
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

A deep learning approach to estimate
population density of urban areas to

compute risk maps for UASs

Supervisors

Prof. Alessandro RIZZO

Dott. Stefano PRIMATESTA

Candidate

Filippo BOLLETTA

July 2021

Summary

Unmanned Aircraft Systems (UASes) have gained interest in recent years in many
different fields. UASes are used for remote sensing, surveillance, precision agriculture
and package delivery, to name a few. The growing interest in their use leads to
safety concerns which can be faced using a systematic approach to define safe
operations. The proposed approach consists in the definition of risk maps that
quantify the risk connected with a flight operation over a certain area. Starting
from these maps, a path planning algorithm that finds the trajectory that minimizes
the risk for the UAS can be developed. Risk is measured as the hourly probability
of having a fatality due to a drone crash. To correctly compute its numerical
value it is necessary to have maps describing the area of interest: the value of the
risk is determined starting from population density, sheltering factor, no-fly zones
and obstacles. The main goal of this thesis is to obtain population density maps.
Knowing how people are distributed in a given area is essential to understand how
dangerous the impact of a vehicle on the ground could be. Generally speaking,
sparsely populated areas will be considered safer than highly populated ones to fly
over. In the final part of the thesis, an approach based on the direct estimate of
the risk with the same layers structure used for the creation of population density
maps is proposed.

In this thesis, a deep learning-based approach for the creation of population
density maps is adopted. Some of the most promising results in this field have
been obtained in the last years using Convolutional Neural Networks (CNNs). A
CNN is a machine learning model in which specific layers are employed, with the
goal of learning features from databases composed of images. The pre-trained
VGG16 network has been employed as feature extractor, on the top of which dense
layers were added to reduce the output dimension. Techniques like fine tuning and
test-time augmentation have been employed to increase the precision of the maps
obtained. The deep learning model was implemented using Tensorflow and Keras,
which are libraries that provide ready-to-use tools to train and evaluate machine
learning models. The model was trained in an Amazon Web Service (AWS) EC2
instance with a dedicated GPU, that is designed for deep learning applications.

The CNN was trained on the area of Turin (city centre and surrounding area),

iii

and satellite imagery were downloaded from Bing Maps REST Services. After the
evaluation of the network, an analysis has been performed looking at the most
and less precise estimates. This process is useful to understand the limits of the
model used and the problems of the database (for example, limited resolution and
perspective of the images).

The thesis is divided into 5 chapters. A brief introduction is provided in chapter 1.
In chapter 2 a state of the art analysis is carried out to understand the methods
used by researchers to handle this problem. In chapter 4 the software used and the
hardware on which the network was trained are described. The development flow
of the thesis is presented in details in chapter 5: all the steps taken are resumed
and the related results are listed. Conclusions are drawn in chapter 6, where also
some suggestions for the future development of this work are proposed.

iv

Table of Contents

List of Figures viii

Acronyms xi

1 Introduction 1

2 State of the art 5

3 Machine Learning and Convolutional Neural Networks 9
3.1 Introduction to machine learning 9
3.2 Convolutional Neural Networks . 12
3.3 Convolutional layers . 14
3.4 Subsampling layers . 16
3.5 Dropout layers . 16
3.6 Dense layers . 18

4 Software used 23
4.1 Introduction . 23
4.2 Tensorflow and Keras . 23
4.3 Other Python libraries . 25
4.4 Amazon Web Services . 27

5 Convolutional Neural Network design and testing 31
5.1 Previous work . 31
5.2 Data distribution . 33
5.3 Image cropping . 34
5.4 Test time augmentation (TTA) . 36
5.5 Database augmentation . 39
5.6 Fine tuning . 42
5.7 Analysis of the biggest and smallest estimate errors 44
5.8 Direct estimation of the risk . 49

vi

5.9 Population density maps . 50
5.10 Risk maps . 54

6 Conclusions and future work 59

Bibliography 65

vii

List of Figures

1.1 Workflow . 2
1.2 Workflow of the ML-based approach 3

2.1 Examples of some big errors . 6
2.2 Facebook AI results . 6
2.3 Nighttime image . 8
2.4 Saturated image . 8

3.1 Neural network structure . 10
3.2 Supervised vs unsupervised learning 11
3.3 Learning rate . 12
3.4 Visual cortex model vs CNNs . 13
3.5 CNN structure . 13
3.6 Relu activation function . 14
3.7 Classification vs. Regression . 14
3.8 Convolution operation . 15
3.9 Max and mean pooling . 16
3.10 Underfitting and overfitting example 17
3.11 Dropout layer . 18
3.12 Activation functions . 19
3.13 Layers of the VGG16 model . 20
3.14 Layers of the CNN used . 21

4.1 Keras and Tensorflow hierarchy . 24
4.2 Xml example . 27
4.3 AWS architecture . 28

5.1 Convolutional Neural Network configuration 32
5.2 Database area . 32
5.3 Scatter plot after the previous work 33
5.4 Original data . 34
5.5 Logarithm data . 34

viii

5.6 Original image . 35
5.7 Cropped image . 35
5.8 Scatter plot after cropping . 35
5.9 On the top left corner the original image, while the others modified

versions . 37
5.10 Aerial imagery of an area in which the TTA improves a lot its

prediction of Population Density - 1 38
5.11 Aerial imagery of an area in which the TTA improves a lot its

prediction of Population Density - 2 38
5.12 Aerial imagery of an area in which the TTA improves a lot its

prediction of Population Density - 3 38
5.13 Aerial imagery of an area in which the TTA improves a lot its

prediction of Population Density - 4 38
5.14 Scatter plot after TTA . 39
5.15 Predictions before filtering . 40
5.16 Predictions after filtering . 40
5.17 Original image . 41
5.18 Rotated image . 41
5.19 Scatter plot after database augmentation 41
5.20 Reference Scatter plot for fine tuning 43
5.21 Scatter plot after fine tuning . 43
5.22 MinMaxScaler . 44
5.23 Underestimation example 1 . 45
5.24 Underestimation example 2 . 45
5.25 Underestimation example 3 . 46
5.26 Underestimation example 4 . 46
5.27 Underestimation example 5 . 46
5.28 Underestimation example 6 . 46
5.29 Overestimation example 1 . 47
5.30 Overestimation example 2 . 47
5.31 Overestimation example 3 . 48
5.32 Overestimation example 4 . 48
5.33 Color example 1 . 48
5.34 Color example 1 . 48
5.35 Best prediction 1 . 49
5.36 Best prediction 2 . 49
5.37 Best prediction 3 . 49
5.38 Best prediction 4 . 49
5.39 Risk estimation scatter plot . 50
5.40 Risk error example 1 . 51
5.41 Risk error example 2 . 51

ix

5.42 Color scale . 52
5.43 Test area 1 . 52
5.44 True population density map - Area 1 53
5.45 Estimated population density map - Area 1 53
5.46 Test area 2 . 54
5.47 True population density map - Area 2 54
5.48 Estimated population density map - Area 2 54
5.49 Test area 3 . 55
5.50 True population density map - Area 3 55
5.51 Estimated population density map - Area 3 55
5.52 Risk map - Area 1 . 56
5.53 Estimated risk map - Area 1 . 56
5.54 Directly estimated risk map - Area 1 56
5.55 Risk map - Area 2 . 57
5.56 Estimated risk map - Area 2 . 57
5.57 Directly estimated risk map - Area 2 57
5.58 Risk map - Area 3 . 58
5.59 Estimated risk map - Area 3 . 58
5.60 Directly estimated risk map - Area 3 58

x

Acronyms

AI
artificial intelligence

API
appllication programming interface

AWS
Amazon Web Services

CNN
convolutional neural network

CPU
central processing unit

FTP
file transfer protocol

GPU
graphics processing unit

ML
machine learning

NN
neural network

SSH
secure shell protocol

xi

TPU
tensor processing unit

TTA
test time augmentation

UAS
unmanned aerial system

UAV
unmanned aerial vehicle

XML
extensible markup language

xii

Chapter 1

Introduction

The goal of this thesis is to continue and enhance the work done by the research
group about the adoption of a risk-aware path planning strategy for UAVs in
urban environments. In particular, the possibility of estimating population density
starting from satellite imagery of an area is investigated. To do so, a machine
learning approach is employed. The interest in building high-definition population
density maps is motivated by its great practical significance: these maps are
used all over the world to optimize resource allocation and disaster response, to
understand many economical, environmental and social problems, and to take
risk-based decisions.

The safety of UAV operations is an open issue that aviation agencies like ENAC
(Ente Nazionale per l’Aviazione Civile) and FAA (Federal Aviation Administration)
are facing with specific rules. Most of the operations with UAVs must be performed
in Visual Line-Of-Sight (VLOS), while operations Beyond Visual Line-Of-Sight
(BVLOS) are strictly limitated. A complete legislation about this topic has been
proposed by EASA (European Aviation Safety Agency), which adopts a risk-based
approach.

Risk maps are cell-based maps that quantify the risk of flying over an area.
The value of the risk is computed taking into account several layers: population
density, sheltering factor, no-fly zones and obstacles (figure 1.1). These maps are
fundamental for the path planning algorithm, because they provide the search
space, that is, the set of trajectories among which the algorithm can choose, along
with the associated value of the risk.

