot
be two chains having the same id. The presence of duplicates can have an impact
on the performances of the models, due to the bias towards specific observations
and a lower generalization capacity and, as a consequence, they have been removed.

Another key point for data quality is the presence of missing values. Null values
in the database are often related to manual operations, tests, or routine processes
that are not part of this analysis. In particular, for the process logs the following
operations have been applied:

• The entries with negative or missing catena_id have been filtered out.

• The attribute cd_parent_job_id has null values only in the first and last event
of the chain, or when the chain ends due to an error. Since this information is
relevant, the missing values have been replaced with simple placeholders

• The column nm_rows has been set to 0 when null, this is reasonable since
some processes could run even if there is no data to be processed.

• Finally, ds_status is often null, except in some cases where it is set as ’ERR’
or ’WAR’. Consequently, this column will be replaced by a counter of warnings
and errors within a case.

For last, there are cases of chains that have unusual behaviors: on one hand, there
are two chains whose execution time (the difference between the last timestamp and
the first one) is always zero. These chains have been removed since their resolution
is immediate and there is no need of forecasting them.
An additional constraint that must be satisfied is that chains cannot last more than
24 hours. In the dataset, there are few entries whose execution time is incredibly
large and which are worth investigating. After a confrontation with the domain
experts, it has been discovered that once a chain ends with an error, it is restarted
manually with the same id. Hence, in the calculation of the total running time the

30

Dataset

restart time must be subtracted, since it cannot be predicted in any way. This does
not solve all the problems, as there are still few cases that run for more than a day
without errors but, instead, they remain on hold without finishing. The latter were
considered outliers and had been removed.

Outliers removal is a crucial step in data processing. Outliers are extreme data that
deviate from the other observations. They can be generated by novelties in the data
but also by experimental errors or human mistakes. There exist many methods to
detect outliers, besides the more standard as Z-score and Inter-quantile range, a
more advanced method is isolation forest[32], an unsupervised tree-based algorithm.
The main idea behind is that outliers should be easier to separate from the rest of
the samples. As a consequence, if data is split according to some randomly chosen
decision rules through a set of trees, in this case called isolation trees, they will
be closer to the root with respect to the other points that will have a longer path.
Formally, at each point is assigned an anomaly score, and it is marked as outlier if
the score is larger than a threshold, typically close to one:

s(x, m) = 2−E(h(x))
c(m) (4.1)

Where h(x) is the path length and c(m) is a normalization factor corresponding to
an estimated mean of h given m samples, computed as a failed search in a binary
research tree.

4.2 Exploratory Data Analysis
A fascinating insight about the behaviour of the chains may come from the correla-
tion analysis. In statistics, the measure of interest can be computed through the
Pearson correlation coefficient, defined as the ratio between the covariance of the
two variables and the product of the standard deviations. The result is a number
between negative one, which means negative correlation, and one, that corresponds
to a positive correlation.

Cov(x, y) = 1
n− 1

nØ
i=1

(xi − x̄)(yi − ȳ) ρ = Cov(x, y)
SxSy

(4.2)

It is important to remark that correlation does not imply causation and, as a
consequence, the variables must not have a spurious relationship.
Nevertheless, in the case of the chains, it is reasonable to think that a pattern

31

Dataset

between the execution times in the same day may exist. As instance, we may think
that if a chain that runs in the morning takes longer to run with respect to the
usual, also its dependencies could be slower.

In order to compare two time series, the previous formula can be used to find a
linear relationship. However, instead of comparing the values directly, the returns
were used, i.e. the percentage changes with respect to the previous stage of the
chain. This intuition comes from the financial field, typically exploited to see how
the variation of a stock can influence the variation of a different one.

ρ = Cov(rx, ry)
SrxSry

(4.3)

A different way to compute a correlation index is through the Spearman, that aims
at describing the relationship between the variables using a monotonic function.
The main advantage is that non-linear relationships can be discovered as well. The
computation is similar but instead of using the raw values of the variables, they
are converted to ranks.

Figure 4.3: Trend comparison of two chains

The figure above shows the correlation of two chains in a twenty-days period. It is
easy to spot that the two trends have a similar behavior and reach their peaks in
the same day. Although they are not strictly linked by a relationship of causality,
it can be thought that in the days corresponding to the peaks other chains also
had a strong slowdown. Thus, there are also external factors that determine the
execution time and the hypothesis is that if the first processes of the day are slower,
the whole system will suffer.

It is therefore possible to seek to identify some reference chains whose trend

32

Dataset

can then be reproduced by the following chains and insert this information in the
forecasting model. In order to do this, we can compute the Pearson correlation
between all chains, as stated before, and look for the most significant ones.

Figure 4.4 reports the correlation matrix for about ninety selected daily chains.
Despite the premises, the results of the analysis show the absence of strong positive
and negative correlations between the chains. These are generally uncorrelated
with a few weak exceptions related to processes that often run concurrently without
adding information for the prediction. In the end, it was decided to consider the
chains independent of each other.

Figure 4.4: Correlation matrix

33

Dataset

Figure 4.5: Distribution of execution times

Figure 4.5 shows how the executions times are distributed among the chains. The
majority of the chains typically last less than an hour, so it becomes necessary to
have a good precision in the forecasting of the times. However, some important
chains have a lot of steps and can run even for longer times. The slower chains
could also have an influence on the whole performance of the system, since they
keep busy the machine for a long time. As stated before instead, very short chains
are not worth studying.

