
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Cycle-consistent Deep Learning
Architecture for Improved Text
Representation and Translation

Supervisors

Prof. LUCA CAGLIERO

Dr. MORENO LA QUATRA

Candidate

MICHELE D’ADDETTA

July 2021



Abstract

This thesis presents CycleNLPGAN, a deep learning architecture that introduces
an innovative approach to sentence encoding and alignment. It allows the definition
of a latent vector space shared across a pair of languages. The model is jointly
trained to perform neural machine translation from a source language A to target
language B. It generates a shared aligned vector space suitable for machine
translation from a source language to a target one and vice versa. The architecture
is based on a CycleGAN, a Computer Vision model that address image-to-image
translation using cycle-consistent dynamics. It enforces the robustness of the
resulting model and the quality of produced data. The architecture is defined using a
cycle consistency loss, an approach used in neural machine translation and in domain
adaptation models. The designed model aims at creating two mapping functions
GAB and GBA such that the sentences GAB(A) generated by GAB translated from
source language A can be considered as indistinguishable original sentences in
language B. The exact same principle holds for the inverse mapping function.
The joint training of the two mapping functions and the introduction of the cycle
consistency loss produces a model able to generate sentence embeddings that belong
to the shared latent vector space. Two separate sentence embeddings are close in
the latent space when the sentences are the same, or different languages sentences
have similar meanings. At the same time, the model is able to produce accurate
translation. The translation quality is enforced using the back translation, whose
produces values defined as GAB(GBA(B)) and GBA(GAB(A)). Back translation
values allow the definition of highly related mapping functions. In fact, during
the training, each mapping function uses both real data and data defined from
the opposite mapping function, in order to increase the relationship among them.
The model is trained using an adversarial generative approach and uses a bilingual
parallel dataset (Opus), which contains a large amount of aligned data for several
language pairs. The effectiveness of CycleNLPGAN approach is demonstrated
addressing both sentence alignment and neural machine translation tasks, obtaining
results that are competitive against state-of-the-art models.







Acknowledgements

Ringrazio la mia famiglia per essermi stata vicina durante questa esperienza
fantastica. Grazie a mia madre e a mio padre, senza i quali non avrei mai potuto
raggiungere questo traguardo così importante. Per tutto il supporto fornitomi, sia
economico che morale, per tutti gli incoraggiamenti sia in caso di un buon voto,
ma soprattutto quando un esame non andava come sperato. Non mi avete mai
fatto sentire il peso di aver intrapreso questo percorso lontano da casa e che ha
richiesto tanti sacrifici, neanche per un secondo in questi lunghi 6 anni, e ve ne
sarò sempre grato.

Ringrazio le mie sorelle, i veri amori della mia vita, che mi hanno dato tutto
quello che un essere umano può definire come amore. Siete state fondamentali
durante questi anni, grazie alla vostra esperienza ma soprattutto grazie al vostro
contributo nei momenti più difficili. Siete e sarete sempre le mie rocce, su cui potrò
sempre contare nei momenti di difficoltà.

Grazie a Cecilia, la mia puzzola, perché nonostante sia un essere ancora così
ingenuo e innocente, è in grado di mostrare amore e affetto come nessuno è mai
riuscito a fare.

Ringrazio Francesca e Leonardo, i miei cug, per essere stati i miei punti fermi dal
primo giorno, non solo durante il periodo universitario, ma da sempre. Abbiamo
condiviso ogni genere di esperienza insieme, e avervi avuti con me durante questi
anni a Torino è stato come non aver mai lasciato casa.

Infine ringrazio tutti i miei amici e parenti, in particolare Mattheo, Luca, Nicola,
Michele, Giuseppe, Giulio, Aldo, Beatrice, Angela, Sergio, Edoardo Amico, Edoardo
Giordano, Giorgio, Andrea, Igor, per essere stati parte della mia vita e per aver
reso tutto più leggero e spensierato. Ognuno, a proprio modo, ha contribuito a
rendere quest’esperienza fantastica, e non vi dimenticherò mai.

iii





Table of Contents

List of Tables vii

List of Figures viii

Acronyms xi

1 Introduction 1
1.1 Artificial Intelligence History . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Deep Natural Language Processing . . . . . . . . . . . . . . 3
1.3 Discriminative vs Generative models . . . . . . . . . . . . . . . . . 5
1.4 Main Natural Language Processing Tasks . . . . . . . . . . . . . . . 6
1.5 Thesis contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Related Works 12
2.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Deep Learning Background . . . . . . . . . . . . . . . . . . 12
2.1.2 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . 14
2.1.3 Long Short Term Memory Network . . . . . . . . . . . . . . 14
2.1.4 Generative Adversarial Network . . . . . . . . . . . . . . . . 15

2.2 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Word Embedding . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Contextualized word embeddings . . . . . . . . . . . . . . . 20
2.2.3 Word and Sentence Alignment . . . . . . . . . . . . . . . . . 25

2.3 Computer Vision and Domain Adaptation . . . . . . . . . . . . . . 32

3 Implemented methods 39
3.1 Main architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.2 Discriminator . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



3.2.1 GAN losses . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2 Cycle consistency loss . . . . . . . . . . . . . . . . . . . . . 45

3.3 Cycle-consistent process . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Experiments and Results 54
4.1 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Training configuration . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Hyperparameters configuration . . . . . . . . . . . . . . . . 56
4.3 Addressed tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Bitext Retrieval : BUCC . . . . . . . . . . . . . . . . . . . . 60
4.3.2 WMT : Workshop on Statistical Machine Translation . . . . 61

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1 Loss function analysis . . . . . . . . . . . . . . . . . . . . . 64
4.4.2 English to language encoder training analysis . . . . . . . . 66
4.4.3 Hyperparameters usage analysis . . . . . . . . . . . . . . . . 70
4.4.4 Results on addressed tasks . . . . . . . . . . . . . . . . . . . 73

5 Conclusions 81
5.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Bibliography 85

vi



List of Tables

4.1 Datasets details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Hyperparameters configuration and details . . . . . . . . . . . . . . 57
4.3 F1 score on BUCC bitext mining task . . . . . . . . . . . . . . . . . 73
4.4 WMT ’14 BLEU scores . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5 WMT ’15 BLEU scores . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6 WMT ’16 BLEU scores . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7 WMT ’17 BLEU scores . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.8 Qualitative evaluation of CycleNLPGAN model by translating an

excerpt of the abstract of this master thesis. . . . . . . . . . . . . . 80

vii



List of Figures

1.1 Domains in Computer Vision adaptation tasks . . . . . . . . . . . . 10
1.2 CycleGAN domain transfer examples . . . . . . . . . . . . . . . . . 10
1.3 CycleNLPGAN results example . . . . . . . . . . . . . . . . . . . . 11

2.1 Composition of a neuron . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Neural network architecture . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Differences between RNN and LSTM cell. . . . . . . . . . . . . . . 15
2.4 GAN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Word2Vec learning approaches [28] . . . . . . . . . . . . . . . . . . 18
2.6 Transformer architecture [18] . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Differences among BERT, Transformer and ELMo modeling archi-

tectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Transformations applied in noising function [24] . . . . . . . . . . . 25
2.9 LASER architecture, [44] . . . . . . . . . . . . . . . . . . . . . . . . 30
2.10 Distillation training method, [45] . . . . . . . . . . . . . . . . . . . 31
2.11 Convolutional Neural Network architecture . . . . . . . . . . . . . . 33
2.12 ADDA [49] and CoGAN [50] architectures and training approaches. 35
2.13 Model architecture and cycle consistency losses in CycleGAN [23] . 36
2.14 Generator architecture in CycleGAN model, retrieved from towardsdatascience.com

(last access: June 2021) . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 CycleNLPGAN structure . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 CycleNLPGAN generator . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 CycleNLPGAN discriminator . . . . . . . . . . . . . . . . . . . . . 44
3.4 CycleNLPGAN training phase . . . . . . . . . . . . . . . . . . . . . 47
3.5 CycleNLPGAN generator loss . . . . . . . . . . . . . . . . . . . . . 48
3.6 CycleNLPGAN ABA cycle loss . . . . . . . . . . . . . . . . . . . . 50
3.7 CycleNLPGAN BAB cycle loss . . . . . . . . . . . . . . . . . . . . 51

4.1 Discriminator losses during training . . . . . . . . . . . . . . . . . . 58
4.2 Generator losses during training . . . . . . . . . . . . . . . . . . . . 59

viii



4.3 Cycle losses during training . . . . . . . . . . . . . . . . . . . . . . 60
4.4 BLEU score obtained using different loss functions . . . . . . . . . . 64
4.5 Average distance obtained using different loss functions . . . . . . . 65
4.6 Average mutual distances obtained using different loss functions

using MSE loss (on top) and cosine loss (below) . . . . . . . . . . . 66
4.7 BLEU score obtained using different training approaches . . . . . . 67
4.8 Average distance obtained using different training approaches . . . . 68
4.9 Average mutual distances obtained using different training approaches(top:

unfrozen encoder, below: frozen encoder) . . . . . . . . . . . . . . . 69
4.10 BLEU score obtained using different hyperparameters . . . . . . . . 70
4.11 Average distance obtained using different hyperparameters . . . . . 71
4.12 Average mutual distances obtained using different hyperparameters

(on top: full set of hyperparameters, below: partial set of hyperapa-
rameters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

ix





Acronyms

AI
Artificial Intelligence

CNN
Convolutional Neural Network

FCNN
Fully Connected Neural Network

GAN
Generative Adversarial Network

LSTM
Long Short Term Memory

ML
Machine Learning

NLP
Natural Language Processing

RNN
Recurrent Neural Network

xi



Chapter 1

Introduction

In last decades, Artificial Intelligence and Machine Learning research have seen
increasing interest. At the time of writing, almost any life-related aspect could ben-
efit of innovative methodologies developed in Artificial Intelligence (AI). However,
AI history started a long time ago.

1.1 Artificial Intelligence History
By the 1950s, scientists, mathematicians, and philosophers have explored artificial
intelligence and concepts behind it. A pioneering work of Alan Turing, a British
polymath, suggested that humans use available information to solve problems and
to take decisions. He strongly believed that machines, with adequate training,
would do the same. Turing studies were stopped because of the scarcity of resources,
in fact computers of that era couldn’t store commands. Moreover, storage and
computing were extremely expensive. Some years later, some mathematicians
designed a program, the Logic Theorist, which emulated human problem solving
skills. It’s considered as the first artificial intelligence program. From ’60s to ’70s,
computers could store more data, computational efficiency increased and became
more accessible, so Artificial Intelligence and Machine learning algorithms improved,
introducing a better interpretation of written and spoken language. These convinced
government agencies to increase AI research, and the focus was on algorithms that
could transcribe and translate spoken language. A new setback was in the late
70’s. Computers were not fast enough and storage became a bottleneck, so research
efforts diminished until 1990s, when machine learning techniques became popular,
allowing computers to learn using experience. In 1997, a chess playing computer
program produced by IBM, Deep Blue([1]), defeated world chess champion Gary
Kasparov. In the same year, a speech recognition software was implemented. This
was a huge step forward in language interpretation. The fundamental limits of

1



Introduction

Artificial Intelligence were the computer storage and computational resources, but
in year 2021, in most cases, this problem is mitigated.

With the advent of big data, it is possible to collect huge amounts of information
in few hours using lots of sources, so even if algorithms are similar to the past, big
data and massive computational resources allow artificial intelligence to use more
data during the learning process, and this leads to the increase of models accuracy.

1.2 Machine Learning
Most of Artificial Intelligence success comes from Machine Learning. It uses
algorithms and neural network models to let computer systems improve their
performance in task such as prediction and generation of data. Machine Learning
algorithms build a mathematical model using sample data to make decisions without
being specifically programmed to make them. Machine Learning is based on a model
of brain cell interaction. It implements models and algorithms, which are exploited
in the definition of more complex systems, defining an Artificially Intelligent system.
More recent Machine Learning algorithms use Deep Learning approaches in order
to produce more accurate and performing models. Deep learning is a subfield
of Machine Learning, and its main characteristic is the usage of algorithms that
uses layers to model an artificial neural network. The resulting neural network is
able to make decisions according to analysed data. The variety of tasks addressed
by Machine Learning is multifaceted, but the most important ones concern the
elaboration and understanding of visual (e.g., photos,videos and pictures) and
natural language data (e.g., words or sentences in different languages).

Computer vision is a branch of Machine Learning which aims to understand,
generate and classify images and videos. Applications of computer vision algorithms
allow to recognize objects, people, animals, to segment images, differentiating
objects and patterns in them. Nowdays, applications and research fields involving
computer vision techniques are limitless, but the history of this branch started in
the 50s and 60s, when a neurophysiological research conducted by D.H. Hubel and
T.N. Wiesel on cats demonstrated that human vision is hierarchical [2]. Neurons
detect edges and simple features, then shapes and detailed features are analysed.
Finally more complex visual representations are detected. Strengthened by this
knowledge, computer scientists tried to recreate human vision structure in a digital
way. Even now, computer vision systems work as the human counterparts, so
using a hierarchical approach to perceiving visual stimuli. Several systems were
implemented during the second part of the past century, but the low amount
of computational resources limited their results. Moreover, implemented models
used shallow architectures, that produced inaccurate results. Starting from 2010s
computer scientists gained access to more data than ever before and computing

2



Introduction

hardware improved substantially, as costs went down. Algorithms developed in the
1980s-90s improved and computer vision had its breakthrough moment in 2012
during the ImageNet Large Scale Visual Recognition Challenge, also known as
ILSVRC [3], an annual image classification competition. Research teams evaluate
their algorithms on the ImageNet [3], data set, trying to achieve higher accuracy
on visual recognition tasks. Until then the best-performing approach reached an
error rate of around 26%, in 2012 a team from the University of Toronto published
AlexNet [4], a deep neural network, that achieved an error rate of 16%. It was
a game-changer innovation for the computer vision community and, in general,
for artificial intelligence. From that moment, computer vision research increases,
addressing more and more tasks and areas of application.

A similar trend happened in Natural Language Processing (NLP), the branch that
addresses the understanding, the learning and the modeling of natural languages,
considering their semantics and syntactic aspects.

1.2.1 Deep Natural Language Processing
The first study on NLP was made by Alan Turing in 1950. He wrote an article
entitled "Computing Machinery and Intelligence" [5], in which he discussed how
to let machines to be intelligent and proposed the Turing Test, a criterion to
quantify machine intelligence exploiting the goodness of an artificial intelligence
to understand languages. The proposed artificial intelligence should be able to
understand and correctly use languages in order to make its speeches and sentences
indistinguishable from human ones. Up to 1980s, NLP systems were based on
hand-written rules and produced inaccurate results. Starting from 1990s, the
approaches used in NLP changed and shallow machine learning algorithms have
been used, introducing a more structured approach on learning. According to [6],
this is the second wave of NLP, characterized also by the increasing availability of
machine-readable data and of computational power. Discriminative models became
the standard approach in most tasks, but the model shallowness reflected on the lack
of constructed structures. This class of algorithms (i.e., decision trees [7] or shallow
neural networks [8]) were able to infer rules directly from data. In the same period,
translation knowledge increased significantly due to the availability of sentence-level
alignments in the bilingual training data. In this way translation is not made by
rules, but directly from data. In the 2010s, the third wave of Natural Language
Processing started, and deep neural network ML methods became widespread
in natural language processing, reaching state-of-the-art results in many natural
languages tasks, such as language modeling, parsing, part of speech tagging and
others. Deep learning can be viewed as a sequence of cell models, inspired by
biological neural systems. If in the second wave the amount of training data wasn’t

3



Introduction

enough and learning methods were inaccurate, the third wave is marked by the huge
amount of data. In fact, the lack of data let learning signals vanish exponentially
while passing through deep neural networks layers, making it difficult to tune
weights of them, especially for recurrent networks. These neural networks are able
to discover intricate structures in high-dimensional data, so they have been applied
to real-world tasks in artificial intelligence including speech recognition, image
classification, and NLP. Another of the biggest advantages of deep networks is the
backward algorithm definition, that defines how to update each weight in each layer
of the network according to the difference among expected and predicted values.

Since 10 years, it has been shown that the availability of big data and faster
computation is useful and beneficial. A large number of NLP applications, such
as image captioning, visual question answering, speech understanding, web search,
and recommendation systems, in addition to many non-NLP tasks, have reached
unbelievable results thanks to deep learning. In machine translation and in text-
based NLP application areas, deep learning impacts significantly. Advancing from
the shallow machine translation algorithms implemented during the second wave
of NLP, the current best machine translation systems are based on deep neural
networks. Two important recent technological breakthroughs obtained applying
deep learning to NLP problems are sequence-to-sequence learning and attention
modeling. The sequence-to-sequence learning uses recurrent networks to carry
out both encoding and decoding in an end-to-end manner. While attention was
initially developed to overcome the difficulty of encoding long sequences, following
developments significantly extended its capability to align two sequences in a
flexible way. The key concepts of sequence-to-sequence learning and of attention
mechanism boosted performances on tasks based on distributed word embedding.
Popular techniques massively use word embeddings to capture semantic properties
and context of words, increasing significantly learning of higher-level tasks. Word
embeddings represent words as numerical vectors, allowing the definition of a latent
space that includes and represents a language. First word embedding algorithms
produced a representation of word using the entire word and subparts of it, but
they didn’t capture the more complex properties of words, such as their context
and semantic aspects, so the results were not so accurate. In latest years, several
approaches improve the definition of word embeddings, and this leads to a significant
increase of learning results and language modeling quality. The popularity and the
research fields embraced by Natural Language Processing increase more and more,
leading to the creation of models capable of translating, generating sentences and
transferring information from a language to another. After these successes, these
concepts have been applied to several NLP-related tasks such as image captioning,
speech recognition, one-shot learning, text understanding, summarization, and
question answering.

4



Introduction

1.3 Discriminative vs Generative models
Main architectures in Natural Language Processing belong to two groups of models:
generative and discriminative models. Generative models are used to describe
how a dataset is generated in a probabilistic way. They are able to generate
data using the same model of given dataset. Having a dataset of sentences in
a certain language, a generative model is able to generate new sentences in the
same languages that don’t exist in the dataset and it has never seen before, but
that still appear similar to the real sentences. This is because the model learns
the underlying data distribution and model the structure of the language. This
approach require a large training dataset with many examples, so the model will
learn to generate features and structure that look as if they have been created using
the same rules as the original data. Generative model requires a stochastic random
element in order to influence the generated samples, otherwise the model is nothing
more than a fixed calculation. Without the random element, the generative model
will produce the same value every time.

The counterpart of generative models are defined as discriminative. Given a
dataset including sentences from different languages, a discriminative model learns
to predict if they belong to English or to other languages, their sentiment, or to
classify them, basing on words, syntactic and semantic structures in sentences. So
a discriminative model learns features related to classes assigned to each input
value. According to the input value and its class, the model is able to capture
details from the input value and uses them as key characteristics of its class.
Discriminative models use data that has labels during training, in order to learn
how to discriminate between input groups and outputs the probability that an
input example is associated to a label l ∈ L, where L is the set of candidate labels.
For this reason, discriminative modeling often requires supervised learning, while
generative models are usually trained using unlabeled dataset. However, it is also
possible to use labeled datasets for training generative models. In this case, labels
are discarded and only raw data are used.

From a mathematic point of view, discriminative modeling attemps to calculate
the probability that a data belongs to a certain class, meanwhile generative models
attempt to estimate the probability of seeing a certain data without caring about
the associated class. The key point is that even if a discriminative model can
perfectly identify categories, it would still have no idea how to create a similar data.
It can only output probabilities against inputs according to the task, as this is
what it has been trained to do. A generative model, on the other hand, can output
values that have a high possibility of belonging to the original training dataset.

Typically, generative models are more elaborate and address more complex tasks
than discriminative models. In fact, generation may involve more complications
during the training, and the more the data are complex, the more the model may

5



Introduction

not obtain adequate results in generation. Some of the most common drawbacks
in generative models are the collapse, in which the model produces a small set
of outputs over and over during iterations, and the failure to converge, in which
the quality of produced data is not adequate if compared to original dataset
one. Examples of generative models are variational autoencoders (VAE) [9] and
generative adversarial networks (GAN) [10].

Discriminative models instead are more robust and , in most cases, outperform
generative models on classification error rates. Moreover, these models require
a lower amount of data with respect to generative models. On the other hand,
discriminative models don’t explicit claims about how the data is generated, so
they don’t learn to reproduce and to model the structure and the composition of
data, but only their classification according to the examined features. Examples of
discriminative models are random forest [11], support vector machine (SVM) [12],
convolutional neural network (CNN) and, more in general, classifier models.

