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Summary

Since the emergence of computer systems,researchers have developed various
solutions in gesture recognition in the context of human-machine interaction
(HMI). Nowadays, the avant-garde in this field is touchless gesture recognition, as
the name indicates a sort of communication that doesn’t imply touching any sort
of hardware.

Touchless technology has been incorporated in applications ranging from the
industrial environment (e.g. human-robot interaction) to entertainment
applications, to healthcare, and the automotive industry.

Until recently, much of the touchless gesture recognition has been focused on using
computer vision techniques. However, these techniques require high computational
power to understand images successfully and proved to be not helpful in the dark
or other low visibility conditions. Based on the Gesture Recognition and Touchless
Sensing Market Global Analysis, “sensor-based technology is anticipated to endure
the largest share of the market during the next period” [1].

Two types of sensors are majorly utilized in touchless sensing devices: infrared
sensors and capacitive sensors. However, each of these sensors has proven to have
significant drawbacks. In this thesis, a design of a touchless sensor prototype has
been proposed using Time-of-Flight (TOF) technology. The devised strategy aims
to obtain the best configuration with a low cost and high reliability.

The proposed system is composed of a horizontal array of three TOF sensors. The
sensors are employed for data collection regarding seven hand gestures, namely up,
down, left, right, clockwise (CW), counterclockwise (CCW), and unknown,
performed by the user at a predefined distance from the prototype. The hand
gesture movements are classified using Deep Neural Networks (DNNs). Finally, the
proposed approach is validated with a Graphical User Interface (GUI) representing
a virtual cluster.

Moreover, this thesis offers an insight into the different technologies used in
touchless sensing by providing a comparative performance evaluation of the
well-known types of gesture recognition sensors available in the market.

ii



iii



Acknowledgements

First of all, I would like to express my sincere gratitude to Teoresi group for
offering me the opportunity to work on this project. I would like to single out my
supervisor, Dr.Massimiliano Curti; I want to thank him for your patience, support
and for all of the opportunities I was given to further my work.

Furthermore, I would like to thank my supervisor, Prof. Lamberti, for the
thoughtful comments and recommendations on this thesis.

To conclude, I cannot forget to thank my family and friends for all the
unconditional support and their collaborative effort during data collection.

iv





Table of Contents

List of Tables ix

List of Figures x

Acronyms xiv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 State of the art 3
2.1 Gestures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Definition of gestures . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Types of gestures . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Applications of gesture recognition . . . . . . . . . . . . . . 4

2.2 Gesture recognition technologies . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Capacitive sensors . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Ultrasonic sensors . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Radar sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Infrared sensors . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.5 Camera systems . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.6 Time of flight technology . . . . . . . . . . . . . . . . . . . . 12

2.3 Artificial intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.3 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.4 Categorical data . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.5 Multi-layer perceptron . . . . . . . . . . . . . . . . . . . . . 23

vi



2.4.6 Overfitting and underfitting . . . . . . . . . . . . . . . . . . 23

3 Technologies 25
3.1 Technology specification . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Technologies selection criteria . . . . . . . . . . . . . . . . . 25
3.1.2 Selection of technology . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Hardware selection and specifications . . . . . . . . . . . . . 26
3.1.4 Criteria for the selection of development board . . . . . . . . 27
3.1.5 Selection of development board . . . . . . . . . . . . . . . . 28

3.2 Software specification . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Programming languages . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Software platform . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 System architecture . . . . . . . . . . . . . . . . . . . . . . . 30

4 Design and realization 41
4.1 TOF sensor calibration procedure . . . . . . . . . . . . . . . . . . . 41

4.1.1 Calibrating the offset . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Calibrating the crosstalk compensation factor . . . . . . . . 42

4.2 VL6180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 VL53L3CX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 VL53L3CX ranging flow . . . . . . . . . . . . . . . . . . . . 45
4.3.2 VL53L3CX multi sensor ranging . . . . . . . . . . . . . . . . 47

4.4 Prototype design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.1 Measurement Timing . . . . . . . . . . . . . . . . . . . . . . 49
4.5.2 Gestures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.3 Handling missing data . . . . . . . . . . . . . . . . . . . . . 55

4.6 Flick Hat 3D tracking and gesture hat . . . . . . . . . . . . . . . . 56
4.7 APDS 9960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.8 Deep neural netowrk . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.8.1 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . 60
4.8.2 Model architecture . . . . . . . . . . . . . . . . . . . . . . . 61
4.8.3 Hyperparameter tuning . . . . . . . . . . . . . . . . . . . . . 61
4.8.4 Experimentation and evaluation . . . . . . . . . . . . . . . . 63

4.9 Graphical user interface . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Experiments and results 68
5.1 TOF sensors calibration and ranging results . . . . . . . . . . . . . 68

5.1.1 VL6180 calibration and ranging results . . . . . . . . . . . . 68
5.1.2 VL53L3CX calibration and ranging results . . . . . . . . . . 70

5.2 Monitoring sensor data . . . . . . . . . . . . . . . . . . . . . . . . . 71

vii



5.3 VL6180 prototype DNN . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 MGC3130 DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.5 APDS9960 DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6 Evaluation and analysis . . . . . . . . . . . . . . . . . . . . . . . . 77
5.7 Results discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Conclusion and future work 83
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography 85

viii



List of Tables

2.1 Example of gesture labels using one hot encoding . . . . . . . . . . 23

3.1 Comparison of capacitive ,IR and TOF technologies . . . . . . . . . 26
3.2 VL53L3CX distance modes . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Range convergence for 50% reflectance . . . . . . . . . . . . . . . . 52
4.2 Description of proposed gestures . . . . . . . . . . . . . . . . . . . 53
4.3 Gestures and events on GUI [69] . . . . . . . . . . . . . . . . . . . . 66

5.1 VL6180 calibration results . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 VL53L3CX calibration results . . . . . . . . . . . . . . . . . . . . . 70
5.3 MLP model architecture for TOF . . . . . . . . . . . . . . . . . . . 73
5.4 MLP model architecture for MGC3130 . . . . . . . . . . . . . . . . 75
5.5 MLP model architecture for APDS9960 . . . . . . . . . . . . . . . . 76
5.6 Collected data for ST VL6180 . . . . . . . . . . . . . . . . . . . . . 78
5.7 F1-Measure analysis for ST VL6180 . . . . . . . . . . . . . . . . . . 79
5.8 Collected data for MGC3130 . . . . . . . . . . . . . . . . . . . . . . 79
5.9 F1-Measure analysis for MGC3130 . . . . . . . . . . . . . . . . . . 79
5.10 Collected data for APDS9960 . . . . . . . . . . . . . . . . . . . . . 81
5.11 F1-Measure analysis for APDS9960 . . . . . . . . . . . . . . . . . . 81

ix



List of Figures

2.1 Examples of static gestures [8] . . . . . . . . . . . . . . . . . . . . . 4
2.2 Examples of dynamic gestures [9] . . . . . . . . . . . . . . . . . . . 4
2.3 Example of gesture recognition applications . . . . . . . . . . . . . 5
2.4 Measurement modes for capacitive proximity sensing [16] . . . . . . 6
2.5 MGC3130 electrodes [18] . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Shielding in capacitive sensors [19] . . . . . . . . . . . . . . . . . . 7
2.7 Thracker prototype [20] . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.8 Swiss-cheese prototype [21] . . . . . . . . . . . . . . . . . . . . . . . 8
2.9 Ultrasonic working principle . . . . . . . . . . . . . . . . . . . . . . 9
2.10 PIR working principle [27] . . . . . . . . . . . . . . . . . . . . . . . 10
2.11 TOF working principle [33] . . . . . . . . . . . . . . . . . . . . . . . 12
2.12 Direct and indirect TOF [33] . . . . . . . . . . . . . . . . . . . . . . 13
2.13 Deep Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.14 Deep learning vs. machine learning [40] . . . . . . . . . . . . . . . . 16
2.15 Deep learning algorithms [40] . . . . . . . . . . . . . . . . . . . . . 16
2.16 Biological inspiration for the perceptron [45] . . . . . . . . . . . . . 17
2.17 List of activation functions available in Keras [40] . . . . . . . . . . 18
2.18 Forwardpass and backwardpass in backpropagation [45] . . . . . . . 19
2.19 Gradient descent with small (top) and large (bottom) learning rates

[45] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.20 Learning rate [48] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.21 Comparison of Adam to other optimization algorithms training a

MLP [49] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Sensing devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Raspberry Pi4-Model B . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Wemos D1 R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 STM32F401RE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Directional swipes [54] . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7 Equipoterntial lines of a distorted E-Field [18] . . . . . . . . . . . . 32

x



3.8 FlightSense™ roadmap . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.9 Range output vs. target distance [59] . . . . . . . . . . . . . . . . . 35
3.10 Range Offset [59] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.11 Crosstalk compensation error [59] . . . . . . . . . . . . . . . . . . . 36
3.12 VL6180 current consumption versus ECE feature and inter-measurement

period (in mA) [59] . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.13 TOF sensors FOV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.14 VL53L3CX ranging sequence [61] . . . . . . . . . . . . . . . . . . . 39
3.15 How multiple objects are represented in histogram using VL53L3CX

[60] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.16 Smudge detection and crosstalk immunity . . . . . . . . . . . . . . 40

4.1 Offset calibration environment [59] . . . . . . . . . . . . . . . . . . 42
4.2 Crosstalk compensation environment [59] . . . . . . . . . . . . . . . 43
4.3 Initialization of VL6180 devices . . . . . . . . . . . . . . . . . . . . 44
4.4 Prototype ranging measurement flow . . . . . . . . . . . . . . . . . 45
4.5 VL53L3CX ranging flow . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6 X-NUCLEO-53L3A2 Expansion Board connector layout [60] . . . . 47
4.7 VL6180 outline drawing [62] . . . . . . . . . . . . . . . . . . . . . . 48
4.8 Proposed TOF prototype . . . . . . . . . . . . . . . . . . . . . . . . 49
4.9 VL6180A1 Expansion Board plugged on a STM32 Nucleo board . . 49
4.10 Execution and convergence time . . . . . . . . . . . . . . . . . . . . 50
4.11 Interpolation for range convergence time . . . . . . . . . . . . . . . 51
4.12 Reflectance of human-body [63] . . . . . . . . . . . . . . . . . . . . 51
4.13 STM32 monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.14 Gestures characteristics in time . . . . . . . . . . . . . . . . . . . . 54
4.15 Flow chart data collection . . . . . . . . . . . . . . . . . . . . . . . 55
4.16 Flick Hat gesture recognition flow . . . . . . . . . . . . . . . . . . . 56
4.17 Aurea GUI [64] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.18 APDS9960 functional diagram . . . . . . . . . . . . . . . . . . . . . 59
4.19 width= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.20 Altia virtual instrument cluster . . . . . . . . . . . . . . . . . . . . 66
4.21 GUI controlled by TOF Model predictions . . . . . . . . . . . . . . 67

