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Summary

Complex systems have been the object of studies across diverse fields, comprising
both hard and soft sciences. The data revolution and the enormous amount of
data available in recent years allowed for their quantitative analysis. According
to the problem under investigation, one can focus on their stationary properties,
thus adopting a static description, or analyze their dynamics and their out-of-
equilibrium properties. The goal of this thesis is to investigate the dynamical
behavior of a complex system using dimensional reduction, a technique aiming
to reduce the number of degrees of freedom of the system by constructing a
synthetic, more effective representation. Here we focus on a fully unsupervised
approach to dimensional reduction by coupling clustering techniques with recent
ideas of maximally informative representations. The performance of prediction
algorithms built around these ideas has been tested. The relation between prediction
power and information content, of the clustering label set, has been examined
by considering two numerical experiments. The first experiment is designed for
finding the best agglomerative methods’ inter-cluster linkage, while the second
experiment for investigating whether, starting from a system state representation,
it has been possible to detect time series underlying generative model properties.
The experimental results have been used for drawing general conclusions about
this dimensional reduction technique.
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Chapter 1

Introduction

Complex systems have been the object of studies across different fields, comprising
both hard and soft sciences. The data revolution and the enormous amount of data
available in recent years allowed for their quantitative analysis. Complex systems
are characterized by several variables performing specific functions, interacting with
each other. A simple example of a complex system with many variables interaction
is DNA melting, described by the Poland-Scheraga model. Usually, the effect of
these interactions is not trivial and can be unexpected, i.e. the phase transition
characterizing DNA melting. According to the problem under investigation, one
can focus on their stationary properties, thus adopting a static description, or
analyze their dynamics and their out-of-equilibrium properties. In this paper, we
devote our attention to the second type of complex system descriptions, and, in
particular, to their realization: time series, sequences of observables labeled by
time.

Nowadays, the interest in predicting time series future behavior has increased
exponentially, due to its infinite number applications, starting from financial
investments, to neuronal potential analysis. This prediction has been approached
using several methods and techniques, of which one of the most important is
dimensional reduction. In dimensional reduction, given the sequence of time
labeled observations, we build a new representation of the system state, by dividing
data into groups, to ease future prediction. In other words, it is a technique
aiming to reduce the number of degrees of freedom of the system by constructing
a synthetic, more effective representation. Up to now, there is no universally
acknowledged approach for realizing dimensional reduction, and several methods
have been developed to reach this goal. In [1], Crutchfield and Shalizi define causal
states as the set of all the past observation sequences such that the value of the
conditional probability between them and the future is constant, proposing them
as the optimal representation for system state. Several automatic techniques for
reconstructing causal states have been implemented. The most famous causal states
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Introduction

reconstruction algorithms are the REMAPF algorithm, realized by N. Brodu in
[2], and CSSR algorithm, devised by Shalizi et al. in [3]. A different method for
approaching dimensional reduction is the information bottleneck method, devised
by Bialek et al. in [4]. It consists of an optimization problem of a Lagrangian
function containing the linear combination of two terms: the mutual information
between the past of the time series and the chosen representation for the system
state, and the mutual information between the new representation and the relevant
variables for the underlying generative model for the system.

There is a common aspect in these two dimensional reduction approaches: the
optimal representation can be found, if and only if, we know the future of the
time series or its generative model. It is important to underline that, future and
generative knowledge are strictly related. These approaches, however, are suitable
for investigating only well-known complex systems but could be problematic in
real situations. We aim to find a dimensional reduction technique that can make
predictions independently from future behavior and model knowledge. In this
framework, how can we identify relevant representations? Is there a way to define a
relevant representation for system state, from a predictive inference point of view?
Is it possible to do it without knowing the future of the time series, or its generative
model? In this thesis, we aim to answer these questions, by using an investigation
approach inspired by the theory of maximally informative representation (MIR),
developed in [5] by Marsili et al. Maximally informative representation have
been developed for addressing the static investigation of complex systems, like
photographic images. However, the independence from the problem’s nature and
the nonspecific framework in which the theory has been developed prompted us
to suppose that this approach can be generalized to the dynamical analysis of
complex systems. In particular, it exists a strict relation between the MIR-inspired
approach and the information bottleneck method, which is deeply investigated in
[6] by Song et al. In this thesis, we try also to investigate this relation from a
dynamical point of view.

In Chapter 2, we provide important definitions for describing dynamical systems.
Starting from these definitions, we propose a dimensional reduction technique,
and we explore the predictability of time series future behavior, starting from the
new representation, and its statistical validation. In Chapter 3, we introduce the
concepts of relevance, resolution, and maximally informative representations, trying
to relate the predictive power of a system state representation and the information
it has been able to extract from a dataset. Here, we also develop a proper formalism
to approach time series analysis. In Chapter 4, we describe the different datasets
and the techniques used for the investigation of dimensional reduction. In Chapter
5 and Chapter 6, two numerical experiments are described. The aim of these
experiments is parallel: the first try to detect whether the approach based on
the comparison of information content and predictive power of a representation
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can classify clustering algorithm, while the second experiment tries to detect the
dimensionality and degrees of freedom for the underlying generative model, using
the new representation for the system state. Finally, in Chapter 7, we discuss
the numerical results and we propose some ideas for further investigations. In
Appendix A, a brief introduction to the concept of causal states is realized and
in Appendix B the behavior of MIR quantities is shown for all the inter-cluster
distances used in the thesis.
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Chapter 2

Dynamical complex systems

In Chapter 1, we introduced the concept of dimensional reduction, which is the
subject of our investigation. In particular, as previously mentioned, the aim of
this thesis work is to devise an approach for detecting relevant representation for
complex systems states, starting from its specific realizations.

In Section 2.1, some general concepts regarding time series are introduced, i.e.
the definition of past, future, and observer knowledge state. In section 2.2, we
introduce the mathematical definition of time series dimensional reduction. Finally,
in section 2.3 we introduce some theoretical background for time series future
prediction and, in section 2.4, we make some consideration about their statistical
validation.

2.1 Definitions and ideas
As previously mentioned, time series are special realizations of complex systems,
represented by a sequence of observables labeled by time. To deal with them,
we need to describe time series general properties and define a proper formalism.
These properties should be independent of the specific nature of the system.

Let’s consider a non specific sequence of observables, sampled from an undefined
stochastic process, y = {. . . , y0, . . . , yt, . . . }, with y0 the first detected observable,
i.e. the origin of the reference system, and yt the value of the observable detected
at a fixed t, where the index t is a time label assuming integer values in the interval
{0, . . . ,∞}. In a real situation, it is not possible to observe a phenomenon for an
infinite amount of time, thus defining T the total observation time length, it is
possible to state that the index t belongs to {0, . . . , T}. Each observation belongs
to an observable space Y

yt ∈ Y ∀t ∈ {0, . . . , T}

4



Dynamical complex systems

where Y can be either continuous or discrete, depending on the system of study.
In the case of financial returns, the one in which we are interested in, the space Y
is continuous.

Once the basic mathematical definition of time series has been provided, we can
introduce two fundamental concepts: past and future. For the sake of completeness,
assuming to be at time t and having observed yt, let’s define

−→
Y t = {yt+1, yt+2, . . . }

←−
Y t = {. . . , yt−2, yt−1}

where −→Y t is the future and ←−Y t the past. By knowing these quantities it is possible
to define the concept of observer knowledge. At time t, it is encoded in xt ∈ X .
Observer knowledge is a filtration of the past, thus for example we can assume
xt =←−Y t. However, this is not a realistic situation, since no observer can have full
knowledge of time series realization. A good alternative is to assume that it exists
a maximal memory length, qÍ, up to which the observer can look at. In this case,
the observer knowledge is represented by

xt = {yt, yt−1, . . . , yt−qÍ+1}

It is straightforward noticing that T and qÍ are strictly related. But it is fundamental
understanding that, knowing the sequence {yt, yt−1, . . . , yt−qÍ+1}, also every other
sequence of function of yt is known, and thus the filtration can be written in
terms of functions of observables. In particular, for our investigation, the observer
knowledge is the set of squared observable values.

Before going further in our investigation, let’s take some considerations. Usually,
in dynamical complex systems, the underlying stochastic process for the sequence
y has a structure. In other words, the sequence of observables is not uniformly
sampled from observable space, but it is sampled in such a way to minimize a
cost function, i.e. maximize a Lagrangian function ruling the system behavior.
Let’s consider for example a mechanical system with a particle in quiet, subject
a potential. The sequence of positions occupied by the particle represents the
time series, that we want to consider. In this framework, the observations are
not random, but they are determined through the minimization of the potential,
which corresponds to the Lagrangian function, change of sign. However, in general,
it is not true that the specific sequence y is directly related to this optimization
problem, and, as observers, we aim to predict, given the history of the system, the
future observable values. In other words, it is possible that the minimization of
the cost function is not realized through the sequence y, but maybe through a
sequence of hidden variables, someway related to them. We hope that it exists a
dimensional reduction technique able to extract this particular set of variables. We
deepen this idea in the next sections.
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This framework is frequently observed in various fields of research. A simple
example is represented by the neuronal system in animals’ brains, where y is the
sequence of neural effective potential spikes. Another simple example is represented
by the sequence of financial stock returns at time t, indicated by yt. The development
of a general approach for devising dimensional reduction could help to progress in
many field of research.

2.2 Dimensional reduction
As mentioned in section 2.1, the specific value yt ∈ Y, and thus xt, could be not
directly connected to the optimization problem of the cost function. If we directly
try to predict the future behavior of the system using them, a problem can arise:
the prediction could be wrong. For overcoming this problem we should find a
relevant representation for the system, i.e. we should find a good set of (hidden)
states, whose sequence is the realization of the optimization problem previously
mentioned. There have been several attempts to find such a set of states. As
previously mentioned, a first attempt to detect a relevant representation for the
system state has been described by J. P. Crutchfield in [1], with the concept of
causal states and Ô−machines. For a brief introduction to the concepts of causal
states and Ô−machines consult Appendix A. However, to find a good representation
for the state of the system without knowing the underlying stochastic process of
the time series, we decided to consider the problem from a more machine learning-
related perspective, using clustering algorithms. We suppose that it should exist
a clustering algorithm, whose clustering labels represent a good complex system
state representation, from a dynamical perspective.

