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Introduction

When you are asked by yours to find something in the house it could take cen-
turies to find them. A common strategy is to search unsuccessfully for a while,
then restart the search from the starting point (finally give it up failing the task
and being rebuked since it was just in front of your eyes). Also when we search for
a face in a crowd we tend to use the same strategy till we get the target. Resetting
seems to be a very natural way of searching.
In general, search processes are ubiquitous both in human behavior and in nature:
let us think about animals or bacteria searching for food, or biomolecules search-
ing for binding sites, et similia. In these contexts resetting turned out to be very
advantageous, and scientific literature is full of these examples. Also in computer
science (and I am not referring to the famous trick of switching computer off and
on) resetting has been widely exploited, like in stochastic algorithms or in simu-
lating dynamics of free energy landscapes.

As we will see in next chapters, adding a resetting rate to a certain dynam-
ics generally leads to the appearance of a non-equilibrium steady state (NESS).
A paradigmatic example has been discussed in [3]. Although this thesis tries to
be self-consistent, a prior knowledge on the topic can be very helpful. A quite
exhaustive reading on resetting processes is [5], which contains a lot of results on
the topic and many references for further readings.

For what concerns this thesis, the work is organized as follows: in the first
chapter we will review some famous results useful for further discussions; in second
chapter we will discuss a model of non-interacting particles with resetting on a line;
in the third and last chapter we will see how to simulate the system in order to
verify if analytical results are correct.
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Chapter 1

Preliminary tools

In this chapter we will expose some equations and tools of the field which will
be useful in the following sections. We will mainly refer to standard references
on stochastic processes [6] and to the literature on resetting [5] which contain
essentially all the instruments we need.

1.1 Fokker-Planck equations with resetting

1.1.1 Diffusion with resetting

Fokker-Planck (FP) equation is a very general method to describe the time evolu-
tion of the probability density. For a particle performing a Brownian motion in a
one-dimensional space, the Fokker-Planck equation describing the motion is [6]

∂p(x, t | x0)

∂t
= D

∂2p(x, t | x0)

∂x2
, (1.1)

where D is the diffusivity constant [D] = s2t−1, and p(x, t | x0) is the proba-
bility of having a particle in x at time t given that it started in x0 at time t = 01.
Our aim is now to derive FP equation for Brownian motion with resetting.
We will consider a Poissonian resetting rate r2, which means that in an infinites-
imal time interval dt only a resetting event is possible and the probability of its

1FP equation can be also interpreted in this way which is maybe easier to understand: we could
imagine a swarm of explorers in a certain phase space each one performing the same Brownian
dynamics, then the FP equation describes the density of searchers in a certain position at a given
time.

2For the following discussion there is no need to enter in mathematical details on Poissonian
processes, hence we will expose a less rigorous but more physical treatment. Notice that from
now on we will always refer to Poissonian resetting.
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occurrence is rdt. Therefore the position of the searcher is updated according to
the stochastic rule [5]

x(t+ dt) =

{
Xr with probability rdt

x(t) + ξ(t)
√
dt with probability 1− rdt

(1.2)

where we indicate with Xr the resetting position (in principle different from
the initial position x0), with ξ(t) a Gaussian random variable with 0 mean and
variance 2D

〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′). (1.3)

A possible trajectory is sketched in the next figure

Figure 1.1: The figure is taken from [5]. A particle starting in x0 performing a
diffusive dynamics with resetting on Xr.

The meaning of the system is evident: the particle can either reset in the time
interval dt with probability rdt, or diffuse with probability 1 − rdt. Considering
discrete and infinitesimal time and space steps dt and dx, the forward master
equation of the system writes:
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p(x, t+ dt | x0, Xr) = rdtδ (x−Xr) + (1− rdt)
∫ +∞

−∞
Dξ p

(
x− ξ

√
dt, t | x0, Xr

)
(1.4)

at the right hand side (rhs) the first term represents a probability flux due to
resetting, while the second term considers all possibilities arising in the case no
resetting event occurred. Hence the integral

∫
Dξ weights all possible realization

of the noise. Dropping the conditioning on x0 and Xr to make the notation more
concise, and expanding the above expression in dt we get

p(x, t+ dt) = rdtδ (x−Xr) +

+ (1− rdt)
∫ +∞

−∞
Dξ
[
p(x, t)−

√
dtξ(t)

∂p(x, t)

∂x
+ dt

ξ2(t)

2

∂2p(x, t)

∂x2
+ . . .

]
.

(1.5)

Performing the integration keeping in mind (1.3) and taking the limit dt → 0
we obtain:

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
− rp(x, t) + rδ(x−Xr), (1.6)

with the initial condition p(x, 0) = δ(x − x0). In the following we will always
consider the case in which the resetting position coincides with the initial position,
i.e. Xr = x0.

1.1.2 Some observations on diffusive dynamics with reset-
ting

For a diffusive motion in an unbounded domain a stationary solution does not
exist. Indeed, the limit for t→∞ of the formula3

p0(x, t) =
1√

4πDt
exp

(
−(x− x0)2

4Dt

)
(1.7)

which is the solution of the simple diffusion equation, is vanishing.
While, the stationarity for equation (2.1), which reads

D
∂2pr(x)

∂x2
− rpr(x) + rδ(x− x0) = 0 (1.8)

3From now on our notation will use the subscript to denote the resetting rate, hence p0 will
be the Green function in the case without resetting.
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has a non-vanishing solution of a Laplacian shape around the resetting position:

pr(x) =
1

2

√
r

D
exp

(
−
√

r

D
|x− x0|

)
. (1.9)

In general, indeed, adding a resetting rate to a certain dynamics leads, since de-
tailed balance clearly does not hold due to the presence of a constant flux towards
resetting position, to the emergence of a non-equilibrium stationary state (NESS).
An interesting discussion on how the NESS is reached is exposed in [10]. The
study of how the NESS is reached will be also exposed in this text and will be
crucial for some further discussions.

1.2 Renewal approach to solve the Fokker-Planck

equation

This section shows a very general tecnique to find the Green function pr(x, t | x0)
of a resetting process. To compute the quantity pr(x, t | x0) we have to consider
two contributions: one coming from trajectories in which no resetting occurred
up to time t, and the other from trajectories in which some resetting occurred.
Therefore:

pr(x, t | x0) = e−rtp0(x, t | x0) + r

∫ t

0

dτe−rτp0(x, τ | Xr) (1.10)

Where the Green function of the simple diffusion p0 is weighted, in the first term,
with e−rt (absence of resetting up to time t), while in the second term is multiplied
by re−rτ , which is the probability that last resetting event occurred at time t− τ ,
integrated over all possible values of τ . The previous equation goes under the name
of last renewal equation, analogously we could also write a first renewal equation:

pr(x, t | x0) = e−rtp0(x, t | x0) + r

∫ t

0

dτe−rτp0(x, t− τ | Xr) (1.11)

whose interpretation should now be clear from previous considerations4

Interestingly both last and first renewal equations do not depend on the dynamics
(just a Poissonian resetting rate is required to make they hold).

1.3 Green functions for various processes

In this section we will derive some important results (already found in literature)
which will be widely used in following sections.