5.1 VL6180 ranging after calibration . . . . . . . . . . . . . . . . . . . 69
5.2 VL53L3CX ranging after calibration . . . . . . . . . . . . . . . . . 70
5.3 VL6180 serial data . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 VL53L3CX serial data . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 MGC3130 serial data . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6 APDS9960 serial data . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.7 TOF model accuracy over epochs . . . . . . . . . . . . . . . . . . . 74

xi



5.8 TOF model loss over epochs . . . . . . . . . . . . . . . . . . . . . . 74
5.9 MGC3130 model accuracy over epochs . . . . . . . . . . . . . . . . 75
5.10 MGC3130 model loss over epochs . . . . . . . . . . . . . . . . . . . 76
5.11 APDS9960 model accuracy over epochs . . . . . . . . . . . . . . . . 77
5.12 APDS9960 model loss over epochs . . . . . . . . . . . . . . . . . . . 77
5.13 Confusion matrix for ST Vl6180 data . . . . . . . . . . . . . . . . . 78
5.14 Confusion matrix for MGC3130 data . . . . . . . . . . . . . . . . . 80
5.15 Confusion matrix for APDS9960 data . . . . . . . . . . . . . . . . . 81

xii





Acronyms

HMI Human Machine Interface

TOF Time-of-Flight

DNN Deep Neural Network

GUI Graphical User Interface

CW Clockwise

CCW CounterClockwise

ML Machine Learning

IR InfraRed

FOV Field of View

PIR Passive InfraRed

USART Universal Synchronous Asynchronous Receiver/Transmitter

MLP Multilayer Perceptron

SVM Support Vector Machines

SGD Stochastic Gradient Descent

Adam Adaptive Moment Estimation

CNN Convolutional Neural Network

xiv



RNN Recurrent Neural Network

WAF Wrap Around Filter

ECE Early Convergence Estimate

Dmax Max Detection Range

NVM Non volatile memory

xv



Chapter 1

Introduction

This chapter is structured to provide brief, intuitive contextualization to the thesis.
It presents the thesis motivation, research objectives, research contributions, and
thesis structure.

1.1 Motivation
As technology advances, human-machine interaction is expected to be more
realistic and natural; therefore, there is significant interest in gesture recognition
research. Furthermore, companies face a dilemma in choosing the correct gesture
recognition sensor to embed in their devices.

Gesture recognition has a variety of applications such as in surgery operating
rooms [2], collision avoidance in human-robot environments [3], automotive
infotainment systems [4], and many other applications.

One of the technologies used in gesture recognition is vision based sensors; these
sensors are the most advanced ones for natural interaction, even though they
require high computational power, illuminations, colors, shapes, and a considerable
amount of other noises could affect their outputs.

As an alternative, sensor-based technology is gaining attention since it satisfies the
market new requirements for hand gesture recognition systems, including low
power consumption, low cost and simple hardware setup.

This thesis aims to research the use of TOF technology in a gesture recognition
system capable of recognizing a varied set of gestures such as swipe gestures and
circle gestures. The classification model is developed by examining Multilayer
Perceptron (MLP) to obtain good results and verify the advantage of deep
learning technologies in training and execution time.
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Introduction

Additionally, the thesis provides a comprehensive evaluation of the TOF sensor
prototype and compare it with the IR and capacitive sensors performance.

1.2 Research objectives
This research aims to explore the usage of TOF technology in the recognition of
simple gestures. The research has the following objectives.

• Study the TOF technology, and select the sensors based on that technology.

• Design a prototype using the selected sensors.

• Implement multi-sensor ranging code to get the data from each sensor.

• Select the gestures set and collect training datasets of these gestures.

• Implement a gesture recognition model using DNNs.

• Validate the model in terms of accuracy and use the system in a virtual
cluster GUI.

1.3 Contributions
This thesis is primarily concerned with gesture recognition using TOF sensors,
evaluating their performance, and subsequently, comparing them with two other
sensors available in the market.

1.4 Thesis structure
This thesis is organized into six chapters:

Chapter 2 gives an introduction to the technical knowledge required to understand
the thesis. It also offers an insight into the previous research work done in the field
of gesture recognition.

Chapter 3 discusses the criteria for selecting the hardware components in this
thesis and provides a detailed description of the methodology and tools used for
implementation and testing.

Chapter 4 delves into the design and implementation of the prototype. In addition,
it illustrates the steps for implementing the DNN.

Chapter 5 discuss the results of tests performed on the different sensors.

Chapter 6 is where conclusions are drawn, and future work is proposed.

2



Chapter 2

State of the art

This chapter is structured to present relevant information to the area of work
developed in the thesis. It will start by outlining essential concepts related to
gestures, gesture recognition technologies, and their applications. Finally, it
provides an introduction to DNNs.

2.1 Gestures

2.1.1 Definition of gestures
Gestures have always played an essential role in human communication and are
among the most powerful ways for humans to communicate non-verbally [5]. A
gesture is a form of communication in which visible body actions communicate
particular messages.

Gestures can be complex, and the information communicated by the gestures can
be complicated as well. Some gestures are universal and have identical meaning
irrespective of the country or culture they are used in [6].

2.1.2 Types of gestures
There is a tremendous variety of literature for gesture classification, from machine
learning and computer vision to psychology and linguistics. A possible
classification of gestures is based on gesture change over time, where two types of
gestures are distinguished: static gestures and dynamic gestures.

A static gesture is when the body part remains unchanged during a period of time
[7]. If the body part is the hand, a typical static gesture could be the “stop”
gesture and the “OK” gesture.

3



State of the art

Figure 2.1: Examples of static gestures [8]

A dynamic gesture typically has a specific trajectory and transmits a message
using this trajectory. These gestures are used in touch-based interfaces or
touchless interfaces.

Figure 2.2: Examples of dynamic gestures [9]

2.1.3 Applications of gesture recognition
Gesture recognition is currently an ongoing research field that is applied in a
variety of applications, ranging from applications that are related to humans safety
such as :

• using hand gestures to control the infotainment system in cars to reduce driver
distraction during driving as in [4].

• Gesture recognition in application related to healthcare in order to decrease the
risk of contamination during surgical procedures [10] and recently contactless
interfaces to reduce the spread of Covid19 [11].

Another set of applications is for human conveniences, such as gaming [12],
electronic devices [13], and smart homes.

4
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Figure 2.3: Example of gesture recognition applications

2.2 Gesture recognition technologies
This section will briefly present the technologies used in gesture recognition.

2.2.1 Capacitive sensors
Any living organism produces a small electric field generated by cell activity and
ionic currents of the nervous system [14]. Consequently, it is possible to measure
the impact of the human body in two methods.

• setting within an electrical field and measuring the influence of human body
movement.

• coupling the human body to a transmitter and measuring the resulting
electric field.

Capacitive sensing is a technology based on the capacitive coupling that can detect
and measure anything that is conductive or has a dielectric different from air[15].
In [16], Joshua Smith introduced different measuring modes that can be
distinguished in capacitive sensing.

• Transmit mode where the distance to the human body can be determined by
coupling the body to a changing electric potential and receiving the
transmitted signal using the grounded plate. In this mode, the sensor is
defined as a receiver measuring the incoming displacement current [17].

5
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• Shunt mode, employed in the presented hardware platform, is based on the
principle that a grounded body part affects the electric field between a
transmitter and a receiver electrode. In shunt mode, the definition of a sensor
is not intuitively apparent. As each transmitter-receiver combination may
deliver a unique measurement result, a sensor is defined as a combination
between a transmitter and a receiver.

• Loading mode, one can measure the displacement current from a transmitter
electrode to a grounded body part, in order to determine the distance [16].
Similar to transmitter mode, the displacement current is measured by the
transmitter, which is considered to be a sensor.

Figure 2.4: Measurement modes for capacitive proximity sensing [16]

An example of shunt mode based structure is the GestIC technology by Microchip
Technology [18].It consists of transmit electrode which is at the bottom layer, and
four smaller receiver electrodes are placed on the edges of the top layer, as shown
in Figure 2.5.

Figure 2.5: MGC3130 electrodes [18]

6
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When it is expected that other objects might disturb the measurement of
capacitive sensors, shielding is necessary. In case of no shielding, the electric field
will span in all directions, as shown in Figure 2.6. There are several benefits of
shielding, which are reported below.

• It leads and focuses the sensing zone to a particular area.

• It minimizes and annihilates parasitic capacitances and interference.

• It excludes temperature variation effects on the ground plane.

Figure 2.6: Shielding in capacitive sensors [19]

This following section presents a brief summary of researches using capacitive
sensing for gestural interaction.

• Thracker

Thracker is a prototype that embeds a regular monitor to detect hand
gestures using capacitive proximity sensors, allowing two modes for
interaction. As presented in Figure 2.7 [20], it has four sensors arranged
around the screen. It has two modes which are 3D interactions and "Pick and
Drop" interactions. The first mode allows the interaction with objects on the
screen by performing a picking gesture, whereas the second movement will be
interpreted as clicks (3 cm from the screen) and pointer for more faraway
distances. Researchers concluded that by studying 10 participants, the
gesture interface is comfortable and intuitive, yet they struggled to achieve
good results when considering gestures such as zooming.

7



State of the art

Figure 2.7: Thracker prototype [20]

• Swiss-Cheese Extended

It is a prototype for gesture recognition using capacitive proximity sensors to
detect the 3D position of multiple hands. The gestures supported are swipe
right with one hand, and motion from bottom to top with two hands, plus
supports zoom and rotation, grasp, and release.

The prototype device operates on shunt mode measurements. It consists of
eight transmitters that are located at the device’s edges and receivers in the
center. They achieved a resolution of approximately 3.5mm at object
distances around 50mm and at object distances of 200mm.

Figure 2.8: Swiss-cheese prototype [21]

In [22],the authors designed a prototype for reliable recognition of finger
gestures by tracking the time history of capacitance variations of an electrode
array.
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It explained that given enough resolution along the timeline, the read-out
electronics could be avoided. Concerning optimal electrical processing of the
capacitance variations, a shielding strategy is adopted, which helped to
suppress the body to ground capacitances and its variations due to changing
environmental conditions.

2.2.2 Ultrasonic sensors
Ultrasonic sensors operates on emitting sound waves at frequency high (>20KHz)
for humans to hear. They anticipate the sound to be reflected, calculating the
distance based on the time required, as shown in Figure 2.9.

Figure 2.9: Ultrasonic working principle

This technology has various drawbacks. It is highly affected by the changes in
temperature, pressure, and humidity. Secondly, it has more difficulties in reading
reflections from soft, thin, and small objects.

2.2.3 Radar sensors
Radar is a technology alike ultrasound in terms of the concept, because both rely
on the propagation and reflection of wave signals. Radar, though, works not with
sound waves but with electromagnetic waves (Frequency back MHz to GHz). The
target should not be non-conductive materials or any materials with low dielectric
constants.

The utilization of this technology in the field of gesture recognition is still in
progress, but there are some prototypes under development. Currently, the
disadvantages of this technology are radar size and cost.
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2.2.4 Infrared sensors
An IR sensor is an electronic device that measures and detects infrared radiation
in its surrounding environment. Infrared radiation was accidentally discovered by
an astronomer named William Herchel in 1800. While measuring the temperature
of each color of light (separated by a prism), he noticed that the temperature just
beyond the red light was highest. IR is invisible to the human eye, as its
wavelength is longer than that of visible light (though it is still on the same
electromagnetic spectrum). Anything that emits heat (everything that has a
temperature above around five degrees Kelvin) gives off infrared radiation [23].