Figure 4.6 represents instead the weekly trend of the times. It is easy to no-
tice that while the durations are stationary during the working days, on the
weekends there is great growth with high variability. This is due to the fact that
on Saturdays and Sundays the processes, in addition to being less monitored, tend
to run later, often overloading the machine. On Mondays, on the other hand, a
much smaller number of chains are scheduled. Having the machine fewer processes
to carry out, it will be faster and more efficient.

34

Dataset

Figure 4.6: Mean and standard deviation of execution times during the week

Another interesting factor regarding the performances of the processes can be
observed in the figure below. In the period following the end of March, there
was in fact a dramatic improvement in execution times. The whole system has
been optimized and migrated to a new version and, as a consequence, all chains
have become more stable and shorter. As instance, it can be seen the changement
from February to April of the three chains in the graph, named chain1, chain2,
chain3, which are particularly relevant and are usually the ones that are most
closely monitored.

Figure 4.7: Performance before and after migration

However, given the great difference between the two versions, it is not possible to
compare the relative logs. It was therefore decided to use only the data from April
onwards for the training of the models, since otherwise the analysis would lose its
meaning. Moreover, even the prediction could benefit from it, having more stable
data and presumably a smaller amount of process failures.

35

Dataset

Figure 4.8: Number of chains for each category

Regarding the previously mentioned categorization of chains, it can be observed
that the majority of them are daily and are scheduled each day at the same hour.
Hourly chains instead are more sensitive to the time they are executed, since
depending on the moment they will concurrently run with a different number of
other chains. Many of the chains of this type are also dependent on themselves,
that is, they cannot start unless the previous instance has finished. The weekly
and monthly chains are more complicated to manage because of their rarity and it
is not possible to establish their behavior from the evidence of the data. Finally,
manual chains, as mentioned before, have been eliminated from the analysis as
they are too subject to human behavior.

Figure 4.9: Number of scheduled chains for each hour

36

Dataset

The last analyzed aspect of the processes is the timetable. As shown by figure
4.9, most of them typically run early in the morning, before or at the beginning
of the working day and with peaks at 03:00 and 05:00. The latters are the most
important since their delay would not allow the results to be available in a timely
manner. Likewise, since the machine experiences a higher workload at those times,
the chains are typically slower than they would be at other times of the day.

Once the dataset has been cleaned and analyzed, it is finally ready to be processed
in order to be ingested by machine learning models in the next phase of the pipeline.

37

Chapter 5

Proposed Approach

As stated in the previous chapters, the goal of the project is to build a model
able to predict the remaining time of running traces. To do this, two different
approaches will be compared: On the one hand, the recurrent neural networks,
in particular LSTM and GRU, will be tested, on the other hand, a model based
on the attention mechanism, a transformer, will be developed. The models will
be subsequently trained and tested using the previously described dataset, whose
pre-processing will be described shortly.

5.1 Performance Evaluation
A commonly used evaluation metric for continuous variables is the mean absolute
error (MAE). This metric measures the distance between each pair of observed and
predicted values, respectively xi and yi, and it is computed as an average of the
absolute errors:

MAE =
qn
i=1 |xi − yi|

n
(5.1)

Since it can be interpreted as an error measure, the lower its value the better it is.
Also, due to the use of the absolute value on the same scale of the data, it punishes
with the same scale big and small errors but is a simple and intuitive choice when
extreme prediction are not taken into account.

MSE =
qn
i=1(xi − yi)2

n
(5.2)

A possible alternative is the mean squared error (MSE), which weights heavier very
predictions far from the mean but bring less importance to small mistakes.

38

Proposed Approach

5.2 Preprocessing
In order to reproduce the real behaviour of the logs, the events and the cases have
been ordered according to their timestamps. At the test time, when a new log
arrives, it follows the preprocessing pipeline and is appended to the others. The
dataset have been split in different sets: 70% of data have been used for training,
about 20% for hyperparameter tuning and validation while the remaining part was
used for testing.

First of all, since each even may output more than one log, for each case-id
they have been grouped by the parent-job-id. Moreover, for each created row of
the dataset, thanks to the intuitions coming from the exploratory analysis, have
been extracted the following features :

• Day of the week: Categorical variable corresponding to the values from Monday
to Sunday

• Hour: Hour of the day corresponding at the ending of the subjob. While for
the daily chains may be more or less fixed, it is important to distinguish the
hourly ones.

• Execution Time: Computed as the difference max(date) - min(date), it is the
duration of the subjob within a case and gives an indication of the current
speed of the procedure.

• Errors: Counter of the errors occurred during the execution of the job and
extracted from the column status

The rows of the newly created dataset have been associated with the remaining
time value of the case, that worked as the target variable of the supervised learning
problem. In fact, for each extracted event, the difference between the end of the
case and the end of the job has been computed.
The main challenge related to the target variable concerned the chains which, due
to an occurred error, have been stuck for a certain period of time. The causes
of a possible error can be multiple, for example the loss of connection during the
process or a syntax error within the code. However, this type of interruption cannot
be predicted in advance. Furthermore, when a chain breaks it is usually fixed on
the spot and restarted. Given the impossibility of predicting how long a chain
will be blocked, the values of the remaining time have been purified during the
training phase, subtracting the difference between the error timestamp and the one
of the next log. This solution was accepted by the team, agreeing to predict the
actual remaining time without taking into account the time lost in restarting the
processes.