To investigate these representations, let’s suppose we are given a time series
y, whose related observer knowledge at time t is xt. After clustering xt with the
clustering algorithm m, we obtain

st = Cmα (xt) ∀t ∈ {0, . . . , T} s.t. yt ∈ Y (2.1)

the set of clustering labels associated with xt. In this definition, α is the parameter
controlling the number of states, and thus related to the number of clusters, in
which we decided to divide our data (resolution). Here, with resolution, we refer
to a function measuring the chosen coarse-graining level. A remark is required:
resolution is not related to the relevance of the representation of the state. The
relation between relevance and resolution and their mathematical definitions is
described in Chapter 3. Before going further, for the aim of clarity, two extreme
cases need to be specified:

• for α = 0 we map all the xt in a single state (low resolution);
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• for α =∞ we map all the xt in the highest number states (high resolution).

thus high values of α are related to a high number of clusters, while low values
are related to few clusters. The procedure we just defined is a real dimensional
reduction technique. It is clear, indeed, that for finding the relevant representation,
we need to investigate the hidden states provided by the clustering labels. However,
we still have not defined the way to investigate how relevant these representations
are, and how the concept of relevance is related to their predictive power and
information content. In the next section, we explore the relationship between
relevance and predictive power.

2.3 Prediction
As introduced in Section 2.2, we aim to find connections between relevant represen-
tations of the system state, and the possibility predicts its future. It is important
to underline how with the word state we do not mean strictly the next observable
value but in general the next relevant label provided by the clustering algorithm. As
previously introduced, there exists a strict relation between relevant representation
and observable value, and they coincide in the case of α =∞.

Once the clustering labels st associated to the knowledge xt have been computed,
we can try to predict st+1 value, from previous labels, and then directly estimate
the value of the next observation yt+1, from it, using the properties of the clustering
algorithm and from the definition of cluster centroid. Graphically, the prediction
procedure can be represented by the following sequence

xt −→Cmα
st → st+1 → yt+1 (2.2)

For formalizing this procedure from a mathematical point of view, we can state
that:

P (yt+1|xt) ∝
Ø

st,st+1

P (yt+1|st+1)P (st+1|st)P (st|xt) (2.3)

Since the hidden state at time t is obtained through clustering algorithms, it is
straightforward noticing that

P (st|xt) = δst−Cmα (xt)

This is not the general expression of the P (yt+1|xt), but it is supposed to be the
right one for relevant representations, for which we can assume P (st+1|st) to satisfy
Markov property, and thus to assume the exactness of the factorization proposed
in Eq.(2.3). For having a deeper comprehension of Eq.(2.3), we should make some
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remarks on the dependence of predictions from the coarse-graining level parameter
α:

• For α =∞, no dimensional reduction has been implemented, and obviously, no
information is lost, however, we have weak predictive power. This is related to
the fact that having all clusters with just one point (i.e the number of clusters
is equal to the number of points), we have not enough points, in a cluster, for
realizing valid predictions and for extracting sufficient information1.

• For α = 0, instead, all the data belong to one cluster, we have an excessive
dimensional reduction and thus all the "information" is lost. In this situation
the prediction in the hidden space is perfect, but at the same time meaningless,
the prediction for future labels is always the same and the one for future
observations is a constant value: the cluster centroid.

• The only interesting case is 0 < α < ∞. Reducing the value of the coarse-
graining level, on the one end we lose information, but on the other one, we
gain predictive power, since the degrees of freedom has been reduced (from xt
to st). The prediction, since α /= 0 is meaningful. In this case, we have a trade-
off between predictive power and information loss, which can be translated in
the choice of a good set of hidden states, i.e a good set of labels provided by
Cmα .

In general, for having the best prediction of the future, we need to compute (and
then optimize) P (yt+1|xt). Before going further, it could be interesting to analyze
in detail the various terms in Eq.(2.3). Let’s start considering the third term:
it is dependent on the chosen clustering algorithm and coarse-graining level. Its
optimization is exactly the main subject of this work. The second term of Eq.(2.3)
can be estimated and optimized quite easily under the assumption that st follows
a Markov dynamics, it should not be too restrictive, because it is always possible
to enrich it with extra variables, and, as previously mentioned, this assumption is
supposed to be exact in the case of relevant representations. Assuming Markovianity
of this term, we can estimate empirically P (st+1|st) via a transition matrix, and,
as previously mentioned, using clustering algorithms properties and the concepts
of the centroid and variance of a cluster, we can estimate empirically the first term
too.

1Up to now, we have not talked about information, but this reference is going to be clear once
the analysis of Chapter 3 is realized
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2.4 Statistical validation
Once the prediction has been realized, we aim to investigate the quality of the
prediction. Concerning this analysis, we should make a distinction between two
prediction possibilities: the ones working in the space of the hidden variables, S,
which try to predict future clustering labels, and the ones working in the space of
real observables Y , which try to predict the future value of considered observables.
However, Eq.(2.3) shows how the two different predictions are strictly related. Let’s
consider them separately.

2.4.1 S-space predictions
From a mathematical point of view, predicting in S-space consists in estimating the
second term in Eq.(2.3), which is the conditional probability of the label st+1, given
the knowledge st. It is related to amount of times in which a jump between label
s̃ = st+1 and label s = st has been observed. The information on this quantities is
contained in the hidden state transition matrix, M̃s,s̃. The full explanation of how
this prediction has been implemented using M̃s,s̃, and it is described in Chapter 4.

Predictions in S-space have pros and cons. Their main problem is related to
the intrinsic nature of the prediction algorithm: working in the space of auxiliary
variable, and not in the observable space, the prediction could be rigged. In other
words, prediction in the hidden space might perform well, but predictions in real
variables space are wrong, i.e. the "mutual information" between variables in real
and hidden variables spaces is null. Let’s consider, for example, the unphysical
situation, in which we have one cluster with all data points. In this case, the
prediction of the hidden state is exact, but the real state prediction is wrong. This
implies that good predictions in the hidden space are not related, for sure, to good
real state predictions. However, this is false if the dimensional reduction provides a
relevant representation of the state of the system. In this case, we should expect
that the representation should have good enough predictive power both in hidden
space and observable one.

There are several ways to implement a prediction in S-space, but a lot of them
are problematic. Naively, one hidden space prediction can be devised by counting
the fraction of future states correctly predicted, using a transition matrix. However,
there could be a problem with it: if a state has been observed rarely, i.e. few jumps
out of it have been detected, by using empirical transfer matrix, as probability
estimation, we have a sharp probability distribution, without a robust statistic.
This can distort our prediction. Another subtle prediction problem is that to be
robust in our predictions, we cannot just have a deterministic prediction of the
future state of the system, but we should try to get a probability distribution for
all the possible incoming states. A solution to all these problems is described in
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Chapter 4 using the famous Bayes theorem.

2.4.2 Y-space predictions
The prediction of the future hidden states enables us to predict the values of real
observables, which corresponds in estimating, given the dataset, P (yt+1|st+1). To
make real space prediction, it is possible to use the concept of the centroid of a
cluster and the standard deviation of cluster points. These kinds of predictions
are really important because classical applications require to control the statistical
properties of yt or of its functions, and not of st. This is the strength of Y-space
predictions: they enable us to predict the value of different functions and moments
of the observables.

However, also for real space prediction, a problem arises. Since not all the
representations of the state of the system are equal, the particular parametrization
of the state of the system in the real space would affect the prediction itself. So
is there a good observable function to be taken into account for investigating the
performance of future prediction? We expect it to be dependent on the complex
system itself.

This question is again strictly related to the concept of causal states introduced
by Crutchfield in [1] and to the information bottleneck method, described by Bialek
in [4]. Starting from this consideration, various prediction algorithms could be
implemented. In Chapter 4, these problems are faced from a practical point of
view, and both real space and hidden space predictors are described.
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Chapter 3

Maximally informative
representations

In Chapter 2, we introduced general ideas about dimensional reduction of time
series, and about the possibility to predict system future behavior, starting from
state representation. In this chapter, we introduce the concepts of relevance,
resolution, and maximally informative representations. Using these concepts we
deepen the analysis of relevant representation, by investigating the relationship
between them and the underlying generative model information extracted from
clustering algorithms. This investigation could help us in relating predictive power
and stochastic model information content for system state representations.

3.1 Relevance vs predictive relevance
In Chapter 1, introducing the concept of dimensional reduction, we presented the
Causal states approach proposed by Crutchfield [1] and the Information bottleneck
method defined by Bialek [4]. They require the knowledge of time series future
and underlying generative model. However, as previously mentioned, we are
interested in finding a dimensional reduction method, independent of the future
and generative model knowledge. In this thesis, as previously stated, we propose
a different dimensional reduction technique consisting of optimizing Cm

α , using
clustering algorithms. However, up to now, apart from prediction power, no general
criterion has been suggested for realizing such an optimization both in a static way,
so without looking at the time evolution of the system, and in a non-supervised way,
without teaching the system what to look at. As mentioned in previous sections, we
think that help to solve this problem can be provided by the concepts of relevance
and resolution, variables quantifying the information content of the system state
representation. We suppose that relevant representation of the state of the system
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provides good predictions of future observations. This supposition is driven by the
fact that, for sure, bad representations, i.e. the ones extracting only noise from a
time series, could not provide a proper future prediction.

In the next section, by defining relevance, resolution, and maximally informative
representation, we investigate the information content of label sequences. This
analysis is driven by one question: What can we say about the amount of generating
process information encoded in relevant representations? Naively, we should expect
that the most relevant representation should also be maximally informative about
the underlying stochastic process, from which the time series have been sampled.
This idea leads us to presume that representations with higher information content,
should also have higher prediction powers. From this idea, we believe that a relevant
representation should be both maximally predictive and maximally informative.