As previously mentioned, this thesis is based on a project of the research group
to compute safe routes for UAVs in urban areas. This project uses risk maps to
estimate the risk to the population on ground due to a UAV flight. Risk maps
are matrices of size n ×m, where each entry of the matrix refers to a cell. The
dimension of the cells defines the resolution of the risk map, so it is a fundamental
parameter to choose. On one hand, high resolution maps are preferable, since they

1

Introduction

Figure 1.1: Workflow

provide a more precise description of the area; on the other hand, to obtain reliable
population density and sheltering factor maps it is necessary to use cells that are
not too small, in order to make possible for the CNN to learn general features
from satellite imagery. Each cell has an associated value of the risk expressed in
casualties per hour, a common measure unit used in aviation.

The risk is defined using a probabilistic risk assessment approach: its value is
proportional to the probability of having a fatal accident per hour of flight. Three
conditional events are required to happen in order to have a fatality: the loss of
control of the vehicle, its impact with a person and the injury resulting fatal for
that person, so the formula is ([1]):

Pcasualty(pi,j) = Pcrashing × Pimpact(pi,j)× Pfatality(pi,j) (1.1)

pi,j refers to a cell of the grid map. The term that depends on the population
density is Pimpact(pi,j), that is defined as the product of the area occupied by the
crash of the drone (also called lethal area) and the population density in that area:

Pimpact(pi,j) = ρ(pi,j)× Acrash (1.2)
Pfatality(pi,j), instead, depends on the sheltering factor, that takes into account the
presence of obstacles that can absorb the kinetic energy of the UAV, reducing the
probability of fatalities. Pcrashing represents the probability that the UAV loses
control, and the descending behavior can be of different types (parachute, ballistic,
uncontrolled or fly-away), and the risk changes depending on the type.

Then, a risk-aware path planning algorithm computes the minimum risk path
in the risk map. The optimal path is computed off-line using a path planning
algorithm, such as riskA* or riskRRT*. These algorithms find the best trade-off
between the risk and the flight duration, given as inputs the risk maps, the initial
point and the target point.

In recent years, the development of convolutional neural networks in the field of
image recognition and analysis has encouraged the use of machine learning in a

2

Introduction

context where traditionally census data were the only available source. Census data
are reliable, but they have many problems associated: the process of gathering them
is long and expensive, and for this reason they are not updated frequently, especially
in poor countries. For example, the national census in countries like Italy, China
and USA is carried out every 10 years, while there are six countries which have
been without census since 1990([2]): Afghanistan (1979), Eritrea (1984), Lebanon
(1932), Somalia (1985), Uzbekistan (1989), and the area of Western Sahara (1970).

The increasing availability in the last decade of high-resolution satellite imagery
was important for the creation of bigger and better databases. Moreover, transfer
learning played a crucial role, as it has made possible for researchers all around
the world to use already trained CNNs as feature extractors. This, in particular,
has reduced the training time dramatically, making possible to save time and
computational resources. This concept is further analyzed in chapter 5. Fine tuning
is a technique sometimes used in combination with transfer learning, especially
when the application for which the CNN is used is different from the original one.
The possibility of using it in this work has been explored, as discussed in section
5.6.

All these improvements are crucial to make possible the application of machine
learning solutions to problems like population density estimation, and the most
important consequence is the reduction of cost and time required to have the same
data with respect to the traditional methods.

Figure 1.2: Workflow of the ML-based approach

Following the same approach, a new method is proposed for the computation of
risk maps. Since both population density and sheltering factor maps are obtained
using a CNN-based approach, the possibility of direct estimation of the risk through
a deep learning model is investigated. The idea is the following: the workflow
shown in figure 1.1 is used to build a database that, in turn, is used to train a
convolutional neural network with the same structure as that used to estimate the
population density. The advantage of this approach is that once we have a trained

3

Introduction

CNN, we can use it to estimate the risk in a very short time over big areas. Of
course, the database should be of good quality and big enough to make the CNN
training possible, and this requires that all the layers that contribute to the risk
are well defined and properly merged.

The work developed in this thesis is part of the activities of the Amazon Research
Award “From Shortest to Safest Path Navigation: An AI-Powered Framework for
Risk-Aware Autonomous Navigation of UASs” granted to Prof. Rizzo.

4

Chapter 2

State of the art

Many approaches have been proposed in recent years to build population density
maps of different resolution starting from remote sensing data. In many research
activities ([3], [4], [5]), the VGG16 network [6] was used as a starting point, to
which more specific layers were added to properly combine the extracted features.
The benefits of doing fine-tuning to adjust the parameters of the last layers of
the pre-trained network are demonstrated by [3], and they are due to the fact
that VGG16 was trained on Imagenet database, that contains only natural images.
These are quite different from satellite imagery: as an example, for those, the
concept of “centre” is meaningless, and they don’t have an orientation. This also
explains why the results obtained by VGG16 when used with satellite imagery are
worse than when it is used with natural images, even with a smaller database.

Another possibility consists in performing a classification over a large number
of classes and then take the median value as estimate of the population density
[4]. In the same work, results are compared with US census data obtained using
traditional county population projection methods, and they turn out to be worse.
However, they are influenced by errors made by the model due to noisy input
data, that are investigated qualitatively. Sparsely populated areas are sometimes
classified as highly populated because of the presence of uninhabited buildings. In
figure 2.1 three examples are shown: a Disney park, a laboratory, and an army
depot.

Recently, the research group Facebook AI used an approach based on machine
learning and satellite imagery, along with the available census data, to create
population maps characterized by high resolution and accuracy [7, 8]. The pop-
ulation estimate is obtained counting the buildings present in the area. Satellite
imagery were pre-processed using classical computer vision techniques to keep into
account that most of the world’s land does not contain a building, so the dataset
in unbalanced. The network used is ResNet-50, and fine-tuning was employed.
The number of buildings in a given area is obtained with an error estimated to be

5

State of the art

Figure 2.1: Examples of some big errors

few percent, then population counts (available from census) are distributed using
proportional allocation. Results are 30m resolution population density maps for
18 countries, which show that both precision and recall are high (0.95 and 0.91,
respectively), and the model can effectively be used in different geographic regions
with good results. The performance of the model is slightly worse in urban areas
with respect to rural areas: this is because of the larger diversity of buildings’
height and use in cities. The results are shown in figure 2.2: the first 2 images refer
to two traditional methods used to estimate population density, while the last one
is the ground truth (for the red area, data are not available). The map obtained
through this novel approach is more precise than the other methods, especially in
rural areas.

Figure 2.2: Facebook AI results

A novel and promising approach towards estimation of population distribution

6

State of the art

consists in using mobile phone data. Call activity data have been used to investigate
the population distribution and its dynamics. The main advantage is the capability
of this approach to provide a dynamic picture of population distribution. This
possibility was investigated recently by [10], that shows that the accuracy of the
results is strongly dependent on the density of the phone cells. The same research
reveals, using phone calls data of France and Portugal, that good estimates of
population density maps can be obtained, and the model implemented turned out to
be robust, even if some coefficients must be tuned when considering countries with
a considerably smaller mobile phone penetration. Some drawbacks are also present:
privacy issues must be tackled, and the correlation between the call (or caller)
volume and underlying population may be not so strong. This fact was investigated
by [11], and two main problems about this approach have been suggested. The
first one is that the group of mobile phone users is not representative of the world’s
population over several points of view (social and economic status, age, etc), the
second is that mobile phone users are nor evenly spatially distributed. The same
issues are partially recognized by [7], in which population distribution maps with
resolution 235x235m are obtained combining census data, phone calls data and
satellite imagery of Milan.

An interesting work that involves satellite imagery without the use of machine
learning algorithms is presented in [12] and [13]. Here, nighttime satellite imagery
from the Defense Meteorological Satellite Program are used to analyze the corre-
lation between light levels and population density. Basically, a nighttime image
(figure 2.3) is transformed into a binary image (figure 2.4), where pixels are white
if they are associated with a value of light above a threshold. Then, saturated
pixels were turned into urban clusters based on the adjacency to other saturated
pixels. Then, the distance between each pixel and the edge of the cluster to which
it belongs was used to assign a value of the population density. Different functions
and different pixel resolutions were used, and the best result was obtained with a
Gaussian function and a 10 km2 resolution (the resulting value of the coefficient of
determination R2 is 0.709). This method is very simple, it is hard to extend to
other countries, as the relationship between nighttime lights and population density
varies a lot. Once again, it is confirmed that population density depends on many
cultural, economical and environmental factors that must be taken into account.

7

State of the art

Figure 2.3: Nighttime image

Figure 2.4: Saturated image

8

Chapter 3

Machine Learning and
Convolutional Neural
Networks

3.1 Introduction to machine learning

Machine learning (ML) is the discipline that studies computer algorithms that are
able to improve autonomously their performance using data. An important part
of ML is deep learning, that studies artificial neural networks and their learning
algorithms.