39

Proposed Approach

Given the natural sequential structure of the traces, it appears natural to model the
problem in a way that is manageable by a recurrent neural networks. In addition
to the attributes mentioned before, the other mandatory features are the name of
the chain and the name of the job associated to a specific event. In other words,
in order to obtain a fixed size vector these categorical variables must be encoded.
Although a solution such as a one hot encoding can come in handy, this leads to
major problems in terms of performance and memory space: in fact, having to
manage about a hundred chains and thousands of different jobs, would result in
having as many columns in the dataset almost all mapped to zero and an extremely
large and intractable sparse matrix would be obtained. It was therefore decided
to opt for a simpler integer encoding for the job name feature, while maintaining
the order relationship within a case. It is reasonable to think that large integers
values are correlated with a best-case remaining time, as they correspond to a more
advanced state of the chain.

Id Chain Job Weekday Hour ExecTime Err Remaining

21456 Orders Initialize Mon 16 0.20 0 60

21456 Orders Loading Mon 16 0.20 2 59.8

21456 Orders Transform Mon 16 10 0 49.8

21456 Orders Mapping Mon 16 20 0 39

21456 Orders Terminated Mon 17 00 0 0

..

21458 Cars Initialize Mon 18 15 0 80

21458 Cars Error Mon 18 0 0 65

Table 5.1: Data after preprocessing

Table 5.1 shows the structure of the dataset used for forecasting. In the real
time context, the logs will arrive from time to time according to the order of
conclusion of the sub-process. It is important to remember that each id is the
unique identifier of the instance of the Chain. In this sense, the id column is not
used for prediction, since otherwise it would lead to extreme overfitting, but only
to separate the vectors for a correct input. Another factor that must be noted is
that the lines corresponding to the termination of the processes have been removed,

40

Proposed Approach

i.e. those with target label 0, since it is out of the scope of the analysis to identify
the processes that have already terminated.

Since we expect the model to predict partial traces, the former must be extracted
from the dataset. Given a sequence of length n, from the corresponding trace
σ =< e1, ..., en >, all the prefixes have been taken into account: for each prefix
length 1 ≤ k ≤ n the subsequence hdk(σ) =< e1, ..., ek > can be derived and, as a
consequence, the whole set of partial traces is obtained. Let’s consider as instance
the trace < A, B, C >, where each element is a vector of the form presented in
table 5.1. Then, the extracted traces are < A >, < A, B >, < A, B, C >. Despite
some approaches only make use of some of the prefixes, like taking only the last
t elements, it has been chosen to include all of them, considered the complexity
of the problem and in addition to the ability to obtain a prediction even with
sequences of length one.

After the extraction, the sequences must be encoded into a fixed length vec-
tor. The chosen approach is the one known in literature as prefixes padded, that
consists in applying zero padding to the partial traces whose length is shorter that
a certain vector length. In this case, the final length of the vectors would be the
one of the longest trace in the training event log. Considering the beforementioned
example, with a maximum length equals to four, at this point we would have the
sequences < 0,0,0, A >, < 0,0, A, B >, < 0, A, B, C >. Once that all the cases have
been processed, the network can be finally trained using the remaining time as
target variable. However, one of the limitations of this approach that can hardly be
solved, lies in the possibility of having longer than expected sequences at test times.
Although this is a remote problem, it was decided, for these cases, to consider only
the last k events, obtaining a worsening of the performances that could only be
solved through a new training phase.

Cleaned Logs

Feature Extraction

Sequence Extraction

Sequence Padding

Figure 5.1: Overview of the procedure

41

Proposed Approach

In order to make distribution of the attributes homogeneous and comparable
between each others, the numerical features have finally been standardized:

xÍ
ij = xij − µj

σj
(5.3)

where µj and σj are the mean and the standard deviation of the jth attribute
respectively.

5.3 LSTM and GRU implementation

The proposed architecture ha been tested on the validation set with different
configuration. Among the considered hyperparameters, the number of layers,
the presence of batch normalization layer and the number of neurons for each
layer have been taken into account. Moreover, different experiments have been
with both Adam and Sgd optimizers with different learning rates. In particular,
the number of LSTM layers have been chosen between [1,2,3,4], learning rate =
[0.1,0.01,0.001,0.0001], neurons = [50,100,150,200]. The number of epochs for each
run has been fixed to 150 and mean absolute error as loss. At the end of the
procedure, the network performing the lowest MAE on the validation set has been
chosen. A similar process has been applied to a GRU network. At the end of
both model, a single output dense layer has been applied in order to retrieve the
prediction. The results are shown in the tables below.

Hyperparameter Value

Learning Rate 0.01

LSTM layers 3

Batch Normalization True

Neurons 200

Table 5.2: LSTM best configuration

42

Proposed Approach

Figure 5.2: LSTM model

Hyperparameter Value

Learning Rate 0.001

Gru layers 2

Batch Normalization False

Neurons 100

Table 5.3: GRU best configuration

It can be noticed that the GRU network is able to reach the best result with a
simpler architecture with respect to LSTM. Having a lower number of parameters
due to the simplified gates structure, it is also stabler and faster to train. This is
not surprising since GRU have proved to outperform LSTM in a variety of sequence
modeling tasks in terms of generalization [33]

43

Proposed Approach

5.4 Transfomer implementation

Recurrent neural networks are not always able to handle long and complex depen-
dencies such as the ones in the event log. In order to solve this issue, a transformer
architecture is proposed. Being this a regression problem and not a sequence-to-
sequence task, with respect to the original architecture, here there is no need to
have both the encoder and the decoder part. The input of the network is again a
partial trace following the same preprocessing as before, with the only difference
being the vector shape, due to the transformer statelessness.