4The equivalence between first and last renewal equation can be simply proven by means of
Laplace transform. See appendix of [5].
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1.3.1 Diffusion with resetting

For this case we already have an expression for the Green function, for instance
following equation (1.10) in the case Xr = x0:

pr(x, t | x0) =
e−rt√
4πDt

exp

(
−(x− x0)2

4Dt

)
+ r

∫ t

0

e−rτ√
4πDτ

exp

(
−(x− x0)2

4Dτ

)
dτ

(1.12)
Nevertheless it is convenient, for further manipulations, to proceed in an another
way. We will apply Laplace transform to equation (2.1). Hence, exploiting the
following definition

p̃r(x, s | x0) =

∫ +∞

0

e−stpr(x, t | x0)dt (1.13)

and observing that the second term in (2.1) can be seen as a convolution between
1 and e−rτp0(x, τ | x0), we get

p̃r(x, s | x0) = p̃0(x, r + s | x0) +
r

s
p̃0(x, r + s | x0) (1.14)

thus p̃r(x, s | x0) =
r + s

s
p̃0(x, r + s | x0). (1.15)

The function p̃0(x, s | x0) can be obtained through the definition (1.13)

p̃0(x, s | x0) =

∫ +∞

0

e−sτ√
4πDτ

exp

(
−(x− x0)2

4Dτ

)
dτ

=
1√
4Ds

exp

(√
s

D
|x− x0|

)
, (1.16)

where we used a result shown in [13, Table of Laplace transforms]. Finally, insert-
ing the last result in equation (1.15), we obtain

p̃r(x, s | x0) =
1√
4D

√
r + s

s
exp

(
−
√
r + s

D
|x− x0|

)
. (1.17)

1.3.2 Run-and-tumble particles

Case without resetting For the sake of clarity, we will expose the case without
resetting first and then we will add, as usual, a Poissonian resetting rate.
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Run-and-tumble particles (RTP) are very frequently used in active matter and
stochastic processes literature. This kind of dynamics has been used to model the
motion various species of bacteria. The Langevin equation for this dynamics is:

dx

dt
= v0σ(t) (1.18)

Where v0 is the intrinsic speed during a run, σ(t) = ±1 is a telegraphic noise.
Essentially the particle moves in a specific direction with constant velocity till
the occurrence of a tumbling. The tumbling event, occurring with a fixed rate γ,
reverses the direction of motion (of course are referring to one-dimensional case).
Let be ξ(t) = v0σ(t), as shown in [1] we have the following relations:

〈ξ(t)ξ(t′)〉 = v2
0e
−2γ|t−t′|

=
v2

0

γ

[
γe−2γ|t−t′|

] (1.19)

hence taking the limit v0 → +∞, γ → +∞, with
v20
γ

= constant we get a relation

of the same form of (1.3):

〈ξ(t)ξ(t′)〉 → 2Deffδ(t− t′) (1.20)

where we set Deff = v2
0/2γ. This property, usually called diffusive limit, is quite

general and constitutes a kind of ‘sanity check’ for calculations on RTP (we will
come back on this idea later).

To find the Green function of the system we can use, as before, the formalism
of master equation. But nonetheless, at variance with the diffusive case, here we
will have a system of forward master equations (the derivation follows [4])

∂p+(x, t)

∂t
= −v0

∂p+(x, t)

∂x
+ γp−(x, t)− γp+(x, t), (1.21)

∂p−(x, t)

∂t
= +v0

∂p−(x, t)

∂x
+ γp+(x, t)− γp−(x, t), (1.22)

where p±(x, t) is the probability of having velocity ±v0 and be at position x at
time t. As we can see there are two terms multiplied to γ for each equation, they
both represents a probability ‘gain’ or ‘loss’ due to tumbling. To solve the system
we make use of Laplace transform, so we define

p̃±(x, s) =

∫ +∞

0

e−stp±(x, t)dt. (1.23)
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Taking the Laplace transform of equation (1.21),(1.22) we obtain

− p+(x, 0) + v0
∂p̃+

∂x
+ (s+ γ)p̃+ − γp̃− = 0; (1.24)

− p−(x, 0)− v0
∂p̃+

∂x
+ (s+ γ)p̃− − γp̃+ = 0. (1.25)

For simplicity we set as initial condition to be at the origin (we could simply apply
a translation if initial position is different), with equal probability in the choice of
initial direction, i.e. P+(x, 0) = P−(x, 0) = 1

2
δ(x). Thus, far from origin, we have

p̃− =
v0

γ

∂p̃+

∂x
+
s+ γ

γ
p̃+ (1.26)

p̃+ = −v0

γ

∂p̃−
∂x

+
s+ γ

γ
p̃− (1.27)

by very simple algebra we obtain

v2
0

∂2p̃±
∂x2

−
[
(s+ γ)2 − γ2

]
p̃± = 0, (1.28)

which has a simple solution (taking only non-diverging exponentials)

p̃± = A±e−λx for x > 0
p̃± = B±e+λx for x < 0

(1.29)

with

λ(s) =

(
s(s+ 2γ)

v2
0

)1/2

. (1.30)

By simply substituting this result in equations (1.24),(1.25) we get the conditions

(s+ γ − λv0)A+ = γA− (1.31)

(s+ γ + λv0)B+ = γB− (1.32)

Moreover, by continuity in x = 0, we also have the relation

A+ + A− = B+ +B−. (1.33)

Finally, the normalization condition imposes∫
dx [p̃+ + p̃−] =

1

s
, (1.34)

which implies

A+ + A− = B+ +B− =
λ

2s
, (1.35)
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and therefore

p̃(x, s) = p̃+(x, s) + p̃−(x, s) =
λ

2s
e−λ|x| (1.36)

where λ is given by relation (1.30).
Using the Laplace inversion formula

p(x, t) =
(
L−1p̃(x, s)

)
(t) =

∫
Γ

ds

2πi
est
λ(s)

2s
e−λ(s)|x| (1.37)

where Γ is the Bromwich contour (i.e. a vertical line in complex plane with its
real part to the right of all singularities of the integrand), we obtain (see [12] for
further details on the derivation):

p(x, t) =
e−γt

2

{
δ (x− v0t) + δ (x+ v0t) +

γ

v0

[
I0(ρ) +

γtI1(ρ)

ρ

]
Θ (v0t− |x|)

}
,

(1.38)
where the paramenter ρ is defined as

ρ =
√
v2

0t
2 − x2

γ

v0

(1.39)

and I0, I1 are the modified Bessel functions of the first type. They are defined as
follows

In(z) =
1

π

∫ π

0

ez cos θ cos(nθ) dθ with n = 0, 1. (1.40)
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Chapter 2

A simple model for particles on a
line subjected to a resetting
dynamics

In this chapter we will retrieve a model already discussed in literature [1] in the case
without resetting. We will add a Poissonian resetting rate r at the dynamics and
derive analitycally, as far as possible, all the quantities of interest of the system.

2.1 Generalities on the model

To fix ideas we will describe the model in the case of diffusive particles, but the
present description is essentially the same also for other dynamics (RTP case is
discussed later).
Let us consider a set of N independent particles initially located in the one di-
mensional domain [−L, 0] ⊂ R, with L > 0 with uniform density ρ = N/L in
[−L, 0]. Each particle is subjected to a diffusive dynamics with resetting, as al-
ready discussed in chapter 1. Let us suppose that the resetting position coincides,
for each particle, with its starting position, i.e. indicating with x0,i, Xr,i respec-
tively the initial and the resetting position of particle i, we have Xr,i = x0,i Hence,
the Fokker-Planck equation describing the motion of a single particle is

∂p(xi, t)

∂t
= D

∂2p(xi, t)

∂x2
− rp(xi, t) + rδ(xi − x0,i) ∀i (2.1)

As stated before we consider particles independent, hence we will neglect any type
of interaction including excluded-volume one.
The observable we are interested in is Qt, defined as the flux of particles through
the origin up to time t. Each particle crossing the origin from left (right) to right
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(left) contributes with +1(−1) to Qt. It is clear that, as observed in [1], since
we start from a step initial condition, this quantity matches with N+

t , the total
number of particles that at time t are found on the positive x-axis. Hence we
related a history dependent observable with an instantaneous variable at time t.
See figure for a pictorial representation of the situation.