The first work published about machine learning followed the idea of emulating
the behaviour of neurons: the Threshold Logic Unit (TLU) was proposed by Warren
McCulloch and Walter Pitts in 1943. It was a simple model of the neurons built
using electrical circuits. It performs a weighted sum of the inputs and, if this sum
overcomes a threshold, it outputs a quantity. Using these networks it is possible to
build any Boolean function. In 1958 the first artificial neural network model was
created by Rosenblatt, and it was called Perceptron, a simple linear classifier. A few
studies in this field were published in the following years, but the interest started
to grow at the beginning of the 21st century. The limited computational capability
of computers has been a problem for the development of complex neural network
models. With the development of GPUs and (in 2016) TPUs, computations on
vectors and matrices has become much faster.

A NN is made of several layers, each of which has a certain number of neurons.
A neuron is able to generate on output a signal depending on the input signals it
receives. NNs are formed by an input layer, that is the layer that receives data,
an output layer that generates the output signal, and several hidden layers (figure

9

Machine Learning and Convolutional Neural Networks

3.1). Those are called hidden because their inputs and outputs are not visible, and

Figure 3.1: Neural network structure

their task is to transform the data. The output of each neuron depends on the
activation function, that is the function that links the inputs to the output.

Machine learning algorithms can be divided into 3 groups: supervised learning,
unsupervised learning and reinforcement learning algorithms. In supervised learning,
the data available are composed of the input and the corresponding output that
the model should give. The NN should be able to reproduce a function that
is the mapping between the input and the output. The algorithm used in this
thesis belongs to this group. In unsupervised learning, the problem consists in
structuring the dataset given as input, without having information about what the
output should look like. Some possible applications of this technique are market
segmentation, social analysis and astronomical data analysis. Figure 3.2 shows two
examples. In the first problem data are labeled and the goal is to classify them,
while in the second one the goal is to cluster data having no information about
them: the NN algorithm should find patterns in the data.

In reinforcement learning, instead, an agent learns to find the best possible
action in a given situation on the basis of its experience, and achieves a reward
if the action is correctly carried out. The agent should maximize the cumulative
reward.

Each neuron of a NN has a vector of weights and a bias unit associated. In
supervised learning, the training phase consists in tuning the values of these units
using labeled data with the goal of minimizing the loss. Loss measures how a
model is working: it is zero in the case of a perfect prediction, and it grows as the

10

3.1 – Introduction to machine learning

Figure 3.2: Supervised vs unsupervised learning

prediction diverges from the correct value. The cost function sums the loss of all
the samples, and an optimization algorithm is used to minimize its value.

Gradient descent is an iterative optimization algorithm used to minimize the
cost function. Given a cost function J(θ1, θ2), the goal is to find the values of the
parameters θ1 and θ2 that lead to the minimum value of J. To do that, an initial
guess is made, and then the values are updated until the minimum is reached. The
parameters are moved in the direction that implies the biggest possible decrease of
the cost function. The parameters are updated according to:

θj = θj − α×
d

dt
J(θ0, θ1), j = 0,1 (3.1)

α is called learning rate, and it controls how big the steps of gradient descent
are. If it takes a small value, the algorithm will be too slow to converge. On the
other hand, a big value implies big updates of the parameters which can lead to
a diverging behaviour. The two situations are shown in figure 3.3. There exist
several extensions of this algorithm, designed to speed up the optimization process,
and the most popular one is Adaptive Movement Estimation (Adam). This is an
algorithm that uses adaptive learning rates methods to find individual learning
rates for each parameter.

Backpropagation is an algorithm used to compute the gradient of the cost function
with respect to the variables of the model. The idea of using backpropagation for
neural networks was introduced in 1986 ([14]). In the training phase of a neural
network, each sample is passed to the NN model, that gives the output value (or
output vector, in the case of classification). To get the output, the input is forward
propagated through the network. The error can be computed as the difference
between the output of the model and the true value used as ground truth. To tune
the weights and biases, this error is propagated back all the way to the first layer,
iteratively applying the chain rule. This is a rule from calculus useful to obtain the

11

Machine Learning and Convolutional Neural Networks

Figure 3.3: Learning rate

derivative of a function using other functions which have known derivatives.

3.2 Convolutional Neural Networks
Convolutional neural networks (CNNs) are a particular type of deep neural network
architecture, widely used for image-related tasks. CNNs were introduced by Yann
LeCun in [15], where they were used to classify handwritten digits. The architecture
of CNNs is inspired by how the human brain recognizes objects ([16]): the visual
cortex is organized into several layers, made by cells which can be classified into 2
categories: simple cells and complex cells. Simple cells respond to bars of light and
dark, and each cell responds differently depending on the orientation of the bar.
Complex cells have instead a less strict response profile. The visual cortex can be
modeled as a series of alternated layers of complex and simple cells.

Convolving a set of filters with an input image, a features mapping effect similar
to that of simple cells is obtained. Subsampling, instead, plays the role of a complex
cells layer. Several sequences of convolutional and subsampling layers make a CNN
model. The comparison between the model of the human cortex and CNNs is
shown in figure 3.4.

Figure 3.5 shows the typical architecture of CNN models, that is composed of
two parts: the first one serves as feature extractor, and this part is often imported
from a pre-trained model (like VGG16), following the principle of transfer learning.
Early layers of this part extract low-level features (egdes, textures, shapes and so
on), while later layers are linked to complex features, that are used by the second
part of the model. This is made of fully connected layers, that have the effect of
learning non-linear combinations of high level features. The dimension (that is,

12

3.2 – Convolutional Neural Networks

Figure 3.4: Visual cortex model vs CNNs

Figure 3.5: CNN structure

the number of neurons) of the last layer of the model is equal to the number of
categories in which we want to classify the images. Each neuron is associated with
a class, and the value on output is the probability that the image belongs to that
class. The activation function of the neurons is "relu", that means "rectified linear
unit" (see figure 3.6).

In regression applications, the output is a real value and the last layer of the
model consists of one neuron, that has "linear" as activation function. The difference
between classification and regression is highlighted in figure 3.7: in the first case,
data must be divided into two or more category, while in the second one the goal
is to find a function that approximates the data.

13

Machine Learning and Convolutional Neural Networks

Figure 3.6: Relu activation function

Figure 3.7: Classification vs. Regression

3.3 Convolutional layers
Convolution is a mathematical operation between vectors, defined as:

y = x ∗w −→ yi =
+∞Ø

k=−∞
xi−kwk (3.2)

x is the input vector, while w is the filter (or kernel). The index k goes from −∞
to +∞, and to make it possible the vector x is zero-padded: zeros are added to
both sides of x, and the resulting vector y will be of infinite size. In practice, x
is padded only with a finite number of zeros, denoted with p. If x and w have

14

3.3 – Convolutional layers

dimensions n and m respectively, the padded vector xp will have n+ 2×p elements,
and equation 3.2 becomes:

y = x ∗w −→ yi =
m−1Ø
k=0

xp
i+m−kwk (3.3)

Note that x is indexed in the opposite direction of w, and that is equal to make
the sum of the products once one vector is reversed.

Images can be seen as matrices of pixels, so we can perform convolution with a
filter matrix. The 2D convolution between matrices X and W is defined as:

Y = X ∗W −→ Yij =
+∞Ø

k1=−∞

+∞Ø
k2=−∞

Xi−k1,j−k2Wk1,k2 (3.4)

The sizes of X and W are n1 × n2 and m1 ×m2 respectively, with m1 ≤ n1 and
m2 ≤ n2.

An example of convolution between a matrix X and a filter W is shown in figure
3.8. Zero-padding with p = 1 is applied to X, stride is equal to 2 and the filter
matrix is:

W =

0.5 0.7 0.4
0.3 0.4 0.1
0.5 1 0.5

In the figure below, this matrix is rotated according to the convolution formula: it
is sufficient to take the sum of element-wise product. The kernel is like a sliding
window which is moved each time of a value equal to the stride, until it reaches
the last element of the matrix X.

Figure 3.8: Convolution operation

Convolutional layers can be easily implemented using the Conv2d Keras function,
that is called giving as input the filters, the kernel size, the padding and the
activation function.

15

Machine Learning and Convolutional Neural Networks

3.4 Subsampling layers
Subsampling is an operation that is typically performed in the form of max-pooling
or mean-pooling. A pooling layer has size n1 × n2, and its effect is simple: max
pooling takes the maximum value in each set of elements of dimension n1 × n2,
while mean pooling takes the average value in the same set. An example of max
and mean pooling is reported in figure 3.9.

Figure 3.9: Max and mean pooling

Pooling layers do not have weights associated with them: it is sufficient to
define the size and the stride. The beneficial effects of pooling layers are two:
they introduce local invariance, making the learned features less sensitive to small
variations of the input, and they also decrease the size of features.

Depending on the pooling technique used, there are several Keras functions
available to add a pooling layer to a model.

3.5 Dropout layers
A neural network model has a certain capacity, that is defined as the level of
complexity of the function it can learn to approximate. Models with a small
number of layers are likely to underfit, while too complex model will tend to overfit.

The goal of a NN algorithm is to have a model that preforms well on both
training and unseen data. The ability of a model to fit well data that were not used
for training is called generalization. Sometimes it happens that a model performs

16

3.5 – Dropout layers

well on the data on which it was trained, but it is not able to fit unseen data. This
problem is called overfitting, and it is caused by the fact that the model learns very
fine trends present in the data. On the other hand, a model that does not learn the
sufficiently the problem will perform poorly on both the training and validation
data. This is called underfit. The two problems are shown in figure 3.10, where the
goal is to separate the labeled points into two classes. The first model underfits
the data, the second one fits them well and the third one is affected by overfitting.