The first step of the pipeline consists in embedding learning. Instead of hav-
ing one-hot encoding or integer encoding for the event names, they are projected
instead in a lower dimensional space. This tries to overcome two problems, on
the one hand it limits the use of memory compared to one-hot, on the other it
allows to map events that have a similar behavior in the vector space, improving
learning. The embeddings are subsequently added to the information derived
from the positions of the individual events within the vector, avoiding losing the
sequential structure of the logs.

At this point, the attention mechanism comes into play: Not all events are in fact
related to each other in the same way, it is therefore crucial to select only the most
important connections and to understand which events are to be attributed the
higher score to get a good prediction and manage even very long sequences. More-
over, with multi-head attention to capture even multiple types of representations
at the same time. With the same notation of chapter 4 the obtained results are
computed as

MultiHead(Q, K, V) = concatenate(Headi)Wo (5.4)

Headi = Attentioni(K, Q, V)

Where the matrix Wo is learned by backpropagation and the Headi are the output
of the single attention layers. The output is finally passed through dropout and feed
forward layers, with residual connections to have a better gradient flow. The final
part of the network is mainly composed again by linear layers with relu activation,
separated by dropouts layers to prevent overfitting, and preceded by a max pooling
to aggregate the extracted features. Figure 5.3 shows an high level structure of the
chosen architecture.

44

Proposed Approach

Figure 5.3: Transformer architecture used for process monitoring
45

Proposed Approach

The loss function used to train the network is the log-cosh. The main advantages
of this loss is given by the fact that for large values of x, log(cosh(x)) approaches
|x| − log(2), while for small values of of it, its can be approximated by exploiting
the Taylor series by x2

2 . The consequence is that it solves the problems of both
MAE and MSE loss problems: On one hand residuals that are big are minimized
with the absolute value, that is less sensitive to outliers, on the other smaller
residuals are minimized with the square function, making the learning more precise.
Moreover, the log-cosh is also twice differentiable, which makes its use beneficial
also for models like XGboost, due to the the use of second derivatives.

L(y, yp) =
Ø
i

log(cosh(ypi − yi)) (5.5)

Figure 5.4: Log-cosh loss function

Regarding the network implementation, it has been chosen to use an embedding
layer with 36 output units, as well as a positional encoding of the same size in
order to allow the summation between the two. The number of heads has been
fixed to 4, while the last linear layers have 32 and 128 units respectively. Inside the
transformer block, the feed forward is made of two consecutive linear layers, the
first with a Relu activation and the second with a linear activation. The dropout
rate is set to 0.1. Finally, a dense layer with single output unit and linear activation
has been applied to obtain the final prediction.

46

Proposed Approach

5.5 Framework overview

The trained machine learning model is then inserted into a broader context that
takes into consideration the behavior of the other chains scheduled on a certain
day to have both information on the remaining time of a process and a statistical
comparison on the trend of the previous days.
The goal is to report the presence of delays or advances with respect to the standard
case and predict the completion time of a chain that has not yet started.

In order to obtain a confidence interval for the population mean of each chain, the
execution times were considered to be distributed normally on the same day of
the week. Although it is not easy to test the normality of the data having few
samples, it can be stated that this property holds asymptotically for the central
limit theorem. To estimate the mean of a normal population with unknown variance
is often used the t student distribution. A t random variable is defined as the
ratio of two random variables, the first from a standard and the second chi square
distributed

tN−1 = Zñ
k

N−1

= X̄ − µñ
S2

N

(5.6)

where X̄ and S2 are the mean and variance unbiased estimators of the population
respectively, while N the sample size. It can be proven that k = (N−1)S2

σ2 follows a
χ2 distribution with N − 1 degrees of freedom.

Figure 5.5: Probability density function of Student’s t-distribution 1

47

Proposed Approach

It can be easily observed that the distribution is symmetric and has a shape similar
to the one of the gaussian. However, with respect to the former, the t distributions
has heavier tails. In fact, it allocates more probability to samples that can far from
the mean. The distribution is usually used to obtain confidence intervals for the
mean i.e a statistical approach that in contrast to the point estimate (that consists
in a single value) provides the range in which the parameter should be contained
with a certain level of confidence.

In this case we have chosen to provide a 90% confidence interval for each chain and
day of the week. The intuition is that for each chain, the distribution of execution
times is fixed for a certain day of the week. On the contrary, considering different
days together would result in less stable data and a poor accuracy, as showed in
the data exploration. Formally, the confidence interval is computed starting from a
two sided hypotesis testing:

P (−zα ≤ T ≤ zα) = 2F (zα)− 1 = α (5.7)

Where zα is the quantile q1−α
2
of the t student distribution. At this point, by

solving for the parameter of interest µ the range is obtained:

[X̄ − zα

ó
S2

N
, X̄ + zα

ó
S2

N
] (5.8)

This information, in addition to being easily interpretable even by non-technical
users, can help to report anomalous cases that occur during the day. In particular,
at the end of the process, it can be shown through an alerting mechanism if this
has had a very different timing than the average and that therefore interventions
must be carried out to optimize the procedures. The main reason is that the data
on the remaining time alone is not enough and adds little value to the analysis if it
is not compared to the other instances of the same chain. Conversely, combining
the prediction result with a well-constructed confidence interval can help monitor
the performance of the entire system. As instance, process that took two hours
and usually would have taken an hour and a half, must be notified quickly as it
will delay all other chains dependent on him.
When it comes to finished in advance chains, this is often a positive news since data
will be available on time. However, there may be cases of interrupted chains that
have ended up in error, manually interrupted or chains that have turned but have
skipped steps due to the presence of empty files on which to do etl and therefore
did not actually do any operation. The result is, as a consequence, a series of

1Source: https://upload.wikimedia.org/wikipedia/commons/4/41/Student_t_pdf.svg

48

Proposed Approach

processes with a very short duration which however do not bring any advantage
and can be misleading.