Active IR sensor

Active IR sensors operate using particular light-sensing elements which are
sensitive to electromagnetic waves. In detail, an infrared light source emits light
within a specific FOV when the light hits an object and returns to the sensing
device. Based on the time or intensity, it is possible to calculate the distance of
the target. A TOF sensor is an example of active IR.

Passive infrared sensor

Passive infrared sensors (PIRs) are sensitive to thermal radiation emitted by the
human body in the range of 8 - 14µm [24]. Tiny deviations from the thermal
equilibrium of the surrounding environment can be detected [24].

PIR sensing is commonly used in commercial applications to detect the presence of
humans or trigger alarms. PIR sensors have also been explored for much more
complex applications such as human localization[25], motion direction detection
[26],etc.

Figure 2.10: PIR working principle [27]
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2.2.5 Camera systems
The camera,vision-based sensor is a common, suitable and applicable technique
because it provides contactless communication between humans and computers
[28].In terms of camera technologies in gesture recognition, two main types are
considered: 2D and 3D camera systems.

• 2D camera systems

2D camera systems have limited use in gesture recognition. The information
that can be collected is limited (since there is no depth), so the gestures
detected are usually simple like finger gestures, and motion tracking [29].

• 3D camera systems

3D camera systems enable high-quality video processing, facial recognition,
3D imaging, noise cancellation, etc. TOF and structured light are only two of
the several existing 3D imaging techniques.

– TOF cameras
A TOF camera uses laser or IR light to calculate distance between
camera and subject by measuring the time taken by the light signal to
make the round trip. The camera illuminates the scene with a varying
light source and registers the reflected light, then translates that into a
distance measurement. The simplest version of a TOF camera uses light
pulses or a single light pulse. The illumination is switched on for a very
short time, the resulting pulse lights the scene and is reflected by objects
in its FOV [30].

– Structured-light cameras
Structured-light illumination (SLI) [31] is a non-contact, optical, active,
triangulation-based 3D reconstruction technique known for its simple
implementation, low cost, and high accuracy. However, the high rate of
processing demanded in real-time has, until now, proved unattainable.

Structured light works on the following principle, where an object’s
coordinate in 3D space is derived by triangulating between pixels of two
cameras. SLI avoids the computational complexities of matching pixels
across camera views by replacing one of the two-component cameras with
a projector that generates a series of striped patterns. By analyzing the
change in the pattern at a particular point on the target object surface (a
process known as demodulating the captured images), unique
correspondences can be derived between the camera and projector pixels
[32].

11



State of the art

2.2.6 Time of flight technology
Basic concepts

TOF is an accurate and easy to understand technology used for distance
measurement.It measure distances using the time that it takes for photons to
travel between two points, from the sensor emitter to a target and then back to
the sensor receiver. The following formula computes the distance:

d = 1
2cτ (2.1)

Where d is the measured distance, c is the speed of light, and τ is the photons
travel time.

Figure 2.11: TOF working principle [33]

There are two ways to measure TOF.

• In the direct method, the sensor transmits pulses that last few nanoseconds
and, consequently, measure the time it needs for the emitted light to return.

• In indirect method, a continuous modulated sinusoidal light wave is emitted,
and the phase difference between outgoing and incoming signals is used to
compute how fat the target is.

Both types are shown in Figure 2.12.
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Figure 2.12: Direct and indirect TOF [33]

The foremost advantages of using a TOF sensor are listed below.

• The reflectance of the target does not influence the measurement.

• It can operate in low light conditions.

• The system is compact.

• It presents accurate results.

There are also some constraints when using this technology.

• It is hard to use outdoors because high-intensity light can saturate the sensor.

• If the light is reflected multiple times (on corners), it can alter the
measurement.

• The cover glass distorts the reflected signal

FlightSenseTM

This technology was patented by the semiconductor company STMelectronics and
solved some of the issues that have the TOF sensors. First of all, there is the
compensation algorithm for correcting the distortion produced by the cover glass.
As the cover glass is always located in the same place, it has fixed optical
characteristics that are used to correct the measurement. Another system
improvement is about the performance outdoors. The technology keeps ambient
photons out with optical filtering and also rejects the remaining ones (lower
wavelengths) thanks to a time-domain rejection [34].

These sensors have been used successfully in number of applications such as
human robot interaction[35] and collision avoidance [36][3].
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2.3 Artificial intelligence
Artificial Intelligence (AI), is one of the most promising interdisciplinary science; it
acts as the main driver for emerging technologies like: robotics, IoT, and big data.
Continuously, its applications are becoming highly involved in daily life, from
predicting cancers, online shopping predictions, and auto correct.

The father of AI is the British logician and computer pioneer Alan Turing. He
proposed a ‘Turing test’ in 1950 designed to provide an operational definition of
intelligence. A necessary tenant of the Turing test is that the computer does not
have to think as we think. Instead, the computer must simulate intelligence to be
indistinguishable from our intelligence. If a machine passes Turing test, it is said
to be intelligent. But no machines have completely passed this test as of yet [37].

2.4 Machine learning
Machine learning is a branch of artificial intelligence, simply put by Former Chair
of the Machine Learning Department at Carnegie Mellon University, Tom M.
Mitchell as follows : “Machine learning is the study of computer algorithms that
improve automatically through experience.”[38]

Machine learning uses historical data as input and predicts the expected output.
There are three types of machine learning: supervised learning, unsupervised
learning, and reinforcement learning.

Supervised learning is the most basic type of machine learning; here, the algorithm
is trained on labeled data, it finds relationships between the parameters given
(training datasets and labels). In unsupervised learning, the algorithm is trained
on unlabeled data, thus creates relationships between any two data points. Lastly,
reinforcement learning is where the algorithm improves upon itself learning from
new situations using the trial-and-error method. Desirable outputs are “rewarded”,
and non-desirable outputs are “punished”.

Classification problems belong to the supervised learning category, and they are
defined as the process of predicting the class (output) for a specific series of
features(inputs). This thesis implements supervised learning as the dataset
includes labeled gesture data which is a supervised classification task.

2.4.1 Supervised learning
The input variables are denoted as input features, whereas the output variable is
denoted as a target. A pair of input features and target variable is called the
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training set. A validation dataset is a separate section of the dataset (usually
20-30%) used to estimate model skill while tuning its hyperparameters.

2.4.2 Classification
In machine learning, classification refers to a predictive modeling problem where a
class label is predicted for a given example of input data [39].

2.4.3 Deep learning
Deep learning is a subset of machine learning, which on the other hand, is a subset
of AI. Deep learning is inspired by the biological neurons of the human brain.
Therefore, deep learning algorithms try to draw the same conclusions as the
human brain by analyzing the data. Achieving the goal of deep learning requires a
multi-layered structure called a neural network.

Figure 2.13: Deep Neural Network

Why deep learning is so popular

The first advantage of deep learning over machine learning is that it removes the
need for feature extraction, which is usually quite complex. All machine learning
algorithms are called flat algorithms, which means they can’t be applied to raw
data (.csv, images, etc.). On the other hand, deep learning models are capable of
learning directly from the raw data.
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Figure 2.14: Deep learning vs. machine learning [40]

The second advantage of the deep learning models is that they manage to increase
their accuracy with the increasing amount of training data, whereas traditional
machine learning models such as Support Vector Machines (SVM) and Naive
Bayes classifiers stop improving after a saturation point.

Figure 2.15: Deep learning algorithms [40]

16



State of the art

Perceptron

The perceptron was first introduced by American psychologist Frank Rosenblatt in
1957 at Cornell Aeronautical Laboratory [41]. He worked on the model introduced
by Warren McCulloch and Walter Pitts [42] in 1943, where they disputed that
neurons with a binary threshold activation function were comparable to first order
logic sentences [43].

He was also inspired by the work of Donald Hebb, which later became referred to
as Hebb’s rule. Hebb’s rule states that “When an axon of cell A is near enough to
excite a cell B and repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased” [44]. Rosenblatt’s model of a
perceptron was learning in the “Hebbean” sense through the weighting of inputs.
Figure 2.16 illustrates the mathematical model for the perceptron and its
biological inspiration.

Figure 2.16: Biological inspiration for the perceptron [45]

Feed-forward networks

In feed-forward networks, information streams from the left to the right of the
model, as in Figure 2.15. The input features x are used to compute the responses
of the first layer through an activation function. These computed values are then
fed into the next hidden layer as inputs and this process is performed by all
neurons in all layers until the output layer, whose neuron output, is the result of
the network:

z =
NØ
i

xiwi + b (2.2)

aout = f(z) (2.3)
where w is weight and x is the input and f is the activation function
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Activation function

The activation function defines the output of a node given an input or set of
inputs. The activation functions that are widely used are the Sigmoid, Piecewise
Linear, ReLu, and Softmax. ReLu and Softmax are the most popular.

ReLu is famous as the function is one of the most widely used, and it has proven to
be faster and more efficient for large neural networks due to its linear nature [46].
Lastly, produce a good approximation of a target function often a highly nonlinear
function is needed; usually, the sigmoid function is used for the output layer.

Figure 2.17 illustrates a summary of some available activation functions in Keras.
Keras is a powerful and easy-to-use free, open-source Python library for developing
and evaluating deep learning models [47].

Figure 2.17: List of activation functions available in Keras [40]
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Loss function

When the forward propagation is performed to form the initial prediction, an error
function (E) called the Loss function determines how far the result is from the
actual value. There are two commonly used Loss functions in Keras:

E(y, ŷ) = −
kØ

i=1
yi.log(ŷi) (2.4)

E(y, ŷ) = 1
m

mØ
i=1

(yi − ŷi)2 (2.5)

where m is the total number of training examples and k is the output size, and y
is the target label, and ŷ is the predicted value. Each equation works for a
particular type of problem. Hence,Equation 2.4 represents categorical
CrossEntropy ,is used in classification problems,while Equation 2.5 a Mean
Squared Error,is used for regression.

The goal then becomes to find a set of weights that reduces the value of E over the
whole training set. The mean of the Loss function utilized to all samples of the
training test is known as the Cost function. Individual weight impact on the loss
function is determined via backpropagation.

Backpropagation

In order to obtain the optimal set of weights, backpropagation is used.
Backpropagation is an efficient method of computing the first derivative of the
error function with respect to the neural network parameters. It works by
computing the gradients at the output layer and using those gradients to compute
the gradients at the previous layer, and so on.

Figure 2.18: Forwardpass and backwardpass in backpropagation [45]
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Learning rate

The learning rate is a hyperparameter that controls how much we adjust the
network weights concerning the loss gradient. In other words, the learning rate is
the size of steps taken to reach the minima [40]. In the case of using a low learning
rate, this means the gradient descent takes many steps to converge and can be
stuck in a plateau region. On the other hand, when the learning rate is too high,
the gradient descent fails to reach the minimum.Both cases are shown in Figure
2.20.

Figure 2.19: Gradient descent with small (top) and large (bottom) learning rates
[45]

Leslie N. Smith [48] demonstrated that it is possible to estimate a reasonable
learning rate by training the model initially with a very low learning rate and
increasing it (either linearly or exponentially) at each iteration.