3.2 Relevance, resolution and maximally infor-
mative representations

In the previous section, we have mentioned the concept of maximally informative
representations, without explicitly defining it. Here, we define them properly,
showing their characteristic behaviors. In [7], Marsili et al., starting from a very
general framework, introduce this concept concerning the information content of a
sample, and its entropy. In [5], they also introduce the fundamental concepts for
investigating the information content of different samples: relevance, resolution, and
total information. Now, we generalize these ideas from samples to representations.
For this reason, let’s first recap how these quantities are defined.

Let’s suppose to have a sequence of observables, whose associated observer
knowledge is

{x1, . . . , xN}

Following the procedure described in Chapter 2, we can cluster the observer
knowledge with a fixed coarse-graining level α and method m, obtaining a sequence
of hidden states, i.e. clustering labels

{s1, . . . , sN}

By indicating with Ks the number of times the label s was observed in the sample,
we get

Ks =
NØ
i=1

δsi,s

12
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Similarly, by indicating with mk the number of clustering labels observed exactly k
times, it is possible to obtain

mk =
Ø
s

δk,Ks

Having obtained the specific expressions for Ks and for mk, the related entropies
can be computed, which are named respectively as resolution and relevance:

Ĥ[s] = −
Ø
s

Ks

M
log Ks

M
(3.1)

Ĥ[k] = −
Ø
k

kmk

M
log kmk

M
(3.2)

From these mathematical definitions, it is possible to understand that resolution
represents the number of bits needed to locate an observation fixed the number of
states, and so it is strictly related to the chosen coarse-graining level α. On the
other hand, being the relevance proportional to the minimal number of necessary
bits per state to optimally encode the output of the experiment, it quantifies the
number of states that the sample allows to distinguish and so it provides insights
about the generating model of the time series. A different way to look at the
relevance is to notice that it quantifies the number of bits that are available to
probe the system Lagrangian structure. Moreover, since we are dealing with a
complex system from a dynamic point of view, to fully know the true Lagrange
function we should have complete knowledge of the system. This function is high
dimensional, concerning our data, i.e. there are more parameters with respect to
the number of observations, thus it is not possible to fully know it. Conscious of it,
what we can try to do, is just to obtain the best representation of the system state,
to be able to predict most accurately the future behavior of the system.

It is clear, considering relevance definition, that relevant representations of the
state of the system are also informative about the generating process. At this point,
it is important to notice that we have not considered in the analysis any specific
feature of the process, but just general ones. For this reason, in case of favorable
results, this procedure could be used for analyzing the most various dynamical
systems and time series, starting from financial ones to neural ones. Since we
are dealing with stochastic processes, it could be convenient to quantify the noise
amount in the sample as

Ĥnoise[s|k] = Ĥ[s]− Ĥ[k]

The last important definition required for dealing with maximally informative
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representations is the one of total information contained in a representation,

Ĥtot[s, k] = Ĥ[s] + Ĥ[k] (3.3)

which, in practice, represent the sum of relevance and resolution.
These concepts lead us to mathematically state that maximally informative

representations are representations in which the relevance is maximal at a fixed res-
olution value. In other words, for finding the maximally informative representation
we need to maximize the following functional

F = Ĥ[k] + µ
1
Ĥ[s]−H0

2
+ λ

AØ
k

kmk −N

B
(3.4)

with, µ and λ two Lagrange multipliers to be adjusted and H0 the fixed resolution
level. As shown in [8] and in [5], the optimization of the functional described in
Eq.(3.4), can be realized analytically, and the result is that maximally informative
representations exhibits a power law frequency distribution described by

mk ∼ ck−1−µ (3.5)

with c a normalization constant and µ quantifying the trade-off between resolution
and relevance. The point in which µ = 1 sets the limit beyond which further
reduction in Ĥ[s] results in lossy compression, in fact, for µ < 1 the increase in the
resolution cannot compensate the loss in relevance. In this limit, µ = 1 we recover
the well known Zipf’s law

mk ∼ ck−2 (3.6)

From this result, Marsili et al. have been able to extract the following general
result: mostly informative representations are those for which the frequency of
observations covers the largest possible dynamic range, providing information on
the system’s optimal behavior in the wider range of possible circumstances.

Strong of these results, we are interested in understanding how they relate to
the possibility of predicting the future of a particular realization of a dynamical
system, starting from a particular system state representation. In other words,
if we have a system with a sufficiently complex structure is there a way to use
relevance and resolution to drive the choice of Cmα (xt), to extract the highest amount
of information about the generating stochastic model, and the lowest amount of
noise? The definition of relevance and resolution leads us to suppose that, after
fixing the resolution value, representation with higher relevance, should contain
more information about the generating process, and thus should provide better
future predictions. In other words, by having relevant and maximally informative
representations of the system state, it could be possible to have access to a highly
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predictive form of the Lagrange function, affecting the system behavior, even if the
observation length is finite, as mentioned in Chapter 2. To investigate this idea
we have devised two numerical experiments, which are described in Chapter 5 and
Chapter 6.
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Chapter 4

Datasets and methods

In this chapter, we present the datasets used for relevant representation investigation,
in Section 4.1. Once they have been defined and their properties described, a
fundamental reshaping procedure of data is shown, in Section 4.2. This reshaping
procedure is fundamental for the definition of the predictions algorithms and of the
algorithms devised for computing relevance, resolution, and total information, in
the last two sections. All these elements have primary importance in the numerical
investigation, which take place in Chapter 5 and Chapter 6.

4.1 Introduction to datasets
For relevant representations investigation, as just stated, we decided to use two
different datasets, the first of them is synthetic, a time series sampled from an
ARCH model, while the second is a real financial time series. In the following
sections, these time series are shown and their most important properties described.

4.1.1 ARCH model
For the first part of relevant representation analysis, to be able to check that
qualitative and quantitative expected behaviors are observed, we decided to consider
a synthetic time series, sampled from a known stochastic process. We have devised
an ARCH model time series of total duration T = 1000 step, so to be sure that
T is much longer than the auto-correlation time. This assumption is required for
having an ergodic process. The ergodicity requirement is fundamental for having a
set of independent and identically distributed xt.

ARCH model is an auto-regressive statistical model, whose volatility, σt, at a
fixed time t, is function of past returns up to a memory length q, [9]. For the aim
of consistency, we denote the time series of returns by y. Once the volatility is
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known, it is possible to sample the yt variable value. Its analytical behaviour is
described by the following equations:

yt = σt · zt σ2
t = a + b1 · y2

t−1 + b2 · y2
t−2 + · · ·+ bq · y2

t−q (4.1)

where zt = N (0,1), and consequently yt ∼ N (0, σ2
t ). The memory length of the

process q is defined as the maximal time distance of past squared return affecting
the value of the squared volatility. In this framework, the observer knowledge
depends on how long he is able to look in the past. So by defining the observer
memory length as qÍ, which in principle could be different from the real memory
length of the process, it is possible to define the observer knowledge as

xt = (y2
t , . . . , y2

t−qÍ+1)

where y2
t represents exactly the squared return value at time t. It is important to

underline, that xt is a collection of square returns. The choice of qÍ is strictly related
to the concept of causal states, described in Appendix A. For our investigations,
we decided to sample a time series characterized by a memory length q = 4. The
parameters chosen for the simulations are reported in the following table.

parameters value
a 4
b1 0.25
b2 0.25
b2 0.25
b2 0.25

Table 4.1: Values of the parameters chosen for the ARCH model dataset

As already introduced in section 3.1, we do not expect the result to be dependent
on the parameters choice, reported in Tab.4.1. Given the stochastic nature of the
process, it is neither useful to consider identical values for the b’s parameters. The
dimensional reduction applied to the dataset is unconscious of the model from
which the data have been sampled. Furthermore, we should remember that the
definition of relevance and resolution is independent of the model structure.
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Figure 4.1: Squared returns vs time, for an ARCH model time series, T = 1000
and q = 4

Figure 4.2: Squared volatilities vs time, for an ARCH model time series, T = 1000
and q = 4

Before going further in the investigation of relevance representation, some
remarks about the independence of subsequent observer knowledge need to be
presented. To be able to use MIR theory, we require the sample, of past filtrations,
to be made of i.i.d. elements. For having such a sequence of x, we should proceed
in the following way: at first sample an ARCH model time series, wait for the
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convergence to the stationary state, to guarantee ergodicity, and then store just one
xt value, repeating this procedure for T times. This procedure is computationally
expensive and so we tried to understand whether results change using a single time
series, for which we waited for stationary state convergence. The results of this
comparison are not explicitly shown in this thesis, but the two procedures lead to
the same behavior. The similarity of the behaviors does not surprise us, and it
can be explained by looking at the autocorrelation time of the process, τ . This
quantity represents, as previously stated, the time after which two observations
can be considered uncorrelated. In other words, considering a single time series, is
identical to consider a sample of i.i.d. x of a total length of the order T

τ
. This is

due to the ergodicity property owned by the system.

4.1.2 Real dataset
For dealing with a more realistic dataset, we decided to investigate maximally
informative representation for non-synthetic data, being conscious that, in this
case, we do not know the exact underlying process from which data have been
sampled. For the sake of continuity with the ARCH model, we considered the time
series defined by the returns of the S&P 500 stock1. The total observation time has
been fixed to 5 years, to be comparable with the observation time of the ARCH
time series. The observation has been started on June 6th 2016 and ended on June
6th 2021.

Figure 4.3: Squared returns vs time, for S&P 500 stock, 5 years daily returns

1The time series of S&P 500 has been collected using yahoo finance
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By looking at Fig.4.1 and at Fig.4.3, it is possible to notice a completely different
behaviour of squared returns, implying a different underlying generative process.
From this, it is possible to conclude that, in general, it is wrong to assume the
S&P 500 time series to be a realization of an ARCH model.

Once again, some remarks on the independence of x in the time series are
required. Here, since we do not know exactly the underlying generative process of
the time series, we are not anymore sure it to be stationary and the sequence of x
to be i.i.d. Several financial effects can affect the stationarity of the process, i.e.
cyclic phenomena or seasonalities. However, to keep coherence with MIR theory, we
decided to consider the underlying process to be stationary, and forget about the
possible observed seasonalities. We choose to work with S&P 500 time series since
is known to be less affected by the cyclicity of the market. Further more, dealing
with not stationary processes could provide some insights about the applicability
of the dimensional reduction technique to them.