Figure 2.1: The model described above is depicted in the figure. To fix ideas we
represented just four particles. Initial positions, indicated with purple filled circles,
are denoted with x1, x2, x3, x4, while final positions are indicated with purple empty
circles. Some resetting events are highlighted with red arrows. As we can see, at
time t we have two particles on the positive x-axis hence Qt = 2.

We will discuss this model not only for diffusive particles with resetting, but
also for RTP with resetting. As we will see, despite the simplicity of the model, a
non-trivial dynamical phase transition arises in the case of diffusive particles.

2.1.1 General setting

In this subsection, for the aim of completeness, we will expose the principal rela-
tions needed for the description of the system. The treatment follows section 3 of
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[1]. For clarity, we will use also the same notation.
Let us recall that we start with a step initial condition where all particles are ini-

tialized on the negative x-axis at positions {x1, x2, . . . , xN}, where −L < xi < 0 ∀i.
As observed in the previous paragraph, Qt = N+

t . To compute N+
t we could in-

troduce an indicator function Ii(t) for each particle, such that Ii(t) = 1 if i-th
particle is on the positive x-axis at time t, Ii(t) = 0 otherwise. Hence

N+
t =

N∑
i=1

Ii(t). (2.2)

For fixed {xi} the flux distribution is given by

P (Q, t | {xi}) = Prob .
(
N+
t = Q

)
=

〈
δ

[
Q−

N∑
i=1

Ii(t)

]〉
{xi}

(2.3)

where angular brackets 〈. . . 〉{xi} denote the average over the history of the system
but with fixed initial conditions, we will average later on {xi}. Taking the discrete
Laplace transform to both sides (i.e. the generating function)

∞∑
Q=0

e−pQP (Q, t | {xi}) =
〈
e−pQ

〉
{xi}

=

〈
exp

[
−p

N∑
i=1

Ii(t)

]〉
{xi}

(2.4)

but since the function Ii(t) can only take values 0 or 1, we can use the identity
e−pIi = 1− (1− e−p)Ii and rewrite

〈
e−pQ

〉
{xi}

=
N∏
i=1

[
1−

(
1− e−p

)
〈Ii(t)〉{xi}

]
. (2.5)

Since Ii(t) is an indicator function, its average 〈Ii(t)〉{xi} just gives the probability
that i-th particle is found on the positive x-axis at time t given that it started at
xi

〈Ii(t)〉{xi} =

∫ ∞
0

G (x, xi, t) dx := U (−xi, t) , xi < 0, (2.6)

where we are indicating, as in [1], with G(x, xi, t) the Green’s function, i.e. the
propagator for a particle that started at xi to reach x at time t. Inserting the
definition of U we made in (2.6) in equation (2.5) we get

〈
e−pQ

〉
{xi}

=
N∏
i=1

[
1−

(
1− e−p

)
U (−xi, t)

]
, xi < 0, ∀i = 1, . . . , N. (2.7)
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The validity of the last equation does not rely at all on the specific dynamics
of the particles. Indeed, it is valid for any set of non-interacting particles with a
common dynamics in one dimension. All informations about the specific dynamics
are encoded in the function U(z, t). The idea of our treatment is to invert this
Laplace transform and to average over initial positions in order to get P (Q, t).
Nevertheless, a special attention is needed for this average which is discussed in
the following subsection.

2.1.2 Average over initial positions

As stated before, initial positions are themselves random variables with a certain
distribution in the interval [−L, 0]. As was already observed in [2], in fully analogy
to what is done in disordered systems, we could either average over initial posi-
tions (as in disordered systems we average the partition function on realizations of
the disorder) or consider initial positions fixed and typical (as when we consider
partition function for typical values of the disorder). The former case is generally
called annealed average while the second case goes under the name of quenched
average. The importance of considering also the quenched case stands in the fact
that the typical behavior of the probability could be not captured by the annealed
average, since the latter can be dominated by rare realizations of the system.
Therefore, in the following paragraphs we will expose these two cases in detail.

Annealed case We define the annealed distribution Pan(Q, t) through the rela-
tion

∞∑
Q=0

e−pQPan(Q, t) = 〈e−pQ〉{xi} (2.8)

i.e. we are simply averaging equation (2.4) over initial conditions.
Let us compute this average keeping in mind the independence of all particles and
the uniform density in the box [−L, 0]:

〈e−pQ〉{xi} =
N∏
i=1

[
1−

(
1− e−p

) ∫ 0

−L
U (−xi, t)

dxi
L

]
(2.9)

=

[
1− 1

L

(
1− e−p

) ∫ L

0

U(z, t)dz

]N
(2.10)

where since the particles are independent we factorized the mean value and since
they all undergo the same dynamics the result will be to the power N . Taking the
thermodynamical limit, i.e. L→∞ and N →∞ but keeping ρ = N/L constant,

13



we get

∞∑
Q=0

e−pQPan(Q, t) = exp
[
−µ(t)(1− e−p)

]
, with µ(t) = ρ

∫ +∞

0

U(z, t)dz.

(2.11)
If we expand the rhs of (2.11) and compare to the lhs:

Pan(Q, t) = e−µ(t) (µ(t))Q

Q!
(2.12)

i.e., independently from the dynamics, the annealed flux distribution is always
a Poissonian distribution with mean µ(t). The only parameter of the previous
formula depending on the specific dynamics of the particles is indeed µ(t).
We could also analyze the limit for Q→ +∞, µ(t)→ +∞, keeping Q/µ(t) fixed.
In this case, as found in [1] (simply using Stirling formula), we get

Pan(Q, t) ∼ exp

[
−µ(t)Ψan

(
Q

µ(t)

)]
(2.13)

with the large deviation function Ψan(q) independent of the specific dynamics and
of the form

Ψan(q) = q ln q − q + 1 ≥ 0 (2.14)

with the asymptotic behaviors

Ψan(q) ≈


1 as q → 0
1

2
(q − 1)2 as q → 1

q ln q as q →∞

. (2.15)

Pan(Q, t) shows typical Gaussian fluctuations for Q with mean and variance both
equal to µ(t). In the next sections we will see in detail the calculations to derive
all the functions depending on the specific dynamics.

Quenched case The quenched average is defined through the relation

∞∑
Q=0

e−pQPqu(Q, t) = exp
[
ln 〈e−pQ〉{xi}

]
(2.16)

hence taking the logarithm of equation (2.7)

ln
[〈
e−pQ

〉
{xi}

]
=

N∑
i=1

ln
[
1−

(
1− e−p

)
U (−xi, t)

]
. (2.17)
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As before, taking uniform initial conditions in the interval [−L, 0] and letting
N →∞ and L→∞ but ρ = N/L constant we get

ln
[
〈e−pQ〉{xi}

]
=
N

L

∫ 0

−L
dxi ln

[
1−

(
1− e−p

)
U (−xi, t)

]
→ ρ

∫ ∞
0

dz ln
[
1−

(
1− e−p

)
U(z, t)

]
. (2.18)

Therefore the generating function of quenched flux distribution is

+∞∑
Q=0

e−pQPqu(Q, t) = exp [I(p, t)] (2.19)

where

I(p, t) = ρ

∫ +∞

0

dz ln
[
1−

(
1− e−p

)
U(z, t)

]
. (2.20)

Unfortunately, at variance with annealed case, this Laplace transform is not sim-
ple to invert analytically. Hence, to analyze various regimes, we will consider
certain expansions. As usual these expansions are done in [1], here, for the sake of
completeness, we report these formulas.

