

POLITECNICO DI TORINO

Master’s Degree Course in Computer Engineering

Master’s Degree Thesis

DEVELOPMENT OF A WEB APPLICATION
FOR INTERACTIVE ANALYSIS OF THE
ITALIAN OIL ENERGY SECTOR DATA

Supervisors: Candidate

Prof. Maurizio Morisio Esteban Caliva

Prof. Ettore Bombard

Prof. Tao Huang

July 2021

IV

TABLE OF CONTENTS

1. Introduction .. 1

1.1. Summary of Oil Risk Model ... 2

1.1.1. Indicators and formulas: .. 3

1.2. Data Storytelling .. 5

1.2.1. Techniques used in visual Storytelling: ... 8

1.2.2. Tools for Data storytelling ... 10

2. Requirements .. 12

2.1. Functional Requirements .. 12

2.2. Non-Functional Requirements ... 12

2.3. Use Case Diagram .. 13

2.4. Use Case Modelling .. 14

3. Design ... 16

3.1. Theoretical Background .. 16

3.1.1. Web applications ... 16

3.1.1.1. Django Framework .. 17

3.1.1.2. Backend Technologies .. 18

3.1.1.3. Frontend Technologies ... 19

3.1.2. Database Management ... 21

3.2. Application Architecture ... 22

3.3. Web Application .. 23

3.4. Database ... 24

3.5. Indicator Calculation: ... 25

3.6. Hardware ... 26

4. Implementation .. 27

4.1. Data Collection .. 27

4.1.1. Scripts ... 28

4.2. Risk Index Calculations ... 33

4.2.1. Scripts ... 34

4.3. Database ... 35

4.3.1. Scripts ... 35

4.4. Wrapper .. 36

4.5. Web Application .. 37

4.5.1. Model .. 37

4.5.2. Views .. 38

V

4.5.2.1. Utils ... 39

4.5.3. Templates ... 39

5. Validation ... 45

5.1. Data Collection Validation ... 45

5.2. Risk Index Calculation ... 46

5.3. Web Application .. 52

5.3.1. User Interface ... 52

5.3.2. User Authentication ... 53

5.3.3. Models and Queries .. 55

6. Conclusions ... 56

References .. 57

VI

LIST OF FIGURES

Figure 1 Conceptual map of captive and sea corridor failure assessment. [1] 5

Figure 2 Combination of data storytelling [3] .. 6

Figure 3 Example of a good Storytelling .. 7

Figure 4 Example of bad Storytelling. .. 7

Figure 5 Example of different techniques applies in a plot. .. 9

Figure 6 Use case Diagram. .. 13

Figure 7 Client-server HTTP Communication [13] ... 17

Figure 8 Django Architecture Pattern. [15] ... 18

Figure 9 Differences between a classic web application model and an Ajax web application
model. [22] ... 21