In order to provide a complete the prediction, the company needs also to have an
estimation of the remaining time until the completion of a chain starting from its
dependencies. In other words, the goal is to predict a process before its starting.
This task has a series of difficulties behind it, since it is not possible to make precise
predictions without available logs. Therefore, given the impossibility of predicting
malfunctions or slowdowns hours before their occurrence, it was decided to use the
machine learning model only for the processes in progress at a certain time.
At this point, once the prediction for a chain has been obtained, it is possible to add
the value obtained to the confidence interval of the subsequent processes, computed
as showed before, to obtain a final estimate (without counting the errors and
interruptions) according to the dependencies tree through a recursive procedure.
Using a second parallel model, for example a random forest, was a possibility taken
into consideration, but was subsequently excluded for two reasons: the lack of
correlated variables obtainable only from the logs (in addition to the day of the
week and an approximate starting time) and avoiding a more complex deployment
and further training which in any case would not bring great benefits.
In any case, the process tree can have a complex structure (figure 5.6) and does
not take into consideration human intervention, which can have different timing
depending on the situation, and file dependencies that cannot be modeled.

Another analysis that was discarded was to represent the course of the execu-
tion times of the individual chains as a time series. Although it may be interesting,
it was not possible to identify positive or negative trends during the analyzed
period. A common way to measure the predictability of a time series, proposed
by Diebold and Kilian [34], consists in the computation of the ratio between two
forecasting errors, one long term and one short term:

P = 1− E(L(et,t+k)
E(L(et,t+j))

(5.9)

When P is large (approximately one) the series is predictable, while for values of P
close to zero, like in our case, according to the authors the relative predictability is
low.

The following algorithm shows the steps used to get the final value. The assumption
is that all the chains at the root of the tree (i.e. those without predecessors) have
started. Otherwise, it will not be possible to obtain the prediction and it will be
necessary to wait for the subsequent logs.

49

Proposed Approach

Figure 5.6: Dependency graph

Algorithm 1 Remaining-Time
Input: Logs with partial traces and chain name
if Chain is finished then

return 0
else

if Chain is started then
return model(preprocess(logs))

else
predictions ←− ∅
foreach dependence d in dependencies(chain) do
predictions[d] = Remaining − Time(d);
return max(predictions) + Confidence− Interval(chain)

end
end

50

Proposed Approach

Finally, we have chosen to alert for the presence of single events (subjobs) during
the execution of the application that are recognized as anomalous. Not having the
possibility to put labels manually and train a classification model, we have chosen
to exploit an unsupervised algorithm for outliers detection to spot noisy data that
live far from the other points. Among the possible alternatives, the choice fell on
the use of a density based approach.

Local Outlier Factor is a density based algorithm [35] able to identify local outliers.
In other words, a point will be considered anomalous based on the density of its
neighborhood.
Let p be a point, we can define the k-distance(p) as the distance between p to its
k-th nearest neighbor and denote by Nk(p) the set of neighbors whose distance is
lower or equal than k-distance(p).
Next, we can introduce the reachability distance, a metric that is equal to the true
distance of two points if it is greater than the k-distance, otherwise is set to the
the k-distance value:

reach-distk(a, b) = max(d(a, b), k-distance(a)) (5.10)

Figure 5.7: Local Outlier Factor intuition

It can be easily noticed that the reachability distance will depend on whether the
point is crowded or isolated. Moreover, the k-local reachability density can be
defined as the inverse of the average of the reachability between the point A and
its neighbors:

51

Proposed Approach

lrdk(a) = |Nk(A)|q
B∈Nk(A) reach-distk(a, b) (5.11)

Finally, the k-Local Density Factor is computed by dividing the average lrd of the
points in |Nk(A)| with lrd(A):

LOFk(a) =
q
B∈Nk(A) lrdk(B)
|Nk(A)|lrdk(A) (5.12)

The point is considered an outlier (anomaly) if the score is bigger than 1 (with
a certain threshold) since it would have a lower density of its k neighbors while
for lower values of LOF the point would likely be an inlier. The main advantage
with respect to methods such as Isolation Forest or One class Svm is that the local
approach allows to isolate and identify points that from a global point of view
would not be labeled as anomalies.

Regarding the implementation for our case study, a LOF algorithm has been
fitted on the whole set of events, taking into account, in addition to the name of
the event, the duration, the timestamp corresponding to its ending and the day
of the week, with the aim of identifying anomalous jobs both for their duration
and for their end time. The hyperparameter k has been set to 20, chosen after a
series of tests to avoid reporting too many abnormal values. However, given the
difficulty of evaluating this type of algorithms, the final judgment on whether or
not to intervene is still left to the human user.

5.6 Deployment
One of the last stages of the development consists of bringing a machine learning
model into production, and this is not a trivial task. To make the prediction
available in a practical way and allow the model to be reached in the production
environment, it has been chosen to expose a set of REST APIs so that a client
application can easily use a POST request method to retrieve the needed information
in the form of the standard file format json. To do this, a combination of cherrypy, a
python microframework for developing web applications, and Docker for managing
the environment was used.
In particular, the following functionalities have been made available in the form of
apis:

• Visualization of the chains currently running and still not ended

52

Proposed Approach

• Reporting of chains ended up in error and currently blocked, signaling of
chains that depend on the latter

• Remaining Time prediction of running and non running chains according to
the modalities showed before

• Percentage of completion, departure and end times and accumulated delay or
advance compared to the values of the previous days.