• p → 0 limit: in principle, if we would be able to expand formula (2.20) in
powers of p, we could obtain , by comparing the two series term by term,
all the momenta of Pqu(Q, t). The full analytical expansion is difficult to
perform, we will just consider the first two terms of the expansion in order
to get the mean and the variance of the flux

I(p, t) = −pρ
∫ ∞

0

dz U(z, t)+
p2

2
ρ

∫ ∞
0

dz U(z, t)[1−U(z, t)]+O
(
p3
)

(2.21)

substituting (2.21) in (2.19), expanding also the exponential in the lhs of
(2.19) and comparing term by term:

〈Q〉qu = ρ

∫ ∞
0

U(z, t)dz = µ(t) (2.22)

σ2
qu =

〈
Q2
〉

qu
− 〈Q〉2qu = ρ

∫ ∞
0

U(z, t)(1− U(z, t))dz. (2.23)

• p→ +∞ limit: in this case we can expand eI(p,t) in powers of e−p. Computing
the full expansion, we could obtain the whole function Pqu(Q, t), but the
expansion is not easy to perform analytically. As before, we could consider
just the first two terms to obtain Pqu(Q = 0, t) and Pqu(Q = 1, t)

I(p, t) = A(t) +B(t)e−p +O
(
e−2p

)
(2.24)
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where

A(t) = ρ

∫ ∞
0

ln[1− U(z, t)]dz (2.25)

B(t) = ρ

∫ ∞
0

U(z, t)

1− U(z, t)
dz, (2.26)

substituting this expression and matching the powers of e−p we obtain

Pqu(Q = 0, t) = eA(t) = exp

[
ρ

∫ ∞
0

ln [1− U(z, t)] dz

]
(2.27)

Pqu(Q = 1, t) = B(t)eA(t). (2.28)

As usual we stress the fact that all these relations are general, i.e. they depend on
the specific dynamics only through the function U(z, t).

2.2 Diffusive dynamics

In this section we will discuss the aforementioned model in the case of a diffusive
dynamics with resetting.

2.2.1 Function Ur(z, t)

Let us recall from chapter 1 the form of the Green’s function Laplace transform
(for simplicity we will work in Laplace space):1

G̃r(x, xi, s) =
1√
4D

√
r + s

s
exp

(
−
√
r + s

D
|x− xi|

)
. (2.29)

Exploiting the equation (2.6) we can compute the Laplace transform of Ur(z, t)

Ũr(z, s) =

∫ +∞

0

1√
4D

r + s

s
exp

[
−
√
r + s

D
|x+ z|

]
dx

=
1

2s
exp

[
−
√
r + s

D
z

]
.

(2.30)

This Laplace transform can be inverted exploiting the property of convolution.
Indeed, notice that

L−1

(
1

2s

)
(t) =

1

2
, (2.31)

1Subscript r indicates resetting case, xi denotes the initial position.
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L−1

[
exp

(
−
√
r + s

D
z

)]
(t) = e−rtL−1

[
exp

(
−
√

s

D
z

)]
(t)

= e−rt
z

2
√
πDt3

exp

(
z2

4Dt

)
, (2.32)

where in the intermediate step we used the property of translation, while the
latter formula can be taken from tables on Laplace inversions (for instance see
[13]). Therefore

Ur(z, t) =

∫ t

0

z

4
√
πDτ 3

exp

(
−rτ − z2

4Dτ

)
dτ. (2.33)

First of all, we should always check that our result is consistent with the equa-
tion U0(z, t) found in [1], and this is, indeed, the case. Second, we could observe
that the limit for t going to +∞ here is clearly dependent on the resetting rate

lim
t→+∞

Ur(z, t) = U stat
r (z) =

r

2
exp

(
−
√

r

D
z

)
. (2.34)

Nonetheless, the t → +∞ limit does not provide any information on how the
steady state is reached. To analyze this fact we will exploit an idea discussed in
[10]. First of all we make the substitution τ = ty, hence the formula rewrites

Ur(z, t) =

∫ 1

0

zt

4
√
πDt3y3

exp

[
−rt

(
y +

1

4Dry

(z
t

)2
)]

dy (2.35)

Ur(z, t) =

∫ 1

0

zt

4
√
πDt3y3

e−rtφ(y,z/t)dy with φ(y, x) = y +
1

4Dry
x2 (2.36)

Since we are interested in large time behavior, and since the function φ has a unique
global minimum, we can approximate the integral with saddle point approximation

∂

∂y
φ(y, x)

∣∣∣∣
y=y∗

= 0 ⇒ 1− x2

4Dry∗2
= 0 ⇒ y∗ =

√
x2

4Dr
. (2.37)

Where, as could be proven taking the second derivative, y∗ corresponds to a min-
imum.
Hence we must distinguish two cases: when y∗ < 1 and when y∗ > 1. In the
former case we can evaluate the integral in y∗, while in the latter the minimum of
the function φ is outside the domain of integration. In this second case, since the
function φ is strictly decreasing, the integral is dominated by the upper extreme
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of integration hence we can evaluate the integral at 1.

If y∗ < 1⇒ Ur(z, t) ∼ exp

[
−rt

(
2

√
1

4Dr

z

t

)]
= exp

(
−
√

r

D
z

)
(2.38)

If y∗ > 1⇒ Ur(z, t) ∼ exp

[
−t
(
r +

z2

4Dt2

)]
. (2.39)

Where, in the saddle point approximation, the pre-exponential factor does not
contribute to the final result. Thus, the function Ur can be written in a large
deviation form

Ur(z, t) ∼ e−tf(z/t), where f(u) =


√

r

D
u if u <

√
4Dr

r +
u2

4D
if u >

√
4Dr

. (2.40)

The above expression gives the behavior of U(z, t) in the limit of large t and large
z. Interestingly this function f has a discontinuity in the second derivative for u =
u∗ =

√
4Dr. This hints at the existence of a dynamical phase transition. We will

see in the next section that a similar discontinuity in the large deviation function
can be found also for Pqu(Q, t). An interesting analogy between dynamical phase
transitions and equilibrium statistical mechanics is presented in [11]. Essentially,
the large deviation function plays the role of a free energy density. Indeed, for
extensive systems, for large but finite N , the partition function scales as Z ∼
e−βNf(β) (where β is the inverse temperature and f(β) is the free energy density)
a formula very similar to (2.40). As a discontinuity in the n-th derivative in the
free energy density correspond to a n-th order phase transition of the system, here
a discontinuity in one of the derivatives of large deviation function can be seen as
a dynamical phase transition for the system.
For what concerns the function Ur(z, t), following a similar argument in [10], a nice
interpretation of this kind of phase transition can be given. Essentially, looking
at (2.40), there exists an interior spatial region −

√
4Dr t < z <

√
4Dr t where

the NESS has been achieved, since no dependence on the time is present anymore,
and there is an external region, i.e. |z| >

√
4Dr t in which the NESS has not been

estabilished yet. This is pictorially illustrated in the following figure. Therefore,
we could say that the phase transition in the function Ur corresponds to a spatial
separation between trajectories which reached thermalization and the ones still
thermalizing.
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Figure 2.2: The func-
tion f(u) is plotted on
the left. The point
u∗ =

√
4Dr in which

there is the disconti-
nuity is highlighted.

