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Summary

Containerisation and microservices architecture are getting momentum in nowadays
ICT field. Microservices have a demand on a high number of containers which
requires orchestration and interconnection. Kubernetes, an open-source container
orchestration platform, has been widely adopted by cloud service providers (CSPs)
for its advantages in simplifying container deployment, scalability and scheduling.
Networking is one of the central components of Kubernetes, providing connectivity
between different pods (group of containers) both within the same host and
across hosts. Today’s network infrastructure is increasingly implemented using
NFV (Network Function Virtualization) technology where network services are
implemented in pure software. This brings several advantages such as flexibility and
cost reduction as these functions can be performed on general purpose hardware.
In this context, eBPF (Extended Berkeley Packet Filter) is an excellent technology,
suitable for creating network functions for fast packet processing in the Linux
kernel. This thesis aims at defining and validating a modular network plugin for
Kubernetes that leverages a set of disaggregated network services. This would be
achieved using Polycube, an open source software framework for Linux developed
at Politecnico di Torino, which is used for the creation of extremely fast network
services programs and interconnect them. The modular feature of this project
allows you to insert new network functions to get more features such as security,
network policies and observability.
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Chapter 1

Introduction

In the past, organizations ran applications on physical servers. There was no
way to define resource boundaries for applications in a physical server, and this
caused resource allocation issues. For example, if multiple applications run on a
physical server, there can be instances where one application would take up most
of the resources, and as a result, the other applications would underperform. A
solution for this would be to run each application on a different physical server.
But this did not scale as resources were underutilized, and it was expensive for
organizations to maintain many physical servers. As a solution, virtualization
was introduced. Virtualization allows better utilization of resources in a physical
server and allows better scalability because an application can be added or updated
easily, reduces hardware costs, and much more. Containers are similar to VMs,
but they have relaxed isolation properties to share the Operating System (OS)
among the applications. Lower isolation allows containers to be lighter than VMs.
Containerization helps to package software, enabling applications to run unmodified
in a wide range of Linux distributions and to be released and updated in an easy
and fast way without downtime. Kubernetes, as a microservice orchestrator, helps
developers to make sure those containerized applications run in cloud environment,
providing all the resources and tools they need to work properly. Kubernetes
networking allows Kubernetes components to communicate with each other and
with other applications. The Kubernetes platform is different from other networking
platforms because it is based on a flat network structure that eliminates the need to
map host ports to container ports. The Kubernetes platform provides a way to run
distributed systems, sharing machines between applications without dynamically
allocating ports.
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Introduction

1.1 Goal of the thesis
Managing a network where containers can interoperate efficiently is very important.
Kubernetes has adopted the Container Network Interface (CNI) specification for
managing network resources on a cluster. This relatively simple specification makes
it easy for Kubernetes to interact with a wide range of CNI-based software solutions
[1]. A CNI plugin is responsible for inserting a network interface into the container
network namespace (e.g., one end of a virtual ethernet (veth) pair) and making
any necessary changes on the host (e.g., attaching the other end of the veth into
a bridge). It then assigns an IP address to the interface and sets up the routes
consistent with the IP Address Management section by invoking the appropriate
IP Address Management (IPAM) plugin[2].

This thesis studies the possibility to use eBPF (Extended Berkeley Packet
Filter), a novel technology that allows to run fast network functions in the Linux
kernel, to prototype a network provider for kubernetes through disaggregated eBPF
Services. For eBPF Services we means Network Functions such as Switch, Router,
Load Balancer and NAT (Network Address Translation). Those are interconnected
together to provide connectivity to containers. Thanks to eBPF and Polycube we
have a secure method to ensure speed and performance, observability and security.

2



Chapter 2

Background

This chapter provides a description of the main elements and key technologies this
thesis is based on.

First, Kubernetes is introduced, highlighting its main features giving an enphasis
on the Kubernetes Network Model. Then, a detailed description of the two main
technologies used in the project, eBPF and Polycube, is provided. In the end, an
overview of related work studying eBPF Network Functions needed and how are
interconnected.

2.1 Kubernetes: introduction
Around 2004, Google created the Borg [3] system, a small project with less than
5 people initially working on it. The project was developed as a collaboration
with a new version of Google’s search engine. Borg was a large-scale internal
cluster management system, which “ran hundreds of thousands of jobs, from many
thousands of different applications, across many clusters, each with up to tens of
thousands of machines”. It achieves high utilization by combining admission control,
efficient task-packing, over-commitment, and machine sharing with process-level
performance isolation. [3].

In the middle of 2014, Google presented Kubernetes as on open-source version
of Borg. Kubernetes was created by Joe Beda, Brendan Burns, and Craig McLuckie,
and other engineers at Google. Its development and design were heavily influenced
by Borg and many of its initial contributors previously used to work on it. The
original Borg project was written in C++, whereas for Kubernetes the Go language
was chosen.

In 2015 Kubernetes v1.0 was released. Along with the release, Google set up a
partnership with the Linux Foundation to form the Cloud Native Computing
Foundation (CNCF) [4]. Since then, Kubernetes has significantly grown, achieving
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Background

the CNCF graduated status and being adopted by nearly every big company.
Nowadays it has become the de-facto standard for container orchestration [5, 6].

Figure 2.1: Kubernetes History

2.2 Applications deployment evolution
Kubernetes is a portable, extensible, open-source platform for running and coordi-
nating containerized applications across a cluster of machines. It is designed to
completely manage the life cycle of applications and services using methods that
provide consistency, scalability, and high availability.

What does “containerized applications” means? In the last decades, the deploy-
ment of applications has seen significant changes, which are illustrated in figure
2.2.

Figure 2.2: Evolution in applications deployment.

Traditionally, organizations used to run their applications on physical servers.
One of the problems of this approach was that resource boundaries between
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applications could not be applied in a physical server, leading to resource allocation
issues. For example, if multiple applications run on a physical server, one of them
could take up most of the resources, and as a result, the other applications would
starve. A possibility to solve this problem would be to run each application on
a different physical server, but clearly it is not feasible: the solution could not
scale, would lead to resources under-utilization and would be very expensive for
organizations to maintain many physical servers.

The first real solution has been virtualization. Virtualization allows to run
multiple Virtual Machines on a single physical server. It grants isolation of the
applications between VMs providing a high level of security, as the information of
one application cannot be freely accessed by another application. Virtualization
enables better utilization of resources in a physical server, improves scalability,
because an application can be added or updated very easily, reduces hardware
costs, and much more. With virtualization it is possible to group together a set
of physical resources and expose it as a cluster of disposable virtual machines.
Isolation certainly brings many advantages, but it requires a quite ‘heavy’ overhead:
each VM is a full machine running all the components, including its own operating
system, on top of the virtualized hardware.

A second solution which has been proposed recently is containerization. Con-
tainers are similar to VMs, but they share the operating system with the host
machine, relaxing isolation properties. Therefore, containers are considered a
lightweight form of virtualization. Similarly to a VM, a container has its own
filesystem, CPU, memory, process space etc. One of the key features of containers
is that they are portable: as they are decoupled from the underlying infrastructure,
they are totally portable across clouds and OS distributions. This property is
particularly relevant nowadays with cloud computing: a container can be easily
moved across different machines. Moreover, being “lightweight”, containers are
much faster than virtual machines: they can be booted, started, run and stopped
with little effort and in a short time.

2.3 Container orchestrators
When hundreds or thousands of containers are created, the need of a way to manage
them becomes essential; container orchestrators serve this purpose. A container
orchestrator is a system designed to easily manage complex containerization de-
ployments across multiple machines from one central location. As depicted in
figure 2.3, Kubernetes is by far the most used container orchestrator. We provide
a description of such system in the following.

Kubernetes provides many services, including:

• Service discovery and load balancing A container can be exposed using

5
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the DNS name or using its own IP address. If traffic to a container is high, a
load balancer able to distribute the network traffic is provided.

• Storage orchestration A storage system can be automatically mounted,
such as local storages, public cloud providers, and more.

Figure 2.3: Container orchestrators use [7].

• Automated rollouts and rollbacks The desired state for the deployed
containers can be described, and the actual state can be changed to the
desired state at a controlled rate. For example, it is possible to automate the
creation of new containers of a deployment, remove existing containers and
adopt all their resources to the new container.

• Automatic bin packing Kubernetes is provided with a cluster of nodes that
can be used to run containerized tasks. It is possible to set how much CPU
and memory (RAM) each container needs, and automatically the containers
are sized to fit in the nodes to make the best use of the resources.

• Secret and configuration management It is possible to store and man-
age sensitive information in Kubernetes, such as passwords, OAuth tokens,
and SSH keys. It is possible to deploy and update secrets and application
configuration without rebuilding the container images, and without exposing
secrets in the stack configuration.

2.4 Kubernetes architecture
When Kubernetes is deployed, a cluster is created. A Kubernetes cluster consists of
a set of machines, called nodes, that run containerized applications. At least one
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of the nodes hosts the control plane and is called master. Its role is to manage the
cluster and expose an interface to the user. The worker node(s) host the pods
that are the components of the application. The master manages the worker nodes
and the pods in the cluster. In production environments, the control plane usually
runs across multiple machines and a cluster runs on multiple nodes, providing
fault-tolerance and high availability.

Figure 2.4 shows the diagram of a Kubernetes cluster with all the components
linked together.

Figure 2.4: Kubernetes architecture

2.4.1 Control plane components
The control plane’s components make global decisions about the cluster (for example,
scheduling), as well as detecting and responding to cluster events (for example,
starting up a new pod). Although they can be run on any machine in the cluster,
for simplicity, they are typically executed all together on the same machine, which
does not run user containers.

API server

The API server is the component of the Kubernetes control plane that exposes the
Kubernetes REST API, and constitites the front end for the Kubernetes control
plane. Its function is to intercept REST request, validate and process them. The
main implementation of a Kubernetes API server is kube-apiserver. It is designed
to scale horizontally, which means it scales by deploying more instances. Moreover,
it can be easily redounded to run several instances of it and balance traffic among
them.

7
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etcd

etcd is a distributed, consistent and highly-available key value store used as
Kubernetes’ backing store for all cluster data. It is based on the Raft consensus
algorithm [8], which allows different machines to work as a coherent group and
survive to the breakdown of one of its members. etcd can be stacked in the master
node or external, installed on dedicated host. Only the API server can communicate
with it.

Scheduler

The scheduler is the control plane component responsible of assigning the pods to
the nodes. The one provided by Kubernetes is called kube-scheduler, but it can
be customized by adding new schedulers and indicating in the pods to use them.
kube-scheduler watches for newly created pods not assigned to a node yet, and
selects one for them to run on. To make its decisions, it considers singular and
collective resource requirements, hardware/software/policy constraints, affinity and
anti-affinity specifications, data locality, inter-workload interference and deadlines.

kube-controller-manager

Component that runs controller processes. It continuously compares the desired
state of the cluster (given by the objects specifications) with the current one
(read from etcd). Logically, each controller is a separate process, but to reduce
complexity, they are all compiled into a single binary and run in a single process.
These controllers include:

• Node Controller: responsible for noticing and reacting when nodes go down.

• Replication Controller: in charge of maintaining the correct number of pods
for every replica object in the system.

• Endpoints Controller: populates the Endpoint objects (which links Services
and Pods).

• Service Account & Token Controllers: create default accounts and API access
tokens for new namespaces.

cloud-controller-manager

This component runs controllers that interact with the underlying cloud providers.
The cloud-controller-manager binary is a beta feature introduced in Kubernetes
1.6. It only runs cloud-provider-specific controller loops. You can disable these
controller loops in the kube-controller-manager.
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cloud-controller-manager allows the cloud vendor’s code and the Kubernetes
code to evolve independently of each other. In prior releases, the core Kubernetes
code was dependent upon cloud-provider-specific code for functionality. In future
releases, code specific to cloud vendors should be maintained by the cloud vendor
themselves, and linked to cloud-controller-manager while running Kubernetes.
Some examples of controllers with cloud provider dependencies are:

• Node Controller: checks the cloud provider to update or delete Kubernetes
nodes using cloud APIs.

• Route Controller: responsible for setting up network routes in the cloud
infrastructure.

• Service Controller: for creating, updating and deleting cloud provider load
balancers.

• Volume Controller: creates, attaches, and mounts volumes, interacting with
the cloud provider to orchestrate them.

2.4.2 Node components
Node components run on every node, maintaining running pods and providing the
Kubernetes runtime environment.