Figure 10 Application Architecture. .. 22

Figure 11 Database table structure. ... 25

Figure 12 parser_alphatanker.py input file. .. 28

Figure 13 parser_alphatanker.py output. ... 28

Figure 14 parser_piracy.py input file. ... 29

Figure 15 parser_piracy.py output. .. 29

Figure 16 parser_wgi.py input file. ... 30

Figure 17 parser_wgi.py output. .. 30

Figure 18 parser_strait.py custom input file. .. 31

Figure 19 parser_strait.py output. .. 31

Figure 20 parser_lvh.py output. ... 32

Figure 21 parser_pipeline.py output. ... 33

Figure 22 output of the java_input_OSM.py script. .. 34

Figure 23 output of the calculation_route_eez_intersection.py. ... 35

Figure 24 Wrapper configuration flags. .. 36

Figure 25 Code Snippet of the Model .. 38

Figure 26 Extend Django User Class Code Snippet .. 38

Figure 27 Home page without user login. .. 40

Figure 28 Home page after user logs in. .. 40

Figure 29 Login page. .. 40

Figure 30 Sign Up page. .. 41

Figure 31 Password reset page. .. 42

Figure 32 Password reset after summit form. .. 42

Figure 33 After clicking URL receive in the mail. ... 42

Figure 34 Password change successfully. ... 42

Figure 35 Contact page. .. 43

Figure 36 Example of a Story #1. .. 44

Figure 37 Example of a Story #2. .. 44

Figure 38 Java Input Log File .. 47

Figure 39 Output for the corridor Sidi Kerir-Trieste. ... 48

Figure 40 Output for the corridor Corpus Christi-Trieste. ... 49

Figure 41 Sample of the debug file of the intersection script. .. 50

Figure 42 Probability of Failure of Egypt corridors calculated by the script. 51

Figure 43 Probability of Failure of Ceyhan corridor calculated by the script. 52

Figure 44 Password mismatch error .. 54

VII

Figure 45 Email or Password Log In fail .. 55

LIST OF TABLES

Table 1 Data Analysis Tools [7] ... 11

Table 2 Functional requirements of the application. .. 12

Table 3 Non-Functional requirements of the application. ... 13

Table 4 Egypt Corridor provided by EST- Lab. .. 48

Table 5 Corpus Christi-Trieste provided by EST- Lab. .. 49

Table 6 Probability of Failure of main Egypt Corridors provided by EST-Lab. 51

Table 7 Probability of Failure of main Egypt Corridors provided by EST-Lab. 52

Table 8 Database table for Users .. 54

VIII

ABSTRACT
Nowadays common people have access to many highly detailed information even though it

is difficult for them to understand the meaning behind the numerical values without a proper

elaboration and explanation from an expert. In this sense, the narrative offers an optimal

way to organize data by adding layers of context, facilitating understanding of project data,

and closing communications gaps between social, economic, and political dimensions.

Hence, data storytelling, based on the simple and synthetic narrative, is becoming an

innovative way through which a complex system, such as energy systems, can be

represented efficiently.

Energy statistics usually go into detail about all the variables which are taken into

consideration making reports very accurate and reliable for experts on one hand, but also

very long and dispersive on the other. Today, energy actors demand a scientific tool capable

of providing information and key indicators that summarize the current situation in the field

of energy security.

The thesis project consists of a web application development using the Django Framework,

that brings compiling and interactive narratives around complex data by the means of

storytelling. The core of the thesis is the application of data storytelling to the EST Oil Risk

Model which aims to quantify the national energy risk related to Italian oil suppliers. This

model relies on the collection and processing of many data from several sources and

datasets and identifies the oil suppliers as well as the oil pathways through geo-referencing

mapping of both captive and open-sea corridors.

The implemented web application, called Oil-IST (Oil Interactive Story Telling), can be

accessible to all energy actors who are interested and/or involved in crude and oil products

supply systems. Moreover, since Italy is strongly dependent on external oil suppliers, Oil-

IST is designed to provide a science-based tool able to support and accelerate political

decision-making.

1

1. Introduction

The world is changing towards new energies, like in every field, it is important to have

accurate information to make decisions, in the context of “energy analysis”, decision-makers

and stakeholders must have all the data available in a clear, synthetic, and concise way.

Energy analysis considers many aspects from different fields that range from political,

geographical, economic to environmental, and because of this having a holistic view is

difficult.

The reports given to the stakeholders can be lengthy and, difficult to understand if there is

no close connection to the dataset, making decisions slow and demanding. Within this

framework, nowadays is more demanded by the energy stakeholders a scientific tool

capable of providing key information and key indicators that summarize the current situation

in the energy security field.

Narratives are considered the basis of human communication. Since the early years'

narratives always had help humans to experience and comprehend life, it can be view as a

comprehensive means of delivering information when the narrator can create a context

around a sequence of events it helps the narratee to have a better conceptual understanding

of the subject. In engineering sometimes narratives are overlooked as baseless and

manipulative, but researchers suggest that narratives are easier to comprehend, and

audiences find them more engaging than traditional logical-scientific communication. [1]

The way narratives help to have a better understanding of the topic as a whole, the approach

chosen to deliver complex data in an easy and comprehensible way to energy stakeholders

is data storytelling, which is a methodology for communicating information, tailored to a

specific audience, with a compelling narrative by giving context and interpretation to data.

