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Abstract

With the recent advancements in e-learning platforms and the spread of distance
learning, there is a growth in interest in generating content accompanying tradi-
tional video lessons. This thesis work aims to compare different techniques that
derive from the NLP and deep learning fields to summarize the content of video
lecture transcripts. Text summarization and related tasks have been extensively
studied in the literature; conversely, transcript summarization has not been fully
explored. Unlike the former, the transcripts summarization task presents some
more critical issues: typically raw transcripts do not contain punctuation marks and
are difficult to segment and process for traditional text summarization techniques.
Moreover, dialogues differ from plain texts in some syntactical features. Lastly, it
is important to point out that the conversion from audio to text may introduce
some errors due to the translation process. These limitations complicate the usage
of text summarization models in the case of speech transcripts. To the best of
our knowledge, at the moment, there is no study focusing on summarization of
educational content, given the absence of a specific dataset. For this reason, the
thesis focuses on analyzing model domain adaptation capabilities and presents
a novel and ad-hoc dataset, based on MIT OpenCourseWare video lectures. In
the first part, the work explores different approaches for punctuation restoration
for speech transcripts. In the second part, the dissertation examines the state-
of-the-art approaches in text summarization and in particular, summarization in
the meeting domain, the closest domain available in the literature with respect to
the educational one. The thesis dedicates a section for evaluation of the results
on an educational dataset EduSum, containing transcriptions and summary of
MIT video lectures and Politecnico’s video lectures. We discovered that, although
state-of-the-art meeting summarization models are pre-trained on large datasets
and finetuned with meeting data, they have poor performance and generalization
capability when the domain changes. In the thesis a novel approach is proposed,
that has proven to be more robust to domain shift, even if it uses simpler and
lightweight models.
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Chapter 1

Introduction

“The basic pleasure in the phonetic elements of a language and in the
style of their patterns, and then in the higher dimension, pleasure in
the association of these word-forms with meanings, is of fundamental
importance. This pleasure is quite distinct from the practical knowledge
of a language, and not the same as an analytic understanding of its
structure. It is simpler, deeper—rooted, and yet more immediate than
the enjoyment of literature.”

J.R.R. Tolkien, “English & Welsh”, Oxford, 1955

Over the past years, thanks to many technological innovations, the teaching and
learning process has changed. With the introduction of open online courses and
e-learning platforms [1] learning-related data experienced a growth.

Distance learning introduces changes in the way students are educated and
modifies the roles and the activities of instructors. According to [2] distance
learning requires a disproportionate amount of effort from instructors: about 54%
of the time spent by an instructor is devoted to create the course content. In [3]
the authors discovered that 38 work roles were perceived as important tasks in the
distance educators’ job, and in the top-10 positions of this list it is possible to find
the designer of subject material, the writer of subject material and the facilitator
of the learning of subject material. The authors of [4], after reviewing the major
studies on stress triggered by the increase of tasks, found that there was minimal
research evidence in managing stress among academic staff in higher education
institutions.

In parallel, there has been significant growth in the scientific literature concerning
the application of AI in education Artificial Intelligence in Education (AIEd) [5,
6, 7]. Along with the rapid development of machine learning and deep learning
approaches, novel techniques seek to analyze the vast amount of data obtained
from the teaching and learning process.

1



Introduction

AIEd supports learning activities in both traditional classes and workplaces
by combining AI along with, for example, education, psychology, linguistics, and
neuroscience, aiming at stimulating and advancing the development of AI-driven
educational applications featuring flexibility, content personalization, and effective-
ness [8]. According to [8], the number of AIEd publications showed an exponential
trend over the studied years: more than 74% of currently available literature was
published between 2012 and 2019.

Among those data, there are the video lectures: the analysis of their content
and the extraction of the relevant portions can be extremely useful for several
applications according to [9, 10]. For example, a more compact representation of
video lectures allows to improve and facilitate the research of a specific content
both for students and for algorithms, improving content accessibility.

An immediate and practical application can be the following: it is common to
see, for free on-line courses the video content accompanied by a brief description of
the lecture. This can help students to conduct faster and more accurate researches
based on their necessity. With a brief description, a student can immediately
understand the topic of the lecture and therefore decide if it is of his concern.

In alternative, by extracting the most relevant parts of a video lecture it is
possible to speed up algorithmic researches. Assuming to have a browser capable of
extracting a specific video lecture given a query of a student, the algorithm could
process a great amount of video/text data and retrieve the most pertinent results.
This operation should be completed in few milliseconds.

Therefore, to accomplish both possibilities, this study analyzes the feasibility
of applying an abstractive summarization algorithm to create brief summaries of
video lecture transcripts.

Authors in [11] review some implementation of automatic text summarization
in the learning context from the year 2010 to 2020, mostly based on extractive
summarization [12] (focused on extracting insights from forum discussions [13, 14,
15] or from educational material and video lectures [10, 16, 17]), but none of them
proposes abstractive summarization

These techniques derive from Natural Language Processing (NLP) field and
their goal is to generate a new text shorter than the one in input. They are different
from the extractive summarization one, where the summary is generated starting
from the most relevant sentences. In the video lecture context abstractive methods
are preferable over extractive summarization methods, as in the latter case the
text generated would be composed by a series of sentences not connected to each
other and unpleasant from a readability standpoint.

The starting point of this work are the output texts generated by Automatic
Speech Recognition (ASR) system that converts audio into text. As will be
extensively described in the next chapters, this step may introduce some challenges,
as the ASR systems are typically affected by errors in transcription and generate
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an unpunctuated text.
For this reason, the first step of the analysis approaches the punctuation restora-

tion problem. For this task different state-of-the-art deep learning models such as
Bidirectional Recurrent Neural Networks and Transformer architectures are com-
pared and evaluated. Then, in second instance, the dissertation explores different
deep learning architectures for abstractive summarization and their adoption in
the educational domain.

The most challenging issue that affects this second step is represented by the
length of the video lecture transcripts, which is typically longer than plain text
length.

Moreover, the lack of available datasets in the educational context, and more
in general, the limited amount of data with similar characteristics, require a
preliminary assumption: the most similar setup in the literature is represented by
the meeting domain and therefore, the adoption of models design for this context
would be beneficial also in the video lecture domain. In this field, there are different
studies, architectures and datasets available for abstractive meeting summarization.

Besides state-of-the-art meeting summarization models, a novel method that
merges abstractive and extractive summarization tasks is proposed: firstly, the
unsupervised extractive algorithm reduces input text length according to the
abstractive summarization model limit, and this reduced version is fed into the
abstractive model, which returns the final summary.

An ablation study is dedicated to evaluate several aspects: the impact of
automatic punctuation on the summarization step, the implications given by the
different subjects in MIT courses, and most importantly, it measures the robustness
of all the models in the educational domain. The analysis evaluate state-of-the-art
models robustness with respect to domain shift and compare these results to the
ones obtained with the proposed model.

This approach, with respect to existing models in the meetings domain, reveals
greater generalization capability and a good behaviour in domain adaptation.

The thesis is organized as follows:

• The first chapter introduces the objectivewo of this thesis work, highlighting
the motivation of this research;

• The second chapter revises some affirmed natural language processing models
for language modeling and for sequence labeling;

• The third chapter describes all the datasets involved in the pipeline proposed;

• The fourth chapter is dedicated to the description of state-of-the-art models
in both in punctuation restoration task and summarization task; it also dives
into the transfer learning problem and the domain adaptation fields;
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• Chapter five is devoted to the description of the methods proposed for solving
this task;

• The sixth chapter describes the experiments conducted for this problem, and
discusses about the results obtained;

• The last chapter presents a recap of the study and discusses about some
conclusions and future development.
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Chapter 2

Fundamentals of Deep
Natural Language
Processing

The term natural language processing (NLP) is the task of processing large amount
of natural language data, for whatever purpose, regardless of the processing depth.
The term natural language stands for the languages that it is used in daily life,
different from the formal language. The term Computational Linguistics may
appear to be a synonymous, but in reality differs from NLP in the fact that in
linguistics computational methods play a supporting role [18]. In contrast, natural
language processing focuses on the design of algorithms for processing human
languages.

In linguistics the study of the language is crucial, while in natural language
processing a successful algorithm is determined on the basis of how well the task is
accomplished, even regardless any linguistic insights.

This chapter covers the main themes that involve the usage of NLP techniques
and examines two particular applications treated by the objective of this thesis:

• The sequence labelling problems: the punctuation restoration task is a category
of sequence labelling task, consequently, the most relevant architectures are
presented;

• The language modelling problems: the ability of modelling a language is a
requirement for producing the summarization of a text, making a distinction
among contextualized and contextual-independent language models.

5
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2.1 Language models
Given a series of word tokens w1, w2, ..., wM with wm ∈ V, where V represents a
discrete vocabulary, a language model assigns a probability distribution over a
series of words named p(w1, w2, ..., wM).

These models have shown to be particularly effective in tasks such as machine
translation, text summarization or dialogue generation, as they are able to produce
word sequences. The main challenge is given by the fluency of the output sequences
generated.

2.1.1 Classic models
Word2Vec

In 2013, Mokolov et Al. [19] proposed a novel method for representing words of a
text. By the means of large datasets, this architecture is able to compute continuous
vector space representations of words by learning the semantic relationships amongst
them, based on their context.

In the paper, the authors proposed two architectures: the Continuous Bag-of-
Word model and Continuous Skip-gram model.

In the Continuous Bag-of-Word architecture, the model predicts a center word
of a window of surrounding context words. As stated by the authors, is similar to
a Feedforward Neural Net Language Model [20], and consists in an input layer,
projection layer and output layer. In the input layer the N words are encoded with
a 1-of-V (V is the vocabulary size) coding, one-hot encoding vectors of the context
words. The input layer is followed by the projection layer, shared for all the words,
in which a function g maps the input vectors to a hidden vector. Then, this vector
is averaged element-wise and forwarded to the output layer, which returns the
probability distribution over the vocabulary.

The Continuous Skip-gram model, instead of predicting the current word based
on the context, tries to predict words within a certain range before and after the
center word. In this case the current word is the input of the model, turned into a
one-hot representation, that flows into the hidden layer and an output layer, which
produces the probability vector of each context word to predict. The objective of
the Skip-gram model is to maximize the average log probability:

1
T

TØ
t=1

Ø
−c≤j≤c,j /=0

log p(wt+j|wt) (2.1)

where w1, w2, ...wT are the sequence of training words of cardinality T , c is the
number of words before and after the central word.
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The two models have two drawbacks: only the weights corresponding to the target
word might get a significant update, and the calculation of the final probabilities
using the softmax in the output layer is quite an expensive operation.

To mitigate these problems, the authors in [21] propose some modifications.
Among these, they introduce negative sampling: instead of trying to predict the
probability of being a context word for all the words in the vocabulary, the model
tries to predict the probability that some training sample words are part of the
context or not. The objective function can be written as follows:

log σ(vÍT
wO
vwI ) +

kØ
i=1

Ewi∼Pn(w)[log σ(−vÍT
wi
vwI )] (2.2)

The first term tries to maximize the probability of occurrence for actual words wO
that lie in the context window, wI . The second term tries to iterate over some
random words wi that do not lie in the window wI (so they are drawn from a noise
distribution Pn(w)) and minimize their probability of co-occurrence.

The authors also stated that the distribution of words in a corpus may not be
uniform and some words may be rarer than others. So, to counter the imbalance
between the rare and frequent words, they propose the subsampling approach. It
consists of discarding words with probability:

P (wi) = 1−
ó

t

f(wi)
(2.3)

where t is a threshold and f(wi) is the frequency of word wi. A schema of the two
models is depicted in Figure 2.1.

GloVe

In 2014 researchers from Standford University introduced GloVe [22]. The name
stands for Global Vectors and derives from the fact that the global corpus statistics
are captured directly by the model.

The training objective of GloVe is to learn word vector representations such that
their dot product is close to the logarithm of the words’ probability of co-occurrence.
Mathematically, the model seeks to minimize the expression:

J =
VØ

i,j=1
f(Xi,j)(wT w̃ + b+ b̃− logXi,j)2 (2.4)

where V is the size of the vocabulary, f(Xi,j) is a weighting function to choose,
Xi,j is the number of times word j occurs in the context of word i and where w
are word vectors and w̃ are the context vectors. The function f is decided a priori
and should respect the following properties:
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Figure 2.1: Continuous Bag-of-Word and Continuous Skip-gram model architec-
tures presented in [19].

• f(0) = 0;

• f(x) should be non-decreasing;

• f(x) should be relatively small for large values of x.

such as:
f(x) :

I
(x/xmax)α if x < xmax,

1 otherwise

In short, the model is a log-bilinear regression model for the unsupervised
learning of word representations. It outperformed other models on word analogy,
word similarity, and named entity recognition tasks.

8
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2.1.2 Contextualized language models
N -gram language models

To compute the probability of a sequence of tokens a simple approach may be
to compute the relative frequency estimate given by the ratio of the count of
occurrence of each sequence divided by the total number of possible sentences ever
spoken. But this approach, despite its ability to produce an unbiased estimator,
can generate high variance due to the large number of possible n-gram that we have
in a language (even with a relatively small vocabulary) and this causes relative
frequency estimates close to zero. N -gram language models come to tackle this
issue by computing the probability of a sequence as:

P[w] = P[w1, w2, ..., wM ]
= P[w1]× P[w2|w1]× P[w3|w2, w1]× ...× P[wM |wM−1, ..., w1] (2.5)

In particular, the approximation:

P[wm|wm−1, ..., w1] ≈ P[wm|wm−1, ..., wm−n+1] (2.6)

This simplification is given by the fact that the word wm is conditionally dependent
only on the previous n words, making the joint probability equal to:

P[w1, ..., wM ] ≈
MÙ
m=1

P[wm|wm−1, ..., wm−n+1] (2.7)

The cardinality of the event space is then equal to V n, and so depends on the order
of the n-gram and the decision of n affects the bias-variance complexity trade-off.

Smoothing, backoff and interpolation

Large values of n allow taking into account longer dependencies with the consequence
of increasing the variance. To counteract this issue a solution is smoothing, that
consists of adding some counts:

Psmooth(wm|wm−1) = count(wm−1, wm) + αq
wÍ∈V count(wm−1, wÍ) + V α

(2.8)

The effective counts, given by c∗
i = (ci + α) M

M+V α where ci is the count of the
event i, M = qV

i=1 ci is the total number of tokens in the dataset and the discount
for each n-gram is given by:

di = c∗
i

ci
= (ci + α)

ci

M

(M + V α) (2.9)

9
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An alternative can be the backoff : instead of assigning the same value for each
unseen n-gram, it is possible to consider a lower-order language model. A similar
idea is realized in the interpolation approach, in which the probability of a word in
a context is given by the weighted sum of its probability across shorter contexts,
i.e:

Pinterpolation(wm|wm, wm−1, wm−2) =
= λ3P∗

3(wm|wm−1, wm−2) + λ2P∗
2(wm|wm−1) + λ1P∗

1(wm) (2.10)

with qnmax
n=1 λn = 1.

Recurrent neural network language models

N -gram language models have been supplanted by Recurrent Neural Networks
(RNN) [23] because these models are able to capture longer dependencies and
at the same time remain computationally tractable. In this case, the task of
word prediction becomes discriminative and the main intent is to determine the
probability of a word given its context, that depends on the previous words:

P(w|u) = βw · vuq
wÍ∈V exp(βwÍ · vu) (2.11)

where βw ·vu represents a dot product between two K dimensional vectors. The
natural language model can be built from a recurrent neural network by updating
the context vectors while moving through the sequence. Given xm â=φwm as the
word embedding of the words wm, hm, the contextual information at position m is:

hm = RNN(xm,hm−1) (2.12)

Then the RNN language model can be defined as:

p(wm+1|w1, w2, ..., wm) =
exp(βwm+1 · hm)q
wÍ∈V exp(βwÍ · hm) (2.13)

Thanks to the recurrent operation, we can consider all the information about the
sequence when processing a word at time m, without limiting the computation to a
certain context length. The parameters of the models representing the parameters
of the conditional distribution are updated via backpropagation through time. The
gradients at time m depend on all the previous gradients n < m and the size of
the computational graph depends on the input length.

10
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Gates in recurrent neural networks

Repeated application of non-linear functions may cause the exploding gradients
or the vanishing gradients problem. The former can be addressed by clipping
the gradients over a certain threshold; the latter, being a more complicated issue,
requires changes in the architecture. In particular, two variants of RNN have been
developed:

• Long short-term memory (LSTM);

• Gated recurrent unit (GRU);

The LSTM are equipped with a memory cell cm which contributes to form the
next states hm. The advantage is that the memory cell does not pass through
a squashing function and the information can flow through the network without
vanishing.

Figure 2.2: Long short-term memory structure taken from [18], gates are displayed
in dotted edge boxes.

The gates are functions that control how much information propagates through
the network: they compute the Sigmoid of the linear combination of inputs and
the previous hidden states. There are different kinds of gates:

• Forget gate: fm+1 = σ(Θ(h→f)hm + Θ(x→f)xm+1 + bf )

• Input gate: im+1 = σ(Θ(h→i)hm + Θ(x→i)xm+1 + bi)

• Output gate: om+1 = σ(Θ(h→o)hm + Θ(x→o)xm+1 + bo)

11
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The cell memory is given by:

cm+1 = fm+1 ¤ cm + im+1 ¤ c̃m+1 (2.14)

where c̃m+1 = tanh(Θ(h→c)hm+Θ(x→c)xm+1) is the updated candidate. The output
of each state is given by hm+1 = om+1 ¤ tanh (cm+1). The memory cell of the
previous state contributes to the memory of the subsequent state, and, indirectly,
also to the subsequent output, hence avoiding the gradient vanishing. The complete
structure is displayed in Figure 2.3

Figure 2.3: LSTM synthetic structure.

Transformer-based language models

Transformers architectures [24] and their variants have been widely explored in
the machine translation task as they have been proven to have better performance
with respect to recurrent models and more parallelizable, requiring significantly
less time for training.

The input sequence xi is converted into an embedding sequence ei and a
positional encoding is added in order to quantify the position of each token in the
sentence 1. For each position pos the positional encoding of dimension i can be
computed as:

PE(pos,2i) = sin
3

pos

10002i/dmodel

4
(2.15)

1The transformer processes the complete sequence of tokens in parallel, eliminating any form
of information regarding the position of each word in the sentence
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PE(pos,2i+1) = cos
3

pos

10002i/dmodel

4
(2.16)

The embeddings are then encoded into the multi-head self-attention layer of the
encoder. This layer takes in input Q, K and V matrices, respectively the query,
the key and the value matrices, and for each head computes the attention as:

headi = Attention(QWQ
i , KW

K
i , V W

V
i ) (2.17)

where WQ
i , WK

i , W V
i are parameters to learn, and the attention operation is given

by:

Attention(Q,K, V ) = Softmax
3
QKT

√
dk

4
(2.18)

The multi-head attention concatenates the output of each head and passes it to the
feed-forward layer that consist of two fully connected layers with a ReLU activation
function. Between each layer a residual connection, connecting the previous input
and the current output, helps the network avoiding the vanishing gradient problem
(for further details see Residual connections Section in Appendix B). This way the
self-attention mechanism can be repeated many times.

Different language models have been developed so far. For language mod-
elling/language understanding tasks these models can be trained in three different
ways according to [25]:

• In an autoregressive fashion: autoregressive models are pretrained on the
classic language modeling task, they try to guess the next token having read
all the previous ones; these models rely on the decoder part of the transformer
architecture previously described; these architectures employ masked attention
mechanisms, so that at each position, the model can only look at the previous
tokens in the attention heads. At inference time, the decoder output constitutes
its next input and the sequence is generated until the stop tag is predicted or
up to a certain maximum length. An example is GPT [26].

• In an autoencoding fashion: these models rely on the encoder part of the
original transformer and use no mask so the model can look at all the tokens
in the attention heads. For pretraining, inputs are a corrupted version of the
sentence, usually obtained by masking tokens, and targets at random, while
the target is the original (not corrupted) sequence. A typical example of a
structure that adopts this training is BERT [27].

• Sequence-to-sequence training: these models keep both the encoder and the
decoder of the original transformer. The encoder is trained with autoencoding
while the decoder in an autoregressive manner. BART model (that will be
used for the summarization task) [28] uses this approach for training.

A schema of the typical transformer model is shown in Figure 2.4.
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Figure 2.4: Structure of the transformer model presented in [24] for punctuation
restoration.

BERT model

BERT model [27], acronym of Bidirectional Encoder Representation from Trans-
formers, is a multi-layer bidirectional encoder of the Transformer architecture
trained in two steps. Firstly, in a pre-training phase, the model is trained on
unlabeled data, and later, starting from the pre-trained parameters, the model is
fine-tuned on a specific task with the labeled data.

More specifically, in the pre-trained phase, the authors present two unsupervised
tasks for BERT pre-training. The first is the so-called procedure Masked Language
Model (MLM): a percentage of the input tokens at random is masked and the
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model is trained to learn these masked tokens. BERT uniformly selects 15% of the
input tokens for possible replacement. Of the selected tokens, 80% are replaced
with [MASK], 10% are left unchanged and 10% are replaced by a randomly selected
token in the vocabulary.

The second, called Next Sentence Prediction (NSP) is represented by a binary
classification problem, in which the model is trained to recognize which sentence
pairs should be considered contiguous. This second task is particularly suitable in
case the main objective is to create an architecture capable of capturing dependencies
among sentences.

In the fine-tuning phase the model is trained on a specific downstream task,
starting from the set of weights found with the previous step. This task, according
to the authors, requires less time for training, as requires few parameters to
train for adapting the model to the specific task. BERT is designed to learn
bidirectional representations via jointly conditioning on both left and right contexts
and consequently more powerful than unidirectional models.

GPT model

In [26] the authors propose an architecture, called GPT (Generative Pre-Training),
which unlike BERT, is an autoregressive model and outputs one token at a time.
As in BERT model, the GPT architecture is trained in two different phases. Again
in this architecture, the goal of the unsupervised pre-training is to find a good
initialization point for many NLP tasks. It has been discovered that this procedure
helps in model regularization, allowing more generalization.

In particular, the authors propose the following objective function:

Loss(Θ) =
Ø
i

logP[wi|wi−1, wi−2, ..., wi−c|Θ] (2.19)

where Θ are the model parameters, c is the context window. The paper proposes
the usage of Transformer architecture, in particular, the decoder part in order to
produce the output distribution. The formula (2.19) points out the autoregressive
nature of the model, meaning that the decoder is capable of generating new
predictions according to the previous outputs. The supervised fine-tuning step is
done after the pre-training step, this phase seeks to train again the model in order
to assign to each input token a label yi. The inputs of the specific downstream
tasks are arranged into ordered sequences in order to accomplish this second task.

The novelty introduced by GPT-2 [29] is that the authors demonstrate the
ability of language models to perform a wide range of tasks in a zero-shot fashion,
using a larger dataset in the pre-training phase and adding more parameters.