4.2 Reshaping and clustering procedures

In the previous sections, we have introduced the concepts of memory length as q
and observer memory length qÍ, which are fundamental parameters of our system.
However, in the time series native form, there is no explicit reference to them. For
this reason, to fix the observer memory length of each investigation, we devised a
reshaping procedure for squared returns, to explicit the choice of qÍ. Let’s consider
the time series y, which has an observer memory length qÍ. Being x a filtration of
the past, it should have the form

x = {xi ∈ RqÍ : xi = (xi, . . . , xi−qÍ+1)}

with i = qÍ, . . . , T .From this expression, it is easy to notice that the total length of
the vector x is equal to T Í = T − q, and that x ∈ RT Í×qÍ .

The reshaped data can now be clustered and used for the investigation of time
series dimensional reduction. As described in Chapter 3, the value of relevance and
resolution depend on the coarse-graining level. For the sake of comprehensibility,
and for having as continuous as possible entropies, we decided to change the coarse-
graining level α by unity steps, at each algorithm iteration. In other words, the
number of clusters, k, span the range k ∈ {1, . . . , T Í} = K. Once the interval of k’s
has been defined, it is possible to cluster data, following one simple requirement:
the clustering method should work at a fixed k. Since we need to change the number
of clusters by one at each iteration, we decided to use agglomerative methods. An
advantage of these methods is that they are defined with different inter-clusters
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distances, allowing us to compare them, using relevance2 and prediction errors. For
our investigation, it has been decided to use four different inter-clusters distances:

• Single linkage: where the inter-cluster distance is the closest one between two
objects belonging to two different clusters;

• Complete linkage: where the inter-cluster distance is the one between two
most remote objects belonging to two different clusters;

• Average linkage: where the inter-cluster distance is the average one between
all the objects belonging to two different clusters;

• Ward linkage: where instead of measuring the inter-cluster distances directly,
analyzes the variance of clusters.

The full description of agglomerative methods and the inter-clusters distances, used
in the investigation, is provided by Mentha et al. in [10]. It is straight forward
noticing that each linkage, in the general theory of dimensional resolution for time
series, represents the index m in the clustering function C(m)

α .
The implemented clustering procedures provide label sequences, which can be

seen as our hidden states s, living in S-space. They are used for studying respectively
predictive power and information content of the representation, described in the
next sections using ideas described in Chapter 2. Before going further, it is
important to underline that, given the time dependence of the time series, if we use
clustering techniques with Euclidean metrics we work in a sub-optimal framework:
euclidean metrics cannot provide the right weight to each observation. In a real-
world situation, we are aware that the most recent observations affect in a stronger
way future behaviors. The best idea for detecting optimal clustering techniques
is to use Vanilla techniques. However, for the sake of simplicity, we decided to
use Euclidean metrics. To not penalize too much this choice, we fixed the ARCH
model parameters to the one shown in Tab.4.1.

4.3 Prediction algorithms
In this section, we introduce the prediction algorithms used in the investigation.
Two main classes of prediction algorithms have been devised:

• Unsupervised predictors, in which no knowledge about the underlying stochas-
tic process is used. For this reason, they can be used for both the synthetic
dataset and the S&P 500 one.

2The behavior of the of information related quantities is reported in Appendix B
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• Supervised predictors, in which the properties of the generating process are
used. It is a straightforward understanding that this kind of predictors can be
used just for the ARCH model dataset, since in the case of the S&P 500 one
we have no knowledge about the generating process, and we have not to make
any assumption on it.

In the next sections, we define mathematically the algorithm of both these prediction
classes, even if the second predictor is used, just, for checking whether those relevant
representations have behaviors that are in agreement with ARCH model properties.

4.3.1 Unsupervised predictors
As already mentioned in Chapter 2, in the case of unsupervised predictors, supposing
Markovian dynamics in the hidden space, it is possible to model the system as a
jump process between states represented by the clustering labels. Starting from
hidden space predictions it is possible to predict real observables future values. So
it is convenient to distinguish prediction algorithms working in real space and the
ones working in hidden space. The predictivity in the Y-space is affected from
the one in the S-space, as it is possible to deduce from Eq.(2.3). For the sake of
consistency, let’s introduce for first the predictors working in S-space.

Given the time series, fixed the observer memory length qÍ and the number
of clusters k, and once the reshaping of the dataset has been implemented, it is
possible, applying a clustering algorithm, obtaining clustering labels, representing
the hidden states of the process. For predicting the future s-state of the process,
at first, we divided the observer knowledge and the corresponding labels, into two
groups, test and train set, respectively with total length T Í

Test and T Í
Train.

xTrain =
1
xTrain1 , . . . , xTrainT Í

Train

2
⇒ sTrain =

1
sTrain1 , . . . , sTrainT Í

Train

2

xTest =
1
xTest1 , . . . , xTestT Í

Test

2
⇒ sTest =

1
sTest1 , . . . , sTestT Í

Test

2
By considering the train set, we computed the empirical probabilities of observing
a jump from the hidden state i to the hidden state j, the transition matrix M̃i,j,
with size k × k,

M̃i,j = Ni,j

Ni

(4.2)

with Ni,j the number of transition between i-state and j-state, and Ni the number
of jumps starting from state i. All these quantities have been computed in the train
set. The transfer matrix can be used as a predicting tool for the time series future
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behavior. In fact, it contains an unbiased estimate of the jumping probability
among clusters, if we assume that the time for which we observed the phenomenon
is much longer than the autocorrelation time of the process. This can be checked
in the case of an ARCH sample, but not in the case of real financial data, since we
should assume the data to be sampled from a well-defined stochastic process.

Now, using the test set, it is possible to study the performance of predictions
realized with the transfer matrix, M̃i,j. For studying transfer matrix performance,
it has been decided to compute a prediction error, Ỗt+1,t, defined as

Ỗt+1,t = 1−Mst,st+1

where st is the hidden state of the squared return at the time t, and Mst,st+1 is
not a transfer matrix but a function that can be easily computed starting from its
knowledge, using Bayesian inference. What is the reason for which we have not
used the transition matrix? It is described further in this section, but it is strictly
related to the strong empiricity of the transfer matrix. It is clear that for k = 1,
the performance of the prediction is perfect, and this is in perfect agreement with
Chapter 2 findings. However, it is possible to notice that a problem arises, in the
case of k = T Í. In this case, each line of the transfer matrix have a unitary entrance
and all the others equal to 0, in other words, there are not enough statistics to
evaluate the predictor’s performance.

For solving this problem, we have decided to assign a weight for each prediction

Ôt+1,t = 1−Mst,st+1

Σ2
st,st+1

(4.3)

where Σ2
st,st+1 , is the variance associated to the jump between state st and state st+1.

In order to compute Σ2
st,st+1 and to consider a prior knowledge on possible values

of the transfer matrix, we approached the problem using Bayesian inference. The
simplest way to look at the problem is to look at Ỗt,t+1 as the mean value a Bernoulli
variable, with probability Mst,st+1 to make a good prediction and 1−Mst,st+1 to
mistake it3. At the same time we can use Bayesian inference for estimating the
posterior jumping probabilities, the entrances of the transfer matrix. They follow a
multinomial distribution. If we assume to be stuck in hidden state i, and having
Ni jumps out from it, and if we indicate with Ni,j the number of jumps between i
and j, the likelihood follows the expression

P (Ni,1, . . . , Ni,k, Ni|Mi,1, . . . , Mi,k) = Ni!
Ni,k! . . . Ni,1!M

Ni,1
i,1 . . . M

Ni,k
i,k

3It is important to underline that the value one of the variable related to the prediction error
is associated to the mistake in the prediction, and the value zero to the possibility to get the right
prediction
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such that

kØ
l=1

Ni,l = Ni and
kØ
l=1

Mi,l = 1

with k the total number of clusters, l ∈ {0, . . . , k}, and T Í
train the total number of

points. Using the Train set we need to estimate {Mi,1, . . . , Mi,k} ∀i ∈ {0, . . . , k},
and, knowing the cluster to which each Test point belongs, we are able to check the
prediction performance. For estimating {Mi,1, . . . , Mi,k} ∀i ∈ {0, . . . , k} we used
Bayesian model averaging. Let’s start defining what the prior knowledge on the
entrances of the transfer Matrix is. Using the concept of conjugacy of probability
distributions is possible to understand that the correct prior to use is the Dirichlet
Distribution:

P (Mi,1, . . . , Mi,k|αi,1, . . . , αi,k, αi) = Γ(αi)
Γ(αi,1) . . . Γ(αi,k)

M
αi,1−1
i,1 . . . M

αi,k−1
i,k

such that

kØ
l=1

αi,l = αi
kØ
l=1

Mi,l = 1

How can we choose the values of the {αi,j}i,j=1...ks in order to be agnostic? The
choice we made is to fix

αi,j = c ∀i, j ∈ {1, . . . , k}

with c a constant to be fixed depending on the simulation, and

αi = k · c ∀i ∈ {1, . . . , k}

Once these quantities have been determined, we can compute the posterior proba-
bility:

P (Mi,1, . . . , Mi,k|Ni,1, . . . , Ni,k, Ni, αi,1, . . . , αi,k, αi) ∝M
Ni,1+αi,1−1
i,1 · · ·MNi,k+αi,k−1

i,k

Now, using the Bayesian model average theory, it is possible to compute the
probability that a test jump is observed between cluster i and j. Assuming that xt
belongs to cluster i, what is the probability that xt+1 belongs to cluster j? This
can be computed via marginalization, using the expected value of the Dirichlet
distribution, and the final result is that
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Mi,j = P (st+1 ∈ j|st ∈ i, Ni,1, . . . , Ni,k, Ni) = Ni,j + αi,j
αi + Ni

where, for keeping the notation as simpler as possible we did not explicit that Mi,j ,
is the expectation value of the jump process.