1.4 Main Natural Language Processing Tasks
Natural Language Processing addresses several tasks, and their number increases
over the years. Some of them have direct real-world applications, while others are
used as subtasks and aid in solving larger tasks. Some of the most relevant tasks
are enumerated below:

• Automatic summarization : this task aims to condense a piece of text to
a shorter version. The source text is shorten in length while preserving the
most relevant information. Text summarization methods fall into two different
classes:

1. Extractive approach, in which sentences are directly picked up from the
document, and the quality is defined with a scoring function based on the
coherence of the summary. Important section are identified and then they
are cropped out to produce a condensed version. At the time of writing,
most of research focus on this approach

2. Abstractive approach, in which the summary is produced by interpreting
the text with advanced NLP techniques, and a shorter text is generate as
result. The text may not contain parts of the original text and keeps the
most critical information of the original text, so rephrase and incorporation
of information are required

Some of the most common approaches to address automatic summarization
are [13], [14] and [15].

6



Introduction

• Named Entity Recognition : it is part of information extraction field and
aims to identify and classify named entities in a text belonging to a set of
predefined categories, such as people, places, objects, national authorities and
so on. Named entity recognition bases its operation on knowledge base, that
contains a list of named entities that can be extracted from a text. Most
common Named Entity Recognition approaches are [16] and [17].

• Neural machine translation : it is a technology based on neural networks
to translate text from a language to another. There are several variations
of NMT currently being investigated and deployed in the industry. One of
most stable and used versions of NMT is the Encoder Decoder structure, an
architecture composed of two recurrent neural networks used in tandem to
create a translation model. The encoder RNN takes a sentence as input in a
number of consecutive time-steps and creates the hidden state vector, storing
the information about the sentence. At each time-step, the hidden vectors
adds information from the current word, while preserving the already stored
information. At the final time-step, the whole input sentence is stored in the
hidden state, which is given as input into the decoder. It predicts a word at
each time-step until the complete sentence is produced. Most recent models
introduce attention mechanisms, producing a more accurate input value for
the decoder and achieving state-of-the-art results. Most of neural machine
translation models use approaches such as [18] and [19]

• Part-of-speech tagging : a task that allows to convert a sentence or a text to
list of tuples, where each tuple has the form (word, tag). The tag represents a
part-of-speech tag, such as noun, verb, adjective, etc. POS-tagging algorithms
can be grouped into two distinctive categories:

1. rule-based tagging, one of the oldest techniques that uses a dictionary
for getting possible tags for each word. If more tags are possible for a
word, then some hand-written rules are used to identify the correct tag.

2. stochastic, a set of techniques that includes frequency or probability to
define words tags.

• Question answering : a task which aims to automatically answer back to a
certain posed question expressed in natural language. There are three major
modern paradigms of question answering:

1. IR-based Factoid Question Answering, which answer a user’s question
by finding short text segments on the Web or some other collection of
documents.

2. Knowledge-based question answering, that answer a natural language
question by mapping it to a query over a structured database. The

7



Introduction

question is structured in the form of a query or can easily be converted
into using semantic parser

3. Using multiple information sources, in which models applies parsing,
named entity tagging, and other processing step to extract information
about the question. Then it is passed through the candidate answer
scoring stage, that ranks candidates and defines the most correct answer

Some models that address this task are [16], [20] and [21].

• Text categorization: the process of categorizing a text into classes and
groups. Some of the most common use cases in which text classification is
included are sentiment analysis, in which models understand if the text is
talking positively or negatively about something, topic detection, in which the
model identify the tpoic of a text, and language detection, that aims to detect
the language of a given text. Most accurate text categorization models are
based on [20], [21] and [18].

• Text segmentation : the process of identifying the boundaries between
words, phrases, or other linguistic meaningful aspects, such as sentences or
topics. The resulting sentence is useful to help humans reading texts, and are
mainly used to assist in more complex artificial processes.

• Textual entailment : the task of deciding, given two text fragments, whether
the meaning of one text is entailed from another text. This technique is relevant
for a wide number of more complex applications, giving a measure of correlation
among text fragment.

All of them use specific architectures and models in order to reach best results.
Sometimes it happens that models are shared among tasks. As instance, BERT [21]
architecture has been applied in several tasks. It maintains the main structure
while an additional subpart is stacked on top of it to address specific tasks

When models are trained in a cross-lingual or multilingual fashion, embedding
alignment may be exploited. Embedding alignment is a task that aims to align
languages and models among them, producing vector representations in a shared
latent space. Not every task may exploit it because it is not appropriate for the
specific task, such as Named Entity Recognition, or because of the structure of
models, such as summarization. But one of the main advantage of text alignment
is the possibility of transferring information from a language to another and vice
versa, so even task that do not use multilingual data may benefit form alignment.
As instance, a model specialized in English texts summarization, which is a rich
language with lots of complex idiom structures and with a huge amount of available
annotated data, may transfer information to a model which does the same in a low

8



Introduction

annotated language, such as Hindi, that may have a lower accuracy. In this way,
the Hindi summarization model may improve its outcomes exploiting information
given by the more robust English model. Finally, embedding alignment can be seen
as a task by itself, but most of its practical applications are as part of a broader
pipeline.

1.5 Thesis contribution

It often happens that Computer Vision and Natural Language Processing have
common techniques and approaches. By adapting the state-of-the-art models from
a field to the other, it is possible to have great improvement for the final tasks. This
is because of the similarity among tasks, so methods and techniques can be adopted
in other fields. Even in generation task, both computer vision and natural language
processing exploit GAN [10] architectures.These models take a latent random value
as input and produce an output object. This output is built in order to be as
similar as possible to data analysed from training datasets, as explained in previous
sections. GANs are used in computer vision to generate images, meanwhile some
GANs approaches have been applied in natural language processing to generate
reliable and well defined sentences. Even in word embedding alignment, models
like MUSE [22] use GANs to define a mapping function to align word latent space
among languages.

One of the most popular tasks in last years is domain adaptation, which aims
to transform images among domains, making them as similar as possible to data
that actually belong to the target domain. More specifically, a domain is a data
distribution with features that differ from other distributions. As instance, some
domains can be real photos, drawings, sketches and synthetic images, that can
represent the same objects, but in different style. Examples of images from different
domains are shown in figure 1.1.

In the field of computer vision, a domain adaptation model that widely exploits
GANs and achieves great results in style transfer is CycleGAN ([23]), a model
that uses two GANs to transform images from a domain to another using a cycle-
consistent approach. Examples of results obtained using CycleGAN are given in
figure 1.2.

9



Introduction

Figure 1.1: Domains in Computer Vision adaptation tasks

Figure 1.2: CycleGAN domain transfer examples

A natural language processing task that can be related to domain adaptation is
neural machine translation. In fact, a language can be seen as a domain, where
text features are different among languages (i.e. nouns, subjects, verbs), but their
meaning can be the same in all of them. In this way, a language is considered
as a domain, and the translation among languages has the same meaning of a
transformation among domains.

In order to reproduce this behaviour in natural language processing, this thesis
proposes to adapt CycleGAN to NLP, producing an architecture able to translate
among languages using the cycle consistency approach. Neural machine translation
is a very competitive task, and the main translation models are not available as open
source code. This thesis work focuses on using CycleGAN architectures
to combine neural machine translation with domain adaptation. In this
thesis proposal, open source models have been used, even if they may not be as
accurate as best developed architectures. The main target of this thesis is to avoid
a translation-only task, and this is achieved introducing the sentence alignment
objective in the thesis model, called CycleNLPGAN.

10



Introduction

CycleNLPGAN main objective is to produce models that share the same em-
beddings latent space, trying to force them to produce close sentence embeddings
for the same sentences in different languages. In this way, models are aligned
and produce similar results for similar input values, improving the re-usability
of the model and performances in models with lower accuracy with respect to
most accurate models, such as English BERT [21] and BART [24]. At the same
time, CycleNLPGAN translates sentences, trying to improve translation results
introducing the cycle consistency.

The desired outcome of the CycleNLPGAN process is shown in figure 1.3.

Figure 1.3: CycleNLPGAN results example

The result of the training phase is composed of two generators, that are able
to produce a reliable translation from a source language to a target one, and two
discriminators. Usually, discriminators are discarded when training is over, but
those produced using this technique may be applied in other tasks, such as speech
recognition. In fact, they learn to distinguish among real and fake sentences, but
when the generators become more accurate and generate real-like sentence, then
they learn how good is a sentence and if its composition is correct.

11



Chapter 2

Related Works

In the following chapter, the technologies used for this thesis are explained, in order
to understand the underlying technologies and methodologies.

2.1 Deep Learning

2.1.1 Deep Learning Background
Deep learning is a branch of machine learning that uses algorithms based on the
structure of the human brain. The main components of the human brain are the
neurons, that produce signal transmitted by the synapses. An artificial neural
network [25] is composed by elaboration units called neurons [8], which, after
computation, transfer signals to the other units using the connection network
between them. The composition of a neuron is represented in figure 2.1. The
artificial neurons receive some input value and multiply them using a weight vector.
The result is a weighted sum, so a scalar value. A bias value may be added, then
the value goes through an activation function, and the result is the output of the
neuron.

Neurons are linked between them, creating a network. Most of the neural
network structures group the neurons in layers. In a fully connected neural network,
each neuron in a layer is connected to the neurons in the previous and in the next
layer. So when an input vector is given, the neurons in the first layer, called input
layer, produce their results and propagate them to the next layer. The operation
is iterated by the several layers in the neural network until the last layer, called
output layer, is reached. The result produced is used to define the error of the
calculation made by the neural network compared to the expected output. The
error is back-propagated through the network layers and the neurons update their
weights and bias values, also called offsets, according to it. The update value is

12



Related Works

Figure 2.1: Composition of a neuron

defined according to learning rate, back-propagation function and loss value. The
goal of this procedure is to find the most correct network parameters, in such a
way that the network can improve its predictions.

Figure 2.2: Neural network architecture

The architecture shown in figure 2.2 is the basic composition of a feed-forward
neural network, however, several architectures have been implemented in machine
learning during the years.

13



Related Works

2.1.2 Recurrent Neural Network
Another important neural network architecture that has been successfully applied
in Machine Learning and, specifically, in Natural Language Processing, is the
recurrent neural network [26]. The recurrent net uses a hidden state vector to
model the previous input and output data and uses it during the prediction of the
current output. In this case, the final output depends also on previous inputs of the
sequential series. Comparing the two architectures, both use the input value, but
the feed-forward net does not take into account the sequence of the prior predictions
and data. The main difference between feed-forward and recurrent neural networks
(RNNs in short) is the use of the hidden state vector that represents the context
based on prior inputs and outputs vectors. In most cases, the RNN architecture is
mono-directional and uses previous data, but bidirectional RNNs can be used to
look into future data too. In NLP, RNNs are used for a huge range of tasks, such
as classification, summarization and translation.

The most used RNN architecture in Natural Language Processing is the En-
coder Decoder RNN architecture, also called Sequence to Sequence RNN. In this
architecture, both encoder and decoder are RNNs. The encoder updates its hidden
states with the whole input sequence and produces a final context output vector.
This sequence of values is fed into the decoder, which expands the context vector
and gives a sequence of output vectors that compose the output sequence. This
architecture is widely used in translation and alignment tasks and it is the base
concept of more recent and more accurate approaches to them.

2.1.3 Long Short Term Memory Network
Another type of neural network architecture that is used in Natural Language
Processing and, more in general, in Machine Learning, is the Long Short Term
Memory architecture, often referred as LSTM [27]. This architecture was created
to solve some issues that emerge using RNNs, such as the short-term memory. This
issue mainly refers to the problem for which the recurrent neural network forgets
first elements of the sequence when long sequences are given as input. LSTM
architecture has an approach similar to RNN architecture one, but it computes
inputs, outputs and hidden states in a different way. Figure 2.3 illustrates the
difference between the core components of both the architectures. Instead of passing
input and hidden state through an activation function, LSTM introduces additional
gates and a cell state, used to address the problem of keeping or resetting the
context. The gates are activation functions used to define if previous information
should be kept or deleted (forget gate), if the cell state has to be updated or not
(input gate) or the value of the next hidden state (output gate). Cell state keeps
information during the processing of the entire sequence, reducing the effects of
short-term memory.

14



Related Works

Figure 2.3: Differences between RNN and LSTM cell.

All these features characterize a LSTM cell and puts up a more stable architecture
that is able to keep longer and less recent information.

2.1.4 Generative Adversarial Network
An important network architecture that is taken into account during the thesis
project is generative adversarial net, GAN in short. It is a network presented
in [10], which is trained to estimate generative models using an adversarial process.
The model is made using two models:

• a generative model G, that generates data into the learnt data distribution.
The generated data is used as negative training examples for the discriminator

• a discriminator model D, that estimates the probability that a data comes
from training data rather than G. It penalizes the generator for producing
implausible results

The G network is trained to maximize the probability of D making a mistake
and to foolish it, meanwhile D is trained to maximize the probability of making
the correct prediction. This type of training follows the minimax two-player game
approach. The whole model architecture is represented in figure 2.4.

Generator and discriminator have different training processes. During discrim-
inator training phase, the generator is kept constant, and the opposite happens
during the generator training phase. During first training steps, the generator
produces data with poor quality, so the discriminator learns to detect fake data.
As training goes on, the generator gets closer to real data producing data that fools
the discriminator, running out for a worsening of the discriminator, that can’t find
differences between real and fake data.

As expected, a GAN uses two loss functions: one for generator and one for
discriminator training. The formula that represents the objective is called minimax

15



Related Works

Figure 2.4: GAN architecture

loss and is
Ex[logD(x)] + Ez[log(1 − D(G(z)))]

, where D is the discriminator, G is the generator, Ex is the expected value over
real data, Ez is the expected value over the random inputs and z is a random noise
used as generator input. The goal of the generator is to minimize the minimax loss,
while the discriminator tries to maximize it. This model has outperforming results
in several tasks and machine learning branch, such as computer vision and natural
language processing, improving and making easier to exploit unsupervised training.

On the other hand, models based on GAN structure may be unstable. Indeed
it often happens that generators diverge and are not able to produce affordable
data, so the correct configuration among hyperparameters must be found to achieve
reliable results.

2.2 Natural Language Processing
The current section introduces the main technologies used in Natual Language
Processing and their basic principles.

Natural Language Processing, or NLP in short, is a branch of Machine Learning,
focused on the capability of understand, read, write and derive meaning from
human languages. The algorithms used during the thesis workflow use the same
approach to prepare and transform sentences in order to introduce them into the
input layer of the network. The first pre-training step used is the tokenization, a

16



Related Works

process that removes some characters as punctuation and segments the text into
words or group of words called tokens. Once the tokens are created, they must
be transformed in numerical values in order to feed them into the network. The
dominant approach that represents the input text as a numerical representation is
the word embedding.

2.2.1 Word Embedding
The word embedding is a numerical representation of a word, so a projection of the
word into a vector space. The simplest word embedding algorithm is the one-hot
encoding. Each world in a vocabulary is associated with a specific index. Given
a vocabulary of N words, a word is represented as an N -length vector, where all
values are 0 except the one associated to the word index, that is equal to 1. This
approach is sub-optimal because of several reasons:

• words that are semantically or syntactical similar may have completely different
representations and it is not possible to relate them.

• the more the vocabulary size , the more the vector length, so the curse of
dimensionality occurs.

• the word embedding is sparse and high dimensional, so the required memory
is not negligible.

• frequent words influence the behaviour of the net when less frequent words
occur. If the embeddings of a rare and of a frequent word are similar, then
the network will handle them as similar instead of learn how to handle the
rare one.

Better approaches used to produce embeddings that resolve partially the previous
issues are Word2Vec, FastText and Glove. These approaches exploit stronger
principles that allow to produce similar embeddings for semantically alike words.

Word2Vec

Word2Vec is an unsupervised learning method that computes continuous vectors
as distributed representations of words. The technique presented in [28] tries to
produce vector representation for a certain word that is close to similar words
representations, exploiting syntactical and semantic similarity. The produced
vectors can be used for algebraic operations and the result is close to the vector
representation of the expected word with an high accuracy. The neural network
language model used in the implementation can be trained using two different
approaches, represented in figure 2.5:

17



Related Works

1. Continuous Bag-of-Words Model (CBOW): the architecture is similar to a
feed-forward neural network language model made by the input and the output
layer. The projection layer of the network is shared for all words. In this
model, a word is classified using the word itself, four history words and four
future words in the sentence, that represent the context. The main difference
with standard bag-of-word model is that it uses the continuous distributed
representation of the context. In this approach, the order of the history and
future word does not influence the projection.

2. Continuous Skip-gram Model: its architecture is similar to CBOW, but instead
of predicting the current word based on the context, it tries to predict words
in a range before and after the current word. Using this approach, the network
tries to predict and understand the context of a word using the word itself.

Figure 2.5: Word2Vec learning approaches [28]

The word embeddings obtained with this technique demonstrate an high closeness
between similar words, but also for other type of similarities between words. The
examples explained in [28] show that operation vector(biggest) − vector(big) is
close to the value obtained by the operation vector(smallest)−vector(small). This
result leads to the operation vector(Italy)−vector(France)+vector(Paris), which
gives a vector whose is the closest to vector(Rome). The closeness of vectors is
obtained using cosine distance. The main issues of this approach are (i) words that
do not appear in the vocabulary cannot be embedded and (ii) words in vocabulary
but never appeared in training set are projected into an embedding that may be
inaccurate.

18



Related Works

FastText

FastText was presented in [29] to improve results obtained in [28]. It is a technique
that generates word embeddings taking a word and representing it as a bag of
character n-grams and using them to retrieve the entire word representation. In
contrast to the other models, it does not ignore the morphology of words. In this way,
even words that do not appear in the vocabulary can be represented as embeddings,
because of their n-grams embeddings. Also the rare word representations improve,
because the morphological aspect of the word, so each its sub part, is considered.
The model is based on the skipgram approach of Word2Vec and generates a
vector representation for each n-gram, then it sums them and obtain the word
representation. Instead of training to predict words that appear in the context, it
trains to predict the presence or the absence of context words. So for a certain
word used in the training, some context words are given as positive examples and
some random words from dictionary are used as negative examples. The net has to
define if a word is or not in context.

FastText exploits a bag of character n-gram representation of each word. The
representation is defined adding boundary symbols before and after the word, then
n characters are taken in order to form a n-gram. Shifting right by one character,
other n-grams are defined until the word ends, and the bag is defined. For each
n-gram, the embedding is calculated, and the word embedding is the sum of the
n-grams embeddings. FastText outperforms Word2Vec in most of the NLP tasks
and it is able to train on a large amount of data in short times.

GloVe

Global Vectors for Word Representation, or GloVe, is a model presented in [30] able
to learn vector space representations of words capturing semantic and syntactic
features. It tries to improve previous methods drawbacks, addressing their modest
performance on word analogy tasks. It exploits statistics computed over the entire
corpus focusing on a context window. GloVe model is trained on a global word-word
co-occurrence matrix that contains, for each cell, the word-word counts and makes
use of these statistics to define the space vectors. This matrix is referred as X.
The Xij value is the number of times that word j occurs in the context of word i,
so the probability:

Pij = Xij∑︁
k Xik

where ∑︁
k Xik is the number of times a given word appears in word i context,

can be defined as the probability that word j appear in the context of word i. In
this way, the co-occurrence probabilities can be used to find out some meaningful
information about how words are related. The main usage of these probabilities

19



Related Works

is to calculate ratio probabilities among two different words with respect to a
probe word k, that gives information about the relationship of the two words. In
this way, the relationship between two words can be used to distinguish relevant
words from irrelevant words for a certain probe word and to discriminate between
relevant words. The ratios are used as starting point for vector learning instead of
probabilities themselves. The function that retrieves word vectors using words i, j
and k takes the form

F (wi, wj, wk) = Pik

Pjk

where w are the word vectors and k is the context word vector.
GloVe outperforms other approaches (i.e., Word2Vec) but it require more com-

putational resources to give significant improvements.

2.2.2 Contextualized word embeddings
The models presented in the previous section obtain good results in the definition
of the semantic e syntactical relationship among words, but only in simple and
shallow contexts. More complex characteristics about syntax and semantics can
not be caught. Another issue of shallow models is when polysemous words occur.
In this case, the embeddings obtained for a polysemous word are the same even
the meanings are completely different, disregarding the context in which the word
is used. In this way, the contextualized meaning of each word in a sentence is not
captured. In order to increase performances and to create a deeper contextualized
word representations, new models and techniques have been implemented.