If the learning is recorded at each iteration and plotted as in the Figure 2.20, there
will be a point where the loss stops decreasing and starts to increase.
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Figure 2.20: Learning rate [48]

Epochs

The number of epochs is a hyperparameter that defines the number of times that
the learning algorithm will operate on the entire training dataset. One epoch
means that each sample in the training dataset has had an opportunity to update
the internal model parameters [39].

Batch Size

The batch size defines the number of samples propagated through the network
after which parameter update happens [39]. Good default for batch size might be
32,64,128,etc.

Optimizers

Optimizers are algorithms used to change the weights and the learning rate in
order to reduce the loss. There are different types of optimizers. Some are classic
optimizers such as Gradient descent and Stochastic gradient descent (SGD), and
there are adaptive gradient descent algorithms such as Adagrad, Adadelta,
RMSprop, Adam.Adam optimizer is used in this thesis.

Adaptive moment estimation (Adam) was presented by Diederik Kingma from
OpenAI and Jimmy Ba from the University of Toronto in 2015 [49].

They described the benefits of using Adam on non-convex optimization problems,
as follows.

• It is straightforward to implement and computationally efficient.
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• It is well suited for problems that are large in terms of data and parameters.

• It is appropriate for problems with very noisy/or sparse gradients.

“Adam computes individual adaptive learning rates for different parameters from
estimates of first and second moments of the gradients” [49].

In [49], Adam was demonstrated empirically to show that convergence meets the
expectations of the theoretical analysis. Adam was applied to the logistic
regression algorithm on the MNIST digit recognition and IMDB sentiment analysis
datasets, a MLP algorithm on the MNIST dataset, and Convolutional Neural
Networks on the CIFAR-10 image recognition dataset. The authors conclude:
“Using large models and datasets, we demonstrate Adam can efficiently solve
practical deep learning problems.”[49]. The performance of different optimizers is
shown in Figure 2.21 .

Figure 2.21: Comparison of Adam to other optimization algorithms training a
MLP [49]

2.4.4 Categorical data
Categorical data are variables that contain label values rather than numeric values
such that each value represents a different category [39]. Many machine learning
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algorithms require all inputs and output variables to be numeric. This leads to
why one needs to convert the categorical data to numerical form. There are two
methods to convert the categorical data.

• Ordinal coding: here, each different category is assigned to an integral value,
for example, place: “first” is 1, “Second” is 2, and “third” is 3. The drawback of
this method is allowing the model to assume a natural order between categories
and leads to poor performance in the case where no ordinal relationship exists.

• One hot encoding: it is preferable when there is no ordinal relationship between
categories. This is the method considered during this thesis, taking our gesture
labels as an example: A “1” value is located in the binary variable for the
gesture and “0” values for the other gestures.

Gestures Left Right Up Down CW CCW Unknown
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

Table 2.1: Example of gesture labels using one hot encoding

2.4.5 Multi-layer perceptron
A MLP is a feedforward artificial neural network model that maps input data sets
onto a set of appropriate outputs. An MLP consists of multiple layers of simple
nodes that interact using weighted connections [50].

The MLP can work as a universal approximator [51], and it is fast to implement
and require lower CPU utilization compared to other approaches such as
Convolutional neural network (CNN), recurrent neural network(RNN), etc.

2.4.6 Overfitting and underfitting
An essential consideration in machine learning is how the model generalizes to new
data. By generalizing how well the model works on unseen data.
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There are terms used in machine learning when speaking about how well a
machine learning model learns and generalizes new data, namely overfitting and
underfitting. Overfitting and underfitting are the two most significant causes of
poor algorithm performance.

Underfitting happens when the neural network cannot accurately predict the
training set, not to mention the validation set.Underfitting can be avoided by
adding more training samples .

On the other hand, overfitting is when the neural network is good at learning the
training set but is unable to generalize to unseen examples. Overfitting can be
avoided by early stop (stop the training when the model starts to over fit)and
adding dropouts (a hyperparameter that randomly prevents from learning a
certain percentage of neurons in every training iteration).
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Chapter 3

Technologies

3.1 Technology specification
This chapter presents the research methodology adopted in this dissertation,
followed by an overview of the gesture recognition system design and software and
hardware requirements specification.

3.1.1 Technologies selection criteria
For this dissertation, it’s crucial to select a technology that can be used in gesture
recognition. There are many technologies already on the market, and the selection
of the technologies will be based on:

• Availability in the market

• Detection range

• Size

• Cost

• Efficiency

3.1.2 Selection of technology
Based on the criteria defined above and taken into account market evaluation,TOF
technology was chosen.

Other technologies were taken into account such as IR and capacitive technologies
that will used for comparison purposes.
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3.1.2.1 TOF vs other technologies

Based on the three options considered ,a general comparison is reported in the
table 3.1.

Capacitive IR TOF
size/Weight Small/light Small/light Small/light
Mechanical integration Complex Easy Easy
Signal amplitude No Yes Yes
Real distance output No,unprecise No (Com-

puted)
Real distance
in mm

Minimum distance 0cm 0cm 0cm
Maximum distance Few cms 20cm Up to 4 meters
Reliable (vs objects color
and reflectance)

No, may detect
target in all
directions

No, impacted Yes

Reliable (vs material
finish and roughness)

No,sensitive to
body or object
change

No, angular de-
pendency

Yes, angular
dependency

Table 3.1: Comparison of capacitive ,IR and TOF technologies

Referring to the Table 3.1 ,it is possible to highlight the advantages of TOF in
terms of distance ,range as well as reliability.

3.1.3 Hardware selection and specifications

3.1.3.1 Selection of sensing devices

After market surveying and taking into consideration the detection range and
cost.Four sensors have been selected for analysis and development ,as illustrated in
the Figure 3.1.
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(a) APDS9960 (b) Flick hat (c) VL6180 (d) VL53L3CX

Figure 3.1: Sensing devices

The first sensor is APDS9960 Melopero in Figure 3.1a.This sensor is an IR sensor
which has the ability to detect up, down, right and left gestures or more complex
gestures.

The second sensor is MGC3130 in Figure 3.1b.It is the first electrical field (E-field)
based sensor; it features a detection range of 10 cm. Moreover, it allows the
acquisition of positional data.

The Flick hat board contains MGC3130, which allows the following gestures: left,
right, up, down swipes as well as rotational gestures clockwise(CW) and
counterclockwise(CCW).

The third sensor is a TOF sensor named ST VL6180 in Figure 3.1c. This sensor
can provide absolute distance independent of target reflectance and ranges up to 2
meters or 6 meters with reduced resolution.

The sensor in the Figure 3.1d is VL53L3CX which works using the same
technology as the third sensor. It has an accurate range (up to 5 meters) and can
detect multiple targets.

3.1.4 Criteria for the selection of development board
The selection of the development board depend on number of factors ,which are
listed below :

• Availability in the market

• Cost

• Performance

• Communication protocols (I2C,SPI and UART)
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3.1.5 Selection of development board

Flick hat is compatible the raspberry pi,therefore the only development board can
be used is Raspberry pi.The model that is used is Raspberry pi4 model B Figure
3.2,owing to Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz

Figure 3.2: Raspberry Pi4-Model B

The development board Wemos D1 R2 Figure 3.3 has been utilized with
APDS-9960 because of its cost and compatibility with Arduino.

Figure 3.3: Wemos D1 R2

The development board STM32F401RE in Figure 3.4 from ST,which will be used
with time of flight sensors VL6180 and VL53L3CX. It was picked due to its
architecture ARM Cortex M4 and its compatibility with TOF sensor’s expansion
board.
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Figure 3.4: STM32F401RE

3.2 Software specification
In this section,the development tools and programming languages utilized in the
thesis are illustrated..

3.2.1 Programming languages
Based on the selection of sensing devices and the development board, it was
concluded that C programming and Python language are preferable.Both
languages are supported by most development platforms.

3.2.2 Software platform
STM32Cube IDE
“STM32CubeIDE is an advanced C/C++ development platform with peripheral
configuration, code generation, code compilation, and debug features for STM32
microcontrollers and microprocessors. It is based on the Eclipse®/CDT framework
and GCC toolchain for the development, and GDB for the debugging” [52].

It is described as a set of free tools and embedded software bricks to enable fast
and easy development on the STM32, including a Hardware Abstraction Layer and
middleware bricks.

Arduino IDE
“The Arduino Integrated Development Environment (IDE) is a cross-platform
application (for Windows, macOS, Linux) that is written in functions from C and
C++.It is used to write and upload programs to Arduino compatible boards, but
also, with the help of third-party cores, other vendor development boards” [53].
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3.2.3 System architecture
The overall system design that has been used for the prototyping is shown in
Figure 3.5 below:

Figure 3.5: System Architecture

The architecture comprises the sensing devices, development boards,the PC that is
used to collect measurements, and the DNN that classifies the gestures. Since the
sensors have different technologies and interfaces, the following sections will be
dedicated to discuss each sensor.

• Melopero APDS-9960

The APDS-9960 is a multi purpose sensor that can be used in gesture
detection,proximity sensing, ambient light sensing and color sensing

The sensor uses I2C communication protocol, therefore it is easy to use with
microcontrollers. It operates on a voltage range of 2.4V-3.6V (typically 3.3V)
and consumes a small current of 0.2mA, so it is considered a low power
consumption device.It has a detection range up to 20 cm. Focusing on the
architecture of the gesture engine,it features automatic activation (based on
proximity engine results), ambient light subtraction, crosstalk cancellation,
dual 8-bit data converters, power-saving inter-conversion delay, 32-dataset
FIFO, and interrupt-driven I2C-bus communication.

The APDS-9960 sensor has four photodiodes to collect data from hand
movements. The reflected IR energy, sourced by integrated LEDs, is
converted from motion to digital data. Whenever a gesture is performed, the
IR signal transmitted by the LED is reflected by the obstacle and then
detected by the photodiodes. Then the motion information is converted to
digital data .
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A data set is defined as 4-byte directional block corresponding to U-D-L-R
photodiodes. An interrupt is generated based on data available in the FIFO
[54].Even though the I2C is compatible up to 40Hz (fast mode),this sensor
doesn’t detect the motion of gestures easily.

The directional sensors are designed such that the diode opposite to the
directional motion endures a more significant portion of the reflected IR
signal upon entry, then a smaller amount upon exit [54]. The Figure 3.6
illustrates a downward or rightward motion of a target.

Figure 3.6: Directional swipes [54]

• Flick Hat-MGC3130

Microchip Technology’s MGC3130 is a three-dimensional (3D) gesture
recognition, motion tracking, and approach detection controller based on
Microchip’s patented GestIC@ technology for embedded usage. It enables
user command input with natural hand and finger movements [18].

The sensor has the following key features

– Recognition of 3D hand positional data x,y,z
– Proximity capabilities
– 3D signal processing unit
– The sensor ranges from 0 to 15 cm
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– Position rate : this sensor is able to detect 200 positions/sec
– In order to detect the motion the sensor has only four of five receive (RX)
channels and one transmit channel

– Contains on-chip auto calibration

The MGC3130 Single-Zone 3D Tracking and Gesture Controller Data Sheet
[55] states the following applications for the MGC3130: Audio products,
Notebooks/Keyboards/PC Peripherals, Home Automation, White Goods,
Switches/Industrial Switches, Medical Products, Game Controllers, Audio
Control.