Using this result and Eq.(4.3), it is now possible to compute the prediction,
assuming to know Σi,j. For computing the explicit value of the variance Σi,j, we
can use the assumption that the variable Ỗt,t−1 is the mean value of a variable
distributed according to a Bernoulli distribution

Σ2
i,j = Mi,j (1−Mi,j)

Putting all these results together we get

Ôs,unsupervisedt+1,t = 1−Mst,st+1

Mst,st+1

1
1−Mst,st+1

2 = 1
Mst,st+1

(4.4)

Starting from the prediction realized in the hidden space, as previously mentioned,
it is possible to consider real space predictions. To predict the future real state the
first step is to determine what is the most probable future hidden state, assuming
to be stuck in state i at time t. It is defined as follows

ŝt+1 = argmaxj=1,...,k{P (st+1 ∈ j|st ∈ i, Ni,1, . . . , Ni,k, Ni)} =

= argmaxj=1,...,k

;
Ni,j + αi,j
αi + Ni

<
and the empirical probability associated with it as

M̂i,j = max
j=1,...,k

{P (st+1 ∈ j|st ∈ i, Ni,1, . . . , Ni,k, Ni)} = max
j=1,...,k

;
Ni,j + αi,j
αi + Ni

<
By knowing the most probable hidden state, it is possible to predict the new real
observable value. The simplest way to address this prediction is using the concept
of cluster centroid and standard deviation of the same cluster. In this way, our
estimate for the new value of the observable coincide with the same centroid, and
the variance, required for weighting the prediction error is equal to the squared
value of the standard deviation of the cluster. From a mathematical point of view

ŷt+1 = Eŝt+1 [y]

where E[·] represents the empirical mean in the cluster and
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Σ̂2
t+1 = Vŝt+1 [y]

From these results it is possible to extract the prediction error, related to real space
prediction,

Ôy,unsupervisedt,t+1 = yt+1 − ŷt+1

Σ̂2
t+1

(4.5)

The behaviour of the predictions, for the two numerical experiments, are shown
shown in Chapter 5 and Chapter 6.

4.3.2 Supervised predictors
As previously mentioned, it is possible to devise, in the case of synthetic time series,
a supervised prediction algorithm. This algorithm predicts the future observable
value of the time series, by knowing the stochastic model from which the time series
has been sampled. It is clear that in the case of the ARCH model dataset, it has
been possible to construct such a predictor, but not in the case of the real financial
dataset. It is obvious that using the same ARCH model supervised predictor for
S&P 500 dataset, the prediction error would have been very high. The supervised
prediction algorithm, devised for the investigation of relevant representations for
the ARCH model sampled time series is now described.

For devising this algorithm, once again, we took advantage of Bayesian inference
for studying the expected value of each cluster volatility. The procedure described
below is realized, for simplicity for the case of ARCH(1) model, but it can be easily
generalized to our framework by considering observation as i.i.d. Using Eq.(4.1)
and that yt ∼ N (0, σ2

t ) it is possible to realize that y2
t is distributed according a

χ2-distribution

y2
t = σ2

t z
2
t = σ2

tωt with ωt ∼ P (ω) = 1√
2πω

e−ω
2 θ(ω)

whose statistics are

E(ω) =
Ú ∞

0
ωP (ω) = 1

E(ω2) =
Ú ∞

0
ω2P (ω) = 3

This change of variable is required since the ARCH model has a linear structure.
From the previous expressions it is clear that defining τt = y2

t :
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τt = σ2
tωt → τt ∼ P (τ) = 1

σ
√

2πτ
e− τ

2σ2 θ(τ)

where we forget about the dependence from time.
By looking at this framework from a Bayesian point of view, it is possible to

realize that P (τ) is the likelihood probability of the system. We are interested in
finding the Posterior probability of observing a particular squared volatility value,
by fixing the cluster. In the following equation, k is the total number of clusters,
at a particular iteration of the algorithm, and ks the number of observations whose
label is s. Using Bayes theorem, it is possible to compute the posterior probability
as

P (σ(s)|{τ1, ...τks}) = P ({τ1, ...τks}|σ(s))P (σ(s))s
D(s) P ({τ1, ...τks}|σ(s))P (σ(s))

Prior distribution knowledge is required. For this reason, we choose to consider an
uninformative prior, known as Jeffreys’ prior [11], whose definition is the following

P (σ(s)) =
ñ
|I(σ(s))| ∼ 1

σ(s)

where I is the Fisher information matrix. Before going further, it is important
noticing how the result is similar to the one found for the Gaussian likelihood.
This suggests that, maybe, for devising the supervised prediction algorithm, it
could have been possible to consider directly yt and not y2

t , but to be sure further
investigation are required. Furthermore, since the likelihood is distributed according
to χ2-distribution, it is straightforward to notice that it can be factorized. This
assumption derive also from the requirement of independence of observations and
ergodicity for the process4. The final expression for the Bayes theorem is:

P (σ(s)|{τ1, ...τks}) =

èrks
l=1 P (τl|σ(s))

é
P (σ(s))s

D(s)

èrks
l=1 P (τl|σ(s))

é
P (σ(s))

One of the problems of the previous expression is that χ2 distribution is not a
stable distribution, so it is difficult to compute the expectation value of σ(s), in the
hidden state s. Since the distribution is not stable, we have

P (τ1) · P (τ2) = 1√
2πτ1σ(s) e

− τ1
2σ(s)2 · 1√

2πτ2σ(s) e
− τ2

2σ(s)2 = 1
2π
√

τ1τ2σ(s)2 e
− τ1+τ2

2σ(s)2

4Look at the first section of this chapter.
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However, even if the distribution is unstable, we can estimate the average value of
the volatility in each cluster as follows

EP (σ(s)|{τ1,...τks})[σ(s)] =

s∞
0 dσ(s) P (σ(s))·σ(s)√

(2πσ(s)2)ksτ1...τks
e

−
τ1+···+τks

2σ(s)2

s∞
0 dσ(s) 1√

(2πσ(s)2)ksτ1...τks
e

−
τ1+···+τks

2σ(s)2 · P (σ(s))

with

Ú ∞

0
dσ(s) 1ñ

(2πσ(s)2)ksτ1 . . . τks
e

−
τ1+···+τks

2σ(s)2 =
Ú ∞

0
dσ(s) 1

Aσ(s)ks
e

− B

2σ(s)2

It is an inverse gamma distribution, in which A =
ñ

(2π)ksτ1 . . . τks and B =
τ1 + · · ·+ τks . Instead of working with the squared Volatility we can try to work
with the squared precision, whose distribution is a gamma distribution. Let’s try
to compute the following integral:

Ú ∞

0
dσ(s) 1

Aσ(s)ks
e

− B

2σ(s)2 = 1
2AB

ks−1
2

Ú +∞

0
dyy

ks−3
2 e− y

2 =
2 ks−3

2 Γ(ks−1
2 )

AB
ks−1

2

The result has been computed using Wolfram Mathematica software. The denom-
inator of the previous expression behaves in the same way: for this reason, the
expected value of the volatility in a cluster is:

EP (σ(s)|{τ1,...τks})[σ(s)] =
2
ks−3

2 Γ( ks−1
2 )

AB
ks−1

2

2
ks−2

2 Γ( ks2 )

AB
ks
2

=
√

BΓ(ks−1
2 )

2 1
2 Γ(ks2 )

Using similar reasoning it is possible to compute also the expected value of the
squared volatility and the volatility raised to the fourth power:

EP (σ(s)|{τ1,...τks})[σ(s)2] =
BΓ(ks−2

2 )
2Γ(ks2 )

EP (σ(s)|{τ1,...τks})[σ(s)4] =
B2Γ(ks−4

2 )
22Γ(ks2 )

Finally, the variance of the squared volatility is:
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VP (σ(s)|{τ1,...τks})[σ(s)2] =
B2[Γ(ks−4

2 )Γ(ks2 )− Γ(ks−2
2 )2]

4Γ(ks2 )2

The result seems to be correct since we need to reach 4 elements for each cluster
for computing such quantities, and if the number of elements is lower than 4, it
is impossible to compute them. This can be a problem, but for solving it we can
instead study the expected value of σ(s) and its variance. The result is pretty
similar to the previous one.

VP (σ(s)|{τ1,...τks})[σ(s)] =
B[Γ(ks−2

2 )Γ(ks2 )− Γ(ks−1
2 )2]

2Γ(ks2 )2

In conclusion, we can see that the non-Stability of the χ2 Distribution is not
a problem, since using conjugacy we can compute all the interesting quantities.
However, it is important to notice how we need at least 2 points per cluster to
compute the mean and the variance of clusters volatility. From some point of view,
this result is reassuring: it means that to predict properly the value of cluster
volatility we need to have enough good statistics, i.e. enough data.

By trying to implement this predictor another problem can be seen: it could
happen that, for some values of k, we need to compute Γ(u) with u > 150. These
values are not computable or difficult to compute. For solving this problem we
need to use some approximations for the Gamma function need to be used, the
Stirling approximation formula. It states, assuming ks to be an integer,

Γ(ks + 1) =
ñ

2πks

A
ks
e

Bks
It is important to underline that this approximation work in a good way for high
values of ks, but not for small ones, for this reason, some problem can arise in the
undersampling region of relevance resolution curves. Before taking any decision
regarding the possible way to face these discrepancies. We can try to look at
computational results for having an idea of what is the amount of this discrepancy.
First of all, we need to compute the approximation provided by, Stirling formula
for the quantities previously computed. They are the following

EP (σ(s)|{τ1,...τks})[σ(s)] =
√

BΓ(ks−1
2 )

2 1
2 Γ(ks2 )

∼
A

ks − 3
ks − 2

B ks−1
2 3

eB

ks − 3

4 1
2

EP (σ(s)|{τ1,...τks})[σ(s)2] =
BΓ(ks−2

2 )
2Γ(ks2 )

∼
A

ks − 4
ks − 2

B ks−1
2 3

eB

ks − 4

4
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EP (σ(s)|{τ1,...τks})[σ(s)4] =
B2Γ(ks−4

4 )
2Γ(ks4 )

∼
A

ks − 6
ks − 2

B ks−1
2 3

eB

ks − 6

42

It is, thus, possible to generalize this to any moment

EP (σ(s)|{τ1,...τks})[σ(s)h] ∼
A

ks − 2− h

ks − 2

B ks−1
2 3

eB

ks − 2− h

4h
2

From these results it is also possible to compute the new values for the volatilities:

VP (σ(s)|{τ1,...τks})[σ(s)2] ∼
3

eB

ks − 6

42
Aks − 6

ks − 2

B ks−1
2

−
A

ks − 4
ks − 2

B(ks−1) A
ks − 6
ks − 4

B2


There are some important elements on which it is important to focus our attention:

• First of all, we can notice how the second term in the expression for the
Variance is smaller than the first because the basis is smaller than one and it
is raised to the square. However, there could be some situations in which the
variance can be negative. Since the expression is not simple to be studied, we
can try to look at the numerical solution for approach the discussion for this
possibility;

• It is important to underline how the use of the Stirling approximation enable-
senables us also to study the situation in which ks < 4, however, this is an
unphysical case that we want to avoid;

• Again we would like to underline how this approximation works well just in
the situation in which we have a high amount of points for each cluster. This
is compatible with the first comment we made. Before implementing this
solution we need to make some other checks.