Most of the improvements in NLP, and more specifically in contextualized
embeddings, can be attributed to progress of general deep learning. In fact, all
models explained in the next paragraphs use deep learning networks. Examples
of neural network architectures are Transformer [18], BART [24], ELMo [31] and
BERT [21]. Most of these architectures use the attention mechanism.

Attention mechanism In NLP, attention may be considered as a way to define
the importance of words in a sentence with respect to a certain word in the text.
For example, if the sentence is "I am eating a green apple" and the word eating is
considered, the focus is to find a food word in the sentence, which is apple. The
attention mechanism tries to give more importance to this word instead of the
others, so it defines a value for each word, and the higher the value, the higher is
the relevance for the word in the starting word context. There are several attention
mechanisms that are used in Machine Learning and are chosen according to the task.
The one used in Transformer model [18] and in most of other models explained
in next sections is the self attention, which relates different positions of the input

20



Related Works

sequence to the current word in order to compute the correlation between it and
the previous part of the sequence. Instead of performing a single attention function,
obtaining a dmodel-dimensional vector, the result is obtained projecting the input
values in h different dimensions. The h dv-dimensional vectors are concatenated and
projected, resulting in a final dmodel-dimensional vector. This attention mechanism
is called multi-head attention and gives information by different representation
sub-spaces at different positions.

Transformer

Transformer is a neural network architecture presented in [18] that combine sthe
benefits of sequential models such as LSTMs and RNNs. It is able to model long
term dependencies and use them during the training phase efficiently. Another
improvement made by Transformer is the computational parallelization, while
previous approaches preclude it for their sequential structure. The Transformer
architecture is simpler than previous approaches and it is based on attention
mechanisms.

It is an encoder-decoder architecture model that uses attention mechanism in
order to model a representation of the entire sequence to the decoder at once instead
of a sequential representation as in RNN. This is the main difference between this
approach and RNN approach, because rather than building a single context vector
starting from the hidden state, it creates a connection between the context vector
and the source input.

The encoder is composed as a stack of six identical layers. Each layer has
two sub-layers, which are a multi-head self-attention mechanism and a position-
wise feed-forward network. Each sub-layer uses a residual connection and a layer
normalization. As result, each sub-layer computes:

LayerNorm(x + Sublayer(x))

where x is the input value. The output produced by each sub-layer is a 512-length
vector.

The decoder has six identical layers as well. The basic composition is the
same as the encoder, but the decoders adds another sub-layer, which performs
multi-head attention over the output of the encoder stack. Also this layers use
residual approach followed by layer normalization. The self-attention mechanism
is quite different from the previous one, because it is masked in order to avoid to
attend to subsequent positions. In this way, the ith word prediction depends on
the i − 1 previous outputs. The entire model architecture is shown in figure 2.6.

The Transformer outperforms previous approaches in several tasks, such as
machine translation, summarization, but also in language modeling. In fact, it
is able to model properly a language, capturing deeper details about words and

21



Related Works

Figure 2.6: Transformer architecture [18]

their relationship, and it creates embeddings that are more accurate than previous
approaches and that are defined according to the context.

ELMo

Embeddings from Language Models representations, or ELMo representations, are
deep contextualized word representations that model both complex characteristics
of word use, such as syntax and semantics, and linguistic contexts. The deep
contextualized word representation model that comes from [31] is used in several
NLP tasks, such as question answering, textual entailment and sentiment analysis.
The language model, presented in [31], derives embeddings from a bidirectional
LSTM training on a large text corpus. It is trained in order to predict the next word
in a words sequence, a typical approach used in Language Modeling tasks. It uses
all the internal layers states in order to define the word representation and linearly
combines them. It is demonstrated that higher-level states capture higher-level
aspects of words, meanwhile lower-level ones model properly aspects of syntax. In

22



Related Works

this way, ELMo word representations are functions of the entire input sequence
and captures more details about it. Representations are computed using two
bidirectional language models, which combine both forward and backward language
models and and model the probability of token tk using history tokens, future
tokens and contexts. Using this approach, ELMo looks at the entire sentence before
assigning an embedding to a certain word. ELMO produces accurate embeddings
and because of this it is applied to several NLP tasks. The main advantage of
ELMo approach is the use of both previous and future context, but the use of
LSTMs implies the related problems about the computational costs and the lower
results obtained in comparison with attention-based approaches.

BERT

Bidirectional Encoder Representations from Transformers, or BERT, is a language
representation model designed to train deep bidirectional representations from
unlabeled data using both left and right context in all layers. Once trained, BERT
model can be fine-tuned on a specific task adding an additional output layer on the
stack. The model obtains state-of-the-art results in eleven NLP tasks, becoming the
de facto standard algorithm in most of them. The approach proposed in [21] uses
the masked language model (MLM) pre-training objective. Using this technique,
the model randomly masks some tokens from the input, and the goal is to predict
the original masked words based on their contexts. This approach fuses completely
left and right contexts, leading to a bidirectional Transformer. Another technique
used during BERT training is the next sentence prediction, which significantly
improves the context representation. According to [21], BERT framework is trained
in two separated steps: pre-training and fine-tuning steps. During pre-training,
the model is trained on unlabeled data over several tasks, then during fine-tuning,
labeled data are used according to the defined task. In this way, the pre-trained
parameters and the main architecture are the same for each task, and the proper
fine-tuning model is applied. The model architecture is a multi-layer bidirectional
Transformer encoder based on [18], made by 12 layers and a 768-length hidden
state vector. BERT model hugely outperforms other contextualized models and
becomes the standard model in most of NLP tasks. It is also used as starting
point of several next researches, such as RoBERTa([32]), XLM-RoBERTa([33]),
SBERT([34]), MobileBERT([35]), multilingual BERT ([21]) and ALBERT([36]).
All of them make adjustment of base model according to specific tasks and use
cases, based on computational costs, memory requirements and used languages.

Figure 2.7 shows main differences among Transformer, BERT and ELMo ar-
chitectures. BERT structure is identical to Transformer one, but BERT use both
previous and future tokens and exploited them in the training phase according to
the masked language model objective, meanwhile Transformer masks off future

23



Related Works

data. Both ELMo and BERT are bidirectional, so use left and right contexts, but
ELMo implements it using two separated unidirectional networks.

Figure 2.7: Differences among BERT, Transformer and ELMo modeling architec-
tures

BART

BART is a denoising autoencoder presented in [24]. The architecture is a standard
sequence-to-sequence Transformer except for the modified activation function
(GeLU instead of ReLU). The base model encoder and decoder have the same
layers of Transformer architecture. BART model is related to BERT model as
well, because it uses a similar approach during the training. The main differences
from BERT are the addition of a cross-attention over the final hidden layer of the
encoder and the removal of the feed-forward network used by BERT before the word
prediction. The model is trained by corrupting text with a noising function and
learning to reconstruct the original text. The noising function used in [24] includes
token masking (random tokens are replaced with mask tokens), token deletion
(random tokens are deleted and the model decides which positions are missing
inputs), text infilling (a random number of consecutive words is replaced with a
single mask token), sentence permutation (the document is divided in sentences
then, they are shuffled) and document rotation(a token is selected randomly and
the document is rotated so that it begins with it). Transformations applied by the
noising functions are represented in figure 2.8.

BART can be used for several tasks such as sequence classification, token
classification, sequence generation and machine translation.

BART, BERT and Transformer models do not retrieve directly contextualized
word embeddings, but their encoders retrieve word embeddings that can be used
to produce sentence embeddings. A sentence embedding summarizes the whole
sentence given in input. If the sentence embedding is given as input to a generative
model or to a decoder, then the result is a generated sentence. The sentence
embedding encodes the meaning of the whole sentences and contains information

24



Related Works

Figure 2.8: Transformations applied in noising function [24]

about the context in which each word is said. This type of embedding is useful in
text alignment and in neural machine translation branches, that will be explained
in the next sections.

2.2.3 Word and Sentence Alignment
Word alignment is a task of Natural Language Processing. It is a branch of
Machine Learning applied on Natural Language Processing that is focused on
aligning embeddings obtained for words in different languages with the same
meanings and contexts. The problem is that the embeddings given by two different
languages models on input sentences with the same meaning are not equal or similar
in most of the cases. As instance, the embeddings obtained by an Italian model
that takes the sentence "Io mangio una mela" as input are not similar to the ones
obtained by an English model that compute the embeddings of the sentence "I eat
an apple". This is due to the unsupervised learning used in all language modeling
architectures, because there isn’t a perfect starting value for a word embedding, so
architectures learn how to model correctly a language without having a ground
truth or a reference point that should be achieved. This causes zero relationship
among models, which know a language but don’t know how to model other ones
and how to create a link between them. So the goal of word alignment is to find
a technique to get a sentence embedding in a source language and obtain the
corresponding sentence embedding in a target language that is as close as possible,
and this is obtained by performing some operations. There are several techniques to
perform word and sentence alignment, such as pseudo-multi-lingual corpora-based
methods, that use monolingual word embeddings models and construct a corpus
made with words from both source and target languages, or joint methods, that take
parallel text as input and learn both source and target languages, or mapping-based
methods, that take models trained on a single language corpus and a multilingual
corpus is used to create mapping functions from a language model to another. An

25



Related Works

example of joint method is multilingual BERT([37]), a BERT model pre-trained
from monolingual corpora in 104 languages. The results of analysis made in [37]
show that the model is robust and is able to generalize cross-lingual dependencies,
but it is not able to learn specifically each language or a subset of them. Indeed
this model is able to create a generic language vector space, but some specific
language-related structures have not been captured.

The same task is addressed in sentence alignment. In this case, models produce
an embedding that summarize the input sentence. Sentence alignment aims to
make embedding for sentences with same meaning as similar as possible, in order
to produce a shared vector space for all languages. Since sentence embeddings are
defined using word embeddings, this task leads to word alignment too, including a
more robust and fine-grained alignment at several levels of detail.

In the following section, the basic approaches and the methods compared to the
thesis one will be explained. Most of the them belong to mapping-based approach
because they reach outstanding results and because some of them use an approach
that has been exploited as starting point in this thesis work.

Word Alignment Techniques

A research published in 2013 in [38] explains the first technique aiming to align lan-
guages vector spaces. In this research, the goal is to use vector space representations
of words and phrases of several languages, which define the models of languages,
and to learn a linear projection between them. At first, the monolingual models are
built, then a small bilingual dictionary is used to learn a linear projection between
two languages. The projection is defined for each source-target embedding vectors
pair, and the formulae is:

zi = Wxi

where zi is the approximated target language word vector, xi is the source
language word vector and W is the projection matrix. Applying the projection and
obtaining the most similar word vector, the result is the translated word embedding
in the target language. In order to increase the approximation, matrix W values
are trained in order to optimize

min
W

n∑︂
i=1

||Wxi − zi||2

The idea of the projection came from the similarity of word vector representations of
similar words in different languages obtained using PCA reduction, so the projection
is a simple method that computes the source language word representation in the
target language space in the shape of a word embedding. The technique was applied

26



Related Works

on monolingual Word2Vec([28]) models trained on large corpus. The main problems
of this approach are the need of a aligned bilingual dictionary, which is a limitation
for the large amount of languages, and the need of an already trained model for
each language,which is a limitation for languages with few data. Another issue
related to this approach is the use of a translation matrix that is not orthogonal,
and this may cause inconsistency and inaccuracy. This method was used as starting
point of most of subsequent researches.

An example of improvement is the model defined in [39]. It is based on [38]
implementation, but it improves some of its aspects introducing the normalization
of word vectors, so all vectors are located on a hyper-sphere and the inner product
falls back into it. In this way, the cosine distance measurement is more accurate
than the one obtained in [38]. Another constraint that improves [38] was the use of
an orthogonal transform matrix, so the normalization constraint on word vectors is
respected.

An issue that still remains unresolved is the hubness problem. The methodology
proposed in [40] aims to resolve this issue. Unsupervised methods that learn
mapping functions from a source space to a target one associate the predicted
approximated target word to the nearest neighbour vector in target space. The
neighbourhoods are polluted by hubs, which are vectors that tend to be near to
an high portion of items. In order to reduce the effect of hubness problem, pivots
elements are defined as a set of vectors whose neighbours are retrieved, and target
elements are defined as vectors which retrieve their neighbours. Target elements
neighbours are ranked by downplaying the importance of elements that have a high
hubness score, defined taking into account the number of times the word occurs in
k-nearest neighbour lists of pivots.

Another improvement was made by authors of [41] research, which proved that
linear transformation between vector spaces should be orthogonal and that the
singular value decomposition (SVD) technique gives better results and a more
robust approach. This technique also forms sentence vectors by summing and
normalising over word vectors composing it and applying the SVD to sentence
vectors. This demonstrates to improve alignment of the underlying word vectors.
The method requires a dictionary of paired vectors and it is used to infer the
orthogonal transformation.

The work proposed in [42] increases the accuracy of the mapping among language
spaces. The dimension of bilingual dictionary is significantly reduced, and this
increases usability for most language pairs. This methodology needs a 25 pairs
vocabulary to initialize mapping among spaces. With the learned mapping, the
dictionary is enlarged with new pairs obtained during the mapping itself. Using
this self-learning fashion, the method exploits similarity of independently trained
embeddings. Instead of taking a seed training dictionary with thousands pairs,
learning mapping using it and evaluating the goodness on a evaluation dictionary,

27



Related Works

this method uses a starting seed dictionary containing tens of pairs and uses it to
produce its own output dictionary, considering it better than the original one. Once
the new dictionary is generated, this method is iterated to produce a more accurate
dictionary until the convergence criterion is reached. During each iteration, the
generated vocabulary is used to increase alignment among embeddings, and it
is considered as ground truth. This approach aims to obtain a better mapping
based on real learned data and uses few starting information, allowing mapping
among several languages pairs with few translation information. It is applied to
pre-trained monolingual models such as Word2Vec([28]) and improves results of
previous techniques.

Another approach that resolves the alignment task was presented in [43] and aims
to completely remove the supervision in cross-lingual mapping. The approach takes
inspiration from generative adversarial networks introduced in [10]. The model
starts taking monolingual word embeddings trained separately on two languages
and learns a mapping function f which should find the nearest target embedding
starting from the source one. The mapping function f is learned and applied by
the generator G on input vector x. The generated value f(x) is passed to the
discriminator D, a binary classifier that tries to distinguish between fake values f(x)
and real values y. This approach does not require translation pairs to supervise
the training and improves the usability of mapping for languages with few or
no translation data. The method only requires monolingual models in order to
align embeddings, so low resource languages models are not so accurate, but this
is a problem in previous approaches as well. In order to increase accuracy and
correctness of transformations, self-consistency constraint is required. It implies
that if the source language embeddings are transformed in target ones using matrix
G, then GT matrix should transform from target to source language embeddings. An
additional reconstruction loss is added to measure the correctness of reconstruction
of original embedding and is defined as:

LR = − cos (x, GT Gx),

where x is the source language embedding and G is the transformation matrix. This
loss adds a method to control the capability of both translation and reconstruction
because G is updated to achieve a more accurate mapping. The model produce
in [43], such that lots of upcoming researches, exploits the adversarial approach, as
MUSE([22]) does.

MUSE model, presented in [22] merges most of the previous explained approaches
in order to increase accuracy in unsupervised translation without using cross-lingual
annotated data. The model uses two large monolingual corpora, one in source and
one in target language, and learns a mapping function between the two embeddings
spaces operating in two steps. The first step uses a player game approach similar
to [43], with a discriminator that learns to distinguish between mapped source and

28



Related Works

target embeddings, and a generator that tries to learn the best possible mapping in
order to fool the discriminator. The mapping function uses an orthogonal matrix
and is defined using the single value decomposition. Once it is done, the second
step starts. In this phase, a dictionary is extracted from the resulting shared
embedding space and it is used during the mapping fine-tuning, performed with
the Procrustes solution. A Procrustes problem is a method which can be used to
find out the optimal rotation and/or reflection of an object with respect to another
one. The most frequent and best dictionary pairs are used as anchor points for
Procrustes, which refines the mapping parameters. Finally, less frequent words
performances are increased by changing the metric of the space. The previous
steps are iterated until some convergence and stopping criteria are reached. A
new unsupervised selection metric is introduced to define the mapping quality and
to define the stopping criteria. To mitigate the hubness problem, a cross-domain
similarity adaptation is introduced. In [22], source and target embeddings are
trained using FastText model ([29]). The model obtained state-of-art results in
word translation, cross-lingual semantic word similarity and sentence translation.

Sentence Alignment Techniques

The approaches introduced in the previous sections use methods that exploit
word-level details to align different languages. In this section, sentence alignment
approaches are explained. These approaches lead to an alignment among languages
taking into account more complex characteristics of words in languages, such as
syntax, semantics and linguistic contexts.

A model that strongly improved alignment and multilingual sentence embedding
is the model introduced in [44], called LASER. LASER is a joint learning model that
learns and generates multilingual sentence representation for 93 languages written
in 28 different scripts. The model uses a BiLSTM encoder with a shared vocabulary
for all languages. It is language agnostic and is trained on a concatenation of
all training corpora, so it has no explicit information or signals about the input
language. This encourages the model to learn language independent representations.
It is coupled with an auxiliary decoder trained on parallel corpora. The decoder
takes a language ID embeddings that specifies the language that should be generated.
The language ID embedding is concatenated to decoder inputs and to sentence
embeddings. English annotated data are used to learn a classifier on top of resulting
embeddings, so the English information can be transferred on other languages
without modification. Composition of LASER model is shown in figure 2.9.

In [44], LASER is evaluated on XNLI task, cross-lingual classification, bitext
mining and similarity search. The results outperform previous approaches and
gives a more robust approach. It also gives a way to learn more languages together
and to transfer information from a rich annotated language as English to a poor

29



Related Works

Figure 2.9: LASER architecture, [44]

annotated one, such as Hindi or some Chinese dialects. The models trained using
this method achieve state-of-art results in sentence alignment tasks, and some of
its techniques gives the basis for this thesis work. While LASER works well for
identifying exact translations in different languages, it works less well for assessing
the similarity of sentences that are not exact translations. This problem occurs
because the model is trained in order to face alignment task and obtain the most
aligned model, without caring of the similarity among non-parallel sentences.

Significant improvements in the approach used to resolve task are reached in [45].
The presented method extends sentence embedding models to new languages,
creating monolingual models that map sentences to the same location in vector
space. More precisely, an original monolingual model, called teacher model, is used
to generate sentence embeddings and a new system, called student model, is trained
miming the original model in order to generate sentence embeddings that should
be as close as possible for the same sentences. The model built in [45] requires few
sample sentences in the addressed languages, low hardware requirements and is
extendable to more than 400 languages. The model is trained using Sentence-BERT
([34]), which is a BERT model with a mean pooling layer applied on the output
that produce sentence embeddings.

A teacher model M , which maps sentences from a source language s to a
dense vector space, is required. Then, a parallel translated vocabulary is needed,
in order to define a paired sentence set (s1, t1), ..., (sn, tn), where ti is the ith

translated sentence into target language t. A student model M̂ is trained such
that M̂(si) ≈ M(si) and M̂(ti) ≈ M(si). The mean-squared loss over a batch B,
defined as

1
|B|

∑︂
j∈B

[(M(sj) − M̂(sj))2 + (M(sj) − M̂(tj))2]

is minimized in order to achieve the training objective. As it is, the student model
M̂(si) learns the representation of the teacher model M . The training steps are
represented in figure 2.10.

This training approach has the advantage that an embedding model can first be

30



Related Works

Figure 2.10: Distillation training method, [45]

trained on an high-resource language, then it can be extended to support further
languages or to extend low-resource language embeddings using few aligned data.
During [45] experiments, an English SBERT and XML-RoBERTa models are used
as teacher and student models respectively. The models trained using this method
achieve results that outperforms similar techniques, but don’t reach LASER ones.
The main difference with LASER is the usage of data during the training and the
approach used to align models. In fact this technique is not completely focused on
producing a language-agnostic model, but it wants to produce a shared vector space
among languages, so that each language model can be aligned to it. Moreover,
this approach has outstanding results even if it does not reach the state-of-the-art,
and this is because it can reach high performance in both alignment and similarity
search task. LASER, although, at he time of writing has state-of-the-art in aligment,
but its performances in similarity search task are not comparable to [45] ones.
Distillation approach is the one used as starting point in this thesis work.