Container Runtime

The container runtime is the software that is responsible for running containers.
Kubernetes supports several container runtimes: Docker, containerd, CRI-O, and
any implementation of the Kubernetes CRI (Container Runtime Interface).

kubelet

An agent that runs on each node in the cluster, making sure that containers are
running in a pod. The kubelet receives from the API server the specifications of
the Pods and interacts with the container runtime to run them, monitoring their
state and assuring that the containers are running and healthy. The connection with
the container runtime is established through the Container Runtime Interface
and is based on gRPC.

kube-proxy

kube-proxy is a network agent that runs on each node in your cluster, implementing
part of the Kubernetes Service concept. It maintains network rules on nodes, which
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allow network communication to your Pods from inside or outside of the cluster.
If the operating system is providing a packet filtering layer, kube-proxy uses it,
otherwise it forwards the traffic itself.

Addons

Features and functionalities not yet available natively in Kubernetes, but imple-
mented by third parties pods. Some examples are DNS, dashboard (a web gui),
monitoring and logging.

Figure 2.5: Kubernetes master and worker nodes [9].

2.5 Kubernetes objects
Kubernetes defines several types of objects, which constitutes its building blocks.
Usually, a K8s resource object contains the following fields [10]:

• apiVersion: the versioned schema of this representation of the object;

• kind: a string value representing the REST resource this object represents;

• ObjectMeta: metadata about the object, such as its name, annotations, labels
etc.;

• ResourceSpec: defined by the user, it describes the desired state of the object;

• ResourceStatus: filled in by the server, it reports the current state of the
resource.

The allowed operations on these resources are the typical CRUD actions:

10
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• Create: create the resource in the storage backend; once a resource is created,
the system applies the desired state.

• Read: comes with 3 variants

– Get: retrieve a specific resource object by name;
– List: retrieve all resource objects of a specific type within a namespace,
and the results can be restricted to resources matching a selector query;

– Watch: stream results for an object(s) as it is updated.

• Update: comes with 2 forms

– Replace: replace the existing spec with the provided one;
– Patch: apply a change to a specific field.

• Delete: delete a resource; depending on the specific resource, child objects
may or may not be garbage collected by the server.

In the following we illustrate the main objects needed in the next chapters.

2.5.1 Label & Selector
Labels are key-value pairs attached to a K8s object and used to organize and mark
a subset of objects. Selectors are the grouping primitives which allow to select a
set of objects with the same label.

2.5.2 Namespace
Namespaces are virtual partitions of the cluster. By default, Kubernetes creates 4
Namespaces:

• kube-system: it contains objects created by K8s system, mainly control-plane
agents;

• default: it contains objects and resources created by users and it is the one
used by default;

• kube-public: readable by everyone (even not authenticated users), it is used
for special purposes like exposing cluster public information;

• kube-node-lease: it maintains objects for heartbeat data from nodes.

It is a good practice to split the cluster into many Namespaces in order to better
virtualize the cluster.
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2.5.3 Pod
Pods are the basic processing units in Kubernetes. A pod is a logic collection of one
or more containers which share the same network and storage, and are scheduled
together on the same pod. Pods are ephemeral and have no auto-repair capacities:
for this reason they are usually managed by a controller which handles replication,
fault-tolerance, self-healing etc.

Figure 2.6: Kubernetes pods [9].

2.5.4 ReplicaSet
ReplicaSets control a set of pods allowing to scale the number of pods currently in
execution. If a pod in the set is deleted, the ReplicaSet notices that the current
number of replicas (read from the Status) is different from the desired one (specified
in the Spec) and creates a new pod. Usually ReplicaSets are not used directly: a
higher-level concept is provided by Kubernetes, called Deployment.
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2.5.5 Deployment
Deployments manage the creation, update and deletion of pods. A Deployment
automatically creates a ReplicaSet, which then creates the desired number of pods.
For this reason an application is typically executed within a Deployment and not
in a single pod. The listing 2.1 is an example of deployment.

Listing 2.1: Basic example of Kubernetes Deployment [9].
1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : nginx−deployment
5 l a b e l s :
6 app : nginx
7 spec :
8 r e p l i c a s : 3
9 s e l e c t o r :

10 matchLabels :
11 app : nginx
12 template :
13 metadata :
14 l a b e l s :
15 app : nginx
16 spec :
17 c on t a i n e r s :
18 − name : nginx
19 image : nginx : 1 . 7 . 9
20 por t s :
21 − conta ine rPort : 80

The code above allows to create a Deployment with name nginx-deployment and
a label app, with value nginx. It creates three replicated pods and, as defined in
the selector field, manages all the pods labelled as app:nginx. The template
field shows the information of the created pods: they are labelled app:nginx and
launch one container which runs the nginx DockerHub image at version 1.7.9 on
port 80.

2.5.6 Service
A Service is an abstract way to expose an application running on a set of Pods as a
network service. It can have different access scopes depending on its ServiceType:

• ClusterIP: Service accessible only from within the cluster, it is the default
type;

• NodePort: exposes the Service on a static port of each Node’s IP; the
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Pod

Node

Figure 2.7: Kubernetes Services [9].

NodePort Service can be accessed, from outside the cluster, by contacting
<NodeIP>:<NodePort>;

• LoadBalancer: exposes the Service externally using a cloud provider’s load
balancer;

• ExternalName: maps the Service to an external one so that local apps can
access it.

The following Service is named my-service and redirects requests coming from
TCP port 80 to port 9376 of any Pod with the app=MyApp label.

Listing 2.2: Basic example of Kubernetes Service [9].
1 ap iVers ion : v1
2 kind : S e rv i c e
3 metadata :
4 name : my−s e r v i c e
5 spec :
6 s e l e c t o r :
7 app : myApp
8 por t s :
9 − pro to co l : TCP

10 port : 80
11 ta rge tPor t : 9376
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2.6 Kubernetes Operator
A Kubernetes operator is an application-specific controller that extends the func-
tionality of the Kubernetes API to create, configure, and manage instances of
complex applications on behalf of a Kubernetes user.

It builds upon the basic Kubernetes resource and controller concepts, but
includes domain or application-specific knowledge to automate the entire life cycle
of the software it manages.

Controllers are the core abstraction used to build Kubernetes. Once you’ve
declared the desired state of your cluster using the API server, controllers ensure
that the cluster’s current state matches the desired state by continuously watching
the state of the API server and reacting to any changes. Controllers operate using
a simple loop that continuously checks the current state of the cluster against the
desired state of the cluster. If there are any differences, controllers perform tasks
to make the current state match the desired state. In pseudo-code:

Listing 2.3: Controller loop example
1 whi le t rue :
2 X = cur r en tS ta t e ( )
3 Y = d e s i r e d S t a t e ( )
4

5 i f X == Y:
6 re turn # Do nothing
7 e l s e :
8 do ( ta sk s to get to Y)

For example, when you create a new Pod using the API server, the Kubernetes
scheduler (a controller) notices the change and makes a decision about where to
place the Pod in the cluster. It then writes that state change using the API server
(backed by etcd). The kubelet (a controller) then notices that new change and sets
up the required networking functionality to make the Pod reachable within the
cluster. Here, two separate controllers react to two separate state changes to make
the reality of the cluster match the intention of the user.

2.7 CNI - the Container Network Interface
CNI (Container Network Interface), a Cloud Native Computing Foundation project,
consists of a specification and libraries for writing plugins to configure network
interfaces in Linux containers, along with a number of supported plugins. CNI
concerns itself only with network connectivity of containers and removing allocated
resources when the container is deleted. Kubernetes first creates a container
without a network interface and then calls a CNI plug-in. The plug-in configures
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container networking and returns information about allocated network interfaces,
IP addresses, etc. The parameters that Kubernetes sends to a CNI plugin, as well
as the structure of the response must satisfy the CNI specification, but the plug-in
itself may do whatever it needs to do its job.
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2.8 eBPF (Extended Berkeley Packet Filter)
Initially proposed by Alexei Staravoitov in 2013, Extended Berkeley Packet Filter
(eBPF) [11] is a virtual machine integrated into the Linux Kernel that allows to
execute custom bytecode injected at runtime in an event-based way. eBPF was
introduced in Kernel 3.18 and is the evolution of the classic Berkeley Packet Filter
(cBPF), once simply known as BPF.

BPF was born in 1992 and was a very simple VM used to perform in-kernel
packet filtering. BPF provides on some Unix-like OSes a raw interface to data
link layers in a protocol-independent fashion, and the potential to operate with
custom code on the intercepted packets. All packets on the network, even those
intended for other hosts, are accessible through this mechanism, provided that the
network driver support promiscuous mode. BPF roughly offers a service similar
to raw sockets, but it provides packet access through a file interface ratherthan
a network interface. The network TAP, a component in the lower layers of the
networking stack, copied packets received by network interfaces to the BPF filter,
where injected bytecode decided whether the packet needed to be sent to the user
space. Matching packets were inserted into a buffer, that could be read by a user
space program, such as Tcpdump, through a dedicated API.

eBPF extends BPF making it general-purpose, and now program can operate
and modify the packet content, hence enabling a new breed of applications such as
bridging, routing, NATting, and more. The “Classic” BPF is not used anymore,and
legacy applications are adapted from the BPF bytecode to the eBPF. It is an
interesting technology not only for packet processing, but also for other aspects
like security management and kernel monitoring.

This technology allows to extend the Linux kernel in a easy way, without writing
kernel modules that must be builded inside the kernel.

Main features of eBPF are discussed in following sections.

C-based programming

eBPF code can be written in (a restricted version of) C, which allows for easier
program development and more powerful functionalities with respect to bare
assembly.

2.8.1 vCPU Architecture
BPF is a general purpose RISC instruction set and was originally designed for the
purpose of writing programs in a subset of C which can be compiled into BPF
instructions through a compiler back end (e.g. LLVM), so that the kernel can later
on map them through an in-kernel JIT compiler into native opcodes for optimal
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execution performance inside the kernel. BPF consists of eleven 64 bit registers
with 32 bit subregisters, a program counter and a 512 byte large BPF stack space.
Registers are named r0 - r10. The operating mode is 64 bit by default, the 32
bit subregisters can only be accessed through special ALU (arithmetic logic unit)
operations. The 32 bit lower subregisters zero-extend into 64 bit when they are
being written to.

Register r10 is the only register which is read-only and contains the frame pointer
address in order to access the BPF stack space. The remaining r0 - r9 registers are
general purpose and of read/write nature.

2.8.2 Safety
eBPF allows the injection of custom code at runtime that work in concert with
the kernel, making use of existing kernel infrastructure (e.g. drivers, netdevices,
tunnels, protocol stack, sockets) and tooling (e.g. iproute2) as well as the safety
guarantees which the kernel provides. Unlike kernel modules, BPF programs are
verified through an in-kernel verifier in order to ensure that they cannot crash the
kernel, always terminate, etc.

2.8.3 Helpers
Helpers are sets of functions pre-compiled and ready to be used inside the Linux
kernel. eBPF programs can call shuch functions, that are executed outside the
eBPF context and therefore are not subject to its constraints. Available helper
functions may differ for each BPF program type, for example, BPF programs
attached to sockets are only allowed to call into a subset of helpers compared to
BPF programs attached to the tc layer. Encapsulation and decapsulation helpers
for lightweight tunneling constitute an example of functions which are only available
to lower tc layers, whereas event output helpers for pushing notifications to user
space are available to tc and XDP programs.

Each helper function is implemented with a commonly shared function signature
similar to system calls. The signature is defined as:

Listing 2.4: Helper function signature
1 u64 fn ( u64 r1 , u64 r2 , u64 r3 , u64 r4 , u64 r5 )

2.8.4 Maps
An eBPF program is triggered by a packet received by the virtual CPU. To store
the packet in order to process it, eBPF defines a volatile “packet memory”, which
is valid only for the current packet: this means there is no way to store information
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needed across subsequent packets. eBPF defines the concept of state with a set of
memory areas, which are called maps. Maps are efficient key/value data structures
that reside in kernel space. They can be accessed by eBPF programs through
dedicated helper functions. They can be shared between different programs and can
also be accessed by the user programs, providing an efficient way to exchange data
between kernel and user space. The kernel guarantees safe concurrent access to
maps using the Read-Copy-Update mechanism. An important side effect of using
maps is that the state of the program is decoupled from the code. Instructions are
in the program, the data used by such instructions are in the maps.