• Another problem is that we are in a multidimensional case, but this problem
can be solved by observing that the various variables are independent.

From the numerical analysis, it is possible to find that the result is computable
just in the following range of values:

ks ∈ N0

This implies that for our interest, we can use the following approximation just in the
case of ks ≥ 4, while, in the other case, we can use the real formula for the volatility
since, in that situation, it is possible to compute it, however, better estimations can
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be implemented, for example keeping using the right expression of the variance for
high enough values of ks and then pass to the approximation provided by Stirling
formula. The last ks that has been computed using the exact formula is ks = 150,
and for this reason, we have decided to use Stirling approximation just in the case
of ks > 150. Independently from this, from now on we can implement the new
Bayesian supervised predictor. Its results are shown in the next Chapters.

For what concerning the performance of supervised prediction algorithm, we
decided to compute the prediction error in a similar way to the unsupervised
prediction error

Ôsupervisedt,t+1 =
σ2
t+1 − EP (σ(s)|{τ1,...τks})[σ̂2

t+1]
VP (σ(s)|{τ1,...τks})[σ̂2

t+1] (4.6)

where σ̂t+1 is the estimate of volatility, by knowing the hidden state, st+1, of the
observation at time t + 1.

4.4 Relevance, resolution and total information
Once the prediction has been realized, we can compare prediction error results with
the results provided by the analysis of relevance, resolution and total information
graphs. In this graphs, we plot the entropies as a function of the coarse graining
level α. From what we have mentioned in Chapter 2 and in Chapter 3, we should
expect that representation characterized by higher relevance are also the ones
having better prediction performances. In other words, from a graphical point of
view, we should expect that higher relevance-resolution curve, for different inter
clusters distances, should have lower prediction errors, both in the unsupervised
and supervised case. In the next two chapters, two experiment are described, and
comparing prediction power and relevance levels, we are able to extract some general
informations about relevant representations, and thus maximally informative ones.
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Chapter 5

Application I: comparison of
clustering methods

For investigating numerically relevant representations we decided to devise two
numerical experiments, the first of which is introduced in this chapter. The ideas
that brought us to devise it are described in the first section, while in the second
section, we show the numerical results and we take some conclusions, trying to
extend them to more general frameworks.

5.1 Clustering method optimization
As stated in Chapter 2, to find a system relevant representation, we need to
optimize the function Cmα , in such a way to obtain a maximally informative and
maximally predictive representation of system state. This optimization problem
can be divided into two sub-problems. The first consisting of the optimization of
the coarse-graining level α, once we fixed the clustering algorithm m. While the
second sub-problem, consists in optimizing Cmα as a function of m. The relevant
representation is obtained when both the coarse-graining level α and the clustering
method m have been optimized. As described in [7], the first sub-problem is
related to the optimization of the functional, reported in Eq.(3.4). Since functional
optimization problems have been widely studied, in this thesis, we have not focused
our attention on finding a solution for it. However, the optimization problem of m
has not a solution, and for this reason in this section we describe the experiment
we set up to solve it.

The keystone to solve this optimization problem is the assumption that relevant
representation should be both maximally informative and maximally predictive.
By looking at the prediction power of a clustering algorithm, and at the amount
of information about the generating process it can extract from the dataset, it is
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possible to understand that not all clustering methods m are identical. Driven
by this hypothesis, we are wondering whether is there relevance and prediction-
driven approach to detect what clustering method provides the most relevant
representation. In the case of agglomerative clustering methods, the problem of
optimizing m can be translated in finding the most predictive inter-cluster linkage.
Is this property universal or does it depend on the dataset itself? At first glance, we
can suppose that the hierarchy of clustering methods is a property dependent on the
charcteristics of the dataset itself. Furthermore, it is important to underline another
aspect: the used clustering methods are devised by using Euclidean distances in
RqÍ . However, since we are dealing with time-dependent processes, it could be
true that the most predictive clustering algorithm is the one characterized by
a non-parametric distance. For answering these questions, we start considering
an ARCH model dataset. The results found for the synthetic dataset are then
compared with the ones of the S&P 500 dataset. We started our analysis from a
synthetic dataset because, by considering the results proposed by Crutchfield and
Shalizi in [1], it is analytically possible to detect ARCH model causal states. The
causal state of an ARCH model, at time t+ 1, is the squared returns set, considered
from time t to time t− q + 1, assuming the process to have a memory length equal
to q. In other words, the causal states consist in the filtration of the past with
qÍ = q, and their knowledge enables us to have the best "theoretical" predictive
power.

Starting from these considerations, we decided to consider an ARCH model
with q = 4, and consequently, we fixed the user knowledge memory length to
qÍ = 4. After the dataset has been generated, and the various clustering procedures
implemented, at first we represented prediction error vs relevance. After, we
computed relevance as a function of the same α, for each method m. In this way,
we should be able to obtain two hierarchies, one for the predictive power and one
for generative model information content extracted by inter-cluster distances. The
results of this investigation are shown in the next section.

5.2 ARCH model: Results
In this section, we present the computational results of the first numerical ex-
periment developed for investigating relevant representations. In particular with
this experiment, as previously mentioned we could find two different type of hi-
erarchies, one dependent on predictive power and one on information content of
clustering labels. Regarding the prediction power, it is possible to obtain several
different hierarchies, depending on the type of prediction we consider (supervised
or unsupervised, real space prediction, or hidden space prediction). Let’s start
considering the unsupervised, S-space, prediction: it is shown in Fig.5.1, where we
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plotted prediction error as a function of the resolution, i.e. a way to encode the
coarse-graining level.

Figure 5.1: Prediction error vs Resolution, ARCH dataset (hidden variable space,
unsupervised prediction)

From this figure, it is possible to detect a hierarchy in the inter clusters distances:
the most predictive method m is the Ward Linkage, while the less predictive is the
Single linkage. Average linkage and Complete linkage behave in similar ways1. It
is important noticing how higher resolutions are characterized by higher prediction
errors, this is some way expected since with higher coarse-graining levels we have a
higher number of clusters and so fewer statistics for estimating the next step label,
causing the prediction to get worse and worse.

Once the hidden space predictions have been realized, as previously mentioned,
it is possible to consider predictions in the real space, Y. For translating hidden
space predictions in real space ones, we need to deal with the properties of the
clustering algorithms and the definition of their centroids, see Chapter 2. A plot
analogous to the previous one is shown in the following figure, where the prediction
error, computed in the Y-space is shown as a function of resolution

1We suppose that this result is related to the definition of the agglomerative methods linkages
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Figure 5.2: Prediction error vs Resolution, ARCH dataset (real variable space,
unsupervised prediction)

The hierarchy of clustering algorithms found in Fig.5.2 seems the same detected
using the prediction in the hidden space, even if it is very noisy. This result
reassures us about the strict connection existing between the hidden space, we
constructed using clustering algorithms and their labels, and the space in which
real observables live. However a problem seems to appear: the prediction is very
noisy. The noise detected in the prediction can be easily explained by noticing that
the prediction in the hidden space is, in some sense, discrete, while the prediction
in the real space is continue. In particular this effect can also be addressed to the
fact that the prediction is not built from the beginning in the real space, but in
the hidden variable one. In fact, we are able to predict the future value of the
observable only after predicting the next label value (it can be seen as a sort of
translation). A double uncertainty affect the prediction: a part coming from the
S-space to Y-space translation, and the other coming from the empirical nature
of the proposed prediction algorithm. This is the effect of dimensional reduction.
However, this problem does not affect the hierarchy detected, in fact as previously
mentioned, it is identical to the one found for prediction error in hidden space.
Further confirmation of this hierarchy correctness could be obtained by analyzing
supervised predictions.

Before comparing these results with values of relevance and total information,
we would like to compare the prediction errors computed using transfer matrix
techniques, with the prediction errors computed using an algorithm having precise
knowledge of the underlying generative model. Since the prediction of the two
algorithms has been developed using different quantities, we decided to keep
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prediction plots separated. In Fig.5.3, supervised prediction error is shown as a
function of resolution.

Figure 5.3: Prediction error vs Resolution, ARCH dataset (Supervised predictor)

Once again the hierarchy detected is in perfect agreement with the one found
considering unsupervised prediction error, in the S-space. Even if we used different
prediction algorithms, Ward Linkage can predict in a better way future behaviors of
the system. There are some differences in the curves of unsupervised and supervised
predictions: for the first type of prediction algorithms the curve is increasing, while
in the second it is decreasing. However, these different behaviors do not imply
the presence of problems in the prediction, because the intrinsic nature of the
algorithms is different. In fact, for explaining the behavior shown by unsupervised
prediction algorithms, we can see what happens if we increase k: the transition
matrix has fewer statistics, and so predictions get worse and worse. This is not the
case for supervised predictions, whereby by increasing k, we reduce the number of
points used for estimating volatility, and thus we have always a better estimate.
By looking at the figures, it is clear that the results are in perfect agreement with
theoretical expectations. It is important to underline that this result is however
only approximate, since better algorithms for ARCH model volatility predictions
can be implemented. This is not a problem since we used it just as a backup check.