In particular, the paper proposes what is called task conditioning, through which
the learning objective should be modified to P[output|input, task], and the model
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is expected to produce different outputs for the same input, for different tasks. The
capability of understanding the task allows to avoid the input transformation step
latter described (a property called zero-shot task transfer).

In GPT-3 [30] the number of parameters increases to 175 B and the model starts
recognizing patterns in data that help the model during zero-shot task transfer,
becoming meta-learners. The GPT-3 model is effective in few-shot context, the
setting where the model is fed with a few examples of the task at inference time
and the task description but no weight updates are allowed, and one-shot learning
(only one example is allowed) or the most extreme zero-shot setting, in which the
model only knows the description of the task in natural language.
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2.2 Sequence labelling
The task of sequence labelling aims to find the correct discrete label for each word
in a sequence. More formally, given a sequence of words w = (w1, w2, ..., wM), a
set of possible tags Y(m) = YM of length M the sequence labelling problem can
be formulated as follows:

ŷ = arg max
y∈Y(m)

Ψ(w,y) (2.20)

where Ψ is a scoring function, y = (y1, y2, ..., yM ) is a sequence of predicted tag.
The label space grows exponentially with the length M and can be intractable but
by restricting the scoring function enables a more efficient inference.

2.2.1 Discriminative models for sequence labelling
The scoring function can be represented as a weighted sum of local features, so:

Ψ(w,y) = θ · f (global)(w,y1:M) (2.21)

where f (global) = qM+1
m=1 f(w1:M , ym, ym−1,m). The estimate of the parameters θ

can be carried out throughout discriminative models such as:

1. Perceptron: a perceptron [31] that uses the Viterbi algorithm for an efficient
search.

2. Support vector machine: an SVM [32] counterpart;

3. Conditional random fields: derives from the logistic regression classifier, the
probability model is given by:

P[y|w] = exp(Ψ(w,y))q
yÍ∈Y(w) exp(Ψ(w,yÍ)) (2.22)

For training, the weights θ are learned via:

arg min
θ

λ2 ||θ||2 −
NØ
i=1
θ · f(w(i),y(i)) + log

Ø
yÍ∈Y(w(i))

exp (θ · f(w(i),yÍ))


(2.23)

where λ is an hyperparameter.

2.2.2 Recurrent neural network for sequence labelling
Given a recurrent model:

hm = RNN(xm,hm−1) (2.24)
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for m = 1, 2, ...M , where xm is the embedding of token wm and hm−1 is the
previous hidden state. A possible application of RNN models in sequence labelling
can be constructed as a linear function of hidden states:

ψm(y) = βy · hm (2.25)

ŷ = arg max
y

ψm(y) (2.26)

that can be converted in probability, obtaining an estimate of P[y|w1:M ], via
softmax operation. It is important to point out that simple recurrent models only
take into account information coming from precedent tokens, while a Bidirectional
Recurrent Neural Network does not ignore subsequent information.

More formally, denoted←−h m the right-to-left and −→h m the left-to-right hidden
state vectors, these vectors are concatenated forming hm = [←−h m,

−→
h m], a vector

that summarizes the useful information for a specific token wm coming from the
surrounding context. For this reason, after applying a linear function as in the
unidirectional case, it is possible to obtain more accurate estimates of the tag
sequence.

2.2.3 Transformer-based for sequence labelling
Given the transformer language model described in the previous section (see
Section Transformer-based language models for mathematical details of Transformer
components), it is possible to adapt these models for the sequence labelling task.

In general, the output of a transformer encoder is the set of features extracted
by a pre-trained language models.

Typically, for these tasks autoencoding models are employed. These models
are trained on language understanding task, so are effectively capable of encoding
contextual information and long-range dependencies . Then, the sequence labelling
task is performed by adding a classification layer on top of them. This layer takes
the concatenation of the last hidden states from the underlying feature extractor.

By modelling these features it is possible to associate at each input sequence
x1:M a series of label ŷ, one for each token, obtained through the estimate of
P[ŷ|x1:M ]. This approach reveals to be particularly effective in numerous sequence
labelling tasks such as POS/NER recognition, as these models are capable of
leveraging pre-trained language models and adapt them for a specific task.

The training of these models employs the negative log-likelihood loss, described
as follows:

Loss(y, ŷ) = −
NØ
i=0

yi · log(P[ŷi|xi]) (2.27)
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In this thesis, a particular architecture of transformer is studied for the punctu-
ation restoration task, and compared with a recurrent architecture.
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Chapter 3

Datasets

The scope of this thesis is to produce a synthetic representation of Politecnico video
lecture transcripts. The data provided by the university consist of raw transcriptions
of video lecture, and requires some pre-processing steps. Furthermore, in order
to evaluate the goodness of the chosen approaches, some datasets, well know in
literature are employed. These datasets evaluate the impact of the techniques
applied both in preprocessing and in summarization task. More in detail, the
Politecnico video lecture transcriptions miss punctuation marks, and the restoration
is conducted with models trained on IWSLT [33] dataset. The summarization
task instead involves CNN [34] and SAMSum [35] dataset on which models are
pre-trained, and AMI [36] and ICSI [37] datasets used for model finetuning.

Furthermore, for a fair evaluation of the summarization task, based on real
video lecture, the dataset EduSum is employed.
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3.1 The IWSLT dataset for punctuation restora-
tion

The lack of punctuation marks in video lecture transcripts requires a pre-processing
step which allow to obrain a text punctuated.

A well-known dataset for punctuation restoration is given by the IWSLT
dataset [33]. This dataset comes from the International Workshop on Spoken
Language Translation (IWSLT), an annual scientific workshop evaluation focused
on the automatic translation of public talks 1.

It is composed of four typologies of track:

• Automatic speech recognition (ASR) tracks, the automatic transcription of
talks from audio in English of the TED talks to text;

• Spoken language translation (SLT) tracks for the translation of the automatic
English transcriptions of the talks (ASR output) to French;

• Machine translation (MT) that consists in the translation of the manual
transcriptions and translations of the talks from English to French, from
Arabic to English, and from Chinese to English;

• System combination (SC) track for combining the English ASR outputs and/or
the MT outputs in English and French.

For the punctuation restoration task, the training and validation datasets used are
derived from the conference of 2012 (IWSLT2012) and consist of 2.1M and 296k
words, respectively. The test set is taken from the test data of IWSLT2011 ASR
dataset. The ground truth presents four labels including three punctuation marks:
“COMMA” (that includes commas, colons and dashes), “PERIOD” (including full
stops, exclamation marks and semicolons), “QUESTION” (for question marks
only), and “O” for any other tokens.

1Website at: http://hltc.cs.ust.hk
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3.2 The AMI and ICSI dataset for meeting sum-
marization

The AMI (Augmented Multy-Party Interaction) dataset is the outcome of 100
hours of meeting recordings.

The data collected include audio tracks, video recordings, slides projected during
the presentations, the input in the electronic whiteboard. The data has been
collected with different instruments and placements in the room, so the audio
tracks produced vary

Moreover, datasets are annotated with speech transcription, named entities,
dialogue acts, topics involved, abstractive and extractive summaries, emotions,
head and hand gestures, location of individuals and postures, and the focus of
attention and can be adopted in tasks of various nature.

These meetings are attended by a series of speakers, each defined by a different
role. Among those there are:

• The project manager (PM);

• The marketing expert (ME);

• The user interface designers (UI);

• The industrial designer (ID).

The ICSI (International Computer Science Institute) dataset [37] contains 70
hours of meeting recordings that occurred in the International Computer Science
Institute and has a similar structure to the AMI dataset. Unfortunately, extractive
summaries were no more available. A summary table of the dataset is reported in
Table 3.1.

Dataset Number of meetings Input length Summary length
Train Valid Test Words Token Words Token

AMI 100 17 20 3156 4081 280 321
ICSI 43 10 6 6228 7913 466 576

Table 3.1: Summary of statistics of AMI and ICSI dataset.
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3.3 The EduSum video lectures dataset
The proposed dataset seeks to address the lack of a specific dataset for abstractive
summarization of video lecture transcripts. Meeting dataset differs from the video
lecture dataset for several reasons:

1. Typically each video lecture is held by a single person, a professor, researcher
or a Ph.D. student, that carries out the lesson in an autonomous way. There
might be interruptions or student questions, but in general, they are not
included in the recording because of technical reasons;

2. Depending on how the transcriptions have been taken the error rate may vary.
According to [38] the word error rate of the ASR system transcriptions is
respectively 36% and 37% for AMI and ICSI dataset.

Given these differences, and without any ground truth available for the Politecnico
video lectures, a novel dataset, called EduSum, is built. This dataset is taken
from the MIT OpenCourseWare website 2 that publishes all MIT course content.
The website is completely open and available: it contains the video lectures, the
transcriptions, the supporting material with slides and some students notes. The
courses have different nature: from more scientific fields such as Chemistry to
humanistic subjects, such as Cinema.

Among all the courses, the courses are selected according to the following
criteria. Firstly, only the complete transcripts, correctly annotated even with the
punctuation marks are selected: the reason is that, in the following discussions,
models for punctuation restoration task are evaluated according to the results
obtained with this dataset as well, to better estimate errors in Politecnico video
lecture data. Secondly, only lectures that present the Description section are
considered: it represents the abstractive summary of the video lesson.

The courses chosen for this work are:

• STS-081 [39], Innovation Systems for Science, Technology, Energy, Manu-
facturing, and Health: a course that that study the science and technology
innovation system with a particular attention in fields like energy, computing,
advanced manufacturing, and health sectors;

• 21L-011 [40], The Film Experience: the course is focused on the anthropological
and historical artifacts that characterize classic films.

• 5-111SC [41], Principles of Chemical Science: is an introductory course to the
chemistry of biological, inorganic, and organic molecules.

2Link at: https://ocw.mit.edu/about/
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• 6-006 [42], Introduction to algorithm: the course covers algorithmic paradigms,
and data structures used to solve these problems.

• 6-S897 [43], Machine Learning for Healthcare: this course presents some
applications of machine learning approaches in the healthcare sector.

• 7-91J [44], Foundations of Computational and Systems Biology: the course
merges biology, engineering, and computer science.

• 15-S12 [45], Blockchain and Money: the course covers the Bitcoin and an
understanding of the economic and technical fundamentals of blockchain
technology.

The mean length of the transcripts is 10170 +/- 3688 tokens and the mean
summary length is about 100 +/- 60.

An extract of a video lecture of this dataset is the following:

All right. Let’s dive right into education. And, you know, this is the
other side of the innovation equation, right? We’ve talked in terms of
institutions and linking and connecting institutions, and we’ve talked a
lot about R&D and the R&D system, but you know, from the first class
on, Romer taught us that the talent base is a very critical consideration in
innovation. And how do you build up the talent base? That’s essentially
our set of tests today. So, first, Norm Augustine. I wanted to acquaint you
with Norm Augustine, because in the science and technology community,
he’s known as St. Augustine. And he is just an incredible stand-up
figure on issues like the importance of federal R&D investment. He was
chairman for a lengthy period of time of Lockheed Martin. He won the
President’s Medal of Technology. Just a noted innovator, himself, but
also a true expert on R&D issues, R&D policies. Unfailingly helpful and
willing to volunteer for whatever task the National Academies or in many
cases MIT, or other organizations kind of need help and advice from a
real senior statesman, Augustine has always been willing to step up to the
plate. So he’s kind of a remarkable figure. He led the rising against the
Gathering Storm report back in 2000– around the early 2000s timetable–
along with people like Chuck Vest, and a really noted community of other
experts, that made the argument for a very significant R&D increase for
the physical science agencies. Around that time, we had been doubling
NIH. This report made the case for doubling the physical science-based
R&D areas, as well. And it was a very influential and important report.
He was one of the real leaders of it, and he played an important role,
along with Chuck Vest, in helping persuade the latest Bush administration–
hi, Karen– to adopt its recommendations. So there was a period of time
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of ongoing R&D increases for the physical science agencies. So the report
had a result [...]

and the corresponding summary:

Class 11 will consider overall science education trend data, and the
reasons for the decline in college level science graduates, as well as
graduate students, particularly in the physical sciences. A recent summary
by Norman Augustine for the National Academies summarizes US talent
gap problems. The class will then examine studies by economists Paul
Romer and Richard Freeman in fixing the basis for these trends. It will also
review an economic study suggesting a link between education attainment
and growing income differentiation. The class will review an appeal by
economist William Bamol for a new kind of “innovation education.” The
class will also discuss reforms to teaching science education and new
approaches to IT-based education models.
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3.4 The Politecnico video lectures dataset
In this essay, the dataset under analysis is relative to the Electronic and Funda-
mentals Application course offered at Politecnico di Torino in 2019.

This dataset is composed of a series of text files, one for each class, that
report the ASR transcriptions of the course. The analyzed course is offered in
English. The most evident issue of this dataset is the lack of punctuation: the
transcriptions do not contain any punctuation marks and in order to employ
abstractive summarization technique it is necessary to restore it. This is due to
the ASR system used, which, as the majority of ASR systems, merely transcribes
the speakers’ words. For this reason, in the following chapters, the thesis describes
how to perform punctuation restoration task via deep learning techniques.

The transcriptions were generated with automatic services, which, according to
[46] and [47], are typically affected by errors. The papers compare the best ASR
products available at their time of publication with different datasets, and assert
that ASR systems, on average, are affected by a Word Error Rate 3 of about 40%.
The sources of errors are mainly represented by:

• technical recording issues;

• preprocessing of the original audio file that may affect audio quality (for
example due to downsampling);

• Noisy environment;

• Poor speaker articulation;

• Presence of unusual words in the discourse.

As far as the video lecture dataset is concerned, the last point takes on particular
relevance, as the analyzed subject is rich in formulas. Furthermore, most of the
discourses are characterized by terms that belong to the Electronic lexicon and
lack punctuation marks.

The Electronic and Fundamentals Application dataset is composed of 25 classes,
each class contains on average 7585 words with a high variability of 3476 due to
the presence of classes much shorter than others. The mean word length is about
4.3 characters; these statistics are in line with ones of other common datasets of
ASR transcriptions.

An example is reported below:

3The Word Error Rate is represented by the number of substitutions, insertions and deletions
over the number of words in the reference text.
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so at very low frequency we have the plus 90 due to the zero and then
we have in two decades we have the contribution of minus 90 due to the
pole and so we reach zero degree after two decades the theoretical behavior
starts one decades more before and and one decade after the real behavior
starts two decades before and ends two decades after and in the middle
we just have 90 minus 45 that means 45 degree also in this case we can
easily calculate and implement the amplification factor independently from
the cutting frequency of the high pass filter because the gain here depends
from minus r2 over r1 while the cutting frequency depends from r1 and
the capacitor okay so we have enough degree of freedom to calculate all
the components and separate the gain from the cutting frequency the last
circuit is very simple and is just the combination of the low pass filter
and the high pass filter so as you can see we have now uh z1 a full z1
impedance and said to impedance here we have the series of a capacitor
and of a resistor and here we have the parallel of a capacitance and of a
resistor and the amplification b u over v e is always minus z 2 over z1
always the same and the full expression became just the combination of
the previous two expression [...]
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4.1 Punctuation restoration
The main problem of using text summarization algorithms in speech transcript
summarization tasks is determined by the lack of punctuation. Restoring the
punctuation in automatic speech recognition system outputs greatly improves not
only the readability, but also subsequent processing, such as text summarization.

Many attempts have been made to predict punctuation marks automatically.
These approaches can be roughly divided into three categories in terms of applied
features:

• prosodic features (properties of syllables and larger units of speech, including
linguistic functions such as intonation, tone, stress, and rhythm): typically
prosody based models have been proven to be more robust to ASR system
errors according to [48] ;

• lexical features (single word, a part of a word, or a chain of words that forms
the basic elements of a language vocabulary);

• the combination of the previous two features based methods.
The original audio signal of the speech would be very informative for this kind

of task: pause between words, pitch, tone and intensity of the voice constitute an
important source of information to determine changes in the speech.

In this work only the transcripts will be considered available, and all the
techniques that restore punctuation by the means of the original audio signal will
not be further described. The punctuation restoration task is a kind of the sequence
labelling task presented in Sequence labelling Section.

The first attempts employ several methods such as n-gram models [49], Con-
ditional Random Fields [50] and transition-based dependency parsing, deep and
convolutional neural networks.
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Othes suggest considering the punctuation restoration task as a machine trans-
lation task, translating from unpunctuated text to punctuated text, and therefore
a kind of language modelling task, presented in Section Language models. All the
presented methods have been trained and evaluated on the IWSLT dataset.

4.1.1 Previous approaches
The n-gram language model

In [49] the authors present a novel method for punctuation restoration tasks based
on language models with n-gram. A language model represents a probability
distribution over sequences of words. In order to predict the next token, the model
relies on two assumptions: the conditional independence of the tokens and the
Markov assumption that only the most recent tokens (n − 1) are relevant. By
estimating the relative likelihood of different phrases of a punctuated text, the
language model is then used for inserting the punctuation in a non-punctuated
text.

The authors took inspiration from [51] and adapt the model proposed for the
punctuation restoration task. So given a source-text without punctuation marks u,
they want to automatically produce a punctuated text p̂ such that:

p̂ = arg max
p

MØ
m1

λmhm(p,u) (4.1)

where hm(p,u) is a set of feature functions with cardinality M and λm is a set of
weights.

Given a wL1 = (w1, ..., wL), a string of L tokens over a fixed vocabulary, the
model proposed defines the probability of wL1 as:

P[wL1 ] =
LÙ
i=1

P[wi|wi−1
1 ] ≈

LÙ
i=1

P[wi|wi−1
i−n+1] (4.2)

Defining a substring wji of wL1 and its frequency f(wji ), i.e. the number of
times in which the substring occurs in a training data, the maximum likelihood
probability estimate of an n-gram is given by:

r(wi|wi−1
i−n+1) = f(wii−n+1)

f(wi−1
i−n+1)

(4.3)

that represents the relative frequency of the n-gram.
The problem of this approach is that typically the training dataset is sparse,

and the denominator of (4.3) can assume negative values. Furthermore, the results
can be improved by increasing the number n, which increases the sparsity.
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The main argue for this approach are the following: the n-gram language model
is only able to capture surrounding contextual information, while for punctuation
restoration tasks, modeling of longer-range dependencies is necessary. In the second
instance, it is not robust to manage cases in which noisy or out-of-vocabulary words
appear frequently.

The Conditional Random Fields

To overcome the highlighted problems of the n-gram language models, the authors
in [50] define the Conditional Random Fields (CRF) model as a discriminative
model of the conditional distribution of the complete label sequence given the
observation.

The CRF adopts an undirected graph to model the conditioning relationship
between words and labels.

Figure 4.1: Graphical representation
of observation x1, x2, ..., xn and labels
y1, y2, ..., yn presented in [50] Figure 4.2: Graphical representation

of observation x1, x2, ..., xn with two set
of labels y1, y2, ..., yn and z1, z2, ..., zn pre-
sented in [50]

The punctuation prediction task is the process of assigning a tag to each word:
each word can be characterized by an event that defines which punctuation symbol
should be inserted (including the possibility of non insertion) after the corresponding
word.

The training dataset is composed of a list of words with their corresponding tags
that codify the punctuation mark. The features are binary and collect information
about the n-gram occurrence surrounding the current word and the position of the
current word.

During inference, the most probable sequence of tags is chosen. The problem
with this approach is that it only learns a sequence of tags at the individual word
level but is not capable of managing sentence level information.

For this reason the authors propose a method that jointly performs sentence
segmentation and words level punctuation restoration by assigning two levels of
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tags:

• punctuation tag, that acts at word layer, responsible for inserting the punctu-
ation symbol after each word;

• a sentence bound tag, which defines the annotation of sentence boundaries
and identifies the sentence type.

The conditional probability of a sequence of label vector y given the observation x
is given by:

pλ(y|x) = 1
Z(x) exp

Ø
t

Ø
c∈C

Ø
k

λkfk(x, y(c,t), t) (4.4)

where C represents the set labels sets, Z(x) is a normalization factor. The
sentence layer tags are able to improve the prediction of the punctuation symbol
at word level as it is able to capture long dependencies.

4.1.2 Bidirectional Recurrent Neural Network
In [48] the authors present an architecture named Punctuator, that aims to insert
punctuation in an unsegmented text by the use of bidirectional recurrent structures
in combination with an attention mechanism.

The model is composed of three features:

• The bidirectional recurrent layer: this layer is composed of two unidirectional
gated recurrent units that seek to capture the context of each word. The
chosen of the GRU structure is motivated by the fact that they are able to
capture long-range dependencies being not affected by the vanishing gradient
problem, using fewer parameters than a LSTM.

• The attention mechanism [52]: is performed in to determine which parts of the
speech are the most relevant to determine the correct position of a punctuation
mark.

• The late fusion approach merges the bidirectional recurrent layer output state
and the attention mechanism output.

The input sequence of words is encoded in one-hot vector X = (x1, ...,xT )
that then is processed into an embedding layer followed by the bidirectional layer
consisting of two recurrent layers with GRU, one for the forward direction and one
for the backward direction.

−→
h t = GRU(xtWe,

−→
h t−1) (4.5)

The forward bidirectional layer processes the input in the normal order, while the
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Figure 4.3: Structure of the model presented in [48], called Punctuator, a bidirec-
tional RNN with attention mechanism for punctuation restoration.

other bidirectional layer processes the input in the reverse order: the state of a
time t will be the result of the concatenation of the hidden states of the two layers.

ht = [−→h t,
←−
h t] (4.6)

The bidirectional layer is then followed by a unidirectional GRU layer character-
ized by an attention mechanism: it processes the bidirectional states sequentially
and manages the information of the current position of the word in the text, while
the attention mechanism can focus on relevant information on the context. The
state of this layer st :

st = GRU(ht, st−1) (4.7)

and the output of the attention model at compose the late fused state ft:

ft = atWfa · σ(atWfaWff + htWfh + bf ) + ht (4.8)

which pass through the output layer that computes the punctuation probabilities
yt = Softmax(ftWy + by).
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The attention mechanism and the late fusion approach

The strength of this model is given by the attention mechanism and the late
fusion approach proposed in [52]. In this paper the authors start from a particular
structure called RNN Encoder-Decoder architecture. For the Encoder, they consider
a Bidirectional RNN and call the forward and backward hidden states concatenation
as annotations hj of the word xj . The Decoder is given by and RNN that computes
the hidden state si as:

st = f(st−1,yt−1, ct) (4.9)

and performs the alignment process for computing the context vector ci: takes the
encoder annotations and computes the energy eij as:

eij = a(si−1,hj) (4.10)

where si−1 is the RNN hidden state and a(·) is an alignment model, that scores
how well the inputs around position j and the output at position i match. These
scores are passed through a softmax function and generate the weights αij of each
annotation hij. The context vectors are the weighted sum of the annotations,
where the weights are αij. In the paper of Bahdanau et Al. the authors focus on
the machine translation task: the Punctuator adapts this structure to increase the
model capacity of finding relevant parts of the context for punctuation decisions.