Figure 3.10: Underfitting and overfitting example

The two main reason for overfitting are the size of the database and the com-
plexity of the model. Since there are a lot of weights to tune in the model, it is
necessary to train it on a proper number of images. Deep neural network continue
to improve their performance as the size of the database increases. The complexity
is another important aspect to consider. Reducing the complexity reduces the
likelihood that the model overfits the database. The complexity or capacity of a
NN model depends on the number of weights and layers present.

Underfitting, instead, is the opposite problem, and it arises when the model
chosen is too simple (that is, there are not enough weights to tune), so that the
results on the training data are bad.

A possible approach to design a NN model consists in building a model with
high capacity, and then apply regularization schemes to avoid overfitting. Dropout
is one of these schemes, and it is described in [18]. It is a useful technique adopted
to avoid overfitting in deep NNs, and it is applied to the hidden layers. During
training, at each iteration hidden units are dropped with probability pdrop, that
is usually chosen as 0.5; the weights of active neurons are updated to account for
the missing units. This results in the fact that the network is forced to learn more
robust patters from data. Neurons are randomly dropped out during the training
phase, while they are all active in the evaluation phase (figure 3.11).

17

Machine Learning and Convolutional Neural Networks

Figure 3.11: Dropout layer

Adding a dropout layer in a sequential model only requires to call the Dropout
Keras function and give to it the probability of dropping a unit.

3.6 Dense layers
After the layers imported from the VGG16 model (figure 3.13), dense layers are
added to reduce the dimension of the output. This is an important operation that
must be done gradually. In the case of this thesis, two convolutional 2D layers and
a flatten layer have been added after the VGG16 model. The flatten layer has the
function of reshaping the tensor given as input, unrolling it into a column vector.
The dimension of this vector resulted to be 6272 (figure 3.14). This number had to
be gradually reduced to reach the last layer where only one neuron is present, and
this have been done using dense layers with dimensions corresponding to some of
the powers of 2. Some dropout layers have been inserted among dense layers to
reduce overfitting. The final structure consists of 71 million parameters (weights
and biases), 56 millions of which are trainable.

Dense layers are the Keras implementation of fully-connected layers, that are the
building blocks of neural networks. Their main characteristic is that each neuron
of a layer is connected to every neuron of the previous layer (see figure 3.1).

The output they produce depends on the activation function. The most simple
activation function is the "linear" one, where the output is the product of the input
vector X and the weight W, plus the bias b:

y = XW + b (3.5)

18

3.6 – Dense layers

This activation function is very simple, but it is not sufficient in many appli-
cations: a non-linear function is needed to avoid instability problems. Several
functions can be used (four among the most common are represented in figure
3.12), and the choice depends on the application.

Figure 3.12: Activation functions

The Dense function of Keras can be used to add a Dense layer to a sequential
model, passing to the function the number of output units of the layer and its
activation function.

19

Machine Learning and Convolutional Neural Networks

Figure 3.13: Layers of the VGG16 model

20

3.6 – Dense layers

Figure 3.14: Layers of the CNN used

21

22

Chapter 4

Software used

4.1 Introduction
The thesis has been developed using Python as programming language and some
packages for machine learning applications. Matlab was also used for a small
portion of the work, that is described in section 5.4. The training of the CNN
was carried out using the AWS EC2 cloud computing platform, as it required high
computing capability due to the large number of weights to tune in the model.

4.2 Tensorflow and Keras
Tensorflow is an open source platform for machine learning, useful for the im-
plementation of deep neural network algorithms ([19]). It was developed by the
Google Brain team and released in 2015. It is an ecosystem of libraries, tools
and other resources that facilitates the development and distribution of machine
learning-based applications. Tensorflow has an architecture that makes possible to
run applications in CPUs, GPUs and also TPUs.

Keras is an open source library for machine learning that acts as an interface
with Tensorflow. It was created by Francois Chollet, a Google engineer, who
released the first version in 2015. His goal was to make available for researchers an
easy-to-use tool to develop deep learning applications. Keras is written in Python
and it needs a backend to work, which has to build the network graph, run the
optimizer and perform many other low-level operations. Originally, its backend
was Theano, but as of now Keras is fully integrated in Tensorflow, in the form
of the tf.keras high level API, while the standalone version of Keras is no longer
maintained.

When running a Tensorflow application, if a GPU is available the code will run
on it, without any explicit code configuration. The GPU version of Tensorflow

23

Software used

Figure 4.1: Keras and Tensorflow hierarchy

is currently available for Windows and Ubuntu. To run a Tensorflow application
on a GPU, a NVIDIA GPU card compatible with CUDA is required. CUDA is a
parallel computing platform and an API created by NVIDIA which makes available
the computing power of GPUs to speed up computing-intensive applications.

Tensorflow can also run on TPUs. A TPU is an AI accelerator application-
specific integrated circuit developed by Google for machine learning applications,
designed for high volumes of low precision computation. TPUs are proprietary, so
they are available only in the Google Cloud Platform services.

In the following, the most relevant functions imported from Keras and Tensorflow
are briefly described.

First of all, the model used is Sequential, that means, it is a linear stack of
layers where each layer has exactly one input tensor and one output tensor. When
adding layers to the model, different parameters must be specified depending on
the layer, as discussed in chapter 3. Then, the model is compiled using the compile
function, and in this phase the loss function, the optimizer and the metrics must be
specified. The loss function (or cost function) is the function that gets minimized
by the optimizer, and the mean square error was chosen, that is defined as:

MSE = 1
N

NØ
i=1

(yi − ŷi)2 (4.1)

yi is the prediction, ŷi is the ground truth, and N is the number of samples.
The optimizer is the mathematical function applied to the model that computes

the weights of each neuron in order to minimize the loss, and Adam was chosen.
As metrics, the mean absolute error is used. Using a metric is useful to judge the
performance of the model. Anyway, the choice of the metrics does not influence
the optimization process at any level.

At this point, the training is launched using the Keras function fit. Several
parameters are passed to this function:

24

4.3 – Other Python libraries

• input data: NumPy vector or Tensorflow tensor containing the input of the
model (in this case, the satellite imagery transformed into arrays);

• target data: Numpy vector or Tensorflow tensor (constistent with the input),
containing the ground truth for the model;

• batch size: number of samples per gradient update. A big batch size results
in a faster training, but it also requires more CPU or GPU memory;

• epochs: number of complete iterations over the entire data x and y. A trade-off
between precision and training time has to be done, and the choice can be
made with the aid of learning curves;

• verbose: it determines the level of information given about the training, and it
can be chosen between 0 (silent), 1 (progress bar) and 2 (one line per epoch).

Another important parameter that can be used is callbacks, that is used to stop the
training when a monitored metrics has stopped improving, or if the improvement
is too small. The purpose of using callbacks is to save time and computational
resources. Callbacks have not been employed in the final model, because the
training done with the GPUs provided by the AWS EC2 instance chosen was quite
fast.

To evaluate the performance of a model after the training and to build the
learning curves, the evaluate function was used, giving as input the predicted values
(output of the model), the ground truth and the verbose parameter. The pyplot
function of the Matlplotlib Python library was used to plot the learning curves.

The last step consists in making the predictions on the images of interest. This
is done calling the function predict on the model, giving to it the image array as
input. To compute the value of R2, the r2_score function from sklearn library was
used with two vectors as input: the true and the predicted values of the population
density.

4.3 Other Python libraries
Some Python libraries other than Tensorflow and Keras have been used for the
development of the thesis, and they are listed here, along with a brief description:

• Sklearn: Scikit-learn is a Python library for ML that contains tools to imple-
ment different classification and regression algorithms, and it also provides
functions to compute some of the most common metrics used to evaluate
the performance of a ML model. The functions used in this thesis are Min-
MaxScaler for data preprocessing and r2_score to compute the coefficient of
determination R2.

25

Software used

• MatPlotLib: it is a popular library that provides an easy way to plot graphs
providing the Pyplot function. Functions are available to easily add elements
like the title, the legend and the axes labels to plots.

• NumPy: it is the most used library to work with numerical data in Python.
In particular, NumPy contains multidimensional arrays and matrix data
structures. The most popular structure is ndarray, that is an n-dimensional
object that contains data, and it comes with methods to efficiently perform
mathematical operations on it. Differently from Python lists, a ndarray object
contains elements of the same data type and they are also faster and more
compact than lists.

• PIL: the Python Image Library contains functions to open, modify and save
images. It has been used to crop and save the images downloaded from Bing
Maps API, as described in section 5.3.

• Pandas: it is a Python library for data analysis. It is used to build data
structures and manipulate time series. In the thesis, it is used to save the
training history.

• xml.etree.ElementTree: xml is a markup language that is designed to store
and transport data and to be both human-readable and machine-readable.
It does not have pre-defined tags, and for this reason it is extensible. The
structure of a xml file is tree-like: there is the root element that has several
child elements. Each child has in turn other children. An example of xml
code and the corresponding structure is shown in figure 4.2. Python offers
a solution to interface directly with xml files: the xml ElementTree module.
This contains the parse function that makes the tree corresponding to the
code available, on which the getroot method can be called to access the root.
To access a child element, the attrib function can be used.