This sensor utilizes an electric field (E-field) that is generated by electrical
charges and spreads in the three dimensions around the surface, carrying an
electric charge.MGC3130 can generate a Tx signal of about 100 kHz, which
corresponds to a wavelength of 3 km with electrode geometries less than
14x14 cm .

The sensor works by detecting variations in a self-generated magnetic field by
the introduction of conductive objects such as fingers.In the Figure 3.7 ,the
field lines are lured by the hand due to the conductivity of the human body
itself and shunted ti the ground.GestIC technology uses a minimum of four
RX electrodes to detect the origin of the electric field variations; the collected
information is used to calculate the position and track movements.

Figure 3.7: Equipoterntial lines of a distorted E-Field [18]
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The maximum range of detection is 15 cm in the perpendicular axis to the
sensor. However, from empirical testing, the range for detection appears to be
consistently less than 3 cm in any direction from the center of the device [56].

“Major drawback of this sensor ,is its sensitivity to changes in ambient
lighting, necessity of readjustment for various species and even degrees of
ripeness, difficulties to recognize objects of interest in heavy foliage and
affection by atmospheric conditions (for, rain,dust etc.)” [57].

STMicroelectronics TOF sensors

STMelectronics is a world leader in TOF solutions,offering 20+ years of
innovation in imaging and optical sensing solutions. In the last decade, ST
has introduced a new generation of high-performance proximity and ranging
sensors based on FlightSense™ ToF technology [58].

ST has pioneered and transitioned TOF technology from its research labs to a
fully industrialized family of market-leading products. Up till today, ST has 4
generations of products and working with more than 50 OEMs as well as
42,000 development kits, circulating among customers and in the market [58].

Figure 3.8: FlightSense™ roadmap

For the purpose of this thesis, two TOF sensors have been elected.
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• VL6180V1

VL6180 is based on ST’s patented technology. It precisely measures the time
the light takes to reach the nearest object and reflect back to the sensor. The
VL6180 is straightforward to integrate and designed for low power operation.

This sensor features a two-in-one optical module (proximity sensor and
VCSEL IR light source 850 µm ). It can range up to 62 cm(depending on the
conditions), independent of object reflectance and ambient light rejection.

Main features definition

This part defines the main features of the VL6180:

Ranging

It is the measurement of the distance between VL6180 and the target.The
sensor provides three options to extend the range with less resolution to make
the sensor adaptable to multiple applications:

– Upscale factor = 1, VL6180 measures distances up to 20 cm with a
granularity of 1 mm.

– Upscale factor = 2, VL6180 measures distances up to 40 cm with a
granularity of 2 mm.

– Upscale factor = 3, VL6180 measures distances up to 60 cm with a
granularity of 3 mm [59].

The range output of VL6180 with each target should be linear with
range.Figure 3.9 shows the typical output from VL6180 for different
targets(Munsell gray target) at different distances; the test has been
performed in the dark with no cover glass. It is possible to have an offset
error and can be corrected by manual offset calibration, which will be
discussed next.

Offset error

Offset error is the difference between the actual range results and the actual
target as shown in Figure 3.10 .
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Figure 3.9: Range output vs. target distance [59]

Figure 3.10: Range Offset [59]

Crosstalk error

Crosstalk can basically be defined as a signal bounced back to the sensor that
was not reflected from the target. Optical crosstalk can come from a direct
path, bouncing within a glass cover or window or from reflections in the
cavity surrounding the optical components.
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Figure 3.11: Crosstalk compensation error [59]

Offset and crosstalk calibration will be discussed in detail in the next chapter.

Max convergence time

The maximum convergence time represents the time to run measurements. If
the max convergence time is reached, the ranging is aborted. In VL6180, the
convergence time is 1-63ms.By default the max convergence time is set to
49ms during device power-up.

Inter-measurement period

The inter-measurement time is the time from the start of one ranging
operation to the next one.

Wrap around filter (WAF)

In specific situations, when the target is a mirror or very reflective metal, the
VL6180 gets a wrong distance(wrap around effect). The goal of the Wrap
around filter is to recognize this wrap around effect and filter it by returning
a non-valid distance.

Early convergence estimate (ECE)
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Early convergence estimate (ECE) is a programmable feature designed to
minimize power consumption when there is no target in the field of view
(FOV). ECE works by calculating the rate of convergence 0.5 ms after the
measurement has been started; if the return signal reported by the device is
below the set ECE threshold, the measurement is aborted [59].

Figure 3.12 shows an example of the current consumption of the VL6180 with
and without ECE feature enabled and for a range of inter-measurement
periods. In this example, the max convergence time is 50 ms. The ECE ratio
is set to 95% [59].

Figure 3.12: VL6180 current consumption versus ECE feature and inter-
measurement period (in mA) [59]

Max detection range (Dmax)

Maximum detection range (Dmax) function is able to define the maximum
distance up to which a 17% reflective target is detected with the current
ambient light condition.
When the ambient light level increases,Dmax decreases, so a target may not
be detected by the VL6180 because it is too far for a given ambient light
condition. When no target is detected, no valid distance is reported.

• VL53L3CX

The VL53L3CX is another ToF from ST and embeds the company’s
third-generation FlightSense technology.It combines the benefits of a
high-performance proximity sensor with ranging capability up to 3 m,
whatever the target color and reflectance. In addition, the VL53L3CX has
superior linearity that increases short-distance measurement accuracy[60].
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The miniature reflowable package integrates a single photon avalanche diode
(SPAD) array and physical infrared filters to achieve the best ranging
performance in various ambient lighting conditions, with a wide range of
cover glass windows[60].

The main features of the sensor are:

– Emitter: 940 nm invisible laser (VCSEL) and its analog driver

– Low-power

– Size: 4.4 x 2.4 x 1 mm

– Histogram based technology

– Up to 300 cm+ detection with full field of view (FoV=25°)

– Immune to cover glass crosstalk and fingerprint smudge at long distance

– Dynamic fingerprint smudge compensation

– Multi target detection and distance measurement

Detection cones and optical field of view

Extended ranging distance enables a (very) large target detection area to fit each
application. Figure 3.13 presents the detection radius available for each of the ST’s
TOF sensors.

Figure 3.13: TOF sensors FOV
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Timing budget

The timing budget is defined as the programmed time required by the sensor to
perform and return ranging measurement data. Figure 3.14 illustrates the ranging
sequence including the time budget and inter-measurement time.

Figure 3.14: VL53L3CX ranging sequence [61]

Distance modes

The user can determine the optimum distance depending on the application. The
datasheet [60] provides benefits of each range.

Distance mode Benefit
Short Better ambient immunity

Medium(Default) Lower power Consumption
Long Maximum distance

Table 3.2: VL53L3CX distance modes

VL53L3CX calibration

The VL53L3CX requires the same calibration as VL6180 which will be discussed
in section 4.1 .

Histogram

The histogram is based on 24 bins, where the bin is a “time window” outlining the
number of photons received by the sensor during a specific time.

The histogram enables multi-object detection. However, to detect two objects, the
separation between them must be at least 80 cm(each detected object is expressed
using three bins).
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Figure 3.15: How multiple objects are represented in histogram using VL53L3CX
[60]

Histogram enables accurate distance output whatever the smudge or
crosstalk.Beyond 80cm,the crosstalk and smudge has no impact on the distance
measurements. Therefore,crosstalk compensation is needed below 80cm .

(a) Crosstalk Management (b) Smudge detection

Figure 3.16: Smudge detection and crosstalk immunity
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Chapter 4

Design and realization

This chapter describes the design and realization phases of this work.

The implementation process of this thesis can be divided into hardware and
software. In terms of hardware, the main steps are related to the device
calibration before measurements and and the creation of the prototype. Regarding
the software, the main focus is on presenting the ranging implementation steps,
mentioned in the previous chapter. Furthermore,the chapter illustrates dataset
collection and algorithm used in gesture recognition.

4.1 TOF sensor calibration procedure
To guarantee the best performance, different calibration parameters are required.
Mainly, offset calibration is necessary for all cases,but the calibration is desired
only in case of cover glass. The crosstalk causes internal reflection, and the sensor
will detect this as unwanted signals.

4.1.1 Calibrating the offset
The TOF sensor requires a unique part-to-part range offset correction. The
factory-calibrated Non volatile memory (NVM) offset is used by default. Manual
calibration is only required if the offset is incorrect, resulting in incorrect range
measurements [59]. In order to achieve the offset calibration, the following
procedure was performed.

• A white target was placed at a 50mm distance from the sensor.

• Ten range measurements were collected, and the mean of the range results
was calculated.
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• The following equation is applied to calculate the offset:

Offset = Target Distance (50mm) − Average Range

• Store the offset in the host memory to be used at each device boot.

Figure 4.1: Offset calibration environment [59]

4.1.2 Calibrating the crosstalk compensation factor
The cover glass in front of the TOF sensor introduces crosstalk. The resulting
stray light disrupts the range measurement. However, it can be corrected by
applying crosstalk compensation. An experiment is required to determine a unique
crosstalk compensation factor.

In the following, the procedure for calibrating crosstalk is described:

• The offset calibration had to be performed before the crosstalk calibration
since incorrect offset calibration leads to inaccurate crosstalk calibration.

• A black target was placed at a 100mm away from the sensor.

• For reliable results measurement,ten measurement has been collected and
mean of the range results and return signal rate were found.
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• The following equation is applied to calculate the crosstalk:

Crosstalk[Mcps] = Rtn Rate[Mcps] × (1-Average range)

• Store the value in the host memory to be used at each device boot.

Figure 4.2: Crosstalk compensation environment [59]

4.2 VL6180
This section explains how multiple VL6180 sensors can be used on a board design
while only using a single I2C interface to communicate with all the devices.
Each VL6180 device has both a reset pin GPIO0 and an interrupt pin GPIO1 ,
which can be used to enable this setup.
Process to initialize VL6180 devices is explained in Figure 4.3, where X represents
sensor number [0,1,2].

• Take sensor number 0 out of rest by bringing reset pin high.
• Change the address of device 0,the default address value 0x52,with the

following equation:

Final I2C Address = 0x52 + 2 (X+1)
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• To ensure it is working correctly,read device model ID with its new I2C
address.

• If device is communicating on its new I2C address then repeat the steps 1-3
for each sensor.

Figure 4.3: Initialization of VL6180 devices

The VL6180 runs in interrupt mode, which means that the CPU is idle unless the
interrupt pin is high (data ready).

The multi-sensor range code workflow is as follows.
• The initialization is demonstrated in Figure 4.3.

• All pending interrupts are cleared, and the calibration parameters are set.

• The sensors start measuring the target distance.

• When the measurements are ready, the CPU is notified by setting the
interrupt pin to low.

• The data is transmitted via UART as packets, each data packet contains 2
start bytes,a payload of 3 bytes, and 2 stop bytes.

• The interrupt is cleared and the CPU is idle until a new interrupt arrives.
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Figure 4.4: Prototype ranging measurement flow

4.3 VL53L3CX
The idea of selecting two types of TOF sensors is to test the performance and
decide which sensor is more suitable for the application of interest.