Figure 2.3: Here it is represented the distinction between regions in which the
NESS has been estabilished and regions still in a transient. To an arbitrary t∗ on
time axis, will correspond a region −

√
4Drt < z <

√
4Drt on position axis. All

particles starting in this region are at thermalization.
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2.2.2 Function µr(t)

The function µr(t) is defined in (2.11), let us rewrite the definition here

µr(t) = ρ

∫ +∞

0

Ur(z, t)dz (2.41)

Let us compute the integral making use of equation (2.33)

µr(t) = ρ

∫ t

0

dτ
e−rτ

4
√
πDτ 3

∫ +∞

0

dz z exp

(
− z2

4Dτ

)
= ρ

∫ t

0

dτ

√
De−rτ

2
√
πτ

=
ρ

2

√
D

r
erf
(√

rt
)

µr(t) =
ρ

2

√
D

r
erf
(√

rt
)

(2.42)

Where we inverted the order of integration and we exploited the definition of error
function:

erf(x) =
2√
π

∫ x

0

e−t
2

dt

As usual, although it is not reported here, in principle we could take the limit for
r → 0 and check that this result is consistent to what has been found in [1].

2.2.3 Behaviors in quenched case

As stated before, in the annealed case we are able to compute the exact distribution
of Pan, while in quenched case this is not analytically possible. Thus, making use
of formulas listed in 2.1.2, we will analyze various regimes.

Typical fluctuations: Q ∼ 〈Q〉qu

〈Q〉qu = ρ

∫ ∞
0

Ur(z, t)dz = µ(t) =
ρ

2

√
D

r
erf
(√

rt
)

(2.43)

σ2
qu =

〈
Q2
〉

qu
− 〈Q〉2qu = ρ

∫ ∞
0

Ur(z, t)[1− Ur(z, t)]dz =

=
ρ

2

√
D

r
erf
(√

rt
)
− ρ

√
D

8
√
π
√
r
e−2rt ·

·
[√

πe2rt
(

1− 2(2rt+ 1) erfc
(√

rt
)

+ (4rt+ 1) erfc
(√

2rt
))

+ 4ert
√
rt− 2

√
2rt
]

(2.44)

20



Behavior for Q � 〈Q〉qu The expression of Pqu is reported in (2.19). Let us
replace the sum with an integral in this formula∫ +∞

0

e−pQPqu(Q, t)dQ = exp [I(p, t)] . (2.45)

In this paragraph we are interested in finding the large deviation function form
of Pqu(Q, t), i.e. we want to understand how this function scales in the limit
Q→ +∞, t→ +∞ but keeping the ratio Q/t fixed. For reasons that will be clear
in the following, this behavior can be analyzed considering the limit p→ −∞ and
t→ +∞ with the ratio p/t fixed. For convenience, let us define v = −p, then we
will take the limit v → +∞. Recalling the expression of I(p, t) given in (2.20),
and the large deviation form of Ur(z, t) given in (2.40), in the large v limit we will
have

I(−p, t) := Ĩ(v, t) ≈ ρ

∫ +∞

0

dz ln
[
1 + eve−tf(z/t)

]
. (2.46)

To evaluate the integral we make use of the following trick: we first take the
partial derivative of the function with respect to v, then we compute the integral
and finally we will integrate back in v. The partial derivative reads

∂Ĩ(v, t)

∂v
= ρ

∫ +∞

0

dz
1

1 + e−[v−tf(z/t)]

= ρt

∫ +∞

0

dx
1

1 + e−t[v/t−f(x)]
. (2.47)

We can recognize that the integral function is a Fermi function and hence for large
t, since there is a positive exponential in the denominator, has a step behavior.
Thus we can approximate the integral considering just the interval where the
function is non-zero. For this reason, let us define x∗ as the point such that

v − tf(x∗) = 0 ⇒ v = tf(x∗)

since the function f , formula (2.40), is strictly increasing we have that for x < x∗

f(x) < f(x∗) and viceversa. Thus in the region where x > x∗ the integrand
function is essentially zero, and we can approximate

∂Ĩ(v, t)

∂v
≈ ρt

∫ x∗

0

dx
1

1 + e−t[f(x∗)−f(x)]
≈ ρtx∗ = ρtf−1

(v
t

)
(2.48)

where f−1 is the inverse function of f and reads

f−1(y) =


√
D

r
y for y < 2r√

4D(y − r) for y > 2r

(2.49)
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Finally integrating back in v

Ĩ(v, t) = ρt

∫ v

f−1
(y
t

)
dy = ρt2

∫ v
t

f−1(y)dy = −ρt2φ̃
(v
t

)
(2.50)

with

φ̃(y) =


−
√
D

r

y2

2
for y < 2r

−2

3

√
Dr3 − 4

3

√
Dr3

(y
r
− 1
)3/2

for y > 2r.

(2.51)

We will make the following ansatz on the large deviation form of Pqu(Q, t)

Pqu(Q, t) ∼ exp

[
−ρt2ψ

(
Q

ρt

)]
(2.52)

thus, substituting in equation (2.45)

〈e−pQ〉 =

∫ +∞

0

e−pQPqu(Q, t)dQ

∼
∫ +∞

0

exp

{
−ρt2

[
Q

ρt2
p+ ψ

(
Q

ρt

)]}
dQ (2.53)

setting q =
Q

ρt
and p = −v:

〈e−pQ〉 ∼
∫ +∞

0

exp
{
−ρt2

[
ψ(q)− v

t
q
]}

dq ∼ exp
[
−ρt2φ̃

(v
t

)]
. (2.54)

Since we are considering the large time behavior we can compute the integral with

the saddle point approximation, setting
v

t
= y (recall that the ratio v/t is fixed)

and inverting the Legendre transform

min
q

[ψ(q)− yq] = φ̃(y) ⇒ ψ(q) = max
y

[φ̃(y) + qy]. (2.55)

Recalling that φ̃ is a piecewise function, see (2.51), we must distinguish two cases

• For y < 2r :
∂

∂y

(
φ̃(y) + qy

)
=

√
D

r
y + q ⇒ y∗ =

√
r

D
q

⇒ ψ(q) =
1

2

√
r

D
q2 for q <

√
4Dr (2.56)
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• For y > 2r :
∂

∂y

(
φ̃(y) + qy

)
= −2

√
Dr
(y
r
− 1
)1/2

+ q

⇒ y∗ =

(
q2

4Dr
+ 1

)
r, thus

⇒ ψ(q) = −2

3

√
Dr3 + rq +

q3

12D
for q >

√
4Dr (2.57)

Interestingly, the function ψ has a discontinuity in the third derivative in corre-
spondence of q∗ =

√
4Dr, hence the system has a third order phase transition.

Notice that for r = 0, the phase transition disappears since just one regime is
present. Indeed, in [1] authors did not find this phase transition, and thus, the
phase transition can be attributed to the presence of resetting. Despite the sim-
plicity of the model, the behavior is rather non-trivial.

For more clarity, let us rewrite all in a more compact form: let us define

ψ(q) =
r2

ρ
Ψdiff(q) ⇒ Pqu(Q, t) ∼ exp

{
−r2t2Ψdiff(q)

}
, (2.58)

in the adimensionless variable q =
Q

rt
and with

Ψdiff(q) =


q2

q∗
for q < q∗ = 2

√
D

r
ρ

−q
∗

3
+ q +

q3

3q∗2
for q > q∗ = 2

√
D

r
ρ.

(2.59)

What we found is an expression of the large deviation form of Pqu(Q, t) valid in the

case in which both t and Q tend to +∞ but with the ratio q =
Q

rt
finite. Notice

that the first line in (2.59), i.e. when Q is sufficiently smaller than rt, represents
stationarity, since substituting in (2.58) time t cancels out. The phase transition
founded here arises somehow from the one we founded for the function Ur(z, t) in
section 2.2.1. In the last chapter we will see how to simulate the system in order
to verify if our analytical calculations are correct.