User space

Kernel space

MAPs MAPs
MAPs

MAPs

User Application 1 User Application 2

eBPF program 1
eBPF program 2

Figure 2.8: Shared memory: architecture.

There are different types of maps, which have behaviors and structures that
distinguish them. There are both generic maps, some of which are:

• BPF_MAP_TYPE_HASH;

• BPF_MAP_TYPE_ARRAY;

• BPF_MAP_TYPE_PERCPU_HASH;

• BPF_MAP_TYPE_PERCPU_ARRAY.

There are also non-generic maps, some of which are:

• BPF_MAP_TYPE_PROG_ARRAY;

• BPF_MAP_TYPE_PERF_EVENT_ARRAY;
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• BPF_MAP_TYPE_PERF_EVENT_ARRAY;

• BPF_MAP_TYPE_STACK_TRACE.

Some maps also have a PERCPU version that allows you to have different instances
of the same table for each CPU core, which leads to an improvement in performance.
No synchronization mechanism is needed and maps can also be cached for a further
increase in access speed.

2.8.5 Tail Calls
The mechanism of tail calls allows an eBPF program to call another one with
a minimum overhead. Unlike function calls, tail calls transfer the control to a
different program and never return. Service chains can be created exploiting direct
virtual links between two eBPF programs or tail calls.

In order to avoid undefined execution time the number of consecutive nested
calls is limited to 32.

This allows developers to overcome the program size limitation in the JIT com-
piler: starting from one big program, this can be split in multiple modules,perhaps
functionally distinct such as header parsing, ingress filtering, forwarding, and
analytics.

eBPF program 1 eBPF program 2

MAP

Tail call DataData

Virtual NIC

Physical NIC

Figure 2.9: Example of a service chain implemented using tail calls.

2.8.6 Hooks
The execution of eBPF programs is triggered by specific kernel events that take the
name of Hook Points. Different kernel events are handled by different program types,
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each one invoked with specific metadata carrying information about execution
context. Hook points include all possible kernel events, for example packet reception,
system calls invocation, page fault, etc.

There are two program types related to packet processing: eXpress Data Path
and Traffic Control.

Figure 2.10: Graphical representation of XDP and TC hook points.

eXpress Data Path (XDP)

ThXDP (eXpress Data Path) is a programmable, high performance packet processor
in the Linux networking data path; it provides an additional hook to be used with
eBPF programs to intercept packets in the driver space of the network adapter,
before they are manipulated by the Linux kernel. The main advantage of this early
processing is that it avoids the overhead and the memory consumption added by
the kernel to create the socket buffer (skb data structure) which wraps the packet
for standard Linux processing in TC mode. XDP runs in the lowest layer of the
packet processing stack, as soon as the NIC driver realizes a packet has arrived.
However, packets here are not delivered to userspace, but to the injected eBPF
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program executed in kernel space. One of the main use cases is pre-stack processing
for filtering or DDOS mitigation.

The return code of the program defines how the packet must be processed by the
kernel. It can be dropped (XDP_DROP or XDP_ABORTED), can be redirected to another
interface using helper functions bpf_redirect() and bpf_redirect_map() that
return code XDP_REDIRECT, can be sent back to the same interface (XDP_TX) or can
continue is path in the networking stack (XDP_PASS).

Traffic Control (TC)

This program type allows to process packets in the Traffic Control layer of the
networking stack.

At this point the packet has been parsed and copied in a data structure called
socket buffer and additional metadata are available to the eBPF program such as
the protocol, the priority, the reception timestamp, VLAN associated metadata
and layer 3 and 4 information.

While TC programs can’t achieve XDP performance they come with some
advantages:

• No driver support is required, allowing this kind of programs to be attached
to any interface.

• Unlike XDP programs, TC ones can process packets in the egress path of the
networking stack.

• Thanks to additional metadata available, a richer set of helpers is provided,
allowing to perform complex operations like handling VLAN encapsulation or
updating L3 and L4 checksums.

2.9 BCC
BCC (BPF Compiler Collection) is a toolkit for creating efficient kernel tracing and
manipulation programs. It provides macros and structures to simplify the writing
of eBPF C code, and includes frontends in Python and LUA to interact with eBPF
programs in user space. While being mostly focused on tracing its infrastructure
can also be used for network traffic management.

2.10 Polycube
Polycube [12] is an open source framework that enables the creation of fast and
efficient in-kernel network functions chain based on eBPF and XDP technologies.
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Polycube provides the user with a set of services, such as router, firewall,
bridge, etc., that can be dynamically connected and configured to provide custom
connectivity to namespaces, containers, virtual machines, and physical hosts. From
the developer perspective, Polycube provides the infrastructure to create complete
network functions, simplifying the implementation of control and user planes and
the management of the interaction between the two. Two standalone applications
are also available: pcn-iptables, a faster clone of iptables, and pcn-k8s, a CNI
network plugin for Kubernetes.

Polycube adopts a centralized architecture, in which all management tasks
are carried out by a userspace daemon, called polycubed. Interaction with the
system can happen using a command line interface, called polycubectl, or through a
RESTful API.

A schematic representation of Polycube architecture is shown in 2.11, main
aspects are discussed in the following sections.

polycubed

Service
Proxy

Service
Controller

R
PC

lib

Kernel abstraction level
R

EST
 A

PI

Service module

eBPF VM
Encapsulator /
Decapsulator

Fast path
(eBPF Program)

eBPF Map

Service
Instance #1

Mgmt/Ctrl

Slowpath

Management Interface

User space

Kernel space

Figure 2.11: Simplified Polycube architecture.
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2.10.1 Services
Each Polycube service is made up of a control plane and a data plane. The
data plane is responsible for per-packet processing and forwarding, while the control
and management plane is in charge of service configuration and non-dataplane tasks
(e.g., routing protocols). Although this separation between the control and data
plane is common in many network functions architectures, Polycube provides a clear
separation between these components; each service is composed of a set of standard
parts that make it easier for the programmers to implement the desired behavior,
while Polycube takes care of creating all the surrounding glue logic, handling all
the interactions and communications between the different components.

Data Plane

The data plane is responsible of the processing and forwarding of single packets
and is composed by a fast and a slow path.

The fast path is executed at kernel level by or more eBPF programs and performs
basic tasks like packet parsing and mangling and maps update.

The slow path is executed in user space and handles all that packets that require
a more complex processing, like generating an Arp Reply. Although eBPF offers
the possibility to perform some complex and arbitrary actions on packets, it suffers
from some well-known limitations due to his restricted virtual machine, which
however are necessary to guarantee the integrity of the system. Those limitations
may impair the flexibility of the network function, which may not be able to perform
complex actions directly in the eBPF fast path or could slow down its execution,
adding more instructions in the fast path to handle exceptional cases. To overcome
those limitations, Polycube introduces an additional data plane component that is
no longer limited by the eBPF virtual machine and it can hence execute arbitrary
code. The slow path module is executed in user space and interacts with the eBPF
fast path using a set of components provided by the framework. The eBPF fast path
program can redirect packets (with custom meta-data) to the slow path. Similarly,
the slow path can send packets back to the fast path; in this case, Polycube provides
the possibility to inject the packet into the ingress queue of the network function
port, simulating the reception of a new packet from the network, or into the egress
queue, hence pushing the packet out of the network function.

Control plane

The control plane of a virtual network function is the place where out-of-band tasks,
needed to control the data plane and to react to possible complex events (e.g.,
Routing Protocols, Spanning Tree) are implemented. It is the point of entry for
external players (e.g. service orchestrator, user CLI) that need to access service’s
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resources, modify (e.g., for configuration) or read service parameters (e.g., reading
statistics) and receive notifications from the service fast path or slow path.

Polycube defines a specific control and management module that performs the
previously described functions. It exposes a set of REST APIs used to perform the
typical CRUD (create-read-update-delete) operations on the service itself; these
APIs are automatically generated by the framework starting from the service
description, removing this additional implementation overhead to the program-
mer. Each Rest request passes through polycubed which dispatches it to the
corresponding service control plane.

2.10.2 Cubes
Cubes are instances of Polycube services, that can be connected together to create
complex service chains.

Data plane of services can be instantiated both as a TC and as a XDP
(XDP_DRV for native XDP and XDP_SKB for generic XDP) program. To
help the developer writing code that is not bound to the program type Polycube
provides unified functions to perform tasks that needs a different implementation
for TC and XDP programs, such as VLAN encapsulation and packet checksum
update.

Two kinds of cubes are available:

Standard Cubes

Standard cubes have forwarding capabilities and can be used to implement services
such as a Router or a Bridge.

Polycube introduces the concept of port, a connection point that can link a
standard cube to another cube or to a network device. Information about the port
on which the packet was received is carried in packet metadata.

Besides dropping the packet and sending it to the kernel networking stack with
RX_DROP and RX_OK return codes, a standard cube can redirect it to another port
using the pcn_pkt_redirect() function. The code of this function is dynamically
generated every time a new port is connected to the cube, in order to either perform
a tail call to the eBPF code of a peer cube, or to invoke the bpf_redirect() helper
to send the packet out of an interface.

Transparent Cubes

Transparent cubes do not have forwarding capabilities and have to be attached to
a port of an existing standard cube or to a network device. They process packets
flowing in or out the entity they are bound to through their set of ingress and
egress programs, and can be used to implement services like a firewall or a NAT.
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Cubes of this type inherit the parameters of the port they are attached to (MAC,
IPv4, etc.), multiple instances can be connected to the same port implementing a
stack of functions.

Polycube wrapper code allows to correctly link programs in the ingress and
egress chain of an interface. Every time a transparent cube is attached or removed
this code can be updated injecting a new version of the program, to connect the
cube to the correct next entity.

When an instance of transparent cube lets the packet pass with return code
RX_OK, three situations may occur:

• There is another cube (transparent or standard) in the chain: in this case its
eBPF code is executed with a tail call.

• The next entity is a networking device: in this case the packet is redirected
using bpf_redirect() helper.

• The next entity is the networking stack of the host: the packet proceeds with
return code XDP_PASS or TC_ACT_OK.

In the next figure 2.12 is shown an example of topology made by Transparent
Cubes (purple) and Standard Cubes (yellow).

pcn-bridge

VM2VM1

pcn-router

pcn-NAT

Figure 2.12: Example of transparent and standard cubes chain
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2.10.3 Polycube Daemon
The Polycube System Daemon polycubed provides a kernel abstraction layer that
is used by the different services. It exposes a configuration mechanism of the
different service instances through a rest API server. Users can interact with it
using polycubectl. It manages the lifecycle of cubes, handling their creation, update,
connection, and deletion.

Polycubed is based on the BCC toolkit, used to manage the interaction among
the user space component of services and their in-kernel data path.
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Slow path
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User space
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program Decapsulator

pcn_pkt_controller()

eBPF VM

Figure 2.13: Polycubed architecture.

2.11 Virtual Extensible LAN
Virtual Extensible LAN (VXLAN) is a network virtualization technology that
attempts to address the scalability problems associated with large cloud computing
deployments. It uses a VLAN-like encapsulation technique to encapsulate OSI
layer 2 Ethernet frames within layer 4 UDP datagrams, using 4789 as the default
IANA-assigned destination UDP port number. VXLAN endpoints, which terminate
VXLAN tunnels and may be either virtual or physical switch ports, are known as
VXLAN tunnel endpoints (VTEPs) [13]. VXLAN is an overlay network to carry
Ethernet traffic over an existing (highly available and scalable) IP network while
accommodating a very large number of tenants. It is defined in RFC7348 [14].
With a 24-bit segment ID, aka VXLAN Network Identifier (VNI), VXLAN allows
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Figure 2.14: VXLAN packet.

up to 224 (16,777,216) virtual LANs, which is 4,096 times the VLAN capacity.
The full Ethernet Frame (with the exception of the Frame Check Sequence: FCS)
is carried as the payload of a UDP packet. VXLAN tunnel endpoints has two
logical interfaces: an uplink and a downlink. The uplink is responsible for receiving
VXLAN frames and acts as a tunnel endpoint with an IP address used for routing
VXLAN encapsulated frames. These IP addresses are infrastructure addresses and
are separate from the tenant IP addressing for the nodes using the VXLAN fabric.
VXLAN frames are sent to the IP address assigned to the destination VTEP; this
IP is placed in the Outer IP Destination Address. The IP of the VTEP sending
the frame resides in the Outer IP Source Address. Packets received on the uplink
are mapped from the VXLAN ID to a VLAN and the Ethernet frame payload is
sent as an 802.1Q Ethernet frame on the downlink. During this process the inner
MAC Source Address and VXLAN ID is learned in a local table. Packets received
on the downlink are mapped to a VXLAN ID using the VLAN of the frame. A
lookup is then performed within the VTEP L2 table using the VXLAN ID and
destination MAC; this lookup provides the IP address of the destination VTEP.
The frame is then encapsulated and sent out the uplink interface.