• requests: it is a library that allows to make HTTP requests simpler for humans.
To make a request, the get method can be used, giving as input the URL of
the page to download. The value returned by a get request is an object of type
response, and it contains three parts: a first line that describes the message,
a block of headers containing the attributes and the body, that contains the
data. It is possible to check whether the request succeeded by calling the
status_code attribute of the response object. In this work, the requests library
was used to make requests to download images from the Bing Maps API.
When saving an image, the write function is used. It is important to split the
image in chunks of reasonable size in order to avoid that the process occupies
too much memory.

26

4.4 – Amazon Web Services

Figure 4.2: Xml example

• pyproj: it is the Python interface to PROJ, a coordinate transformation
software. The geod was used in this work to determine the coordinates
(latitude and longitude) of a point, given the initial point, the distance and
the azimuth, with the goal of avoiding overlapping between images.

In addition, it is also to mention the use of Bing Maps REST Services API, used
to download satellite imagery from Bing Maps. This API offers a high degree of
customization on the maps obtained. The area of interest can be specified using
the centre point and the dimensions, or defining the 4 points of the bounding box.
It is also possible to choose the type of map (for example, street maps or aerial,
with or without labels and so on). The get function from requests was used to
interface with the service.

4.4 Amazon Web Services
The training of a CNN is an heavy task from the computational point of view.
That is because the architecture of the network used consists of millions of weights
that have to be tuned.

Amazon Web Services (AWS) is a subsidiary of Amazon that provides on-
demand cloud computing services. Cloud computing is beneficial for users, as it is
an alternative to buying and maintaining physical data centres and servers. The
main features are the pay-as-you-go pricing model and the high availability rate.
The first consists in the fact that the user pays just for what he uses, so that the
service can be easily adapted to changing needs. The second one is made possible
by using specific clusters, designed to guarantee the minimum possible amount of
down-time, so that the service is highly reliable.

27

Software used

In the context of this thesis, the Amazon Elastic Compute Cloud (EC2) ser-
vice has been used. This allows users to rent a virtual machine, called Amazon
Machine Image (AMI), that runs on AWS servers, in which users can deploy their
applications.

Figure 4.3: AWS architecture

An AMI contains a software configuration, composed by an operating system,
an application server, and the applications. One or more instances can be launched
as copies of an AMI, running on the virtual server on the cloud. Both AWS and
the community of users publish many AMIs containing common configurations
that are ready-to-use. In addition, it is possible to create custom AMIs depending
on the needs.

An instance can be launched and arrested as needed, and this feature explains the
word “elastic” of the name EC2. AMIs are preconfigured with different operating
systems that can be chosen depending on the needs (Windows and Ubuntu, for
instance). A lot of different instance types are available, comprising a huge of

28

4.4 – Amazon Web Services

combinations of CPU, memory, storage and networking capacity, covering different
needs. The AMI have been used to train a Neural Network model, so an Accelerated
Computing instance was chosen: this uses hardware accelerators to process functions
much more efficiently than what is possible relying on CPU only.

Moreover, the chosen instance is backed by Amazon EBS, which means that the
root device for the instance is an Amazon Elastic Block Store (EBS) volume. EBS
is a block storage service designed to be integrated with EC2 AMIs and providing
high performance, scalability and security.

It is possible to connect to EC2 instances using an SSH client like PuTTY.
To have access to the instance, it is necessary to know its DNS and to have the
SSH key pair generated for that instance. Files can be transferred using a FTP
application. FTP is a protocol used to transfer files from a server to a client on a
computer network.

29

30

Chapter 5

Convolutional Neural
Network design and testing

5.1 Previous work
Since this thesis is the continue of the work done in the past year by the research
group, it is of interest to recall the main results obtained before jumping into the
description of the steps taken to improve the precision of the estimated population
density. The configuration of the neural network used is shown in figure 5.1. This
structure of layers is chosen after many trials, and it is made up by two parts:
the first one is composed of the layers that are part of the VGG16 network, from
which the last layer has been eliminated, as that is the layer on which the final
classification was performed. The second part of the network is made by layers
that are chosen to gradually reduce the dimension of the output neurons from 6272
(output size of the last convolutional layer) to 1.

The database used consists of 20382 images, corresponding to the area of Turin
shown in figure 5.2. This area contains different types of scenarios: the city with
shops and apartment buildings, suburbs with individual houses, industrial areas
with industrial buildings and warehouses, and the hilly area with few houses and a
lot of trees. It is important to recall and remark these differences, as they imply
different population distributions: they must be recognized by the neural network
algorithm to obtain good results.

The scatter plot obtained is shown in figure 5.3. The best value of R2 (coefficient
of determination) obtained in the previous work is 0.54. The goal now is to
improve this value, to obtain better population density estimates. The coefficient
of determination R2 is defined as:

R2(y, ŷ) = 1−
qn

i=1(yi − ŷi)2qn
i=1(yi − ȳ)2 , ȳ = 1

n

nØ
i=1

yi (5.1)

31

Convolutional Neural Network design and testing

Figure 5.1: Convolutional Neural Network configuration

Figure 5.2: Database area

In the previous equation, yi represents the true values, while ŷi stands for the
predicted values. The R2 score is the proportion of the variance in the dependent
variable that is predictable from the independent variable ([20]), so it quantifies
how well new images are likely to be predicted correctly by the model. The biggest
possible value of R2 is 1, and it can also take negative values. The quality of the
predictions obtained can also be represented graphically using a scatter plot: on

32

5.2 – Data distribution

Figure 5.3: Scatter plot after the previous work

the x axis the true values contained in the database are reported, while on the y
axis there are the estimated values. A perfect model has R2 = 1 and all the points
of the scatter plot are on the bisector of the first quadrant.

5.2 Data distribution
A brief discussion about the distribution of population density data is necessary.
First of all, the absolute values are very small, ranging from 0 to 0.0175. Also,
they are not equally distributed in this interval (not even remotely): most of the
samples are near the lower bound. This is clearly visible from histogram 5.4, which
shows how many samples there are in each range. A range is defined dividing
the population density into 1000 intervals of the same size. To overcome this
issue, the natural logarithm was applied to all the samples to obtain a better
data distribution. This is a kind of data pre-processing, that is required because
otherwise the machine learning algorithm would not work well. In fact, if we left
data in the original form, a model that predicts a constant value near zero for all
the samples would give high metrics values, even if it is clearly unacceptable. The
distribution of data after the logarithm has been applied is shown in histogram 5.5:
the number of samples in each range is now distributed more equally.

The application of the logarithm to data raises a number of problems. The
final goal of this algorithm is training a CNN model that is able to estimate the

33

Convolutional Neural Network design and testing

Figure 5.4: Original data Figure 5.5: Logarithm data

population density once a satellite image is given on input. Anyway, the network is
trained with data that are pre-processed applying the logarithm function and also
the MinMaxScaler operator. The latter projects all the values on the interval [0, 1],
and it is useful to avoid numerical problems. At the end, to obtain the values of
the population density, we need to apply the inverse of the logarithm (that is, the
exponential function) and the inverse of the scaler. About the log-exp operation, a
problem arise when we train the network with logarithmically scaled data: suppose
that the prediction of 0.2 is made over an area whose correct value is 0.1. The
absolute error would be 0.1, and the relative error 100%. Say, then, that an area
characterized by a value of 10 is predicted as 20: the relative error is still 100%, but
the absolute error is 10, that is much larger. When the logarithm is applied, the
CNN model considers the two errors with the same relevance, even if the relative
error is very different.

5.3 Image cropping
The first step taken to improve the results consists in cropping the images down-
loaded from Bing Maps Rest API. In practice, when an image is downloaded, a label
is added in the bottom-right corner (as shown in figure 5.6). The label occupies a
significant part of the image (estimated to be around 9.5%), and in some cases it
hides relevant elements like buildings or streets, that are not taken into account by
the network. To remove the labels, images have been downloaded again so that
they cover a wider area, then cropped using the Python Image Library (PIL) so
that the image corresponds to the correct area and the label is not present. Thanks
to this simple process, a significant improvement in the R2 score is obtained: from

34

5.3 – Image cropping

0.54 to 0.65. The scatter plot obtained after this step is shown in figure 5.8
Of course, the additional operation that is performed implies that the creation

of the database requires more time than before.

Figure 5.6: Original image Figure 5.7: Cropped image

Figure 5.8: Scatter plot after cropping

35

Convolutional Neural Network design and testing

5.4 Test time augmentation (TTA)
Test-time augmentation is a technique used to improve the results of machine
learning algorithms based on neural networks. Basically, each original image is
taken and modified into several versions (with flips, rotations, shifts and so on),
which are all passed to the model that makes a prediction for each image, and the
mean of the obtained output values is taken as predicted value. The idea behind
this technique is that by averaging predictions, also the errors are averaged, leading
to a reduced generalization error. The main disadvantage of this method is that
the time required to predict over an image will increase, as a prediction over each
modified image is required.