• Graphical representation of the dependency graph extracted from the schedul-
ing table

• Check for the presence of files that prevent a chain from starting

Figure 5.8: Developed front-end main page

At a later stage, a front end application was also developed to make it easy to access
and visualize, in addition to the prediction of the remaining time, also statistical
analysis of system performance, extract dependencies and possible delays, in order
to efficiently report any deviations from the norm. The application is able to obtain
data directly from the database, in order to be updated at any moment.

53

Proposed Approach

Figure 5.9: Block diagram of the developed framework

Summing up, the above diagram shows the various blocks and technologies used
for the development of the framework. Starting from the bottom, the data initially
collected in an oracle relational database are cleaned (as showed in chapter 4) and
processed through SQL statements and python functions. Subsequently, part of the
data is used for the training of the machine learning model and the unsupervised
anomaly detection algorithm. At inference time, data related to ongoing processes
is made available and is processed in the same way to obtain the remaining time
prediction. The APIs are finally used in the back-end of the application, but can
also be exploited from the outside.

54

Chapter 6

Experimental Results

We report here the experimental results for remaining time prediction on the test
set. Due to the absence of previous experiments on this dataset, the two proposed
alternatives have been compared with two baselines implemented with random
forest and XGBoost and evaluated with the metrics illustrated before.

Figure 6.1 illustrates the trend of the true remaining time for some chains and the
corresponding predictions on one of the days of the test set. The y-axis reports
the remaining time in minutes, while on the x-axis there is the number of steps
within the chain itself. It can be noticed that all models behave similarly in the
case of easily predictable chains as in graph (a), related to one of the longest and
most regular chains. Regarding graphs (b) and (c), we note how all the models
underestimate the total duration of the process. Although the difference in terms of
minutes is minimal, there may therefore be cases in which the chains have random
variations that are difficult to predict, especially if the chain takes longer than
necessary but the variation within individual cases is hardly noticeable and the
training set it is not large enough to contain all possible sources of slowdown.
Baselines based on tree models do not differ so much from those based on neural
networks, however, in some situations, they struggle to recognize the downward
trend of the process and have strong upward peaks in some points, as can be
seen in (e) and (d). Moreover, case (d) is a particular chain that puts all models
in difficulty, especially in the initial phase, where it is overestimated by LSTM
and GRU and underestimated by the others. This chain (as well as others in the
dataset) follows an irregular trend and since usually it would take just over half an
hour, it can be said that an anomaly probably occurred that day. According to
the designers, the chain has been implemented so as not to report the presence of
errors in the log like the others, thus making the forecast more complex. Overall,
it was preferred to opt for a model that overestimates the remaining time, rather
than providing a wrong prediction that would not give an alarm.

55

Experimental Results

(a) (b)

(c) (d)

(e)

Figure 6.1: Remaining time prediction trend

The table below summarizes the experimental results. It can be seen that the
architecture based of the attention mechanism outperforms the other methods for
this dataset, providing better and stable performances. Moreover, this approach is
the best when dealing with extensive chains and complex dependencies, proving
of being capable of handling even very long sequences. More basic solutions like
Random Forest and Extreme Gradient Boosting generally provide good results,
although inferior to deep models. On the other hand, the possibility of obtaining an
indication of the importance of the features brings advantage to the interpretability
of the result: as expected, the features that take the highest Mean Decrease Impu-
rity, that is the metric used to determine the importance, are the chain’s name,
the last log in the prefix and the time (computed as minutes from midnight).

56

Experimental Results

Figure 6.2: Feature Importance according to Random Forest

MAE MSE

Random Forest 3.47 21.87

XGBoost 3.20 19.9

LSTM 2.95 17.52

GRU 3.06 19.82

Transformer 2.05 7.62

Table 6.1: Obtained results (in minutes) on the chain dataset

Finally, figure 6.3 shows the MAE obtained with the two best performing models
using different prefix lengths. Specifically, we can notice that chains with a shorter
prefix are generally more difficult to predict, since by having fewer logs their
behavior is poorly defined they are generally more unstable and subject to sudden
changes. On the contrary, both models seem to give better results in predicting
longer chains, i.e is chains that are in an advanced state, confirming that having a
greater number of logs allows for a better generalization. In any case, as expected,
the transformer model outperforms LSTM in three groups out of four. However, it
is important to note that the number of steps is not strictly linked to the duration
of the chain, which depends on the execution time of the individual jobs, which

57

Experimental Results

can also be very short. Similarly, it is not unusual to observe cases with a limited
number of logs but whose duration can exceed 40 minutes in certain situations.

Figure 6.3: MAE values with different prefix lengths

Another aspect that is worth investigating is to test the different models trained only
on the individual chains, in order to verify the local results. The main reason for this
experiment is that, while a single model is useful, it is extremely costly to maintain.
A more flexible and lighter model was therefore considered as an alternative solution.

Avg. Ex Time # Events Transformer LSTM
MAE MSE MAE MSE

Chain-A 60 750 1.46 3.14 2.6 8.7
Chain-B 7 60 1.02 1.46 1.22 2.07
Chain-C 15 55 0.34 0.15 0.56 0.35
Chain-D 30 120 1.8 5.03 2.02 5.31
Chain-E 15 100 0.79 2.02 0.34 0.31
Chain-F 30 330 0.96 1.44 1.18 2.05
Chain-G 8 80 1.20 1.49 0.82 1.06
Chain-H 25 60 0.86 4.56 0.87 4.90
Chain-I 31 455 0.80 0.81 0.83 0.86

Table 6.2: Local results

58

Experimental Results

Table 6.2 reports the results obtained on 9 chains selected from the hundreds of
chains that are scheduled and executed every day. Also in this case, the goodness
of the attention mechanism is confirmed, even if the gap between transformer and
LSTM for these particular chains is very small and for two of these the second model
obtains a lower error. In spite of everything, it must be remembered that not all
processes are managed in the same way, some chains are monitored more often than
others, while some are more sensitive and have errors more easily. Consequently,
the best results are obtained with the most optimized chains.

