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Abstract

Abstract

Self-organization is ubiquitous in biological systems at all scales, from the animal
world down to the intra-cellular environment. In all these systems, the dynamics of
micro-constituents can lead to emergent large-scale behaviours, such as static patterns
or collective motion. Active matter provides a solid framework to explain the physics
behind these processes at many different scales.
So far, the literature on the subject has mostly focused on single-component active
systems; nonetheless, monodispersity imposes strong limitations on the complexity of
the emergent macroscopic phases. In order to obtain less idealised self-assembling
structures like the ones encountered in biology, heterogeneity must be included.
In this work we study the macroscopic phenomenology of N-component active mix-
tures of run-and-tumble particles (RTPs) interacting via quorum-sensing (QS), with
both numerical and analytical tools. Microscopic simulations are employed to study
the macroscopic phases of binary active mixtures, with a special focus on dynamic
patterns. To explain the emergence of the observed phases, we coarse-grain the mi-
croscopic theory to derive the macroscopic dynamics of the density fields. Via mean-
field approximation and linear stability analysis of the field theory, we relate the
microscopic parameters to the emergent large-scale patterns.
Finally, we study under which conditions on the microscopic dynamics an active mix-
ture of RTPs exhibits time-reversal symmetry (TRS) at the macroscopic level. When
this occurs, the active mixture is macroscopically equivalent to an equilibrium passive
system. In particular, we show that such a mapping to equilibrium can exist only if
microscopic QS-interactions between different strains are reciprocal.

Keywords: active matter, run-and-tumble particles, bacteria, non-equilibrium systems,
phase transitions, mixture, self-organization, pattern formation, Cahn-Hilliard

iii



Acknowledgements

Acknowledgements

A mamma e babbo, che mi sono sempre stati accanto durante questo percorso. An-
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Chapter 1. Introduction

Chapter 1

Introduction

1.1 What is active matter?

Active matter defines systems whose fundamental constituents convert internal energy
into self-propulsion forces, driving the system out of equilibrium at microscopic level.
Active particles are found at all scales in biology, from the animal world (e.g. bird
flocks, schools of fish) down to the cellular scale (e.g. epitelial cells, bacterial
colonies) or even below (e.g. acto-myosin networks in the cytoskeleton). In all these
examples, the micro-constituents are capable of self-organizing into complex struc-
tures, exhibiting collective motion at the macroscopic scale (Figure 1.1).

Figure 1.1: Biological examples of active systems: from flocks of starlings, to schools
of sardines and bacterial colonies.

In addition to this, in the last two decades experimentalists have engineered syn-
thetic active systems, paving the way towards self-assembling materials. Such systems
are typically made up of micrometric beads that can be activated by chemical pro-
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Chapter 1. Introduction

cesses, electric fields, or even by light (Figure 1.2). From clustering in the absence
of adhesive forces [1] to traveling waves [2], to dynamic lane formation and break-
ing [3], the phenomenology of these systems has no counterpart in passive colloids
(Figure 1.3).

Figure 1.2: Left: Janus colloids are micrometric silica beads that are half-coated, e.g.
in platinum. When immersed in a hydrogen peroxide substrate, the Pt-coated side
reacts with it, causing the particle to self-propel [4]). Right: Quincke rollers consist
in insulating spheres that are immersed in a conducting fluid, e.g. a saline solution.
When the system is subjected to an external electric field, the beads polarize and an
electrostatic torque is generated, leading to the rolling motion of the bead [5].

Figure 1.3: Left: Motility-induced clustering of Janus colloids [1]. Center: Alignment-
driven collective motion of active rollers. [2] Right: Active droplets forming transient
lanes [3].

However, the path to achieve a full understanding of the self-organization of active
materials into complex patterns is still at its first steps. Much work has been done
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Chapter 1. Introduction

by theorists to model simple, single-component systems, but not much is known so
far regarding multi-component active matter. Research in this direction is crucial if
we want to tackle non-idealised situations like the ones encountered in biology, where
heterogeneity is always present.
The aim of this project is to provide a methodology for modelling N-species active
mixtures. Starting from microscopic Langevin dynamics, we want to carry out a
bottom-up approach to derive macroscopic descriptions of the systems. Eventually,
our goal is to determine the forms of organization that can emerge at the large-scale
level, relating them to the microscopic interactions at play. Bridging the gap between
the microscopic world and the emergent macroscopic organization will allow us to
decipher the principles for assembling increasingly complex structures.

1.1.1 Run-and-tumble particles

Throughout this work, we shall focus on a specific model of active dynamics: run-
and-tumble particles (RTPs). This class of particles has been extensively studied in
the literature of monodisperse active systems and it has been especially employed to
describe the swimming dynamics of E. Coli. For sake of clarity, we shall focus on
two-dimensional systems, but the generalization of our results to higher dimensions
is straightforward.

Figure 1.4: Swimming of an E. Coli bacterium. Following a tumbling event, the
bacterium re-orients, then resumes running in a new, random direction. Picture form
[6].

The model is as follows: each particle moves in a constant direction, parametrized
by an angle θ , at a self-propulsion speed v. With rate α , a stochastic tumbling event
occurs and the bacterium abruptly stops. Once the particle is in the stopping state,
it can return to the running state with rate β . When this occurs, the orientation of
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Chapter 1. Introduction

the particle changes instantaneously from θ → θ ′, where θ ′ is drawn from a uniform
distribution over [0,2π).
Whenever β is finite, the residence time in the stopping state is nonzero; we refer
to this case as finite-duration tumble. In the β → +∞ limit, instead, we are dealing
with instantaneous tumbles. For simplicity, we will focus on the latter case.
This choice is well motivated in the case of E. Coli, where the stopping-to-running
transition occurs with a typical rate β ∼ 10 Hz, that is much higher than the tumbling
one α ∼ 1 Hz.

The dynamics will thus read:

ṙ(t) = v u(θ)η(t) u(θ) =
(

cosθ

sinθ

)
(1.1)

θ → θ
′ stochastically with rate α, θ

′ ∼ I[0,2π) (1.2)

1.1.2 Quorum-sensing interactions

To provide a description of active systems that is close to actual biological situations,
it is necessary to consider how each particle interacts with its environment and with
its neighbours. In a large class of systems, from E. Coli [7] to algae [8] and epithe-
lial cells [9], tactic behaviours emerge as a mechanism to regulate particles’ motility.
In the specific case of bacteria, each particle can adapt its self-propulsion speed v
and its tumbling rate α according to the concentration gradients of chemical sub-
stances in the environment, such as food or toxins (chemotaxis). Following the lines
of J. O’Byrne and J. Tailleur [10], gradients of a chemical field c(r) can impinge
on the motility:

v = v0− v1u ·∇c α = α0 +α1∇c (1.3)

where u is the usual orientation unit vector. Positive α1,v1 bias the particle’s motion
towards lower values of c (chemorepellent).
In this study, we focus on a second class of particles, that are sensitive to the chemi-
cal field itself rather than to its gradients. Such particles are said to undergo quorum
sensing (QS). This corresponds to setting α1,v1 = 0 in (1.3), but letting α0,v0 be
functions of c(r).
In bacterial systems, chemicals are produced and consumed by the particles them-
selves, leading to a coupling between the bacterial and chemical dynamics. A natural
model [10] for the chemical field dynamics is then to consider diffusion, degradation
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Chapter 1. Introduction

and production by the bacteria:

∂tc(r) = Dc∆c−λc−β ∑
i

δ (r− ri) (1.4)

where Dc is the chemical diffusivity, λ is the rate of degradation in the environment,
and β the production rate by bacteria. Assuming that the chemical dynamics is much
faster than the particle’s, we can set ∂tc = 0 in (1.4) and obtain the concentration
field c(r) as a functional of the particle density ρ(x):

c(r) =
∫

d2y G(x−y)ρ(y) (1.5)

where G(r) is the Green function solution of (Dc∆−λ )G(r) = βδ (r) .

Summing up: each bacterium adjusts its motility according to the chemical field
c(r); the concentration field c(r), in turn, depends on the bacterial density field ρ(y)
through (1.5). All-in-all, we can forget the chemical field, incorporating its role into
an effective interaction between bacteria, namely quorum-sensing interaction.
In a mixture of N bacterial strains, strain i will be allowed to interact in a specific
way with strain j. In practice, αi and vi are thus functionals of all the density fields
[~ρ] = [ρ1, . . . ,ρN ].

Let us now recap our model. Let ri,X be the position of the i-th particle of species
X . In our notation for the microscopic dynamics, we let X indicate the species label:
X ∈ {1, . . . ,N}.
We also introduce ui = (cosθi,sinθi), the 2D unit vector describing the instantaneous
orientation of particle i. Finally, we take into account the presence of an external
translational noise term in the dynamics, with diffusivity Dt .
The stochastic dynamics of particle i is thus expressed as:

ṙi,X(t) = vX(ri, [~ρ])ui(θ)+
√

2Dtηi(t) (1.6)

ηi : Gaussian white noise with 〈ηi(t)η j(t ′)〉= δ (t− t ′) (1.7)

θ → θ
′ stochastically with rate αX(r, [~ρ]), θ

′ ∼ I[0,2π), (1.8)

where we have made explicit the dependence of each species’ motility parameters on
the density fields, on the position of particle i in space, and on the particle’s species
X .
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Chapter 1. Introduction

1.1.3 Single-component systems

Monodisperse active systems have been extensively studied from both theoretical and
experimental points of view [11], [12]. Different types of microscopic interactions
can give rise to rich behaviours at the macroscopic scale, from phase separation in
the absence of attractive forces to alignment-induced collective motion. In this study,
we restrict our attention to scalar active systems, made up of spherical particles with
isotropic and nonaligning interactions.
In the context of RTPs, persistence can give rise to new phenomena with respect
to passive systems, such as accumulation at boundaries or gravitational collapse of
sedimenting particles [13], [14]. Furthermore, in the case where QS-interaction is
included, J. Tailleur and M. Cates [15] first observed liquid-gas coexistence in the
absence of attractive forces, following the so-called motility-induced phase separation
(MIPS). MIPS occurs when the self-propulsion speed v is a sufficiently rapidly de-
creasing function of the local density ρ , that is to say when crowding causes parti-
cles to slow down at high density. This is a first example of how activity can lead
to a simple form of macroscopic organization.

Figure 1.5: Motility-induced phase separation in a system of quorum-sensing RTPs:
snapshot from a molecular dynamics simulation performed with our code.