The problem of this approach is given by the fact that the recurrent structure
requires time both for training and inference. A faster solution can be represented
by the Transformers architecture, which allows parallelizing the training procedures.

4.1.3 Transformer based models
In [53] the authors propose the employment of a transformer-based architecture for
the punctuation restoration task.

The architecture proposed has two softmax layers: one for determining the word
probabilities and one for the label probabilities (that determines the punctuation
marks).

The model is trained in order to maximize the probabilities of observing the
target label sequence and minimizing the words error rate, meaning:

arg max
θ

1
N

NØ
n=1

1
logPθ(yn|xn) + α logPÍ

θ
(zn|xn)

2
(4.11)

For the punctuation prediction task, the second softmax would be sufficient
but it is easy to consider that the class “no punctuation” is much more frequent
than each symbol separately. The usage of the words-sequence softmax is justified
by the fact that this way the model is able to treat each word and punctuation
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Figure 4.4: Structure of the transformer model presented in [53] for punctuation
restoration.

mark equally, limiting the effect of class unbalancing. In the decoder, if the most
probable symbol of the label softmax corresponds to the class no punctuation the
next word is feed into the network, otherwise the corresponding punctuation mark.

In [54] the authors compare different transformer models and propose to add
a bidirectional LSTM on top of the pretrained transformer network, and an
augmentation strategy to improve the performance of the models: the transcripts
are typically generated by an ASR system that can be affected by four kinds of
errors (insertion, deletion, substitution, deletion), while models are trained with
the correct text. The augmentation strategy should be able to simulate such errors
and dynamically augment the number of sequences on the fly.

The best performing models also available in the library derives from BERT
family, the RoBERTa model.
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RoBERTa model

The basic architecture is proposed in [55] where the authors propose some mod-
ifications in BERT architecture and training procedure in order to reach better
results. More in detail, firstly they expand BERT architecture.

In the second instance, starting from the assumption that BERT-based models
rely on large quantity of data, they propose a dynamic masking procedure in order
to increase the variability and the robustness of the model.

The original BERT implementation performed masking once during data pre-
processing, resulting in a single static masking and the same input is repeated n
time in the dataset, each time with a different mask. In the dynamic masking the
authors generate the masking pattern every time the sequence is feed to the model.

The MLM training phase becomes longer, so the authors propose of removing
the next sentence prediction objective as they assert that the removal of this task
has a limited impact.

Moreover, they increased the batch size accepted by the architecture, and
they noticed that by doing this, the model is capable of managing longer range
dependencies.
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4.2 Text summarization
Text summarization is the task of producing a new text starting from an initial
one, which has the following properties:

• the final text length is shorter than the length of the initial text.

• the reduced text contains the same key informational elements that are present
in the original text; furthermore, the content and meaning of the original text
must be preserved.

• on the contrary, a summary does not include redundant information.

The automatic text summarization is able to produce fluent summaries without
human intervention.

This task in practice is very challenging, for different reasons according to [56]
and [57]:

• unlike the images, for which it is easier to define a fixed and predefined size,
input text length may be different; a text is typically composed by different
sentences and the number of sentences may vary from text to text, moreover,
the length of each sentence varies as well; this variability requires models that
are able to adapt according to this kind of input;

• Texts require an encoding/decoding procedures in order to transform char-
based/string-based sequences into real number sequences;

• In some cases, to understand the meaning of a text, it is demanded to process
it entirely. And from a computational standpoint this process may require
nontrivial efforts;

• Texts may be subjected to variability due to the grammar of a text: the
mutation of a language is a process that occurs over time and it is subject to
cultural, geographical and economic factors; the most evident example may
be the English language, which is spread in more than 10 countries as mother
tongue and diffuses in the rest of the world as the language of business; the
process of diffusion has resulted into the diversification and the pluralization
of the English;

It is important to remark that the analyzed dataset contains speech transcriptions
and not plain text. The speech transcript summarization task is not been widely
explored in literature and the existing models make use of text summarization
methods and try to adopt it in the case of speech.

Automatic text summarization can be carried out via extraction, meaning
selecting the most representative sentences in a text and concatenating them for

36



State of the art

a summary, or by abstraction, which involves generating novel sentences starting
from the vocabulary of the input text.

4.2.1 The extractive summarization
This approach aims to build the text summary by selecting the most informative
sentences in the original text and join them together to form a coherent summary.
More deeply, this approach firstly constructs a representation in floating-point
vectors of the input text. Then, assigns a score to each sentence according to
the text representation. This score is proportional to the probability that the
corresponding sentence will be selected as relevant and will compose the summary.
Consequently, the sentence is ordered according to this score and the top k most
relevant sentences are selected to be part of the summary. This kind of approach
allows respecting grammar rules and the properties of languages as the summary is
built according to the sentence present in the original text.

Statistical and LSA-based methods

These methods are based on the following pipeline: first define the base unit (the
components that will form the summary), then proceed with the extraction of the
score for each unit and sort them according to this metric, and select the best
subset.

Kupiec et Al in [58] present an algorithm that, by the mean of a Bayesian
classifier, is able to determine if the sentence is relevant and has to be included in
the summary.

After having defined the set of k features that describe each sentence (denoted
as Fj for j = 1, ..k), and the sentence as the base unit, they compute a probability
score that represents the probability that the sentence s will be included in the
summary S:

P[s ∈ S|F1, F2, ..., Fk] =
rk
j=1 P[Fj|s ∈ S]P[s ∈ S]rk

j=1 P[Fj]
(4.12)

In (4.12) the probability derives from the Bayes rule and additionally the authors
assume the independence of the features. Therefore the algorithm chooses the
set of sentences S Í that maximize this probability, by estimating the terms in the
formula directly from the training set.

In [59] the authors propose an unsupervised algorithm to extract semantic
properties of a text by the means of statistical and algebra analysis. This method
comes from the idea that the aggregate of all the word contexts is able to determine
the similarity of semantic among words or set of words [60]. Latent Semantic
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Analysis (LSA) is an algebric technique of analyzing relationships between a set of
documents and terms they contain by producing a set of concepts related to those.

The information retrieved by this algorithm concerns the relationships among
words as they appear in documents, and highlights, according to the frequency, the
ones that are semantically related. This algorithm is composed by different steps:

1. Creation of the documents-terms matrix A: given a set of documents D of
cardinality m, each document contains a set of words di = w1, w2, ..., wMi

of
length Mi. Given m documents and n terms in the document vocabulary, a
[n×m] matrix is composed by the sentences in the columns and the words in
the rows; for each pair of sentence-word a scalar value is inserted according to
the presence of this word in the corresponding sentence. In the documents-
terms matrix each sentence is represented by a set of weights that can be
obtained via, different frequency-based weighing schema such as:

• Binary representation of the word: each entry of the matrix A can assume
only two values ai,j = {0, 1} where 1 indicates that the presence of the
term i in the sentence j, 0 otherwise;

• Frequency of the word in that sentence: each entry of the matrix A
represents the number of times in which the term i is contained in the
sentence j, denoted as TF (i, j);

• TF-IDF (Term Frequency-Inverse Document Frequency): that evaluates
the importance of words in a specific sentence over its presence in the
complete document; in other words, this term shows how much the
words characterize a sentence. This metrics merges two terms: the term
frequency as previously defined and the inverse document frequency, which
measure the importance of terms by taking into account the rareness.
More formally the IDF(i) term is given by:

IDF(i) = log
A

m

m(i)

B
(4.13)

where m is the total number of documents and m(i) represents the number
of documents in which the term i appears. The TF-IDF(i, j) is given by:

TF-IDF(i, j) = TF(i, j) ∗ IDF(i) (4.14)

2. Decomposition of the documents-terms matrix A via Singular Value Decom-
position; the matrix A is factorized as follows:

A = UΣV T (4.15)

where U is a column orthonormal [words × concepts] matrix [n×m] dimensions,
V , the orthonormal matrix that represents the sentence × concepts matrix
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with dimension [m × m]. Once the matrix A is factorized in these three
matrices, the first k columns of U ad V are chosen, giving:

Ak = UkΣkV
T
k (4.16)

where Ak represents the approximation of A at rank k, and so selecting the
fist k concepts. The analogy with the concepts derives from the following
reasoning: as previously mentioned, the matrix A is computed by taking into
account some frequency-based weighting schema. The structure of A is then
divided into three matrices which are capable of capturing the relatedness of
some terms in A. The co-occurrence of some terms is, in most cases, driven
by the context in which the terms appear. By projecting A in a subspace of
dimension k, where the basis represents concepts, documents that contain
similar words will be projected closely into a certain region of the k-dimensional
space. This way, the Singular Value Decomposition is capable of capturing
the latent semantic structure of the original document. Moreover, if a series of
words is more likely than others, a singular value included in Σ matrix will take
into account of that. The magnitude of that singular value is representative of
the importance of the corresponding pattern. If each words pattern describes
a concept, each singular value defines how much the corresponding concepts
is relevant in the complete document. The more a document is similar to a
certain pattern (where the similarity is given by the common terms), the higher
will be a certain value in its singular vector representation in correspondence
of the concept defined by the pattern.

3. Sentence selection: according to [61] the sentence selection can be performed
with different techniques. [62] suggested to consider the right singular vectors
matrix, that returns the relationship among concepts and sentences: for each
concept, the most important sentence is selected (the one associated with the
highest score). But this approach has two drawbacks: firstly it forces to select
one sentence for each concept, regardless of the importance of the concepts
itself. Thus, the length of the summary will be proportional to the number
of concepts. The authors in [63] suggest other methods, which employ the
singular value matrix in order to select the sentence for which the concept
is lower than a threshold and multiply them to its corresponding singular
value, to emphasize the most important concepts. Mathematically, given
the document i, the algorithm orders the documents according to a score
computed as follows:

si =
kØ
j=1

v2
i,j · σ2

j (4.17)

where si is the saliency score: the importance of a sentence is both determined
by the relatedness of it with a series of k concepts and the importance of these k
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concepts themselves. Authors in [64] suggest introducing a preprocessing phase
before the sentence selection step. The preprocessing consists in computing
the average sentence score as the average over the row of V T and zeroing all
the entries whose value is below its corresponding sentence score.

Graph-based methods: TextRank

The algorithm in [65], called TextRank, is a graph-based algorithm that aims to
order the sentence in a text according to their importance. It took inspiration
from Google’s PageRank [66], developed for ordering web pages in a Google search.
It is based on the assumption that the nodes that are connected to many other
nodes are more likely to carry relevant information about the entire corpus, so
the sentence selection process is driven by a graph index that is produced by an
established ranking algorithm. In the TextRank graph, the node represents a unit,
while the edge represents a semantic relationship that occurs between the two units
in the edge. In the context of summarization, the unit is given by a sentence and
the connections will be a metric of similarity between pairs of sentences.

This algorithm is based on the concept of recommendation. If two nodes in a
graph are connected, that means that they can be related to each other, and this
recommendation (the similarity measure) determines the importance: the more a
sentence is linked to other sentences, the more is recommended and probably will
assume more importance. The recommendation degree is given by a set of weights,
according to the importance returned by all the nodes that send a vote.

More formally, give a graph G = (V,E) where V are the set of vertices and
E is the set of edges, if the set of all incoming edges of a node Vi is denoted as
IN(Vi) and the set of all outgoing edges as OUT(Vi), the original formulation of
the algorithm defines the vertex score as:

S(Vi) = (1− d) + d ∗
Ø

j∈IN(Vi)

1
|OUT(Vi)|

S(Vj) (4.18)

That, in the TextRank algorithm is equivalent to:

TR(si) = (1− d)
N

+ d
Ø

sj∈IN(Vi)

wijTR(sj)q
sk∈OUT(Vj) wik

(4.19)

Where IN(Vi) is the set of incoming edges of the vertex Vi associated to the
sentence si, OUT(Vj) is the set of outgoing edges of the vertex Vj associated to
the sentence sj, wij is a similarity score between the sentences si and sj.

So, the score of each node is due to:

• the damping factor d, which assumes values between 0 and 1, representing the
probability of jumping from a node to another random vertex in the graph.
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In PageRank it is defined as the probability that a “random surfer” (i.e. a
user) will get bored and request another random page;

• the mean score of all the connected nodes where the score is represented by a
measure of similarity among sentences.

In the context of NLP there are several similarity metrics according to [67], that
can be divided into:

• String-based similarity metrics: which calculate the similarity at characters or
terms level;

• Corpus-based similarity metrics: in which the similarity is given by the amount
of information gained from the entire corpora;

• Knowledge-base similarity metrics: that make use of semantic networks.

For TextRank algorithm, the similarity is given by the overlap of two sentences,
which can be determined simply as the number of common tokens between the two
sentences, or given by the cosine distance:

wij = XT
i ...Xj

||XT
i ||||Xj||

=
qm
k=1 X

T
ik

qm
k=1 X

T
jkñqm

k=1(XT
ik)2

ñqm
k=1(XT

jk)2
(4.20)

The score update proceeds iteratively until it converges below a certain threshold.
Then the top-ranked sentences are selected for inclusion in the summary.

To sum up, the main steps of the algorithm for text summarization are the
following:

• Construction of a Bag-of-Words-like representation of the corpus X (sentences
in column, and terms in row).

• Construction of the pairwise similarity matrix, in which each entry i and j
represents the similarity score between two sentences i and j.

• Generation of the undirected graph where each node is a sentence in the
corpus, and each edge has a weight that corresponds to the similarity score
between the two sentences;

• Assignment of a score of each sentence according to 4.19;

• Sentence ranking building, according to the score previously computed;

• Selection of the top-k sentences.
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Other techniques

There are several kinds of techniques different from the previously mentioned, here
briefly described for the sake of completeness.

Cluster-based techniques

Cluster-based techniques compare different sources and extract the most relevant
part of them as an outcome of this comparison [68]. The algorithm divides the
sentences coming from different documents into several clusters, and after having
identified the top-k most populated clusters, the algorithm extracts a set of sentences
among those selected. The idea behind this is that the most populated clusters
will be the ones associated with the most important topics in the set of documents,
furthermore, the sentence extraction is applied to those. Authors in [15] proposed
to use a pre-trained language model to produce the embedding representation of
each sentence, and then apply an unsupervised clustering algorithm to perform
the selection. After computing the cluster-topic centroids, the algorithm computes
the cosine distance among the learned representations of all the sentences and the
centroids. Then it picks the most representative sentences, so the closest to the
centroids.

Semantic-based techniques

The semantic-based approaches are based on the concept of lexical chain [69] and
the employ of WordNet [70]. WordNet thesaurus is a vocabulary of synonyms that
contains the information of relationships among terms. A lexical chain, as the name
suggests, is a sequence of words that have a particular relationship to each others
in the vocabulary used. The summarization process is divided into three steps:

• Segmentation of the original text;

• Construction of lexical chains, with the adoption of a scoring function for
lexical chain evaluation; each chain has a score that is proportional to the
number of terms contained and the homogeneity of the chain;

• Identification of the relevant sentences starting from the most significant
chains: the strongest lexical chain will represent the most important concepts.
Via heuristic algorithms, it is possible to choose the sentences that best
approximate the concept extracted.

A drawback of this approach is that this method is not capable of controlling the
level of details, and it has been proven that long sentences have a higher probability
of being selected.
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4.2.2 The abstractive summatization
Different from the extractive approach, the abstractive methods generate a com-
pletely new text, with sentences that are not directly picked from the original
text. This task introduces a new challenge with respect to the previous extractive
methods: the summary has to satisfy not only the requirement of containing all the
information of the original text, but also the new sentences generated have to be
correct from a grammatical and structural standpoint. For this reason, abstractive
summarization requires the rephrasing of sentences in order to generate summaries
that are linguistically fluent. Abstractive summarization methods, according to
[71] can be divided into three categories:

• Structure-based approaches: by the means of pre-defined structures such as
templates and ontology for information extraction.

• Semantic-based approaches: they create semantic graphs for defining the
relationships between words and sentences.

• Deep learning-based approaches: these methods make use of deep learning
models.

For the purpose of this thesis, only the deep learning-based approaches are
described. Among those, it is possible to find methods that use Recurrent Neural
Networks or Transformer architectures.

Recurrent models

As presented in [72], the authors create a novel method that involves local attention
model (originally presented in [52]) in order to build abstractive summarization,
with an approach more data-driven. They highlight two important aspects: firstly,
the output sequence length is decided a priori and remains fixed, and secondly, the
abstractive summarization methods allow more freedom in the generation process
and let the model be trained with a wider range of training data.

The model proposed is composed by:

• An encoder model: starting from the input text, they are able to return a
vector that represents the input and its context. They propose several kinds of
encoders such as the simplest Bag-of-Word encoder, the Convolutional encoders
(which are able to consider interactions between neighbor words by the means
of standard time-delay neural network convolutions) and the most complex
Attention-based encoders, similar to the one described in Section The attention
mechanism and the late fusion approach for the punctuation restoration task.
And this last typology was proven to be more effective. The key idea is
to define an encoder capable of evaluating the input word importance with
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respect to a specific word in the output, in this case, represented by the text
summarized. The input representation is based on its context.

• The generation model: the algorithm that aims to build the summary.

Given the training data (x(1),y(1)), ..., (x(J),y(J)) consisting in tuples of input
text and summaries, the model proposed is trained to minimize the negative
log-likelihood of each summary, i.e:

Loss(θ) = −
JØ
j=1

logP[y(j)|x(j); θ] = −
JØ
j=1

N−1Ø
i=1

logP[y(j)
i+1|x(j),yc; θ] (4.21)

During inference, the model chooses the best summary as the set of tokens that
maximizes:

y∗ = arg max
y∈Y

N−1Ø
i=0

g(yi+1,x,yc) (4.22)

For computational reasons, the beam search is applied to the decoder for limiting
the growth of the set of summary candidates.

Transformer-based models

Recent work leveraging pre-trained transformer-based sequence-to-sequence models
and adapt them to abstractive summarization. The three most popular transformer
architectures in this field are:

• BART [28]: a denoising autoencoder composed by a bidirectional encoder
(based on BERT) over corrupted text and a left-to-right autoregressive decoder
(based on GPT); a more accurate description is reported in Section BART
model;

• PEGASUS [73]: this architecture is a large transformer-based encoder-decoder
model trained on a massive text corpora; during pre-training, the important
sentences are masked from an input document, and the model is trained
to build this sentences starting from the remaining ones (Gap Sentences
Generation);

• T-5 [74]: the original paper proposes a unified framework to combine all
NLP problems into a single text-to-text format; the Text-To-Text Transfer
Transformer uses the same model, loss function, and the same hyperparameters
for various NLP task; T5 is an encoder-decoder model that can be trained in
a supervized or unsupervized way.

The papers showed that the Transfer Learning-based model achieved considerable
improvement for abstractive text summarization.
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4.3 Summarization of learning data
According to [10] the volume of data in textual form in the educational context is
very large, and exploring it can be extremely time-consuming.

Learning From Summaries (LFS) [75] is a new data mining approach that exploits
document summarization techniques in order to support learning activities. In
particular, the pipeline requires a first step of document collection and annotation,
where users annotate documents with notes or highlights. Then the documents
are preprocessed and only textual portions of the documents are considered in the
summarization stage, which is carried out through the Itemset-based Summarizer
(ItemSum) [76].

The paper in [10] proposes a new methodology to recommend summaries of
potentially large teaching documents.

The methodology proposed is the following:

• Formative assessment: multiple-choice questions are employed to assess the
students’ level of understanding;

• Text preparation: preprocessing phase of the results of multiple-choice tests;

• Summarization: reduction of the teaching material according to the topic;

• Recommendation: suggestion of the summaries to students who have not
passed some particular tests.

For the summarization step, the authors proposed the usage of the Weighted
Itemset-based Summarizer (MWISum) [76].

Authors of [11] review some implementations of automatic text summarization
in the learning context from the year 2010 to 2020, mostly based on extractive
summarization.

Another study focuses on mobile learning [77] and investigates the effectiveness
of automatic text summarization used in the mobile learning context.

In [15] the authors propose a topic-based summarization from online discussion,
leveraging on the threads related to the topics discussed. According to the authors,
discussions (even when in an online version) lead to a better learning experience if
adequately moderated. After a data processing stage, in which the textual data is
lowercased, lemmatized and stopwords are removed, the authors propose different
algorithms for the Topic Extraction phase.

[16] proposes a novel method of summarizing lecture slides. The goal of this
work to enhance preview efficiency and improve students’ understanding of the
content. More in detail, they combine three kinds of features to compute the
importance of a document: the first feature is determined by content volume,
estimated by counting the number of foreground pixels, a second feature is the
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inter-frame distance, which denotes changes between successive pages. The third
feature is given by the TF-IDF of all the words that the document contains.

The closest works to the proposed problem are the following. In [17] the authors
propose a method for producing extractive summaries from the source subtitles.
They propose the usage of a pipeline that consists in:

1. Input text pre-processing with the classic NLP techniques, such as stop word
removal, lemmatization;

2. Features selection (at word and sentence level);

3. Conversion to TF-IDF and normalization;

4. Sentence selection: the authors propose to verify if the TF-IDF of a sentence
is greater than the mean TF-IDF present in the text.

Even the authors in [12] proposed an unsupervised extractive summarization
model, in this case based on BERT architecture. In particular, the transformer
model is pre-trained and then is employed to generate the embedding of the sentence.
Then K-Means and Gaussian Mixture Models are used for clustering, utilizing the
Sci-kit Learn library’s implementation 1. Once the clusters are computed, sentences
closest to the centroids are selected for the final summary.

To the best of our knowledge, no work in the existing literature proposes to
apply abstractive summarization techniques for video lecture summarization.

1Available at: https://scikit-learn.org/stable/
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4.4 Transfer learning and domain adaptation

4.4.1 Formal definition of transfer learning
The availability of large-scale dataset corpora and the adoption of large pretrained
language models allow advances in different NLP tasks, including summarization.
Creating large datasets for a new domain, however, is often infeasible and highly
costly. Thus, the ability to transfer knowledge from large pretrained models to new
domains with little or no in-domain data is necessary, especially when such models
should be adopted in real-life applications.

But a common assumption of machine learning models is that the training and
test data are drawn from the same feature space and the same distribution. So,
when the distribution changes, most of the models need to be revised using newly
collected training data, similar in distribution to the one provided in the test set.
Interesting studies [78] proved that larger models do not necessarily generalize
better out-of-distribution, while in general pretraining on more diverse datasets
can improve robustness.

Transfer learning [79] is the technique of knowledge transfer or transfer learning
between task domains. The author in [80] reviews a 1970s research and provides
the mathematical background of transfer learning. It concludes with a discussion
on some computer vision applications.