Since the predictions we make are in agreement, we can try to study the behavior
of the relevance and total information as a function resolution. The behaviour of
these two quantities are shown respectively in Fig.5.5 and Fig.5.4.
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Figure 5.4: Total information vs Resolution, ARCH dataset

Figure 5.5: Relevance vs Resolution, ARCH dataset

By looking at Fig. 5.4, we can notice a hierarchy among inter clusters distances,
meaning that the highest amount of total information2 extracted is the one of Ward

2We should remember that, as mentioned in Chapter 3, it represents the sum of relevance and
resolution
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linkage. However, being total information the sum of relevance and resolution, it
does not contain only information about the generating process, but it is also affected
by other components: the amounts of bits required to assign each observation to a
cluster and, thus, by noise3. As previously mentioned, the information about the
generating process is quantified by relevance. Its behaviour is shown in Fig. 5.5.
Once again, a hierarchy is found, and this hierarchy is in perfect agreement with
the one found in the analysis of prediction errors and total information. This can
be seen as a first proof of the strict relation existing between prediction power and
information content of a time series. The discussion about this result and some
ideas for further investigations are developed in Chapter 7.

5.3 S&P 500: results

A similar analysis for the one realized for the ARCH model time series has been
implemented for S&P 500 time series, the only difference is that for this case we do
not know exactly the underlying model from which data has been generated. For
this reason, it has not been possible to construct a supervised prediction algorithm.
The results are shown in Fig.5.6, Fig.5.7 and Fig.5.8.

Figure 5.6: Prediction error vs Resolution, S&P 500 dataset (hidden variable
space, unsupervised prediction)

3These concepts are described in Chapter 3
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Figure 5.7: Total information vs Resolution, S&P 500 dataset

Figure 5.8: Relevance vs Resolution, S&P 500 dataset

The results of S&P 500 show hierarchies among inter-cluster linkages similar to
the ones found in the case of the synthetic time series, in the case of information
content and prediction error in hidden space. Once again the hierarchy found
using prediction errors hidden variable spaces is in perfect agreement with the
classification provided by relevance plots. The results we found are even stronger,
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the classification detected using the ARCH model and S&P 500 time series are
identical. This result could suggest that these properties of agglomerative methods
linkages are not specific, but maybe they have some sort of universality, or maybe
they are strictly dependent from dataset properties. However, since we considered
just two datasets, it could be seen just as supposition. For investigating the
dependence of the hierarchies from dataset properties, further investigations are
required. A good hierarchy, unfortunately, is found just for the case of hidden space
predictions, for the real space predictions it is not any more clear whether this
hierarchy still exists. Furthermore the same problem detected in the case of ARCH
model time series arises: the prediction is very noisy. In the case of this prediction,
some numerical instabilities can be detected, and thus we decided to consider this
result as not reasonable, and to not admit it in the investigation. However this
does not influence the result we found, since the only problem detected is the high
noise of the real space prediction. In further investigation, Y-space prediction is
going to be mastered, and new prediction algorithms, less affected by noise, are
going to be built. As previously mentioned, a deeper discussion about the results
and their explanation is reported in the last chapter of this thesis work.

5.4 Information bottleneck method
In this section, we try to compare the classification of agglomerative methods
linkages determined in the previous investigation with the one detected using the
Information bottleneck method, introduced by Bialek et al. in [4] and [12]. This
technique was devised for finding the best trade-off between accuracy and complexity
when clustering a random variable x, given a joint probability distribution p(x, w)
between x and an observed relevant variable w. The information bottleneck can
also be viewed as a rate-distortion problem, with a distortion function that measures
how well w is predicted from a compressed representation s compared to its direct
prediction from x. This interpretation provides a general iterative algorithm
for solving the information bottleneck trade-off and calculating the information
curve from the distribution p(x, w). It is clear, from Bialek’s definition, that the
information bottleneck method is a technique for investigating the dimensional
reduction quality of high dimensional data. For realizing the dimensional reduction,
Bialek et al. defined two important quantities: the compression rate, the mutual
information between data and compressed representation, I(x, s), and accuracy
rate, the mutual information between compressed representation and relevant
variable, I(w, s). To find the best representation for the state of the system they
devised a Lagrangian function to be optimized

L(x, s, y) = I(x, s)− βI(w, s)
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where β is a Lagrange multiplier. It is clear that some similarities exist between the
information bottleneck method and the technique we devised for detecting relevant
representation: the compression rate can be seen as the analogous of resolution
and accuracy rate can be compared to relevance. A more mathematical analysis of
the strict relation between relevance and accuracy rate is described in [6].

Starting from this comparison it is clear that, the information bottleneck method
can provide a classification of clustering methods, based on accuracy concept [13].
We would like to compare the two classifications. First of all, we should define
what w is in time series framework. Unfortunately. it is easy to define w just for
the ARCH model time series because we know the causal states of the problem.
For a real time series, it is not possible to detect causal states. For this reason, we
decided to compare the linkage hierarchies just for the ARCH model time series.
As previously mentioned, one of the main inconveniences of this method is the
dependence on generative model structural knowledge, and in the case of real time
series it is not possible to know them. Before going further in the comparison
it is fundamental to define, for our synthetic time series, what w and s are. s
are the labels obtained through the clustering procedure, while w is the exact
value of return squared volatility at time t. By knowing them it is possible to
compute accuracy as a function of k and compare it with the relevance. The mutual
information has been computed using precompiled libraries in Python, according
to the results described in [14]. The two hierarchies are shown in Fig.5.9 and 5.10.

Figure 5.9: Accuracy vs k, ARCH dataset
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Figure 5.10: Relevance vs k, ARCH dataset

These results show how the detected hierarchy between clustering methods is
the same. However, for having a better comparison of the two different approaches,
it could be possible, since we know the causal states in the case of ARCH model, to
solve the information bottleneck problem analytically. In further works, we aim to
solve it analytically. A deeper discussion about these results is realized in Chapter
7.
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Chapter 6

Application II: detecting
degrees of freedom of a
system

6.1 Relevance and model structure
The previous chapter showed an experiment devised for detecting the most predictive
clustering linkage, given a time series. This property depends on both data structure
and inter-clusters distance properties. In this chapter, instead, we are interested
in investigating the relationship between the generative model of a time series
and its relevant representation. Using relevance, resolution, and total information
concepts, is it possible to discriminate more complex models from simpler ones?
In this framework, comparing the information content of the representation and
their prediction powers, we are interested in understanding whether is it possible
to approximate complex models with simpler ones, in the case of a small sample
size, by keeping a good predictive power. Can these simpler models predict in
a better way the future behavior of time series, with respect to complex ones?
For addressing these questions, we devised a numerical experiment, based on the
ARCH model datasets, whose properties are described in Chapter 4.

Let’s consider, once again, an ARCH model time series with a memory length
q = 4. For this investigation, however, unlike the previous numerical experiment,
we have considered the observer memory length qÍ assuming several values

qÍ ∈ {1,2,4,6,8}

By considering different values of qÍ, we implemented a dimensional reduction,
providing us a sequence of labels. The set of labels is thus used for computing
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prediction errors in an unsupervised way. We consider once again, only unsupervised
prediction, because we are voluntarily mistaking the choice of causal state, and
thus the result of the supervised prediction would have been both trivial and
meaningless. At this point, we are interested in investigating, which value of
qÍ is the most predictive. Is it the one characterized by qÍ = q = 4? For the
sake of conciseness, the results of the investigation is shown just for the Ward
linkage case. This restriction is not problematic, in fact, in the previous chapter
we showed Ward linkage to be the most predictive and informative inter-cluster
linkage. However, the results for the other inter-cluster distances are identical to
the ones found for it. Is then the analysis of predictive power and information
content of a representation able to detect the true dimensionality, i.e. the real
memory length, of the system? In the following experiment, we try to answer
these questions, by comparing prediction errors and information content of the
representation.

6.2 ARCH model: results

In this section, we compare the results obtained using prediction algorithms, and
relevance, resolution, and total information estimates, for the different values of
qÍ and different values of the sample size T . For the problems encountered in
Chapter 5 regarding real space unsupervised predictions, we decided to consider
only prediction algorithms working in hidden space. The total length of the time
series spanned the set T ∈ {100,500,1000}, since for higher value it would have
required to high computational power.

The plots of the information content-related quantities, for T ∈ {100, 500, 1000},
are here reported with the same order.

Figure 6.1: Relevance
vs k, T = 100

Figure 6.2: Relevance
vs k, T = 500

Figure 6.3: Relevance
vs k, T = 1000

The plots of the prediction errors in the hidden space, for T ∈ {100, 500, 1000},
are here reported with the same order.
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Figure 6.4: Prediction
error vs k, T = 100

Figure 6.5: Prediction
error vs k, T = 500

Figure 6.6: Prediction
error vs k, T = 1000

Let’s look, at first, separately at the results provided by prediction error plots
and by relevance plots. By looking at prediction error behavior, in the hidden
space, it is clear that models with qÍ ≥ 4 predict future labels in a better way, for
almost all the value of T . From a theoretical point of view, this result is someway
expected since, considering longer memory than q = 4, helps in catching the real
model structure. However, in the case of short time series, this is not completely
true, and, as expected, all the prediction could have similar behavior. This idea is
in agreement with the numerical results. At first sight, it could be strange that also
for qÍ = 6,8 we have similar results to qÍ = 4. However, we should not be amazed
by this behavior of the system, because, in this case, the prediction algorithm just
considers a higher number of parameters, that we can suppose to be averaged out
for T large enough. The results for the relevance values as a function of k show
a completely different behavior: the higher relevance curve is the one for qÍ = 1,
and the curve for qÍ = 4,6,8 behave almost identically. This second observation
guarantees us that the useless parameters, in the case of qÍ = 6,8, should average out.
On the other hand, there is no more agreement between prediction error behaviors
and information content: the hierarchy shown is different. How can we explain this
result? By looking at the relevance behavior as a function of k, it looks like that
there are less relevant degrees of freedom caught from the entropic investigation.
A sort of effective dimension notion should be defined: it is not a property of the
same underlying model, which in principle is unknown, but it is a property of the
dataset itself, which should change with its dimension. The behavior of relevance
as a function of T , in some way, confirms our supposition. In fact, by increasing
the value of T , it seems that the relevance hierarchy is getting flatter. Regarding
the real space prediction error, we found once again a very noisy plot. In this case,
the hierarchy has not been detected. As mentioned in the previous chapter, this
result is related to continuous nature of the prediction algorithm in the real space,
and to the too naive prediction we have implemented. It is important to remember,
in fact, that in opposition to the prediction devised in the hidden space, realized
considering probability distributions, real space prediction has been realized by
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Application II: detecting degrees of freedom of a system

choosing a particular value for future labels (using argmax function1), instead
of a p.d.f. Obviously, now a question arise: is the prediction rigged? To answer
this question, further and more specific investigations are required. However, we
suppose that these results are not a symptoms of rigged predictions, but they are
due to the too coarse nature of the implemented prediction error. This result does
not affect our assumption for the existence of an effective memory length extracted
by the information content.