2.3 Run-and-tumble dynamics

In this section we will discuss the aforementioned model in the case of run-and-
tumble dynamics with resetting. We will suppose that each time the particle
is reset to its initial position, the velocity is randomized, hence we will have a
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probability η that the velocity is the same, and a probability 1−η that the velocity
is reversed after resetting. It was proven by [4, section 6] that, given a symmetric
initial condition, the Green function of the process is independent on η, thus we
will not care about this parameter η.

2.3.1 Function Ur(z, t)

As in the previous part for diffusive particles, here we need the Green’s function
of the dynamics. We saw in section 1.3.1 the validity of the formula:

G̃r(x, x0, s) =
r + s

s
G̃0(x, x0, s), (2.60)

this relation relies only on the last renewal property and hence clearly holds also
in this case. Therefore, recalling equations (1.36) (1.30), we get

G̃r(x, x0, s) =
λ(r + s)

2s
e−λ(r+s) |x−x0| (2.61)

with the function λ

λ(r + s) =

√
(r + s)(r + s+ 2γ)

v0

. (2.62)

By simply integrating the formula for p̃r we can get the expression for Ũr

Ũr(z, s) =
r + s

2s2
e−λ(r+s)z. (2.63)

This Laplace transform is not simple to invert, for numerical applications could
be useful also the last renewal equation2 which is reported in the following for
completeness

Ur(z, t) = e−rtU0(z, t) + r

∫ t

0

e−rτU0(z, τ)dτ (2.64)

where in [1] it has been found the explicit expression of U0 which is

U0(z, t) =
1

2

e−γzv0 +
γz

v0

∫ v0t
z

1

dT

e
−γzT
v0 I1

(
γz

v0

√
T 2 − 1

)
√
T 2 − 1

Θ (v0t− z) (2.65)

2The validity of the last renewal equation also for Ur can be proved by simply integrating the
last renewal relation for the Green’s function.
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2.3.2 Function µr(t)

To compute µr(t) we can use the last renewal equation (this relation can be proved
by integrating the last renewal equation for Ur)

µr(t) = e−rtµ0(t) + r

∫ t

0

e−rτµ0(τ)dτ, (2.66)

where the expression of µ0 has been found in [1]

µ0(t) =
1

2
ρv0te

−γt [I0(γt) + I1(γt)] (2.67)

where I0, I1 are modified Bessel functions of the first kind.

2.3.3 Behaviors in quenched case

Typical fluctuations: Q ∼ 〈Q〉qu

〈Q〉qu = µr(t) =

=
1

2
ρv0te

−(r+γ)t [I0(γt) + I1(γt)] +
1

2
ρv0r

∫ t

0

τe−(r+γ)τ [I0(γτ) + I1(γτ)] dτ

(2.68)

σ2
qu =

〈
Q2
〉

qu
− 〈Q〉2qu = ρ

∫ ∞
0

Ur(z, t)(1− Ur(z, t))dz (2.69)

An analytical expression for these formulas is difficult to obtain, but they can be
evaluated numerically.

Behavior for Q � 〈Q〉qu The procedure to analyze this behavior is analogous
to the one we used in the diffusive case: we replace the sum with an integral∫ +∞

0

e−pQPqu(Q, t)dQ = exp[I(p, t)] (2.70)

then we try to derivate the large deviation form for I(p, t) in order to substitute
this expression in the previous formula. First of all, let us investigate the large
deviation form (both z and t large but the ratio z/t finite as usual) for Ur(z, t).
Recalling equation (2.63) we can write

Ũr(z, s− r) =
1

2(s− r)
exp

{
−
√
s(s+ 2γ)

z

v0

}
, (2.71)
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exploiting the saddle point approximation to perform the Laplace inversion, as
described also in [1], we can find

L−1
(
Ũr(z, s− r)

)
(t) ≈ exp

{
−γt

(
1−

√
1− z2

v2
0t

2

)}
Θ(v0t− z) (2.72)

and therefore

Ur(z, t) ≈ e−rt exp

{
−γt

(
1−

√
1− z2

v2
0t

2

)}
Θ(v0t− z). (2.73)

We are now able to investigate the large deviation form of the quenched distribu-
tion, i.e. the regime in which both Q and t are large but the ratio Q/t is finite.
As was already explained for diffusive particles, this behavior is found considering
the limit for p→ −∞. Thus the computation will be very similar to the previous
case. It is convenient to define u = −p in the expression of I(p, t), equation (2.20),
and take the limit u→ +∞. For large u we can write

I(−p, t) := Ĩ(u, t) ≈ ρ

∫ +∞

0

dz ln [1 + euUr(z, t)] . (2.74)

As before, the trick is to take the partial derivative with respect to u, to compute
the integral and finally to integrate back in u. The derivative with respect to u
reads

∂Ĩ(u, t)

∂u
≈ ρ

∫ +∞

0

dz
1

1 +
e−u

Ur(z, t)

(2.75)

≈ ρ

∫ v0t

0

dz
1

1 + exp

{
−

[
u− rt− γt

(
1−

√
1− z2

v2
0t

2

)]} . (2.76)

We have a Fermi function again. Since we are considering the case in which t is
large, the integral will be non-vanishing only when the argument of the exponential
is negative. Let us distinguish various regimes:

• u < rt ⇒ the integrand function is essentially 0, thus the integral is zero
itself. Notice that since we are integrating in the variable z in the interval

[0, v0t], the expression under the square root, i.e. 1− z2

v2
0t

2
, is always greater

than 0 and smaller than 1;
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• rt < u < rt+ γt, in this case there exists a z∗ such that the argument of the
exponential is 0:

z∗(u) such that

u− rt− γt
1−

√
1− z∗2

v2
0t

2

 = 0

which gives

z∗(u) =
v0

γ

√
(u− rt)(rt+ 2γt− u), (2.77)

thus for z < z∗ the integrand function can be approximated with 1, while
for z > z∗ the integrand function is essentially 0. We could prove (with very
simple algebra) that z∗(u) ≤ v0t ∀u, hence

∂Ĩ(u, t)

∂u
= ρz∗(u) = ρ

v0

γ

√
(u− rt)(rt+ 2γt− u); (2.78)

• u > rt+ γt⇒ the argument of the exponential is always negative thus

∂Ĩ(u, t)

∂u
∼ ρv0t. (2.79)

Integrating back in u to obtain the function Ĩ we get

Ĩ(u, t) =



0 u < rt

ρ
v0

γ

u∫
rt

√
(x− rt)(rt+ 2γt− x)dx rt < u < (r + γ)t

ρ
v0

γ

rt+γt∫
rt

√
(x− rt)(rt+ 2γt− x)dx+ ρv0t [u− (r + γ)t] u > (r + γ)t.

Thus we can rewrite Ĩ in the following large deviation form

Ĩ(u, t) = ρ
v0(r + γ)2

γ
t2W

(
u

(r + γ)t

)
. (2.80)

27



Let us put y =
u

(r + γ)t
, thus the function W (y) will be

W (y) =



0 y <
r

r + γ

1

(r + γ)2t2

(r+γ)ty∫
rt

√
(x− rt)(rt+ 2γt− x)dx

r

r + γ
< y < 1

1

(r + γ)2t2

(r+γ)t∫
rt

√
(x− rt)(rt+ 2γt− x)dx+

γ

r + γ
(y − 1) y > 1.