If a domain is denoted as D = {X , P (X)}, where X is the feature space and
P (X) is the marginal probability distribution over that feature space and a task is
represented by T = {Y , P (Y |X)}, where Y is the label space and P (Y |X) is the
target posterior probability distribution, a formal definition of transfer learning can
be the following: defining a source domain DS and its corresponding source task
TS , and the target domain as DT with its target task TT , the objective of transfer
learning is to learn the target conditional probability distribution P (YT |XT ) (where
YT and XT are the training data of the target domain) in DT with the information
gained from DS and TS where DS /= DT or TS /= TT .

4.4.2 Transfer learning in NLP applications
In NLP, many tasks share common knowledge about language and according
to Professor Andrew Ng ”transfer learning will be [...] the next driver of ML
commercial success“ 2.

In [81] the authors define linguistic intelligence as the ability to reuse linguistic
knowledge for a new task, in contraposition of catastrophic forgetting, the phe-
nomenon for which a model loses any information previously acquired as soon as it

2Andrew Ng on transfer learning at NIPS 2016
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approaches a new task. The authors discover that although SOTA language models
have a large number of parameters and are subject to long unsupervised training,
fine-tuning these architectures on a downstream task still requires a consistent
number of training examples. In their experiments, the authors investigate the
importance of selecting tasks to pre-train on and found that training curriculum
(i.e. the dataset domains used during pre-training) can have a considerable effect
on model performance on a new dataset.

In NLP applications there are different kinds of transfer learning:

• Domain adaptation: in this case the source and the target task coincide but
labeled data are provided only in the source domain, which differs from the
target one (transductive transfer learning).

• Cross-lingual learning: again source and target task are the same and only the
source dataset is labeled, and the source and the target languages are different
(transductive transfer learning).

• Multi-task learning: in this case the source and the target task are different
(inductive transfer learning);

• Sequential transfer learning: similar to multi-task learning but in this case
the tasks are learned sequentially (again part of inductive transfer learning).

As said in the previous sections, given the lack of educational datasets and the
existence of models in literature trained on large datasets whose performance is
noticeable, the thesis will explore the capability of transferring knowledge to the
educational domain.

In NLP, domain means a type of corpus, with a certain topic, style, genre,
or linguistic register [82]. According to the paper, a corpus is a set of instances
drawn from an unknown high-dimensional distribution, called variety space, whose
dimensions (or latent factors) define language aspects. They can be the genre, the
sub-domain, can involve socio-demographic aspects, style.

A more formal definition starting from the previous definition of transfer learning
of domain adaptation can be: in domain adaptation the source and target tasks, TS
and TT , remain the same, but the source and target domains DS and DT differ in
their underlying probability distributions. Given two distributions PS(X, Y ) and
PT (X, Y ) , domain adaptation typically addresses the shift in marginal distribution
PS(X) /= PT (X), also known as covariate shift.

The paper presents different methods to transfer knowledge and divides them
into model-centric, data-centric and hybrid approaches. Model-centric approaches
redesign parts of the model. They include a redesign of the feature space via feature
augmentation and feature generalization methods, a revision of the loss function or
regularization, that for example employ domain adversaries.
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Regarding this work, the thesis focuses on analyzing the impact of domain shifts
from meeting to educational, and explore the case in which no examples of the
educational dataset are given to the model, similarly as in the zero-shot learning
[83] [84] (with the only exception that the task is always summarization), in order
to measure the domain adaptation capabilities.
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Chapter 5

Proposed methods

This section is devoted to explaining the proposed methods for summarizing video
lecture transcripts. In particular, in the following sections, two methods are
proposed:

• A modified version of a Microsoft model, originally designed for meeting
summarization. This model exhibits poor domain adaptation capability and
the model’s computational complexity quadratically depends on the input
text size: this is a nontrivial limitation in the e-learning context, where the
transcripts usually have a length of about 8000 of tokens.

• A novel method that merges extractive and abstractive summarization: such
method consists in a first stage of unsupervised extractive summarization
algorithms to filter out useless sentences and to generate a short text that
respects the limit of the abstractive summarization model; the extractive
summarization stage does not require the input text to have a fixed length.

The chapter ends with a comparison of the complexity of the two proposed models,
and a summary of the improvements introduced with the novel approach. In the
video lectures context, the proposed method achieves better performance than
Microsoft’s architecture in terms of ROUGE-n scores and BERTScore; for a more
detailed description see Section Comparison of the two models.
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5.1 A hierarchical transformer model for meet-
ing summarization

In [85] authors propose a Transformer architecture that is capable of performing
meeting summarization. The datasets under analysis are the AMI and the ICSI
dataset. As highlighted in the referenced paper, the meeting transcripts are typically
longer than plain text: thus, performing summarization on them becomes extremely
challenging. For example, in CNN/Daily Mail dataset [34], there are on average
781 tokens per article and 56 tokens per summary, while AMI meeting corpus
contains meetings with 4,757 tokens per transcript and 322 tokens per summary.
Moreover, a meeting is carried out between multiple participants that contribute
to the meeting with their different roles and standpoints. To address these issues
the authors propose a Hierarchical Meeting summarization Network, an encoder-
decoder transformer model that leverages on the information of roles to generate
abstract summaries. To tackle the problem of meeting length, the authors propose
a hierarchical architecture composed of three layers:

1. A word-level encoder (WT): it processes one token at a time (including its
corresponding POS and NER), and produces a token representation:

WT({xi0, ..., xiLi}) = {xWi0 , ..., xWiLi} (5.1)

where xi0, ..., xiLi are the input vectors (token + POS + NER) of the sentence
i with length Li. Only the first output of the word-level encoder is used in
the subsequent turn-level encoder, the one that corresponds to the tag that
indicates the beginning of the sequence, i.e. xWj0 .

2. A turn-level encoder (TT): takes as input the first representation of the word-
level transformer and concatenates it with the role vector of the speaker for
this turn:

TT({[xW10 ; p1], ..., [xWm0; pm]}) = {xT1 , ..., xTm} (5.2)
where xW10 , ..., x

W
m0 are the output representations from the word-level encoder

and p1, ..., pm are the role vector representations. Afterwards, the encoder
processes the information of all the turns in a meeting; this portion of the
model is able to capture the relevant information coming at word-level and to
condense it in a unique vector.

3. The decoder: this model is capable of generating a new summary using a
lower triangular mask to prevent the model to look at future tokens and cross
attention with word-level and turn-level transformer. During training, the
authors use the teacher-forcing approach, while at inference time the decoder
exploits its autoregressive nature. In order to improve the results, the authors
use beam search to select the best sequence of candidates.
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A schema of the described architecture is depicted in Figure 5.1.

Figure 5.1: The hierarchical structure for meeting summarization presented in
[85] based on the transformer architecture.

Given the limited amount of training data for meeting summarization, before
finetuning the model on the AMI and the ICSI dataset, the authors pre-train it
on the CNN dataset. In particular, they concatenate a set of news articles into a
series of people meeting, and treat each sentence as a single turn.
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5.2 A speaker-aware version of HMNet with top-
ics

For Microsoft’s architecture, the authors provide two finetuned versions, one
obtained with the AMI and one obtained with the ICSI dataset. The results
obtained on the validation and test set with the complete architecture are displayed
in Table 5.1.

Results of HMNet on AMI and ICSI dataset
ROUGE-1 ROUGE-2 ROUGE-L

AMI 0.530 (0.495) 0.186 (0.170) 0.493 (0.489)
ICSI 0.463 (0.490) 0.106 (0.113) 0.474 (0.480)

Table 5.1: The table above summarizes the results on the test and development
set (the results of the development set are within brackets) obtained by the authors
of HMNet with the original configuration on the AMI and the ICSI datsets.

Indeed, the results highlighted in the paper are derived from an architecture
that requires some additional information about the transcriptions. Recalling what
is stated in Section The EduSum video lectures dataset, video lecture transcripts
differ from the AMI transcripts in three aspects:

1. The gold summaries in EduSum are shorter than the ones in AMI and ICSI;

2. The absence of multiple speakers and the unicity of the role: according to
HMNet paper, the ROUGE-1 score drops by 5.2 points on AMI and by 2.3
points on ICSI when the role vector is removed.

3. Possible errors in punctuation: a video lecture transcription may contain
punctuation errors, that, as previously described in Section The Politecnico
video lectures dataset, is inserted by a pre-trained model.

In order to bring the architecture closer to the case under analysis, two modifica-
tions have been introduced. Firstly, the information of the speaker is replaced with
the information of the concept: each sentence is associated with a topic, or concept,
which is extracted via Singular Value Decomposition. More specifically, starting
from a Bag-of-word representation X of the meeting that reports documents along
the columns and words in row, the matrix X is factorized in three matrices, U ,
S and V T . This last matrix expresses the concepts’ degree of representativeness
of each sentence, i.e. how much information about a concept a sentence is able
to capture. As described in the paper for the CNN/Daily Mail dataset, a fixed
number of concepts N is established a priori and each document is associated to a
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speaker-label according to the matrix V T , considering the highest value among the
concepts. For each column of V T the concept associated with the highest value
is picked among the N most important concepts. Secondly, the summary output
lengths boundaries are reduced to 100 and 200 tokens 1.

1In the original configuration an output summary can reach 500 tokens.
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5.3 Extractive-Abstractive BART-based model
It is known that for transformer-based architectures the memory and time required
for full self-attention models grow with the input sequence length n with a quadratic
rate O(n2). This is a nontrivial limitation for the employment of BART model
in the video lectures context, where the transcriptions’ length is at least 8 times
bigger than news articles’ length and the BART model accepts a fixed number of
input tokens to avoid memory issues.

For this reason, this work proposes a novel approach called Extractive-Abstractive
summarization: it consists in the usage of an unsupervised summarization method
to preprocess the input text, followed by the BART architecture, which aims to
shorten the produced summaries even further and to generate their abstractive
counterpart. The first stage, the extractive summarization, allows to filter out
useless sentences and to respect the input constraints of BART. The second stage
produce the abstractive summary.

More in detail, the extractive stage consists in the shortening the original input
texts by means of an extractive summarization technique; several algorithms have
been experimented with:

• Latent semantic analysis: the algorithm chooses the most representative
sentences of the input dataset according to the right singular vectors matrix
and the singular value matrix of the term-frequency matrix. The former
indicates the importance of a sentence with respect to a series of topics k, the
latter instead highlights the importance of each topic. The product of the
two matrices returns a re-weighting of the sentence importance in the basis of
topic relevance.

• TextRank algorithm: the algorithm picks the best sentence according to a
ranking that orders the sentences according to their similarity to the rest of
the text. The official implementation of this algorithm is provided by [86].

• Cluster-BERT: the pre-trained language model BERT is employed to extract an
embedding representation of the input at sentence level, and then a clustering
algorithm groups the sentences according to a similarity score with each
centroid found; each centroid defines the topics of the input text. In particular,
the K-Means algorithm has been employed for clustering and the similarity
metric adopted is the cosine distance.

• Random choice: the sentences are randomly picked until the size constraint is
met.

• Truncation: only the first tokens of each input text are considered.
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• A mix of the previous techniques: motivated by the limited amount of data,
during training more variability is artificially introduced by applying a random
method from all those listed above.

A mathematical description of these algorithms is contained in section The
extractive summarization.

The choice of these extractive summarization methods is motivated by the fact
that extractive summaries are not available in many cases, while these algorithms
are unsupervised, having no need for outer labelling. Moreover, these algorithms
have no limits in terms of input size.

5.3.1 BART model
The state of the art in text summarization is represented by BART [28], a bidirec-
tional denoising autoencoder for pretraining sequence-to-sequence models.

The BART architecture derives from two important models in the NLP field:
BERT [27] and GPT [26]. A graphical representation of BERT and GPT training
is depicted in Figure 5.2 and 5.3. The encoder part of BART is given by the BERT
model, while GPT represents the decoder part of the BART architecture.

Figure 5.2: BERT architecture and random masking training schema from [28].

As previously stated, BART is trained via sequence-to-sequence training. A
schema of this architecture is depicted in Figure 5.4. Starting from BERT and
GPT building blocks, BART introduces some modifications:

• each layer of the decoder (GPT) performs cross-attention over the final hidden
layer of the encoder (BERT);

• BART removes the last BERT feed-forward network before the word prediction
layer;

The BART architecture is pre-trained by corrupting original documents and
then forcing the model to find the best reconstruction of the original text. The
corruption actions are the following:
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Figure 5.3: GPT architecture and training schema from [28].

Figure 5.4: BART architecture and training schema from [28].

• Token masking: random tokens are masked with a token [MASK] and the
model should determine the original token;

• Token deletion: random tokens are removed and the model has to decide
which position are the missing inputs;

• Text infilling: a number n is sampled from a Poisson distribution, this number
constitutes the length of word span replaced by the token [MASK]; when
n = 0 it represents the insertion; the model is trained to determine the number
of missing words;

• Sentence permutation: the order of each sentence is shuffled;

• Document rotation: the model is trained to detect the beginning of a sentence;
a token is randomly chosen and the sentence is circulated from right to left
up to that token.

In the fine-tuning stage, the model generates outputs in an autoregressive fashion.
The main limitation of this model the input sequence length: BART is not capable
of managing long streams of text, such as the ones under analysis. Thus, this model
has been used to produce news or dialogue summaries.
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BART models [28] are provided by Huggingface library 2.
The study in [87] highlights that the domain discrepancy between written

language and spoken language may degrade the model performance. For this
reason, the starting configuration chosen is a pre-trained BART model on the
SAMSum dataset [35] for the summarization task. The usage of SAMSum pre-
training configuration is motivated by the nature of video lecture transcripts, which
is based on dialogues rather than newspaper articles. The first assumption is the
following: a meeting corpus could be the closest choice for video lectures if a suitable
training dataset is not available or if it contains a limited number of examples of
that domain. After this preprocessing step, the deep architecture is fine-tuned
in order to produce the abstractive version of the extractive summary with an
even shorter length. This phase is particularly delicate, as language models have
been shown to be unstable across different hyper-parameter settings. Although the
pre-trained models are able to capture the semantic and the syntactic characteristic
of a language, inadequate fine-tuning may produce undesired results and may
generate overfitting. [88] is an interesting work done in order to understand the
causes of this issue. The authors observe that pre-trained models change their
behavior according to:

1. The weight initialization;

2. The training data order resulting from the dataset shuffling.

They assert that the large results’ variability is particularly evident in smaller
datasets. To mitigate this phenomenon the authors remark the importance of an
early stopping exit strategy. Along with this procedure, in [89] the authors propose
a regularization term in order to avoid the so-called representational collapse,
i.e. the degradation of generalization capacity of pre-trained models during the
fine-tuning phase. They show that it is possible to avoid this phenomenon by
adding a regularization term on the output probability distribution in the form:

KL(g · f(x)||g · f(x+ z)) (5.3)

where x is the input embedding learned representation, f and g are the functions
that return respectively some pre-trained representation and the classification
probability, and z is a sample drawn from a normal z ∼ N (0, σ2I) or uniform
distribution or z ∼ U(−σ, σ).

By introducing a small variation on the input embedding vectors represented
by z, it is possible to compute the distance, in terms of probability distribution,
between the noised vector and the original vector: this distance penalizes the model
if the two output probability distributions are far away from each other.

2The library is available at: https://huggingface.co
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With this regularizer, the model should demonstrate its capability of general-
ization regardless of a small drift in the input representation. This regularization
term is controlled by a hyperparameter λ.

Similar to [90], parts of the BART model are frozen and only the last layers of
the encoder and decoder are fine-tuned, as well as the language model head.

Afterwards the model is fine-tuned on the AMI and the ICSI dataset. These
dataset are chosen because meetings and video lectures share certain lexical features:
they are both the results of spoken language carried out by one or more participants,
and they both cover one or more topics. In the following chapter the fine-tuning
choice is questioned and compared with pre-trained version of the model.
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Algorithm 1 Extractive-abstractive test algorithm.
Data: Test set data: test_set
Input:

extractive() # Extractive method
PARAMS # Parameters for abstractive summarization

Output: The prediction summaries: results
Set:

model # Abstractive model trained
results ← empty list # Output summaries

for epoch = {1, N_EPOCHS} do
for (input_text, gold_standard) in test_set do

extractive_text ← extractive(input_text)
summary ← model.generate(extractive_text, **PARAMS)
results.append(summary)

end
end
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Algorithm 2 Extractive-abstractive training algorithm.
Data: Training and validation: training_set, val_set
Input:

extractive() # Extractive method
PARAMS # Parameters for abstractive summarization

Output: The model trained
Set:

model # abstractive model trained
loss_function() # Criterion
optimizer(**PARAMS) # Optimizer
scheduler(**PARAMS) # Scheduler

for epoch = {1, N_EPOCHS} do
for (input_text, gold_standard) in training_set do

optimizer.zero_grad()
extractive_text ← extractive(input_text)
prediction ← model(extractive_text, **PARAMS)
loss ← loss_function(gold_standard, prediction)
loss.backward()
scheduler.step()

end
end
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5.3.2 Considerations on complexity and efficiency
This paragraph is devoted to highlighting the benefits of the proposed method
in terms of computational costs. HMNet architecture is made of more than
200M parameters, while BART does not exceed 140M. Using BART represents a
twofold advantage: a smaller architecture has a smaller memory footprint, with an
immediate 30% disk space saving. Moreover, a smaller model is also beneficial also
in terms of computation, hence time and energy consumption.

This section presents some considerations on complexity, in order to underline
the advantages of the presented model, not only in terms of numerical results.
For the sake of simplicity, only LSA, TextRank 3 and the attention operation are
compared, as they represent the main differences of the two approaches. Denoting
with V the set of video lectures, with cardinality |V| = V , with si the number of
sentences in a video lecture vi with a total number of tokens equal to ni, and with p
the vocabulary size, starting from a matrix [p× si] the time complexity of LSA for
summarization is O(min(ps2

i , p
2si)) for SVD and O(s2

i ) for the sorting operation in
the worst-case scenario.

For TextRank the time complexity according to [91] is O(k(m+ si)) where si is
the number of nodes, so the number of sentences, m is the number of edges (equal
to (si(si−1))

2 for a complete graph) and k is the number of iterations.
For any transformer architecture, the complexity associated with an attention

layer is given by O(nid2 + n2
i d+ (dnid1 + d1nid)) where ni is the number of tokens,

d and d1 are the dimensions of the feature spaces. The overall complexity can be
broken up into several terms:

• the first term, O(nid2), is given by the computation of the Query Q, the Key
K and the Value V matrices, each of shape [ni × d], obtained multiplying the
input matrix with three learned matrices of dimension [d× d];

• the second term, O(n2
i d) is given by the attention mechanism, the product

between the attention weights Softmax(QKT )/
√
d and the value matrix;

• the third term, O(dnid1 +d1nid) is given the feed-forward stage, which consists
in a two consecutive matrix multiplications of dimension [d× d1] and [d1 × d]
with d1 the dimension of the first matrix.

If the size of the vocabulary p and the dimensions d and d1 are fixed, then
when ni grows, the complexity of attention models grows quadratically. For LSA
and TextRank algorithm the complexity depends on si, for which it is reasonable

3As will be extensively described in the next chapters, these two algorithms allow to reach the
highest scores, moreover, for the Extractive-Abstractive approach, this section takes into account
LSA and TextRank only.
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Complexity Approximation
LSA O(min(ps2

i , p
2si) + s2

i ) O(s2
i )

TextRank O(k[ si(si−1)
2 + si]) O(ks2

i )
Attention Layer O(nid2 + n2

i d+ (dnid1 + d1nid)) O(n2
i )

Table 5.2: The table sums up the complexity of the algorithms considered.

assuming that si < ni holds 4. It is also important to consider that Extractive-
Abstractive model uses 10 attention layers, 5 in the encoder and 5 in the decoder.
The input size ni,BART is fixed and determined by the chosen extractive algorithm.
On the other side, HMNet has 18 attention layers in total (6 in each portion of
the hierarchical structure) and the input size varies with the input meeting length,
ni,HMNet = ni.

The complexity of Extractive-Abstractive model is given by:

c(E-A) ∝ O
1

max
è

min(ps2
i , p

2si) + s2
i , k

èsi(si − 1)
2 + si]

é2
+ 10 ∗ O(ni,BARTd

2 + n2
i,BARTd+ (dni,BARTd1 + d1ni,BARTd)) (5.4)

While the complexity of the hierachical model is proportional to:

c(HMNet) ∝ 18 ∗ O(nid2 + n2
i d+ (dnid1 + d1ni,nid)) (5.5)

If the number of tokens ni grows, both algorithm complexities grow, but
Extractive-Abstractive architecture complexity increases with a lower rate, due to
the fact that si < ni and the attention operations in HMNet are repeated many
times.

The extractive algorithms before BART fix a limit in the complexity growth
of the subsequent transformer model. For this reason, for a sufficiently large
ni, BART’s complexity can be considered constant. The extractive algorithm
complexities depend on si which, in the simplest case, can be considered a fraction
of ni (for example, it is possible to consider that a sentence, on average it is
composed of 20 words, giving si = ni/20).

For larger ni, (at least ni > ni,BART), assuming si = ni
k0

where k0 > 1, and
given max(O(s2

i ),O(ks2
i )) = O(ks2

i ) the maximum complexity among LSA and
TextRank, the complexity of Extractive-Abstractive model can be approximated

4The equality si = ni represents a very special case in which each sentence is represented by a
single token, which it is ignored.
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as follows:
c(E-A) ∝ O(ks2

i ) + k1 ∝ O(kn
2
i

k0
) (5.6)

while the complexity of Microsoft architecture is given by:

c(HMNet) ∝ O(18 ∗ dn2
i ) (5.7)

If d > 0 (reasonable to assume, as d is the dimension of the feature space in
the attention mechanism) and k0 > 1, it holds that O(kn

2
i

k0
) < O(18 ∗ dn2

i ) for
k < 18 ∗ d ∗ k0, giving c(E-to-A) < c(HMNet) for every ni > ni,BART.

In other words, the worse case is represented by TexRank + BART algorithm for
which the complexity is lower than HMNet complexity with a controlled number of
iterations k 5.

Empirical results of this proof are displayed in Figure 5.5: these experiments show
the average time required for inference, run on a Tesla V-100, with 32 GB CUDA
memory. In the case of Extractive-Abstractive approach, the time is comprehensive
of the two steps.

However, if we consider LSA, it is possible to notice that the term of complexity
O(s2

i ) is given by the sorting operation, which, according to the sorting algorithm
employed, can be lowered to O(si log(si)).

For attention models several studies [92, 93, 94] propose variations on the
attention mechanism to reduce its complexity. None of them, to the best of our
knowledge, has been applied to spoken language yet and therefore are not taken
into account.

In addition, it is important to point out that, the extractive summarization
methods presented are currently considered as baselines in the literature, and there
exist variants that improve their efficiency and results. Despite these simplifications,
in most cases, the Extractive-Abstractive approach outperformes the hierarchical
model in the video lectures domain, and it is likely that further enhancements can
be obtained with more sophisticated methods upstream. In addition, Hugging Face
library provides several versions of BART that can be replaced according to the
memory constraints and with which it is possible to improve the results.