The last alignment method presented is defined in [46] and proposes a contextual
version of word retrieval to evaluate the degree of alignment. At first, multilingual
BERT is taken and is pre-trained on sentences from Wikipedia, written in 104
languages, performing masked word prediction and next sentence prediction tasks.
The next step is the definition of contextual alignment. Given two languages, two
models are contextually aligned if they have similar representations for word pairs
within parallel sentences. A parallel corpus C containing N parallel sentences is de-
fined as C = (s1, t1), ..., (sN , tN). Each sentence pair (s, t) have word pairs denoted
as a(s, t) = (i1, j1), ..., (im, jm), where a tuple (i, j) define si as the translation of
tj and vice versa. The contextual alignment of a model f can be defined as the
accuracy in contextual word retrieval, and the formulae is

A(f ; C) = 1
N

∑︂
(s,t)∈C

∑︂
(i,j)∈a(s,t)

1(neighbor(i, s; f, C) = (j, t)),

31



Related Works

where 1 represent the indicator function and neighbor function retrieves the most
similar word to the ith word of source sentence s in the target sentence t:

neighbor(i, s; f, C) = s
t∈C,0≤j≥len(t)

im(f(i, s), f(j, t).

The same procedure is applied in the other direction, and the average between
the two directions is used to define the degree of contextual alignment. Alignment
accuracy is encapsulated in the loss function, but the squared error loss is applied
instead of cosine similarity loss (CSLS):

L(f ; C) = −
∑︂

(s,t)∈C

∑︂
(i,j)∈a(s,t)

||f(i, s) − f(j, t)||22.

The approaches that mostly contribute to thesis proposal and that give points of
comparison are [22], [43], [44] and [45]. Both [22] and [43] use adversarial approaches
during the learning, which is the focus point of thesis method. [44] uses and
produces an encoder-decoder model, which is the expected output structure of
thesis work. [45] Approach uses sentence embeddings distance as focus in order to
achieve multilingual alignment. The method proposed exploits the same distance
to improve sentence alignment and to produce aligned language models.

2.3 Computer Vision and Domain Adaptation
One of the most important contribution to the method proposed in this thesis
comes from an approach of Computer Vision field, that is CycleGAN model, used
to address domain adaptation task. In next section, computer vision and domain
adaptation will be briefly introduced. The main approaches to domain adaptation
will be presented, and CycleGAN will be deeply explained.

Computer Vision

Computer vision is a machine learning branch which makes computers gain high-
level understanding from images and videos. Computer vision includes methods for
acquiring, processing, analyzing, understanding and extracting high-dimensional
data from digital images. Main computer vision models are built using convolutional
neural networks, which are formed by several convolutional layers followed by
some fully connected feed-forward layers. Each convolutional layer performs three
operations, that are convolution stage, sliding filter activation stage and pooling
stage. Convolution stage processes images and extracts features using filters, which
contains the trainable weights of the neural network. Each convolutional layers
contains several filters, and a feature is extracted by each of them. An activation
function is applied during the activation stage simulating biological activation to

32



Related Works

input stimulus and providing non-linearity to computation. The last operation is
pooling, which performs feature down-sampling using sliding filters summarizing
statistics of nearby outputs. According to the task, the output of convolutional
layers may be given as input to some fully-connected layers. The convolutional
layer output, which is represented as a matrix, is flatted down in a row vector,
that is used as fully connected layers input. A typical convolutional layer structure
which performs image classification is shown in figure 2.11.

Figure 2.11: Convolutional Neural Network architecture

Computer vision include several sub-domains such as scene reconstruction, event
detection, video tracking, image recognition, learning, motion estimation and 3D
scene modeling. The sub-domain that is taken into account during this thesis is
domain adaptation.

Domain Adaptation

Some particular problems or domains may have few manually annotated datasets,
so the CNNs trained from scratch on few data produces inaccurate results. This
make the obtained models as unusable. Transfer learning comes to the aid giving a
model pre-trained on an huge amount of data, so they may be used as pre-trained
networks and can be fine-tuned on the small annotated dataset for the specific task.
The problem is not completely solved because the input data may at test time may
differ significantly from the training data, and this would lead to overfitting. The
reason the model doesn’t perform well is that the addressed domain changes, so
it is not able to produce an accurate result. Domain adaptation comes to rescue.
Domain adaptation is a machine learning sub-discipline. It deals with scenarios in
which a model trained on a source domain or on a distribution of them is used in
the context of a target domain that differs from the ones used in the training. In
general, domain adaptation uses data from a source domain, that contains highly
annotated data and in which the model achieves high results, to solve tasks in
target domains, in which the amount of annotated data may be lower or the model
has unacceptable results. This is useful in domains with few annotated data and

33



Related Works

increases results accuracy in them. This is the reason why this task is helpful in
thesis work. In fact, an highly annotated source language, such as English, can
increase results in few annotated languages, such as Hind or some Chinese dialects.

Several approaches to domain adaptation were defined. At first, shallow algo-
rithms were applied. A kernel function maps data from a source to a target domain.
This method, presented in [47], is called Transfer Component Analysis and learns
a low rank empirical kernel mapping. A geodesic flow kernel is defined in order
to describe the entire path followed during the mapping from a source to a target
subspace. The results obtained using shallow models are not so accurate, so deep
domain adaptation approaches were defined.

Domain-Adversarial Neural Network

The first deep adversarial domain adaptation is called Domain-Adversarial Neural
Network, or DANN([48]). The neural network is expanded with a new branch made
by fully connected layers with an output layer that produces two output values.
The output values are used to define if the input value is from the source or target
domain, and the resulting prediction is called domain label. So the input goes
through the first part of the network, called feature extractor, which is composed
by the convolutional layers of the network. Once the output of convolutional
layers is computed, the intermediate output is forwarded through the two branches
composed by fully connected layers, which are called label predictor and domain
classifier respectively. The first one produces the task output and the loss Ly is
defined according to the task, then it is back-propagated through label predictor
and feature extractor layers. The second branch generates the domain label, which
is used to define the domain loss Ld, so that loss is back-propagated through domain
classifier layers, then it goes through a gradient reversal layer and finally in the
feature extractor layers.

Adversarial Discriminative Domain Adaptation

Another deep approach is Adversarial Discriminative Domain Adaptation, called
ADDA ([49]). This technique tries to achieve domain adaptation by using adversarial
training. At first a source encoder CNN is trained on source data. Once the source
encoder CNN is trained using annotated source images, adversarial adaptation
is performed by learning a generator, composed by the target encoder CNN, to
produce data such data a discriminator should not be able to distinguish among
encoded source data and target data. The discriminator, which predicts the
domain label of data, should not be able to distinguish data from different domains.
According to the discriminator prediction, the target encoder updates itself to
increase the accuracy. In testing phase, target images are mapped with the target

34



Related Works

encoder to the shared feature space and the classification is performed using the
source pretrained classifier. ADDA techinque is represented in figure 2.12.

Figure 2.12: ADDA [49] and CoGAN [50] architectures and training approaches.

CoGAN

The CoGAN model [50] uses a similar approach, using two generator-discriminator
pairs, one for the source and one for the target distribution. Some generators and
discriminator weights are shared to learn a domain-invariant feature space. Using
this approach, labeled target data can be generated and can be used in tasks such
as classification. CoGAN structure is represented in figure 2.12.

CycleGAN

The last approach explained, and the one which gives the bases to the thesis imple-
mentation, is the CycleGAN. CycleGAN, presented in [23], is a model implemented
in order to resolve the image to image translation, a task in computer vision where
the mapping between an input image and an output image is learnt using a training
set of unaligned pairs. It learns to translate images from a source domain X to
a target one Y without paired example, and this is one of the most important
features of this approach. In fact, not all the image domains contain enough data
to build a reliable and resilient model, and the amount of paired datasets is even
lower. In this way, even if a domain does not have aligned data with another
domain, the model is still able to address domain adaptation task.

A mapping function G : X −→ Y is learned using adversarial loss to make
distribution of G(X) images as indistinguishable from the distribution Y . An inverse
mapping function F : Y −→ X is applied on a input image y and translated image
F (y) is generated. A cycle consistency loss is introduced to enforce F (G(X)) ≈ X
and G(F (Y )) ≈ Y constraints. The mapping functions are learned using adversarial
loss, so generators G and F learn mapping function and inverse mapping function
respectively. Two adversarial discriminators DX and DY are introduced, where
DX aims to distinguish between real images x in domain X and translated images
F (y) that should be as close as possible to domain X images. The same is done in
the opposite direction, so DY aims to discriminate between Y and G(x) images.
The architecture of a CycleGAN is represented in figure 2.13.

35



Related Works

Two losses are introduced to reach the objective:

• Adversarial Losses, which are applied to both generators during the definition
of the mapping functions. These losses aim to align the generated images
distribution to the data distribution in the target domain. The objective of
mapping function G : X −→ Y and its discriminator DY is computed using a
loss function, and its formula is

LGAN(G, DY , X, Y ) = Ey[logDY (y)] + Ex[log(1 − DY (G(x)))]

The same objective is addressed by the mapping function F : Y −→ X and the
discriminator DX , and its loss function formula is

LGAN(F, DX , Y, X) = Ex[logDX(x)] + Ey[log(1 − DX(G(y)))]

• Cycle Consistency Loss, which is used to obtain cycle consistency and to enforce
coherence constraints on generators. In this way, for each image x from domain
X, the translation cycle should be able to bring back to the original image x.
This leads to a forward cycle consistency defined as x −→ G(x) −→ F (G(x)) ≈ x.
Same considerations can be applied to satisfy the backward cycle consistency
in the opposite direction, defined as y −→ F (y) −→ G(F (y)) ≈ y. The cycle
consistency loss is represented in figure 2.13. The cycle consistency loss is
calculated as

Lcyc(G, F ) = Ex[||F (G(x)) − x||1] + Ey[||G(F (y)) − y||1]

Figure 2.13: Model architecture and cycle consistency losses in CycleGAN [23]

The full objective followed during the training can be resumed as

L(G, F, DX , DY ) = LGAN(G, DY , X, Y ) + LGAN(F, DX , Y, X) + λLcyc(G, F )

,
where λ is an hyper-parameter used to control the relative importance of the two

loss types. Both loss types are necessary during the training, in order to introduce

36



Related Works

Figure 2.14: Generator architecture in CycleGAN model, retrieved from
towardsdatascience.com (last access: June 2021)

the cycle consistency and because the only cycle loss is not sufficient to let the
model converge.

Each CycleGAN generator has three sections: an encoder, a transformer and
a decoder. The input image is forwarded through the encoder, and a shrinked
representation of the image is obtained. It is passed to the transformer, made of
six residual blocks, then it is expanded by the decoder, which enlarge the image
and produce the final image in RGB. The generator architecture is represented in
figure 2.14.

Discriminators are PatchGANs, fully convolutional neural networks that output
the probability of the image being real. PatchGAN are computationally efficient
and look at a patch of the image, focusing on a more surface-level features and
producing a more effective prediction.

CycleGAN strongly outperforms previous approaches in domain adaptation
and image translation, but the main feature introduced is the possibility to use
both paired and unpaired datasets during the training. It works well on tasks
that involve color or texture changes, or collection style transfer, but tasks that
require substantial geometric changes fail. This approach is the core part of the
implementation explained in this thesis. In fact, its approach can be adapted in a
Natural Language Processing task such as the Neural Machine Translation because
of the similarity of the tasks. Moreover, the usage of a cycle consistency loss might

37



Related Works

introduce more stability in the translation process, increasing the quality as well.

38



Chapter 3

Implemented methods

This chapter aims to explain accurately the method implemented to address the
task proposed for the thesis.

As preliminary work, several word and sentence alignment approaches have
been analysed. Most of them exploit mapping-based techniques introducing sev-
eral improvements, such as matrix orthogonality, hubness problem solutions and
singular value decomposition technique, producing a more robust approach to map
embeddings from a source to a target domain and vice versa. Their main criticism
can be addressed tackling the shallowness of the mapping operation, indeed this
leads to a weak understanding of more complex linguistic structures and contexts.
Using those architectures, a polysemous word is mapped to the same word in
the target space, even if its usage can be deeply different. Improvements have
been introduced with [44] and [45] methods, which use deeper approaches to align
languages. Both those approaches exploit contextualized word embeddings models,
which produces sentence embeddings.

A sentence embedding represents a summary of the whole sentence, so it can be
used by a decoder model to construct the sentence in the target space (e.g., the
approach proposed by LASER[44]). As result, LASER encoder produces the same
embedding for sentences which have the same meaning and are written in different
languages. Conversely, this approach produces insufficient results for sentences or
words that are not one the exact translation of the other, but have similar meanings.
Moreover, the embeddings produced using two sentences in the same language that
have similar meanings have weak o no connection between them.

This issue has been addressed in [45], that produces a separate model for
each language. Given the knowledge induced into a language model for a given
idiom (i.e. English BERT), the embeddings of two similar sentences in the same
language have short distance in the embedding space. After the distillation training,
language models associated to different languages produce similar representations
for sentences which could be similarly translated.

39



Implemented methods

An aspect that can be strongly exploited is the similarity among the charac-
teristics of neural machine translation task in natural language processing and
domain adaptation task in computer vision. During years, it happened that natural
language processing and computer vision shared some techniques to address similar
tasks, but no technique have been shared to address these tasks at the time of
writing. The domain adaptation aims to transform an image from a source domain
to a target one and the same approach is used in neural machine translation. In
fact, in the NLP context, each language can be seen as a separate domain, therefore
the translation of a sentence from a source to a target language can be seen as the
adaptation of an image from one domain to another. This has led to the adaptation
of a computer vision model to the world of natural language processing. Analyzing
the most important approaches used in domain adaptation, CycleGAN ([23]) seems
to be the most useful for the task proposed in this thesis.

The goal of this thesis work is exploit CycleGAN architectures to obtain a new
sentence alignment approach by exploiting the main advantages of the previously
explained methods. The model points to align embeddings for sentences written in
different languages with the same meaning and jointly to translate sentence among
languages. Taking a sentence from the source language, the model should be able
to translate it in a target language, and the produced sentence embedding should
be as close as possible to the embedding produced for the same sentence written in
another language. In this way, a shared space is produced among languages, and
each model produces embeddings in that space. Even similar sentences fall close to
each other, taking into account context and complex linguistic structures. Starting
from a sentence embedding in the shared space, a decoder, which is associated to a
specific language, should be able to generate the proper sentence in it.

In next sections, the implemented architecture, called CycleNLPGAN, and each
sub part of it, will be explained. The various aspects of training phase will be
explained in detail as well.

3.1 Main architecture

CycleNLPGAN model is built following the CycleGAN model approach. The model
is partially modified in order to create a shared vector space among languages, and
jointly allowing it to translate sentences from a source language to a target one
and vice versa.

CycleNLPGAN is an architecture made by two different GANs, and each of
them carries out the transformation from a language into another. The whole
architecture is represented in figure 3.1.

Each GAN is made by a generator G and a discriminator D.

40



Implemented methods

Figure 3.1: CycleNLPGAN structure

3.1.1 Generator

The generator leans a mapping function from a source language to a target one.
Usually, the input of a generator is a random noise, which is expanded to produce
a specific value, such as a sentence or an image. The generator of a CycleNLPGAN
is quite unusual, because it is made by an encoder and a decoder part, so it requires
a sentence as input, which is shrinked by the encoder part and then expanded
to produce a sentence in a target language by the decoder part. In this way, the
input of the generation phase is no longer a random value, but a summary of the
starting sentence. This is the first main difference from a traditional GAN. In
fact, the standard generator is made by a decoder-like model, meanwhile each
CycleNLPGAN generator contains an encoder too.

Starting from an input sentence x, the generator G applies tokenization, encodes
the sentence and produces a sequence of word embeddings ex in a vector space
EX . Once ex are produced, the generator G decodes the sequence and produces a
sentence yfake in the target language. Moreover, the ex embeddings are forwarded
through a mean pooling layer, that produces the sentence embedding for each
sentence given as input. The sentence embedding is used to let models alignment
among them, using techniques that will be explained later in this chapter. The
generator structure and its use are shown in figure 3.2.

Figure 3.2: CycleNLPGAN generator

41



Implemented methods

A MarianMT([51]) model is used as generator, but a generic encoder-decoder
model can be used. MarianMT is a BART ([24]) model specifically trained for ma-
chine neural translation task. In fact, the whole architecture is defined considering
both sentence alignment and neural machine translation tasks. The generator is
made by a BART encoder, which produces a sequence of 512-length word embed-
dings, and a BART decoder, which uses the embeddings to generate the sentence
in the target language. The number of produced word embeddings depends on
the number of words in the input sentence. Word embeddings are given as input
to a mean pooling layer, producing a 512-length summary of the whole sentence,
called sentence embedding. This is the same approach applied by default in sen-
tence BERT models, whom are the models exploited in the distillation method
implemented in [45].

Each model is able to translate unilaterally from one language to another, i.e.
from Italian to English. The reverse operation is made by a different network,
trained exclusively on this task. The main disadvantage of this model is the
misalignment among the several produced networks, so the model defined for each
combination of language produces embeddings in its own vector space, causing
no relationships among models trained on other languages pairs or on the same
language pair, but in the opposite direction. This leads to the need of training the
whole structure to produce a new language-pair translation model, and the same
must be done in the reverse direction. Using the approach defined in the thesis, a
single training phase is needed to train both translation directions. Furthermore,
in order to increase the usability and the flexibility of the model, a shared vector
space can be defined, and each language − to − language model will use the shared
vector space to produce its own sentence embeddings. In this way, the vector
space is not specific to the individual language or a subset of languages, and each
decoder will learn to produce embeddings in that vector space that is shared among
different languages, making the approach highly reusable. In order to create a
shared vector space, some fundamental operations must be executed. At first,
each model have the use the same multilingual dictionary, in order to generate
the same tokens for a certain word, regardless the source and target languages.
At second, following the teacher choice made in [45], a model should be chosen as
reference point for other languages, and its vector space is used as reference by
other models. Since the part of each generator that produce the embeddings and
consequently the language vector space is the encoder, this is the only part of the
network that should be considered as ground truth by other languages models. In
fact, even in [45], the network that produces embeddings, in that case SBERT[34],
is considered as teacher model, and it has the structure of an encoder. In the same
way, CycleNLPGAN might exploit the usage of an encoder as teacher, letting other
languages to align to it and to produce embeddings in the same vector space. The
main advantage of the usage of a shared vector space is that a decoder, trained

42



Implemented methods

to produce sentences in a certain language starting from the shared space, should
be able to produce the correct sentence without caring of the source language.
This leads to the need, for each language, to have only a single encoder trained to
produce embeddings in the shared space and a decoder able to construct a sentence
starting from shared space embeddings. A new translation model from a source to
a target language can be easily built by joining the source language encoder and
the target idiom decoder.

In the thesis work, the shared vector space is not implemented because of the
effort needed to implement this aspect. The model used during the training, indeed,
has their own vocabulary related to the used language pair. The solution of this
problem is the substitution of vocabularies in each model with a multilingual
vocabulary followed by an intensive training phase, and this requires an effort
that is not affordable and is out of the scope of this thesis. In conclusion, in
the current implementation each languages pair produce a vector space that is
shared among languages that compose the pair, but it is possible to produce a
vector space that is shared among all languages. The decoders extracted by this
implementation are able to produce the output sentence from the produced shared
vector, without caring of the source language of the starting sentence and of the
model that produces the embeddings.

3.1.2 Discriminator
The discriminator learns to distinguish between generated sentences yfake and
sentences y that actually belong to a certain language Y . A DistilBERT for
sequence classification model is used as discriminator, but several models can be
chosen. In particular, this DistilBERT implementation adds a randomly initialized
fully connected layer on top of the model and produces a n-length vector as output.
The n value depends on the particular task. The objective in this model is to
define if input values represent a real or a generated sentence, so two output values
are needed. These values represent the probabilities defining whether the sentence
is real or not. Applying softmax, a single output value is obtained, which is 0
for fake sentences and 1 for real sentences. The structure of the discriminator
and its forward phase are represented in figure 3.3. When possible, DistilBERT
trained only on the target language is used, otherwise the multilingual BERT is
chosen. This choice is related to the availability of a model trained in the target
language, and the presence of a DistilBERT model trained on a single language
entails an higher accuracy of the discriminator during first training phase. Using a
multilingual DistilBERT instead, it would recognize generic languages structures
and would not be specialized during first training phases. However, during training,
the models acquires more and more information about the specific target language,
producing a fine-tuned DistilBERT.

43



Implemented methods

Figure 3.3: CycleNLPGAN discriminator

In GANs, the discriminator also plays a fundamental role in the training phase
of the generator, as it defines the goodness of the produced data. On the other
hand, the generator tries to foolish the discriminator, so it should be robust enough
to recognize fake data. If the discriminator gets foolish, it becomes useless and the
training should be stopped, or the quality of both networks will be compromised.