Nevertheless, monodispersity imposes strong limits on the complexity that can be
achieved in terms of large-scale organization. In order to obtain more complex self-
assembling structures, it is necessary to go beyond monodisperse active matter and
consider multi-component systems.
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Chapter 1. Introduction

1.1.4 Multi-component active systems: relevance and challenges

Heterogeneity is ubiquitous in biological systems: from the intra-cellular environment
to microbial population in the gut, to epithelial cells in animals, diversity is the basis
of complex organization. From this point of view, multi-component active matter is
thus relevant to describe biological systems at all scales.

A first study on the macroscopic organization of bacterial mixtures interacting via QS
was published in Nature Physics in 2020 [16]. In this work, two strains of E. Coli
were engineered to cross-regulate each other’s motility and left to grow in a Petri
dish. Depending on the type of cross-interaction, whether it was mutual inhibition or
mutual activation of motility, two different emergent patterns were observed, namely
mixed or demixed concentric rings (Figure 1.6). In the same paper, these observations
were explained by A. Curatolo and co-workers in terms of binary mixtures of RTPs
with finite-duration tumbles. Through a coarse-graining procedure, microscopic cross-
interactions were related to the mixed or demixed phase at the large-scale level. This
is the first example, in the context of active mixtures, of a full theory that accounts
for macroscopic patterns starting from a microscopic description.

Figure 1.6: In the experiment described in [16], two strains of E. Coli are engineered
to mutually activate/inhibit each other’s motility. Each strain is marked with a differ-
ent fluorescent marker, either green or red. (Left) Mutual activation of motility leads
to spatially-separated rings of the two strains, i.e. demixing. (Right) Mutual inhibition
leads to macroscopic colocalization of the two strains, i.e. mixing.

Nevertheless, the kind of patterns explained by this theory do not cover the entire
phenomenology of binary active mixtures. R. Golenstanian et al. [17] tackled the
N-component problem starting from a phenomenological Cahn-Hilliard theory for the
density fields. From simulations, they proved the existence of traveling patterns in
binary mixtures, going beyond the static patterns predicted by A. Curatolo [16]. (Fig-
ure 1.7)
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Chapter 1. Introduction

Figure 1.7: Simulations of a phenomenological theory reveal a rich phase behaviour
for binary systems, from static to dynamic patterns. [17]. In each panel, a single
component φi of the mixture is depicted. Colorcode corresponds to the density scale
for the component that is displayed.

These observations are the starting point of my internship: can we classify generally
all the macroscopic phases observable in mixtures of quorum-sensing active particles,
and can we build a general framework to do so? Answering these questions will be
the goal of my Ph.D. Here, I describe the first step I made in this direction.

1.2 Outline of the thesis

The aim of this work is to study the phenomenology of active mixtures and to un-
derstand the role of microscopic parameters in the emergent large-scale organization.
To achieve this goal, we will provide a set of numerical and analytical tools to tackle
the general N-component problem, comparing simulations with analytical predictions.

The thesis is structured as follows:

• At the beginning of chapter 2, we study the rich phase behaviour resulting from
microscopic simulations of binary systems. In order to explain the emergence
of the observed phases, we coarse-grain the microscopic theory to obtain the
macroscopic dynamics of the density fields. Via a mean-field treatment, we can
eventually get a phase-diagram for the case of binary mixtures.
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Chapter 1. Introduction

• In chapter 3, we focus on the possibility of an equivalence between macro-
scopic active mixtures and passive equilibrium systems. If such a mapping ex-
ists, time-reversal symmetry is present at the macroscopic level. Can we then
pinpoint the main features that distinguish an equilibrium pattern from a non-
equilibrium one? This part is fundamentally methodological, and it mostly relies
on tools of functional calculus.

• Finally, in chapter 4 we give some perspectives on the future of this project
and its possible scope of applications.

The analytical part heavily relies on tools that are traditionally used in theoretical
active matter: stochastic calculus, coarse-graining techniques, linear analysis of PDEs.
As regards the numerics, I have developed a C code from scratch to simulate the
coupled Langevin dynamics of N active particles belonging to K different classes.
Data analysis was carried out mostly in Mathematica and Python.
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Chapter 2. Phenomenology of active mixtures

Chapter 2

Phenomenology of active mixtures

In this chapter, we illustrate the emergent macroscopic phases in active mixtures, with
a special focus on the two-component case. Starting from molecular dynamics simu-
lations, we try to understand how the interplay between microscopic ingredients gen-
erates different large-scale behaviours. Special focus will be put on dynamic patterns,
that have not been observed so far in microscopic simulations of binary mixtures. As
far as static patterns are concerned, instead, we will present a new interesting phe-
nomenology, showing that self-inhibition can induce mixing or demixing even when
cross-interactions are weak.
In the second part of the chapter, we present an analytical procedure to coarse-grain
the multi-species RTP microscopic dynamics up to the level of the density-field dy-
namics. Here, calculations mostly rely on those performed by A. Curatolo in [16]
and [18], with an adaptation to the case of instantaneous tumbling.
Once we have the stochastic field dynamics, our goal is to study the kind of patterns
it can give rise to. Our approach is based on a mean-field treatment. Besides, we
assume locality of QS-interactions, imposing the dependence of microscopic parame-
ters only on the local values of the density fields. Within this framework, we study
how a small, linear perturbation can affect a homogeneous configuration. Despite the
number of approximations, the theory will provide the key ingredients to explain the
emergence of the phases observed in the simulations, and we will eventually be able
to compare the mean-field phase diagram with our numerical results.

2.1 Simulations of binary systems

In order to observe which type of macroscopic patterns can emerge from the RTP-
mixture dynamics, I developed from scratch a C code to simulate the N-species cou-
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Chapter 2. Phenomenology of active mixtures

pled Langevin dynamics. We performed off-lattice molecular dynamics (MD) sim-
ulations for a binary system of RTPs in 2D. The details of the implementation are
illustrated in Appendix A, together with the test of the code. Here, instead, we focus
on the results of simulations for two species.

Two-species {A,B} of RTPs are considered, interacting via QS within a finite radius
d. One particle of species X modulates its velocity based on the local density of its
species ρi,X and the other ρi,Y , according to a sigmoid-like function:

vi,X = v0,X exp
(
−KX arctan

(
ρi,X −ρM

L f

)
+ JY

X arctan
(

ρi,Y −ρM

L f

))
(2.1)

Here, KX controls self-interaction for species X : a positive value of KX corresponds
to self-inhibition of motility, while a negative one is associated with self-activation.
JY

X quantifies how a particle of species X is affected by the presence of another one
of different species Y : JY

X > 0 means that the velocity of an X-particle is increased
by the presence of Y -particles in the nearby, i.e. cross-activation of X by Y . On the
contrary, cross-inhibition of X by Y is associated with JY

X < 0.
The use of sigmoidal functions to model QS-regulation of motility is a common
choice in the literature [19], with biological grounds in experiments on E. Coli [20],
(Figure 2.1). The specific choice of (2.1) is mainly due to analytical treatability, but
numerical results are indeed robust over different sigmoid-like functions.

Figure 2.1: (A) Cartoon of bacterial motility as a function of density. (B) Rela-
tive cheZ and cI mRNA level in E. Coli strain as a function of cell density in
bulk culture. cheZ is a molecular complex that is responsible for bacterial motil-
ity, and whose deletion causes the bacterium to incessantly tumble. The decreas-
ing level of cheZ as a function of cell density is therefore associated with a de-
creasing motility [20]. (C) Two examples of sigmoidal functions v(ρ): in red,
v(ρ) = v0 exp(−arctan(ρ − ρ0)); in blue, v(ρ) = v0[1− tanh(ρ − ρ0)]. Despite quan-
titative differences, the qualitative shape of these curve is analogous.

In our simulations, we vary the strength and sign of interactions {KX ,JY
X}, in order

to observe different phases. Besides, we focus on the case KA = KB = K, so as
to reduce the space of parameters to be explored. Further details on the choice of
parameters can be found in Appendix A.
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Chapter 2. Phenomenology of active mixtures

Dynamic patterns

One of the most interesting observation is the emergence of self-propelling bands,
reminiscent of those obtained by R. Golenstanian et al. in [17] in their phenomeno-
logical study, despite important morphological differences. This phase is observed in
a regime of parameters where JB

A and JB
A have opposite signs, corresponding to non-

reciprocal cross-interactions. The two species remain spatially separated while one
chases after the other (Figure 2.2).
In the presence of self-inhibition (K > 0), starting from small values JB

A =−JA
B and in-

creasing gradually the cross-interaction strength, we observe a smooth transition from
slow, floating clusters up to proper bands (Figure 2.3).
Plus, simulations show that bands are robust with respect to the suppression of self-
interaction K. Nonetheless, wavefronts tend to become less clearcut and more fuzzy
(Figure 2.2). Finally, when K = 0, floating clusters are not observed.

Figure 2.2: Self-propelling bands observed in simulations. Left: Bands in the presence
of self-inhibition K = 1, |J|= 1. Right: Bands in the absence of self-inhibition K = 0,
|J|= 1.

Figure 2.3: Smooth transition from slow, floating clusters to self-propelling bands,
increasing the cross-interaction strength. From left to right, |J|= 0.1, |J|= 0.4, |J|=
0.6. Self-inhibition is constant in all simulations: K = 1.
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Chapter 2. Phenomenology of active mixtures

Static patterns

Mixing

If we take both cross-interactions JB
A ,J

A
B of negative sign, what we observe is macro-

scopic phase separation accompanied by mixing, i.e. a phase where the two different
species cluster together in a dense slab {ρh

A,ρ
h
B} in coexistence with a gaseous bulk

{ρ l
A,ρ

l
B}. Qualitatively, negative cross-interactions imply a slow-down of one species

in the presence of the other, thus leading to accumulation of A and B in the same
spatial region (Figure 2.4).
In this scenario, self-inhibition can play a relevant role by favouring mixing even
in the presence of weak cross-interactions. Indeed, if we set JB

A = JA
B to a small

value, then we increase self-inhibition K, we observe a transition from homogeneous
to mixed phase (Figure 2.6). This result sheds new light on the role of self-inhibition
to induce mixing or demixing, a phenomenon that has not been examined in the lit-
erature so far.
Finally, an interesting dynamics emerges when one cross-interaction is much weaker
than the other |JB

A | � |JA
B |. In this case, simulations highlight a macroscopic separa-

tion of timescales, where the dynamics of species A is fast, while B is fundamentally
frozen (Figure 2.7). In particular, when B-particles meet a group of A-particles, the
former abruptly stop due to the strong self-inhibition, while the latter are just slightly
slowed down. This leads, as observed in simulations, to the formation of sharp B-
interfaces around A-clusters. The dynamics of such interfaces is entirely driven by
the fast A-particles’ dynamics.