5Looking at the implementation of the Microsoft model, d = 512 and from the datasets
considered k0 ∼ 15 , therefore the upper bound of the number of iterations is more than 138000.
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Figure 5.5: The mean time required for summary generation of HMNet and
Extractive-Abstractive models for each course. This graph highlights the improve-
ment gained with the proposed method in terms of time.

65



Chapter 6

Experiments

This section is dedicated to a discussion of the results obtained with the proposed
methods. In particular, the first section Experimental setup defines the experimental
configurations that lead to the results highlighted in section Results on punctuation
and Results on summarization.

This last section analyses the results of the summarization restoration task.
Several analyses have been conducted in order to determine if different preliminary
assumptions are still valuable. As a baseline, the models are evaluated on the
meetings datasets, and compared to each other.

The first assumption questioned is the usefulness of the punctuation restoration
task. The following section will evaluate the impact that punctuation symbols have
on the summaries generated by the different models. The second assumption to
verify is the benefit of the meeting-to-video lecture transfer learning: the analysis
calls into question the generalization capability of the model fine-tuned on meetings
datasets with respect to the one only pretrained for general text summarization.

The evaluation always takes into account the different nature of the MIT courses
which constitute the educational dataset. The Politecnico’s gold summaries were
not available: for this reason, only some examples of generated output are reported.
The paragraph Metrics describes the metrics that have been used for the evaluation.
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6.1 Experimental setup

6.1.1 Punctuation restoration experimental setup
This section describes the experimental setup adopted to restore the punctuation
symbols.

A window-function approach is proposed in order to overcome the limitation of
the punctuation restoration model, and the results are compared with the other
methods.

In particular, two experiments are conducted. The first experiment is represented
by a quantitative evaluation of results obtained through punctuation models, carried
out with EduSum courses where punctuated transcripts were available.

Three attempts have been carried out in order to restore the punctuation of
video lecture transcripts. In this case, no modifications have been developed as
this part is considered not the core component of the thesis.

Firstly, the punctuation marks have been inserted with the Bidirectional RNN
described in Section Bidirectional Recurrent Neural Network. In particular, the
model that the authors of [48] call T-BRNN was employed. These results are
compared with the ones obtained with the FastPunct library 1 which employs, as
in the Punctuator architecture, a recurrent structure and the attention mechanism,
which is based on LSTM units in the case of FastPunct.

Given the limitation of sequence length imposed by FastPunc model, a window-
function is implemented as follows:

• The text is punctuated with the Punctuator, regardless of the poor results;

• According to the punctuation marks inserted, the punctuated text is divided
into sub-units that contain at most Nmax characters: the interruption of each
unit is defined by the last punctuation mark before the Nmax − th character;
the residual part of each sub-unit (i.e. the sequence of characters in between
the last punctuation symbol and the Nmax-th character) will compose the
beginning of the subsequent sub-units;

• Each sub-unit is passed through the FastPunc model and the punctuated
outputs are concatenated.

The third method proposed is the Transformer architecture of Alam et Al. described
in section Transformer based models.

The second experiment is conducted with the Politecnico video lectures, where
only a qualitative analysis is performed. In this case, the distribution of full stops,
commas, and question marks is compared with that of the training set.

1https://pypi.org/project/fastpunct/
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For all these experiments, computational resources were provided by HPC@POLITO
(http://www.hpc.polito.it). Experiments have been conducted with 1 NVidia
Tesla V100 with 32 GB of CUDA memory 5120 CUDA cores.

6.1.2 Summarization experimental setup
As far as the proposed Extractive-Abstractive approach is concerned, the hyperpa-
rameters that lead to the performance described in the next paragraph are displayed
in Table 6.1. In these experiments AdamW Optimizer [95], a variant of Adam
[96], is employed. A more formal definition of these optimizers can be found in
Appendix B.2.

The weight decay is set to 1e-4. The parameters for R3F regularizer are λ and σ
(the variance of the noise, sampled from a normal distribution), respectively set to
1e-6 and 0.8 for all the configurations. The beam width for the output generation
is always set to 5, with a repetition penalty equal to 2.

Hyperparameter for AMI dataset
Epochs LR Gamma Step

Size
LSA 10 1e-5 0.1 2
TextRank 2 1e-5 0.9 1
BERT 3 1e-5 0.9 -
Random 2 1e-6 - -
Truncation 3 1e-5 - -
Mix 2 1e-7 - -

Hyperparameter for ICSI dataset
Epochs LR Gamma Step

Size
LSA 10 1e-5 0.1 2
TextRank 2 1e-5 0.9 1
BERT 2 1e-6 0.9 1
Random 2 1e-6 0.9 1
Truncation 2 1e-6 1e-4 1
Mix 3 1e-5 0.1 2

Table 6.1: The table reports the hyperparameters configuration used for finetuning
BART on the AMI and the ICSI datasets.

HMNet’s hyperparameters are mostly those of the original paper. The only
difference consists in the parameters that control the beam search width and
the maximum length for the output summaries, which are lowered to 3 and 250
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respectively.
The experiments conducted are the following:

• Evaluation of the extractive summarization algorithms proposed for Extractive-
Abstractive approach: among these only the two best performing models are
kept for the following discussion;

• Evaluation of the proposed Extractive-Abstractive architecture in the meeting
context after the finetuning stage;

• Evaluation of the proposed architectures with the educational dataset; in
particular:

1. Evalaution of the impact of punctuation restoration task in the sum-
marization process both for Microsoft and the Extractive-Abstractive
architecture;

2. Evaluation of the usefulness of the meeting finetuning and the domain
adaptation capabilities of the two models;

3. Evaluation of the class subject impact on the summarization output.

For all these experiments, computational resources were provided by HPC@POLITO
(http://www.hpc.polito.it). The training of Extractive-Abstractive model and
the inference with the Hierarchical architecture has been conducted with 1 NVidia
Tesla V100 with 32 GB of CUDA memory 5120 CUDA cores.

The Hierarchical architecture training, according to [85], required 4 Tesla V-100,
with a total 5120 CUDA core in total and 32 GB each. The authors provided the
pre-trained model and fine-tuned versions of it.
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6.2 Metrics

6.2.1 Punctuation evaluation metrics
Being a multiclass classification task, the punctuation restoration models are
evaluated by means of the typical metrics used in classification. For this specific
evaluation, it is important to take into account the imbalance of classes: the class
No punctuation is much more frequent than the others. In case of class imbalance,
accuracy may return an high score even if the minority class is not correctly
classified.

Define the following:
• TP, true positive, the number of items correctly labeled as belonging to the

positive class;

• TN, true negative, the number of items correctly labeled as belonging to the
negative class;

• FP, false positive, the number of items wrongly labeled as belonging to the
positive class;

• FN, false negative, the number of items wrongly labeled as belonging to the
negative class.

One class ci at a time is considered among PERIOD, COMMA and QUESTION
MARK : the multiclass setting is turned into a binary classification problem. For
each class ci, the presence of the symbol after a word in the ground truth belonging
to ci is considered as assigning a positive label (1) to that words.

Then, the metrics adopted to evaluate the performances of a classifier are the
following:

• Precision, or positive predictive value, is the number of TP divided by the
total number of elements labelled with 1 (TP + FP), it highlights how valid
the results are, i.e:

P = TP

TP + FP
(6.1)

• Recall: is the number of TP divided by the total number of elements that
actually belong to the positive class (TP + FN), it shows how complete the
predictions are, formally:

R = TP

TP + FN
(6.2)

• F-measure, that is the harmonic of precision and recall mean given by the
following expression:

F1-score = 2 · P ∗R
P +R

(6.3)
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6.2.2 Summary evaluation metrics
In [97] the ROUGE score is presented as a set of metrics for evaluating automatic
summarization. It compares a summary produced by the model against a set of
ideal reference summaries. The acronym stands for Recall-Oriented Understudy for
Gisting Evaluation and considers the number of overlapping units (n-gram, word
sequences) among the prediction and the gold standard.

More formally, let RS be the set of reference summaries, and let S be a summary
that belong to this set. Then the metric is the following:

ROUGE-N =
q
S∈RS

q
gramn∈S countmatch(gramn)q

S∈RS
q
gramn∈S count(gramn) (6.4)

where n represents the length of the n-gram and countmatch(gramn) is the number
of times in which the n-gram gramn occurs in both gold standards and in the
model output.

In the case in which multiple references are available, the final ROUGE score is
given by the maximum among the pairwise ROUGE-N scores obtained with the
model prediction against all the possible reference summaries, meaning:

ROUGE-Nmulti = arg max
i
{ROUGE-N(ri, s)} (6.5)

This measure is recall-oriented since it evaluates all the possible matches over
the total number of n-grams occurring at the reference summary side.

ROUGE-L

This metric considers the Longest Common Sequence matches between every
reference summary sentence, ri and every candidate summary sentence cj. The
ROUGE-L metric is defined as follows:

ROUGE − L(S1, S2) = 2 ∗RLCS−MEAD ∗ PLCS−MEAD

RLCS−MEAD + PLCS−MEAD

(6.6)

where RLCS−MEAD is the maximum value of Long Common Sequence between the
reference and the prediction obtained, over the length m of the reference summary:

RLCS−MEAD =
q
si1∈S1 maxsj2∈S2 LCS(si, sj)

m
(6.7)

and PLCS−MEAD is the precision counterpart:

PLCS−MEAD =
q
si1∈S1 maxsj2∈S2 LCS(si, sj)

n
(6.8)
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where n is the length of the predicted summary.
This metric is popular in the summarization task, as a higher ROUGE score

means a larger overlap of word units between references and predictions while a
lower ROUGE score means a smaller overlap of word units.

There are some aspects that this metric does not into account. Firstly it
treats each word equally, while some specific terms should be more relevant in
the evaluation. Secondly, ROUGE does not assess how fluent the summary is.
ROUGE only assesses the adequacy through n-grams, without considering possible
synonyms and relationships among words.

Generally, extractive predictions will get higher ROUGE scores compared to
abstractive predictions. The latter may use synonyms or in general words that
may not be present in the references, hence producing a low ROUGE score despite
being a good summary. It turns out that the choice of who created the reference
summaries influences the usage of an extractive rather than an abstractive model.

According to [98], in the case of extractive summaries, this metric presents a
low correlation with human judgments, slightly higher in cases for larger n, when
managing speech transcripts. as the authors state, this low correlation, is probably
caused by:

• Disfluencies in the dialogue summaries;

• The speaker information;

• Different stopword lists used in the metrics.

According to the authors, once these issues are fixed, or at least mitigated, even
though the correlation between ROUGE and human judgment is still low, it can
be considered acceptable.

BERTScore

To limit the underestimation of semantically correct pairs of candidate and reference
texts, other researchers propose BERTScore [99], a task agnostic evaluation metric
based on contextual embedding.

The score is computed as follows:

• First BERT model generates the contextual embeddings of both reference and
candidate summaries, represented by a sequence of vectors <x1, ...,xk> and
<x̂1, ..., x̂l>;

• Then the similarity measure is computed among each token: in particular,
the authors chose the pre-normalized cosine similarity xTi x̂j to limit the
computation to the inner product;
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• Starting from the similarity measure, the score is computed as follows: the
recall is given by the number of tokens in x that match with tokens in x̂ (more
precisely, for each token in x the recall looks for the maximum match with
all the tokens in x̂). Concerning the precision, the correspondence of each
token in x̂ to a token in x is considered; the complete score is a f1-measure,
the harmonic mean between precision and recall;

RBERT = 1
|x|

Ø
xi∈x

max
x̂j∈x̂

xTi x̂j (6.9)

PBERT = 1
|x̂|

Ø
x̂i∈x̂

max
xj∈x̂

xTi x̂j (6.10)

FBERT = 2 PBERT ·RBERT

PBERT +RBERT

(6.11)

• In order to incorporate the importance of each word with a weight, the authors
adjust the recall and the precision measures with the corresponding IDF scores
computed from the corpus;

• The score is re-scaled so that it lies between 0 and 1.
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6.3 Results on punctuation
This section contains an ablation study on the results obtained for the punctuation
restoration task. In particular, in section Punctuation models on EduSum video
lecture transcripts the EduSum dataset has been employed to evaluate the goodness
of the models on the MIT courses.

This section is followed by the paragraph Qualitative evaluation on Politecnico
video lecture transcripts in which only a qualitative evaluation has been carried out
on the Politecnico video lectures transcripts.

6.3.1 Punctuation models on EduSum video lecture tran-
scripts

Motivated by the results on IWSLT2011 reported in the Transformer and Punctuator
papers (displayed in Table 6.2), three attempts have been carried out in order to
restore the punctuation of video lecture transcripts.

Results on IWSLT2011
Punctuator Transformer

Comma
Precision 60.0 64.1
Recall 45.1 68.8
F1-score 51.5 66.3

Period
Precision 69.7 81.0
Recall 69.2 83.7
F1-score 69.4 82.3

Question mark
Precision 61.5 55.3
Recall 45.7 74.3
F1-score 52.5 63.4

Table 6.2: The table above summarizes the results on the test set reported in the
Transformer and Punctuator papers.

FastPunct leads to reach better results with respect to the Punctuator only as
highlighted in Figure 6.1, but remarkable improvements can be noticed with the
Transformer architecture of Alam et Al. described in section Transformer based
models.

The complete table of results is reported in Appendix A.1, Table A.1 and Table
A.2. The barplot in 6.1 highlights a good property of transformer model: regardless
of the nature of the course, the architecture is capable of returning good results
overall. This robustness takes on a particular relevance in the case of Politecnico
video lecture, which may contain formulae and specific terms unknown a priori by
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the model.

Figure 6.1: Summary of results (Precision, Recall and F1-score), with the different
models over the courses.

Given these results, it is possible to consider the output of the transformer
and proceed with the summarization task. An example of texts processed by the
Punctuator architecture:

So Matt was putting a question on the table for us. So. why don’t you
go and lay that out And we’ll get to the next [AUDIENCE]: This idea of
how you distribute your talents across R&D sectors, The economic model
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that stands now is treat technology as a box and say, this Put, this much
capital into technology and you’ll get this kind of growth where it doesn’t
consider how you distribute your capital within that. [PROFESSOR]: I’ll,
just give you an example because you’re, right in identifying the problem,
About, seven or eight years ago, there were a whole series of major studies
of climate. and how are we going to develop the necessary energy and
related technologies that were going to be needed to tackle the problem?
And? interestingly, all of those studies got to this moment where they
were going to talk about the technologies And. they all basically read the
same way. They all said, yes, we’re going to need a lot of technologies.
And then we’ll spend a lot of money on them We’ll spend a lot of money
doing research and development was their conclusion

The same text, with FastPunct predictions:

So Matt was putting a question on the table for us, so why don’t you
go and lay that out and we’ll get to the next [AUDIENCE]: this idea
of how you distribute your talents across R&D sectors? The economic
model that stands now is treat technology as [INAUDIBLE] a box and
say this put this much capital into technology and you’ll get this kind of
growth. Where it doesn’t consider how you distribute your capital within
that [PROFESSOR]: I’ll just give you an example because you’re right
in identifying the problem about seven or eight years ago. There were a
whole series of major studies of climate and how are we going to develop
the necessary energy and related technologies that were going to be needed
to tackle the problem and interestingly. All of those studies got to this
moment where they were going to talk about the technologies and they all
basically read the same way they all said. Yes, we’re going to need a lot
of technologies, and then we’ll spend a lot of money on them. We’ll spend
a lot of money doing research and development was their conclusion.

The corresponding output of RoBERTa-based model is:

So Matt was putting a question on the table for us. So why don’t you
go and lay that out, And we’ll get to the next [AUDIENCE]: This idea
of how you distribute your talents across R&D sectors, The economic
model that stands now is treat technology as [INAUDIBLE] a box and say
this, Put this much capital into technology, and you’ll get this kind of
growth where it doesn’t consider how you distribute your capital within
that. [PROFESSOR]: I’ll just give you an example, because you’re right
in identifying the problem. About seven or eight years ago, there were a
whole series of major studies of climate and how are we going to develop
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the necessary energy and related technologies that were going to be needed
to tackle the problem. And interestingly, all of those studies got to this
moment where they were going to talk about the technologies, And they all
basically read the same way. They all said, yes, we’re going to need a lot
of technologies, And then we’ll spend a lot of money on them. We’ll spend
a lot of money doing research and development, was their conclusion.

6.3.2 Qualitative evaluation on Politecnico video lecture
transcripts

The video lectures transcripts are relative to the Electronics Fundamentals and
Applications course, and present some aspects that differ from the model’s training
dataset (IWSLT2011):

• specific terminology of the course;

• formulae and errors in the transcription of video lectures.

For a qualitative evaluation, see the chart in Figure 6.2: the first plot displays
the percentage of commas, dots and question marks in the video lectures transcripts
compared to those in the test set used in the papers [48, 24] (Figure 6.2, column
IWSLT2011 - ASR). The second bar chart shows the mean number of words between
two dots. From the former plot, it is possible to deduce that the Punctuator has a
bias toward commas and the resulting sentences end up being longer than expected.
This result is highlighted by the latter chart, where the bar associated with the
IWSLT2011 - ASR is not even visible.

On average, the punctuated video lectures exhibit less than 5% of full stops,
while more than 90% of symbols contained are commas. Higher results can are
obtained with the FastPunct library.

As shown in Figure 6.3, the resulting percentage of commas and dots in the
video lecture transcripts are in line with the ones in the test set, and the sentences
generated are considerably shorter. From a readability standpoint, the Transformer
punctuated texts are much more pleasant to read than the ones produced by the
previous models. Some errors occur in the vicinity of formulae or variables: this
is acceptable given the different nature of training set and video lecture texts. It
is important to point out that the training dataset presents noticeable differences
with respect to the video lectures, and the Transformer architecture turns out to be
more robust than other models. Two extracts are reported below. Text punctuated
by the Punctuator model:

okay, last part for the operational amplifier stages analysis is very simple
is a very simple step from the previous analysis so is the design of active
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filters active first order filters using the standard topologies that we already
analyzed with the standard operational amplifier stages so essentially we
wanted to design frequency response shapes using operation, amplifier and
passive components connected to the operational amplifier as we already
analyzed in the previous lessons last week, we can use also capacitors
connected to the operational amplifier, obviously and starting from the
differential stage and the different shade or stage in the integration stage
we can easily move into the filter topology used to implement essentially
one of these four classic theoretical shapes the first one is the the low pass
filter shape this is the obviously the theoretical shape where we have the
pass band region with a flat response

Same text processed by the Transformer architecture:

okay, last part for the operational amplifier, stages analysis is very simple.
is a very simple step from the previous analysis. so is the design of
active filters, active first order filters, using the standard topologies that
we already analyzed with the standard operational amplifier stages. so
essentially, we wanted to design frequency response shapes using operation
amplifier and passive components connected to the operational amplifier,
as we already analyzed in the previous lessons last week, we can use
also capacitors connected to the operational amplifier, obviously. and
starting from the differential stage and the different shade or stage, in
the integration stage, we can easily move into the filter topology used to
implement essentially one of these four classic theoretical shapes. the first
one is the the low pass filter shape. this is the, obviously the theoretical
shape, where we have the pass band region with a flat response.
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Figure 6.2: Distribution of punctuation marks obtained with the Punctuator
(Bidirectional RNN presented in [48])
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Figure 6.3: Distribution of punctuation marks obtained with the Transformer
architecture (presented in [24])
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6.4 Results on summarization
This section is devoted to analyzing the different components of each model in the
two results overview sections.

The two architectures proposed are firstly evaluated in the meeting domain in
the sections Evaluation on the meeting dataset, Preliminary evaluation of extractive
summaries on meetings and Evaluation of abstractive summaries on meetings.

The first assumption questioned is the usefulness of the punctuation restoration
task. To verify such assumption, the thesis dedicates two paragraphs Evaluation
on EduSum dataset: the impact of the punctuation and Evaluation of abstractive
summaries on EduSumm: the impact of the punctuation for HMNet model and the
Extractive-Abstractive approach respectively. These sections evaluate the impact
of punctuation symbols on the summaries generated by the different models.

The second assumption to verify is the benefit of the meeting-to-video lecture
transfer learning: the analysis calls into question the generalization capability of
fine-tuned model on meetings datasets with respect to the one only pretrained for
general text summarization. This analysis is presented in Evaluation on EduSum
dataset: on the usage of the meeting set up and the impact of the subject for HMNet
architecture and in sections Evaluation of abstractive summaries on EduSum: the
impact of the subjects and On the usage of the meeting setting for the proposed
Extractive-Abstractive approach.

The last section Comparison of the two models makes a comparison between
the two architecture presented.

6.4.1 HMNet: results overview
Evaluation on the meeting dataset

This paragraph evaluates HMNet with the modifications previously described. The
results of the proposed modifications on HMNet are highlighted in Table 6.3. With
the replacements of the speaker information with the topics, the drop in ROUGE-n
metrics is consistent, but the results are still higher than the one discussed in the
following section, with the Extractive-Abstractive model. Also, it is reasonable to
consider that part of this drop may be also due to the reduced size of the output
summaries. The hierarchical architecture is probably the strength of the model,
since it can manage an entire meeting at a time without reduction of transcripts
length.

Taking the same golden summary showed in Section Extractive-Abstractive
BART-based model for the AMI dataset:

The Marketing Expert made a presentation on trend watching, including
trends in user requirements and trends in fashion. The Industrial Designer
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Original version of HMNet
ROUGE-1 ROUGE-2 ROUGE-L

AMI 0.530 (0.495) 0.186 (0.170) 0.493 (0.489)
ICSI 0.463 (0.490) 0.106 (0.113) 0.474 (0.480)

Speaker-aware HMNet
ROUGE-1 ROUGE-2 ROUGE-L

AMI 0.462 (0.435) 0.155 (0.130) 0.428 (0.406)
ICSI 0.320 (0.317) 0.060 (0.064) 0.283 (0.285)

Results without finetuning
Test set (Validation set)

ROUGE-1 ROUGE-2 ROUGE-L
AMI 0.363 (0.345) 0.06 (0.07) 0.344 (0.350)
ICSI 0.289 (0.281) 0.044 (0.051) 0.277 (0.259)

Table 6.3: The table above summarizes the results on the test and development
set (results of the development test within brackets) obtained on the AMI and
the ICSI datasets with the original and modified version of HMNet (abstractive
summaries). The so-called speaker-aware version uses the information of concepts
rather than roles and limits the output summary to 200 tokens. The table reports
also the results on the test and validation set (results of the development test within
brackets) for the summarization task with HMNet pretrained on the CNN-Daily
mail dataset, and on the AMI and the ICSI datasets. Comparing this table with
the one highlighted in the HMNet paper it is possible to notice that the fine-tuning
stage is necessary to improve meeting summaries.

presented all the components of the device and announced that several
of the features already discussed would not be available. He suggested
substituting a kinetic battery for the rechargeable batteries and using a
combination of rubber and plastic for the materials. The User Interface
Designer presented his main interface design, which included buttons for
the most frequently used features and a graphic user interface on the LCD
screen for other functions, to keep frequently used features easy to use.
He announced that speech recognition was still an option to consider,
depending on price. The Project Manager then began a discussion to
decide what was going into the final design. It was decided that a kinetic
battery would be used in place of a rechargeable battery, that the remote
will feature an LCD screen and rubber casing and rubber buttons, and
that interchangeable rubber covers in fruit colors will be available. Speech
recognition may be included if it is not too costly.

with the speaker-aware version of HMNet output this summary:
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The marketing expert discussed the results of a user interface design
study on consumer preferences and the availability of materials. The team
then discussed the options for batteries and components and decided what
materials to use in their product. The industrial designer discussed the
interior workings of a remote and the team discussed various options for
the casing and the components they would have to incorporate into the
design. The group discussed not being able to use a kinetic battery because
of their durability. The remote will be made of plastic. The case will be
shaped like a voice recognition. The transient battery. Having a flip and
volume on the channel will be active. The difference between keeping the
remote simple, cool, ergonomic shape, and a fruit-inspired shape.