Thanks to the insight provided by the features importance, it is possible to carry
out a final experiment using only a subset of the attributes. In particular, we have
chosen to use only the name of the chain, the time and the last event available
in the log sequence. Consequently, part of the information due to the lack of
previous logs is lost. On the other hand, a strong advantage is gained in terms of
computational times for both training and inference. For this last case, recurrent
neural networks were not used as there is no longer a need to remember the entire
sequences. Instead, tree-based models take advantage of this simpler structure: a
reduced number of features allows a more efficient subdivision of the space and a
lower number of splits.

MAE MSE

Random Forest 3.08 16.02

XGBoost 3.44 20.10

Transformer 3.03 10.1

Table 6.3: Obtained results (in minutes) with selected features

In terms of performance, there is a small deterioration for Gradient Boosting and
transformer models, while the random forest gets an improvement. As we expected,
the results are worse than those obtained with the previous experiment because the
global view of the process trend is lost. The transformer, while not exploiting its
peculiarities (and becoming a normal feed-forward network with residual connec-
tions) still gets the upper hand, mainly due to the embedding layer and therefore
to a better management of categorical variables. In fact, one hot encoding remains
a limitation in all approaches due to the large increase in dimensionality and sparsity.

Wrapping up, the performances of three categories of models were analyzed. On
the one hand the models based on decision trees, which however obtained slightly

59

Experimental Results

worse results, on the other hand, the models based on deep learning, of which two
belonging to recurrent neural networks class and the last one focused on the atten-
tion mechanism. The latter proved to be better according to the proposed methods,
with the disadvantage of being more complex to train and less interpretable.

60

Chapter 7

Conclusions and future
works

In this work, an end to end project was presented. Starting with data acquisition
and cleaning, a model for predicting the remaining time was then developed and
tested. Finally, the model was deployed and made available to the final user
through a simple web application. The activity was carried out in an enterprise
context, which led to confront the typical challenges of a real-world dataset. The
results obtained were considered satisfactory by the customer, who is now able to
monitor his processes in real time and have support in the decision making phase.
Although there are still some limitations, the released application allows to obtain
good performances with a minimum error in the order of minutes, which is ac-
ceptable considering the difficulty of predicting the readiness of human intervention.

The chosen approach was to model the problem in the way in which business
process monitoring tasks are treated in the literature. Furthermore, the datasets
used in the experiments of the aforementioned papers are often simpler, with a
much shorter length of cases and a fairly limited number of events. In our case,
however, it was necessary to process thousands of different events and hundreds of
dependencies, which led to avoiding the use of classic encoding methods, such as
one hot, in favor of a more efficient embedding.

In recent years the number of publications concerning BPM and remaining time
prediction, as well as other typical tasks about event logs, have grown rapidly.
Among the possible alternatives, it was natural to choose, for this first work,
architectures widely used in natural language processing, such as recurrent neural
networks and transformers, which require minimal data preprocessing and are able
to learn and generalize even long sequences with state of the art results. Among

61

Conclusions and future works

the biggest limitations, however, is the lack of explainability: these models work as
black boxes but a great effort is being made towards obtaining robust visualizations
capable of explaining the reasons behind a prediction [36] through the Shapley
Values theory. A second limitation lies in the absence of an incremental approach:
Adding a new set of events or optimizing chain processes will require a new training
phase: collecting new data could therefore be costly in terms of resources and time.

As a future works, there are some directions that are worth investigating to
improve and complement this work. First of all, we will try to include information
on the time elapsed between one event and the next: It is not unusual in fact that,
especially in cases of long delays, a lot of time passes between the arrival of two
different logs. This can lead to an underestimation of the remaining time since
the prediction will always be the same for the same entries in the event log. The
idea is to exploit and adapt time aware neural networks, in particular T-LSTM, to
remaining time prediction. This type of network, initially proposed by Baytaset al.
in the context of Patient Subtyping [37], does not assume a uniform distribution for
times but, on the contrary, allows to take into account irregular intervals due to a
modification of the cell. Alternatively, another interesting architecture is the Graph
neural network (GNN), which is a relevant research topic and could improve the
forecasting of remaining time for chains not yet started through its dependency tree.

As a second direction, we will try to reduce the number of logs needed for each case.
In fact, as the number of chains increases, the number of events grows exponentially.
However, not all events have the same information content and some are more
relevant than others. Hence, it is possible to reduce training and inference time
and optimize memory use by selecting only the necessary rows. These assumptions
are strongly related to the implementation of the chains themselves, and therefore
require a clear domain expertise to be applied.

62

Bibliography

[1] Di Francescomarino Chiara, Ghidini Chiara, Maggi Francesco Maria, and
Milani Fredrik. Predictive Process Monitoring Methods: Which One Suits Me
Best? 2018.

[2] Dominic A. Neu, Johannes Lahann, and Peter Fettke. A systematic literature
review onstate-of-the-art deep learning methods forprocess prediction. 2021.

[3] Efren Rama-Maneiro, Juan C. Vidal, and Manuel Lama. Deep Learning for
Predictive Business Process Monitoring: Review and Benchmark. 2020.