Demixing

Finally, when cross-interactions JB
A ,J

A
B are both positive, we observe macroscopic phase

separation in presence of demixing, i.e. the two different species form spatially-
separated macroscopic clusters (Figure 2.5). At a microscopic level, positive J causes
one species to accelerate in the presence of the other.
Again, increasing self-inhibition can lead to the emergence of a demixed phase even
in presence of weak cross-interactions.
Analogously to the mixing case, when the strengths of the cross-interaction terms is
very different we observe a separation of timescales in the macroscopic dynamics,
with sharp interfaces that are driven by the fast-moving species (Figure 2.8).
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Chapter 2. Phenomenology of active mixtures

Figure 2.4: Successive snapshots of static mixing of a binary mixture for JB
A = JA

B =
−1, self-inhibition K = 1. Left: Simulation at t = 10. Center: Simulation at t = 100.
Right: Simulation at t = 1000.

Figure 2.5: Successive snapshots of static demixing of a binary mixture for JB
A = JA

B =
1, self-inhibition K = 1. Left: Simulation at t = 10. Center: Simulation at t = 100.
Right: Simulation at t = 1000.

Figure 2.6: Transition from homogeneous to demixed phase in a binary mixture, in-
duced by self-inhibition. In the figures, three snapshots of different simulations where
we vary the strength of self-interactions K. The two strains are weakly mutually ac-
tivating, with JB

A = JA
B = 0.1. We observe how self-inhibition can induce demixing

even in presence of weak cross-interactions. Left: Simulation at K = 0.3. Center:
Simulation at K = 0.5. Right: Simulation at K = 1.
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Chapter 2. Phenomenology of active mixtures

Figure 2.7: Comparison between two snapshots of mixing with (left) and without
(right) macroscopic time-scale separation. In the first case, cross-inhibition of blue
(B) particles by red (A) is much stronger than the converse (JA

B = 3, JB
A =−0.5). This

leads to a frozen state of the blue particles when they meet the red ones, resulting in
sharp interfaces around liquid clusters. The dynamics of such interfaces is exclusively
driven by the motion of fast red particles in the simulation.

Figure 2.8: Comparison between two snapshots of demixing with (left) and without
(right) macroscopic time-scale separation. In the first case, cross-activation of blue
(B) particles by red (A) ones is much stronger than the converse (JA

B = 3, JB
A = 0.5).
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2.2 From micro to macro

In the previous section, we have illustrated three collective macroscopic behaviours
for a binary system of RTPs. The aim is now to provide a physical explanation to
these numerical observations by bridging the gap from the microscopic dynamics to
the emergent large-scale patterns.
First, we will coarse-grain our theory, starting from the dynamics of the microscopic
degrees of freedom {ri,θi} to build the one of the density fields [ρ1, . . . ,ρN ]. Once
we have a stochastic field theory for the densities, we will try to explain, via linear
stability arguments, which types of patterns can be formed.

2.2.1 N-species coarse-graining

Coarse-graining techniques for RTPs have been widely described in the active mat-
ter literature [14], with application in several contexts like bacterial chemotaxis [10],
aligning particles, binary mixtures [16]. In this work, we extend the treatment by A.
Curatolo et al. [16] to N species of RTPs with instantaneous tumbles.
In the dynamics (1.8), motility parameters depend explicitly on the density fields,
coupling the motion of all particles. However, since density fields {ρi} are conserved
fields, their evolution occurs on a large timescale, which we expect to be diffusive
τ ∼ L2. When studying the small-scale particle dynamics, we can therefore assume
the density fields to be fixed (frozen-field approximation). This solution maps the mi-
croscopic system from interacting RTPs to non-interacting ones, albeit with motility
parameters that depend on the particle’s position:

αX ,vX(ri, [~ρ]) −→ α,v(ri) (2.2)

We can now try to coarse-grain out the orientational degree of freedom for the dy-
namics of a single particle. Let P(r,θ ; t) be the probability of finding one particle
at position r with orientation θ at time t. The associated master equation reads:

∂tP(ri,θi) =−∇ri · [ v(ri)u(θi)P−Dt∇riP ]−αP(ri,θi)+
α

2π

∫
dθ
′P(ri,θ

′) , (2.3)

where, in addition to the usual drift and diffusion currents, gain and loss terms due
to tumbles are present. If we expand P in Fourier harmonics:

P(r,θ , t) =
1

2π

+∞

∑
n=−∞

Cn(r, t) einθ (2.4)
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we can use (2.3) to write the time-evolution of the Cn(r, t). In particular, we see
that the zeroth-order harmonics:

C0(r, t) =
∫ 2π

0
dθ P(r,θ , t) (2.5)

corresponds to the marginalized probability of finding a particle in position r at time
t, irrespective of its orientation.
Starting from eq. (2.3) one gets:

∂tC0 = −∇ri ·
[

v
2

((
1
−i

)
C+1 +

(
1
i

)
C−1

)
−Dt∇riC0

]
(2.6)

∂tC±1 = −∇ri ·
[

v
2

((
1
∓i

)
C±2 +

(
1
±i

)
C0

)
−Dt∇riC±1

]
−αC±1 (2.7)

∂tC±2 = −∇ri ·
[

v
2

((
1
±i

)
C±3 +

(
1
∓i

)
C±1

)
−Dt∇riC±2

]
−αC±2 (2.8)

From the above equations, we note that the dynamics of each harmonics is coupled
also to higher-order ones. It is thus necessary to impose a closure to the hierarchy
of equations. In order to do so, we observe from eq. (2.6) that C0 is a conserved
field, hence it evolves at a slow scale. On the contrary, C±1 and C±2 undergo both
a large-scale diffusive dynamics (∼ ∇r) and a fast exponential relaxation (with finite
relaxation time ∼ α−1). In the limit of large system size L→ ∞, we can there-
fore assume that C±1, C±2 relax istantaneously to values enslaved to that of C0(r, t).
Subsequently, one can rewrite eqs. (2.7, 2.8) as:

∂tC±2 = 0 ⇒ αC±2 =−∇ri ·
[

v
2

((
1
±i

)
C±3 +

(
1
∓i

)
C±1

)
−Dt∇riC±2

]
(2.9)

∂tC±1 = 0 ⇒ αC±1 =−∇ri ·
[

v
2

((
1
∓i

)
C±2 +

(
1
±i

)
C0

)
−Dt∇riC±1

]
(2.10)

Finally, we can plug eqs. (2.9, 2.10) into the dynamics of the zeroth harmonics
(2.6). In order to close the equations, we truncate the expansion including terms
up to O(∇2). This is the so-called diffusion-drift approximation, which relies on the
fact that large-scale hydrodynamic modes are assumed to satisfy ∇k ∼ 1

Lk . While this
is true for relaxations around homogeneous states, this approximation is expected to
break down when phase separation gets in, and we should keep in mind this limita-
tion.
Finally, we obtain a mesoscopic Fokker-Planck equation for the marginalized proba-
bility C0(ri, t):

∂tC0 =−∇ri · [VC0−D∇riC0] (2.11)

where we introduced the mesoscopic drift velocity V and mesoscopic diffusivity D:

V =−v∇v
2α

D =
v2

2α
+Dt (2.12)
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Now that we have discarded the orientational degrees of freedom, we can study the
large-scale interacting dynamics by restoring the dependence on the density fields.
In particular, we can associate to the Fokker-Planck equation (2.11) a corresponding
mesoscopic Ito-Langevin equation for a particle of species X :

ṙi = VX(ri, [~ρ])+∇riDX(ri, [~ρ])+
√

2DX(ri, [~ρ])ξ (t) (2.13)

ξ : Gaussian white noise with 〈ξi(t)ξ j(t ′)〉= δi, jδ (t− t ′) (2.14)

where we observe that strain labels X have been re-introduced. Eqs. (2.13) and
(2.14) are where the mesoscopic theories of multi-component systems of RTPs start
to differ from the single-component case studied in [21].

2.2.2 From mesoscopic dynamics to fluctuating hydrodynamics

As a final step of our coarse-graining, we want to write down the equations for
the dynamics of the density fields [ρ1, . . . ,ρN ] starting from the mesoscopic Langevin
equation (2.13). Here, the derivation is a straightforward generalization of the Dean
procedure used for single-component systems (see for example [14]). The interested
reader can find the full details of the calculation in Appendix B.

We define the density of species i as:

ρi(r, t) = ∑
k: Label(k)=i

δ (r− rk(t)) (2.15)

The macroscopic field equation for ρi is then:

ρ̇i(r) =−∇ ·
[

Vi(r, [~ρ])ρi(r)−Di(r, [~ρ])∇ρi(r)+
√

2Diρi Λ

]
(2.16)

where:

Di =
1
2

v2
i (r, [~ρ])

αi(r, [~ρ])
+Dt(r, [~ρ]) i ∈ {1, . . . ,N} (2.17)

Vi = −1
2

vi∇vi(r, [~ρ])
αi(r, [~ρ])

=−Di∇ log(vi(r, [~ρ])) (2.18)

and Λ is a Gaussian white-noise field with:

〈Λ〉= 0 〈Λα(r, t)Λβ (r′, t)〉= δα,β δ (r− r′)δ (t− t ′) (2.19)
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2.3 Collective behaviours: linear stability analysis at mean-
field level

Once that a macroscopic theory for the density fields has been derived, we can try
to determine the forms of organization that will emerge at the large-scale level. The
idea of this section is to provide some analytical predictions, with a special focus on
the N = 2 case. In order to proceed with calculations, a certain number of approxi-
mations will be necessary:

• Mean field: We consider the evolution of the average field 〈ρ〉, assuming that:
〈 f (ρ)〉 ≈ f (〈ρ〉) for any function f entering the dynamics (2.16)

• Locality of QS-interactions: Microscopic motility parameters v(r, [ρi]),α(r, [~ρ])
will be assumed to be local functions of the densities {ρi(r)} only, instead
of more generic, non-local functionals.