In conclusion, we have decided to not implement the same analysis for S&P
500 dataset, because, without knowing the exact generative model, i.e. without
knowing the exact memory length of the process, no exact conclusion can be drawn.
The discussion of these results and some ideas for improvements of the prediction
algorithms are present in Chapter 7.

1See Chapter 4
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Chapter 7

Conclusions

In this section, we make a quick recap of the results of the two numerical experi-
ments, taking some conclusions about general features and properties of relevant
representations of the system state. Lately, we try to propose some ideas for
starting future investigations.

Let’s start considering the results of the first set of numerical experiments. By
looking at both the synthetic and real datasets, we can notice that the hierarchy
found by the prediction error analysis and the one of generative process information
content are in agreement among themselves, as shown in Fig.5.1, Fig.5.5, Fig.5.6
and Fig.5.8. This result suggests that, for a general time series, the representation,
containing the highest amount of information regarding the underlying stochastic
process is also the one providing the best prediction about the future label of
the time series, at least in the case of agglomerative clustering algorithms. This
behavior seems to be observed also in real space predictions, at least for the ARCH
model time series. In this case, the hierarchy is still valid, even if Fig.5.2 is strongly
affected by noise. The main reason behind the detected noise, as mentioned in
Chapter 5, is related to the continuous nature of real space predictivity. In other
words, observables do not belong to a set of integers, as the values of the labels,
but they belong to real numbers. For S&P 500 dataset, the noise effect is so strong
to delete completely the hierarchy detected by hidden space predictions. There
are various reasons for this result: the first is related to the nature of the time
series, and the correlated memory length. In fact, being S&P 500 dataset a real
observable sequence, it is plausible that more recent pasts affect strongly the actual
return value, so euclidean metrics cannot catch this generative process property.
There is a second explanation: the prediction algorithm we implemented is too
naive for generalizing predictions from hidden space to real space. For this reason,
in future investigations, less coarse predictions need to be implemented. However,
this result does not worry us, because on the other hand, by using supervised
prediction error in real space, we obtain, once again, the same hierarchy. Starting
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Conclusions

from these results, we can state that clustering methods extracting a higher amount
of generative process information are also the ones that predict in a better way the
future behavior of the system. The problem of finding the optimal coarse-graining
level is still unsolved, but, as previously mentioned, it consists in a Lagrangian
optimization problem. To be sure about these conclusions, it would be necessary to
consider different clustering techniques. As reported in Chapter 2, for the sake of
simplicity, we used only sub-optimal methods1 for clustering time series. The next
step for this investigation could be to consider labels obtained through the vanilla
technique, a tool introduced in Chapter 3. For having further confirmation that
the hierarchy detected is the right one, we can try to compare it with the analytical
results of the optimization problem contained in the information bottleneck method,
of which up to now we used only the numerical approximation.

Regarding the second numerical experiment, we observed that the hierarchy
found analyzing representations information content is opposite to the one provided
by the prediction error investigation, in the hidden space. It means that we cannot
extract the true dimensionality, i.e. memory length of the process. However, if
we pay more attention, it is possible to realize that, increasing the total length
of the process T , a change in the hierarchies can be detected. What does this
mean? The first explanation to this result consists in the fact that, instead of
extracting the true generating process memory length, relevance-driven approaches
can extract an effective memory length, independent from the properties of the
underlying stochastic process. It seems that this effective memory length depends
on the intrinsic nature of the considered dataset. It is not the only explanation
for the opposite hierarchy detected. In fact, it is possible to realize that we are
comparing different representations of the system state, obtained by clustering
data with different observer memory lengths. In Chapter 2, we said that the
jump process is Markovian in the hidden space, if and only if the representation
is relevant. However, now a doubt arises: are we sure that, considering different
observer memory lengths, are we still dealing with relevant representations? And
that the assumption of Markovianity is still valid? It is true in the case qÍ = q = 4,
where we are dealing with the causal states of the system, but for all the other
values of qÍ /= 4 we should check whether Markovian property is satisfied or not.
What we can suppose, at this point, is that, since efficient representations are
Markovian, too-compressed representations do not satisfy Markov property, and so
they are not relevant.

By all this investigation, we can conclude that, using the concept of relevant
and maximally informative representation of the system state, it seems possible

1Remember, as previously mentioned, that agglomerative methods are devised with euclidean
metrics, but depending on the time series, this could cause a sub-optimal prediction
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to find a new dimensional reduction tool based on clustering algorithms and not
requiring the knowledge of the future and of the generative process of the time
series. As we have just observed, starting from clustering labels, it is possible to
predict the future behavior of the time series, at least in the hidden space. Using
prediction error and information content analysis a hierarchy between clustering
methods can be found. And by optimizing the functional 3.4, we are able to find
the optimal value of the coarse-graining level. This whole procedure provides a full
solution for the relevance-resolution optimization problem, [12]. However, there are
still black spots in relevant representation study. One of them arose in the second
experiment, where we have not been able to detect the real value of q for the ARCH
process. Another problem consists in the too noisy real space prediction. The
detected problems do not disprove our supposition of the existence of a connection
between maximally informative and predictive representations, as shown by the first
experimental results. To solve them, further investigations and better prediction
algorithms are required. In future works, the first step for investigating relevant
representation could consist in studying the relation between effective memory
length and intrinsic properties of the dataset, like T . An interesting investigation
direction consists in considering also the degree of Markovianity of the set of labels.
Markovianity analysis can provide some insights about effective degrees of freedom
detected by the MIR approach for time series.

In conclusion, even if this thesis work is preliminary and some problems have
been detected, many strong results have been found. They helped us discover new
properties of relevant representations, and confirmed that clustering methods can
be used as a static and unsupervised dimensional reduction tools.
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Appendix A

Causal states

In this chapter, we provide a very brief introduction to the concept of causal states
described by Crutchfield and Shalizi in [1].

For introducing the causal states’ idea let’s consider a time series, described in
the paper as a bi-infinite sequence of observables labeled by time:

←→
Y = {. . . y−1, y0, y1 . . . } yt ∈ Y , t ∈ (−∞,∞)

where we can define the past and the future of the time series respectively as

←−
Y t = {. . . yt−2, yt−1} and −→

Y t = {yt+1, yt+2, . . . }

with t respectively the ending point and starting point of past and future sequences
of observations. In particular, if the process is stationary, we can neglect their time
dependence, i.e. we can generally refer to ←−Y and −→Y .

Once the notions of past and future have been introduced, we can approach the
dimensionality reduction, by defining effective states, R, the set of past leading to
the same future. For defining an effective state we can define a function

η :←−Y → R

From this definition, it is clear that all the histories belonging to the same effective
state are equivalent in future predictions. A graphical representation of effective
states is shown in Fig.A.1.
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Causal states

Figure A.1: Effective states graphical representation

However, the definition of effective states is too general, there are several choices
for them. In Crutchfield and Shalizi’s paper, the optimal choice of effective states
are causal states, S, which can be constructed starting from the following function

Ô
1←−

Y
2

=
î←−

Y Í|P
1−→

Y |
←−
Y Í
2

= P
1−→

Y |
←−
Y
2

,∀
−→
Y and ∀←−Y

ï

They represent an equivalence class. A graphical representation of causal states is
shown in Fig.A.2.
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Causal states

Figure A.2: Causal states graphical representation

The causal states just describe have important quantities:

• Maximal prescience: Given any set of effective states, we have that

H
è−→
Y |R

é
≥ H

è−→
Y |S

é
;

• They are a sufficient statistic for approaching future prediction:

• They are the set of states, characterized by the minimal complexity, to every
other kind of collection of pasts;

• They are unique.

Starting from the concept of causal states, Crutchfield and Shalizi defined
dynamics using the concept of Ô-machines, however, this goes further to our
research interest. For having a deeper understanding of Ô-machines construction,
see [1]. Another way to reconstruct causal states and Ô−machines given a time
series is proposed in [15].
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Appendix B

Information content and
prediction for clustering
algorithms

In this section, we show, for each inter-cluster linkage the plots of relevance,
resolution, and total information as a function of the number of clusters. They are
reported in the following figures, starting from the case of the ARCH model time
series.

Figure B.1: Relevance vs k, Average
Linkage, ARCH model

Figure B.2: Relevance vs k, Com-
plete Linkage,ARCH model
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Information content and prediction for clustering algorithms

Figure B.3: Relevance vs k, Single
Linkage, ARCH model

Figure B.4: Relevance vs k, Ward
Linkage,ARCH model

The same results for the case of the S&P 500 time series are the following

Figure B.5: Relevance vs k, Average
Linkage, S&P 500

Figure B.6: Relevance vs k, Com-
plete Linkage, S&P 500

Figure B.7: Relevance vs k, Single
Linkage, S&P 500

Figure B.8: Relevance vs k, Ward
Linkage, S&P 500
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