4.3.1 VL53L3CX ranging flow
VL53L3CX system is comprised of the VL53L3CX module and a bare driver that
contains functions accessible to the host.
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The VL53L3CX can operate using either polling or interrupt but since the
interrupt allows faster data transfer it will be used. Moreover, the mechanism
utilized in the measurement is illustrated in Figure 4.5 is referred to as the
handshake mechanism (when data is ready, the sensor raises an interrupt, the host
acquires the data and enables the next interrupt by clearing the interrupt and
enabling the next ranging).

Figure 4.5: VL53L3CX ranging flow
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4.3.2 VL53L3CX multi sensor ranging
The Expansion Board allows the user to program three of the VL53L3CX sensors,
and the microcontroller controls the sensors through the I2C bus. Since the
application is using multiple sensors using interrupt mode , the datasheet [60]
provides solder drop configuration as follows: “The VL53L3CX interrupt of the
left and right breakout boards, GPIO1L and GPIO1R, can be activated by
fitting U10 and U15 respectively.”

Figure 4.6: X-NUCLEO-53L3A2 Expansion Board connector layout [60]

4.4 Prototype design
This section aims to describe the sensor prototype design, which can be utilized in
various applications. While designing the prototype, minimizing the number of
sensors was taken into account. An equally important consideration was to
maintain an excellent recognition accuracy of multiple gestures.

The VL6180 is chosen as the prototype TOF sensor to carry out the distance
measurement. The choice is mainly due to VL53L3CX having a longer default
range than its counterpart. Therefore, most of its measurement range would be
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not be utilized. While on the other hand, the VL6180 range matches the desired
operating range.

In addition to the steps of the selection criteria explained above, two essential
factors had to be taken into consideration:

• the FOVs of the sensors shall not overlap to avoid crosstalk.

• there should not be any dead zone between the sensors where motion is not
detectable.

The horizontal array of three VL6180 sensors stand out as a suitable prototype
Given that FOV = 25°as shown in Figure 4.7 ,it has been found that best distance
between the sensors is 4.4cm.

Figure 4.7: VL6180 outline drawing [62]

The proposed prototype is shown Figure 4.8,where the black boxs represent the
sensors,red cones represent the FOV of the sensors. The brown box contains the
development board STM32F401RE along with the VL6180A1(Expansion Board)
that is connected to the PC using USB mini(shown in Figure 4.9)

4.5 Data collection
Each gesture execution time varies according to its complexity and speed of
execution. In other words, each gesture takes a specific time or equivalent number
of measurement samples. To find a sufficient number of samples that capture all
gestures, including their variation, the measurement time of each sensor is
investigated. Additionally, the chosen gestures are introduced.
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Figure 4.8: Proposed TOF prototype

Figure 4.9: VL6180A1 Expansion Board plugged on a STM32 Nucleo board

4.5.1 Measurement Timing
Choosing longer measurement ranges may lead to capturing undesired objects. On
the contrary, selecting shorter spans may restrict the user working space.
Therefore, the range used in VL618 is 20cm.

Figure 4.10a, gives a breakdown of total execution time for a single range
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measurement:

• The pre-calibration phase is fixed (3.2 ms).

• The range convergence time is variable and depends on target distance and
reflectance as shown in Figure 4.10b .

• The recommended readout averaging period is 4.3 ms. Readout averaging
helps to reduce measurement noise.

Effective max convergence time depends on the actual convergence time plus
readout averaging sample period setting.

(a) Total range execution time [62] (b) Range convergence time (ms) [62]

Figure 4.10: Execution and convergence time

The paper [63] indicates that the typical human hand reflectance is higher than
50%. Moreover, Table 4.10b does not specify the convergence time for human
hands nor distances above 100mm. However, it shows the convergence time for
objects with 17% and 88% reflectance. Given all the previous information, it is
possible to interpolate the data using a second-order polynomial to estimate the
convergence time for a human hand up to 200mm as demonstrated in Figure 4.11.
The result of the interpolation is shows in Table 4.1.

Examining the worst-case scenario where the hand is 200 mm from the sensor, in
this case, calculations are done as follows:

Max convergence time = 7.92 + 4.3 = 11.2ms

Total execution time = 3.2 + Max convergence time = 15.42ms
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Figure 4.11: Interpolation for range convergence time

Figure 4.12: Reflectance of human-body [63]

4.5.2 Gestures
The chosen gestures included 4 directional swipes and 2 rotational movements as
in Table 4.2.

These gestures are collected by 5 users, who will be collecting the training dataset.
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Range(mm) Target reflectance 50%
10 0.15
20 0.24
30 0.37
40 0.53
50 0.73
60 0.96
70 1.23
80 1.53
90 1.87
100 2.24
110 2.65
120 3.09
130 3.57
140 4.09
150 4.64
160 5.22
170 5.85
180 6.50
190 7.19
200 7.92

Table 4.1: Range convergence for 50% reflectance

Moreover, to understand how fast each user can make each gesture, an analysis is
first carried out on experimentally recorded gestures to determine the maximum
number of data samples needed to capture the longest gesture.

A Python script was executed to register the time instance and the number of
samples when the hand enters and leaves the sensor FOV.

The gestures that took the longest time are the rotational(CW and CCW). The
number of samples needed to capture all of the variety of rotational gestures was
100 samples.

STM32CubeMonitor is a tool that allows real-time sampling and visualization of
user variables while the application is running. We define the following flow as in
Figure 4.13 to monitor and visualize live monitoring of the three TOF sensors
using STM32CubeMonitor. Figures 4.14 shows a plot of the three TOF sensors
distance measurement Vs time for each gesture.
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Gesture Description

Swipe left A swipe from the right of the board, over the sensors and
then to the left and out of range of the sensors.

Swipe right A swipe from the left of the board, over the sensor and
then to the right and out of range of the sensor.

swipe up A swipe from the bottom of the board, over the sensors and
then to the top and out of range of the sensors

Swipe down A swipe from the top of the board, over the sensor and
then to the bottom and out of range of the sensor

Clockwise The hand or just a finger is moved over
the right sensor in the clockwise direction

Counterclockwise The hand or just a finger is moved over the right sensor
in the counterclockwise direction

Unknown The hand moves rapidly,or without specific direction

Table 4.2: Description of proposed gestures

Figure 4.13: STM32 monitor
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(a) Swipe left (b) Swipe right

(c) Swipe up (d) Swipe down

(e) Clockwise gesture (f) Counter clockwise gesture

(g) None

Figure 4.14: Gestures characteristics in time
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4.5.3 Handling missing data

Before the user performs any gesture, no data are collected. However, when the
hand passes over one of the TOF sensors, 100 consecutive measurement samples
are recorded. The recorded set of data can either be used for training, validation
or real-time recognition. If the motion ends by exiting the FOV of all sensors
before completing 100 samples, then the remaining data are filled with the
maximum value of the sensor. The maximum value is selected in this case because
the default measurement of the TOF when no object is present in its range is the
complete range. Figure 4.15 demonstrate using a flow chart the mechanism for
handling missing data.

Figure 4.15: Flow chart data collection

Finally, the training dataset consists of 17,500 balanced samples collected by 5
users in different light conditions. Each TOF training set contains 100 samples.
Additionally, each sample is composed of 3 TOF measurements from the left, right,
and center sensors. The 300 TOF measurements are used as input features to the
DNN model. Furthermore, each training, validation, or testing set has a
corresponding label indicating which gesture the input set belongs.
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4.6 Flick Hat 3D tracking and gesture hat
The core hardware that is explored in this section is the MGC3130 Flick Hat.As
presented in Figure 4.16, the Flick Hat gesture recognition is initiated by a hand
or finger movement in the operational sensor range. Subsequently, the MGC3130
translates the change of electric field due to hand movement to 3-dimensional
position data. Afterward, the set of position data is forwarded to the DNN model
to recognize the executed gesture.

Figure 4.16: Flick Hat gesture recognition flow

The MGC3130 microchip does not provide the measurement of the raw electrodes
to the user directly. However, these measurements are converted via the library to
meaningful information. Therefore the details of electric field computation are
hidden, and the chip is regarded as a black box.
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The first step in the project is to access the 3-dimensional data from the
MGC3130. Furthermore, the Colibri suite in the chip acts as a preprocessing
module. It has three main functionalities, listed below.

• Approach detection

It is a power-saving feature of Colibri suite; it sends MGC3130 to sleep mode
and scans the sensing area periodically to detect the presence of a hand.

• Position tracking

It provides the three-dimensional hand position over time. The absolute
position is provided regarding the origin of the Cartesian coordinate (x,y,z).
The origin of the coordinate system is defined as the lower-left
corner(south-west) at the surface. Positional tracking data is continuously
obtained up to 200 positions /sec.

• Gesture recognition

The suite detects and classifies the hand movements using a stochastic
classification based on Hidden Markov Model(HMM). The set of gestures
includes swipes in the four directions, namely left, right, up, down, in
addition to round-shaped hand movement.

The last functionality of the Colibri suite will not be used since the project
objective is to develop an MLP for gesture recognition.

Aurea GUI

Microchip also provides Aurea GUI, which supports visualizing the hand’s position
in space and its history in a 3-dimensional plot as in Figure 4.17. The GUI has no
option for customized scripts. The GUI user guide [64] provides detailed
information about its functionalities.

57



Design and realization

Figure 4.17: Aurea GUI [64]

Data preparation and collection

To collect the coordinates x,y,z of the hand motion, the flick hat library flicklib.py
is modified such that each gesture example has a window of 200 positional data to
record, as in Equation 4.1:


X1,1, Y1,1, Z1,1 . . . X1,200, Y1,200, Z1,200
... ... ... . . .

... ... ...
... ... ... . . .

... ... ...
XN,1, YN,1, ZN,1 . . . XN,200, YN,200, ZN,200

 (4.1)
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In the case of hand, motion is fast, and the 200 data are not completed; the
remaining data is filled with the last Cartesian coordinates provided by the sensor.

The datasets for the sensor training includes 7,000 examples collected by five users
and balanced between the seven classes. One-hot encoding is used for the labels as
in TOF sensors prototype.

4.7 APDS 9960
As explained in Chapter 3, APDS9960 utilizes four directional photodiodes to
measure the reflected IR energy. The proximity sensor ADC converts the reflected
IR intensity to a proximity value as illustrated in Figure 4.18 .This value ranges
from 255 to 0 for nearest and furthest targets, respectively.

Figure 4.18: APDS9960 functional diagram

From datasheet [54],the required time to get one measurement from the four
photodiodes is typically 5ms. Moreover, using experimental data, the longest
gesture takes no longer than one second to be performed on the APDS9960.
Therefore, the number of required measurement samples is 200 to capture all
possible gestures.
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The training dataset consists of 7,000 balanced samples collected by five users. The
total number of features are 800 (200 measurement × 4 photodiodes data) as input
features to the DNN model. Furthermore, each training, validation, or testing set
has a corresponding label indicating which gesture the input set belongs.

4.8 Deep neural netowrk
The DNN that has been implemented within the frame of this thesis used Keras,
and the training is done in Google Colab.

Keras is a powerful and easy-to-use free, open-source Python library for developing
and evaluating deep learning models [47].