The idea is to consider a homogeneous density profile:

~ρ0 = {ρ1,0,ρ2,0, . . . ,ρN,0} (2.20)

and see how it can be unstabilized by a small, linear perturbation δ~ρ .
The mean-field equations for the active mixture read:

ρ̇i(r) = −∇ · [Vi(r, [~ρ])ρi(r)−Di(r, [~ρ])∇ρi(r)] (2.21)

Di =
1
2

v2
i (r, [~ρ])

αi(r, [~ρ])
i ∈ {1, . . . ,N} (2.22)

Vi = −1
2

vi∇vi(r, [~ρ])
αi(r, [~ρ])

=−Di∇ log vi(r, [~ρ]) (2.23)

Let ρi = ρi,0 + δρi. Assuming locality of the microscopic velocity vi and tumbling
rate αi, we can expand (2.21) to linear order in δ~ρ . The derivation is not compli-
cated but the notations rapidly become cumbersome, so here we will present only
the results, leaving the details to Appendix C.1.
Eventually, if we define the excess local chemical potentials µi ≡ logvi,0, the linear
expansion of the mean-field equation can be shown to be:

δ ρ̇i = Di,0 ρi,0

[ N

∑
j=1

∂ jµi ∇
2
δρ j +

1
ρi,0

∇
2
δρi

]
+O(δρ

2) (2.24)
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Introducing the Fourier transform of the density perturbation:

δ~ρq =
∫

d2x e−iq·x
δ~ρ(x) (2.25)

We can finally cast (2.24) in Fourier space:

δ~̇ρq =−Mqδ~ρq (2.26)

with the dynamical matrix given by1:

Mq = q2



D1 ρ1

(
1
ρ1

+∂1µ1

)
D1 ρ1 ∂2µ1 · · · · · · D1 ρ1 ∂N µ1

D2 ρ2 ∂1µ2 D2 ρ2

(
1
ρ2

+∂2µ2

)
D2 ρ2 ∂3µ2 · · · D2 ρ2 ∂N µ2

...
...

DN ρN ∂1µN · · · · · · · · · DN ρN

(
1

ρN
+∂N µN

)


(2.27)

We are now in the position of assessing the stability of the homogeneous profile
with respect to a linear perturbation δ~ρ . First, we note that the dynamical matrix
depends on the Fourier mode q only through a proportionality factor, hence in our
theory there is no mode selection at linear level.
Second, linearly unstable perturbations will correspond to eigenmodes of (2.26) whose
associated eigenvalues have a negative real part. In particular, real eigenvalues cor-
respond to static patterns, like the ones observed for mixing and demixing. On the
contrary, an imaginary part in the eigenvalues will be responsible for dynamic pat-
terns, like self-propelling bands.
The general N-species diagonalization problem is, however, complicated to tackle.
One can therefore focus on the N = 2 case, where calculations are still manage-
able and where we can gain some quantitative insight on the mechanisms driving the
linear instabilities.

Before proceeding, though, we need a piece of nomenclature. From (2.27), we ob-
serve that the elements of the dynamical matrix contain terms like:

∂iµ j =
∂

∂ρi
logv j (2.28)

i.e. the responses of log-velocity of one species to density fluctuations of the other.
Accordingly, we shall classify interactions by:

1To lighten notation we drop the 0 indices, assuming implicitly that all quantities are computed on the
homogeneous profile.
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Target: Self: ∂iµi Cross: ∂iµ j, i 6= j
Effect Inhibitory: ∂iµ j < 0 Activating: ∂iµ j > 0

2.3.1 Dynamic patterns in binary mixtures: travelling bands

To begin with, let us re-write the expression of the dynamical matrix for N = 2:

Mq = q2


DA,0 ·ρA,0

(
1

ρA,0
+∂AµA

)
DA,0 ·ρA,0 ∂BµA

DB,0 ·ρB,0 ∂AµB DB,0 ·ρB,0

(
1

ρB,0
+∂BµB

)
 (2.29)

Since we are looking for dynamic patterns, we should determine the conditions for
which the eigenvalues of M are complex and have a negative real part. One can
easily show that:

λ1,2 =
Tr(M)±

√
Tr(M)2−4Det(M)

2
(2.30)

so the conditions for a dynamical instability are:{
∆(M)≡ Tr(M)2−4Det(M)< 0

Tr(M)< 0
(2.31)

Let us start with the discriminant ∆(M). Carrying out the calculations, one obtains:

[
DA;0 ·ρA;0

(
1

ρA;0
+∂AµA

)
−DB;0 ·ρB;0

(
1

ρB;0
+∂BµB

)]2

+4DA;0 DB;0 ρA;0 ρB;0 ∂BµA ∂AµB < 0

(2.32)
We highlight that this condition can be achieved only if we have non-reciprocal in-
teractions:

∂BµA ∂AµB < 0 (2.33)

This observation is in agreement with simulations, where travelling patterns could be
achieved only if cross-interactions had opposite signs.
From the point of view of the dynamics, non-reciprocality is interpretable as a run-
and-chase mechanism: one species - say A - activates the motility of the other, while
B inhibits A’s microscopic velocity. Since active particles tend to accumulate where
they go slower, A-particles will try to stick to B-ones, while B-particles will tend to
accumulate far from A-clusters. This run-and-chase mechanism can therefore lead to
the onset of a travelling pattern.
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In order for these waves not to be exponentially damped, the homogeneous profile
must be unstable with respect to these perturbations, hence:

Re(λ )< 0 ⇔ Tr(M)< 0 ⇔

DA;0 ·ρA;0

(
1

ρA;0
+∂AµA

)
+DB;0 ·ρB;0

(
1

ρB;0
+∂BµB

)
< 0

(2.34)

This condition is satisfied either when both species are self-inhibitory, or when one
is self-activating and the other is strongly self-inhibitory. From a physical standpoint,
this can be interpreted as a mechanism apt to stabilizing dense clusters, preventing
them to shrink and fade because of diffusion. Such clusters are in fact supposed to
play the role of wavefronts in this travelling-band scenario: hence, this mechanism
would be a way to stabilize the wavefronts.

However, simulations have shown that travelling bands can emerge even when the
self-interaction is switched off. To see if this can be explained by non-linear effects,
or else if our approximated dynamics fails, we test our simulations with different pa-
rameters. Shrinking the interaction radius, hence making interactions more local, we
still observe travelling patterns, so we conclude that the issue is not in the locality
approximation. Furthermore, increasing the homogeneous density and size of the sys-
tem we still observe these dynamic bands, leading us to conclude that the issue is
not in the mean-field approximation too.
Our idea is therefore that the linear truncation is not sufficient to explain travelling
patterns, and that non-linearities play a non-negligible role in this scenario. Indeed,
the importance of non-linearities is also known for the single-species case, where
phase separation can be observed between the spinodal and binodal lines. Nonethe-
less, this path has not been investigated further for multi-component active systems,
so it may be an interesting subject of future research.

2.3.2 Static patterns in binary mixtures: mixing, demixing

In order to have a static pattern emerging from a linear instability, M must admit
two real eigenvalues, at least one of which should be negative. In order for the
eignevalues to be real, the discriminant should be positive:

∆≡ Tr(M)2−4Det(M)≥ 0 (2.35)
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which eventually corresponds to:

∆≡
[

DA,0 ·ρA,0

(
1

ρA,0
+∂AµA

)
−DB,0 ·ρB,0

(
1

ρB,0
+∂BµB

)]2

+4DA,0 DB,0 ρA,0 ρB,0 ∂BµA ∂AµB ≥ 0

(2.36)
Assuming that this condition holds, then the homogeneous profile is linearly stable if
and only if:

λ1,2 > 0 ⇔ Tr(M)±
√

Tr(M)2−4Det(M)> 0 ⇔

{
Tr(M)> 0

Det(M)> 0
(2.37)

Explicitly:
Tr(M)> 0 ⇔ DA,0 ·ρA,0

(
1

ρA,0
+∂AµA

)
+DB,0 ·ρB,0

(
1

ρB,0
+∂BµB

)
> 0

Det(M)> 0 ⇔ DA,0 DB,0 ρA,0 ρB,0

[(
1

ρA,0
+∂AµA

)(
1

ρB,0
+∂BµB

)
−∂BµA ∂AµB

]
> 0

(2.38)
If one of these conditions does not hold, then a linear perturbation will grow expo-
nentially in time.

The above expressions (2.38) are still too complicated to draw some general conclu-
sion that is somehow insightful. Nonehteless, a few interesting limiting cases can be
analysed:

• As studied by Curatolo et al. in [16], in the absence of self-interactions ∂AµA =

∂BµB = 0, mutual inhibition or mutual activation can generate linear instabilities:

ρA,0 ρB,0 ∂AµA ∂BµB > 1 (2.39)

This is the key ingredient that leads, at a macroscopic level, to mixing or
demixing. In particular, let us focus on the unstable eigenvector:

– If the two species are mutually inhibitory (∂AµB < 0), then one can show
that the two components of the eigenvector have the same sign. This
means that the linear perturbation is such that peaks in the two species
density are colocalized, and at the macroscopic level we have mixing.

– On the contrary, if the two species are mutually activating (∂AµB > 0), then
the two components of the eigenvector have opposite signs. This means
that peaks in the two species density are delocalized, and at the macro-
scopic level we have demixing.

• A possible extension to the previous case is when we introduce self interactions
of equal sign (e.g. both self-inhibiting or both self-activating). In this case, we
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have a linear instability if cross interactions are strongly reciprocal:

0 <

(
1

ρA,0
+∂AµA

)(
1

ρB,0
+∂BµB

)
< ∂AµA ∂BµB (2.40)

In ohter words, if self-interactions are present but do not compete excessively
with cross-ones, the demixing/mixing phenomena are fundamentally unaffected.