Using the diagram 2.15 for reference a frame entering the downlink on VLAN
100 with a destination MAC of 11:11:11:11:11:11 will be encapsulated in a VXLAN
packet with an outer destination address of 10.1.1.1. The outer source address
will be the IP of this VTEP (not shown) and the VXLAN ID will be 1001. In a
traditional L2 switch a behavior known as flood and learn is used for unknown
destinations (i.e. a MAC not stored in the MAC table. This means that if there
is a miss when looking up the MAC the frame is flooded out all ports except the
one on which it was received. When a response is sent the MAC is then learned
and written to the table. The next frame for the same MAC will not incur a miss
because the table will reflect the port it exists on. VXLAN preserves this behavior
over an IP network using IP multicast groups. Each VXLAN ID has an assigned
IP multicast group to use for traffic flooding (the same multicast group can be
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Mac VXLAN ID Remote VTEP

11:11:11:11:11:11 1001 10.1.1.1

22:22:22:22:22:22 1002 10.1.1.2

33:33:33:33:33:33 1003 10.1.1.3

VLAN VLAN ID

100 1001

200 1002

300 1003

Uplink (VXLAN Encapsulated)

VTEP

VTEP L2 Table

VLAN to VXLAN ID Map

Downlink (802.1Q Tagged)

Figure 2.15: VXLAN example.

shared across VXLAN IDs.) When a frame is received on the downlink bound for
an unknown destination it is encapsulated using the IP of the assigned multicast
group as the Outer DA; it’s then sent out the uplink. Any VTEP with nodes on
that VXLAN ID will have joined the multicast group and therefore receive the
frame. This maintains the traditional Ethernet flood and learn behavior.
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Chapter 3

Cluster Networking

Kubernetes was built to run distributed systems over a cluster of machines. The
very nature of distributed systems makes networking a central and necessary com-
ponent of Kubernetes deployment, and understanding the Kubernetes Networking
Model will allow to know which NF (Network Functions) are needed and how to
interconnect them. There are four distinct networking problem to address: [15]

• Highly-coupled container-to-container communications: this is solved
by Pods and localhost communications.

• Pod-to-Pod communications: this will be explained in next sections.

• Pod-to-Service communications: this is covered by services.

• External-to-Service communications: this is covered by services.

3.1 The Kubernetes Networking Model
Every Pod gets its own IP address. This means you do not need to explicitly create
links between Pods and you almost never need to deal with mapping container
ports to host ports. This creates a clean, backwards-compatible model where Pods
can be treated much like VMs. Kubernetes makes opinionated choices about how
Pods are networked. In particular, Kubernetes dictates the following requirements
on any networking implementation:

• all Pods can communicate with all other Pods without using NAT ( Network
Address Translation)

• all Nodes can communicate with all Pods without NAT.

• the IP that a Pod sees itself as is the same IP that others see it as.
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Given these constraints, we are left with cluster networking problems shown in
the previous section 3.

3.1.1 Container-to-Container Networking
Network communication in virtual machine is tipically viewed as interacting directly
with an Ethernet device. In reality each running process communicates within a
network namespace [16] that provides a logical networking stack with its own routes,
firewall rules, and network devices, which means it provides a brand new network
stack for all the processes within the namespace. In essence network namespaces
provide isolation of the system resources associated with networking.
Network namespaces can be created using the ip command.

Listing 3.1: Basic example of creating a network namespace called ns1.
1 \$ ip netns add ns1

When the namespace is created, a mount point for it is created under /var/run/netns

Listing 3.2: Basic example of creating a network namespace called ns1.
1 \$ l s / var /run/ netns
2 ns1
3 \$ ip netns
4 ns1

By default, Linux assigns every process to the root network namespace so that
they can be reachable from external 3.1.

Root Network Namespace

Host

eth0

Figure 3.1: Root network namespace

A Pod is made up as a group of Docker container that share a network namespace.
Containers inside a Pod all have the same ip address and same port space assigned
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through the network namespace, and can find each other via localhost since
they reside in the same namespace. So each Pod has its own network namespace.
Applications within a Pod also have access to shared volumes which are part of
the Pod and can be mounted by applications themselves.

3.1.2 Pod-to-Pod Networking
In Kubernetes, every Pod has its own IP address and each Pod must communicate
with others without NAT, wether the Pod is deployed on the same physical Node
or in a different one.

Pod-to-Pod: same Node

Namespaces can be attached using a Linux Virtual Ethernet Device [17]. They can
be used to tunnels betweeen network namespaces to create a bridge to a network
service in another namespace. To connect Pod namespaces, we can assign one side
of the veth pair to the Pod’s netwoork namespace and the other one to the root
network namespace 3.2.

root

Host

pod0 netns

eth0

eth0

pod1 netns

eth0

veth1veth0

Figure 3.2: Attach network namespaces to root namespace

Now, we want Pods to talk to each other, and for this we can use a bridge
because Kubernetes allocates one subnet per Node and so Pods in the same host
are in the same subnet and then they will communicate with Layer 2 networking
3.3. The bridge maintains a forwarding table to know where destination is. When
bridge receives a packet, it saves in the forwarding table the source port and MAC
source of the packet and then if it knows where destination is, it will forward the
packet through destination port, else will broadcasts the frame out to all connected
devices except the original sender.
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root netns

Host
pod0 netns

eth0

eth0

pod1 netns

eth0

veth1veth0

br0

Figure 3.3: Connecting pods to a Linux Bridge

Packet path: Pod-to-Pod, same Node

Given the previous topology 3.3, lets assume communication from Pod1 to Pod2.
Pod1 sends packet to its interface eth0, which is the default interface for the Pod,
and this one is directly attached to the Linux Bridge br0 and the latter one will
send it to veth1 interface that is directly attached to Pod2. So with this strategy
Pods in the same host can communicate without NAT.

Packet path: Pod-to-Pod, different Nodes

Kubernetes networking model requires that Pod IPs are reachable across all nodes
without NAT. Generally, every node has assigned its own Pod CIDR block. Once
traffic with destination one of the IPs of the CIDR block reaches the Node, this
one must send it to the right Pod. So the key is to assuming that the network
can route traffic in a CIDR block to the correct node.
Lets assume traffic from Pod1 in the host1 to Pod2 in the host2. The packet begins
by being sent through Pod 1’s Ethernet device which is paired with the virtual
Ethernet device in the root namespace. Ultimately, the packet ends up at the
root namespace’s network bridge and from thatwe assume that the packet will
arrive to eth0 in the root namespace that is the Default Gateway for Pods. At this
point the route leaves the Node and enters the network. We assume for now that
the network can route the packet to the correct Node based on the CIDR block
assigned to the Node. The packet enters the root namespace of host2, where it is
routed through the bridge to the correct virtual Ethernet device. Finally, the route
completes by flowing through the virtual Ethernet device’s pair residing within Pod
2’s namespace. Generally speaking, each Node knows how to deliver packets to
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root netns

Host 1
pod0 netns

eth0

eth0

pod1 netns

eth0

veth1veth0

br0

root netns

Host 2
pod0 netns

eth0

eth0

pod1 netns

eth0

veth1veth0

br0

Figure 3.4: Routing traffic between Pods on different Nodes.

Pods that are running within it. Once a packet reaches a destination Node, packets
flow the same way they do for routing traffic between Pods on the same Node.

3.1.3 Pod-to-Service Networking
Kubernetes Pods are created and destroyed to match the state of your cluster.
Pods are nonpermanent resources. If you use a Deployment to run your app, it
can create and destroy Pods dynamically.

Each Pod gets its own IP address, however in a Deployment, the set of Pods
running in one moment in time could be different from the set of Pods running that
application a moment later. [18] So because of ephemerality of Pods Services are
built into Kubernetes to address this problem. Services act as an abstraction over
Pods and assign a single virtual IP address to a group of Pod IP addresses. Any
traffic addressed to the virtual IP of the Service will be routed and load-balanced
to the set of Pods that are associated with the virtual IP. This allows the set of
Pods associated with a Service to change at any time — clients only need to know
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the Service’s virtual IP, which does not change. When a Pod contact a service
something must substitute the service ip with one of Pods behind the service
performing NAT and Load-balancing. This actor can be implemented using:

• Iptables: is a user-space program providing a table-based system for defining
rules for manipulating and transforming packets using the netfilter framework.
In Kubernetes, iptables rules are configured by the kube-proxy controller that
watches the Kubernetes API server for changes.

• IPVS (IP Virtual Server): is also built on top of netfilter and implements
transport-layer load balancing as part of the Linux kernel. IPVS can direct
requests for TCP- and UDP-based services to the real performin load-balancing,
and make services of the real servers appear as virtual services on a single IP
address.

• eBPF: with eBPF can be implement efficient code to allow translation and
load-balancing of Service ip

In Kubernetes translation of Service IP and Load-balancing is performed by kube-
proxy [19] using Iptables or IPVS.

root netns

Host 2
pod0 netns

eth0

eth0

pod1 netns

eth0

veth1veth0

br0

kube-proxy

Figure 3.5: Routing traffic from Pod to Service.

When Pod1 contact a service the life of packet begins in the same way as before.
Since Service IP is not in the same Pod’s subnet the packet will go to node’s
external interface, and then kube-proxy will choose randomly one of Pods behind
the service, because is the firts time that Pod1 contacts the service, and rewrite
the destination IP of the packet and saves the session. On the return path, the
IP address is coming from the backend Pod. In this case kube-proxy again will
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rewrite the IP source to replace the Pod IP with the Service IP. With this strategy
the sender Pod1 believes to communicate always with the Service IP. Kube-proxy
mantains a session so the previously selected backend Pod will be always chosen
for Pod1 as long as the session is alive.

3.1.4 Internet-to-Service Networking
Internet-to-service networking is required for getting traffic from a Kubernetes
Service out to the Internet, and get traffic from the Internet to Services.

Egress traffic

Routing traffic from a Node to the public Internet is network specific and really
depends on how your network is configured to publish traffic. When pod send
traffic to public Internet, a Nat rule must be added to change the Ip source of Pod
because this one is not reachable in Public Internet. So in this case we can use one
of solutions shown previously 3.5

Ingress traffic

Ingress — getting traffic into your cluster — is a surprisingly tricky problem
to solve. Again, this is specific to the network you are running, but in general,
Ingress is divided into two solutions that work on different parts of the network
stack: a Service LoadBalancer and an Ingress controller. When you create a
Kubernetes Service you can optionally specify a LoadBalancer to go with it. The
implementation of the LoadBalancer is provided by a cloud controller that knows
how to create a load balancer for your service. Once your Service is created, it will
advertise the IP address for the load balancer. Layer 7 network Ingress operates
on the HTTP/HTTPS protocol range of the network stack and is built on top of
Services. The first step to enabling Ingress is to open a port on your Service using
the NodePort Service type in Kubernetes. If you set the Service’s type field to
NodePort, the Kubernetes master will allocate a port from a range you specify,
and each Node will proxy that port (the same port number on every Node) into
your Service. That is, any traffic directed to the Node’s port will be forwarded on
to the service using iptables rules. This Service to Pod routing follows the same
internal cluster load-balancing pattern.
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Chapter 4

Prototype Architecture

This chapter will explain the general architecture and the topology of CNI network
plugin for Kubernetes. It gets into more details on functions carried out by the
base modules that together solves networking problems seen in the previous chapter
3.

4.1 General Architecture
The prototype of the network plugin is designed to be made up by standard Network
Functions built using Polycube 2.10. A set of smaller and standard modules carrying
out specific functions are linked together to obtain Cluster Networking connectivity
in Kubernetes cluster. The integration with Linux kernel provided by the eBPF
technology allows to deploy the solution in a traditional data center scenario, where
it can either route the packets towards different machines or external networks, or
forward them to other functions running on the same host in containers or virtual
machines, all of this without requiring a specific support from the virtualization
infrastructure. Having a network Plugin made up by Disaggregated eBPF Services
have some advantages:

• Modularity: in addition to the essential services required for the functioning
of the plugin, others can be added to give more functionality like security,
network policies, alerts and more.