Google Colab, is a free online cloud-based Jupyter notebook environment that
allows us to train our machine learning and deep learning models on CPUs, GPUs,
and TPUs [65].

4.8.1 Data pre-processing
First step in any machine learning project is to load the datasets .The datasets are
saved in CSV files with delimiter comma (“,”) character. The datasets are loaded
using numpy.loadtxt() function.Furthermore examples are normalized such that
each value falls between 0 and 1. The normalization of each sensor is done with
the prior knowledge of the specified maximum range of each sensor type as in
Equation 4.2. The pre-processing code is shown in Listing 4.1.

DNormalized = DRaw

Rmax

(4.2)

Where DNormalized is the normalized data ,DRaw is the raw data and Rmax is the
maximum range.

Listing 4.1: Data loading and pre-processing
1 train_samples = loadtxt(’datasets.csv’ , delimiter=’,’ , usecols=range(300))
2 scaled_train_samples=train_samples/200
3 train_labels = loadtxt(’data_Labels.csv’, delimiter=’,’ , usecols=range(7))
4 test_datasets = loadtxt(’test_datasets.csv’ , delimiter=’,’ , usecols=range(300))
5 test_datasets=test_datasets/200
6 test_Labels = loadtxt(’test_Labels.csv’, delimiter=’,’ , usecols=range(7))
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4.8.2 Model architecture
In Keras, it is possible to create a model in two different ways: Sequential pattern
and Functional API. Usage of Sequential pattern is pretty straightforward, as the
model is constructed by adding layers sequentially. It is enough to declare the
input shape in the first layer and the parameters for each layer. On the other
hand, Functional API is used to create a more elaborated model that can have an
inception module or multiple inputs/outputs.

The devised model structure utilizes a sequential pattern with layer setting Dense,
which is the most common type of layer used on MLP models. Furthermore,
dropout is applied to the model, placing a fraction of inputs to zero to reduce
overfitting.

The number of layers in the model and the model size (number of nodes in the
model) represent the parameters. The most reliable way to configure these
parameters for each specific forecasting problem is via systematic experimentation
[39].

Listing 4.2 shows a DNN keras model with 3 hidden layers:

Listing 4.2: keras DNN model with 3 hidden layers
1 model = Sequential()
2 model.add(Dense(35, input_shape = (scaled_train_samples).shape[1:],activation=’relu’))
3 model.add(Dropout(0.2))
4 model.add(Dense(18 ,activation=’relu’))
5 model.add(Dropout(0.2))
6 model.add(Dense(7, activation=’softmax’))
7 model.summary()

4.8.3 Hyperparameter tuning
The problem of interest is a multi-classification problem. One-hot encoding is used
for the labels while the loss function is chosen as CategoricalCrosstropy.

Furthermore, the activation functions used in hidden layers is Relu because it
overcomes the vanishing gradient problem, allowing models to learn faster and
perform better. The output layer is softmax, which is designed for multi-class
classification tasks.

Conceptually, hyperparameter tuning is an optimization task, much like model
training. However, these two tasks are considerably different in practice. When
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training a model, the quality of a proposed set of parameters can be written as a
mathematical formula (usually called the loss function). However, when tuning
hyperparameters, it is impossible to write the hyperparameters quality in a
closed-form formula because it depends on the outcome of a black box (the model
training process) [66].

Therefore hyperparameter tuning is considered problematic. Until a few years ago,
the only feasible methods were grid search and random search. In the last few
years, there’s been a growing interest in auto-tuning. Several research groups have
worked on the problem, published papers, and released new tools.

In the scope of our model, Keras Tuner has been utilized to limit the scope of the
investigation of optimal tuning parameters of the MLP.

Google research has developed the Keras Tuner Toolkit, a user-friendly platform
for the automated search for optimal hyperparameter combinations. Keras Tuner
offers the main hyperparameter tuning methods: random search, Hyperband, and
Bayesian optimization [67].

To start tuning the target model, a hyperparameter space containing the minimum
and maximum value of each parameter must e defined as shown in Listing 4.3.
Using the defined hyperparameter space Keras Tuner then aims to find the
hyperparameters that maximize an objective. In Listing 4.3 the objective the
maximize the accuracy. Moreover, The tuned hyperparameters are number of
nodes in each layer, number of layers and the learning rate.

Listing 4.3: Keras Tuner code
1 def build_model(hp):
2 model = keras.models.Sequential()
3

4 model.add(layers.Dense(hp.Int(’input_units’,
5 min_value=32,
6 max_value=256,
7 step=32), input_shape = (scaled_train_samples).shape[1:]) )
8

9 model.add(Activation("relu"))
10 for i in range(hp.Int(’n_layers’, 1, 4)) : # adding variation of layers .
11

12 model.add(Dense(hp.Int(’units_’+str(i),
13 min_value=32,
14 max_value=512,
15 step=32) ) )
16 model.add(Activation("relu"))
17
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18 model.add(Dense(7))
19 model.add(Activation("softmax"))
20 model.compile(
21 optimizer=keras.optimizers.Adam(
22 hp.Choice(’learning_rate’ ,[1 e−2 ,1e−3 ,1e−4])),
23 loss="categorical_crossentropy",
24 metrics=["accuracy"])
25

26 return model
27

28

29 tuner = RandomSearch(
30 build_model,
31 objective=’val_accuracy’,
32 max_trials=10, # how many model variations to test?
33 executions_per_trial=4, # how many trials per variation? (same model could perform

differently)
34 directory=’project’)
35 # project_name=’Tuning Parameters Results’)
36 tuner.search(x=x_train,
37 y=y_train,
38 verbose=0,
39 epochs=300,
40 batch_size=32,
41 validation_split=0.25
42 )
43

44 #summary
45 tuner.results_summary()

4.8.4 Experimentation and evaluation
In this section ,we will describe the experimental settings and evaluate the
performance of our proposed framework.

In order to test the performance of the 3 different DNN models of the capacitive,
IR, and TOF sensors, additional datasets were created. These datasets were kept
separate from that used for training.

Performance evaluation

The following evaluation metrics are taken into account.

Recall
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A metric that measures the probability that a test will indicate a true positive
case among the positive cases of a system. This metric is also called the true
positive rate or probability of detection, since measures the proportion of positives
that are correctly identified.

Recall = TruePositive

TruePositive+ FalseNegative
= TP

TP + FN

Specificity

It is a metric that measures the probability that a test will indicate a true negative
case among the negative cases of a system. For this reason, the specificity is also
called the true negative rate.

Specificity = TrueNegative

TrueNegative+ FalsePositive
= TN

TN + FP

Precision

Is the number of correct results over the number of all returned results.

Precision = TP

(TP + FP )

F1 Score

it is calculated from precision and recall given by the equation:

F1 Score = 2 ∗ Precision ∗Recall
(Precision+Recall)

Accuracy

It is a metric to measure the probability that a tested set indicate as a true
negative and a true positive among the cases in the study.

Accuracy = TP + TN

(TP + FP + TNFP )
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Confusion matrix

In the area of machine learning and particularly considering the problem of
classification, it is common to use tools like the confusion matrix, also known as
error matrix. It is table that is often used to illustrate the performance of a
classification model on test data for which the true labels are known.

Figure 4.19: Confusion matrix example

The diagonal elements represent the number of points for which the predicted
label is equal to the true label, while off-diagonal elements are those that are
mislabeled by the classifier. The higher the diagonal values of the confusion
matrix, the better, indicating many correct predictions [68].

4.9 Graphical user interface

The GUI application used in the thesis is a virtual instrument cluster built and
developed using Altia Design and Altia DeepScreen [69].
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Figure 4.20: Altia virtual instrument cluster

The GUI is managed by two Python programs (because Altia Python library was
built using Python 3.8)

• The first Python program is developed to predict the gesture from the trained
TOF model. The code writes the predicted gesture in a file.

• Altia provides Python module that wraps some of the Altia API
functions,which allow to control Altia interface from Python prediction
program. Each predicted gestures are used to trigger specific event. Table 4.3
and Figure 4.21 illustrate the effect of each gesture on the GUI.

Gesture Event
Swipe left Display the menu
Swipe right Close the menu
Swipe up Move up in the menu
Swipe down Move down in the menu
CW Rotate the needles of the gauges in CW direction
CCW Rotate the needles of the gauges in CCW direction
Unknown Has no effect on GUI

Table 4.3: Gestures and events on GUI [69]
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(a) Use swipe left gesture to open menu (b) use swipe down gesture to move down in
menu

(c) use swipe up gesture to move up in menu (d) use swipe right gesture to close menu

(e) use CW gesture to increase gauges value (f) use CCW gesture to decrease gauges value

Figure 4.21: GUI controlled by TOF Model predictions
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Chapter 5

Experiments and results

In this chapter, all the experimental results obtained after the implementation and
integration phase of the system are described.

Initially, the tests will be based on the analysis of calibration and the testing of
the different sensors of the system. In this step, it is necessary to test if the
individual elements are working and the system functioning and behavior are
acceptable. Secondly, the architectures of each DNN models are demonstrated,
and the accuracy of each model is evaluated considering accuracy. Thirdly a
comparison between the performance of each sensor is made using the metrics
described in chapter 4 . Finally, the results of the implementation of the gesture
recognition algorithms and the interaction with the GUI system are analyzed.

5.1 TOF sensors calibration and ranging results
This section demonstrates the results of the calibration tests described in section
4.1 for both the VL6180 and VL53L3CX sensors. Moreover, it displays the
measurements after the calibration.

5.1.1 VL6180 calibration and ranging results

The VL6180 allows to customize the calibration as it has been described in chapter
4,Table 5.1 shows the results of offset and crosstalk calibration .

The plots in Figure 5.1 illustrate the actual ranges reported by the sensors after
calibration; the maximum is considered 400 mm (upscale=2).
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VL6180 sensor Offset (mm) crosstalk (Mcp)
Right 10 0.68
Center 1 0.92
Left 13 1.85

Table 5.1: VL6180 calibration results

(a) Left sensor

(b) Right sensor

(c) Center sensor

Figure 5.1: VL6180 ranging after calibration

From the Figures, it can be concluded that the sensors show very reliable results
up to 20 cm and not dependant on the factors such as reflectance.
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5.1.2 VL53L3CX calibration and ranging results
The Table 5.2 shows the offset and crosstalk calibration results of VL53L3CX
sensors, whereas Figure 5.2 illustrates the ranging results (short mode =1.3 meter)
after the calibration is performed.

VL53L3CX sensor Offset (mm) crosstalk (Mcp)
Right -6 0.04
Center -2 3.03
Left -8 0.5

Table 5.2: VL53L3CX calibration results

(a) Left sensor

(b) Right sensor

(c) Center sensor

Figure 5.2: VL53L3CX ranging after calibration

Both TOF sensors show good distance measurement, but the VL6180 was chosen
for comparison with the other sensors because it has a suitable range for gesture
recognition. In contrast, the VL53L3CX has an extendable range of 1.3-5 meters.
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5.2 Monitoring sensor data
Before starting the data collection for MLP, it is necessary to analyze the behavior
of sensors; an identical ranging test is conducted for each sensor.

VL6180

To test the API developed for this sensor, a initial test consists in configuring and
collecting data from the sensing device. This data is sent using UART in packets
(the data is transmitted in hex format) as in Figure 5.4.