For the ICSI dataset, instead, given this golden summary:

The Berkeley Meeting Recorder group discussed efforts to train and test
the Aurora group’s HTK-based recognition system on ICSI’s digits cor-
pus. Members also discussed efforts to produce forced alignments from
a selection of Meeting Recorder data. Performance in both tasks was
adversely affected by the manner of recording conditions implemented
and difficulties attributing utterances to the appropriate speakers. While
debugging efforts resulted in improved forced alignments, dealing with
mixed channel speech and speaker overlap remains a key objective for
future work. The group is additionally focused on a continued ability
to feed different features into the recognizer and then train the system
accordingly.

The prediction of Microsoft researcher model is:

The berkeley meeting recorder group discussed the results of a set of
digits data. The system was based on HKT, which the participants in the
Aurora task were so similar they could be trained on. The results were
finalized. However, the group leader would like to use the same data to
elicit interaction and echo. There are worries regarding the ability of
the group to test digits data across the set of the digits. The group also
talked about the overlap diagnosis of the feature. A number of progress
reports from the group for the transformations of the data collection were
made in the past. This includes some discussion of the venerable data,
including the authentication. The feature layer of the system, in turn, is
a relatively small task and a small number of words.

The architecture fine-tuning is crucial for the performance on meeting dataset.
An experiment is conducted in order to determine the benefits of the fine-tuning
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stage on the architecture by generating meeting summaries with the pretrained
model only. Results are displayed in Table 6.3, which shows that improvements of
fine-tuning are consistent.

Evaluation on EduSum dataset: the impact of the punctuation

This paragraph is dedicated to understanding the impact of the punctuation
restoration task on the summarization model, in this case HMNet architecture.

With EduSum dataset, the three setups compared are the following:

• The original configuration: the original text, with the correct punctuation are
used as input text;

• The automatic setup: in which the transcription are filled with punctuation
marks with the best model found in Section Punctuation models on EduSum
video lecture transcripts and then summarized;

• The no punctuation configuration: in this case the input transcriptions com-
pletely lack punctuation.

The goal of this analysis is firstly to understand if the punctuation restoration is
required as a preprocessing step for summarization; secondly, it also aims to verify
the impact of such step.

Figure 6.4 and 6.5 show that again, from both ROUGE scores and BERTScore,
it is possible to infer that the model is sufficiently robust even without punctuation.
In this case, by inspecting the output summaries, it is possible to state that the
lack of punctuation does not affect the summarization performance. In fact, the
output summaries do not exhibit any newly introduced grammatical and syntactical
mistakes. Consequently, it is likely that the errors introduced by the punctuation
restoration task do not compromise the summarization task.

A complete report of the results is inserted in the appendix in A.3.
One issue that affects more or less all the summaries generated with HMNet

model is that the last sentence is incomplete: the reason is that the model was
trained to generate summaries of at least 400 characters for AMI and 420 for ICSI,
while in this case this number is halved. Therefore, the model output reaches the
maximum size without concluding the sentence it is currently producing.

An extract obtained with Original configuration:

The focus of the cornish show was on a 30-year decline in the of the con-
tinental era. The focus was on the dispossession of the western mythology
industry. In the current issue, there are several forms of intolerance in
the american over the past 25 years. The fact that there are historical
and cultural explanations as well as an emotive issue. The bear disrepair
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Figure 6.4: ROUGE scores obtained with Microsoft model finetuned on AMI
(top) and ICSI (bottom) with EduSum dataset.
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Figure 6.5: BERTScore results obtained with Microsoft model finetuned on AMI
(top) and ICSI (bottom) with EduSum dataset.

in the u. Is an focus of what looks like the western values are seen as
a problem for the westerns. It is unclear why the western genre is an
issue , such as the western genre. The possibility of imposing a pauls
as a native american cinema has been met with mixed reviews. There
are historical events that will be carried out in the next meeting. The
interpretations of the focus on the decaine of the hollywood system, and
the corresponding of rhino violence, were also reflected in the use of
subversive markers in the western american film. The film version of the
superman in western parameters is open for genre, but it is not yet clear
whether such parameters can be added to the notion that the movies and
cinema are unsuitable in the future. In order to adapt into the and to the
end, it was considered a seminal experiment that defines the 1863 for the
western parameters of the

The same input processed with the No punctuation setting:

The southerly of the western history complex was seen as a watershed
moment in the western image industry. The fact that it is open spaces
are seen as heretical, but the focus of the ongoing debate over western
values and values of multiculturalism was on the mythological word. In
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the end, it was considered a focus on the dispossession of western image
of the former mythology industry. There were several examples of such
examples to be considered by western values like and : the cornish scene
can see reflected in the and the dwells of the 1967 spell of focus. The
holden article on the role of western movies in the current set of the
joker , another adaptation of the classic western american cinema. The
upcoming release will be presented to the group. After the end of the cold
war , the group decided to adapt the notion of a western mythology show
the western freedoms that such parameters are in decline. The prospect of
descending on a scale like the huntsman article could be weighed against
it. There was a corresponding correlation of view of the parameters that
the action white supremacy in the time industry is expected to be from
this stage. The possibility of incorporating the western genre into the
western portrayal of the film industry was broader in terms of focus of
research. The focus was on

Here is reported the corresponding output in the case of Automatic set up:

the upcoming film the wild west will be the focus of the western trend.
The remote will be black. The film will be made of obsolete. The western
genre is relatively simple : in western movies, in some sense, in relating to
exorcism, materialism, and dispossession. Argues that western mythology
may be used to convey the resentment of white countrymen, but also
temperamental. He says the use of a focus on furthering the tyranny is an
unlikely indicator; instead the western must be seen in some manner like a
betrayal. He suggests that western, in particular, are muting itself and next
door to reach the whole society. The project manager closes the meeting
by telling each group member what his next task will be. The the industrial
designer will work on the look and feel of the subject. The tribune will
present the next play the western mythology. The western and western
focus will be on the color. The biblical issue of western-style manners
are subject to international media attention. The misrepresentation of a
western mythology is a temptation to quantify, and enshrines the role of
foreign policy as a mediator. Foreign policy may be restricting filming,
but the possibility of using the word superhighway.

To conclude, the model is robust regardless of the presence of punctuation marks,
and there no evidence of the importance of the punctuation restoration task in this
case.
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Evaluation on EduSum dataset: on the usage of the meeting set up and
the impact of the subject

This section is devoted to evaluate the choice of fine-tuning on a meeting dataset
and the difference in performance with respect to the course subjects.

It is expected that the meeting fine-tuning wuold be beneficial in the educational
context, but unfortunately, in this case this assumption is not valid.

Firstly, it is important to point out that with HMNet the presence of sentences
like “The project manager presents [...]” in the output summaries denotes the
strong impact that the fine-tuning stage has on the entire architecture. In fact, it
is possible to verify that there aren’t any marketing experts or project managers
involved in EduSum dataset, and this behavior is attributable to the training
procedure on the AMI and the ICSI, where their presence is known. As far as
the subjects are concerned, the course that benefits from the AMI and the ICSI
finetuning the most is the economics/innovation course (STS-081). In this case,
the model performances are consistently higher than the one obtained on other
courses.

The cause of that may be the finetuning stage: the AMI and the ICSI datasets
report the summarization of meeting in economics jargon. Probably, the vocabulary
present in the STS-081 course shares some terms with the meetings datasets. The
model, being strongly influenced by this fine-tuning, is capable of generating better
results. Figure 6.6 illustrates how the results of HMNet in the case of STS-081
increase when the model is finetuned with the two meeting dataset.

To conclude, the benefits from this architecture are counterbalanced by the
increased size in the output summaries, and the implementation of BART with
extractive can still be considered a valuable option for this task. Noticeable
improvements with STS-081 can be seen in all of the metrics considered, in both
the AMI and the ICSI finetuning cases.
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Figure 6.6: Results comparison obtained with EduSum with HMNet finetuned
on AMI, on ICSI and not finetuned
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6.4.2 Extractive-Abstractive: results overview
Preliminary evaluation of extractive summaries on meetings

In order to estimate the goodness of the extractive algorithms chosen before BART
architecture, the resulting extractive summaries are evaluated and compared with
the ones provided by the AMI dataset. Unfortunately, similar evaluations on ICSI
dataset were not possible, as in this case the gold summaries were not available.

Results are displayed in Table 6.4: LSA tends to favor ROUGE-1 score, while
Truncation and TextRank exceed the former in the case of larger n. A possible
explanation of this phenomenon can be derived from the following claim by the
authors of [65]: “graph-based ranking algorithm is a way of deciding on the
importance of a vertex within a graph, by taking into account global information
recursively computed from the entire graph”. The selected sentences are the most
recommended by all of the sentences in the entire meeting, meaning that they are
the most similar in terms of cosine similarity. TextRank sentences turn out to be
shorter: since the overall text has a fixed total length, the sentence contained are
more numerous.

In fact, it is possible to notice that the sentences extracted with TextRank
contain on average 10 words, while LSA selects sentences of 28 words on average.
The more sentences are included, the more it is likely to get a sentence included in
the summary.

Extractive summarization results on AMI dataset
Test set (Validation set)

ROUGE-1 ROUGE-2 ROUGE-L
LSA 0.706 (0.738) 0.497 (0.563) 0.237 (0.259)
TextRank 0.663 (0.683) 0.440 (0.486) 0.380 (0.433)
BERT 0.67 (0.6965) 0.4507 (0.4953) 0.2261 (0.2441)
Random 0.635 (0.660) 0.376 (0.407) 0.221 (0.229)
Truncation 0.674 (0.674) 0.471 (0.471) 0.327 (0.327)
Mix 0.527 (0.570) 0.5027 (0.547) 0.5165 (0.563)

Table 6.4: The table shows the results on the test set and on the validation set
(between brackets) for the extractive summarization task with different techniques
placed upstream BART. In this case, the ground truth compared is the extractive,
present in the AMI dataset.

Evaluation of abstractive summaries on meetings

The goal of this section is to measure the capability of Extractive-Abstractive
architecture in adapting its structure for meetings, where the literature provides
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the two well-known dataset previously described.
The assumption is that, if the entire structure is capable of generating good

results in the case of meetings, it would probably be able to achieve interesting
results for video lecture transcripts as well, even without further training (also
considering the limited number of examples of video lecture summaries).

Results on the meeting dataset with the approach previously described are shown
in Table 6.5: the improvement given by the finetuning reaches a +0.07. Thus, from
this table it is possible to state that Extractive-Abstractive model outputs similar
results regardless of the upstream extractive summarization techniques: comparing
the results obtained with the extractive methods with respect to the Precomputed
ones (the extractive summaries provided by the dataset - only available for the AMI
dataset), it is possible to notice that the results are similar, slightly better in the case
of LSA or TextRank. Moreover, further improvements can be obtained improving
on the abstractive model rather than exploiting better extractive summarization
techniques. In the ICSI results, the entry Precomputed is missing as the extractive
summaries were not included in the dataset. For both datasets, LSA and TextRank
methods seem to be the most effective preprocessing step, allowing the model to
reach higher performances.

An example of summary, coming from AMI dataset is the following obtained
with TextRank preprocessing:

The operating system of the remote control was designed to be easy
to use, but the controls were made of rubber buttons that they decided
to use in the form of a screen or a touch display. The key part of the
design was to limit the size of the devices and to increase the amount
of space needed for the necessary functions. The major issue with the
ALCA function was to eliminate the need for the large number of the
power-related functions in the remote control.

Instead, the example below, is generated with LSA preprocessing:

The remote controls are designed to be in a standby mode. They need to
be made available in the original and similar design, but they would have
to be kept separate from the rest of the products in the market. The key
part was to use the the following material for the purpose of keeping the
the control functions consistent with the AEC central pattern. They were
concerned about the the need to use voice recognition at the base of the
device.

The corresponding gold summary is:

The Marketing Expert made a presentation on trend watching, including
trends in user requirements and trends in fashion. The Industrial Designer
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Best results on AMI dataset
Test set (Validation set)

ROUGE-1 ROUGE-2 ROUGE-L
LSA 0.362 (0.374) 0.075 (0.070) 0.221 (0.214)
TextRank 0.364 (0.378) 0.075 (0.0855) 0.210 (0.221)
BERT 0.3676 (0.36) 0.074 (0.075) 0.20 (0.21)
Random 0.337 (0.322) 0.053 (0.067) 0.185 (0.177)
Truncation 0.362 (0.373) 0.076 (0.082) 0.222 (0.210)
Mix 0.317 (0.335) 0.066 (0.070) 0.195 (0.206)
Precomputed 0.361 (0.358) 0.087 (0.086) 0.213 (0.201)

Best results on ICSI dataset
Test set (Validation set)

ROUGE-1 ROUGE-2 ROUGE-L
LSA 0.251 (0.245) 0.041 (0.059) 0.164 (0.156)
TextRank 0.263 (0.268) 0.032 (0.04) 0.145 (0.157)
BERT 0.2 (0.24) 0.04 (0.03) 0.134 (0.14)
Random 0.259 (0.250) 0.025 (0.030) 0.130 (0.138)
Truncation 0.240 (0.248) 0.016 (0.029) 0.123 (0.131)
Mix 0.255 (0.264) 0.034 (0.038) 0.015 (0.162)

Results on AMI without finetuning
Test set (Validation set)

ROUGE-1 ROUGE-2 ROUGE-L
LSA 0.290 (0.311) 0.061 (0.06) 0.154 (0.174)
TextRank 0.291 (0.316) 0.052 (0.063) 0.158 (0.160)
BERT 0.29 (0.30) 0.054 (0.061) 0.15 (0.167)

Results on ICSI without finetuning
LSA 0.251 (0.248) 0.026 (0.032) 0.141 (0.140)
TextRank 0.261 (0.250) 0.013 (0.033) 0.142 (0.141)
BERT 0.221 (0.211) 0.030 (0.028) 0.131 (0.123)

Table 6.5: The table summarizes the results on the test and validation set (between
brackets) for the summarization task with different extractive techniques placed
upstream BART on AMI and ICSI dataset. In the first case, LSA and TextRank
are capable of reaching the results obtained when the extractive summary is the
best possible (the Precomputed case). With ICSI scores are lower than the AMI
dataset, and the differences among the pre-processing phase are less evident. Also
the table reports the results on the test and validation set (between brackets)
for the meeting summarization task with different extractive techniques placed
upstream BART on AMI and ICSI dataset with BART model not finetuned on
any dataset. Comparing these results it is possible to notice that finetuning is
necessary for improving meeting summaries.
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presented all the components of the device and announced that several
of the features already discussed would not be available. He suggested
substituting a kinetic battery for the rechargeable batteries and using a
combination of rubber and plastic for the materials. The User Interface
Designer presented his main interface design, which included buttons for
the most frequently used features and a graphic user interface on the LCD
screen for other functions, to keep frequently used features easy to use.
He announced that speech recognition was still an option to consider,
depending on price. The Project Manager then began a discussion to
decide what was going into the final design. It was decided that a kinetic
battery would be used in place of a rechargeable battery, that the remote
will feature an LCD screen and rubber casing and rubber buttons, and
that interchangeable rubber covers in fruit colors will be available. Speech
recognition may be included if it is not too costly.

Another example coming from the ICSI dataset, where the gold summary is
represented by:

The Berkeley Meeting Recorder group discussed efforts to train and test
the Aurora group’s HTK-based recognition system on ICSI’s digits cor-
pus. Members also discussed efforts to produce forced alignments from
a selection of Meeting Recorder data. Performance in both tasks was
adversely affected by the manner of recording conditions implemented
and difficulties attributing utterances to the appropriate speakers. While
debugging efforts resulted in improved forced alignments, dealing with
mixed channel speech and speaker overlap remains a key objective for
future work. The group is additionally focused on a continued ability
to feed different features into the recognizer and then train the system
accordingly.

And the BART summary with TextRank prepocessing step:

There was a messy alignment process where the group had to make up a
separate set of numbers for the test set. However, they were unable to
perform the task because there was a large amount of data and training
in the SRI system. They needed to equip the trainee with a pair of arm -
mounted telephones or a head-mounted cell phone or a combination of
them. The challenge was to try out the program at the front-end meeting
on Saturday night.They agreed to do the task based on HTK, which was
based on HTK, that was used by all the participants in Aurora.

While the BART output preceded by the LSA extraction:
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The group agreed that they need to be able to improve on the forced align-
ments based on HTK extensions in order to increase the performance.The
group decided to test out the demands of the crowd by using a telephone
bandwidth front-end extension to the base-end extension to address the
needs of the group. They agreed to try to gain more control over the forced
aligned alignments compared to the rest of the groups at present. They
agreed to help resolve the issues related to the obstruction issues associated
with the forced alignments when they were brought up to limit the number
of interruptions in the area where the obstructions were present.

Note that the summary generated is much shorter than the gold summary: the
minimum and the maximum length of the output summary are set to 100 and 200
respectively, as in the educational dataset the expected results range between these
two bounds.

Evaluation of abstractive summaries on EduSumm: the impact of the
punctuation

This section presents an analysis conducted to determine the impact of the punctu-
ation restoration task on the summary task with EduSumm dataset. To do so only
the courses whose transcriptions with the correct punctuation were available are
employed.

The goal of this analysis is to verify if a punctuation restoration is worthwhile
for the summarization purpose and if this step is significant for the summarization
model performances.

Authors in [100] found that, for a multi-class classification task, transformer-
based language models are robust to changes in punctuation. The analysis con-
ducted will demonstrate that, in this case, such statement could be questionable.

For this analysis, three configurations are compared:

• The results obtained with the original transcriptions, with the correct punctu-
ation, later called original.

• The outputs obtained with the transcriptions, whose punctuation is automati-
cally restored; these transcriptions only contains full stops, question marks and
commas. In this case it is possible to measure the gravity of errors introduced
with the first phase. This configuration will be under the name of automatic.

• The results obtained with the transcription whose punctuation marks have
been completely removed: in this case it is possible to understand if a language
models is robust enough and correctly introduces punctuation in the summary
generated even though the input texts are unpunctuated. This will be referred
as no punctuation.
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The models used are the best ones found in the previous section: the Extractive-
Abstractive which employs LSA and TextRank algorithms as extractive algo-
rithm. Results in terms of ROUGE-score are reported in Figure 6.7 and 6.8. The
BERTScore results are displayed in Figure 6.9.

At first glance, excluding some cases, it would seem that the punctuation
restoration task is of little value.

However, when the processed texts do not contain punctuation marks, the
resulted summaries are more prolix than the one obtained with the original text,
and present some errors that affect the punctuation. In these cases, the output
sentence is too long and therefore is cut as soon as the model reaches the maximum
length, and the final outcome does not contain any punctuation marks.

In fact, on average, the length of summaries that are generated from unpunctu-
ated text is about 120 ± 33 words, while do not exceed 104 ± 20 words for the
summaries coming from the original text or the ones that are generated from text
punctuated automatically. A complete report of the results is inserted in Appendix
A.2.

An example of output is reported below, obtained with the correct punctuation:

The Western mythologies operating in the United States today functioned
as central functions of the Western culture. Therefore, they need to
reframe the notion that the Western myths originated in the Western
cultures and were associated with the Central Powers of the Culture.They
need to resolve the internal divisions in the cultural organization over the
issue of guns and gun control. They need to settle the internal disputes
over the issues related to the Western Mythologies based on the root causes
of the political unrest in the West.

This is the counterpart obtained from the non-punctuated text in input:

The Western originated at the end of a period in which the Western was
established as a branch of the Western Empire. In fact, the Western form
was born at the beginning of a series of events in the Western History
titled "The Significance of the Frontier in American History". In the
present context the Western forms are associated with the Western based
on the claims of the wild West respectively. In the present course the
Western form is related to the demands of the Wild West Form intertwined
with the claim of the Northern Territory and under the influence of the
Central Powers of the U.S.A.widely split into separate groups due to the
confining the lives of women in the western mass differently separated
from the rest of the society through the extension of the Christian Culture
attached to the Western-based organization functioned in the molding of
the
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Figure 6.7: Results obtained on EduSum dataset, with LSA before BART model
finetuned on the AMI (top) and the ICSI (bottom) datasets.
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Figure 6.8: Results obtained on EduSum dataset, with TextRank before BART
model finetuned on the AMI (top) and the ICSI (bottom) datasets.
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Figure 6.9: BERTScore Results obtained on EduSum dataset with LSA or
TextRank before BART model finetuned on the AMI and the ICSI datasets.
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While the summary generated from the text punctuated by the Transformer is:

The American Civil War fought against the United States over the issue
of guns and gun control in the Western milieu. There was a division
between the cultures associated with the Western myths and the traditions
associated with them at the time of the advent of the Western films.In
fact, there were separate groups related to either the Western or the
Christian customs associated with ’The Western’ based on the ancient
Greek Mythologies associated with Western culture.

The reason of this degradation is twofold. The lack of punctuation firstly affects
the extractive component of the pipeline: the full stops determine the sentence
boundaries with which the extractive algorithm breaks the large corpus, and for
each sentence, the extractive algorithm computes a score. With the removal of the
punctuation and division of the text in sequence of N = 30 tokens, there is a small
drop in performance in the extractive summaries generation process. The following
results are the outcome of an experiment conducted with AMI dataset, whose
extractive summaries were provided. Figure 6.10 compares the results obtained
with the two best extractive algorithms (LSA and Textrank) in the case when the
text is provided with the correct punctuation (Original configuration), when the
text lacks punctuation (No punctuation configuration) and when the punctuation
is restored with the transformer architecture (Transformer setup).

From these plots, it is possible to notice that the quality of the extractive
summaries degrades in the proximity of texts without punctuation. Such effects
probably propagate into the abstractive model. For the reasons explained in Section
Summary evaluation metrics, these errors cannot be captured with the ROUGE
score only, but require more careful examination.

In short, the punctuation restoration task is necessary, first of all to improve the
sentence extraction upstream BART model, and secondly to obtain more readable
outputs with the abstractive model.