Performing the integral we get

W (y) =

=



0 y < 1− a

2

1

4

√(a
2

)2

− (1− y)2

2y − 2 +

√
a3 arcsin

(√
y − 1 + a/2

a

)
√
y − 1 +

a

2

√
1− y − 1 + a/2

a

 1− a

2
< y < 1

1

16
a2π +

a

2
(y − 1) y > 1

(2.81)

where we defined a =
2γ

r + γ
. Notice that the function W has a discontinuity in

the second derivative for y = 1− a

2
= y∗, since

lim
y→(y∗)−

W ′′(y) = 0, lim
y→(y∗)+

W ′′(y) = +∞ (2.82)

and has a discontinuity in the third derivative for y = 1. Anyway, as we are going
to see, these discontinuities do not lead to phase transitions.
Inserting the large deviation form of Ĩ(u, t) in the expression (2.70) and inverting
the Laplace transform

Pqu(Q, t) ≈
∫

Γ

du

2πi
exp

{
−uQ+ ρv0

(r + γ)2

γ
t2 W

(
u

(r + γ)t)

)}
=

∫
Γ

du

2πi
exp

{
−ρv0

(r + γ)2

γ
t2

(
u

(r + γ)t

Q

ρv0
(r+γ)t
γ

−W
(

u

(r + γ)t

))}

'
∫

Γ

dx

2πi
exp

{
−ρv0

(r + γ)2

γ
t2 (xq̄ −W (x))

}
(2.83)

28



where we set q̄ =
Q

ρv0
(r + γ)

γ
t

and we made the change of variables x =
u

(r + γ)t
.

Here, as we did for the function Ur, we can exploit saddle point approximation to
compute the integral

ΨRTP(q̄) = max
x

[xq̄ −W (x)]

⇒ Pqu(Q, t) ∼ exp

{
−ρv0

(r + γ)2

γ
t2ΨRTP(q̄)

}
(2.84)

The maximum is reached for x∗ = 1 − 1

2

√
a2 − 4q̄2, hence x∗ is always lower

than 1. We could also prove, through simple algebra, that x∗ < 1 − a

2
for any

possible choice of the variables, hence discontinuities in the derivatives of W do
not influence the dynamics. Therefore, at variance with the diffusive case, here we
do not observe the emergence of a dynamical phase transition.
To conclude let us report the full formula for ΨRTP(q̄)

ΨRTP(q̄) = q̄ − q̄

4

√
a2 − 4q̄2 − 1

4
a2 arcsin

√1

2
− 1

2

√
1− 4q̄2

a2

 (2.85)

with a =
2γ

r + γ
. It can be proved that for r = 0 we obtain the expression already

found in [1]. It is convenient to rewrite the expression above in the adimensional

variable α =
r

γ
, hence the expressions for a and q̄ in function of α are

a =
2

α + 1
(2.86)

q̄ =
1

α + 1

Q

ρv0t
=

1

α + 1
q (2.87)

where we set q =
Q

ρv0t
. Thus we can rewrite the large deviation scaling for Pqu(Q, t)

and the corresponding large deviation function as follows

Pqu(Q, t) ∼ exp

{
−ρv0

(
r

γ
+ 1

)
γt2ΨRTP

(
Q

ρv0t
,
r

γ

)}
(2.88)

ΨRTP(q, α) = q − 1

α + 1

q

2

√
1− q2 − 1

α + 1
arcsin

(√
1

2
− 1

2

√
1− q2

)
(2.89)
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where the only dependence on the resetting rate is in the parameter α. In the
regime where q � 1, i.e. Q� ρv0t, we can expand the previous equation to get

ΨRTP(q, α) ' α

α + 1
q +

1

6(α + 1)
q3. (2.90)

As explained in chapter 2, for v0 → +∞, γ → +∞ but keeping the ratio
v2

0

2γ
= Deff constant and positive we should retrieve the diffusive case. Indeed,

substituting the expansion (2.90) in equations (2.88) (2.89) we get

Pqu(Q, t) ∼ exp

{
−ρv0(α + 1)γt2

(
α

α + 1
q +

1

6(α + 1)
q3

)}
∼ exp

{
ρv0γt

2

(
r

γ

Q

ρv0t
+

1

6

Q3

ρ3v3
0t

3

)}
∼ exp

{
−r2t2

[
Q

rt
+

(
Q

rt

)3
r

12Deffρ2

]}
(2.91)

which is, unless a small negative factor, the same expression we found in (2.59).
Therefore the matching between the run-and-tumble behavior and the diffusive one
can be founded also when a resetting rate is present in the regime

√
Deffrρt� Q� ρv0t.
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Chapter 3

Numerical simulations

In this chapter we will see how we can simulate the system in order to check the
analytical results found in the previous chapter.

3.1 Diffusive case

3.1.1 Simple sampling

The simplest way to simulate the system is to simply simulate the Langevin equa-
tion for each particle, i.e. simulate the stochastic rule (1.2). The computational
cost of this operation is extremely high due to the elevated number of steps needed
for the convergence of the simulation. Moreover this algorithm is not suitable for
importance sampling which is a more sophisticated tecnique used to sample events
with very small probabilitities. We will describe importance sampling in the next
sections.

A much more efficient way to simulate the system is the following1. Keeping in
mind the renewal property of all particles, we can describe the state of the particle
i through a three-dimensional vector ~vi = (x0,i, τi,∆xi), where x0,i is the initial
position of the particle, τi denotes the time elapsed from the last resetting event,
and ∆xi denotes the displacement of the particle during this interval τi. From the
discussions we made in previous sections, x0,i is sampled from a uniform distri-
bution between [−L, 0], τi is sampled from an exponential distribution with mean
1/r but with the constraint that it cannot exceed the total elapsed time t, and
∆xi is a Gaussian random variable with zero mean and variance 2Dτi. Therefore
to simulate the system it is sufficient to sample these three random numbers for
each particle. Each particle will contribute to the flux Q with 1 if x0,i + ∆xi > 0.

1The procedure we are going to explain takes inspiration from the algorithm described in [8].
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Taking several realizations of the system we can get the histogram of probabilities.

Summarizing, the procedure for annealed case is the following:

1. Observe that the state of the system is enclosed in the 3N dimensional vector

~V = (~v1, ~v2, . . . , ~vN), with ~vi = (x0,i, τi,∆xi) ∀i (3.1)

2. Sample the state of each particle:2
x0,i ∼ Uniform(−L, 0) ∀i

τi ∼ Exp

(
1

r

)
∀i

∆xi ∼ N (0, 2Dmin(τi, t)) ∀i

(3.2)

where the notation N (µ, σ2) denotes a Gaussian random number with mean
µ and variance σ2. The third expression comes from the fact that if the
system has evolved for a total time t, then the time elapsed from last resetting
cannot exceed the value t.

3. Compute the net flux Q considering that

if x0,i + ∆xi > 0⇒ Q += 1 ∀i (3.3)

and store this value in a vector ~u;

4. Replicate steps 2→ 4 for a sufficient number of times. Return vector ~u;

5. From ~u construct a probability histogram3.

The procedure exposed above, since at every step it resamples the initial position,
refers to the annealed case. In quenched case, instead, we fix initial positions at
the beginning of the algorithm and we update just τi and ∆xi. As explained in [1]
(but notice that there is a misprint in this paper), a possible choice for ~x0, for the
quenched simulation, is the following

x0,i =


∼ Uniform

(
−1

ρ
, 0

)
for i = 1

= x0,1 −
i− 1

ρ
for i = 2, . . . , N

(3.4)

2Notice that it is necessary to follow the order here exposed, since ∆xi depends on the value
of τi.

3The probability histogram is simply constructed by counting the frequencies of the various
events.
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All the results of the simple sampling algorithm are reported in the figures
below. For each of the following simulations we generated 107 samples, hence we
were just able to investigate probabilities of the order of 10−7. Smaller probabilities
can be investigated by means of importance sampling which is described in the
next subsection.

Figure 3.1: Plot of Pann(Q, t) versus Q. The comparison between simulation and
theorical result is shown. Red dots are distributed according to (2.12) with µ(t)
given by (2.42), while the green crosses represent the probabilities resulting from
the simulation. The system has been simulated for N = 10000, L = 1000, t =
10000, r = 0.01, D = 0.5, we averaged over 107 samples.