TTA is performed rotating each image of 90, 180 and 270 degrees, and each
rotated image was flipped along the horizontal and vertical axes. The result is that
from each original image, 12 modified versions of it are created. An example of the
modified images is shown in figure 5.9.

TTA does not work for every application: as an example, digit recognition
would not work well if we considered flipped or rotated digits, as they would have
no meaning. Instead, with satellite imagery this problem does not arise: flipping
or rotating an image, the information contained in it does not change, as it is
instead contained in features like the number of buildings and trees and in the
colours. A complete study of the effects of TTA is contained in [21]. In this
article, two popular deep learning classification models (ImageNet and Flowers-102)
were studied, and the effects of two types of TTA (standard and extended) were
evaluated, taking as metrics the percentages of predictions corrected and corrupted
by TTA. It turned out that the net effect of this technique is nearly always positive.
However, the improvement is related to many factors. For example, the more
accurate the model, the lower the benefits of TTA, and the reason for this is that
a model trained on more data generalizes better, and it is less sensitive to image
modifications. Moreover, the improvements obtained for the Flowers-102 network
are significantly smaller than those obtained for ImageNet: flower pictures are
typically taken centred and from the same perspective, while ImageNet object are
very different.

After TTA had been performed performed, an analysis was carried out on the
results, to find the images that have benefited the most from this process. It turned
out that the best improvements are obtained on images that have inside geometric
objects and shapes, like straight streets shifting them into various parts; some
examples are reported in figures 5.10 to 5.13.

The value of the metrics R2 obtained is 0.74, and the scatter plot is shown in
figure 5.14.

After this process, an analysis on the estimated values was also done. In fact,
since 12 different values of the estimated population density value have been

36

5.4 – Test time augmentation (TTA)

Figure 5.9: On the top left corner the original image, while the others modified
versions

obtained and their average has been taken as population density estimate, the
possibility of removing outliers has been investigated. First of all, some of the
estimates have been plotted along with their mean and the corresponding exact
value: the results are shown in figure 5.15, in which each row corresponds to a
sample.

The Matlab function “rmoutliers” [22] was used. By default, a value that is
more than three scaled median absolute deviations (MAD) of the vector under
analysis is considered as an outlier. Another possibility is to manually define a
threshold and define outliers the points outside of the percentiles specified by the
threshold.

The results (figure 5.16) obtained with both methods are not better than the
original estimates. This is because sometimes a result far from the other 11 values
may be beneficial to take the mean nearer the exact value, while in other cases the

37

Convolutional Neural Network design and testing

Figure 5.10: Aerial imagery of an
area in which the TTA improves a lot
its prediction of Population Density -
1

Figure 5.11: Aerial imagery of an
area in which the TTA improves a lot
its prediction of Population Density -
2

Figure 5.12: Aerial imagery of an
area in which the TTA improves a lot
its prediction of Population Density -
3

Figure 5.13: Aerial imagery of an
area in which the TTA improves a lot
its prediction of Population Density -
4

38

5.5 – Database augmentation

Figure 5.14: Scatter plot after TTA

opposite situation happens. At the end, a net effect is obtained, so that the value
of the metrics R2 does not change significantly with respect to the original one.

5.5 Database augmentation
In order to further improve the performance of the CNN, another step is performed:
the database is doubled in order to train on more data and reduce overfitting. This
is a problem that often arises when the database on which the neural network is
trained is too small. The result is a model that fits well the data on which it has
been trained, but it does not generalize well, that is, it is not able to make correct
predictions on fresh data. Moreover, the performance of deep learning models
continue to scale with the size of the training set.

To double the database, it was chosen to take each image and rotate it of 90°
counterclockwise, and then the CNN is trained on both the original and rotated
images. Figures 5.17 and 5.18 show an image of the database before and after the
rotation.

This step will reduce the beneficial effects of TTA, as the model will be able
to generalize better and so the 12 estimates will be nearer to each other. Anyway,
what matters is the final result, that is expected to improve.

Now, the training requires twice the time as before, and the results are the

39

Convolutional Neural Network design and testing

Figure 5.15: Predictions before filtering

Figure 5.16: Predictions after filtering

40

5.5 – Database augmentation

Figure 5.17: Original image Figure 5.18: Rotated image

following: the value of the metrics R2 becomes about 0.82, and the scatter plot
obtained is reported in figure 5.19.

Figure 5.19: Scatter plot after database augmentation

41

Convolutional Neural Network design and testing

5.6 Fine tuning

The distribution of the points in figure 5.19 is around the bisector. The goal now is
to further reduce the thickness of the cloud. A tentative is done using fine tuning.
This is a well known technique in machine learning that is linked to transfer learning.
When a model trained for an application is used for a different task, as it has been
done in this work, it may be helpful to tune the weights of the imported model.
The more different are the two applications, the more beneficial fine tuning is. The
network imported in this case, VGG16, is a model trained on images of natural
objects, that are quite different from satellite imagery that constitute the database
used. Fine tuning makes possible for the model to understand new information
from the data used for the final application. Looking at the imported model, later
layers are linked to features that are high-level and specific to the original task, so
their weights have to be tuned. On the contrary, early layers should be freezed,
because they are connected to low-level features like edges and shapes.

Tensorflow provides an easy way to perform fine tuning on a model: when the
base model is uploaded, it is possible to set all the layers until a certain point as
freezed, writing:

1 f o r l a y e r in base_model . l a y e r s [: f ine_tune_at] :
2 l a y e r . t r a i n a b l e = False

fine_tune_at is a variable containing the number associated with the last layer to
keep freezed.

In the case of VGG16, fine tuning was done on the layers after the 15th. Due to
the limits of computational power available on the AWS EC2 instance used, the
training was done on the original database (composed of 21382 images), and not
on the doubled one. This implies that the values to take as reference are R2 = 0.75
and the scatter plot of figure 5.20. The results obtained show that the model
performance gets worse: R2 is now 0.68, and the scatter plot is reported in figure
5.21.

The fact that fine tuning does not work in this case is due to the dimension of
the database, that is too small in comparison to the database on which VGG16 was
originally trained. This in fact is called ImageNet, and it is composed of 15 million
images that belong to 15000 different categories. The database used here, instead,
is composed of 20382 images that are also very different from those of ImageNet.

42

5.6 – Fine tuning

Figure 5.20: Reference Scatter plot for fine tuning

Figure 5.21: Scatter plot after fine tuning

43

Convolutional Neural Network design and testing

5.7 Analysis of the biggest and smallest estimate
errors

After the evaluation phase, an analysis of the estimated values of particular images
can be performed, in order to better understand which are the problems still
affecting the model. To do that, the 50 images linked to the biggest estimation
errors and the 50 linked to the smallest estimation errors were saved, along with
the estimated values and the true values. It is important to notice that, at this
point, population density values have been modified using the logarithm function
(as discussed in 5.2) and the MinMaxScaler operator. This is a data preprocessing
method that maps the vector given as input into the range [0, 1] (figure 5.22), and
in the context of machine learning it is used to scale the features. Scaling is an
operation which purpose is to change the the range of a set of values, without
changing their distribution. The optimization algorithms used in machine learning
converge faster if features are scaled.

Figure 5.22: MinMaxScaler

The part of the database which is used for testing is composed of 5948 images.
These are randomly chosen from the entire database, so in order to draw conclusions
from the results of the algorithm, it have been run many times. For this reason, in
the following part intervals are reported instead of a simple value.

The first interesting point to notice is that the model tends to underestimate
the population density value. In fact, a percentage from 61% to 66% of the images
were given a value bigger than the real one. Among the 100 images connected to

44

5.7 – Analysis of the biggest and smallest estimate errors

the biggest estimation errors, this is even more evident: the percentage is 76% to
84%. The fact that the algorithm underestimates the population density should be
carefully taken into account, given that the context of this work is safety-related.
Anyway, to better understand the problem it is convenient to look at some of
the images that are underestimated the most. Four relevant example figures are
reported in figures from 5.23 to 5.26. They are all related to a high value of the
population density, meaning that a lot of people are present in the areas shown,
but the model assigns a low population density to them. The reason why the CNN
algorithm gives in output a small population density estimate is clear looking at
the buildings present: some of them are tall, other have strange shapes. The height
of the buildings is a problem, because satellite imagery flatten every object on
the ground. The skyscraper in figure 5.26 is not recognized at all by the model.
Moreover, in figures 5.24, 5.25 and 5.26 the shadows projected by high buildings
hide relevant areas.

Figure 5.23: Underestimation ex-
ample 1

Figure 5.24: Underestimation ex-
ample 2

45

Convolutional Neural Network design and testing

Figure 5.25: Underestimation ex-
ample 3

Figure 5.26: Underestimation ex-
ample 4

Another class of images that seems to cause problems to the model are those
containing big industrial buildings. The population density in these areas is big
due to the presence of workers, but from above they look like plain rectangles that
cover most of the area, so that the model is not able to find relevant features. Two
examples are shown in figures 5.27 and 5.28.