• Performance: thanks to eBPF we can write services that processes packets
closer to the NIC for fast packet processing.

• Scalability: This network plugin uses standards based network protocols
trusted worldwide by the largest internet carriers.
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Polycube provides the infrastructure to build and link the services together.
Every service is composed by an in-kernel data plane and a user space control
/management plane, is described by a YANG data model and can be accessed by a
RESTful API, directly with HTTP requests or through the Polycube CLI. eBPF
dataplane of those services are interconnected from Pods to your data and tunnel
interfaces. This allows Services to spot workload packets early and handle them
through a fast-path that bypasses iptables and other packet processing that the
kernel would normally do.

 Node1
 Pod CIDR: 10.0.1.0/24 Pod#1 Pod#2

[Frontend]
pcn-lbrp

[Backend]

pcn-bridge

[Frontend]
pcn-lbrp

[Backend]

Datacenter network (L3)

 Node #2
 10.0.0.2.0/24

 Node #3
 10.0.0.3.0/24

pcn-router

[Backend]
pcn-lbrp

[Frontend]

[Backend]
pcn-k8sdispatcher

[Frontend]

VxLAN overlay
network

VxLAN Tunnel

Figure 4.1: Modular Network Plugin topology

The topology shown in 4.1 is made up by four different Polycube Services: pcn-
bridge, pcn-router, pcn-loadbalancer-rp and pcn-k8sdispatcher. Each one
of those services implements a specific part of interconnection between Pods,
Services, and the external world.
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4.2 Pcn-bridge
This service implements a fast and simple Ethernet bridge. It is responsible for
interconnection between Pods in the same Host 3.1.2, and interconnection between
Pods and the Default Gateway. Transparent bridging uses a table called the
forwarding table to control the forwarding of frames between network segments.
The table starts empty and entries are added as the bridge receives frames. If
a destination address entry is not found in the table, the frame is flooded to all
other ports of the bridge, flooding the frame to all segments except the one from
which it was received. By means of these flooded frames, a host on the destination
network will respond and a forwarding database entry will be created. Both source
and destination addresses are used in this process: source addresses are recorded
in entries in the table, while destination addresses are looked up in the table and
matched to the proper segment to send the frame to.It supports up to 1024 hosts.
This service is already available in Polycube and thanks to eBPF performance is
much better than a Linux Bridge [20].

4.3 Pcn-router
Router module is responsible of performing routing and forwarding of packets. It
only supports IPv4 and static routing. The router connects to other elements with
a set of ports, each one identified by a name and configured with a primary IP
address, a list of secondary IP addressesand a MAC address. The static routing
table can be configured with a set of routes, specifying destination network CIDR
(address and prefix lenght), next hop and path cost. This service can be attached
also to phisycal or virtual interfaces. If the port is connected to a network interface
of the host Mac and Ip of the router port is the same of the physical one. In this
scenario the Router is Default gateway for Pods in the same node connecting Pods
to external world and to other Pods performing Pod to Pod communication across
nodes thanks to VxLAN [14] tunnel.

4.4 Pcn-loadbalancer-rp
This service implements a Reverse Proxy Load Balancer. According to the algorithm,
incoming IP packets from FRONTEND port are delivered to the real backend
servers by replacing their IP destination address with the one of the real server,
chosen by the load balancing logic. Hence, IP address rewriting is performed in both
directions, for traffic coming from the Internet and the reverse. Packet are hashed
to determine which is the correct backend; the hashing function guarantees that all
packets belonging to the same TCP/UDP session will always be terminated to the
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same backend server. This module is responsible for performing the translations of
Kubernetes Service virtual IP with one of PODs behind it 3.5. There is a pcn-lbrp
for each Pod and one between pcn-router and pcn-k8sdispatcher to allow Nodeport
Service Communication. Traffic is forwarded to backend services after performing
an IP address rewriting in the packet (from vip:port to the selected realip:port);
the vip virtual IP address and the IP address of the actual servers should belong to
different IP networks. This service exports two network interfaces: - Frontend port:
connects the LB to the clients that connect to the virtual service, likely running on
the public Internet - Backend port: connects the LB to to backend servers

4.5 Pcn-k8sdispatcher
This service is built specifically for this project. It is a custom eBPF Nat. It
performs source Nat for packets coming from Pods: it transparently changing the
source IP address of an end route packet and performing the inverse function for
any replies. A session table is used to track opened communications 4.2.

Egress Session 
Table hit?

NAT SRC: sobstitute
podSrcIp:port to
hostIp:newPortDestination packet is a 

Nodeport Service?

NAT SRC using
values in Egress

Table

Yes

Yes

Send packet to NIC

Egress Packet

NAT DST using
values in Egress

Table

Send packet to NICSend packet to NIC

Figure 4.2: pcn-k8sdispatcher: egress schema

When a packet arrives into the Node this cube checks if the packet belongs
to an opened session or if it is direct to a Nodeport Service after checking
ExternalTrafficPolicy value of Service itself. If so the packet follows the Kuber-
netes network topology and it is properly modified, if not it is sent to Linux stack
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networking. The externalTrafficPolicy is a standard Service option that defines
how and whether traffic incoming the node is load balanced. Cluster is the default
policy and the traffic can be spread across all backend Pods, Local instead choose
only Pods inside the node and is often used to preserve the source IP of the traffic.
Local effectively disables load balancing on the cluster node so that traffic that is
received by a local Pod sees the original source IP address 4.3.

Ingress Session 
Table hit?

Extract IP:Port of Pod
who sent the request
and apply NAT DSTDestination packet is a 

Nodeport Service?

Send packet to
Stack

External Traffic Policy
value?

Yes

Yes

ClusterLocal

Send packet to next
Cube NAT SRC

Send packet to next
Cube

Send packet to next
Cube

Ingress Packet

Figure 4.3: pcn-k8sdispatcher: ingress schema

4.6 Integration with Kubernetes
All Services shown in previous section must react to some Kubernetes events in
order to have connectivity between all components. For this purpose a pcn-k8s
operator is designed to watch some Kubernetes resources and communicate with
Polycube Daemon to update rules of services accordingly. pcn-k8s operator
watches following resources:

• Service: every time a service is created or deleted, pcn-loadbalancer-rp
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translation rules must be updated accordingly.

• Node: when a new Node join the cluster, all services must be created and
synchronized to provide connectivity between existing Services and Nodes.

• Pods: each time new Pod is created, a pcn-loadbalancer-rp is created and
attached to Pod’s interface, then the operator update it’s rules in order to
provide Service connectivity for that Pod.

pcn-k8s operator watch kubernetes resources and update Polycube services
using REST protocol. Thanks to this operator cluster networking 3 can be satisfied.

 Node1
 Pod CIDR: 10.0.1.0/24 Pod#1 Pod#2

[Frontend]
pcn-lbrp

[Backend]

pcn-bridge

[Frontend]
pcn-lbrp

[Backend]

Datacenter network (L3)

 Node #2
 10.0.0.2.0/24

 Node #3
 10.0.0.3.0/24

pcn-router

[Backend]
pcn-lbrp

[Frontend]

[Backend]
pcn-k8sdispatcher

[Frontend]

VxLAN overlay
network

VxLAN Tunnel

pcn-k8s
operator

Figure 4.4: Interoperability between K8s operator and Polycube
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Prototype Implementation

As already described in the previous chapter, the chosen architecture is designed
to work with Kubernets. This chapter explains how concepts shown in the Proto-
type Architecture 4 section has been implemented in details, which programming
languages are used and which workarounds used to solve problems encountered.

Router, Load Balancer Reverse Proxy, Bridge and Router are standard cubes
already available in the Polycube framework that can be connected to interfaces
or other services through a Port. K8s-dispatcher is built specifically for the
project, it is a standard cube and it will be attached between Host NIC and a
pcn-loadbalancer-rp instance.

Programming languages used in this project are C++ for the implementation of
Control Plane of the service, C for the Data Plane, Go for CNI plugin and pcn-k8s
operator and the YANG data modelling is used to describe the Service structure.

5.1 Automatic Code Generation
Polycube provides an automatic code generation called polycube-codegen used
to generate a stub from a YANG datamodel. It is composed by pyang, that parses
the YANG datamodel and creates an intermediate JSON that is compliant with
the OpenAPI specifications [21]; and swagger-codegen starts from the latter file
and creates a C++ code skeleton that actually implements the service. Among
the services that are automatically provided, the C++ skeleton handles the case in
which a complex object is requested, such as the entire configuration of the service,
which is returned by disaggregating the big request into a set of smaller requests
for each leaf object. Hence, this leaves to the programmer only the responsibility
to implement the interaction with leaf objects.

• src/base/{resource-name}Base.[h,cpp]: one base class is generated for
every resource defined in the data-model (including the service itself), this
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classes define the interface that must be implemented to be compliant with
the management API.

• src/api/{service-name}Api.[h,cpp] and
src/api/{service-name}ApiImpl.[h,cpp]: Implements the shared library
entry points to handle the different request for the rest API endpoints. The
developers does not have to modify it.

• src/serializer/: This folder contains one JSON object class for each object
used in the control API. These classes are used to performs the marshalling/un-
marshalling operations.

• src/{resource-name}.[h,cpp]: These classes implement the corresponding
interface of the base directory, they provide a standard implementation for
some of the methods, while others must be written by the programmer to
define the actual behaviour of the service.

• src/{service-name}-lib.c: Is used to compile the service as shared library.

• src/{service-name}_dp.c: contains the fast path code for the service.

• .swagger-codegen-ignore: This file is used to prevent files from being
overwritten by the generator if a re-generation is performed.

Since each Polycube service uses a specific convention for generate the REST
APIs, in order to interact with them it can be used polycubectl or creating a client
programs specific for each service. polycube-codegen supports the generation
of client stubs in different programming languages including golang. For this
project have been generated Go clients of all Polycube services used, in order to be
controlled by the operator.

polycube-codegen

YANG datamodel

Source Code
or

Client library

Figure 5.1: Generating code with polycube-codegen
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5.2 K8sdispatcher
k8sdispatcher is a Polycube service made to allow POD to internet communication
and Service to POD communication. As explained in the previous section, the
generated classes reflect the structure of the node tree present in the YANG model.
Since the main structure is a tree, each class represents a node and contains all the
properties of the node itself and references to its children nodes though the use of
C++ shared pointers. Each generated class receive in its constructor a configuration
object which may contain a value for any property of the class itself; this is mainly
used by this service to be instantiated with a pre-defined configuration which has
to be applied to initialize the service.

5.2.1 Data Model
The Data Model of K8s-dispatcher defines a set of Nodeport-rules and Natting-rules.
Nodeport-rules can be created, updated or destroyed by Rest-calls, Natting-rules
instead can be only getted for debugging purposes because only dataplane_code
can add natting rules. Nodeport-rules can be Cluster type or Local type.

Listing 5.1: pcn-k8sdispatcher data model: definition of nodeport-rule and
nodeport-range

1 l i s t nodeport−r u l e {
2 key " nodeport−port proto " ;
3

4 l e a f i n t e r n a l −s r c {
5 type i n e t : ipv4−address ;
6 d e s c r i p t i o n " Source IP address " ;
7 }
8 l e a f nodeport−port {
9 type i n e t : port−number ;

10 d e s c r i p t i o n " Des t ina t i on L4 port number " ;
11 }
12 l e a f proto {
13 type s t r i n g ;
14 d e s c r i p t i o n "L4 pro to co l " ;
15 }
16 l e a f s e r v i c e −type {
17 type enumeration {
18 enum CLUSTER { d e s c r i p t i o n " Clus te r wide s e r v i c e " ; }
19 enum LOCAL { d e s c r i p t i o n " Local s e r v i c e " ; }
20 }
21 mandatory true ;
22 d e s c r i p t i o n " Denotes i f t h i s S e rv i c e d e s i r e s to route

e x t e r n a l t r a f f i c to node−l o c a l or c l u s t e r −wide endpoint " ;
23 }
24 }
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25

26 l e a f nodeport−range {
27 type s t r i n g ;
28 d e s c r i p t i o n " Port range used f o r NodePort s e r v i c e s " ;
29 d e f a u l t "30000 −32767";
30 polycube−base : c l i −example "30000 −32767";
31 }

Local type is used to maintain client Ip and so the traffic can’t be offloaded
to pods external to the node. In this case Loadbalancing is performed inside the
node. Cluster type instead, Loadbalancing is performed using all Pods covered by
the Service, and to do so src Ip of packet must be modified so reply return where
translation is performed.