In traditional GANs, once the training finishes, discriminators are discarded. In
thesis implementation, instead, they are kept and used to evaluate the goodness
and the correctness of a sentence. In fact, using the whole model, it is possible to
discriminate among well formed sentences and sentences that don’t have a correct
structure or meaning. Even removing the layer on top of the model, the underlying
part is a BERT model that can be used as pre-trained model in other tasks.

3.2 Loss functions
Several loss functions are involved in the training of CycleNLPGAN. As in tra-
ditional GANs, both generator and discriminator losses are required. A cycle
consistency loss is introduced to relate GANs, and more deeply generators. In next
paragraphs, each loss function will be explained in detail.

3.2.1 GAN losses
As explained in previous section, a CycleNLPGAN is made by two separate GANs,
and each GAN produces its own losses. A generator loss is produced to increase
the quality of generated data, meanwhile discriminator loss tries to toughen up the
discriminator.

44



Implemented methods

Generator loss

The generator loss is typically produced defining how the generator is able to
confuse the discriminator. Generated outputs are used as discriminator inputs
jointly with real data. The discriminator, for each input data, defines if it is fake or
real. The more the discriminator defines fake data as real, the more the generator
loss decreases. In CycleNLPGAN implementation, a new loss is added to address
the translation task. The introduced loss is the masked language modeling loss
and is computed using parallel data. In fact, the source-target parallel sentences
pairs are used during training, and the target sentences that should be produced
are used as ground truth. The loss defines the discrepancy between the generated
output and the desired one. The introduction of this type of loss implies the
introduction of some supervised techniques in the training, which can be avoided in
traditional CycleGAN, and the need of parallel datasets. This may be a limitation
is certain languages with few data or with zero parallel datasets, but the robustness
achieved using this approach increases. MarianMT implementation contains a
built-in loss implementation in order to address translation task, so it is exploited in
CycleNLPGAN training. Both traditional generator loss and the masked language
modeling loss are used, with equal weight, allowing the model to address GAN
task and translation task simultaneously.

Discriminator loss

The loss funtion used for discriminator training is the typical GAN loss, which
defines how the discriminator is able to distinguish fake data. More in detail,
the loss used in CycleNLPGAN model is cross entropy loss and is calculated on
prediction results on both generated and real data.

3.2.2 Cycle consistency loss
One of the most relevant feature of CycleGAN is the introduction of a cycle
consistency loss, and it is applied in CycleNLPGAN as well. This loss is a concept
used to create a dependency between two mapping functions with inverted source
and destination languages. In a standard approach, each GAN trains by itself,
without knowing of the other one. This leads to a lack of relationship between the
mapping from source to target domain and vice versa. Using cycle consistency
loss in CycleNLPGAN, generators of both GANs are involved in the generation
of data and in the backward phase, producing a relationship between them and
inducing to the generation of more consistent and interrelated data. Traditional
cycle consistency loss defines the quality of both generator to reconstruct the
starting value. A sentence x from language X is traduced by generator GXY in
language Y , producing sentence yfake. This value is used as input in generator GY X ,

45



Implemented methods

which translates from Y language to X one, producing reconstructed sentence
xrec. In order to evaluate translation goodness and to relate generators, the cycle
consistency loss defines the similarity between x and xrec sentences, that should be
equivalent or as close as possible. According to loss value, both generators perform
backward and try to find a way to produce a xrec sentence to be identical to x,
increasing the quality of the yfake sentence as well. The same operation is performed
in the opposite direction, producing a yrec sentence that should be as similar as
possible to starting sentence y. This loss drives models to cooperate during the
generation of values that are as coherent as possible, creating a relationship between
them.

In addition to the traditional loss, a new loss function has been added to
strengthen the alignment between the generators vector spaces. In fact, each
generator produces its own vector space, and the cycle consistency loss by itself does
not ensure the alignment between them. The new introduced loss forces alignment
between models using an approach similar to distillation method introduced in [45],
where one model teaches the other to produce similar embeddings. Sentence
embeddings produced using mean pooling layer are compared and the loss is
computed in order to penalize distant embeddings for sentences with the similar
meaning or that are one the translation of the other. Cosine embedding loss is
used in CycleNLPGAN and gives the main contribution in alignment task.

A ll these losses are grouped toghether to induce models to address both align-
ment and translation tasks, introducing a robustness given by the introduction of
supervised steps in the traditional GAN and CycleGAN approaches.

3.3 Cycle-consistent process
During each training step, the whole model performs several forwards through the
different parts of the architecture. At each step, two batches of parallel data are
generated. The first batch realA contains sentences from language A, meanwhile
the other batch realB contains sentences from language B.

The GAB mapping function is used to transform from a source to a target
language, meanwhile the GBA function maps from target to source idiom. Taking
batch realA from language A, the mapping function from A to B language is applied
by generator GAB and produces sentences fakeB similar to idiom B sentences.
Generator GAB results are used to compute loss value lossGAB1 based on the
similarity of generated data to realB sentences, which are the exact translation
of realA sentences and can be used as ground truth. Taking fakeB as input,
the mapping function from B to A idiom is applied by generator GBA, which
produces reconstructed sentence recA, that should be similar to A phrases. The

46



Implemented methods

same operation is performed in the opposite direction, so realB sentences from B
language are forwarded in GBA generator, in order to produce fakeA sentences,
which are the translation of realA sentences in the A language, then it is forwarded
through GAB generator to produce recB sentences. Generator loss lossGBA1 is
computed comparing fakeA and realA sentences, that can be used as ground truth
because are the exact translation of realB sentences. The steps performed in the
training phase are represented in figure 3.4.

Figure 3.4: CycleNLPGAN training phase

Generator GAB takes fakeA sentences as input and produces recB sentences,

47



Implemented methods

which should be similar to B sentences, in particular to realB sentences. Loss
value lossGAB2 is computed taking sentences realB as ground truth and recB as
generated values. Generator GBA takes fakeB sentences as input and produces
recA sentences, which should be similar to A sentences, in particular to realA
sentences. Given recA sentences and real sentences realA, the loss value lossGBA2

is defined according to their similarity. Each of these losses contributes for a quarter
to the total loss value of the generator to which they are related. Loss values
lossGBA1 and lossGBA2 are involved in lossGBA loss value, meanwhile lossGAB1

and lossGAB2 are involved in lossGAB loss value.
The remaining half of either generator losses lossGAB and lossGBA is defined

forwarding the generated value fakeB and fakeA sentences in DAB and DBA

discriminators respectively and defining the generator loss lossGAB3 and loss
lossGBA3 respectively. Those values are defined using the traditional GAN approach,
so according to the quality of generated sentences.

Figure 3.5: CycleNLPGAN generator loss

Discriminator loss lossDAB is defined forwarding both real realA and fake
fakeA sentences through the discriminator DAB and evaluating if the predictions
are correct or not. The same is done for loss lossDBA in the opposite direction,
and it is calculated forwarding both real realB and fake fakeB sentences through
the discriminator DBA and evaluating predictions goodness.

Once GANs losses are singularly computed, cycle consistency loss is jointly
calculated. In order to define the cycle loss, combinations of real, generated and
reconstructed sentence embeddings are compared in both languages in order to
define losscycleABA

and losscycleBAB
. The two losses produced define the error during

48



Implemented methods

the translation and the back translation in both directions. The first one represents
the loss translating a sentence from language A in language B and re-translating it
in language A, meanwhile the latter one defines the error translating a sentence
from language B in language A and then re-translating it in language B. The sum
of these losses produces the cycle consistency loss losscycle that is back-propagated
through both generators. MSE loss is used to evaluate the distance among sentence
embeddings. This loss function gives a good measure of the inequality of sentence
embeddings, so generators can improve transformation according to the distance
among embeddings produced for parallel sentences.

The losscycleABA
is composed by four different losses. At first, the sentence

embeddings of real sentences realA are compared to reconstructed embeddings
recA, and this loss value is multiplied by the hyperparameter lambdaA, which
define the weight of this specific loss. This is the most important part of the
loss losscycleABA

because it contains information of either the first and the second
translation and the comparison is done using values produced by the same generator
GAB. In fact, once a reconstructed sentence recA is generated by generator GBA,
its sentence embedding can be computed forwarding the sentence through the GAB

encoder, that is the same used to compute the realA sentence embedding.
The second part of the losscycleABA

is computed comparing realA and realB
sentence embeddings. To obtain their sentence embeddings, realA and realB
sentences are forwarded through GAB and GBA encoders respectively, and the
result is multiplied by the hyperparameter lambdaC1 . This parameter is used to
weigh the difference among the embedding produced by GAB in comparison with
the one produced by GBA encoder. As explained in next sections, the latter one
is used as ground truth, so this part of the loss defines the difference among the
produced result and the expected result.

The last two quarters of the losscycleABA
are defined comparing the embeddings

produced for sentences realA and fakeB and the embeddings produced for sentences
fakeA and fakeB respectively. Their values are multiplied by hyperparameters
lambdaC2 and lambdaC2 respectively. Even if these values are not properly related
to the cycle process, they are useful to give a quantification of partial results
obtained during the cycle process. Moreover, they force the correctness of partial
values, that are crucial for the decoding and the back-translation phases.

All those values are summed to achieve the losscycle value, and each of them has
the weight of a quarter of the total value. The losscycleABA

calculation process is
represented in figures 3.6.

As for the loss, the losscycleBAB
value is calculated as the sum of four equal

weight losses that are calculated for the process in the opposite direction. As shown
in figure 3.7, the second and the fourth part that compose the final value are the
same used in the previous case. The first and the fourth part have an approach
similar to the previous one, but the values used in the comparison change. More in

49



Implemented methods

Figure 3.6: CycleNLPGAN ABA cycle loss

detail, the first part of the losscycleBAB
value is calculated comparing the sentence

embeddings of real sentences realB and of reconstructed sentences recB, and this
loss value is multiplied by the hyperparameter lambdaB. The third part instead
compares fakeA and realB sentence embeddings produced by generators GAB and

50



Implemented methods

Figure 3.7: CycleNLPGAN BAB cycle loss

GBA respectively, and the result is multiplied by lambdaC2 .
The losses values losscycleABA

and losscycleBAB
are summed with the same weight

to produce the final loss value losscycle. Unlike the previous ones, this loss is back
propagated through both generators.

51



Implemented methods

3.4 Improvements
We explored several extensions and variants of the previously presented method
before reaching the final structure described in earlier stages. The whole structure
has been built using the CycleGAN([23]) as starting point, so the idea was to
define the same structure in NLP tasks, more specifically in sentence alignment
and neural machine translation tasks. The similarity among CycleGAN objective
and the one described in this thesis leads to the definition of a model focused
on translation task, but this is not the main objective of the thesis. In order to
create a model that address alignment task, some attempts have been made to
adapt the proposed model to the CycleGAN structure. At first, sentence BERT
models have been chosen as generators models. Sentence BERT model produces
a sentence embedding, but it does not contain a decoder part, so it is impossible
to reconstruct the value and to forward it in discriminators and in the opposite
direction generator. The mandatory requirement to correctly create the model is
to use an encoder-decoder model. The choice falls on MarianMT model because
it is a robust models and addresses source-target translation. Moreover, it is
implemented as open source and several pretrained configurations are available. To
avoid falling back into translation task, the sentence embedding loss and the new
cycle consistency loss are introduced to move on the alignment task.

The model can be trained using every combination of languages, but during the
whole project B language is always English, in order to use it as reference.

At first, all modes were trained, so parameters update according to the couple
of languages selected, but this leads to an alignment among them only. Changing
languages, models are completely different from previous ones, so they aim to
align themselves, neither caring of other models or using an external model as
reference. Even using an external model as reference, the training is unfair, because
this means use an English model as ground truth and forcing both generators in
CycleNLPGAN to align simultaneously using English model as reference. This may
produce an unstable training, so as result nets may be unusable. Moreover, the
resulting architecture would have been more dependent from the reference model
than from the CycleGAN structure itself. Another problem using this configuration
is the alignment between two specific languages, and none of them is English. This
is not the best solution, because it may be useful to align all languages models
to an English model due to its popularity, the enormous amount of English data
and the robustness of English models. So the idea is to use English model as focal
point and each language model tries to emulate it.

Once English has been defined as reference language, another problem occurs,
and this is about generated embeddings. Taking English − to − languageA and
English − to − languageB encoders, the embeddings produced by their encoders
are not equal, even if their source language is the same. After a detailed analysis,

52



Implemented methods

this is because of the difference among the used vocabularies. The models trained
on two different language pairs use different vocabularies that are related to the
specific pair and contains only words from these languages. Even if two models
share one language, it is not ensured that their vocabularies would be aligned. The
possible solutions to this issue are:

• The alignment of vocabularies used for different language pairs by MarianMT

• The usage of a fixed English − to − languageX encoder and of a shared
vocabulary among all the languages

The first one is automatically discarded because it is a sub-optimal solution and
is against the principles of the thesis work. In fact, it aims to align vocabularies
more than models vector spaces, and this is not the objective of the thesis. The
second solution is the best one because build a resilient and flexible model that can
be used for a wide range of languages. The main disadvantage of this approach is
related to the necessity of preforming impactful alterations to the starting structure
of the MarianMT model, which would lead to an effort that is beyond the one
required for this thesis work and that could lead to a more complex structure.

In order to avoid the effort required by the latter solution and to produce an
usable model, another solution has been implemented. In this solution, the model
is trained to align two languages during each training phase, but the alignment
will be limited on the language pair only. Training the same model on a different
language pair, the resulting generators will be aligned among them, but they
are not aligned to other pairs models. This leads to a partial alignment among
languages, that is constrained to the couple of languages used during the training.
The proposed solution is implemented freezing the parameters of the encoder that
is part of the English-to-other language MarianMT model, so it does not change
during training. This choice has been done after several analysis reported in next
chapter and introduce an enhanced stability. Moreover, the model as is is usable
with models that already use vocabulary composed by several idioms, and this
will produce a model that align all languages without the need of alteration to the
architecture. Using this implementation, each language − to − English model will
use the English vector space as the objective of the training.

53



Chapter 4

Experiments and Results

In this section, details about training data and parameters are given. Moreover,
several experiments have been conducted to evaluate results.

4.1 Training Data
Training dataset plays a big role in producing an affordable translation model with
cross-lingual embeddings. Starting from first phases of design, the need of parallel
data became immediately necessary. It seems the opposite assumption with respect
to the typical approach used by CycleGAN and cycle consistency models. In fact,
CycleGAN does not need parallel data to correctly learn because of the usage of a
cycle consistency loss that defines how good is the reconstruction of the image. In
this way, it defines how good both generators work and try to correctly fix them.

The same may happen to CycleNLPGAN translation part, but the main objective
is to align embeddings produced by the decoder part of the generators, so parallel
data are mandatory for the evaluation of the alignment goodness. This may be
a challenging approach in low annotated languages, but the robustness of the
reference English model may help and produce discrete results. Another problem
that may occur using non parallel data is related to the instability of the networks
during the training. Some attempts of unsupervised and non parallel training had
been made, and as result networks didn’t converge, increased their training time
and produced inaccurate sentences. In some cases, networks completely diverged
due to the instability, so networks generate sentence embeddings that fall into a
fixed point and produce meaningless sentences.

Once the typology of dataset had been defined, several datasets and language
pairs had been evaluated to correctly address both alignment and translation tasks.
The choice fell on some datasets provided by OPUS([52]), a publicly available
collection of parallel translated texts from the web. It provides parallel data for

54



Experiments and Results

hundred of language pairs.
The OPUS datasets used in this thesis project are:

• JW300: Parallel sentences from a collection of magazines [53]

• Tatoeba: A large dataset of sentences and translations used as support in
language learning [52]

• TED2020: A collection of about 4000 translated TED talks available in more
than 100 languages [54]

• WikiMatrix: Parallel sentences from Wikipedia in several languages [55].
This dataset contains a huge amount of sentences and often they are of bad
quality, so only pairs with a quality score above 1.075 are used.

More details about complied languages, total amount of data and number of
sentences for the addressed language pairs are shown in table 4.1.

Dataset Name Number of Languages Number of Sentences EN-DE EN-FR EN-ZH EN-RU

JW300 417 109.08M 2.1M 2.3M - 1.0M
Tatoeba 359 8.96M 0.3M 0.3M - 0.5M

TED2020 108 11.46M 0.3M 0.4M 16.2k 0.4M
WikiMatrix 86 300.27M 6.2M 6.6M 2.6M 5.2

Total Filtered Sentences 2.9M 2.6M 89k 1.9M

Table 4.1: Datasets details

Either JW300, Tatoeba and TED2020 datasets contain mostly high quality
parallel data, but it is not the same for WikiMatrix. In fact, during the definition
of the datasets, sentences are evaluated to reach a minimum threshold of quality,
otherwise they are discarded. Once the filtering phase is completed, the dimension
of WikiMatrix dataset is heavly decreased. Even other datasets are filtered, in order
to avoid the usage of low quality data. The number of sentences that are actually
used in the training phase are shown in the last row of table 4.1. The amount of
data is significantly lower than the starting dimension of datasets, and this will
influence the quality of the training. This is especially true for the English-Chinese
dataset, which contains a quantity of phrases that is not enough to allow the model
to converge and obtain reliable results. In fact, as explained in following sections,
the results obtained by English-Chinese CycleNLPGAN are not comparable to the
ones achieved by competitor models or by CycleNLPGAN in other language pairs.

A minor part of the collection of selected dataset has been removed from the
training set to perform evaluation during the training, in order to evaluate the
model and define the correct set of hyperparameters.

55



Experiments and Results

4.2 Training configuration
The training is performed for four epochs. The first epoch has been executed using
a constant learning rate equal to 2 ∗ 10−5, then in the last three epochs a linear
learning rate decay has been applied.

4.2.1 Hyperparameters configuration
The number of hyperparameters to fine-tune is quite large, so several configuration
have been tried to achieve the best results. Experiments using all or a subset
of parameters have been done in order to find the best configuration. The most
important achievement obtained in this phase is the detailed discovery of each
parameter contribution in the training, and so the best training approach to use
during the training of the complete models.

The table 4.2 shows the value applied to each hyperparameter used during the
training. A detailed explanation of each hyperparameter is reported to find out
the correct contribution of each one.

Each hyperparameter has a specific role and is fundamental to find the correct
equilibrium among them. In fact, GANs have the reputation of being unstable, and
each uncontrolled oscillation may lead to a loss of performance or an impossibility
of the network to converge.

The role of hyperparameters is fundamental, because it influences the training
and the possibility of convergence. Several combinations have been tried empirically
to find the most correct configuration. Using values defined in table 4.2, the training
follows the typical steps of CycleGAN and, more in general, of GAN training. The
losses values obtained training with the hyperparameters reported in table 4.2 are
shown in figures 4.1, 4.2 and 4.3.

During the first phase, pretrained discriminators quickly find out differences
between real and generated sentences, so discriminators losses are lower than
generators ones. Instead, generators increase their losses during first steps because
of the bad quality of generated sentences, reaching high peaks during this phase even
because of the instability. In particular, GAB is very unstable in first iterations,
and its loss reaches a peak value of 175. This is because both encoder and
decoder update simultaneously, and, as consequence, unstable configurations may
be frequent. It seems unusual because models are pretrained to perform translation,
so it is expected that generated values have good quality, but the cycle consistency
loss completely reshapes generators encoders parameters. At start, in fact, the
distance among paired sentences embeddings is enormous and cycle loss tries to
rapidly decrease it, forcing the GAB encoder to produce sentence embeddings as
close as possible to GBA encoder embeddings, which are considered as ground truth.
Doing it, generators decoders are unable to adapt to this impactful change in

56



Experiments and Results

Hyperparameter Value Description

Learning rate 2.0 ∗ 10−5
A tuning parameter that determines the step size at each iteration while

trying to reach a minimum of a loss function. It represents the speed
at which a machine learning model learns.

Lambda D 10.0
An hyperparameter that weights the importance of having

correct discriminators predictions. Increasing it, the discriminator error
has an higher impact and the models try to let it learn quickly.

Lambda G 10.0

An hyperparameter that weights the importance of generating
reliable and good quality sentences.Increasing it, generators

are more penalized when a bad quality sentence is generated.
Sentence quality is defined using discriminator prediction on it

and computing translation quality.

Lambda A 50.0

An hyperparameter that weights the importance of reconstructing sentences
as similar as possible to the original ones starting from domain A sentences.

Increasing it, generators are more penalized
when translation and back translation generates bad quality results.