3.1.2 Importance sampling

The algorithm exposed in the previous section, even though it allows us to re-
construct the behavior around typical values, requires a huge amount of time to
sample rare events. In this section we will expose an efficient algorithm, based on
Markov chain Monte Carlo (MCMC), which allows us to sample arbitrary small
probabilities with reasonable short time. In particular we will be able to sample
probabilities of the order of 10−100. This tecnique is widely used in stochastic pro-
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cesses literature, clearly, it has been used also in [1]. The details of the algorhtm,
here exposed in great detail for clarity, can be found in [7] and [9].

As explained in the previous section, the state of the system is enclosed in the
vector ~V (formula (3.1)), the idea is to perform a MCMC on ~V . We will imagine
that each state has a certain Boltzmann weight, we will propose moves on the state
vector ~V and we will accept or reject them according to the standard Metropolis
rule. To force the system to explore rare trajectories it will be necessary to add a
bias to the acceptance rule, but for the moment let us start with the description
of the algorithm in the case without bias:

1. Sample a particle, i.e. sample a number in the index set {1, . . . , N};

2. Propose a move on the state vector ~vi of the particle, i.e. transform ~vi → ~vnew
i ,

as follows

xnew
0,i = x0,i + Uniform(−a, a) (3.5)

τnew
i = τi + Uniform(−b, b) (3.6)

∆xnew
i = ∆xi + Uniform(−c, c) (3.7)

where a, b, c are positive numbers which are appropriately chosen to make
the algorithm converge as fast as possible (generally are heuristically tuned
to have a 50% acceptance). As before, this procedure refers to the annealed
case, if we are in the quenched case we fix initial position according to the
rule (3.4). Let us notice that xnew

0,i must be in the interval [−L, 0], hence all
moves leading the particle outside this domain are automatically discarded;

3. Accept the move with the Metropolis acceptance rule4

pacc = min

{
1,
P (~V new)

P (~V )

}
(3.8)

where P (~V new) denotes the probability of the proposed state, while P (~V )
represents the probability of the old state of the system. Since particles are
independent we can factorize

P
(
~V
)

=
N∏
i=1

p(~vi) (3.9)

4Notice that transition rates cancels. With an abuse of notation, we are indicating with the
same letter p(. . . ) the probability distribution of whatever random variable. Moreover we use

the capital letter for the probability of the state of the whole system ~V , while lowercase p refers
to the marginal of the state of a single particle.
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where p(~vi) can be factorized itself

p(~vi) = p(x0,i, τi,∆xi) = p(x0,i) p(τi) p(∆xi | τi) (3.10)

and hence, according to (3.2), we have

p(~vi) = N0
1

L
re−rτi exp

[
− (∆xi)

2

4Dmin(τi, t)

]
, (3.11)

where the factor N0 represents the proper normalization factor, we will not
care of N0 since it cancels in the acceptance probability. Inserting the last
equation in (3.8) we get

pacc = min

{
1, exp

[
−
(

(∆xnew
i )2

4Dmin(τnew
i , t)

− (∆xi)
2

4Dmin(τi, t)
+ r(τnew

i − τi)
)]}
(3.12)

4. Repeat all the steps 1→ 4 until thermalization of the algorithm. When the
Markov chain is at thermalization it is possible to take averages of observ-
ables. In particular we measured the flux Q every 100N steps (each particle
did almost 100 steps) in order to avoid correlations in the measure.

5. Construct the histogram of probabilities Pan,qu(Q, t) exploiting the measures
did in the previous step.

The algorithm described so far is completely equivalent to the simple sampling.
To explore rare realizations of the system — in particular we are interested in
estimating the probability of trajectories with Q� 〈Q〉 or Q� 〈Q〉— we have to

introduce a bias in the probability of the state vector ~V . The biased probability
we considered is the following

Pθ(~V ) =
N∏
i=1

pθ(~vi) (3.13)

with pθ(~vi) = Nθ
1

L
re−rτi exp

[
− (∆xi)

2

4Dmin(τi, t)

]
e−θQ (3.14)

where Nθ, as before, is a normalization factor while θ is an adjustable parameter
called, indeed, bias. It is clear that when θ > 0 configurations with smaller Q are
favoured, while θ < 0 pushes the system to explore configurations with Q > 〈Q〉.
Therefore the acceptance probability rewrites

pacc = min

{
1, exp

[
−
(

(∆xnew
i )2

4Dmin(τnew
i , t)

− (∆xi)
2

4Dmin(τi, t)
+

+ r(τnew
i − τi) + θ(Qnew −Q)

)]}
. (3.15)
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Although the acceptance is different, the steps of the algorithm in this case are
the same.
Once we have simulated the system with the bias, in order to reconstruct the full
shape of the probability histogram, we have to find the correspondence between
the unbiased and the biased probabilities. Looking at relations (3.11), (3.14) it is
clear that the following equation holds

pθ(~vi) =
N0

Nθ

p0(~vi)e
−θQ (3.16)

and multiplying this relation over all possible indices we have

Pθ(~V ) =
N0

Nθ

P0(~Vi)e
−θQ. (3.17)

To find the probability distribution of having a certain value Q we have to integrate
the previous equation over all the possible state vectors which leads to Qt = Q,
therefore

Pan,qu,θ(Q, t) =
N0

Nθ

Pan,qu(Q, t)e−θQ (3.18)

where the two subscripts mean that the relation is valid in both the annealed and
in quenched case. Thus taking the logarithm

log [Pan,qu,θ(Q, t)] = Cθ + log [Pan,qu(Q, t)]− θQ (3.19)

where we set

Cθ = log

(
N0

Nθ

)
. (3.20)

Before merging the two histograms, we have to determine the constant Cθ. The
procedure to find Cθ is the following: simulate the system for θ = 0 and for θ & 0
and construct the two histograms. In the biased simulation we have to choose an
appropriate θ in order to have the biased histogram superposing with the unbiased
one. In the region where there is the superposition we are able to find the constant
Cθ through the formula (3.19). Once we have determined Cθ we can extend the
probability histogram using the inverse relation of (3.19):

log [Pan,qu(Q, t)] = log [Pan,qu,θ(Q, t)]− Cθ + θQ (3.21)

which allows us to estimate the probability even in regions where the simple sam-
pling gave us null probability.
This procedure can be iterated progressively increasing the bias θ in order to ex-
tend further and further the probability histogram. In the following figures some
results of importance sampling for annealed distribution are shown.
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Figure 3.2: Base 10 logarithm of the quenched probability distribution versus Q.
The system has been simulated till the bias of θ = −4.5 with the parameters
r = 0.01, D = 0.5, t = 1000, ρ = 10 for different values of N and L. In particular,
the blue line has been obtained with N = 500, L = 50, the orange one with
N = 1000, L = 100, the green one with N = 2000, L = 200 while the red curve is
the theoretical one given in equation (2.12). As we can see increasing the size of the
system the result of the simulation approaches the theoretical result. Moreover,
let us notice that importance sampling, in this case, reached probabilities of the
order of 10−175. Histograms in this figure have been obtained with 2 ·107 measures
of Q.
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Figure 3.3: Base 10 logarithm of the annealed probability distribution versus Q
for small Q. The system has been simulated till the bias of θ = 2 with the
parameters r = 0.01, D = 0.5, t = 1000, N = 2000, L = 200. Red dots represent
the theoretical distribution, see equation (2.12), green crosses represent the result
of the simulation. The histograms in this figure has been obtained with 2 · 107

measures of Q. As in the previous figure, we can see a quite good agreement with
the theoretical result.
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