Listing 5.2: pcn-k8sdispatcher data model: definition of natting-rule
1 l i s t natt ing −r u l e {
2 key " i n t e r n a l −s r c i n t e r n a l −dst i n t e r n a l −spor t i n t e rn a l −dport

proto " ;
3 l e a f i n t e r n a l −s r c {
4 type i n e t : ipv4−address ;
5 d e s c r i p t i o n " Source IP address " ;
6 }
7 l e a f i n t e r n a l −dst {
8 type i n e t : ipv4−address ;
9 d e s c r i p t i o n " Des t ina t i on IP address " ;

10 }
11 l e a f i n t e r n a l −spor t {
12 type i n e t : port−number ;
13 d e s c r i p t i o n " Source L4 port number " ;
14 }
15 l e a f i n t e r n a l −dport {
16 type i n e t : port−number ;
17 d e s c r i p t i o n " Des t ina t i on L4 port number " ;
18 }
19 l e a f proto {
20 type s t r i n g ;
21 d e s c r i p t i o n "L4 pro to co l " ;
22 }
23 l e a f exte rna l −ip {
24 type i n e t : ipv4−address ;
25 d e s c r i p t i o n " Trans lated IP address " ;
26 }
27 l e a f exte rna l −port {
28 type i n e t : port−number ;
29 d e s c r i p t i o n " Trans lated L4 port number " ;
30 }
31 }
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Ports can be of type Frontend or Backend. The first one must be attached to
Host NIC, and thanks to a callback in the Control Plane it retrieves NIC’s IP and
MAC and stores it in the eBPF code that will be used for natting. It also defines
an internal IP used for Services with ExternalTrafficPolicy = Cluster.

5.2.2 Dataplane Class
The Dataplane class represents the configuration of the dataplane: it stores the
eBPF code, services and NAT configurations and ports. The main aspects of the
Data Plane is described in the previous chapter 4.5. Informations of Nodeport
services exposed by Kubernetes are stored in an eBPF maps. The key type is
a structure called dp_k that saves service Ip, port and protocol. If service has
ExternalTrafficPolicy = Cluster, source IP of packet is traduced so reply
packet returns where traduction is performed.

Listing 5.3: Nodeport Service Map
1 s t r u c t dp_k {
2 u32 mask ;
3 __be32 externa l_ip ;
4 __be16 externa l_port ;
5 uint8_t proto ;
6 } ;
7 s t r u c t dp_v {
8 __be32 in t e rna l_ ip ;
9 __be16 in te rna l_por t ;

10 uint8_t entry_type ;
11 } ;
12

13 BPF_F_TABLE( " lpm_trie " , s t r u c t dp_k , s t r u c t dp_v , dp_rules , 1024 ,
14 BPF_F_NO_PREALLOC) ;

Ingress Natting rules are saved into dp_rules map. Each time a new nodeport
service is created, pcn-k8s operator performs a REST call to invoke function
K8sdispatcher::addNodeportRule which adds a new nodeport rule to eBPF
datapath. Every time a new packet comes from the host NIC first of all is checked
if packet belongs to a existing session. If so the packet is NATTED and then sent
to BACKEND port. If not destination packet, port, and protocol are used to create
dp_k variable used to check if it belongs to a nodeport service. If so thanks to
entry_type value of dp_v struct is used to traduce it correctly. dp_v.entry_type
can be:

• NAT_SRC: SrcIp, and SrcPort are translated. It is used for egress packets
coming from Pods.
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• NAT_DST: DstIp, and DstPort are translated. It is used for ingress packets that
are going to Pods or for egress Pods packets with Cluster Nodeport_Service
destination.

• NODEPORT_CLUSTER: SrcIp and SrcPort of Ingress Cluster Nodeport Service
packets are translated with internal_ip and new port to mantain client-server
session also if Pod in other node is chosen.

Listing 5.4: Session tables
1 s t r u c t st_k {
2 uint32_t s r c \_ip ;
3 uint32_t dst \_ip ;
4 uint16_t src_port ;
5 uint16_t dst_port ;
6 uint8_t proto ;
7 } ;
8 s t r u c t st_v {
9 uint32_t new_ip ;

10 uint16_t new_port ;
11 uint8_t or ig inat ing_ru le_type ;
12 } ;
13 BPF_TABLE( " lru_hash " , s t r u c t st_k , s t r u c t st_v , egre s s_ses s i on_tab l e ,
14 NAT_MAP_DIM) ;
15 BPF_TABLE( " lru_hash " , s t r u c t st_k , s t r u c t st_v , ing re s s_se s s i on_tab l e

,
16 NAT_MAP_DIM) ;

5.2.3 Control Plane

The control plane is implemented by three main classes: Pcn-k8sdispatcher,
Nodeport-rule Natting-rule.

Pcn-k8sdispatcher is the access point of the service, it holds a
unordered_map<NodeportKey, NodeportRule> that saves Noodeport rules in con-
trol plane and inject them in maps read by eBPF datapath. It also saves Nodeport-
range ports, ip and mac of host NIC and methods mapped to Rest API.

Nodeport-rule saves a natting rule. The class contains: service-ip, protocol,
service-port, service-type with getters and setters methods.

Natting-rule saves informations about a session: src-ip, src-port, dst-ip, dst-
port, protocol and getter and setters methods.
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5.3 CNI Network Plugin
The Container Network Interface(CNI) is a Cloud Native Computing Foundation
projects. With the CNI, we have a unified interface for network services and we
should only implement our network plugin once, and it should works everywhere
which support the CNI. CNI concerns itself only with network connectivity of
containers and removing allocated resources when the container is deleted. Because
of this focus, CNI has a wide range of support and the specification is simple
to implement. When container runtime starts a container reads a json file and
then network plugin do the magic to connect container. Kubelet reads a file from
–cni-conf-dir (default /etc/cni/net.d) and uses the CNI configuration from that
file to set up each pod’s network. The CNI configuration file must match the
CNI specification, and any required CNI plugins referenced by the configuration
must be present in –cni-bin-dir (default /opt/cni/bin). If there are multiple CNI
configuration files in the directory, the kubelet uses the configuration file that
comes first by name in lexicographic order.

5.3.1 How it works
In CNI specifiction, there’re three method we need to implement for our own plugin.

• Add: will be invoked when the container has been created. The plugin should
prepare resources and make sure that container with network connectivity.

• DELETE: will be invoked when the container has been destroyed. The plugin
should remove all allocated resources.

• VERSION: shows the version of this CNI plugin.

For each method, the CNI interface will pass the following information into the
plugin:

• ContainerID: it is the target ContainerID.

• Netns: Network Namespace path of the container.

• IfName: Interface name should be created in the container.

• Path: The current working PATH, you should use it to execute other CNI.

• StdinData: Configuration file of the CNI.

First step is to write configuration file of CNI plugin that container runtime
will pass to the plugin under StdinData value. When container runtime creates a

49



Prototype Implementation

container, it calls CNI network plugin passing config file and informations shown
previously. The CNI network plugin is a binary, not a daemon. This means that
every information that is necessary in the future must be saved in an external store
or Database. After the CNI plugin is invoked it can invoke multiple IPAM (IP
Address Management) plugin taking its relevant informations from configuration
file. This is also a binary invocation and not a daemon. The IPAM will reply with
a configuration that is used by the network plugin. After the CNI network plugin
uses response from IPAM and network configuration to set up networking for the
container.

Container
runtime

1
container

CNI network plugin

Conf. file

2

CNI IPAM plugin

5

3

4

Figure 5.2: CNI network plugin setup/cleanup networking of container

5.3.2 Implementation
Configuration file of CNI contains useful information for our CNI like Maximum
Transfer Unit and subnet used by IPAM that in this case is node Pod Cidr. C

Listing 5.5: CNI configuration file
1 {
2 " cn iVer s i on " : " 0 . 2 . 0 " ,
3 "name " : " mynet " ,
4 " type " : " polycube " ,
5 "mtu " : %s ,
6 " ipam " : {
7 " type " : " host−l o c a l " ,
8 " subnet " : "%s " ,
9 " rangeStar t " : "%s " ,

10 " route s " : [
11 { " dst " : " 0 . 0 . 0 . 0 / 0 " }
12 ]
13 }
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14 }

configuration file is created by a go program before pcn-k8s operator starts. This
program fills subnet by Node Pod CIDR that is retrieved by the Spec.PodCIDR
value in the resource Node. Mtu is taken by a config map previously deployed. This
json file is passed every time CNI plugin is called. IPAM (IP Address Management)
provides some method to handle the IP/Route management. host-local IPAM
plugin allocates IP addresses out of a set of address ranges. It stores the state
locally on the host file-system, therefore ensuring uniqueness of IP addresses on a
single host.

ADD function

Runtime container invokes ADD function every time a new container is created. In
Kubernetes the Kubelet invokes ADD function every time a new Pod is created.
In this project the add functions creates a veth-pair and allocates an IP for Pod
retrieved by host-local IPAM plugin.

Listing 5.6: Creation of veth pair
1 func setupVeth ( netns ns . NetNS , ifName s t r i ng , mtu i n t ) (∗ cur rent .

I n t e r f a c e , ∗ cur rent . I n t e r f a c e , e r r o r ) {
2 c o n t I f a c e := &current . I n t e r f a c e {}
3 h o s t I f a c e := &current . I n t e r f a c e {}
4

5 e r r := netns .Do( func ( hostNS ns . NetNS) e r r o r {
6 // c r e a t e the veth pa i r in the conta ine r and move host end

in to host netns
7 hostVeth , containerVeth , e r r := ip . SetupVeth ( ifName , mtu ,

hostNS )
8 i f e r r != n i l {
9 re turn e r r

10 }
11 c o n t I f a c e .Name = conta inerVeth .Name
12 c o n t I f a c e . Mac = conta inerVeth . HardwareAddr . S t r ing ( )
13 c o n t I f a c e . Sandbox = netns . Path ( )
14 h o s t I f a c e .Name = hostVeth .Name
15 re turn n i l
16 })
17 i f e r r != n i l {
18 re turn n i l , n i l , e r r
19 }
20

21 // need to lookup hostVeth again as i t s index has changed during
ns move

22 hostVeth , e r r := n e t l i n k . LinkByName( h o s t I f a c e .Name)
23 i f e r r != n i l {
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24 re turn n i l , n i l , fmt . Er ro r f ( " f a i l e d to lookup %q : %v " ,
h o s t I f a c e .Name, e r r )

25 }
26 h o s t I f a c e . Mac = hostVeth . Attrs ( ) . HardwareAddr . S t r ing ( )
27

28 re turn hos t I f a c e , cont I f a c e , n i l
29 }
30

31 {
32 // run IPAM plug in and get back the c o n f i g to apply
33 r , e r r := ipam . ExecAdd( conf .IPAM. Type , args . StdinData )
34 i f e r r != n i l {
35 re turn e r r
36 }
37

38 // Invoke ipam de l i f e r r to avoid ip l eak
39 d e f e r func ( ) {
40 i f e r r != n i l {
41 ipam . ExecDel ( conf .IPAM. Type , args . StdinData )
42 }
43 }( )
44

45 // Convert whatever the IPAM r e s u l t was in to the cur rent Result
type

46 r e s u l t , e r r := cur rent . NewResultFromResult ( r )
47

48 . . .
49

50 h o s t I n t e r f a c e , c o n t a i n e r I n t e r f a c e , e r r := setupVeth ( netns , args .
IfName , conf .MTU)
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After that a new pcn-loadbalancer-rp is created with name "lbp-<PodIP>"
and connected between Pod and pcn-simplebridge.

Listing 5.7: Creation of Load balancer
1 func createLbrp ( ip s t r i n g ) ( s t r i n g , e r r o r ) {
2 // c r e a t e lbrp with pod ip so i t can be r e f e r e n c e d by operator
3 name := " lbrp −" + ip
4

5

6 lbrpPortBackend := lbrp . Ports {
7 Name : " to_switch " ,
8 Type_ : "BACKEND" ,
9 }

10 lbrpPortFrontend := lbrp . Ports {
11 Name : " to_pod " ,
12 Type_ : "FRONTEND" ,
13 }
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14 l b rpPort s := [ ] lb rp . Ports { lbrpPortFrontend , lbrpPortBackend }
15 lb := lbrp . Lbrp{
16 Name : name ,
17 Ports : lbrpPorts ,
18 Log l eve l : "DEBUG" ,
19 }
20 i f response , e r r := lbrpAPI . CreateLbrpByID ( context .TODO( ) , name ,

lb ) ; e r r != n i l {
21 l og . Er ro r f ( "An e r r o r occurred whi l e t ry ing to c r e a t e lbrp %s :

e r r o r : %s , re sponse : %+v " , name , err , r e sponse )
22 re turn " " , e r r
23 }
24 l og . I n f o f ( " lbrp %s s u c c e s s f u l l y c r ea ted " , name)
25

26

27 re turn name , n i l
28 }

This name is used this name is used in such a way pcn-k8s operator can retrieve
the loadbalancer easily when POD is created and add services rules to give service
connectivity to the Pod.