2.3.3 Mean-field phase diagram for binary mixtures

The results that we have obtained for the linear-stability analysis can be used to
sketch a mean-field phase diagram. Starting from the specific functional form for the
velocity used in simulations (2.1):

vi,X = v0,X exp
(
−KX arctan

(
ρi,X −ρM

L f

)
+ JY

X arctan
(

ρi,Y −ρM

L f

))
we will be able to compare our analytical results with the numerics. To begin with,
given the high number of parameters that are present in the microscopic model, we
need to impose some constraints. As we have done in the simulations, we require:

• Constant tumbling rate αA = αB = 1

• Equal self-interaction KA = KB = K

• Equal low-density velocity v0,A = v0,B = v0

• Equal homogeneous density ρ0,A = ρ0,B = ρ0

• Density shift equal to the homogeneous density for both species: ρM = ρ0

• Equal density scale L f ,A = L f ,B = L f

Eventually, using (2.29) we can write the dynamical matrix M, and compute its
eigenvalues and eigenvectors. It is convenient to introduce the following rescaled
cross-interactions x,y and self-interaction z:

x = JB
A ·

ρ0

L f
y = JA

B ·
ρ0

L f
z = K · ρ0

L f
(2.41)
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so that the dynamical matrix eventually reads:

M =
1
2

v2
0

(
1− z x

y 1− z

)
∝

(
1− z x

y 1− z

)
(2.42)

The associated eigenvalues are easily computed:

λ± = (1− z)±√xy (2.43)

with the respective eigenvectors:

e+ =

(
y
√

xy

)
e− =

(
y

−√xy

)
(2.44)

Let us first consider dynamic patterns, corresponding to complex eigenvalues of the
dynamical matrix (2.42). In this case, a necessary requirement is that cross-interactions
have opposite signs: xy < 0. This is indeed in perfect agreement with our numerical
observations (Figure 2.2, Figure 2.3). Nevertheless, our linear theory cannot capture
any quantitative difference between floating clusters and proper bands (Figure 2.3,
Figure 2.10).
Linear instability of the perturbation is guaranteed when the self-interaction is suffi-
ciently strong, namely when z > 1. As remarked in subsection 2.3.1, however, non-
linear effects could account for the emergence of self-propelling bands even in the
absence of self-interaction, like the ones observed in simulations.

Static patterns, on the other hand, correspond to real eigenvalues of the dynamical
matrix (2.42). In this case, cross-interactions must have the same signs: xy > 0. Lin-
ear instability occurs when the smallest eigenvalue λ− is negative. The corresponding
eigenvector e− can provide interesting information on the charachteristic of the per-
turbation:

• For x,y > 0, i.e. for mutually-activating strains, the two components of e− have
opposite signs. This corresponds to delocalization of the two strains, resulting
in macroscopic demixing (Figure 2.5).

• On the contrary, when the two strains are mutually-inhibiting (x,y < 0), the
two components of e− have the same sign, corresponding to colocalization and
hence macroscopic mixing (Figure 2.4).

In this scenario, what is the role of self-interactions? Given the expression of λ− in
eq. (2.43), increasing the value of z, static linear instabilities can emerge even for
weaker cross-interactions (x,y). In other words, mixing or demixing can be induced
by sufficiently strong self-interactions even if mutual activation / inhibition is weak.
This result is in qualitative agreement with what has been observed in numerical
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simulations (section 2.1, Figure 2.6).
Beyond qualitative descriptions, however, our linear theory is able to capture some
quantitative properties of the static phase transitions with remarkable accuracy:

• In the absence of self-interactions z, when the cross-interactions x,y are equal
we expect to enter the (de)mixed phase for a specific value x∗ = y∗. Translating
from rescaled to real interactions JB

A = JA
B ≡ J, the transition value J∗ is in great

agreement with numerical observations (Figure 2.9).

• If we set sufficiently weak cross-interactions JB
A = JA

B = J, then gradually in-
crease the value of the self-interaction K, the transition from homogeneous to
(de)mixed phase occurs at a value K∗ that is perfectly compatible with simula-
tions.

Figure 2.9: Mean-field phase diagram obtained from linear-stability analysis in the
absence of self-interactions K = 0. The axes represent the self-interaction strengths
JB

A ,J
A
B . Boxes correspond to the results of simulations. White-filled boxes correspond

to simulations where the homogeneous phase is stable; blue boxes correspond to
mixing, while orange boxes correspond to demixing; green boxes correspond to self-
propelling bands. When K = 0, floating clusters are not observed.
As regards static patterns, the agreement between simulations and linear theory is
remarkable, also from a quantitative point of view. Dynamic patterns in the absence
of self-interaction, instead, cannot be captured by a linear theory.
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Figure 2.10: Mean-field phase diagram obtained from linear-stability analysis for self-
interaction strength K = 1. The axes represent the self-interaction strengths JB

A ,J
A
B .

Boxes correspond to the results of simulations. Blue boxes correspond to mixing,
while orange boxes correspond to demixing; grey boxes correspond to dynamic float-
ing clusters, while green-filled boxes correspond to self-propelling bands.
Both static and dynamic features of patterns are correctly predicted by the linear
theory in this case; nonetheless, it cannot distinguish between floating clusters and
proper bands.

In conclusion, we have seen how the linear stability theory can explain the essen-
tial properties of macroscopic patterns (dynamic vs. static, mixing vs. demixing).
The full phenomenology of dynamic patterns, however, is still too complicated to be
tackled by a linear theory, which cannot capture, for instance, the difference between
floating clusters and bands. Most importantly, this level of description cannot account
for the existence of dynamic structures in the absence of self-inhibition.
As far as static patterns are concerned, instead, the linear theory achieves remarkable
results both from a qualitative and quantitative point of view. In fact, not only does
it explain the emergence of colocalization / delocalization of the two strains, but it
also provides good estimates of the critical parameters for our simulations.
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Chapter 3

Being in or out-of equilibrium

In chapter 2, we have seen how active mixtures can exhibit a rich macroscopic dy-
namics when compared to passive systems or monodisperse active systems.
However, some of these patterns can be achieved by an equivalent passive system
where particles interact via a properly-chosen potential U . In other words, in some
cases it is possible to find a mapping between an active mixture and an equilibrium
passive system such that the emerging macroscopic patterns are indistinguishable.
Of course, this is not true in general. Some macroscopic patterns emerging in active
mixtures manifestly violate time-reversal symmetry, for example the self-propelling
bands shown in Figure 2.2. In such cases, breaking of detailed balance by active par-
ticles is preserved throughout coarse-graining from microscopic to macroscopic, and
hence no mapping to a passive system can be established.

In this chapter, we would like to explore this subject further, trying to establish
which are the conditions on the microscopic dynamics that will ensure the existence
of an equilibrium mapping at macroscopic scale. The main idea is to be look for
a free energy functional for the macroscopic dynamics, and to relate its existence to
specific forms of the microscopic velocity functional.

3.1 Chemical potential in the Cahn-Hilliard equation

The starting point of our analysis will be the set of macroscopic field equations
(2.16) for N species. Indeed, in the absence of translational diffusion Dt = 0, it is
convenient to re-write them as a set of generalized Cahn-Hilliard equations:

ρ̇i = ∇[Diρi∇µi +
√

2DiρiΛ ] i = 1, . . . ,N (3.1)
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where the chemical potential for species i is defined as:

µi = logvi(r, [~ρ])+ logρi(r, [~ρ])) (3.2)

It is known [22] that the Cahn-Hilliard equation (3.1) describes an equilibrium, i.e.
time-reversible, field dynamics if and only if the chemical potential can be obtained
as the functional derivative of a free energy functional F .
In the chemical potential (3.2), it is straightforward to observe that logρi can always
be expressed as the derivative of a functional:

logρi(x, [~ρ])) =−
δS

δρi(x)
with S ([~ρ]) =−

N

∑
j=1

∫
d2x ρ j(x)(logρ j(x)−1) (3.3)

Noting that ρi is a conserved field, ∀ i the term:∫
d2x ρi(x) = Ni

plays the role of an additive constant in S , and is therefore irrelevant. Hence, if a
free energy F exists, we can interpret:

S =−
N

∑
j=1

∫
d2x ρ j(x) logρ j(x) (3.4)

as the entropic part of the free energy.
As a consequence, to determine the integrability conditions we can focus on the ve-
locity term in (3.2), and seek an excess free energy functional U :

logvi(x, [~ρ])) =
δU

δρi(x)
(3.5)

In case U exists, the total free energy F will be given by:

F = U −S (3.6)

which can be interpreted as a form of energy - entropy competition. The existence
of F entails an equivalence at macroscopic level between the active system and a
system of passive particles interacting in the U energy landscape [10].
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3.2 Conditions for equilibrium

In the following, we will focus on different specific conditions for the velocity func-
tionals vi(x, [~ρ]). In each case, our goal will be to determine:

1. what is the type of velocity functionals ensuring an equilibrium mapping for
the macroscopic dynamics;

2. what is the associated free energy.

3.2.1 Probing the existence of a free energy: functional Schwartz’s cri-
terion

The key tool to proceed towards our goal is a generalization of Schwartz’s theorem
for cross derivatives. In Rd , it is known from standard calculus that a given vector
field E can be written as the gradient of a scalar potential V if:

∂iE j = ∂ jEi ∀ i, j ∈ {1, . . . ,d} (3.7)

This condition, namely Schwartz’s theorem, is both necessary and sufficient if the
domain on which E is defined is simply connected.

The above result can be extended [10] to functional vector fields as the chemical
potential ~µ introduced in (3.2). Let us define the distributions:

Di j(x,y)≡
δ µi(x)
δρ j(y)

−
δ µ j(y)
δρi(x)

i, j ∈ {1, . . . ,N} (3.8)

Assuming that the space of functions ~ρ is simply connected, the existence of a free
energy F is guaranteed if and only if Di j is zero in the sense of distributions:

∃F : µi(x, [~ρ ]) =
δF [~ρ ]

δρi(x)
⇔ ∀ (i, j),∀ψ,φ :

∫∫
Di j(x,y)ψ(x)φ(y) = 0 (3.9)
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3.2.2 Local velocity functional

The first case that we can consider is the one of a local velocity functional, i.e. an
expression:

vi(x, [ρ1, . . . ,ρN ]) = vi(ρ1(x), . . . ,ρN(x)) (3.10)

In words, the velocity of a particle of species i located at x is governed only by the
density of all types of particles at that same point. The associated excess chemical
potential µi is defined as:

µi(ρ1(x), . . . ,ρN(x)) = logvi (3.11)

The integrability Schwartz conditions (3.9) impose, for any two arbitrary functions
ϕ,ψ:

∀ i, j :
∫ (

δ µi(x)
δρ j(y)

−
δ µ j(y)
δρi(x)

)
ψ(x)ϕ(y) = 0

⇒
∫ (

∂ µi(x)
∂ρ j

−
∂ µ j(y)

∂ρi

)
δ (x−y)ψ(x)ϕ(y) = 0

⇒
∫ (

∂ µi(x)
∂ρ j

−
∂ µ j(x)

∂ρi

)
ψ(x)ϕ(x) = 0

• If i = j, the above condition is always satisfied, since:

∂ µi(x)
∂ρi

− ∂ µi(x)
∂ρi

= 0 (3.12)

• If i 6= j, we obtain the condition:

∂ µi(x)
∂ρ j

=
∂ µ j(x)

∂ρi
(3.13)

This is an example of reciprocality in QS: variations of ρi impinge on the
log-velocity of species j in the same way as variations of ρ j affect the log-
velocity of species i. Equilibriumness, in this case, is therefore accompanied by
an underlying symmetry of microscopic interactions.