Figure 5.27: Underestimation ex-
ample 5

Figure 5.28: Underestimation ex-
ample 6

46

5.7 – Analysis of the biggest and smallest estimate errors

It is also important to look at some of the overestimated images. A first category
is composed of images of crops, that are assigned by the algorithm to a small
population density value, since no buildings are present, but the database labels
them as highly populated. This can be seen as an error in the database, and the
cause of it is how data are collected: phone cells are located everywhere, and they
are not perfectly distributed, so a cell installed in the middle of crops catches
signals from its surrounding area that can include highly populated buildings. Two
areas that have this problem are reported in 5.29 and 5.30.

Figure 5.29: Overestimation exam-
ple 1

Figure 5.30: Overestimation exam-
ple 2

Another class of overestimated images is composed by satellite imagery over
residential areas where there are buildings and trees. At the time when data were
taken from phone cells (that is, 9 a.m.) few people were present in the area, resulting
in a very low population density. The model, anyway, predicts high population
density values due to the presence of relevant elements. Two representative images
are 5.31 and 5.32.

An important feature that some of the images that are estimated with big errors
have in common is the presence of colors that are not common in the database.
In fact, most of the images are made of colors like green and brown (due to crops,
trees and buildings). Colors like white, blue and red, instead, are not so common
among the images, and this causes the model to fail the estimation. Two examples
of images belonging to this class are shown in figures 5.33 and 5.34.

The last part of this analysis involves the images for which the estimation of the
population density is most precise. Looking at the 50 better predicted images, it is

47

Convolutional Neural Network design and testing

Figure 5.31: Overestimation exam-
ple 3

Figure 5.32: Overestimation exam-
ple 4

Figure 5.33: Color example 1 Figure 5.34: Color example 1

possible to conclude that in all of them there are a lot of relevant objects like trees,
buildings and streets. The relation is simple: it is fundamental for the CNN to find
elements already found during the training to make correct predictions. The four
images that have been better predicted with the best model obtained are shown in
figures 5.35 to 5.38.

48

5.8 – Direct estimation of the risk

Figure 5.35: Best prediction 1 Figure 5.36: Best prediction 2

Figure 5.37: Best prediction 3 Figure 5.38: Best prediction 4

5.8 Direct estimation of the risk
The computation of the risk is complex, and it is described in [1]. An alternative
approach is proposed here, with the goal of facilitate the computation. The method
is inspired by the promising results obtained in the population density estimation.
Basically, the idea is to use the same CNN structure to implement a model that

49

Convolutional Neural Network design and testing

is able to estimate directly the risk, avoiding the need of building and merging
different layers. The values of the risk used as database for training are those
obtained with the probabilistic approach. These data also constitutes the ground
truth of the testing phase, and it is important to note that they are strongly
dependent on the population density.

The results are encouraging: the value of R2 is 0.78, and the TTA technique
is still beneficial for the model. The scatter plot is reported in figure 5.39. An

Figure 5.39: Risk estimation scatter plot

analysis similar to that done before shows that the algorithm tends to slightly
underestimate the risk: the percentage of underestimated images is around 58%.

Looking at the images for which the risk was better estimated, the same problems
discussed before are still present, with the biggest errors being related to images of
industrial building and crops (figures 5.40 and 5.41).

5.9 Population density maps
In the last two sections of this chapter the main results obtained are presented.
In fact, the goal of the thesis was to obtain population density maps and the risk

50

5.9 – Population density maps

Figure 5.40: Risk error example 1 Figure 5.41: Risk error example 2

maps using a machine learning-based approach. The best way to see how the model
works in practice is taking an area, obtaining the maps for which the models have
been trained and comparing them with the maps obtained with the true values.
This process is also useful to understand the environments on which the model is
able to make good predictions and those on which the model does not work well.

The color scale that is used to build the maps is shown in figure 5.42. The red
color is associated with the most populated areas, while violet corresponds to the
less populated ones (and the same holds for the risk). Different maps have been
created for each area: two for the population density and three for the risk. For
each area, the population density maps share the same scale, and the same for
the risk maps. This means that the red color is associated, for example, to the
maximum value of the true and estimated population density. This choice makes
possible to understand, from these maps, if the model is able to reproduce the
distribution of population.

Three different areas have been selected to make this analysis. The first one
includes almost all the Valentino park and the adjacent residential area, the Po
river and its shores shown in figure 5.43.

The true and estimated population density maps of this first area are shown
in 5.44 and 5.45. Some important conclusions about how the algorithm works
can be drawn from these maps. First, the estimated population density and the
real one are distributed similarly: the residential area on the left of the maps is
associated with high values (red and yellow), while the right side is characterized
by low values. It is also visible the trend that the model has to underestimate

51

Convolutional Neural Network design and testing

Figure 5.42: Color scale

Figure 5.43: Test area 1

the population density: the colors are all shifted towards those representing a low
population density.

To better understand these behaviours, a bigger area that is similar and adjacent

52

5.9 – Population density maps

Figure 5.44: True population den-
sity map - Area 1

Figure 5.45: Estimated population
density map - Area 1

to the first one is taken: figure 5.46. As before, it is visible the bias towards
underestimation of the population density that the model shows. This map can be
divided into 3 parts: the first one corresponds to a residential area (San Salvario
district) on the left side of the river, the second one is the Po river and its shores,
and the last one is the hilly area on the other side of the river. The algorithm is
able to distinguish these three areas and to categorize them quite correctly. Some
problems are still present: the red area in the bottom left part of the map is not
distinguished from the surrounding area. This happens because from above the
area does not show big differences (the buildings are more or less similar in this
area). Anyway, the use of these buildings may differ a lot: there are apartments,
offices, shops and also a hospital, and recognizing them from the satellite view is
an hard task.

The population density maps are shown in figures 5.47 and 5.48.
The third and last area on which the model has been tested is different from the

previous two: it is a more homogeneous area, corresponding to Barriera di Milano
district (figure 5.49). This includes residential buildings and the related serviced
like schools, shops and restaurants. The results (figures 5.50 and 5.51) confirm the
fact that population density is underestimated. Moreover, the distribution is less
precisely reproduced than before, with the most populated area that is wrongly
predicted as sparsely populated. The right side of the area, that is less populated,
is predicted with a higher accuracy.

The discrepancy between estimated and real values is due to the difficulty of the
CNN to understand the type of buildings (residential, offices, markets, etc.) in the
area. In fact, using a top view image it is hard to estimate the population density
with an high accuracy. However, the CNN shows promising results and it is able
to distinguish populated areas and non-populated areas, as well as estimating the
distribution of population as demonstrated by the tests above. Moreover, the CNN

53

Convolutional Neural Network design and testing

Figure 5.46: Test area 2

Figure 5.47: True population den-
sity map - Area 2

Figure 5.48: Estimated population
density map - Area 2

tends to underestimate the population density because it is trained considering the
whole Turin municipality and, then, evaluating also areas with a low population
density. As a consequence, the CNN tends to estimate an average population
density. In fact, the tests shown are focused in the city center where we have the
higher population density distribution in the city.

5.10 Risk maps
For each area chosen for the test, three different risk maps have been generated.
The first one is obtained using the probabilistic approach, using for the population

54

5.10 – Risk maps

Figure 5.49: Test area 3

Figure 5.50: True population den-
sity map - Area 3

Figure 5.51: Estimated population
density map - Area 3

density layer the correct values on which the CNN has been trained. The second
map is obtained through the same approach, but the estimated population density

55

Convolutional Neural Network design and testing

values have been used in place of the correct ones. For the third map, the risk
computed via the direct approach is used (as discussed in section 5.8). The results
of the first area are shown in figures 5.52 to 5.54.

Figure 5.52: Risk map - Area 1 Figure 5.53: Estimated risk map -
Area 1

Figure 5.54: Directly estimated risk map - Area 1

The risk computed using the population density estimated with the CNN has a
distribution similar to the reference map. In fact, the risk is low in the right half,
and higher (even if it is underestimated) in the left half of the map. The direct
estimation of the risk also reproduces well the distribution of the true map, but
in this case there is an overestimation problem. Anyway, both approaches lead to
promising results.

The second area, similar but bigger than the first one, reveals similar results
(figures 5.55 to 5.57). As before, the direct approach shown an overestimating trend,
while the map obtained with the estimated population density layer underestimates
the risk. Again, both the distributions are similar to the original one.

In the last area tested (results in figures 5.58 to 5.60), the map obtained with
the estimated population density is very similar to the original one, considering the

56

5.10 – Risk maps

Figure 5.55: Risk map - Area 2 Figure 5.56: Estimated risk map -
Area 2

Figure 5.57: Directly estimated risk map - Area 2

underestimation problem. In fact, the areas with the highest population density
are red in the original map and yellow/green in the estimated map, while green
areas are turned into blue ones. The directly estimated map, instead, shows that
almost every square has the same value of the risk. This because, as discussed
before, this area from above looks quite homogeneous.

After the analysis of the results, some conclusions can be drawn. First, the
risk obtained via the standard probabilistic approach with the population density
obtained using the CNN model has a problem of underestimation. This comes from
the fact that population density is underestimated, and then it is used to compute
the risk. The values of the risk are not correctly reproduced, but the distribution
of the different areas is correct (this is the same problem observed for population
density maps). The direct approach, instead, shows some problems in areas like the
third one analyzed. In fact, the model is not able to distinguish the risk in some
situations, while a correct distribution is replicated for areas containing different
scenarios, like the first two test cases.