[4] Mirko Polato, Alessandro Sperduti, Andrea Burattin, and Massimiliano de
Leoni. Data-aware remaining time prediction of business process instances.
2014.

[5] B.F. van Dongen, R.A. Crooy, and W.M.P. van der Aalst. Cycle Time
Prediction: When Will This Case Finally Be Finished? 2008.

[6] Bevacqua Antonio, Carnuccio Marco, Folino Francesco, Guarascio Massimo,
and Pontieri Luigi. A Data-Adaptive Trace Abstraction Approach to the
Prediction of Business Process Performances. 2013.

[7] Eugenio Cesario, Francesco Folino, Massimo Guarascio, and Luigi Pontieri. A
Cloud-Based Prediction Framework for Analyzing Business Process Perfor-
mances. 2016.

[8] Jian Guo, Akihiro Nomura, Ryan Barton Haoyu Zhang, and Satoshi Matsuoka.
Machine Learning Predictions for Underestimation of Job Runtime on HPC
System. 2018.

[9] Arik Senderovich, Chiara Di Francescomarino, Chiara Ghidini, and Fabrizio
Maggi. Intra and Inter-Case Features in PredictiveProcess Monitoring: A Tale
of Two Dimensions. 2017.

[10] Niek Tax, Ilya Verenich, Marcello La Rosa, and Marlon Dumas. Predictive
Business Process Monitoring with LSTM Neural Networks. 2016.

[11] Manuel Camargo, Marlon Dumas, and Oscar González-Rojas. Learning Accu-
rate LSTM Models of Business Processes. 2019.

64

BIBLIOGRAPHY

[12] Nicolò Navarin, Beatrice Vincenzi, Alessandro Sperduti, and Mirko Polato.
LSTM Networks for Data-Aware Remaining Time Prediction of Business
Process Instances. 2017.

[13] A. Khan, H. Le, K. Do, T. Tran, A. Ghose, H. Dam, and R. Sindhgatta.
Memory-augmented neural networks for predictive process analytics. 2018.

[14] Vincenzo Pasquadibisceglie, Annalisa Appice, Giovanna Castellano, and Do-
nato Malerba. Using convolutional neural networks for predictive process
analytics. 2019.

[15] Farbod Taymouri and Marcello La Rosa. Encoder-Decoder Generative Adver-
sarial Nets for Suffix Generation and Remaining Time Prediction of Business
Process Models. 2020.

[16] Aaqib Saeed Zaharah A. Bukhsh and Remco M. Dijkman. ProcessTransformer:
Predictive Business Process Monitoring with Transformer Network. 2021.

[17] Cheng Guo and Felix Berkhahn. Entity Embeddings of Categorical Variables.
2016.

[18] Wahid, Adi, H. Bae, and Y. Choi. Predictive business process monitoring –
remaining time prediction using deep neural network with entity embedding.
2019.

[19] Joerg Evermann, Jana-Rebecca Rehse, and Peter Fettke. A Deep Learning
Approach for Predicting Process Behaviour at Runtime. 2017.

[20] J. Theis and H. Darabi. Decay replay mining to predict next process events.
2019.

[21] J. Evermann, J.-R. Rehse, and P. Fettke. Predicting process behaviour using
deep learning. 2017.

[22] Ilya Verenich, Marlon Dumas, Marcello La Rosa, Fabrizio Maggi, and Irene
Teinemaa. Survey and cross-benchmark comparison of remaining time predic-
tion methods in business process monitoring. 2018.

[23] Wil Van Der Aalst. Process Mining - Data Science in Action. Springer, 2016.
[24] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to

Statistical Learning: with Applications in R. Springer, 2014.
[25] Tin Kam Ho. The Random Subspace Method for Constructing Decision Forests.

1998.
[26] Leo Breiman. Random Forests. 2001.
[27] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System.

2016.

65

BIBLIOGRAPHY

[28] Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. 2013.

[29] Hochreiter and Schmidhuber. Long Short Term Memory. 1997.
[30] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase Repre-
sentations using RNN Encoder-Decoder for Statistical Machine Translation.
2014.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. 2017.

[32] Liu Fei Tony, Ting Kai Ming, and Zhou Zhi-Hua. Isolation Forest. 2008.
[33] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Em-

pirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
2014.

[34] Diebold, Francis, and Lutz Kilian.Measuring predictability: theory and macroe-
conomic applications. 2001.

[35] Breunig Markus, Hans-Peter Kriegel, Raymond Ng, and Joerg Sander. LOF:
Identifying Density-Based Local Outliers. 2000.

[36] Riccardo Galanti, Bernat Coma-Puig, Massimiliano de Leoni, Josep Carmona,
and Nicolo Navarin. Explainable Predictive Process Monitoring. 2020.

[37] Inci Baytas, Cao Xiao, Fei Wang, Anil Jain, and Jiayu Zhou. Patient Subtyping
via Time-Aware LSTM Networks. 2017.

66

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Process Monitoring
	Process Mining
	Remaining time prediction
	Related Works

	Machine Learning Algorithms
	Tree based algorithms
	Random Forest
	Boosting
	XGBoost

	Recurrent Neural Networks
	Long Short-Term Memory Networks
	Gradient Recurrent Unit

	Transformers

	Dataset
	Data Cleaning
	Exploratory Data Analysis

	Proposed Approach
	Performance Evaluation
	Preprocessing
	LSTM and GRU implementation
	Transfomer implementation
	Framework overview
	Deployment

	Experimental Results
	Conclusions and future works
	Bibliography