Figure 5.3: VL6180 serial data

VL53L3CX

To test the API developed for this sensor, an initial test consists in configuring
and collecting data from the sensing device.The Figure 5.4 illustrates how the
VL53L3CX sensors can detect a target at 2200mm.
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Figure 5.4: VL53L3CX serial data

The test was successful, because the sensing devices were well configured

MGC3130

To test the API developed for this sensor, a initial test is used to collect the data
from the sensing device.The device is used to obtain the hand trajectory expressed
through the hand positional data. Figure 5.5 shows the sequence of points of a
right swipe.

Figure 5.5: MGC3130 serial data
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APDS9960

In order to detect the direction of the motion, the four diode values are recorded
from the beginning to the end of the gesture. Figure 5.6 shows the results for right
swipe.

Figure 5.6: APDS9960 serial data

5.3 VL6180 prototype DNN
The dataset includes 17,500 balanced examples collected by five volunteers (each
volunteer repeated each gesture 500 times). The dataset is split such that the
training dataset contains 12,250 examples, while the validation dataset contains
5,250 examples. Three of the volunteers collected the test dataset, and each
volunteer was asked to perform each of the gestures 50 times (3 × 50 × 7=1050
examples ).

The Table 5.3 summaries the final architecture of the MLP model obtained from
Keras Tuner to get the best results.

Layer Nodes Activation function
1 350 ReLU
2 250 ReLU
3 100 ReLU

Output 7 Softmax

Table 5.3: MLP model architecture for TOF
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The model learning curves have been plotted in Figures 5.7 and 5.8 The model
accuracy reached a value of 95%.

Figure 5.7: TOF model accuracy over epochs

Figure 5.8: TOF model loss over epochs

From Figure 5.8, we can conclude that the training loss decreases to a point of
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stability . Additionally, the validation loss drops and has a small gap with the
training loss.

5.4 MGC3130 DNN
Like in the previous case, five users collected the datasets from MGC3130. The
first dataset includes 7,000 balanced instances divided into a training dataset
(4,900 examples) and a validation dataset (2,100 examples). The second dataset is
a testing dataset collected from the same volunteers and includes 350 examples (5
× 10 × 7). The following Table reports the architecture after using Keras Tuner:

Layer Nodes Activation function
1 85 ReLU
2 45 ReLU
3 32 ReLU
4 32 ReLU

Output 7 Softmax

Table 5.4: MLP model architecture for MGC3130

Figure 5.9: MGC3130 model accuracy over epochs

From the Figure 5.9, the model accuracy is 94% on both the training and the
validation set.
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Figure 5.10: MGC3130 model loss over epochs

5.5 APDS9960 DNN
Like in the previous case, five users collected the datasets from the APDS9960.
The total dataset includes 7,000 balanced instances divided into a training dataset
(4,900 examples) and a validation dataset (2,100 examples). The same volunteers
collected a test dataset contains 175 examples (5 × 7 × 5). The Table 5.5 reports
the architecture after using Keras Tuner :

Layer Nodes Activation function
1 60 ReLU
2 55 ReLU
3 40 ReLU
4 20 ReLU

Output 7 Softmax

Table 5.5: MLP model architecture for APDS9960

From Figure 5.12, the model accuracy is 93% on both the training and the
validation set.Even though, the accuracy is good ,there is a large gap between test
and train results.
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Figure 5.11: APDS9960 model accuracy over epochs

Figure 5.12: APDS9960 model loss over epochs

5.6 Evaluation and analysis
The F1-Measure analysis and confusion matrix, described in Chapter 4, was used
to analyze the gesture recognition results for each sensor.

VL6180
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The prediction (P), recall (R),accuracy (A), and F1 values were calculated for each
gesture recognized by the ST VL6180 sensor: left,right,up,down,CW,CCW and
unknown. The values of the four scores were calculated, and overall accuracy for
the sensor was also calculated at the end. Table 5.6 shows the data obtained by
the test cases. The confusion matrix, illustrated in Figure 5.9, shows the results of
gesture recognition and the wrongly detected gestures. The results of the F1
measure analysis are shown in Table 5.7.

Left Right Up Down CW CCW Unknown
True Positive(TP) 0.97 0.95 1.00 1.00 0.98 0.99 0.73
False Negative(TN) 0.98 0.98 1.00 0.99 1.00 0.99 1.00
False Positive(FP) 0.02 0.02 0.00 0.01 0. 0.01 0.00
True Negative(FN) 0.03 0.05 0.00 0.00 0.02 0.01 0.27

Table 5.6: Collected data for ST VL6180

Figure 5.13: Confusion matrix for ST Vl6180 data
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Left Right Up Down CW CCW Unknown
P 0.90 0.90 0.99 0.92 0.99 0.97 0.99
R 0.97 0.95 1.00 1.00 0.98 0.99 0.73
A 0.98 0.98 1.00 0.99 1.00 0.99 0.96
F1 0.93 0.93 0.99 0.96 0.98 0.98 0.84

Table 5.7: F1-Measure analysis for ST VL6180

Flick Hat

The prediction (P), recall (R),accuracy (A), and F1 values were calculated for each
gesture recognized by the MGC3130 sensor: left,right,up,down,CW,CCW and
unknown. The values of the four scores were calculated, and overall accuracy for
the sensor was also calculated at the end. Table 5.8 shows the data obtained by
the test cases. The confusion matrix, illustrated in Figure 5.14, shows the results
of gesture recognition and the wrongly detected gestures. The results of the
F1-Measure analysis are shown in Table 5.9.

Left Right Up Down CW CCW Unknown
True Positive(TP) 0.98 0.96 0.98 1.00 0.88 0.98 0.8
False Negative(TN) 1.00 0.99 1.00 0.99 0.99 0.98 0.99
False Positive(FP) 0. 0.01 0. 0.01 0.01 0.02 0.01
True Negative(FN) 0.02 0.04 0.02 0. 0.12 0.02 0.2

Table 5.8: Collected data for MGC3130

Left Right Up Down CW CCW Unknown
P 0.98 0.96 1.00 0.94 0.92 0.88 0.91
R 0.98 0.96 0.98 1.00 0.88 0.98 0.80
A 0.99 0.99 1.00 0.99 0.97 0.98 0.96
F1 0.98 0.96 0.99 0.97 0.90 0.92 0.85

Table 5.9: F1-Measure analysis for MGC3130
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Figure 5.14: Confusion matrix for MGC3130 data

APDS 9960

The prediction (P), recall (R),accuracy (A), and F1 values were calculated for each
gesture recognized by the APDS sensor: left,right,up,down,CW,CCW and
Unknown. The values of the four scores were calculated, and overall accuracy for
the sensor was also calculated at the end. Table 5.10 shows the data obtained by
the test cases. The confusion matrix, illustrated in Figure 5.15, shows the results
of gesture recognition and the wrongly detected gestures. The results of the
F1-Measure analysis are shown in Table 5.11.
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Left Right Up Down CW CCW Unknown
True Positive(TP) 0.96 0.96 0.96 0.92 0.88 0.8 0.88
False Negative(TN) 0.98 0.97 0.97 0.99 0.99 1.00 0.99
False Positive(FP) 0.02 0.03 0.03 0.01 0.01 0. 0.01
True Negative(FN) 0.04 0.04 0.04 0.08 0.12 0.2 0.12

Table 5.10: Collected data for APDS9960

Figure 5.15: Confusion matrix for APDS9960 data

Left Right Up Down CW CCW Unknown
P 0.90 0.81 0.93 0.96 0.94 1.00 1.00
R 0.93 0.97 0.87 0.80 0.97 1.00 0.97
A 0.98 0.97 0.97 0.98 0.98 0.97 0.97
F1 0.92 0.88 0.90 0.87 0.95 1.00 0.98

Table 5.11: F1-Measure analysis for APDS9960
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5.7 Results discussion
The results of the test cases provide interesting information. The results show that
the VL6180 prototype has the best performance among the three sensors.

The accuracy of the VL6180 model is 95%, while the accuracy of the MGC3130
model and the APDS model were 94% and 93%, respectively. Based on the
precision and recall, both MGC3130 and VL6180 have similar results for
directional swipe gestures. In addition, VL6180 also provides excellent results for
rotational gestures.

In summary, the VL6180 prototype model has the best overall performance overall,
followed by MGC3130. APDS 9960 wrongly detected many gestures, mainly CW,
CCW, and unknown, which reduces the overall precision.

APDS9960 doesn’t detect gestures over 2 cm, which contradicts the datasheet of
range 10 cm to 20 cm,probably because this sensor doesn’t allow custom
calibration to adjust measurements for varying environments.

MGC3130 maximum range reported by datasheet is up to 15 cm; however, from
experimental tests, the range for detection appears to be consistently less than 5
cm in any direction from the center of the device. Additionally, the sensor also
struggles with continued distortions of the surrounding electromagnetic radiations.
This is illustrated when the user holds a hand in a fixed position near the sensor.
After around a second, the measurements vary uncontrollably without any motion
from the user, leading to false data.
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Chapter 6

Conclusion and future work

This chapter presents a brief reflection on the thesis development as well as a
proposal for future work.

6.1 Conclusion
This paper gives an overview of various technologies used in gesture recognition
with a deep focus on three of them, namely IR, capacitive, and TOF technologies.
It began with the objective of evaluating the gesture recognition performance of
four sensors using DNNs.The following sensors were considered: APDS9960,
MGC3130, VL6180, and VL53L3CX, where VL53L3CX was excluded due to its
long range.

The work also analyzes the working principle and the type of data provided by
each sensor to measure the target distance.MGC3130 provides positional data,
while APDS9960 represents the target distance using four proximity values.

The VL6180 provides only one distance value, which is insufficient to identify the
gestures. Therefore, a prototype was designed consisting of a horizontal array of
three VL6180 sensors.

Unknown, directional swipes and rotational gestures were considered to be
classified using the DNNs model. Experimental data were collected from
volunteers to determine the number of measurements required to identify a gesture.
Consequently, the same volunteers collected a separate data set for each sensor.
Each sensor dataset was split into training and validation datasets such that the
training dataset was used to fit the model. On the other hand, the validation
dataset was used to tune the model parameters.
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Keras Tuner was used to tune the hyperparameters, and finally, the performance
of each MLP model was evaluated using performance metrics, namely accuracy,
precision, recall, and F1 score. The accuracy of the VL6180 model was higher than
the accuracy of the other two sensors. Moreover, based on precision and recall,
MGC3130 and VL6180 have similar results for directional swipe gestures. In
addition, VL6180 also provides excellent results for rotational gestures.

In summary, the VL6180 prototype model has the best overall performance,
followed by MGC3130. In addition, the VL6180 prototype was able to control a
GUI in real-time operation. Several observations were made during testing and
data collection: the APDS9960 has a smaller operating range than the range
specified in the datasheet [54]. Similarly, the capacitive sensor measurements are
distorted by nearby conductive materials.

6.2 Future work
A suggestion for future work is to integrate the VL6180 prototype into a real-time
hardware application and evaluate its performance.

In terms of gesture recognition using machine learning, a suitable improvement
can be either improving the current algorithms or introducing new algorithms.
These changes in algorithms may lead to better recognition results.
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