57

Convolutional Neural Network design and testing

Figure 5.58: Risk map - Area 3 Figure 5.59: Estimated risk map -
Area 3

Figure 5.60: Directly estimated risk map - Area 3

58

Chapter 6

Conclusions and future
work

The main goal of this thesis was to train a CNN model able to estimate the
population density of an urban area, starting from the satellite imagery of that
area. This is a novel approach in this field where traditionally census data were
used. The final results show that the model is able estimate population density
with a good degree of accuracy. The database used has some limitations, due to
both the images and the numerical data that form the ground truth. Moreover,
images and population density data refer to a different date and time, and this
affects the precision of the final results: the distribution of people in a city changes
dynamically and continuously. This issue can be partially solved using data from
phone cells to build a database, considering that this would give a dynamic picture
of how people are distributed. In fact, a possible future development of the present
work is to build different CNN models, all with the same structure but trained with
data collected at different times in a day and also in different days in the week.

Several machine learning techniques have been employed to improve the perfor-
mance of the CNN model. First, the VGG16 model was imported with its weights
already tuned to save time. Fine tuning turned out to be not useful in this case,
due to the size of the new database, that is too small. Test time augmentation,
instead, boosted the performance of the algorithm. The database was also doubled
to train the model better, improving its generalization capability. This was possible
considering that satellite imagery are particular, in that they don’t have an orien-
tation other than the conventional one, and the information is equally distributed
in the whole image.

The main advantage of using a machine learning-based approach to obtain
population density maps is the cost: the process of obtaining census data is
expensive and long, and it involves many people. A CNN model instead, once its

59

Conclusions and future work

weights have been tuned, can be used to obtain the population data of wide areas
in a short time.

It is also important to remember the goal of the maps obtained: they are
one of the layers used to form risk maps, that are used to run a risk-aware path
planning algorithm for UAVs. Census data provide a fine and precise description
of the population density, that is necessary for many application. In this context,
knowing the exact number of people living in an area is not so important. What is
important, instead, is to have a model that is able to correctly distinguish highly
populated areas from areas where there are few people, on which it is safe to fly
over. The model obtained is able to correctly understand the differences between
residential areas and unpopulated areas, as attested by the tests performed (figure
5.51). When it comes to distinguish areas at a finer level, as in the last test, the
model reveals its limits.

For the development of this work, a possible improvement may be obtained
including in the database other cities. This would result in a bigger database, on
which the model can be trained with better results. It is also interesting to see
how a model trained on multiple cities performs when it is used to predict over a
different city, not included in the database.

Last, the results obtained using a direct approach to obtain risk maps are
promising. The computation of the risk with the probabilistic approach is complex,
as it requires the definition of several layers and their combination. Using a ML-
based approach would dramatically reduce the time required to build a risk map,
with all the advantages discussed above. Anyway, it is necessary to have a database
of high quality and big enough to train the network: as of now, the probabilistic
approach still gives the best results.

60

62

Acknowledgements

63

64

Bibliography

[1] Stefano Primatesta, Giorgio Guglieri, and Alessandro Rizzo. «A risk-aware
path planning strategy for UAVs in urban environments». In: Journal of
Intelligent & Robotic Systems 95.2 (2019), pp. 629–643 (cit. on pp. 2, 49).

[2] Milestones and Moments in Global Census History. url: https://www.prb.
org/resources/milestones-and-moments-in-global-census-history/
(cit. on p. 3).

[3] Adrian Albert, Jasleen Kaur, and Marta Gonzalez. Using convolutional net-
works and satellite imagery to identify patterns in urban environments at a
large scale. 2017. arXiv: 1704.02965 [cs.CV] (cit. on p. 5).

[4] Caleb Robinson, Fred Hohman, and Bistra Dilkina. A Deep Learning Approach
for Population Estimation from Satellite Imagery. 2017. arXiv: 1708.09086
[cs.AI] (cit. on p. 5).

[5] Patrick Doupe, Emilie Bruzelius, James Faghmous, and Samuel G Ruchman.
«Equitable development through deep learning: The case of sub-national
population density estimation». In: Proceedings of the 7th Annual Symposium
on Computing for Development. 2016, pp. 1–10 (cit. on p. 5).

[6] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2015. arXiv: 1409.1556 [cs.CV] (cit. on
p. 5).

[7] Rex W Douglass, David A Meyer, Megha Ram, David Rideout, and Dongjin
Song. «High resolution population estimates from telecommunications data».
In: EPJ Data Science 4 (2015), pp. 1–13 (cit. on pp. 5, 7).

[8] Tobias G Tiecke et al. «Mapping the world population one building at a
time». In: arXiv preprint arXiv:1712.05839 (2017) (cit. on p. 5).

[9] Population Density Maps. 2021. url: https://dataforgood.fb.com/tools/
population-density-maps/.

65

https://www.prb.org/resources/milestones-and-moments-in-global-census-history/
https://www.prb.org/resources/milestones-and-moments-in-global-census-history/
https://arxiv.org/abs/1704.02965
https://arxiv.org/abs/1708.09086
https://arxiv.org/abs/1708.09086
https://arxiv.org/abs/1409.1556
https://dataforgood.fb.com/tools/population-density-maps/
https://dataforgood.fb.com/tools/population-density-maps/

BIBLIOGRAPHY

[10] Pierre Deville, Catherine Linard, Samuel Martin, Marius Gilbert, Forrest
R Stevens, Andrea E Gaughan, Vincent D Blondel, and Andrew J Tatem.
«Dynamic population mapping using mobile phone data». In: Proceedings of
the National Academy of Sciences 111.45 (2014), pp. 15888–15893 (cit. on
p. 7).

[11] Chaogui Kang, Yu Liu, Xiujun Ma, and Lun Wu. «Towards estimating
urban population distributions from mobile call data». In: Journal of Urban
Technology 19.4 (2012), pp. 3–21 (cit. on p. 7).

[12] Paul Sutton, Dar Roberts, Chris Elvidge, and Henk Meij. «A comparison of
nighttime satellite imagery and population density for the continental United
States». In: Photogrammetric engineering and remote sensing 63.11 (1997),
pp. 1303–1313 (cit. on p. 7).

[13] Paul Sutton. «Modeling population density with night-time satellite imagery
and GIS». In: Computers, Environment and Urban Systems 21.3-4 (1997),
pp. 227–244 (cit. on p. 7).

[14] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. «Learning
representations by back-propagating errors». In: nature 323.6088 (1986),
pp. 533–536 (cit. on p. 11).

[15] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne E Hubbard, and Lawrence D Jackel. «Handwritten digit recog-
nition with a back-propagation network». In: Advances in neural information
processing systems. 1990, pp. 396–404 (cit. on p. 12).

[16] Grace W Lindsay. «Convolutional neural networks as a model of the visual
system: past, present, and future». In: Journal of cognitive neuroscience
(2020), pp. 1–15 (cit. on p. 12).

[17] Sebastian Raschka. Python machine learning. Packt publishing ltd, 2015.
[18] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. «Dropout: a simple way to prevent neural networks
from overfitting». In: The journal of machine learning research 15.1 (2014),
pp. 1929–1958 (cit. on p. 17).

[19] Peter Goldsborough. «A tour of tensorflow». In: arXiv preprint arXiv:1610.01178
(2016) (cit. on p. 23).

[20] Wikipedia contributors. Coefficient of determination — Wikipedia, The Free
Encyclopedia. [Online; accessed 10-June-2021]. 2021. url: https : / / en .
wikipedia.org/w/index.php?title=Coefficient_of_determination&
oldid=1024391042 (cit. on p. 32).

66

https://en.wikipedia.org/w/index.php?title=Coefficient_of_determination&oldid=1024391042
https://en.wikipedia.org/w/index.php?title=Coefficient_of_determination&oldid=1024391042
https://en.wikipedia.org/w/index.php?title=Coefficient_of_determination&oldid=1024391042

BIBLIOGRAPHY

[21] Divya Shanmugam, Davis Blalock, Guha Balakrishnan, and John Guttag.
«When and why test-time augmentation works». In: arXiv preprint arXiv:
2011.11156 (2020) (cit. on p. 36).

[22] Detect and remove outliers in data - Matlab. url: https://www.mathworks.
com/help/matlab/ref/rmoutliers.html (cit. on p. 37).

67

https://www.mathworks.com/help/matlab/ref/rmoutliers.html
https://www.mathworks.com/help/matlab/ref/rmoutliers.html

	List of Figures
	Acronyms
	Introduction
	State of the art
	Machine Learning and Convolutional Neural Networks
	Introduction to machine learning
	Convolutional Neural Networks
	Convolutional layers
	Subsampling layers
	Dropout layers
	Dense layers

	Software used
	Introduction
	Tensorflow and Keras
	Other Python libraries
	Amazon Web Services

	Convolutional Neural Network design and testing
	Previous work
	Data distribution
	Image cropping
	Test time augmentation (TTA)
	Database augmentation
	Fine tuning
	Analysis of the biggest and smallest estimate errors
	Direct estimation of the risk
	Population density maps
	Risk maps

	Conclusions and future work
	Bibliography