DELETE function

Kubelet invokes DELETE function every time a Pod is deleted. DELETE function
is used to remove all resources allocated for that POD. So k8s-switch port and the
pod’s pcn-loadbalancer-rp are deleted. host-local IPAM plugin is invoked with it’s
delete function to remove allocation of that IP so it can be used again.

VERSION function

Version function returns version supported by the CNI PLUGIN.

5.4 Pcn-k8s Kubernetes Operator
pcn-k8s leverages Polycube services shown in 4 to provide network support for
pods running in Kubernetes. It supports the cluster Kubernetes networking model
3, ClusterIP and NodePort services. This operator is synchronised with the
Kubernetes API server and dynamically reconfigures the networking components in
order to keep connectivity. Overlay networking VxLAN is used to connect nodes.
This is useful when nodes are on different subnets and the user does not have direct
control over the physical network. Basically, a controller will periodically match
the state of the system to the to-be state. For that purpose, several functionalities
are required.
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• We need to be able to keep track of the state of the system. This is done
based on an event-driven processing and handled by informers that are able
to subscribe to events and invoke specific handlers and listers that are able
to list all resources in a given Kubernetes cluster

• We need to be able to keep track of the state of the system. This is done using
object stores and their indexed variants indexer

• Ideally, we should be able to process larger volumes using multi-threading,
coordinated by queues

5.4.1 Queues and concurrency
The ability to easily create threads (called go-routines) in Go and the support for
managing concurrency and locking are one of the key differentiators of the Go
programming language, and of course the Kubernetes client library makes use of
these features. Essentially, a queue in the Kubernetes client library is something
that implements an interface that contains the following methods:

• Add adds an object to the queue

• Get blocks until an item is available in the queue, and then returns the first
item in the queue

• Done marks an item as processed

Internally K8s working queue uses Go maps. THe keys of these maps are
arbitrary objects. One of these maps is called the dirty set, this map contains all
elements that make up the actual queue, i.e. need to be processed. The second
map is called the processing set, these are all items which have been retrieved using
Get, but for which Done has not yet been called. As maps are unordered, there
is also an array which holds the elements in the queue and is used to define the
order of processing. Note that each of the maps can hold a specific object only
once, whereas the queue can hold several copies of the object.

If we add something to the queue, it is added to the dirty set and appended to
the queue array. If we call Get, the first item is retrieved from the queue, removed
from the dirty set and added to the processing set. Calling Done will remove the
element from the processing set as well, unless someone else has called Add in
the meantime again on the same object – in this case it will be removed from the
processing set, but also be added to the queue again. Reading from queue channels
is used to synchronize writers and readers.
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Figure 5.3: Working queue scheme

5.4.2 Informers, Reflectors and Indexers

The client-go package comes with a subpackage that makes getting events easy:
k8s.io/client-go/tools/cache. It allows us to easily add functions that will be
called when certain events come in. It also allows us to store all of the objects in
memory easily which is called a Store. However, there’s another package that ties the
concepts the cache package provides into one: the k8s.io/client-go/informers
package. It comes with a simple factory for all Kubernetes resources that nearly
mirrors the kubernetes.Interface type. An informer defined in the base controller
inside package cache pops objects from the Delta Fifo queue. The job of this
base controller is to save the object for later retrieval, and to invoke our controller
passing it the object.

A reflector, which is defined in type Reflector inside package cache, watches the
Kubernetes API for the specified resource type (kind). The function in which this
is done is ListAndWatch. The watch could be for an in-built resource or it could
be for a custom resource. When the reflector receives notification about existence
of new resource instance through the watch API, it gets the newly created object
using the corresponding listing API and puts it in the Delta Fifo queue inside the
watchHandler function.

An indexer provides indexing functionality over objects. It is defined in type
Indexer inside package cache. A typical indexing use-case is to create an index
based on object labels. Indexer can maintain indexes based on several indexing
functions. Indexer uses a thread-safe data store to store objects and their keys.
There is a default function named MetaNamespaceKeyFunc defined in type Store
inside package cache that generates an object’s key as <namespace>/<name>
combination for that object.
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Figure 5.4: Client-go custom controller components [22]

5.4.3 How it works

pcn-k8s is a daemonset so there is one pcn-k8s for node. When the daemonset is
deployed polycubed is started. The controller waits for it to becomes ready and
then creates informers used to watch three Kubernetes resources: Nodes, Pods and
Endpoints. Node controller allows to update the VXLAN table every time a new
Node is added to the cluster or deleted. Subnet IP of VXLAN is taken from the
configmap.

Listing 5.8: Polycube configmap
1 kind : ConfigMap
2 ap iVers ion : v1
3 metadata :
4 name : polycube−c o n f i g
5 namespace : kube−system
6 data :
7 # Mtu to be con f i gu r ed in the pods .
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8 # I f the a l l nodes are running on the same datacenter , 1500 can be
used

9 # otherwi se 1450 has to be used due to the tunne l ing overhead
10 mtu : "1450"
11

12 # Serv i c eC lu s t e r IP range , should be the same as " s e r v i c e −c l u s t e r −ip
−range "

13 # passed to the api s e r v e r
14 se rv i ceCluste r IPRange : " 1 0 . 9 6 . 0 . 0 / 1 2 "
15

16 # Range used f o r node port s e r v i c e s , i f should modify i t i f you
s p e c i f i e d

17 # the "−− s e r v i c e −node−port−range " f l a g . Defau l t i s "30000 −32767"
18 serviceNodePortRange : "30000 −32767"
19

20 # range used f o r the VTEPs on the over l ay network . Choose any
21 # non c o n f l i c t i n g /16 range .
22 vtepsRange : " 1 0 . 1 8 . 0 . 0 / 1 6 "
23 −−−

When a new Pod is created, a pcn-loadbalaner-rp is created for that Pod. This
allow pod-to-service communication. Pod controller is used to fill existing Services
in the new loadbalancer-rp of that Pod when it is created. The set of Pods targeted
by a Service is usually determined by a selector and they are called Endpoints. So
when a new service is added to the Loadbalancer, also Endpoints are inserted in
the backend table for that Service. In such a way when the Pod contact a service
the pcn-loadbalancer-rp check if Destinatio IP is a service. If yes it traduce it with
one of the Endpoints.

Endpoint controller is responsible of checking service updates. Endpoint are
Service backend Pods. From an Endpoint object, the service that cover it can be
retrieved from the object itself. In this way we can observe also the Services. The
controller is notified every time a new endpoint is created, deleted or updated. If a
new Endpoint is created first of all is checked which service belongs to: ff it is a new
Service all loadbalancer-rp in the node receives a request for creating a new service
with endpoints covered by it. If not Endpoint is added to array of backends for that
service. When there is no more Endpoints for a Service, this one is deleted from
Services map of all LoadBalancers. If the service has externalTrafficPolicy=Local,
each ingress Node LoadBalancer has only backends contained in that Node.
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Results

This chapter analyzes the network performance of the proposed architecture com-
pared to similar scenario without the CNI. To test the performances in a single
Node the machine used is equipped with:

• CPU: Intel Core i7-6700 @ 3.40GHz x 8

• Memory: 32 GB DDR4 2133 MT/s

• NIC: 1 Gbit/s port

• Os: Ubuntu 20.04

• Kernel version: 5.8.0-59-generic

The program used to test the network is iperf3 [23]. iPerf3 is a tool for active
measurements of the maximum achievable bandwidth on IP networks. It supports
tuning of various parameters related to timing, buffers and protocols (TCP, UDP,
SCTP with IPv4 and IPv6). For each test it reports the bandwidth and other
parameters. Tests are performed in TCP and UDP changing the length of buffers
to read or write with -l flag, and socket buffer sizes to the specified value in -w
flag.

6.1 Communication in the same Node
First test proposed is iPerf3 client-server communication in the same node. After
evaluation of localhost performance, this one is compared with direct Network
namespaces communication in the same Node and then Network namespace-to-
service that has a backend in the same Node.
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6.1.1 Localhost
The first test done is launch an iPerf server and client in Localhost.

TCP

Following plots shows TCP benchmark varying the TCP window size: 0 (Default),
64KB, 300KB.
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Figure 6.1: TCP bandwidth in Localhost scenario varying TCP window size
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Figure 6.2: TCP RTT in Localhost scenario varying TCP window size
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The Default value depends from host machine, kernel and OS. Observing file located
in /proc/sys/net/ipv4/tcp_rmem it has those three values: 4096 131072 6291456
that are minimum window, default window and maximum window respectively.
Default value is not easy to study because it depends by Operating System itself,
but greater is the value of the TCP window size greater is the bandwidth and
greater the RTT value.

Following plots shows TCP benchmark varying the length of buffers to read or
write. iPerf works by writing an array of len bytes a number of times. Default is
128 KB for TCP, 8 KB for UDP.
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Figure 6.3: TCP bandwidth in Localhost scenario varying buffer length
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Figure 6.4: TCP RTT in Localhost scenario varying buffer length
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Increasing the buffer length we have overall better bandwidth than before, but
RTT is quite worst than before.

6.1.2 UDP
For UDP same test is done similar then before. -l flag instead of changing the TCP
windows size, in this case changes the socket buffer size.
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Figure 6.5: UDP bandwidth in Localhost scenario varying socket buffer size
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Figure 6.6: UDP bandwidth in Localhost scenario varying buffer length

Each frame goes through several buffers as you send it: The application buffer, The
Protocol Buffer, The Software interface buffer and the Hardware interface buffer.
As we start stressing the stack by sending high speed data, buffers will fill up and
either block or lose data. Also strategies for timeliness and polling can impact
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performances. For example, by using a larger buffer and poll less often we can get
much better performance while sacrificing latency.

TCP is optimized for high speed bulk transfers while UDP is optimized for low
latency in the Linux kernel. This has an impact on buffer sizes and how data is
polled and handed over. Sending high speed data over UDP is usually a bad idea,
unless a congestion control is implemented. TCP protects the from congestion
collapses. UDP is preferred when small amounts of data is exchanged or high
timeliness is required.

62



Results

6.1.3 Pod to Pod same Node
In this scenario two Pods and pcn-simplebridge are involved because Pods are in
the same subnet.