At equilibrium, the associated excess free energy is:

U =
∫

u(ρ1(x), . . . ,ρN(x))d2x : µi(x) =
∂u
∂ρi

(x) (3.14)
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and the total free energy is therefore:

F =
∫

f (ρ1(x), . . . ,ρN(x)) =
∫

u(ρ1, . . . ,ρN)−
N

∑
i=1

∫
−ρi logρi (3.15)

where, again, we recognise an energy-entropy interplay. Naturally, the resulting po-
tential energy U is purely local, and can be obtained by integrating over space the
potential energy density u.

3.2.3 Two-body-convolution velocity functional

Up to now, we have tackled the problem of the equilibrium mapping in a local
framework. In this section, we shall see how non-localities in the velocity functional
vi[~ρ] can affect the equilibrium mapping in active mixtures, adding further constraints
with respect to (3.13).

Let us assume that vi can be expressed as a function of effective densities ρ̃i, i.e.:

vi(x, [ρ1, . . . ,ρN ])≡ vi(ρ̃
1
i , . . . , ρ̃

N
i ), (3.16)

where the effective densities ρ̃
j

i are defined as:

ρ̃
j

i (x)≡ (K j
i ∗ρ j)(x) =

∫
d2y K j

i (x,y)ρ j(y) (3.17)

K j
i are convolution kernels that mediate the interaction between the particle under

study (species i) and a neighbour of species j. K j
i can be seen as representing an

intermediate chemical field c j
i produced by bacterium i and sensed by bacterium j,

see eq. (1.5). Note that in principle K j
i and Ki

j can be different, implying a non-
reciprocal interaction between the two species. For example, one particle of type i
can increase its velocity in presence of a j particle, while the j particle inhibits its
velocity when close to an i particle.
We assume the following properties for the kernels:

• Translational invariance
K j

i (x,y) = K j
i (x−y) (3.18)

32



Chapter 3. Being in or out-of equilibrium

• Reflection symmetry

K j
i (x) = Ki

j(−x) ∀x, ∀(i, j) (3.19)

To give an example, one can take K j
i to be a bell-shaped function whose support is

a disc of radius d1:

K j
i (r) =

1
Z

θ(d− r) exp
[
− d2

d2− r2

]
(3.20)

where Z is a normalization constant such that
∫

d2r K j
i = 1.

We introduce the following notation for the derivative with respect to the effective
density2:

∂
j

i ≡
∂

∂ ρ̃
j

i

(3.21)

so that: ∂ A
A = ∂

ρ̃A
A
, ∂ B

A = ∂
ρ̃B

A
... and so on. The Schwartz condition (3.9), states

that equilibrium is achieved iff:{
∂ i

i logvi(x) = α i
i ∈ R ∀x, ∀i ∈ {1, . . . ,N}

Ki
j(x−y)∂ i

j logv j(x) = K j
i (x−y)∂

j
i logvi(y) ∀x, y,∀i 6= j

(3.22)

It can be proved that3, in order to fulfil these conditions for all x,y, the interac-
tions between a particle of species i and one of species j should be reciprocal at
equilibrium, meaning that Ki

j = K j
i . We can therefore drop upper and lower indices,

introducing the symmetric kernels Ki j ≡ K j
i = Ki

j. This property represents a form of
action-reaction statement for the QS-interacting strains, and we shall call it reciprocal
symmetry or reciprocality.
Eventually, the only admissible form for the velocity functional is:

vi(x) = vi;0 · exp

{
N

∑
j=1

αi j

∫
d2y Ki j(x−y)ρ j(y)

}
with αi j = α ji, Ki j = K ji (3.23)

where the coefficients α
j

i are constrained to be symmetrical.

1We remark here that this type of convolutional kernel is used also in simulations (Appendix A).
2The double-index notation is in fact necessary because, in principle, the effective density of a given species

X is different when observed by a particle of type A or type B, i.e. in general K j
i 6= Ki

j.
3See Appendix D for full detail of calculations.
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The most general form of a free energy F is then:

F = U −S = ∑
i, j

1
2

αi j

∫∫
Ki j(x−y)ρi(x)ρ j(y)+

N

∑
i=1

∫
ρi logρi (3.24)

In conclusion we have shown that, under reciprocal symmetry at microscopic level,
these active systems can be mapped into a passive system of particles interacting via
a 2-body effective potential U . This potential contains all terms of intra-species (Kii)
and inter-species interactions (Ki j).
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Chapter 4

Conclusions and future research

4.1 Conclusions

In this work, we studied the dynamics of an N-component mixture of RTPs interact-
ing via QS, with special focus on the emergent macroscopic phenomenology.

Numerical simulations of the microscopic dynamics were employed to study the emer-
gent large-scale phases in a binary mixture. One of the most important results is the
observation of self-propelling bands, which had not been obtained so far from micro-
scopic simulations. Our results tally with the ones by R. Golenstanian et al. in [17],
where they show, starting from hydrodynamic simulations, that non-reciprocal cross-
interactions are necessary in order to generate dynamic structures.
Besides, we examined some new aspects in the phenomenology of static patterns.
First of all, we showed how a sufficiently strong self-inhibition can lead to mixing
or demixing even if cross-interactions are weak. Second, we saw how a macroscopic
separation of timescales can occur if one cross-interaction is much stronger than the
other.

In order to provide physical grounds to the numerical observations, we coarse-grained
the microscopic theory and derived the macroscopic evolution of the density fields.
The coarse-graining procedure was analogous to the one presented in [16], with the
difference that we considered RTPs with instantaneous tumbles.
Making use of mean-field approximation and linear stability analysis, we studied how
small perturbations can affect the stability of a homogeneous profile. In this way we
could provide some quantitative predictions on the emergent phases as a function of
the microscopic interactions.
At this stage, we were able to compare our analytical predictions with the numerical
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observations. Our results are in qualitative agreement with the numerics, shedding
light on the mechanisms that lead to the emergence of patterns. In the case of static
patterns, we could also provide quantitative predictions with a remarkable level of
accuracy.
Nonetheless, a linear treatment is not fully satisfactory: in the context of dynamic
patterns, it cannot account for the emergence of bands when the self-interaction is
switched off, nor can it describe the transition from floating clusters to bands.

Finally, in chapter 3 we studied when active mixtures can be mapped into a macro-
scopically equivalent passive system. To do so, we re-expressed the field dynamics
in the form of a Cahn-Hilliard equation, introducing a vector chemical potential ~µ .
If ~µ is an integrable field, then a free energy functional F exists for the dynamics.
The problem could then be reformulated as finding the integrability conditions for ~µ .
The mathematical tool to tackle this question was Schwartz’s theorem for functionals.
Eventually, we considered two specific cases for the functional form of the micro-
scopic velocity: a local dependence v(~ρ) and a dependence on effective densities
obtained by convolutions K ∗ρ . In both cases, we proved that the necessary ingre-
dient to ensure equilibrium is reciprocality of microscopic cross-interactions. In the
local case, this is also a sufficient condition. In the second case, further restrictions
appeared, and the resulting potential energy U must be a quadratic form of the den-
sities ρi.

4.2 What is next?

The internship work presented here is preliminary to my future Ph.D. project on
Self-organization and morphogenesis of active mixtures, which will be carried out under
the supervision of Julien Tailleur at the Laboratoire Matière et Systèmes Complexes
(MSC) of the Université de Paris. The project will also benefit from an external
collaboration with Mehran Kardar, a leading expert on statistical field theory at MIT.

Our research is aimed at elucidating the phenomenology of increasingly complex ac-
tive mixtures. In biology, such knowledge would be extremely important to clarify
morphogenetic mechanisms, like embryogenesis. Ideally, once we have a deep under-
standing on how to translate microscopic interactions into macroscopic patterns, we
could think of engineering synthetic systems that are capable of self-assembling into
a desired shape. Such technology could be important in biomedical engineering, for
example in the design of artificial tissues.
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Practically speaking, what are the next steps to take in this research?
First, even though several analytical results have been obtained in the general N-
component framework, the phenomenological part of our work was mainly centered
on binary mixtures. The next step will therefore be to extend simulations to generic
N-component mixtures, to see whether new interesting phases can emerge.
In order to gain further understanding on the N-component case, one possible idea
could be to introduce random interactions between strains, resorting to random matrix
theory. In this regards, we could benefit from collaborations with other members of
Laboratoire MSC, namely Frédéric van Wijland and Ada Altieri, experts on glassy
systems.

Second, in our discussion we have only considered the role of interactions to gen-
erate different macroscopic phases, keeping the homogeneous densities fixed at the
same value ρ0,A = ρ0,B. An alternative view on the problem could be to fix the
interaction strengths and vary the composition of the mixture.

Furthermore, in subsection 2.3.1 we highlighted how a linear treatment of the field
theory cannot tell the full story on macroscopic phenomenology, even for binary mix-
tures. In particular, some phenomena associated with dynamic patterns could not be
accounted for, like the transition from floating clusters to bands and the emergence of
bands even in the absence of self-interactions. It is therefore necessary to go beyond
a linear treatment, and study how non-linearities affect the emergence of macroscopic
patterns.

Finally, beyond phenomenological aspects, the statistical physics of the macroscopic
dynamics would deserve further studies. It could be interesting to focus on correla-
tions and critical properties of the field theory, employing tools such as the Janssen
- De Dominicis formalism and renormalization group. To this end, the collaboration
with Mehran Kardar at MIT will be of paramount importance.