Lambda B 50.0

An hyperparameter that weights the importance of reconstructing sentences
as similar as possible to the original ones starting from domain B sentences.

Increasing it, generators are more penalized
when translation and back translation generates bad quality results.

Lambda C1 80.0

An hyperparameter that weights the closeness of embeddings generated during
the first translation step performed by both generators, using

the same translated input sentence. Increasing it,generator GAB and GBA encoders are more
penalized when embfakeA

and embfakeB
are distant.

Lambda C2 15.0

An hyperparameter that weights the closeness of embeddings generated
during the first translation and the back translation by generators.

Increasing it, GAB and GBA encoders are more penalized when
embfakeB

and embrecA
are distant and when embfakeA

and embrecB
are distant.

Lambda C3 5.0

An hyperparameter that weights the closeness of embeddings generated
during back translations performed by generators. Increasing it,

GAB and GBA encoders are more penalized when
embrecA

and embrecB
are distant.

Table 4.2: Hyperparameters configuration and details

embeddings representation and produce inconsistent and meaningless sentences. As
result, both discriminators are able to distinguish real sentences from inconsistent
generated sentences, meanwhile generators produce meaningless sentences, but
sentence embeddings rapidly become closer among languages.

Once the convergence of embeddings slows down, generators can adapt better on
decoding sentences, so output sentence become better and better, and real sentences
are reproduced with a good quality. This leads to a decrease of generators losses and
a related rise of discriminator losses. In fact, discriminators were able to distinguish
bad quality sentences, but in this phase generators output quality significantly
increases. According to this, discriminators have to improve their results trying

57



Experiments and Results

Figure 4.1: Discriminator losses during training

to distinguish more complex sentence structures and idiom characteristics. The
increase of discriminators losses is not as amplified as in generators, and this is
because the noise introduced by generators. In fact, even if discriminators learn
to classify real and fake sentences, it often happens that fake sentences are still
meaningless, and this is because the generators are improving translations gradually.
As a consequence, the discriminators can gradually adapt back to the rise of quality
in sentences.

The remaining part of the training is characterized by an increasing stability in
losses values. The distance among similar sentences significantly reduces, keeping
a stable value during epochs. Even the variance related to losses strongly decrease,
producing loss values that can be grouped in small ranges of values. The same is
for generators losses that, due to an increasing knowledge of language structures
and features, decrease during time, reaching a stable value. Discriminators follow
the inverse behaviour. In fact, during iterations discriminators partially worsen,
but finally they start finding again differences among real and translated sentences.
The only exception is the DBA behaviour, but the high instability of its loss is due
to the usage of a multilingual DistilBERT, that contains information from several
languages and needs more time to converge and specialize on a certain languages.

58



Experiments and Results

Figure 4.2: Generator losses during training

The choice of using a smaller discriminator than BERT has been done because of
computational and memory limits. The same is for the usage of a multilingual
discriminator, because the model is not pretrained on each language but on the
most used ones. This require an additional pre-training phase to obtain a language
specific discriminator, but it is an activity that is out of scope of the thesis.

4.3 Addressed tasks
Once the correct equilibrium among hyperparameters is found, several experiments
have been conducted on both alignment and translation tasks. More in detail,
bitext retrieval and WMT experiments have been conducted. Both of them are
the most common challenges addressed in their respective tasks. They are used to
classify and rank models developed to resolve alignment and translation respectively.
CycleNLPGAN has been trained in several languages pairs, such as German-English,
French-English, Russian-English and Chinese-English, and results obtained in both
challenges are compared with state-of-the-art models in those languages. Moreover,
results obtained using techniques similar to the one explained in the thesis are

59



Experiments and Results

Figure 4.3: Cycle losses during training

used in the comparison. Finally, the CycleNLPGAN model is compared to native
MarianMT results in WMT experiments, in order to define if the CycleNLPGAN
is able to reach the translation results achieved before the training and eventually
to improve them.

4.3.1 Bitext Retrieval : BUCC
Bitext retrieval aims to identify sentence pairs that are one the translation of the
other inside two corpora written in different languages. In first implementations,
the closeness among sentence was calculated using the cosine similarity, then the
nearest neighbor was selected. This method has issues, so improvements have been
done. A new scoring function has been implemented in LASER evaluation ([44]),
and the formula is:

score(x, y) = margin(cos(x, y),
∑︂

z∈NNk(x)

cos(x, z)
2k

+
∑︂

z∈NNk(y)

cos(y, z)
2k

)

where x and y are sentence embeddings of sentences from different languages
and NNk(x) represents the k nearest neighbors of sentence embedding x in the

60



Experiments and Results

other language. Margin function is represented as margin(a, b) = a/b.
The test is performed using the dataset from BUCC mining task, and the

objective is to extract parallel sentences between English and a set of four target
languages corpora, that are German, French, Russian and Chinese.

The dataset contains sentences for each language, going from 150k to 1.2M in
each one, and 2-3% of them are actually parallel. A part of the dataset is used
as training set in order to find a threshold for the score function, meanwhile the
remaining part is used to test alignment measuring the F1 score.

4.3.2 WMT : Workshop on Statistical Machine Translation
WMT is a workshop introduced in 2006 and is one of the most important challenges
to evaluate neural machine translation models. The focus of this workshop it to
use parallel corpora for machine translation. In this workshop researchers are
encouraged to investigate models and approaches to improve the performance of
Statistical Machine Translation systems for a wide set of languages, including
morphologically complex languages, languages with partial free word order, and
low-resource languages.

Four tasks are conducted in each workshop: a general translation task, a medical
translation task, a quality estimation task, and a task to test automatic evaluation
metrics. Since last editions, the number of tasks is increased to 11. These consisted
of seven translation tasks, among which Machine Translation of News, Biomedical
Translation and Machine Translation for Chats and four additional tasks not
strictly related to translation (e.g., Automatic Post-Editing and Alignment for
Low-Resource Conditions). The complete overview of the task can be found in [56].

Each year, a dataset, composed by training, evaluation and test data, is given to
correctly train models, then results are calculated on the test set and announced at
the conference. Most important translation models challenge each other on these
tasks, especially on machine translation of news because it was introduced several
editions ago and is the challenge that got more popularity during years.

4.4 Results
Given the computational resources required for training the complete model, we
define English-French as evaluation language pair to analyze the impact of different
parameters during the training phase. After finding the correct configuration
of parameters, English − Chinese, English − German and English − Russian
models have been trained.

Before defining parameters, several training configurations have been tried to
define:

61



Experiments and Results

• The loss function to use: Experiments with MSE loss and cosine loss
have been tried. MSE loss is used in similar approaches like [45] because
of the computational efficiency. Cosine loss instead is a valid alternative to
MSE, and apparently seems more correct for the thesis objective. This loss is
used to calculate the error in sentence embeddings computation performed by
generators encoders and is used to update models weights.

• Training approaches: This thesis work evaluates two different training
approaches. The first approach consists in using MarianMT as is. There is
no contraints in training the full set of weights of both the generators. This
configuration is the standard training approach for this architecture design.
However, considering the CycleNLPGAN architecture, it may lead to an
unstable training, or in the worst case, to a unreachable convergence. This
can happen because the encoders embeddings are way far in the beginning,
and the generators try to get closer as soon as possible. Doing this, they
may converge in single points or in close spaces, collapsing the models vector
spaces and producing sentence embeddings in a subspace of the starting vector
space. There is no guarantee of a convergence in this situation, or, in the best
case, it may require a long training. The second approach, instead, consists
in freezing the encoder part of the English-to-language generator. In this
case, the English encoder acts as stable and fixed sentence embeddings model.
Its predictions are used as ground truth by the language encoder available
in the language-to-English, that is trained to produce sentence embeddings
that get as close as possible to the parallel English ones. In this case, the
vector space of the English-to-language encoder remains the same during the
whole training, and this prompts the language-to-English encoder to produce
a similar vector space, that is the main goal of this thesis. This approach
uses the same assumptions proposed by [45]. However, both the architectures
and addressed tasks differ. The authors of [45] designed a model that gets
sentences from both languages during the same training and tries to map
them in a shared space without addressing the translation task. Moreover,
the teacher model is used as an auxiliary part of the training of the student
model, meanwhile in CycleNLPGAN model it is a part of the trained model,
even if it is fixed and frozen.

• Hyperparameters settings: The analysis aims to define if all defined hy-
perparameters should be used or if only a subspace of them is necessary. Some
hyperparameters, such as lambdaC1, lambdaC2 and lambdaC3, have been de-
fined to speed up the training and to avoid the model collapse in a single point.
Moreover, they may increase the closeness of similar sentence embeddings
using information obtained by the back-translation. This increases the utility
and the importance of the approach introduced in the thesis. To evaluate the

62



Experiments and Results

correctness of these hyperparameters. a configuration that does not use all of
them has been used, then results are compared with the ones obtained using
the whole set of parameters.

In order to define which choice is better, the comparison of each couple of
configurations has been done using several values:

• BLEU score calculated on French to English and English to French sentences
taken from evaluation dataset

• Average distance calculated on parallel sentences taken from evaluation dataset.
In this way, the closeness of parallel sentences can be defined

• Average distances between a sentence and the non-parallel ones that compose
the evaluation dataset in the same language and in the other language. These
distances are defined as mutual distance in the following sections. Calculating
the average distance of the distance of each sentence from the others in the
same language, a dimension of the language vector space can be defined. In
this way, an evaluation of the convergence and of the collapse of the language
vector space can be performed during the training. Calculating the average
distance of each sentence to the non parallel ones in the other language gives
a measurement of the closeness and the alignment among languages vector
spaces. Together with the alignment among parallel sentences, this value
may help in the analysis of the effectiveness of the training. In the following
sections, the average distance among each English sentence from the others in
the French dataset is defined as English vector space dimension, meanwhile
the average distance among each French sentence from the non parallel ones
in the dataset is defined as French vector space dimension.

The evaluation set used in this analysis is part of the OPUS dataset, and it is
composed by randomly selected sentences from the whole dataset. Sentences are
selected before starting the training and then are removed from training data. Every
configuration model trains for a subpart of the training dataset before being stopped
and compared to the other approach. In following sections, a detailed explanation
of each configuration shows the path followed to define the best configuration to
use during the complete training with other language pairs. Remark that distances
plots shown in next paragraphs report cosine distances, but this is not related
the loss function. In fact, distances are calculated always using cosine distance,
that is based on cosine similarity, meanwhile cosine loss defines the error that is
backpropagated through the network according to the similarity among parallel
sentence embeddings.

63



Experiments and Results

4.4.1 Loss function analysis
The first analysis is related to loss functions and aims to find the most correct
loss to use during the training. In this case no information about freezing or not
the English − to − language encoder and about the set of hyperparameters to
use was found. To take the models as similar as possible, both models have been
trained freezing English to French encoder and using a subset of parameters, that
involves all parameters defined in 4.2, except LambdaC2 and LambdaC3. The only
difference is related to the loss function used to evaluate closeness of sentence
embeddings. Plots of BLEU scores, average distances and mutual distances are
reported in figures 4.4, 4.5 and 4.6.

Figure 4.4: BLEU score obtained using different loss functions

Analyzing BLEU scores obtained using MSE loss and cosine loss, it seems that
results are similar, especially for English to French ones, that are represented in
the plot on the left in figure 4.4. In fact, BLEU values are similar and follow
the same pattern, that is a rapid fall from starting scores in first steps, then a
fast-paced increase, followed by a stabilisation and a balanced improvement. The
same pattern is followed in French to English scores, reported in the right plot
of figure 4.4, but in this case the difference among MSE and cosine is wider than
before. Indeed, even if there are some unstable points, scores obtained using MSE
translating from French to English are always greater than the ones obtained using
cosine loss.

The analysis of average distances calculated on parallel sentences, represented in
figure 4.5, reports a clearer overview of losses difference and effectiveness. Ideally,
this value should be zero, and this means that sentence embeddings, and more in
general languages vector spaces, are completely overlapped. Using MSE loss, the
average distance decrease rapidly, reaching a 0.1 cosine distance after less than

64



Experiments and Results

Figure 4.5: Average distance obtained using different loss functions

200 thousand iterations. After this phase, the cosine distance keeps decreasing,
reaching a value of 0.06 at the end of the 1.6 million iterations. In contrast, using
the cosine loss, the distance among parallel sentences decreases rapidly in first
iterations, but once 200 thousand iterations have passed, it reaches a value of 0.4,
that is much higher than distance obtained using MSE loss. Moreover, the speed
of convergence to zero falls substantially, and after 1.6 million of iterations reaches
a value of 0.35.

It is obvious that the speed of convergence and the closeness obtained using
MSE loss are better than the ones achieved using cosine similarity, but mutual
distances plots, figured in 4.6, give another visualization of training approaches.
Indeed, using MSE loss, the dimension of English vector space is constant, and this
is because of the usage of a frozen English to French encoder, meanwhile the French
vector space asymptotically converges to the distance among English and French.
This is not a bad information, that tells that the French vector space dimension
increases during first iterations, then starts decreasing smoothly, but according
to previous assumptions, it seems more plausible that both distance and French
dimension would converge to English vector space. This is what partially happens
using cosine loss. The distance among spaces and the dimension of the French

65



Experiments and Results

vector space follow a smooth convergence to English, but it is a slow process and
may require a consistent number of epochs to converge.

Figure 4.6: Average mutual distances obtained using different loss functions using
MSE loss (on top) and cosine loss (below)

Due to the faster convergence of MSE loss and the lack of computational re-
sources, MSE loss has been selected as loss function to compare sentence embeddings
during training. Even if cosine loss seems to allow a better adaptation of French
vector space to the English one, MSE loss obtains better results than cosine on
translation quality and on speed of convergence.

4.4.2 English to language encoder training analysis
Once the loss function to use is defined, two configurations of model have been
trained for 1 million iterations in order to define the best training approach for
generators. As explained in previous chapter, the main objective of this thesis is to
align two or more language vector spaces, and this requires to penalize generators
encoders when far sentence embeddings are generated for parallel sentences. Cal-
culating the loss among produced sentence embeddings and back-propagating it
through both generators, they update their parameters. In this case, each generator

66



Experiments and Results

updates its encoder and its decoder using the loss value, and this produces a
continuous variation of sentence embeddings of both generators. As a consequence,
the vector spaces vary as well. Moreover, the decoder tries to reproduce correctly
the sentence starting from the sequence of embeddings, but these values are not
stable, especially during first iterations. This behaviour may be dangerous for the
networks, because there is no control on language vector spaces, and this may lead
to the massive reduction of vector spaces or, in the worst case, to the convergence
of both generators in a single point. As far as decoders are concerned, the issue is
similar, as they are not able to adapt to rapid changes and are not able to produce
meaningful phrases when encoders collapse in individual points. This is because of
the absence of a ground truth in the definition of sentence embeddings. A solution
may be the use of anchor points, that represent some pre-defined sentence or word
embeddings, that have to be used by the networks as points to enforce. In this
way, the alteration of languages vector space is more controlled and their collapse
may be avoided. Although this solution has positive aspects, it is not sure that
the networks would converge in a shared space. Anchor points could be respected,
but the rest of sentence embeddings may fall back in some isolated points or may
assume an unpredictable behaviour.

Figure 4.7: BLEU score obtained using different training approaches

The possible solution is the usage of an encoder as ground truth, that has frozen
parameters. This means that the encoder does not update its parameters, but it
remains the same during the whole training phase. Since the objective of thesis is
to produce a shared vector space among languages using English as focal language,
a training using a the English to French frozen encoder is performed. This will help
convergence speed, convergence stability and will produce a French vector space
that adapts itself to the predefined English vector space. Plots of results obtained
with the training of both generators encoders and with the training of one encoder

67



Experiments and Results

only are reported in figures 4.7, 4.8 and 4.9.

Figure 4.8: Average distance obtained using different training approaches

As shown in figure 4.7, the behaviour of BLEU scores follow the same pattern
during iterations. Unless some unstable points, French to English BLEU scores are
identical during the whole training. English to French BLEU scores show some
differences. In fact, using a frozen encoder, the BLEU score is always higher than
the trained one. This is because of the use of a fixed encoder, and this means that
the only part of English to French network that is trained is the decoder. This lead
to a more focused decoder training, and as result the frozen encoder configuration
lightly outperforms the unfrozen one.

Analysing the plot in figure 4.8 that reports the average distances among parallel
sentences, it is clear that the two configurations have different behaviours. Even if
the unfrozen encoder configuration seems better, it is not that correct. In unfrozen
encoder, the average distance among sentences drops in few iterations, reaching
a value close to 0. This is exactly the worst case explained before, that is the
collapse of the encoder sentence embeddings in some isolated points. In fact,
analysing the upper plot in figure 4.9 that shows distances among non parallel
sentences and languages vector space dimensions obtained training both encoders,
both English and French vector space dimensions drops down to a value close

68



Experiments and Results

to 0. This means that the sentence embeddings related to the evaluation set,
that contains heterogeneous sentences, fall in near points, regardless the sentence
meaning. This behaviour may produce an irrecoverable configuration of generators,
and the networks will not be able to translate and align. This is not the case,
because plots show that during time the vector spaces increase their size, but the
cannot reach back the starting English vector space dimensions. Even the average
distance among parallel sentences, shown in 4.8, increases and converges to the
same results of the configuration that uses the frozen encoder.

Figure 4.9: Average mutual distances obtained using different training ap-
proaches(top: unfrozen encoder, below: frozen encoder)

It seems that both configuration may be viable, but the frozen encoder configu-
ration is chosen as best during the following steps. This choice is related to the
instability of the configuration that simultaneously trains both generators. Even if
not reported in the thesis, other experiments have been performed to understand
the risks and the possible advantages related to the use of the unfrozen encoder
configuration. The training of both encoders apparently seems the most correct, but
it often happens that networks vector spaces fall in single points and generators are
not able to recover. In fact, trying to produce sentence embeddings that are as close
as possible and without using a ground truth, both models collapse and produce the

69



Experiments and Results

same sentence embedding vector, regardless the input sentences. This behaviour
worsen during iterations, and produce a pair of generators that encode all sentences
in the dataset in a limited amount of points in the shared vector space, and this
leads to the definition of sentence embeddings that don’t contain information about
the input sentences and to the generation of meaningless sentences.

4.4.3 Hyperparameters usage analysis
So far, loss function and encoders training approach have been chosen. During
previous experiments, only a subset of parameters were used. This decision was
taken because the training using all hyperparameters requires a not negligible
amount of computational time and resource. In fact, the use of all hyperparameters
implies the increase of losses computed during each iteration, and the overhead
of resources is not insignificant. Using a subset of them, instead, the number of
losses calculated decreases, and the average time needed to complete an iteration
decreases as well. Even without all the parameters, the network trained with
MSE loss and a frozen English to French encoder gives outstanding results. In this
section, a detailed analysis of differences between training using all hyperparameters
or a subset of the is reported. More in detail, two hyperparameters were set to null
in previous experiments, that are lambda C2 and lambda C3.

Figure 4.10: BLEU score obtained using different hyperparameters

Lambda C2 defines the weight of the penalization related to the distance among
translation and back-translation sentence embeddings, meanwhile Lambda C3 is
the parameters used to weight the penalization related to the distance among back-
translation performed in both languages. These hyperparameters were introducted
to enforce the sentence alignment comparing several combinations of the produced
sentence embeddings, and to exploit the backtranslation. Doing this, the usage of

70



Experiments and Results

cycle consistency is more effective and becomes a fundamental part of the training
and of the CycleNLPGAN approach.

The analysis has been performed training both the configurations for four epochs
and using a linear decay for the learning rate. The value of each hyperparameter
is reported in table 4.2. Plots of results obtained using all hyperparameters and
using a subset of them are reported in figures 4.10, 4.11 and 4.12.

Unlike the previous cases, in this analysis the differences between the various
metrics used to evaluate the models are much smaller. BLEU scores, reported in
figure 4.10, are calculated in English to French and in French to English directions
and have the same trend during the four epochs. Both configurations reach
MarianMT’s starting BLEU scores on the evaluation dataset at the end of the
first epoch and improve them during the last three epochs. BLEU scores achieved
using the whole set of hyperparameters are slightly higher than the others, but the
difference is minimal.

Figure 4.11: Average distance obtained using different hyperparameters

The same is for the average distance values achieved during the four epochs.
Configurations obtains similar values during the whole training and reach a mini-
mum value of 0.046 at the end of the training. According to values reported since
now, the configurations are equivalent and produce sentences that have the same

71



Experiments and Results

meaning, structure and that have similar embeddings. In fact, the comparison
of sentences produced during the training of both configurations shows the simi-
larity among translations obtained starting from the same input sentences. The
qualitative results obtained during this phase are not reported in this thesis.