Evaluation of abstractive summaries on EduSum: the impact of the
subjects

The courses analyzed in the Edusum dataset are of different nature, from humanistic
to scientific courses, with different vocabularies and characteristics. This paragraph
is devoted to evaluating the effects of the different class subjects in the generated
summaries.

According to Table 6.6, 6.7 and 6.8, which show the results according to the
class subject, the results obtained on Chemistry (5-111SC) course are not the
worste, despite such course being rich in formulae. Interestingly enough, the model
is capable of generating summaries that contain few of them. And inspecting the
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Figure 6.10: Extractive summaries results obtained with LSA (left) and TextRank
(right) with different punctuation setups.

extractive summaries that feed the abstractive model, it is possible to see that most
formulae are already filtered out at this stage. Most likely, for scientific subjects,
the extractive summarization applies a good filter for removing sentences with
formulae. In general, scientific subjects are more difficult to summarize, since they
have a more technical language that the models ignore during training. In fact,
the lowest results are obtained with 6-006 course, which deals with Algorithm and
Computer science, and 15-S12, the course focused on Blockchains.

In Section Punctuation models on EduSum video lecture transcripts, for punc-
tuation restoration task, a little drop in F1-score with the transformer model on
course STS-081 is seen. Table 6.6, 6.7 and 6.8 show that, on the contrary, this
course seems to be one of the easiest to summarize. Perhaps, all other courses with
the exception of STS-081 have a specific vocabulary different from the AMI and
the ICSI dataset, while the economics jargon of the Innovation course has some
overlaps with the two and therefore in this case the results are higher.
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Course Metrics Models
TextRank-BART LSA-BART
AMI ICSI AMI ICSI

21L-01

ROUGE-1
Precision 0.343 0.387 0.339 0.341
Recall 0.292 0.281 0.268 0.221
F1-score 0.313 0.322 0.298 0.266

ROUGE-2
Precision 0.083 0.087 0.061 0.063
Recall 0.072 0.064 0.05 0.04
F1-score 0.076 0.073 0.054 0.049

ROUGE-L
Precision 0.231 0.227 0.226 0.2368
Recall 0.197 0.165 0.178 0.151
F1-score 0.211 0.189 0.198 0.183

BERTScore
Precision 0.846 0.842 0.836 0.83
Recall 0.837 0.842 0.833 0.833
F1-score 0.841 0.842 0.834 0.831

STS-081

ROUGE-1
Precision 0.261 0.264 0.253 0.237
Recall 0.39 0.369 0.368 0.348
F1-score 0.303 0.292 0.288 0.269

ROUGE-2
Precision 0.05 0.043 0.051 0.037
Recall 0.073 0.06 0.075 0.058
F1-score 0.057 0.048 0.058 0.043

ROUGE-L
Precision 0.153 0.151 0.153 0.147
Recall 0.229 0.215 0.227 0.216
F1-score 0.177 0.168 0.175 0.166

BERTScore
Precision 0.846 0.849 0.839 0.836
Recall 0.825 0.831 0.82 0.822
F1-score 0.835 0.84 0.829 0.829

5-111SC

ROUGE-1
Precision 0.311 0.374 0.292 0.34
Recall 0.217 0.249 0.196 0.196
F1-score 0.252 0.293 0.231 0.244

ROUGE-2
Precision 0.055 0.074 0.039 0.062
Recall 0.038 0.047 0.027 0.033
F1-score 0.044 0.056 0.031 0.042

ROUGE-L
Precision 0.213 0.216 0.204 0.223
Recall 0.147 0.144 0.136 0.126
F1-score 0.171 0.169 0.16 0.158

BERTScore
Precision 0.834 0.833 0.816 0.826
Recall 0.837 0.844 0.833 0.834
F1-score 0.835 0.839 0.824 0.83

Table 6.6: Results of summarization task obtained with different version of the
proposed model on the courses of the EduSum dataset, with models pretrained on
AMI and ICSI. 101
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Course Metrics Models
TextRank-BART LSA-BART
AMI ICSI AMI ICSI

7-91J

ROUGE-1
Precision 0.308 0.356 0.302 0.305
Recall 0.203 0.24 0.18 0.177
F1-score 0.242 0.283 0.222 0.22

ROUGE-2
Precision 0.043 0.057 0.039 0.03
Recall 0.028 0.039 0.023 0.018
F1-score 0.034 0.046 0.029 0.022

ROUGE-L
Precision 0.21 0.207 0.216 0.207
Recall 0.137 0.14 0.127 0.121
F1-score 0.164 0.165 0.157 0.15

BERTScore
Precision 0.832 0.839 0.824 0.824
Recall 0.839 0.848 0.833 0.834
F1-score 0.835 0.843 0.829 0.829

15-S12

ROUGE-1
Precision 0.345 0.361 0.3 0.29
Recall 0.188 0.201 0.154 0.154
F1-score 0.238 0.253 0.2 0.197

ROUGE-2
Precision 0.059 0.072 0.031 0.034
Recall 0.03 0.038 0.014 0.017
F1-score 0.039 0.049 0.019 0.022

ROUGE-L
Precision 0.236 0.226 0.208 0.211
Recall 0.127 0.125 0.105 0.108
F1-score 0.162 0.157 0.137 0.14

BERTScore
Precision 0.832 0.839 0.824 0.824
Recall 0.849 0.857 0.842 0.843
F1-score 0.845 0.85 0.839 0.836

6-006

ROUGE-1
Precision 0.325 0.396 0.302 0.321
Recall 0.168 0.198 0.143 0.133
F1-score 0.249 0.261 0.232 0.227

ROUGE-2
Precision 0.059 0.077 0.043 0.055
Recall 0.03 0.037 0.02 0.021
F1-score 0.039 0.05 0.027 0.031

ROUGE-L
Precision 0.211 0.24 0.21 0.224
Recall 0.109 0.119 0.099 0.093
F1-score 0.142 0.158 0.133 0.13

BERTScore
Precision 0.83 0.832 0.827 0.823
Recall 0.843 0.853 0.842 0.843
F1-score 0.836 0.843 0.834 0.833

Table 6.7: Results of summarization task obtained with different version of the
proposed model on the courses of the EduSum dataset, with models pretrained on
AMI and ICSI. 102
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Course Metrics Models
TextRank-BART LSA-BART
AMI ICSI AMI ICSI

6-S897

ROUGE-1
Precision 0.325 0.36 0.288 0.286
Recall 0.183 0.202 0.168 0.138
F1-score 0.232 0.254 0.209 0.183

ROUGE-2
Precision 0.036 0.054 0.028 0.026
Recall 0.02 0.034 0.017 0.013
F1-score 0.026 0.041 0.021 0.017

ROUGE-L
Precision 0.22 0.218 0.206 0.216
Recall 0.122 0.121 0.12 0.102
F1-score 0.155 0.152 0.15 0.136

BERTScore
Precision 0.839 0.833 0.834 0.823
Recall 0.839 0.843 0.836 0.835
F1-score 0.839 0.837 0.835 0.829

Table 6.8: Results of summarization task obtained with different version of the
proposed model on the courses of the EduSum dataset, with models pretrained on
AMI and ICSI.

On the usage of the meeting setting

This paragraph presents an examination of the importance of fine-tuning on the
AMI and the ICSI datasets. This analysis is conducted comparing between the
summaries generated with the Extractive-Abstractive approach fine-tuned on the
AMI/ICSI and the same model pretrained only on SAMSum dataset.

As previously stated, for the AMI dataset in particular, the fine-tuning allows
obtaining improvements of +0.07, + 0.02 and +0.06 on ROUGE-1, ROUGE-2 and
ROUGE-L respectively. It would be reasonable to observe similar improvements on
educational data. The bar plots in Figure 6.11 and 6.12 show minor improvements,
mostly regarding course STS-081 with AMI fine-tuning. For all other cases, the
fine-tuning seems to not improve the results. This result confirms what the authors
in [81] found: if the model pretraining is robust enough, the improvements with
further training are limited to a certain range of domains. Besides, the AMI and
ICSI datasets are relatively small and their impact on the training can be observed
only in the meeting domain.

A notable example is reported below: a summary for 21L-011 course, generated
without fine-tuning the model contains the concept of “consensus narrative”. No
other models were capable of doing that.

The Hollywood system is committed to genre reforms. The movies and
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the Western form embody this notion of a story form that tends to reach
the whole society or to speak for the whole people. The format of the
movies are often conflicted and divided, but it’s important to understand
the cultural work of the movie as a part of the larger process of the
history of the cinema. It’s also important to recognize the importance
of genre reforms and the power of the culture in which the movies play.
For example, the use of the term “consensus narrative” suggests that the
movies become a form of central storytelling in the society and the culture
engages in an ongoing conversation about issues such as guns and gun
control.

The output summary generated with LSA as extractive before BART.
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Figure 6.11: Comparison of results obtained with finetuning and without it over
the different classes of EduSum with the ROUGE metric. The last columns display
the overall results, regardless of the class. The models employed for this comparison
are LSA + BART (top) and TextRank + BART (bottom).
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Figure 6.12: Comparison of results obtained with finetuning and without it over
the different classes of EduSum dataset with BERTScore. The last columns display
the overall results, regardless of the class. The models employed for this comparison
are LSA + BART (top) and TextRank + BART (bottom).
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6.4.3 Comparison of the two models
This section comments on the benefits of the proposed method in a meeting-to-
video lecture domain adaptation setting. In most cases, the presented method
demonstrates a higher generalization capability and better adaptability to the
educational domain with respect to HMNet.

Both two models provide interesting results in the video lecture domain, but still
present some criticalities. From the results described in the previous paragraphs, it
is important to notice that the Extractive-Abstractive approach with BART model
tends to favor the precision-related measures at the expense of the recall-related
ones 2. Indeed, inspecting the output summaries, it is possible to observe that
the generated texts are capable of capturing some important elements of the gold
summaries and reproduce them in a very similar manner, but not enough to cover
all their topics. In general, the length of BART output summaries is in line with
the gold summaries size.

Nevertheless, it is necessary to consider the results obtained on AMI: comparing
the results obtained with Extractive-Abstractive on the validation and test set of
this dataset to those obtained on each course of EduSum dataset, there is a drop in
performance of at most 0.1, 0.03 and 0.07 for ROUGE-1, ROUGE-2 and ROUGE-L
respectively. The opposite happens for ICSI, where, most results obtained with the
educational data are in line, or even better, than those obtained on ICSI test and
validation sets.

With HMNet architecture such drop is much more pronounced: while the model
is capable of reaching a ROUGE-1 score 0.40 on AMI or ICSI, on average this
result is halved on EduSum, and this also happens for ROUGE-2 and ROUGE-L
scores.

With HMNet output summaries are longer than the ones previously generated
with BART architecture: on average they contain 230 words 3. For Microsoft model
results, the major contribution is given by the recall term of all ROUGE-n scores.
Most likely, this is due to the fact that the longer the summaries are, the higher is
the chance to obtain some words appearing in the references, which lets ROUGE-n
precision metrics decrease for the benefit of recall counterparts.

Furthermore, as extensively discussed in the previous section, HMNet summaries
denote a strong influence given by AMI and ICSI, remarked by the presence of
introductory sentences such as “The marketing manager presents [...]”; in the

2The ROUGE-recall is given by dividing of the number of overlaps over the length of the
reference summary, while the precision counterpart considers the length of the system summary
(model prediction) in the denominator.

3Both models allow to set a lower and an upper bound for output summary generation, and
HMNet summaries frequently reach the upper bound.
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educational domain sentences of this kind are meaningless. In this case the training
procedure influences HMNet to the point of generating results that have portions
of text in common with the fine-tuning datasets. These two phenomena remark
HMNet’s poor ability to adapt in domains different than the meetings. Most likely,
between the two models, BART is preferable: it is capable of generating higher
scores with shorter summaries, and thus it demonstrates a greater capability in
domain adaptation. As far as BART is concerned, it is possible to remark the
importance of the punctuation restoration task even if its benefits are not visible
with the ROUGE metrics: the punctuation restoration improves the extractive
summary creation upstream and allows to obtained summaries more fluid and
pleasant to read.

These results are highlighted in Figure 6.13: in most cases HMNet scores are
lower than those of Extractive-Abstractive model, both in term of ROUGE-score
and BERTScore. In appendix A.1 the tables summarize all the results reported in
the graphs.
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Figure 6.13: Results obtained with EduSum with HMNet finetuned on AMI and
on ICSI, evaluated with ROUGE-score (top) and BERTScore (bottom).
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6.5 Examples of Politecnico video lecture sum-
mary

This section reports some summaries generated with the proposed Extractive-
Abstractive model, with different configurations of finetuning and extractive meth-
ods.

The following summary is the introductory lecture summary generated from
AMI pretrained LSA+BART architecture, which seems to be more coherent with
the corresponding lecture:

The basic electrical circuits and components need to be considered in order
to gain general knowledge about electronics and circuits. In the first part
of the course, they are going to talk about voltage and current flows in the
opposite direction with respect to the flow of current in a circuit. They
will also talk about inductance and magnetic fields, ferromagnetic force,
alternating voltages and currents, impedance and transistors, susceptibles
and resistors, amplitudes and capacitors and diodes, field less transistors
and bipolar junction transistors later on in the course.

The couterpart obtained with ICSI pretraining seems to be less accurate:

The purpose of the project is to help the student in the organization of
the program. The cause of the the contract was to control the flow of the
current through the circuit, and to limit the number of active and passive
components present in the class.The contract was intended to be used to
teach the students about the the function of the a series of resistors and to
increase the volume of the power produced in the the circuit. However, the
contract forced the students to learn about the functions of the A series
of the "A series of Heaps".

Without any finetuning, the result is the following:

The method of calculating the voltage difference between two points inside
the circuit is based on the text, electronics, the system approach and the
structure of the book. It’s important to understand the theory of the curse.
They will introduce resistors during the course. In the course, they will
introduce capacitors and inductors which can be exploited for introducing
dc circuits. But in the course with resistors, there are a factor of two
from one to the other. The first part of the course is about the definition
of duty cycle.

The results obtained with Text-Rank+BART finetuned on AMI:

110



Experiments

There is a problem with the design of the symbol in the following code.
The major issues related to the design are the flow of current into and
out of a circuit and the function of the power supply in the surrounding
areas. The first part of the program is to talk about the properties of the
control channel and the functions of the force channel. The second part
is to show the different properties of these and to show them how they
can be used in a given area.

With TextRank+BART finetuned on ICSI:

The basic electrical circuits and components need to be considered in order
to learn about the basic principles of electrical circuits. They will talk
about various issues related to electrical circuits, including the flow of
current into a circuit and the movement of the current within the circuit.
They are going to discuss the major parts of the present course with
the rest of the students later on in the course.They will also talk about
inductances and transistors, capacitors and diodes, field less transistors
and bipolar junction transistors in general and in particular, circuits based
on operational amplifiers.

And with the pretrained version that model:

In electrical circuits and components, there are a lot of different kinds of
signals that can be used for different parts of the circuit. The first part
of the course is related to electrical circuits. It’s related to the concept
of voltage and current. Next, we will discuss in details about capacitors
and diodes, field less transistors, bipolar junction transistors and other
types of circuits. In the second part, we’re going to discuss in detail about
electric currents and voltages and currents.
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Chapter 7

Conclusions and final
remarks

The goal of this work was to present a possible solution for generating brief
descriptions of video lecture contents starting from their transcripts. This task
may include a preprocessing step consisting of a punctuation restoration operation,
as transcripts derive from an ASR system and might not be punctuated. In
addition, video lecture transcripts are the results of spoken language. Cited studies
highlighted the risks of using models trained on written text: such models may not
guarantee the same performance when applied to transcripts of spoken language.
Lastly, video lecture transcriptions are typically longer than news articles, while
state-of-the-art models put a constraint on the accepted input length to overcome
out-of-memory issues. Given the absence of a dataset for abstractive summarization
in this domain, this dissertation explored the possibility of adapting models from
meeting to video lecture domain.

In the first chapter, the thesis introduced the problem and discussed the possible
applications; in the second chapter this work reviewed some important concepts
in the fields of Natural Language Processing. In particular, it investigated the
differences between language modelling and sequence labelling and the architectures
that are well known in the literature. This distinction was helpful to discriminate
models adopted to address all the tasks involved in this work.

The thesis continued with a description of the datasets involved, both for punc-
tuation restoration (IWSLT) and for summarization (AMI and ICSI for abstractive
meeting summarization, Politecnico video lecture data). Moreover, it presented
a novel dataset, called EduSum, which consists of pairs of transcriptions and
abstractive summaries of MIT OpenCourseWare courses. Unlike Politecnico video
lecture transcripts, the selected MIT courses transcripts provide the correct punc-
tuation and this allows to assess the impact of punctuation restoration on the
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summarization models.
In the fourth chapter state-of-the-art deep learning models in the punctuation

restoration task were described. Specifically, a solution for this problem was a
RoBERTa-based model that demonstrated good generalization capability even in
the video lecture domain. The thesis continued with a description of the state-of-
the art models in summarization, analyzing both the extractive and abstractive
methods. It gave particular attention to HMNet, a hierarchical structure proposed
by Microsoft research group which at the present moment represents the best
performing model in meeting summarization. Then, the dissertation examined the
concept of Transfer Learning and Domain Adaptation.

Microsoft’s architecture, once adequately modified to accomplish this task, re-
vealed to be heavily influenced by the fine-tuning stage on the meetings datasets and
has exhibited poor domain adaptation capability. The drop in performance given
by the domain shift and the memory requirements of this architecture stimulated
the research of alternatives. Therefore, the thesis proposed a novel approach called
Extractive-Abstractive, which employs extractive and abstractive algorithms to
overcome the previously described limitation. The proposed architecture is formed
by an extractive algorithm, which picks the most relevant sentences. The selected
portions of text feed the BART model to produce the abstractive summary. The
first stage’s goal is to create an input text that respects the input size limitation
imposed by BART model to avoid memory issues. Only unsupervised extractive
algorithms are considered, as they do not need labels for training and do not present
any limitation in terms of input length. The second step composes the abstractive
summary of the desired length. To improve generalization capabilities and prevent
the representational collapse, the abstractive model has been trained with the R3F
regularizer.

In chapter six, the thesis discussed about the experiments conducted and the
results. In the Extractive-Abstractive approach, the punctuation restoration task
seemed to be particularly useful, especially for the generation of the extractive sum-
maries: the resulting summaries are more correct from a grammatical standpoint,
even if the improvements in terms of ROUGE scores are limited.

In most cases, the proposed method turned out to be more robust to the domain
shift and outperformed the hierarchical architecture in the case of video lecture
summarization. With this novel architecture, the advantages are also visible in terms
of resources: fine-tuning the entire Extractive-Abstractive architecture has required
one single GPU while HMNet needed four of them. The thesis also highlighted
improvements in terms of inference time: the time required for generating a new
summary is less in the case of the proposed architecture with respect to HMNet as
contains fewer attention layers, resulting in 30% fewer parameters. This reduces
the complexity and saves resources.
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7.1 Future works
The obtained results encourage further exploration of this field. Potential enhance-
ments could be obtained by working on both extractive and abstractive components.
It is important to point out that, the extractive summarization methods presented
are currently considered as baselines in the literature, and there exist variants that
improve their efficiency and results. Moreover, having a good margin in terms
of resources, further improvements can be obtained by increasing the size of the
model or using the cited alternative versions of BART, which propose variations on
the attention mechanism for reducing its complexity. This reasoning on complexity
and resources fosters two important remarks.

Firstly, the concept of democratizing artificial intelligence: limiting the size of
these large language models could be helpful these new technologies to be more
accessible and affordable and to increase their diffusion. The hardware or the
premium cloud-based solutions required for training huge deep learning models
are still expensive nowadays, and in some cases they are only accessible to large
company research centers. However, the possibility of having lighter and faster
models could diminish these entry barriers.

Secondly, another aspect to take into account is the energy consumption: in
general, it is true that the more parameters the model has, the more computations
and memory accesses are required and the higher the energy requirements are [101].
AI models consume a massive amount of energy, and these energy requirements are
still growing at a surprising rate. According to [102], on average, the computational
resources needed to produce a best-in-class AI model doubled every 3.4 months;
this is equivalent to a 300000x increase between 2012 and 2018. Authors in [103]
found that the carbon emission costs increase faster than the real improvements
gained with larger models and long training.

However, it is important to remark that deploying AI models in real-world
settings consumes even more energy than the training does. According to the CEO
of Amazon Web Services Andy Jassy [104], about 80% of the cost of a neural
network is in inference rather than training. All of these considerations encourage
the researchers to keep exploring NLP fields with a multi-objective criterion: on
one side, enhance the performance, and on the other, minimize the footprint and
the model’s negative impacts on the environment.
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Tables of results

In this appendix, some tables of results regarding punctuation and summarization
task are reported.
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A.1 Punctuation restoration results

Results on EduSum dataset
Course Punctuator FastPunct Transformer

21L-011

Period
Precision 0.180 0.530 0.796
Recall 0.143 0.391 0.810
F1-score 0.159 0.444 0.801

Comma
Precision 0.288 0.481 0.570
Recall 0.329 0.335 0.746
F1-score 0.305 0.231 0.643

Question mark
Precision 0.297 0.140 0.713
Recall 0.120 0.157 0.744
F1-score 0.171 0.144 0.724

STS-081

Period
Precision 0.222 0.701 0.548
Recall 0.162 0.434 0.700
F1-score 0.187 0.531 0.612

Comma
Precision 0.247 0.463 0.539
Recall 0.333 0.316 0.700
F1-score 0.283 0.360 0.605

Question mark
Precision 0.345 0.402 0.713
Recall 0.164 0.299 0.745
F1-score 0.219 0.341 0.725

5-111SC

Period
Precision 0.222 0.643 0.820
Recall 0.162 0.369 0.778
F1-score 0.187 0.463 0.798

Comma
Precision 0.247 0.228 0.535
Recall 0.333 0.335 0.677
F1-score 0.283 0.260 0.590

Question mark
Precision 0.345 0.532 0.742
Recall 0.164 0.209 0.802
F1-score 0.219 0.371 0.768

Table A.1: The table above summarizes the results of punctuation restoration
task on EduSum dataset, separately for each class and for each punctuation marks.