TCP

Following plots shows TCP benchmark done like in Localhost scenario
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Figure 6.7: TCP bandwidth in Pod-to-Pod in the same node scenario varying
TCP window size
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Figure 6.8: TCP RTT in Pod-to-Pod in the same node scenario varying TCP
window size
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Figure 6.9: TCP bandwidth in Pod-to-Pod in the same node scenario varying
buffer length
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Figure 6.10: TCP RTT in Pod-to-Pod in the same node scenario varying buffer
length

UDP

While TCP performance is similar to localhost scenario UDP it is more worst. This
is caused by MTU set in veth-pair interfaces: localhost has a MTU equal to 64 KB
while Pod MTU is equal to 1450 B because VXLAN has an header of 50 bytes. So
another test is performed changing the Veth-pair MTU to 32 KB and not 64 KB
because the latter is more than the maximum supported by veth-pair itself. With
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Figure 6.11: UDP bandwidth in Pod-to-Pod in the same node scenario varying
socket buffer size

this larger MTU, UDP bandwidth becomes more acceptable like shown in the plot
6.12.
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Figure 6.12: UDP bandwidth in Pod-to-Pod in the same node scenario with Pods
MTU = 32KB
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6.1.4 Pod to Service same Node
TCP
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Figure 6.13: TCP bandwidth in Pod-to-Svc in the same node scenario varying
TCP window size

UDP

In average Pod to Service they are bit worse because of the packet translation
from svcIP:svcPort to backendIP:backendPort and vice versa performed by pcn-
loadbalancer-rp.
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Figure 6.14: TCP RTT in Pod-to-Svc in the same node scenario varying TCP
window size
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Figure 6.15: TCP bandwidth in Pod-to-Svc in the same node scenario varying
buffer length
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Figure 6.16: TCP RTT in Pod-to-Svc in the same node scenario varying buffer
length
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Figure 6.17: UDP bandwidth in Pod-to-Svc in the same node scenario varying
socket buffer size

6.2 Communication in different Nodes
In this scenario communication cross Nodes are tested. For those tests 2 servers
are used connected directly at 40G/s speed. Server1 hardware specs are:

• CPU: Xeon E3-1200 v5/E3-1500 v5/6th Gen Core Processor (x16)
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• Memory: 16 GB

• NIC: 40 Gbit/s port

• Os: Ubuntu 18.04

• Kernel version: 5.8.0-59-generic

Server2 hardware specs are:

• CPU: Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz (x14)

• Memory: 187 GB

• NIC: 40 Gbit/s port

• Os: Ubuntu 18.04

• Kernel version: 5.8.0-59-generic
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Figure 6.18: TCP bandwidth Node to Node scenario with socket buffer size =
300KB
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Figure 6.19: TCP RTT Node to Node scenario with socket buffer size = 300KB

6.3 Comparison with different CNIs
In this section different CNIs are compared in Pod to Pod/Svc communication in
the same Node. Testing in different Nodes is not performed because this project
doesn’t support direct routing for now. To test the CNIs a single Kubernetes node
is setup with Kubeadm while this project is tested with script shown here A.1.
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Figure 6.20: TCP bandwidth in Pod to Pod scenario with socket buffer size =
300KB
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Figure 6.21: TCP RTT in Pod to Pod scenario with socket buffer size = 300KB
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Figure 6.22: TCP bandwidth in Pod to Svc scenario with socket buffer size =
300KB

Polycube performance is much better than others CNI. CNIs values may be
afflicted by utilization of Pod container while Polycube test is done with Network
namespace. When pcn-k8s is ready this project will be tested with kubeadm too.
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Figure 6.23: TCP RTT in Pod to Svc scenario with socket buffer size = 300KB

72



Chapter 7

Conclusions

This thesis has presented a prototype of high-performance modular CNI network
plugin for Kubernetes running into the Linux kernel thanks to the use of eBPF/XDP.

The architecture proposed is composed by four Polycube network services: pcn-
loadbalaner-rp, pcn-simplebridge, pcn-router, pcn-k8sdispatcher. All those actors
connected together and coordinated by pcn-k8s operator allows cluster-networking.

In the implementation phase different challenges have been faced due to the
cluster networking rules. Evaluate which existing Polycube services can be used,
how to interconnect them and which functionalities needed is not provided and
then, create a new Service for it.

The modular feature of this project allows you to update existing services or
insert new network functions to get more features such as security, network policies
and/or observability.

7.1 Future works
The choice of Open Source components, their modularity and their ease of integra-
tion, leave wide space for future work, both from an implementation and researc
hpoint of view. Some of the future works that can be based on this thesis work can
be the following. Having an indipendent Loadbalancer-rp for each pod cause to
update each one of them every time a Service update comes. This can be overcome
using eBPF Pinned Maps or create a loadbalancer-rp with multiple ports. The
first solution consist of convert Service map and Backend map from BPF_TABLE
to BPF_TABLE_PINNED. Pinned Maps consist of a map that is created by the
first service that use it and the others can read it. With this strategy we can
update only one Loadbalancer and the others will see the updates. The second
one consist to create one loadbalancer-rp ad hoc for this project: this new service
must support multiple ports and acts also as a switch. When a packet comes in the
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other ports acts as a backend port. If the destination is one of them not only Port
and IPis changed but also MAC address. In fact with the current topology when a
Loadbalancer choose a Pod in the same node the packet flows to the router and
then comes back to the backend Pod, because Mac destination address is Default
Gateway. Another feature to introduce is support for Direct Routing and Network
Policies.
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Appendix A

Scripts and Commands

To perform polycube network plugin tests in 6 topology testing is created with the
following linux script:

Listing A.1: Topology creation
1 #!/ bin /bash
2

3 f unc t i on cleanup {
4 s e t +e
5 po lycubec t l de l br1ns
6 po lycubec t l de l r1
7 po lycubec t l de l k1
8 po lycubec t l de l lb1
9 po lycubec t l de l lb2

10 po lycubec t l de l lb3
11 sudo ip l i n k de l vxlan0
12 sudo br idge fdb d e l e t e to 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 dst 19 2 . 16 8 . 0 . 1 91 dev

vxlan0
13 f o r i in ‘ seq 1 2 ‘ ; do
14 sudo ip l i n k de l veth$ { i } root
15 sudo ip netns de l ns${ i }
16 #sudo ip l i n k de l pc_veth_pc
17 done
18 }
19 trap cleanup EXIT
20 s e t −x
21 s e t −e
22 # Create 2 namespaces and the r e l a t e d veth
23 f o r i in ‘ seq 1 2 ‘ ; do
24 # Create new namespace
25 sudo ip netns add ns${ i }
26 # Add new veth i n t e r f a c e
27 sudo ip l i n k add veth$ { i } root type veth peer name veth$ { i }ns
28 sudo ip l i n k s e t dev veth$ { i } root mtu 1450
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29 sudo ip l i n k s e t dev veth$ { i }ns mtu 1450
30 sudo ip l i n k s e t veth$ { i }ns netns ns${ i }
31 # Enable veth on both root and newly c rea ted namespace
32 sudo ip netns exec ns${ i } ip l i n k s e t dev veth$ { i }ns up
33 sudo ip l i n k s e t dev veth$ { i } root up
34 # Set IP address to the namespace ’ s end o f the v i r t u a l i n t e r f a c e
35 sudo ip netns exec ns${ i } ip addr add 1 0 . 1 0 . 7 . ${ i }/24 dev veth$ { i

}ns
36 sudo ip netns exec ns${ i } ip route add d e f a u l t v ia 1 0 . 1 0 . 7 . 2 5 4

dev veth$ { i }ns
37 echo " Created ns${ i } and veth$ { i } with IP 1 0 . 1 0 . 7 . ${ i }/24"
38 done
39 # Create s imple br idge br1ns
40 po lycubec t l s imp lebr idge add br1ns
41 po lycubec t l lbrp add lb2 #l o g l e v e l=TRACE
42 # Create l b rp s
43 po lycubec t l lbrp lb2 por t s add port1 type=FRONTEND
44 po lycubec t l lbrp lb2 por t s add port2 type=BACKEND
45 po lycubec t l lbrp add lb3 #l o g l e v e l=TRACE
46 po lycubec t l lbrp lb3 por t s add port1 type=FRONTEND
47 po lycubec t l lbrp lb3 por t s add port2 type=BACKEND
48 # Create and connect port 1
49 po lycubec t l br1ns por t s add toveth1
50 po lycubec t l connect lb2 : port1 veth1root
51 po lycubec t l connect lb2 : port2 br1ns : toveth1
52 # Create and connect port 2
53 po lycubec t l br1ns por t s add toveth2
54 po lycubec t l connect lb3 : port1 veth2root
55 po lycubec t l connect lb3 : port2 br1ns : toveth2
56 # Create and connect br idge port to route r
57 po lycubec t l br1ns por t s add to_router
58 # Create route r
59 po lycubec t l r ou te r add r1 #l o g l e v e l=TRACE
60 # Create route r port to br idge
61 po lycubec t l r1 por t s add to_br1ns ip =10.10 .7 .254/24
62 # Create route r port to p h y s i c a l i n t e r f a c e
63 po lycubec t l r1 por t s add to_inte rnet mac=a0 : 8 c : fd : ce : cb :01 ip

=192.168 .0 .92/23
64 po lycubec t l connect r1 : to_br1ns br1ns : to_router
65 #po lycubec t l connect r1 : to_inte rnet wlp1s0
66 po lycubec t l lbrp add lb1 l o g l e v e l=TRACE
67 po lycubec t l lbrp lb1 por t s add port1 type=FRONTEND
68 po lycubec t l lbrp lb1 por t s add port2 type=BACKEND
69

70 # Create K8ds i spatcher
71 po lycubec t l k8 sd i spa t che r k1 i n t e rn a l −src−ip =3 .3 . 1 . 1 #l o g l e v e l=TRACE
72 po lycubec t l k1 por t s add to_int type=FRONTEND
73 po lycubec t l k1 por t s add to_router type=BACKEND
74 po lycubec t l connect r1 : to_inte rnet lb1 : port2

77



Scripts and Commands

75 po lycubec t l connect lb1 : port1 k1 : to_router
76 po lycubec t l connect k1 : to_int eno1
77 # Add d e f a u l t route
78 po lycubec t l r1 route add 0 . 0 . 0 . 0 / 0 1 92 . 1 68 . 0 . 2 54
79 #po lycubec t l r1 address address =192 .168 .0 .254 mac=00:62: ec : 7 d : 7 2 : 7 1

i n t e r f a c e=to_inte rnet
80 po lycubec t l r1 arp−t ab l e add 19 2 . 16 8 . 0 . 2 5 4 mac=00:62: ec : 7 d : 7 2 : 7 1

i n t e r f a c e=to_inte rnet
81 # Create vxlan i n t e r f a c e
82 sudo ip l i n k add vxlan0 type vxlan id 42 dev eno1 ds tpor t 0
83 sudo br idge fdb append to 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 dst 19 2 . 16 8 . 0 . 1 91 dev

vxlan0
84 sudo ip l i n k s e t dev vxlan0 up
85 sudo ip addr add 1 0 . 1 8 . 0 . 1 / 1 6 dev vxlan0
86 po lycubec t l r1 por t s add to_vxlan
87 po lycubec t l connect r1 : to_vxlan vxlan0
88 po lycubec t l r1 route add 1 0 . 1 0 . 8 . 0 / 2 4 1 0 . 1 8 . 1 . 1
89

90 read −p " Press ENTER to d e l e t e cur rent c o n f i g u r a t i o n . . . "

Following commands show how to add services to loadbalancer-rp and nodeport
natting rule to k8sdispatcher

Listing A.2: Services and nodeport rule
1 # Create s e r v i c e in lb2
2 po lycubec t l lbrp lb2 s e r v i c e add 1 1 0 . 1 8 . 0 . 1 5201 ALL name=s e r v i c e
3 # Add backend
4 po lycubec t l lbrp lb2 s e r v i c e 1 1 0 . 1 8 . 0 . 1 5201 TCP backend add

1 0 . 1 0 . 8 . 2 port =5201 name=B1 weight=10
5 # Add nodeport r u l e to k8ds ipatcher k1
6 c u r l −d ’{ " i n t e r n a l −s r c " : " 1 3 . 1 3 . 1 3 . 1 3 " , " proto " : " tcp " , "

nodeport−port " : 30000 , " s e r v i c e −type " : "CLUSTER"} ’ −H " Content−
Type : a p p l i c a t i o n / j son " −X POST http :// l o c a l h o s t :9000/ polycube /v1/
k8sd i spa t che r /k1/ nodeport−r u l e /30000/ tcp

All iperf3 commands are runned with -J flag to obtain a json file containing all
output values. After that a python script is used to read json and generate a Plot.

Listing A.3: Python script
1 import re
2 import matp lo t l i b . pyplot as p l t
3 import numpy as np
4 import j son
5

6 t ime_l i s t = [ ]
7 r a t e _ l i s t = [ ]
8 r t t _ l i s t = [ ]
9
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10

11 f = open ( ’ . / nodetonode / nodeport−tcp−d e f a u l t . json ’ , ’ r ’ )# i p e r f −l og . txt
i s the i p e r f l og f i l e name

12

13 data = json . load ( f )
14 f o r i in data [ ’ i n t e r v a l s ’ ] :
15 r a t e _ l i s t . append ( i [ ’ streams ’ ] [ 0 ] [ " bits_per_second " ] / 1 e6 )
16 t ime_l i s t . append ( i [ ’ streams ’ ] [ 0 ] [ " s t a r t " ] )
17 r t t _ l i s t . append ( i [ ’ streams ’ ] [ 0 ] [ " r t t " ] )
18

19 f . c l o s e
20

21 p l t . f i g u r e ( )
22 p l t . p l o t ( t ime_l i s t , r a t e _ l i s t , l a b e l = " l a b e l " )
23 p l t . x l a b e l ( ’ Time( sec ) ’ )
24 p l t . y l a b e l ( ’ Bandwidth ( Mbits/ sec ) ’ )
25 p l t . l egend ( )
26 p l t . g r i d ( )
27 p l t . show ( )
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