Figure 4.12: Average mutual distances obtained using different hyperparameters
(on top: full set of hyperparameters, below: partial set of hyperaparameters)

The last plots used in the analysis, that are shown in figure 4.9, report the
progress of average distances among vector spaces and the evolution of the French
vector space in comparison with the English one. Even in them, the difference is
almost nothing. Mutual distances are equivalent, the only difference is obtained
comparing the vector spaces. The French vector space obtained using all the
parameters is higher than the one obtained in the other configuration, and it gets
a little closer to the English vector space. This means that French space is more
similar to the English one, and that they are more overlapped.

Even if the computational effort and the time needed to converge is slightly
higher using the whole set of parameters, this configuration has been chosen to
perform the training in other languages. The additional time required by the
configuration compared to the other is of the order of minutes, so it was considered
as an highly affordable price to get slightly better results.

72



Experiments and Results

4.4.4 Results on addressed tasks
So far, performed analysis gives the best possible configuration that can be used
during the training. Loss function, encoder training approach and the set of
hyperparameters needed in the training have been defined comparing results
obtained using several combinations of them. As result, the most resilient and
performing configuration has been obtained and used to train models in several
languages pairs, such as English-French, English-German, English-Russian and
English-Chinese. Once the training phase is completed, the models are evaluated on
the addressed tasks. In particular, each model is tested on BUCC bitext retrieval
and on WMT news translation task, that address respectively sentence alignment
and neural machine translation. In following sections, results are analysed and
compared to other models. Moreover, qualitative results of models are reported in
the last section.

BUCC bitext retrieval results

Results are compared to the state of the art models results obtained using LASER
([44]) and LaBSE([57]), and to other models, such as distillation training models
([45]), mUSE ([22]), XML-RoBERTa ([33]) and multilingual BERT ([37]). Results
obtained by each model values are shown in table 4.3 and are used to compare
models and training approaches to the one produced in this thesis work. Values
related to the knowledge distillation have been obtained using a Sentence BERT
([34]) as teacher model.

Model DE-EN FR-EN RU-EN ZH-EN Average
mBERT [37] 44.1 47.2 38.0 37.4 41.7

XML-RoBERTa [33] 5.2 6.6 22.1 12.4 11.6
Distilled XML-RoBERTa [45] 90.8 87.1 88.6 87.8 88.6

mUSE [22] 88.5 86.3 89.1 86.9 87.7
LASER [44] 95.4 92.4 92.3 91.7 93.0
LaBSE [57] 95.9 92.5 92.4 93.0 93.5

CycleNLPGAN 87.1 83.7 84.8 31.0 71.7

Table 4.3: F1 score on BUCC bitext mining task

LASER and LaBSE obtain the best average values and the highest results in
each language pair, and this is because their structures were built to have high
performance in alignment among languages. Moreover, LASER is able to align more
than two languages simultaneously, producing an agnostic vector space used by all
languages. After them, Distilled XML-RoBERTa obtains the highest results. It is
trained using the distillation training approach, that is the most similar to the one

73



Experiments and Results

used in this thesis. Unlike CycleNLPGAN, this technique takes advantage of data
from both languages at every stage of the training, and this is demonstrated by the
superior results compared to those of CycleNLPGAN. CycleNLPGAN results are
comparable to those obtained by mUSE, a model uniquely built to align languages
among them using a mapping function trained using an adversarial approach.
Although CycleNLPGAN does not reach the level of direct competitors, the overall
result is reasonable, as the model has been trained to reach a compromise between
translation quality and sentence alignment. In fact, the model is able to produce
aligned sentences and defines a latent space shared among languages. At the same
time, it is able to produce meaningful sentences that are correct translation of
original ones. Moreover, as shown in the next section, the model produces results
that have the same quality as those produced by MarianMT generators before the
training. The main difference to the starting MarianMT generators is the widely
increased alignment among them according to the shared vector space. Before
CycleNLPGAN training, models embeddings are much further than those obtained
after the whole training phase. Starting from an average cosine distance value of
0.99 in all languages pairs on the evaluation set, the models reach a final average
cosine distance value of 0.036, and this explains the strong contribution of the
introduced approach.

Another aspect that should be considered to analyse CycleGAN results in BUCC
is related to the training duration and to the datasets used in the training phase. In
fact, the opposing models have been trained for many more epochs and with more
data, which was not possible in CycleGAN due to time needed and due to lack of
computational resources. This is also confirmed by the low results obtained by the
English-Chinese languages pair model, as the number of available sentences were
much lower than those required to converge and to obtain a fulfilling alignment
result. Moreover, if it is necessary to achieve higher alignment results, it would
be possible to increase the value of the hyperparameters that manage the impact
of the alignment. However, this could lead to a less stable model or to a final
configuration that has poor translation quality.

Another meaningful consideration that should be done analysing results is related
to the dimension of the sentence embedding vector. In fact, the CycleNLPGAN
model, and the MarianMT model as well, produces a 512 − length vector, that is
considerably smaller than the one produced by LASER, that produces a 1024 −
dimension fixed-size vector, and by sentence BERT, that generates a 768 − length
vector. This may lead to the production of more compact vectors, and this
significantly decrease performances on BUCC task. Other approaches, instead,
produce more sparse vectors, and this mathematically would lead to a lower
probability of having equal sentence embeddings or close sentence embeddings
when two or more sentences are not perfectly aligned. It may be useful to compare
different dimension sentence embeddings in order to quantify the difference among

74



Experiments and Results

produced embeddings and more in general among produced vector spaces. A
technique that can be used to do this is related to the calculation of the average
distance among sentences obtained using the different models. The more the
distances are close among models embeddings, the more the models produce vector
spaces that have similar dimensions, and therefore more sparse sentence embeddings.

Finally, results achieved by CycleNLPGAN in certain language pairs are slightly
lower than competitors, such as distillation technique, but this may be related to the
limited duration of the training and to the necessity of training both alignment and
translation simultaneously. In fact, models like LASER are able to produce highly
aligned vector spaces among languages, but these models have issues assigning
meaningful similarity scores for sentence pairs that don’t have identical meaning,
but a similar one. On the other hand, mUSE and distillation approach produce
vector spaces that make semantically similar sentences fall in close points. However,
in the BUCC setup, similar sentences pairs are not labelled as parallel sentences,
and this means that these models are penalized by BUCC score when sentences
are not perfectly aligned. Since an approach similar to [22] and [45] has been used,
a similar assertion could also be made for CycleNLPGAN model. To be certain of
this, it should be useful to test the architecture in a semantic textual similarity
task, but due to lack of computational resources and time it was not possible to do
it during this thesis work.

WMT news translation results

CycleNLPGAN model has been evaluated on WMT news test sets from 2014 to 2017,
but the relevant dimension of WMT training datasets and the lack of computational
resources don’t allow the correct training of the model on the respective training
sets. In fact, WMT datasets contain a huge amount of data, and completing the
training on them would have required unaffordable time. This led to the use of the
dataset described in previous sections, despite the expected results would not be
totally comparable to those obtained training models on specific WMT datasets.

The most important analysis that has been carried out on the WMT task is
related to the comparison between native MarianMT and CycleNLPGAN. As
explained in the previous chapters, CycleNLPGAN architecture contains within
it two MarianMT models. The first one is responsible for translating from En-
glish to another language, meanwhile the second follows the inverse direction.
Tables 4.4, 4.5, 4.6 and 4.7 report the BLEU scores achieved by several models
translating WMT test sets from a language to another. Except for MarianMT,
mBART and CycleNLPGAN, the reported results are taken from the respective
publication, so they may contain partial data with respect to those analysed in
this thesis. Only results taken from official paper are reported for these models,
meanwhile MarianMT, mBART and CycleNLPGAN have been tested on each

75



Experiments and Results

WMT dataset.
In most cases, the results obtained by the native MarianMT are higher than

those obtained by the models obtained training the CycleNLPGAN. In fact, in
most of the scenarios, MarianMT achieves results that are close to those obtained
by the state-of-the-art models on WMT task, and CycleNPLGAN is not able to
reach them. However, it sometimes happens that CycleNLPGAN outperforms
MarianMT, increasing the quality of the translation that it had initially thanks
to the techniques used in this thesis work. In fact, the native MarianMT is the
architecture used to build the CycleNLPGAN model. MarianMT results correspond
to the results obtained by CycleNLPGAN starting model, so this comparison gives
a feedback on the effectiveness of the presented technique. Even if the MarianMT
is trained on WMT training dataset, CycleNLPGAN is, able to get back to starting
translation quality, and even to outperform it in certain scenarios. At the same time,
the model is able to align languages vector spaces, so, under these assumptions,
results obtained by CycleNLPGAN through years datasets is fulfilling.

Once the comparison between MarianMT and CycleNLPGAN is concluded, it
is possible to make a deeper analysis of the results obtained using CycleNLPGAN
compared to those achieved by the state-of-the-art models on WMT task. As shown
in tables 4.4, 4.5, 4.6 and 4.7, in most cases CycleNLPGAN results are lower than
other models, that are specifically designed to address neural machine translation
task and that are trained on WMT datasets. Despite the use of a different training
set, some language pairs models trained using CycleNLPGAN approach obtain
results that are quite similar to those achieved by competitors on several years test
sets, and in some cases CycleNLPGAN exceeds them.

WMT 14
Model EN-DE DE-EN EN-FR FR-EN

mBART [58] 21.9 31.6 32.2 34.4
MarianMT [51] 23.8 29.5 39.8 38.0

Transformer Cycle [59] 35.14 - - -
CMLM + LAT [60] 27.35 32.04 - -

Transformer + BT [61] - - 46.4 -
SMT + iterative bascktranslation [62] 14.08 17.43 26.22 25.87

CycleNLPGAN 25.43 28.26 34.7 33.0

Table 4.4: WMT ’14 BLEU scores

However, over the years models have been designed to become more able to
produce high quality translations. This is evident from the analysis of results.
Indeed, models that have been implemented recently and than have been tested on
WMT datasets far exceed those achieved using CycleNLPGAN model, meanwhile
older models achieved results that are comparable to CycleNLPGAN ones.

76



Experiments and Results

WMT 15
Model EN-DE DE-EN EN-FR FR-EN EN-RU RU-EN

mBART [58] 24.7 31.1 29.0 32.0 25.9 29.3
MarianMT [51] 26.2 29.2 38.4 38.3 27.1 29.9
ByteNet [63] 26.3 - - - - -

C2-50k Segmentation [64] - - - - 20.9 -
CycleNLPGAN 27.7 29.1 35.1 33.1 21.0 25.0

Table 4.5: WMT ’15 BLEU scores

WMT 16
Model EN-DE DE-EN EN-RU RU-EN

mBART [58] 29.6 37.9 20.9 29.2
MarianMT [51] 31.4 35.7 26.2 30.0

Multi-Agent Dual Learning [65] 40.68 - - -
Attentional encoder-decoder +BPE [66] 34.2 38.6 20.9 28.0

CycleNLPGAN 27.7 29.1 18.7 24.1

Table 4.6: WMT ’16 BLEU scores

Another aspect that should be analyzed carefully is related to the results
obtained by the English-Chinese CycleNLPGAN model. Although the results are
far lower than those obtained from other models, they can be used to understand
the importance of having a suitable dataset in order to obtain sufficient translation
quality. The dataset associated with the English-Chinese language pair, in fact,
contains a very limited amount of data compared to those used for other language
pairs, and even less than those provided by WMT for the training phase. A low
amount of phrases is used for the training of this model because of the absence of
Chinese data in some of the datasets used during the training. Those of them that
contain Chinese-English parallel sentences are characterized by a not negligible
amount of low quality data in them, and these sentences were discarded in the
definition of the dataset. This filtering procedure has led to the use of only
87 thousand sentences during the training of English-Chinese model, that an
inadequate number to obtain results comparable to those reported in table 4.7.

The same assumption can be reported to the other CycleNLPGAN models
results reported in previous tables. Indeed, also for the other languages pairs, the
amount of data used during the training phase is much lower than the corresponding
data provided by the WMT dataset for the same language pair. The choice of a
smaller dataset was made during the dataset definition and takes into account the
time needed to complete the training and the related amount of computational
resources required.

77



Experiments and Results

WMT 17
Model EN-DE DE-EN EN-ZH ZH-EN

mBART [58] 23.0 33.0 1.43 23.6
MarianMT [51] 25.0 30.8 0.93 19.2
OmniNetP [67] 29.0 - - 23.0

T2R+Pretrain [68] 34.2 - - 23.8
CycleNLPGAN 26.1 29.9 2.5 12.6

Table 4.7: WMT ’17 BLEU scores

Analysing the overall results achieved by CycleNLPGAN and the main competi-
tors, it is clearly noticeable the difference among them. CycleNLPGAN is not able
to reach state-of-the-art model in most of the language pairs. The two main causes
of this verdict are the difference in the datasets used in the training phase and the
specificity of the training of the other models, completely aimed at addressing the
translation task. This is because models such as native MarianMT ([51]) perform
better. Indeed they have been designed to exclusively translate corpora and have
been trained on WMT datasets, meanwhile CycleNLPGAN has been trained on
parallel datasets that does not include WMT dataset. Moreover, the amount of
data used for CycleNLPGAN training is much lower, and the duration in epochs of
the training is lower than other models.

Finally, these outcomes confirm the assumptions made initially, claiming that the
model reaches a compromise and an equilibrium between alignment and translation
tasks.

Qualitative results

In the following section, some sentences taken from the abstract and their translation
from English to French and from English to German are reported. In order to
evaluate the cycle consistency contribution, the back-translation from German to
English is shown as well. Moreover, a brief examination of the quality of both
translation is given.

As shown in table 4.8, outcomes obtained traducing English sentences in German
and French produce sentences that have the same meaning as in the starting
sentences. The quality of translation is adequate and the overall meaning of each
sentence is not altered. The effectiveness of CycleNLPGAN approach is confirmed
by back-translation results. In fact, sentences obtained translating back in English
generated German sentences shows that CycleNLPGAN maintains the English
original sentences structure as unchanged. In some cases, the back translation
retrieves a sentence that is identical to the starting one, and this is due to the
introduction of the cycle consistency. In other sentences, the words used to build

78



Experiments and Results

them are different, but the meaning is identical.
However, in some cases, the translated sentences contain words that are not

properly correct. Even if the resulting sentence holds his starting meaning, words
used to produce it may be misleading and inaccurate. As instance, the term "cycle-
consistent" is translated as "bikekonsistenter", and finally it is back-translated
as "bike-consistent". The English to German translation produces a term that
is the composition of cycle and consistent, but cycle term is translated as bike,
that produces a misleading sentence. The back-translation produces a sentence
that properly traduce the term bike, but it has not the same meaning as the
starting sentence. The main cause of this type of translation errors is related to
the generic nature of the training dataset, meanwhile this translation requires a
dataset specialized on technical words and sentences. In fact, the model translates
the word cycle in the the term corresponding to bicycle in German.

79



Experiments and Results

Abstract excerpt
This thesis presents CycleNLPGAN, a deep learning architecture that introduces an innovative
approach to sentence encoding and alignment. It allows the definition of a latent vector space
shared across a pair of languages. The model is jointly trained to perform neural machine
translation from a source language A and to target language B. It generates a shared aligned
vector space suitable for machine translation from a source language to a target one and vice versa.
The architecture is based on a CycleGAN, a Computer Vision model that address image-to-image
translation using cycle-consistent dynamics. It enforce the robustness of the resulting model
and the quality of produced data. The architecture is defined using a cycle consistency loss, an
approach used in neural machine translation and in domain adaptation models.

French Translation using CycleNLPGAN
Cette thèse présente CycleNLPGAN, une architecture d’apprentissage profond qui introduit une
approche novatrice de l’encodage et de l’alignement des phrases. Il permet la définition d’un
espace vectoriel latent partagé à travers une paire de langages. Le modèle est formé conjointement
pour exécuter la traduction par machine neuronale à partir d’une langue source A et à la langue
cible B. Il génère un espace vectoriel aligné partagé adapté à la traduction automatique à partir
d’un langage source vers une cible et vice versa. L’architecture est basée sur un CycleGAN, un
modèle de vision informatique qui aborde la traduction image à image en utilisant la dynamique
conséquente. Il fait respecter la robustesse du modèle résultant et la qualité des données produites.,
L’architecture est définie à l’aide d’une perte de cohérence de cycle, d’une approche utilisée dans
la traduction de la machine neurale et dans les modèles d’adaptation de domaine.

German Translation using CycleNLPGAN
Diese These präsentiert cycleNLPGAN, eine Deep-Learning- Architektur, die einen innova-
tiven Ansatz zur Satzkodierung und Ausrichtung einführt. Es erlaubt die Definition eines
latenten Vektorraums, der über ein Paar Sprachen geteilt wird. Das Modell wird gemeinsam
trainiert, um neuronale maschinelle Übersetzungen aus einer Quellsprache A und zur Zielsprache
B durchzuführen. Es erzeugt einen gemeinschaftlich ausgerichteten Vektorraum, der für die
maschinelle Übersetzung von einer Quellsprache zu einem Zielraum geeignet ist und umgekehrt.
Die Architektur basiert auf einem cycleGAN, einem Computer-Vision-Modell, das Bild-zu-Bild-
Übersetzung mit bikekonsistenter Dynamik ansprechen. Es setzt die Robustheit des entstehenden
Modells und die Qualität der produzierten Daten durch. Die Architektur wird durch einen
Zykluskonsistenzverlust definiert, einen Ansatz, der in der neuronalen maschinellen Übersetzung
und in Domain-Anpassungsmodellen verwendet wird.

Back Translation using CycleNLPGAN (from generated German sentences)
This thesis presents cycleNLPGAN, a deep learning architecture that introduces an innovative
approach to setting coding and aligning. It allows the definition of a latent vector space which
is shared over a pair of languages. The model is trained together to perform neural machine
translations from a source language A and to the target language B. It creates a jointly oriented
vector space suitable for machine translation from a source language to a target space and vice
versa. The architecture is based on a cycleGAN, a computer vision model, addressing image-
to-image translation with bike-consistent dynamics. It enhances the robustness of the resulting
model and the quality of the data produced. The architecture is defined by a cycle consistency
loss, an approach used in neural machine translation and in domain adaptation models.

Table 4.8: Qualitative evaluation of CycleNLPGAN model by translating an
excerpt of the abstract of this master thesis.

80



Chapter 5

Conclusions

Artificial Intelligence and Machine Learning research have seen an increasing
interest during years. The most important and innovative techniques are related to
Computer Vision and Natural Language Processing fields. Computer Vision is a
branch of Machine Learning that aims to understand, generate and classify images,
meanwhile Natural Language Processing addresses the understanding, the learning
and the modeling of natural languages. Both of them resolve a wide range of tasks,
and the produced models obtain astonishing results in most of them. It often
happens that these two fields address similar tasks or tasks that can be related
among them. In some cases, state-of-the-art models in both fields use similar
techniques, as in some cases approaches used in one field are applied in the other
one, producing impressive outcomes.

The model produced on this thesis, called CycleNLPGAN, addresses sentence
alignment and neural machine translation, two sub-tasks of Natural Language
Processing field. The main objective of this thesis is to produce a model able to
align sentences with similar meanings using a cycle consistent approach. Jointly,
the model performs translation among languages, trying to produce high quality
translated sentences. Starting from a language couple, such as French − English
pair, the model is able to produce a shared latent vector space. Using this approach,
the sentence embeddings produced by the resulting model for sentences in different
languages that have a similar meaning, called parallel sentences, are close among
them and belong to the same shared latent vector space. The resulting model
exploits the cycle consistency loss, which is computed during the training phase in
order to define the similarity among the starting sentences and the result of their
translation in the other language followed by a re-translation, or back translation, in
the starting language. The cycle loss aims to enforce the quality of the translation,
penalizing the networks used during the translation and the back translation and
updating them jointly. Moreover, this loss aims to increase the correlation among
models that translate from a language to another and vice versa. This specific

81



Conclusions

approach is taken from a Computer Vision model called CycleGAN [23], that
addresses domain adaptation task. In fact, the degree of similarity among the
domain adaptation in Computer Vision and the neural machine translation in
Natural Language Processing allows to reproduce the CycleGAN approach in
Natural Language Processing. Both CycleGAN and CycleNLPGAN are trained
using the generative adversarial approach, and contain two generators and two
discriminators. Generators take a sentence in a source language as input, produce
the sentence embedding and produce the sentence as output in a target language.
Unlike traditional CycleGAN, this approach is trained in a supervised fashion in
order to enforce the learning quality and to reduce the possibility of divergence
during the training.