116



Tables of results

Results on EduSum dataset
Course Punctuator FastPunct Transformer

7-91J

Period
Precision 0.203 0.636 0.809
Recall 0.172 0.375 0.756
F1-score 0.186 0.466 0.777

Comma
Precision 0.281 0.399 0.548
Recall 0.332 0.29 0.659
F1-score 0.3 0.349 0.592

Question mark
Precision 0.221 0.515 0.761
Recall 0.084 0.305 0.673
F1-score 0.162 0.434 0.751

6-S897

Period
Precision 0.191 0.659 0.807
Recall 0.174 0.388 0.762
F1-score 0.181 0.488 0.78

Comma
Precision 0.358 0.611 0.628
Recall 0.394 0.325 0.773
F1-score 0.371 0.394 0.689

Question mark
Precision 0.214 0.389 0.701
Recall 0.124 0.469 0.738
F1-score 0.159 0.4 0.74

15-S12

Period
Precision 0.297 0.699 0.764
Recall 0.196 0.459 0.608
F1-score 0.235 0.549 0.675

Comma
Precision 0.208 0.402 0.465
Recall 0.351 0.335 0.68
F1-score 0.256 0.378 0.571

Question mark
Precision 0.3 0.452 0.687
Recall 0.117 0.224 0.699
F1-score 0.183 0.351 0.678

6-006

Period
Precision 0.204 0.649 0.849
Recall 0.165 0.352 0.768
F1-score 0.181 0.449 0.801

Comma
Precision 0.243 0.327 0.561
Recall 0.317 0.241 0.676
F1-score 0.269 0.32 0.616

Question mark
Precision 0.197 0.559 0.765
Recall 0.089 0.267 0.643
F1-score 0.197 0.409 0.675

Table A.2: The table above summarizes the results of punctuation restoration
task on EduSum dataset, separately for each class and for each punctuation marks.
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A.2 Summarization results: ROUGE score

ROUGE-scores results on EduSum dataset
Results on 21L-011 dataset with models finetuned on AMI

Version Model ROUGE-1 ROUGE-2
P R F1 P R F1

Original
TextRank-BART 0.343 0.292 0.313 0.083 0.072 0.076
LSA-BART 0.339 0.268 0.298 0.061 0.05 0.054
HMNet 0.135 0.401 0.201 0.022 0.064 0.032

No punctuation
TextRank-BART 0.356 0.297 0.321 0.064 0.055 0.059
LSA-BART 0.344 0.244 0.28 0.069 0.052 0.059
HMNet 0.14 0.413 0.208 0.022 0.063 0.033

Transformer
TextRank-BART 0.351 0.281 0.307 0.07 0.058 0.063
LSA-BART 0.335 0.272 0.298 0.054 0.043 0.047
HMNet 0.141 0.398 0.206 0.02 0.056 0.029

Results on STS-081 dataset with models finetuned on AMI

Version Model ROUGE-1 ROUGE-2
P R F1 P R F1

Original
TextRank-BART 0.261 0.39 0.303 0.05 0.073 0.057
LSA-BART 0.253 0.368 0.288 0.051 0.075 0.058
HMNet 0.254 0.367 0.29 0.043 0.061 0.049

No punctuation
TextRank-BART 0.268 0.384 0.302 0.046 0.07 0.053
LSA-BART 0.263 0.337 0.281 0.045 0.059 0.048
HMNet 0.254 0.366 0.291 0.044 0.064 0.05

Transformer
TextRank-BART 0.248 0.376 0.286 0.043 0.066 0.05
LSA-BART 0.249 0.376 0.29 0.038 0.059 0.044
HMNet 0.261 0.375 0.296 0.044 0.066 0.051

Results on 6-S897 dataset with models finetuned on AMI

Version Model ROUGE-1 ROUGE-2
P R F1 P R F1

Original
TextRank-BART 0.325 0.183 0.232 0.036 0.02 0.026
LSA-BART 0.288 0.168 0.209 0.028 0.017 0.021
HMNet 0.128 0.409 0.194 0.017 0.054 0.025

No punctuation
TextRank-BART 0.318 0.179 0.226 0.042 0.025 0.031
LSA-BART 0.29 0.149 0.191 0.03 0.016 0.021
HMNet 0.121 0.408 0.185 0.016 0.053 0.024

Transformer
TextRank-BART 0.308 0.179 0.224 0.044 0.024 0.03
LSA-BART 0.285 0.159 0.202 0.025 0.016 0.019
HMNet 0.13 0.435 0.198 0.02 0.065 0.03
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Results on 7-91J dataset with models finetuned on AMI

Version Model ROUGE-1 ROUGE-2
P R F1 P R F1

Original
TextRank-BART 0.308 0.203 0.242 0.043 0.028 0.034
LSA-BART 0.302 0.18 0.222 0.039 0.023 0.029
HMNet 0.117 0.379 0.177 0.012 0.042 0.019

No punctuation
TextRank-BART 0.31 0.205 0.243 0.051 0.031 0.038
LSA-BART 0.302 0.166 0.206 0.053 0.028 0.035
HMNet 0.123 0.415 0.188 0.015 0.052 0.022

Transformer
Textrank-BART 0.309 0.194 0.235 0.053 0.033 0.04
LSA-BART 0.273 0.184 0.216 0.034 0.022 0.026
HMNet 0.119 0.397 0.181 0.014 0.047 0.021

Results on 6-006 dataset with models finetuned on AMI

Version Model ROUGE-1 ROUGE-2
P R F1 P R F1

Original
TextRank-BART 0.325 0.168 0.219 0.059 0.03 0.039
LSA-BART 0.302 0.143 0.192 0.043 0.02 0.027
HMNet 0.095 0.41 0.153 0.013 0.058 0.021

No punctuation
TextRank-BART 0.328 0.162 0.216 0.066 0.031 0.042
LSA-BART 0.214 0.136 0.156 0.017 0.008 0.011
HMNet 0.108 0.403 0.167 0.011 0.044 0.018

Transformer
TextRank-BART 0.318 0.145 0.198 0.056 0.025 0.035
LSA-BART 0.287 0.13 0.178 0.043 0.019 0.027
HMNet 0.098 0.402 0.155 0.013 0.056 0.021

Results on 15-S12 dataset with models finetuned on AMI

Version Model ROUGE-1 ROUGE-2
P R F1 P R F1

Original
TextRank-BART 0.345 0.188 0.238 0.059 0.03 0.039
LSA-BART 0.3 0.154 0.2 0.031 0.014 0.019
HMNet 0.092 0.396 0.148 0.013 0.059 0.021

No punctuation
TextRank-BART 0.314 0.154 0.203 0.06 0.029 0.038
LSA-BART 0.125 0.123 0.118 0.02 0.03 0.02
HMNet 0.108 0.375 0.164 0.014 0.048 0.021

Transformer
TextRank-BART 0.36 0.187 0.241 0.074 0.037 0.048
LSA-BART 0.34 0.163 0.216 0.053 0.023 0.032
HMNet 0.091 0.379 0.144 0.011 0.049 0.018

119



Tables of results

Results on 5-111SC dataset with models finetuned on AMI

Version Model ROUGE-1 ROUGE-2
P R F1 P R F1

Original
TextRank-BART 0.311 0.217 0.252 0.055 0.038 0.044
LSA-BART 0.292 0.196 0.231 0.039 0.027 0.031
HMNet 0.132 0.419 0.199 0.017 0.052 0.025

No punctuation
TextRank-BART 0.331 0.232 0.269 0.055 0.038 0.044
LSA-BART 0.144 0.177 0.154 0.009 0.009 0.008
HMNet 0.143 0.41 0.208 0.018 0.049 0.026

Transformer
TextRank-BART 0.309 0.217 0.252 0.041 0.029 0.034
LSA-BART 0.287 0.202 0.233 0.042 0.031 0.035
HMNet 0.136 0.427 0.204 0.017 0.054 0.026

Results on 15-S12 dataset with models finetuned on ICSI

Version Model ROUGE-1 ROUGE-2
P R F1 P R F1

Original
TextRank-BART 0.361 0.201 0.253 0.072 0.038 0.049
LSA-BART 0.29 0.154 0.197 0.034 0.017 0.022
HMNet 0.096 0.392 0.152 0.014 0.055 0.022

No punctuation
TextRank-BART 0.345 0.164 0.217 0.053 0.023 0.032
LSA-BART 0.211 0.136 0.162 0.012 0.007 0.008
HMNet 0.083 0.358 0.133 0.008 0.035 0.013

Transformer
TextRank-BART 0.397 0.209 0.266 0.093 0.044 0.058
LSA-BART 0.304 0.152 0.198 0.044 0.02 0.027
HMNet 0.097 0.403 0.155 0.012 0.054 0.02

Results on 6-006 dataset with models finetuned on ICSI

Version Model ROUGE-1 ROUGE-2
P R F1 P R F1

Original
TextRank-BART 0.396 0.198 0.261 0.077 0.037 0.05
LSA-BART 0.321 0.133 0.187 0.055 0.021 0.031
HMNet 0.099 0.442 0.162 0.014 0.065 0.024

No punctuation
TextRank-BART 0.39 0.173 0.237 0.08 0.033 0.046
LSA-BART 0.26 0.131 0.172 0.02 0.009 0.012
HMNet 0.106 0.409 0.165 0.012 0.049 0.019

Transformer
TextRank-BART 0.395 0.181 0.245 0.078 0.035 0.048
LSA-BART 0.304 0.138 0.188 0.041 0.019 0.026
HMNet 0.099 0.446 0.161 0.013 0.058 0.021
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Results on 21L-011 dataset with models finetuned on ICSI

Version Model ROUGE-1 ROUGE-2
P R F1 P R F1

Original
TextRank-BART 0.387 0.281 0.322 0.087 0.064 0.073
LSA-BART 0.341 0.221 0.266 0.063 0.04 0.04
HMNet 0.135 0.401 0.201 0.022 0.064 0.032

No punctuation
TextRank-BART 0.428 0.261 0.315 0.098 0.063 0.074
LSA-BART 0.363 0.212 0.262 0.068 0.039 0.048
HMNet 0.14 0.413 0.208 0.022 0.063 0.033

Transformer
TextRank-BART 0.346 0.306 0.322 0.048 0.045 0.046
LSA-BART 0.361 0.222 0.269 0.072 0.044 0.054
HMNet 0.141 0.398 0.206 0.02 0.056 0.029

Results on STS-081 dataset with models finetuned on ICSI

Version Model ROUGE-1 ROUGE-2
P R F1 P R F1

Original
TextRank-BART 0.264 0.369 0.292 0.043 0.06 0.048
LSA-BART 0.237 0.348 0.269 0.037 0.058 0.043
HMNet 0.254 0.367 0.29 0.043 0.061 0.049

No punctuation
TextRank-BART 0.277 0.339 0.294 0.041 0.053 0.045
LSA-BART 0.283 0.307 0.281 0.045 0.049 0.044
HMNet 0.254 0.366 0.291 0.044 0.064 0.05

Transformer
Textrank-BART 0.272 0.352 0.296 0.043 0.06 0.048
LSA-BART 0.243 0.346 0.278 0.041 0.059 0.047
HMNet 0.261 0.375 0.296 0.044 0.066 0.051

Results on 5-111SC dataset with models finetuned on ICSI

Version Model ROUGE-1 ROUGE-2
P R F1 P R F1

Original
TextRank-BART 0.374 0.249 0.293 0.074 0.047 0.056
LSA-BART 0.34 0.196 0.244 0.062 0.033 0.042
HMNet 0.132 0.419 0.199 0.017 0.052 0.025

No punctuation
TextRank-BART 0.387 0.229 0.282 0.087 0.049 0.062
LSA-BART 0.205 0.161 0.177 0.013 0.009 0.01
HMNet 0.143 0.41 0.208 0.018 0.049 0.026

Transformer
TextRank-BART 0.358 0.259 0.296 0.059 0.044 0.05
LSA-BART 0.313 0.201 0.239 0.042 0.028 0.033
HMNet 0.136 0.427 0.204 0.017 0.054 0.026
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Results on 6-S897 dataset with models finetuned on ICSI

Version Model ROUGE-1 ROUGE-2
P R F1 P R F1

Original
TextRank-BART 0.36 0.202 0.254 0.054 0.034 0.041
LSA-BART 0.286 0.138 0.183 0.026 0.013 0.017
HMNet 0.124 0.419 0.19 0.017 0.055 0.025

No punctuation
TextRank-BART 0.35 0.17 0.222 0.052 0.025 0.033
LSA-BART 0.282 0.136 0.179 0.027 0.013 0.018
HMNet 0.125 0.419 0.19 0.015 0.05 0.023

Transformer
TextRank-BART 0.371 0.185 0.242 0.055 0.027 0.035
LSA-BART 0.303 0.156 0.202 0.031 0.017 0.021
HMNet 0.128 0.424 0.195 0.017 0.056 0.026

Results on 7-91J dataset with models finetuned on ICSI

Version Model ROUGE-1 ROUGE-2
P R F1 P R F1

Original
TextRank-BART 0.356 0.24 0.283 0.057 0.039 0.046
LSA-BART 0.305 0.177 0.22 0.03 0.018 0.022
HMNet 0.114 0.402 0.177 0.015 0.057 0.023

No punctuation
TextRank-BART 0.415 0.216 0.278 0.076 0.038 0.05
LSA-BART 0.325 0.159 0.207 0.047 0.021 0.028
HMNet 0.116 0.413 0.18 0.013 0.05 0.021

Transformer
Textrank-BART 0.386 0.209 0.266 0.063 0.033 0.043
LSA-BART 0.29 0.171 0.211 0.042 0.025 0.03
HMNet 0.12 0.416 0.185 0.014 0.053 0.022

Table A.3: Evaluation of the impact of punctuation restoration models (column
Version) on the summarization task: results of summarization task on EduSum
dataset, with models pretrained on AMI and ICSI, in terms of ROUGE-1 and
ROUGE-2.
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A.3 Summarization results: BERTScore

BERTScore results on EduSum dataset
Results on 21L-011

Version Model Finetuning on AMI Finetuning on ICSI
P R F1 P R F1

Original
TextRank-BART 0.846 0.837 0.841 0.842 0.842 0.842
LSA-BART 0.836 0.833 0.834 0.83 0.833 0.831
HMNet 0.795 0.818 0.806 0.795 0.82 0.807

No punctuation
TextRank-BART 0.84 0.836 0.838 0.841 0.841 0.841
LSA-BART 0.834 0.832 0.833 0.823 0.829 0.826
HMNet 0.793 0.818 0.805 0.792 0.818 0.805

Transformer
TextRank-BART 0.842 0.834 0.838 0.842 0.84 0.841
LSA-BART 0.841 0.834 0.837 0.833 0.832 0.832
HMNet 0.793 0.817 0.805 0.795 0.82 0.807

Results on STS-081

Version Model Finetuning on AMI Finetuning on ICSI
P R F1 P R F1

Original
TextRank-BART 0.846 0.825 0.835 0.849 0.831 0.84
LSA-BART 0.839 0.82 0.829 0.836 0.822 0.829
HMNet 0.795 0.812 0.803 0.8 0.814 0.807

No punctuation
TextRank-BART 0.846 0.824 0.835 0.842 0.827 0.835
LSA-BART 0.837 0.82 0.829 0.824 0.82 0.822
HMNet 0.801 0.813 0.807 0.801 0.815 0.808

Transformer
TextRank-BART 0.85 0.825 0.837 0.848 0.831 0.839
LSA-BART 0.842 0.822 0.832 0.84 0.823 0.831
HMNet 0.796 0.812 0.804 0.8 0.815 0.807

Results on 6-S897

Version Model Finetuning on AMI Finetuning on ICSI
P R F1 P R F1

Original
TextRank-BART 0.839 0.839 0.839 0.833 0.843 0.837
LSA-BART 0.834 0.836 0.835 0.823 0.835 0.829
HMNet 0.795 0.825 0.81 0.791 0.824 0.807

No punctuation
TextRank-BART 0.834 0.839 0.836 0.828 0.841 0.834
LSA-BART 0.824 0.832 0.828 0.814 0.834 0.824
HMNet 0.798 0.826 0.811 0.793 0.823 0.808

Transformer
TextRank-BART 0.836 0.836 0.836 0.833 0.842 0.837
LSA-BART 0.833 0.835 0.834 0.816 0.835 0.825
HMNet 0.792 0.824 0.808 0.789 0.824 0.806
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Results on 7-91J dataset with models finetuned on AMI

Version Model Finetuning on AMI Finetuning on ICSI
P R F1 P R F1

Original
TextRank-BART 0.832 0.839 0.835 0.839 0.848 0.843
LSA-BART 0.824 0.833 0.829 0.824 0.834 0.829
HMNet 0.791 0.821 0.806 0.79 0.823 0.806

No punctuation
TextRank-BART 0.833 0.837 0.835 0.832 0.847 0.84
LSA-BART 0.817 0.834 0.825 0.807 0.83 0.818
HMNet 0.794 0.823 0.808 0.791 0.822 0.806

Transformer
Textrank-BART 0.834 0.84 0.837 0.84 0.849 0.844
LSA-BART 0.83 0.832 0.831 0.823 0.832 0.827
HMNet 0.79 0.821 0.805 0.788 0.822 0.805

Results on 6-006 dataset with models

Version Model Finetuning on AMI Finetuning on ICSI
P R F1 P R F1

Original
TextRank-BART 0.83 0.843 0.836 0.832 0.853 0.843
LSA-BART 0.827 0.842 0.834 0.823 0.843 0.833
HMNet 0.788 0.825 0.806 0.786 0.827 0.806

No punctuation
TextRank-BART 0.832 0.847 0.839 0.829 0.854 0.841
LSA-BART 0.788 0.825 0.806 0.814 0.826 0.82
HMNet 0.795 0.827 0.811 0.788 0.824 0.806

Transformer
TextRank-BART 0.829 0.844 0.836 0.83 0.851 0.84
LSA-BART 0.824 0.839 0.831 0.817 0.839 0.828
HMNet 0.79 0.826 0.808 0.785 0.827 0.805

Results on 15-S12 dataset with models

Version Model Finetuning on AMI Finetuning on ICSI
P R F1 P R F1

Original
TextRank-BART 0.842 0.849 0.845 0.844 0.857 0.85
LSA-BART 0.837 0.842 0.839 0.83 0.843 0.836
HMNet 0.791 0.826 0.808 0.787 0.825 0.806

No punctuation
TextRank-BART 0.839 0.845 0.842 0.826 0.845 0.835
LSA-BART 0.767 0.821 0.793 0.807 0.826 0.816
HMNet 0.799 0.824 0.811 0.786 0.821 0.803

Transformer
TextRank-BART 0.846 0.851 0.848 0.843 0.855 0.849
LSA-BART 0.834 0.842 0.838 0.824 0.842 0.833
HMNet 0.793 0.826 0.809 0.788 0.826 0.807
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Results on 5-111SC

Version Model Finetuning on AMI Finetuning on ICSI
P R F1 P R F1

Original
TextRank-BART 0.834 0.837 0.835 0.833 0.844 0.839
LSA-BART 0.816 0.833 0.824 0.826 0.834 0.83
HMNet 0.787 0.815 0.801 0.787 0.814 0.8

No punctuation
TextRank-BART 0.833 0.836 0.834 0.831 0.844 0.837
LSA-BART 0.772 0.81 0.791 0.806 0.813 0.809
HMNet 0.79 0.812 0.801 0.788 0.81 0.799

Transformer
TextRank-BART 0.833 0.837 0.835 0.832 0.842 0.837
LSA-BART 0.823 0.833 0.828 0.828 0.833 0.83
HMNet 0.786 0.814 0.8 0.788 0.815 0.801

Table A.4: BERTScore results of summarization task on EduSum dataset, with
models pretrained on AMI and ICSI.
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Additional notes

B.1 Residual connections
Authors in [105] discover that when the network depth increases, accuracy gets
saturated and then degrades. According to them, this is not due to overfitting
because they reported degradation even in training accuracy. To address this issue
the authors proposed the deep residual learning framework. Residual connection
uses skip connections to avoid some layers: given an input x of a layer, y the
output of such layer, F(·) an underlying residual mapping to learn, the building
block of these connections are given by:

y = F(x, {Wi}) + x (B.1)

F(·) represents a non-linear transformation of the input given by learnable param-
eters Wi. This way, it is possible to increase the number of layers and avoiding
the vanishing gradient problem 1. Residual networks are networks that adopt skip
connection, and in particular ResNet became a popular backbone in Computer
vision application. This network beat the concurrence of SOTA models in ImageNet
challenge in 2015 (ILSVRC 2015 [106] - image classification).

The idea of the skip connections derives from the Highway networks [107] which
present shortcut connections with gate functions (so parametrized). Residual
connections are Highway networks block whose gates are always open. Image in
B.1 shows the building block of a residual network.

1This problem typically involves the first parameters of long network: during the backprop-
agation, the gradients of the first layers vanishes and the parameters update are irrelevant.
Controlling the gradient flows means obtaining a model whose first layers are able to learn as the
last ones.
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Figure B.1: Resudual connection schema presents in [105]

B.2 Adam and AdamW optimizers
In [96] the authors propose an alternative to the SGD optimizer [108] capable of
computing individual adaptive learning rates for different parameters from estimates
of first and second moments of the gradients.

The Adam considers the optimization function as stochastic and seeks to mini-
mize the expected value of this funcion, E[f(θ)] with respect to the parameters θ.
The algorithm updates the estimates of the 1st moment, mt and the second raw
moment vt of the grandient, by updating their eponential mooving average. This
introduces two hyperparameters, β1, β2 ∈ [0, 1) that control the exponential decay
rates of these moving averages. The fist moment estimate is equal to:

mt = (1− β1)
tØ
i=0

βt−1
1 gi (B.2)

and the second moment is given by:

vt = (1− β2)
tØ
i=1

βt−1
2 · g2

i (B.3)

which both are biased estimates; the unbiased versions 2 can be obtaining via:

m̂t = mt

1− βt1
(B.4)

and
v̂t = vt

1− βt2
(B.5)

2An estimator is considered unbiased if its expected value converges to the expected value of
what it esteems.
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and the update is of the parameters is given by:

∆t = α · m̂t/v̂t (B.6)

The step size of Adam update rule is invariant to the magnitude of the gradient,
and this helps in the case of vanishing gradient problem, where SGD would be
stuck in a local minimum. Furthermore, its step sizes are approximately bounded
by the step size hyperparameters, which, with this interpretation, can be tuned
easily. The complete algorithm is showed in Figure B.2.

Figure B.2: Adam optimization algorithm pseudocode presented in [96]

AdamW, differs from Adam for different aspects. The authors in [95] point
out that that L2 regularization and weight decay regularization are equivalent in
the case of standard stochastic gradient descent algorithm, but not in the case of
adaptive gradient algorithms like Adam. Also, they stated that L2 regularization
is not effective in Adam, since the regularizer gradient gets scaled along the loss
gradient, and weights, in case the training generates large gradients in the loss
function, do not get regularized as much as they would. For this reason, they
propose AdamW a version of Adam that explicitly decouples λ and α for the weight
update.

Instead of adding the regularization term in the loss function, as in standard
Adam, the regularizer is intruduced only when the weights are updated. This way,
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the gradient of regularization terms is not rescaled by the gradient itself and can
be controlled by precise parameters. The update formula becomes as follows:

θt = θt−1 − ηt
3
α · m̂t

(
√
v̂t + Ô)

+ λθt−1

4
(B.7)

The pseudocode of AdamW is described in Figure B.3.

Figure B.3: AdamW optimization algorithm pseudocode presented in [95]
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