To draw our conclusions, this work was meant to present the first steps in the study
of active mixtures, trying to bridge the gap from microscopic to macroscopic dy-
namics. Already at the level of binary mixtures, non-trivial, fascinating phenomena
can be observed. The hope for the future is to enrich the class of emergent phases,
while gaining a deeper understanding of the relation between microscopic parameters
and large-scale behaviours. Even if the path is still long, the perspectives on the
applications of these studies are very exciting, and will hopefully guide our way in
the future of the project.
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Appendix A

Simulations

In this appendix, we provide the details on the microscopic simulations of active
mixtures. During my internship, I have developed a C code from scratch that simu-
lates the coupled Langevin dynamics of N particles belonging to K different classes.
In the binary case, 2 species of RTPs interact via quorum-sensing. The simulation
volume is divided in cells of side d, and each particle can interact only with others
in the same cell or in the first-neighbouring cells, within a finite radius d.
At each time interval (t, t +dt):

• For each particle i, the local effective density of species X is computed, weigh-
ing the relative distance between particles through a smooth bell-shaped kernel:

ρ̃i;X = ∑
j: Label( j)=X
|ri−r j|<d

1
Z

exp
(
− d2

d2−|ri− r j|2

)
(A.1)

with normalization Z = 2πd2 ∫ 1
0 dx exp

(
− 1

1−x2

)
• Each particle’s speed is updated according to the local density of particles of

the same and of the other species (QS-interaction). For a particle i belonging
to species X :

vi,X = v0 exp
(
−K arctan

(
ρ̃i,X −ρM

L

)
+ JY

X arctan
(

ρ̃i,Y −ρM

L

))
(A.2)

• We set a sequence of tumbling times {ti} in the interval (t, t +dt). More pre-
cisely, the i-th tumbling event occurs at ti:

ti = ti−1 + τi with t0 = t (A.3)

where τi is drawn from an exponential distribution p(τi) = α exp(−ατi), α be-
ing the tumbling rate. Random numbers τi are drawn until we find a value
τn : tn+1 > t +dt. If that happens, we stop our sequence at tn.
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• Each particle moves in a straight line with speed v until the first tumbling
event, then it changes its orientation drawing the final angle θ ′ from a uniform
distribution. Subsequently, it continues to move in the θ ′ direction with same
speed v until the next tumbling event. The run-and-tumble motion is iterated
until the end of the time interval.

A.1 Single-species test

To validate the code, I tested it in the limit case of single species, with the aim of
reconstructing the phase diagram for QS-MIPS as in A. Solon et al. [19]. In order
to compare with the results of the paper, we use a functional form of the velocity:

vi(ρ̃) = v0 +
v1− v0

2

[
1+ tanh

(
2

ρ̃

ρm
−2
)]

(A.4)

which is the one used in [19]. At high local densities, the velocity will tend to v1,
while v0 corresponds to the low-density speed. When v1 < v0, crowding will slow
particles down.
Simulations are performed in a square of size 50× 50, with tumbling rate α = 1,
interaction range d = 1, ρm = 200. High-density velocity is set to v1 = 5, while v0 is
varied in the simulations.
When phase coexistence is observed, we wait for the system to thermalize and sam-
ple the local density in each box. Averaging over time, a density histogram is
produced, with two peaks corresponding to the liquid and gas phase densities (Fig-
ure A.1). Eventually, the binodal curves are reconstructed. As we can observe from
Figure A.2, our curve is in great agreement with the one in [19].

A.1.1 Binary mixture: details of simulations

Having tested the correct functioning of the code on the single-species case, we can
carry out simulations on binary mixtures. In our simulations, we vary the strength
and sign of interactions {KX ,JY

X}, in order to observe different phases. Besides, we
focus on the case KA = KB = K, so as to reduce the space of parameters to be ex-
plored. This choice is mostly motivated by the fact that, in the initial exploration of
numerical results, no relevant phenomena seemed to emerge by playing with different
self-interactions.
For both species we take v0 = 2, and fix the initial homogeneous density at ρ0,A =

ρ0,B = 100. The density offset ρM is the same for both species, and is set to 40.
Finally, the density scale L f is set to 40 for both A and B. The tumbling rate α

is assumed to be constant equal to 1 for both species, and translational noise is
switched off Dt = 0.
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Figure A.1: Example of averaged density histogram for a single-species simulation
with v1 = 5, v0 = 35. Histogram peaks are fitted with gaussian functions to retrieve
the liquid and gas phase density.

Figure A.2: Binodal curves obtained from simulations: comparison between our sim-
ulations (blue) and A. Solon’s data (red) from [19]. Simulations are performed in
a square of size 50× 50, with v1 = 5, tumbling rate α = 1, interaction range d = 1,
ρm = 200.
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Appendix B

Coarse-graining

B.1 Dean procedure from mesoscopic Langevin to macro-
scopic field theory

In this appendix, we provide a full derivation for the N-species macroscopic field
dynamics (2.16) starting from the mesoscopic Langevin equations (2.13):

ṙi = VX(ri, [~ρ])+∇riDX(ri, [~ρ])+
√

2DX(ri, [~ρ])ξ (t) (B.1)

ξ : Gaussian white noise with 〈ξi(t)ξ j(t ′)〉= δi, jδ (t− t ′) (B.2)

First of all, we define the density of particles of species X as:

ρX(r, t) = ∑
i: Label(i)=X

δ (r− ri(t)) (B.3)

Then, we introduce an arbitrary function gX of the position of X-particles, such that:

gX({ri}) = ∑
i: Label(i)=X

g(ri) (B.4)

The idea to derive the evolution of ρX is the following: first, we write the evolution
of gX in two different ways, with dependence on ρX and ρ̇X . Eventually, if we
equate these two expressions, exploiting the arbitrariness of g we will conclude on
the dynamics of ρX .
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• First expression. Using the definition of ρX :

gX({ri}) = ∑
i: Label(i)=X

g(ri) (B.5)

= ∑
i: Label(i)=X

∫
dr g(r)δ (r− ri(t)) (B.6)

=
∫

dr g(r) ∑
i: Label(i)=X

δ (r− ri(t)) =
∫

dr g(r)ρX(r, t) (B.7)

Hence, the time derivative of gX can be expressed as:

dgX

dt
=
∫

dr g(r)∂tρX(r, t) (B.8)

• Second expression. Another way to express the time derivative of gX is by
means of the Ito chain-rule. Starting from the definition of gX :

dgX

dt
= ∑

i: Label(i)=X

d
dt

g(ri) (B.9)

Applying the Ito chain-rule to g(ri):

d
dt

g(ri) = ṙi ·∇rig(ri)+D∇
2
ri

g(ri)

=

(
VX(ri, [~ρ])+∇riDX(ri, [~ρ])+

√
2DX(ri, [~ρ])ξi(t)

)
·∇rig(ri)

+DX(ri, [~ρ]) ·∇2
ri

g(ri)

We can re-write this expression making use of δ functions:

d
dt

g(ri) =
∫

dr δ (r− ri)

(
VX(r, [~ρ])+∇riDX(r, [~ρ])

)
·∇rg(r)

+
∫

dr δ (r− ri)DX(r, [~ρ]) ·∇2
rg(r)

+
∫

dr δ (r− ri)ξi(t)
√

2DX(r, [~ρ]) ·∇rg

(B.10)

Now, in the first two integrals, all dependences on the particle’s position have
been entirely shifted on the δ (ri− r) functions. This will come in very useful
in the following. Note that, instead, the stochastic term still yields a depen-
dence on i both on the δ -function and on ξi.
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We can finally write the evolution of the entire gX , plugging (B.10) in (B.9):

dgX

dt
=
∫

dr ∑
i: Label(i)=X

δ (ri− r)
{(

VX(r, [~ρ])+∇rDX(r, [~ρ])
)
·∇rg(r)+DX(r, [~ρ]) ·∇2

rg(r)
}

+
∫

dr ∑
i: Label(i)=X

δ (ri− r)ξi(t)
√

2DX(r, [~ρ]) ·∇rg(r)

(B.11)

In the first integral, the only terms depending on ri are the δ (r− ri), so we
can identify and isolate ρX inside the integral:

dgX

dt
=
∫

dr ρX(r)
{(

VX(r, [~ρ])+∇rDX(r, [~ρ])
)
·∇rg(r)+DX(r, [~ρ]) ·∇2

rg(r)
}

+
∫

dr ∑
i: Label(i)=X

δ (r− ri)ξi(t)
√

2DX(r, [~ρ]) ·∇rg(r)

(B.12)

The latter integral contains a sum of gaussian random variables, hence it can
be re-expressed as a gaussian random field Λ(r, t):∫

dr ∑
i: Label(i)=X

δ (r− ri)ξi(t)
√

2DX(r, [~ρ]) ·∇rg =

∫
dr ∇rg(r)

√
2DX(r, [~ρ])ρX Λ(r, t)

(B.13)

where:
〈Λα(r, t)Λβ (r′, t ′)〉= δα,β δ (r− r′)δ (t− t ′) (B.14)

Finally, we are left to deal with the first line of (B.12). Integrating by parts,
we eventually end up with:

−
∫

dr g(r)∇r ·
{(

VX(r, [~ρ])+∇rDX(r, [~ρ])
)

ρX(r)−∇r

(
DX(r, [~ρ])ρX(r)

)}
(B.15)

which can be further simplified by expanding the term ∇r(DX ρX ):

−
∫

dr g(r)∇r ·
{

VX(r, [~ρ])ρX −DX(r, [~ρ])∇rρX(r)
}

(B.16)

Finally, putting together the results obtained from eqs. (B.13) and (B.16) we
conclude:

dgX

dt
=−

∫
dr g(r)∇r ·

{
VX(r, [~ρ])ρX −DX(r, [~ρ])∇rρX +

√
2DX(r, [~ρ])ρX Λ(r, t)

}
(B.17)

We can eventually compare the two expressions (B.8), (B.17) for the time derivative
of gX to conclude. Indeed, exploiting the fact that g is arbitrary, the two integrands
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must be the same, hence:

∂tρX =−∇r ·
{

VX(r, [~ρ])ρX −DX(r, [~ρ])∇rρX +
√

2DX(r, [~ρ])ρX Λ(r, t)
}

(B.18)

which is the macroscopic field equation that we were looking for.
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Appendix C

Linear stability analysis of the field
theory

C.1 Linearization procedure of the mean-field theory

In this appendix, we present the full calculation for the linearization of the mean-field
N-species theory (2.21). We recall the mean-field equations:

ρ̇i(r) = −∇ · [Vi(r, [~ρ])ρi(r)−Di(r, [~ρ])∇ρi(r)] (C.1)

Di =
1
2

v2
i (r, [~ρ])

αi(r, [~ρ])
i ∈ {1, . . . ,N} (C.2)

Vi = −1
2

vi∇vi(r, [~ρ])
αi(r, [~ρ])

(C.3)

Let ρi = ρi,0 + δρi, where all ρi,0 are homogeneous fields and δρi are small pertur-
bations.
Since ρi,0 is a homogeneous field, we incidentally observe that:

∇ρi = ∇ρi,0 +∇δρi = ∇δρi (C.4)

Assuming locality of the microscopic velocity vi and tumbling rate αi, we can expand
(C.1) to linear order in δ~ρ . Let us start with the term Di∇ρi:

Di =
1
2

v2
i (~ρ0 +δ~ρ)

α(~ρ0 +δ~ρ)
=

1
2

v2
i (~ρ0)

α(~ρ0)
+O(δ~ρ) (C.5)

⇒ Di∇ρi = Di∇δρi =

(
1
2

v2
i (~ρ0)

α(~ρ0)
+O(δ~ρ)

)
∇δρi (C.6)
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=
1
2

v2
i (~ρ0)

α(~ρ0)
∇δρi +O(δρ

2)≡ (C.7)

= Di,0∇δρi +O(δρ
2) (C.8)

Next, we can expand the drift term Viρi:

Vi = −1
2

vi(~ρ0 +δ~ρ) ∇vi(~ρ0 +δ~ρ)

α(~ρ0 +δ~ρ)
= (C.9)

= −1
2

vi(~ρ0) ∇

[
vi(~ρ0) + ∑

N
j=1 ∂ jvi ·δρ j

]
α(~ρ0)

+O(δρ
2) (C.10)

We note that the derivatives ∂ jvi are evaluated at ~ρ0, hence they are constants with
respect to space and can be brought out of the ∇ operator:

Vi = −1
2

vi(~ρ0)

α(~ρ0)
·
( N

∑
j=1

∂ jvi ∇δρ j

)
+O(δρ

2) (C.11)

⇒ Viρi = −ρi,0 ·
1
2

vi(~ρ0)

α(~ρ0)
·
( N

∑
j=1

∂ jvi ∇δρ j

)
+O(δρ

2) (C.12)

Recalling the expression of Di,0, we can re-elaborate (C.12):

Viρi = −ρi,0 ·
Di,0

vi,0
·
( N

∑
j=1

∂ jvi ∇δρ j

)
+O(δρ

2) (C.13)

= −ρi,0 ·Di,0 ·
( N

∑
j=1

1
vi,0

∂ jvi ∇δρ j

)
+O(δρ

2) (C.14)

= −Di,0ρi,0 ·
( N

∑
j=1

∂ j logvi ∇δρ j

)
+O(δρ

2) (C.15)

We can now plug the linearized expressions (C.8), (C.15) inside the mean-field equa-
tions:

δ ρ̇i = Di,0 ρi,0

[ N

∑
j=1

∂ j logvi,0 ∇
2
δρ j +

1
ρi,0

∇
2
δρi

]
+O(δρ

2) (C.16)

Eventually, we define the excess local chemical potentials on the homogeneous profile
µi ≡ logvi,0, so that the linear expansion of field equation becomes:

δ ρ̇i = Di,0 ρi,0

[ N

∑
j=1

∂ jµi ∇
2
δρ j +

1
ρi,0

∇
2
δρi

]
+O(δρ

2) (C.17)
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Introducing the Fourier transform of the density perturbation:

δ~ρq =
∫

d2x e−iq·x
δ~ρ(x) (C.18)

We can finally cast (C.17) in Fourier space:

δ~̇ρq =−Mqδ~ρq (C.19)

with the dynamical matrix1:

Mq = q2



D1 ρ1

(
1
ρ1

+∂1µ1

)
D1 ρ1 ∂2µ1 · · · · · · D1 ρ1 ∂N µ1

D2 ρ2 ∂1µ2 D2 ρ2

(
1
ρ2

+∂2µ2

)
D2 ρ2 ∂3µ2 · · · D2 ρ2 ∂N µ2

...
...

DN ρN ∂1µN · · · · · · · · · DN ρN

(
1

ρN
+∂N µN

)


(C.20)

1To lighten notation we drop the 0 indices, assuming implicitly that all quantities are computed on the
homogeneous profile.
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Appendix D

Mapping to Equilibrium

D.1 Two-body convolution velocity functional

In order to impose the Schwartz conditions (3.9), we need to compute the functional
derivatives of the excess chemical potential:

δ µi(x)
δρ j(y)

=
δ

δρ j(y)
logvi(ρ̃

1
i (x), . . . , ρ̃

N
i (x)) (D.1)

= ∂
j

i logvi(x) ·
δ ρ̃

j
i (x)

δρ j(y)
(D.2)

= ∂
j

i logvi(x) ·K j
i (x−y) (D.3)

We now need to impose the equality of cross-derivatives according to (3.9). In order
to do so, we shall consider separately the case i = j and i 6= j.

• i = j:

δ µi(x)
δρi(y)

=
δ µi(y)
δρi(x)

⇐⇒ ∂
i
i logvi(x)·Ki

i (x−y)= ∂
i
i logvi(y)·Ki

i (y−x) ∀ x,y

(D.4)
Exploiting the x→−x symmetry of the kernel, the Ki

i terms simplify:

∂
i
i logvi(x) = ∂

i
i logvi(y) ∀ x,y (D.5)

Since the two sides of (D.5) depend on different variables, we conclude that:

∂
i
i logvi(x) = α

i
i ∈ R (D.6)
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Integrating this equation with respect to ρ̃ i
i :

vi(x) = exp{ α
i
i · ρ̃ i

i +ψ
i
i (ρ̃

1
i , . . . , ρ̃

i−1
i , ρ̃ i+1

i , . . . , ρ̃ N
i ) } (D.7)

where ψ i
i is an (yet) unknown function of all the remaining effective densities

around a particle of species i.

• i 6= j:

δ µi(x)
δρ j(y)

=
δ µ j(y)
δρi(x)

⇐⇒ ∂
j

i logvi(x)·K j
i (x−y)= ∂

i
j logv j(y)·Ki

j(y−x) ∀ x,y

(D.8)
We rewrite the above equation in the form:

∂
j

i logvi(x)
∂ i

j logv j(y)
=

Ki
j(y−x)

K j
i (x−y)

(D.9)

In order to understand which functions vi,K
j

i ,K
i
j can solve (D.9), we define:

f (x) ≡ ∂
j

i logvi(x) (D.10)

g(y) ≡ ∂
i
j logv j(y) (D.11)

h(z) ≡
Ki

j(−z)

K j
i (z)

with h(z) = h(−z) (D.12)

Having introduced these auxiliary functions, eq. (D.9) can be re-expressed as:

f (x)
g(y)

= h(x−y) with h(x−y) = h(y−x) (D.13)

We claim the following:

Lemma.
Equation (D.13) is solved only by functions of the form:

f (x) = γ g(y) = 1 h(z) = γ γ ∈ R (D.14)

or by any scalar multiple of these: α · f ,α ·g,α ·h.
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We now present the proof of this statement, with the remark that its details are
not relevant to the rest of the discussion and can be skipped.

Proof of the lemma.

– To begin with, we note that, if f ,g,h are three functions solv-
ing (D.13), also α · f ,α ·g,α ·h are solutions.
We can therefore choose arbitrarily the normalization of the so-
lutions, and in particular we take g(0) = 1.

– Consider y = 0 in (D.13). Then:

f (x)
g(0)

= h(x) ⇒ h(x) = f (x) (D.15)

– Take x = 0 in (D.13). Then, exploiting the result we have just
obtained:

f (0)
g(y)

= h(−y) = h(y) = f (y) ⇒ g(y) =
f (0)
f (y)

(D.16)

– Finally, plugging back expressions (D.15), (D.16) into (D.13),
we have:

f (x)
f (y)

f (0) = f (x−y) (D.17)

This is indeed the functional equation defining the exponential
function, thus:

f (x) = γ · eλ ·x
γ ∈ R, λ ∈ Rd (D.18)

⇒ h(x) = f (x) = γ · eλ ·x (D.19)

g(x) = eλ ·x (D.20)

Finally, requiring that h(x) = h(−x), we conclude λ = 0 and
thus:

f (x) = γ g(y) = 1 h(z) = γ γ ∈ R (D.21)

proving our thesis. �
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Making use of the Lemma and the definition of functions f ,g,h:
∂

j
i logvi(x) = α

j
i ∈ R

∂ i
j logv j(y) = 1

Ki
j(z)

K j
i (z)

= α
j

i ∈ R

(D.22)

Integrating the first two equations of the system over ρ̃
j

i and ρ̃ i
j respectively,

we obtain:

vi(x) = exp{ α
j

i

∫
K j

i ρ j +ψ
j

i (ρ̃
1
i , . . . , ρ̃

j−1
i , ρ̃

j+1
i , . . . , ρ̃ N

i ) } (D.23)

v j(x) = exp{
∫

K j
i ρi +ψ

i
j(ρ̃

1
j , . . . , ρ̃

i−1
j , ρ̃ i+1

j , . . . , ρ̃ N
j ) } (D.24)

where ψ
j

i ,ψ
i
j are unknown functions of the remaining effective densities. Fi-

nally, exploiting the last equation in (D.22), we can relate the two kernels:

Ki
j = α

j
i K j

i (D.25)

and in conclusion:

vi(x) = exp{ α
j

i

∫
K j

i ρ j +ψ
j

i (ρ̃
1
i , . . . , ρ̃

j−1
i , ρ̃

j+1
i , . . . , ρ̃ N

i ) } (D.26)

v j(x) = exp{ α
j

i

∫
K j

i ρi +ψ
i
j(ρ̃

1
j , . . . , ρ̃

i−1
j , ρ̃ i+1

j , . . . , ρ̃ N
j ) } (D.27)

Under the light of this reciprocity symmetry of equilibrium kernels, we can
eventually drop the j

i index notation and write:

vi(x) = exp{ αi j

∫
Ki jρ j +ψ

j
i (ρ̃

1
i , . . . , ρ̃

j−1
i , ρ̃

j+1
i , . . . , ρ̃ N

i ) } (D.28)

v j(x) = exp{ αi j

∫
Ki jρi +ψ

i
j(ρ̃

1
j , . . . , ρ̃

i−1
j , ρ̃ i+1

j , . . . , ρ̃ N
j ) } (D.29)

We are now in the position of determining the general form of the equilibrium mi-
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croscopic velocity: making use of the results of equations (D.7), (D.28), (D.29) we
conclude that the only admissible expression is:

vi(x) = vi;0 · exp

{
N

∑
j=1

αi j

∫
d2y Ki j(x−y)ρ j(y)

}
with αi j = α ji, Ki j = K ji (D.30)

Taking the logarithm of vi, i.e. the excess chemical potential, and integrating it with
respect to the density fields, we finally obtain the free energy functional (3.24):

F = ∑
i, j

1
2

αi j

∫∫
Ki j(x−y)ρi(x)ρ j(y)−

N

∑
i=1

∫
−ρi logρi (D.31)
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