Several configuration of CycleNLPGAN have been trained for a limited amount
of sentences in order to find out the best approach that should be used during
the whole training. More in detail, the loss function, the training approach for
generators and the set of hyper-parameters have been defined. Once the best
configuration is chosen, some experiments aims to find the best value for each
hyper-parameter.

The best configuration of hyper-parameters is used to train CycleNLPGAN
using several language pairs, such as French-English, German-English, Russian-
English and Chinese-English. After the training, each model is evaluated on both
alignment and neural machine translation tasks. The addressed tasks are BUCC
bitext retrieval and WMT news translation. The BUCC results are lower than
the ones obtained by competitors model such as [45], [57] and [44]. One of the
main disadvantage of CycleNLPGAN with respect to state-of-the-art models is the
reduced amount of training data used and the lower number of iterations executed
during the training. The Moreover, CycleNLPGAN produces lower dimension
sentence embeddings with respect to competitors ones. In fact, CycleNLPGAN
generators, that are MarianMT models, produce a 512-length sentence embedding
vector, meanwhile competitors models produce higher dimensional vector that are
composed by 768 and 1024 elements.

CycleNLPGAN achieves outstanding results with respect to state-of-the-art
models on WMT task. Even if translation results are not always higher than
competitors ones, the model can be considered adequate and accurate on this
task despite not being trained on the reference dataset. In fact, CycleNLPGAN
is trained on a set of data that does not contain WMT training dataset. This
choice was constrained by the elevate dimension of the WMT training set. The
training of CycleNLPGAN with this data would have required an unavailable
set of computational resources and an unaffordable amount of time to complete
the training for an adequate amount of epochs. The assumption related to the
inadequate dataset and to the reduced amount of sentences is confirmed by results
obtained for different language pairs. Models trained on a higher amount of data,

82



Conclusions

such as German−English and French−English models, reach results comparable
to competitors, meanwhile models that uses a reduced number of sentences during
the training, such as Chinese − English model, obtain inaccurate results and
low-quality translation.

Finally, CycleNLPGAN model is able to obtain a compromise among sentence
and language alignment and translation quality, and the resulting model can be
used as starting point for future works that aim to increase performances in both
tasks.

5.1 Future Works
The master thesis work requires a significant effort, and several possible improve-
ments have emerged during the implementation of the architecture described in
previous chapters.

At first, several models may be used as generator. In this implementation,
MarianMT was chosen as generator model because of the simple structure and the
presence of several pretrained language pairs configurations. Other encoder-decoder
model may be used to verify the robustness and the flexibility of CycleNLPGAN
architecture. Moreover, another point of interest related to the generator choice is
the dimension of the produced embedding. MarianMT model produces a 512-length
embedding vector, but several models produce higher dimension vectors. Model
like LASER [44] produce 1024-length vectors, and it may be possible that results
are more sparse, meanwhile in MarianMT model produce embeddings that are
more dense due to the limited dimension. The introduction of models that produce
higher dimensional vectors may increase CycleNLPGAN results.

Another aspect that caught attention during implementation is related to results
obtained during the loss function. During analysis, MSE loss seems more adequate
to evaluate sentence embedding loss, but the graph reported in figure 4.6 obtained
using cosine loss shows a behaviour during the training that is completely different
if compared to the MSE loss one. Due to the limited amount of resources, the
configuration cannot be trained for the whole amount of epochs. A more detailed
analysis on the contribution given by the loss function, performed after training
the model using the whole dataset for more than one epoch, may lead to a more
accurate result.

The third implementation that may improve results is related to the massive
usage of back-translation. During the training, the back-translation is used in
certain phases to increase reliability and robustness, but its impact is partial and
less impactful related to others. Analysing the quality of the back-translation of
the real sentence, BLEU scores report a massive increase in the quality of the
reconstructed sentences. Results obtained using the back-translation, that are not

83



Conclusions

reported in this thesis, are higher than the one produced during the first translation.
Even if this aspect may be useful to increase the quality of the architecture, the
amount of research related to this topic and the effort required to implement
improvements are out of the scope of this thesis. It may be useful, in future works,
to analyse more accurately this behaviour and to try to use back-translation in
other training phases.

The last activity that may be useful in future works is related to the evaluation
of the models. CycleNLPGAN architecture obtains results that are comparable to
distillation approach [45] and mUSE [22] ones on the sentence alignment task. State-
of-the-art models outperform them because they are built to address this specific
task, but results obtained by models such as LASER [44] and [57] on semantic
textual similarity task are lower than competitors. This is because they look for
the perfect translation, meanwhile mUSE and distillation approach models look for
sentences that have similar meanings. The same may be true for CycleNLPGAN,
but to be certain of this, it should be useful to test the architecture in a semantic
textual similarity task. The best way to address semantic textual similarity
is performed evaluating the model on the multilingual STS 2017 dataset [69],
which contains annotated pairs for English-English, Arabic-Arabic, English-Arabic,
Spanish-Spanish, English-Spanish and English-Turkish. Given a pair of sentences,
the model has to assign a score indicating their semantic similarity. A score of 0
indicates no relation among sentences, meanwhile 5 indicates semantically equivalent
sentences. Due to lack of time it was not possible to evaluate CycleNLPGAN during
this thesis work, but the results on this task may demonstrate its competitiveness
and its flexibility on this task as well.

84



Bibliography

[1] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. «Deep blue».
In: Artificial intelligence 134.1-2 (2002), pp. 57–83 (cit. on p. 1).

[2] David H Hubel and Torsten N Wiesel. «Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex». In: The Journal of
physiology 160.1 (1962), pp. 106–154 (cit. on p. 2).

[3] Olga Russakovsky et al. «Imagenet large scale visual recognition challenge».
In: International journal of computer vision 115.3 (2015), pp. 211–252 (cit. on
p. 3).

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. «Imagenet classi-
fication with deep convolutional neural networks». In: Advances in neural
information processing systems 25 (2012), pp. 1097–1105 (cit. on p. 3).

[5] Alan M Turing. «Computing machinery and intelligence». In: Parsing the
turing test. Springer, 2009, pp. 23–65 (cit. on p. 3).

[6] Li Deng and Yang Liu. Deep learning in natural language processing. Springer,
2018 (cit. on p. 3).

[7] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen.
Classification and regression trees. CRC press, 1984 (cit. on p. 3).

[8] Frank Rosenblatt. «The perceptron: A probabilistic model for information
storage and organization in the brain». In: Psychological review 65.6 (1958),
pp. 386–408 (cit. on pp. 3, 12).

[9] Diederik P Kingma and Max Welling. «Auto-encoding variational bayes». In:
arXiv preprint arXiv:1312.6114 (2013) (cit. on p. 6).

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. «Generative
adversarial nets». In: Advances in neural information processing systems.
2014, pp. 2672–2680 (cit. on pp. 6, 9, 15, 28).

[11] Tin Kam Ho. «Random decision forests». In: Proceedings of 3rd international
conference on document analysis and recognition. Vol. 1. IEEE. 1995, pp. 278–
282 (cit. on p. 6).

85



BIBLIOGRAPHY

[12] Corinna Cortes and Vladimir Vapnik. «Support-vector networks». In: Machine
learning 20.3 (1995), pp. 273–297 (cit. on p. 6).

[13] Abigail See, Peter J Liu, and Christopher D Manning. «Get To The Point:
Summarization with Pointer-Generator Networks». In: () (cit. on p. 6).

[14] Xingxing Zhang, Furu Wei, and Ming Zhou. «HIBERT: Document Level
Pre-training of Hierarchical Bidirectional Transformers for Document Sum-
marization». In: Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. 2019, pp. 5059–5069 (cit. on p. 6).

[15] Romain Paulus, Caiming Xiong, and Richard Socher. «A Deep Reinforced
Model for Abstractive Summarization». In: arXiv e-prints (2017), arXiv–1705
(cit. on p. 6).

[16] Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, and Yuji
Matsumoto. «LUKE: Deep Contextualized Entity Representations with Entity-
aware Self-attention». In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 2020, pp. 6442–6454
(cit. on pp. 7, 8).

[17] Zhiheng Huang, Wei Xu, and Kai Yu. «Bidirectional LSTM-CRF Models for
Sequence Tagging». In: () (cit. on p. 7).

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. «Attention is all you
need». In: Advances in neural information processing systems. 2017, pp. 5998–
6008 (cit. on pp. 7, 8, 20–23).

[19] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. «Sequence to Sequence Learning
with Neural Networks». In: () (cit. on p. 7).

[20] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhut-
dinov, and Quoc V Le. «XLNet: Generalized Autoregressive Pretraining for
Language Understanding». In: () (cit. on p. 8).

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. «Bert:
Pre-training of deep bidirectional transformers for language understanding».
In: arXiv preprint arXiv:1810.04805 (2018) (cit. on pp. 8, 11, 20, 23).

[22] Guillaume Lample, Alexis Conneau, Marc’Aurelio Ranzato, Ludovic Denoyer,
and Hervé Jégou. «Word translation without parallel data». In: International
Conference on Learning Representations. 2018 (cit. on pp. 9, 28, 29, 32, 73,
75, 84).

[23] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. «Unpaired
image-to-image translation using cycle-consistent adversarial networks». In:
Proceedings of the IEEE international conference on computer vision. 2017,
pp. 2223–2232 (cit. on pp. 9, 35, 36, 40, 52, 82).

86



BIBLIOGRAPHY

[24] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrah-
man Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. «BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Genera-
tion, Translation, and Comprehension». In: arXiv (2019), arXiv–1910 (cit. on
pp. 11, 20, 24, 25, 42).

[25] Warren S McCulloch and Walter Pitts. «A logical calculus of the ideas
immanent in nervous activity». In: The bulletin of mathematical biophysics
5.4 (1943), pp. 115–133 (cit. on p. 12).

[26] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Tech. rep. California Univ San
Diego La Jolla Inst for Cognitive Science, 1985 (cit. on p. 14).

[27] Sepp Hochreiter and Jürgen Schmidhuber. «Long short-term memory». In:
Neural computation 9.8 (1997), pp. 1735–1780 (cit. on p. 14).

[28] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. «Efficient Es-
timation of Word Representations in Vector Space». In: arXiv preprint
arXiv:1301.3781 (2013) (cit. on pp. 17–19, 27, 28).

[29] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
«Enriching word vectors with subword information». In: Transactions of the
Association for Computational Linguistics 5 (2017), pp. 135–146 (cit. on
pp. 19, 29).

[30] Jeffrey Pennington, Richard Socher, and Christopher D Manning. «Glove:
Global vectors for word representation». In: Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP). 2014, pp. 1532–
1543 (cit. on p. 19).

[31] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. «Deep contextualized word repre-
sentations». In: Proceedings of NAACL-HLT. 2018, pp. 2227–2237 (cit. on
pp. 20, 22).

[32] Yinhan Liu et al. «RoBERTa: A Robustly Optimized BERT Pretraining
Approach». In: arXiv (2019), arXiv–1907 (cit. on p. 23).

[33] Alexis Conneau et al. «Unsupervised Cross-lingual Representation Learning
at Scale». In: arXiv (2019), arXiv–1911 (cit. on pp. 23, 73).

[34] Nils Reimers and Iryna Gurevych. «Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks». In: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing. Association for Compu-
tational Linguistics, Nov. 2019. url: https://arxiv.org/abs/1908.10084
(cit. on pp. 23, 30, 42, 73).

87

https://arxiv.org/abs/1908.10084


BIBLIOGRAPHY

[35] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and
Denny Zhou. «MobileBERT: a Compact Task-Agnostic BERT for Resource-
Limited Devices». In: arXiv (2020), arXiv–2004 (cit. on p. 23).

[36] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. «ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations». In: International Conference on
Learning Representations. 2019 (cit. on p. 23).

[37] Telmo Pires, Eva Schlinger, and Dan Garrette. «How Multilingual is Multilin-
gual BERT?» In: Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. 2019, pp. 4996–5001 (cit. on pp. 26, 73).

[38] Tomas Mikolov, Quoc V Le, and Ilya Sutskever. «Exploiting Similarities
among Languages for Machine Translation». In: () (cit. on pp. 26, 27).

[39] Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. «Normalized Word Em-
bedding and Orthogonal Transform for Bilingual Word Translation». In:
HLT-NAACL. 2015 (cit. on p. 27).

[40] Georgiana Dinu and Marco Baroni. «Improving zero-shot learning by mitigat-
ing the hubness problem». In: arXiv preprint arXiv:1412.6568 (2014) (cit. on
p. 27).

[41] Samuel L Smith, David HP Turban, Steven Hamblin, and Nils Y Hammerla.
«Offline bilingual word vectors, orthogonal transformations and the inverted
softmax». In: (2016) (cit. on p. 27).

[42] Mikel Artetxe, Gorka Labaka, and Eneko Agirre. «Learning bilingual word
embeddings with (almost) no bilingual data». In: Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). 2017, pp. 451–462 (cit. on p. 27).

[43] Meng Zhang, Yang Liu, Huanbo Luan, and Maosong Sun. «Adversarial
training for unsupervised bilingual lexicon induction». In: Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). 2017, pp. 1959–1970 (cit. on pp. 28, 32).

[44] Mikel Artetxe and Holger Schwenk. «Massively multilingual sentence embed-
dings for zero-shot cross-lingual transfer and beyond». In: Transactions of
the Association for Computational Linguistics 7 (2019), pp. 597–610 (cit. on
pp. 29, 30, 32, 39, 60, 73, 82–84).

[45] Nils Reimers and Iryna Gurevych. «Making Monolingual Sentence Embed-
dings Multilingual using Knowledge Distillation». In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, Nov. 2020. url: https://arxiv.org/abs/
2004.09813 (cit. on pp. 30–32, 39, 42, 46, 62, 73, 75, 82, 84).

88

https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813


BIBLIOGRAPHY

[46] Steven Cao, Nikita Kitaev, and Dan Klein. «Multilingual Alignment of
Contextual Word Representations». In: International Conference on Learning
Representations. 2019 (cit. on p. 31).

[47] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. «Domain
adaptation via transfer component analysis». In: IEEE Transactions on Neural
Networks 22.2 (2010), pp. 199–210 (cit. on p. 34).

[48] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky.
«Domain-adversarial training of neural networks». In: The Journal of Machine
Learning Research 17.1 (2016), pp. 2096–2030 (cit. on p. 34).

[49] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. «Adversarial
discriminative domain adaptation». In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017, pp. 7167–7176 (cit. on pp. 34,
35).

[50] Ming-Yu Liu and Oncel Tuzel. «Coupled Generative Adversarial Networks».
In: () (cit. on p. 35).

[51] Marcin Junczys-Dowmunt et al. «Marian: Fast Neural Machine Translation
in C++». In: Proceedings of ACL 2018, System Demonstrations. Melbourne,
Australia: Association for Computational Linguistics, July 2018, pp. 116–121.
url: http://www.aclweb.org/anthology/P18-4020 (cit. on pp. 42, 76–78).

[52] Jörg Tiedemann. «Parallel Data, Tools and Interfaces in OPUS.» In: (cit. on
pp. 54, 55).

[53] Željko Agic and Ivan Vulic. «JW300: A wide-coverage parallel corpus for
low-resource languages». In: (2020) (cit. on p. 55).

[54] Nils Reimers and Iryna Gurevych. «Making Monolingual Sentence Embed-
dings Multilingual using Knowledge Distillation». In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, Nov. 2020. url: https://arxiv.org/abs/
2004.09813 (cit. on p. 55).

[55] Holger Schwenk, Vishrav Chaudhary, Shuo Sun, Hongyu Gong, and Francisco
Guzmán. «Wikimatrix: Mining 135m parallel sentences in 1620 language pairs
from wikipedia». In: arXiv preprint arXiv:1907.05791 (2019) (cit. on p. 55).

[56] LoÃ¯c Barrault et al., eds. Proceedings of the Fifth Conference on Machine
Translation. Online: Association for Computational Linguistics, Nov. 2020.
url: https://www.aclweb.org/anthology/2020.wmt-1 (cit. on p. 61).

[57] Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Arivazhagan, and Wei
Wang. «Language-agnostic bert sentence embedding». In: arXiv preprint
arXiv:2007.01852 (2020) (cit. on pp. 73, 82, 84).

89

http://www.aclweb.org/anthology/P18-4020
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://www.aclweb.org/anthology/2020.wmt-1


BIBLIOGRAPHY

[58] Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan
Ghazvininejad, Mike Lewis, and Luke Zettlemoyer. «Multilingual denoising
pre-training for neural machine translation». In: Transactions of the Asso-
ciation for Computational Linguistics 8 (2020), pp. 726–742 (cit. on pp. 76–
78).

[59] Sho Takase and Shun Kiyono. «Lessons on Parameter Sharing across Layers
in Transformers». In: arXiv e-prints (2021), arXiv–2104 (cit. on p. 76).

[60] Xiang Kong, Zhisong Zhang, and Eduard Hovy. «Incorporating a Local
Translation Mechanism into Non-autoregressive Translation». In: arXiv e-
prints (2020), arXiv–2011 (cit. on p. 76).

[61] Xiaodong Liu, Kevin Duh, Liyuan Liu, and Jianfeng Gao. «Very Deep Trans-
formers for Neural Machine Translation». In: arXiv e-prints (2020), arXiv–
2008 (cit. on p. 76).

[62] Artetxe Mikel, Labaka Gorka, Agirre Eneko, et al. «Unsupervised statistical
machine translation». In: Brussels; Proceedings of the 2018 Conference on
Empirical Methods in Natural . . . 2018 (cit. on p. 76).

[63] Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord,
Alex Graves, and Koray Kavukcuoglu. «Neural Machine Translation In Linear
Time». In: () (cit. on p. 77).

[64] Rico Sennrich, Barry Haddow, and Alexandra Birch. «Neural Machine Trans-
lation of Rare Words with Subword Units». In: Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). 2016, pp. 1715–1725 (cit. on p. 77).

[65] Yiren Wang, Yingce Xia, Tianyu He, Fei Tian, Tao Qin, Cheng Xiang Zhai,
and Tie Yan Liu. «Multi-agent dual learning». In: 7th International Conference
on Learning Representations, ICLR 2019. 2019 (cit. on p. 77).

[66] Rico Sennrich, Barry Haddow, and Alexandra Birch. «Edinburgh Neural
Machine Translation Systems for WMT 16». In: () (cit. on p. 77).

[67] Yi Tay, Mostafa Dehghani, Vamsi Aribandi, Jai Gupta, Philip Pham, Zhen
Qin, Dara Bahri, Da-Cheng Juan, and Donald Metzler. «OmniNet: Omni-
directional Representations from Transformers». In: arXiv e-prints (2021),
arXiv–2103 (cit. on p. 78).

[68] Jungo Kasai, Hao Peng, Yizhe Zhang, Dani Yogatama, Gabriel Ilharco,
Nikolaos Pappas, Yi Mao, Weizhu Chen, and Noah A Smith. «Finetuning
Pretrained Transformers into RNNs». In: arXiv e-prints (2021), arXiv–2103
(cit. on p. 78).

90



BIBLIOGRAPHY

[69] Daniel Cera, Mona Diabb, Eneko Agirrec, Inigo Lopez-Gazpioc, Lucia Speciad,
and Basque Country Donostia. «SemEval-2017 Task 1: Semantic Textual
Similarity Multilingual and Cross-lingual Focused Evaluation». In: () (cit. on
p. 84).

91


	List of Tables
	List of Figures
	Acronyms
	Introduction
	Artificial Intelligence History
	Machine Learning
	Deep Natural Language Processing

	Discriminative vs Generative models
	Main Natural Language Processing Tasks
	Thesis contribution

	Related Works
	Deep Learning
	Deep Learning Background
	Recurrent Neural Network
	Long Short Term Memory Network
	Generative Adversarial Network

	Natural Language Processing
	Word Embedding
	Contextualized word embeddings
	Word and Sentence Alignment

	Computer Vision and Domain Adaptation

	Implemented methods
	Main architecture
	Generator
	Discriminator

	Loss functions
	GAN losses
	Cycle consistency loss

	Cycle-consistent process
	Improvements

	Experiments and Results
	Training Data
	Training configuration
	Hyperparameters configuration

	Addressed tasks
	Bitext Retrieval : BUCC
	WMT : Workshop on Statistical Machine Translation

	Results
	Loss function analysis
	English to language encoder training analysis
	Hyperparameters usage analysis
	Results on addressed tasks


	Conclusions
	Future Works

	Bibliography