The energy sector that is cover in this work is the oil energy supply in Italy. The first step for

proper political decision-making, that aims to reduce the level of risk due to the supply of

energy commodities is to build a risk model, for example, in Italy, a critical problem of oil

imports is due to high dependence on countries with a weak geopolitical situation and

stability. For this reason, EST lab developed a new risk model specific to an oil supply that

brings together numerical and georeferenced data.

2

The scope of the project is to take this model and automatize all the data and calculations

and delivering compiling stories to the energy stakeholders by the means of a web

application.

1.1. Summary of Oil Risk Model

The aim of the model is the risk assessment of the Italian oil supply, the consequence is

the loss of commodity, and the hazardous event is the failure of oil supply. In particular,

the supply failure may involve the maritime or the captive corridors. The risk analysis

results in the quantitative estimation of risk related to each corridor and each commodity.

This final value, expressed in terms of loss of energy, quantifies the security of the Italian

energy supplies. [1]

The model needs input parameters to be able to properly calculate the indicators, the

main goal is to calculate the probability of failure for each corridor; a corridor is

understood as a group of routes that transport petroleum products between two

countries. To obtain this parameter there are some complex calculations around it, for

example, tracing the routes from where the commodity is extracted to the Italian port of

arrival, in consequence, it involves a land route (captive) and the maritime route (sea).

The captive route is basically where the commodity is extracted and carried to the load

port, the main consideration is the pipeline specifically the length and traversing

countries. The maritime route is from the load port to an Italian port. The maritime route

considers the length that crosses the exclusive economic zone of each country the route

passes through as well if there are any chokepoints. Both routes take into consideration

the geopolitical indexes and for the maritime route, the piracy index must be considered

to model the risk.

The input data is taken from different data sources, the geopolitical data is taken from

the “Worldwide Governance Indicator” [2] since the probability of failure depends on the

geopolitical stability of the corresponding sovereign country crossing a specific EEZ. The

piracy index is taken from “One Earth Foundation”, this index is important to track the

criminal activities in the sea that can lead to vessel disruption and consequently to failure

of supply. The presence of a chokepoint also affects the probability of failure of maritime

routes. One of the most important sources of data is “Alphatanker” which is a private

resource that provides the amount of petroleum product that is imported to Italian ports

as well as their port of provenience.

3

1.1.1. Indicators and formulas:

The indicators and formulas used by the model are carefully explained in [2], in this
section is presented a summary of the indicators and how their formulas.

The Worldwide Governance Indicators (WGI) were considered to calculate the

reference geopolitical risk index 𝜑𝑘. Indeed, 𝜑𝑘 is obtained by the arithmetic mean

of six minor WGI indexes which range between 0 and 100:

Criminal activities in the sea can lead to vessel disruption and consequently to failure

of supply that led to the next indicator, Piracy:

The presence of a chokepoint affects the probability of failure of maritime routes.

Especially in the case of strait crossing, many ships are forced to pass through a

narrow channel. Thus, chokepoint disruption, defined as the ships inability to cross it,

may be caused mainly by two factors:

1. Geopolitical risk of the coastal countries closes to the chokepoint (𝜑𝑘)
2. Piracy activity (𝜂𝑘)

Each coastal country is characterized by a new aggregated parameter which

summarizes in one single value both geopolitical risk index and piracy index.

Where:

• 𝐾 total amount of basin countries.
• 𝜑′𝑘 maritime geopolitical risk of the K country.

𝜑𝑘 = ∑
𝑊𝐺𝐼𝑗

6
 6

𝑗

𝜑′𝑘 =
∑ 𝑊𝐺𝐼𝑗

6
𝑗 +𝜂𝑘

7

𝜑′̅ =
∑ 𝜑′𝑘

𝐾

4

The probability of chokepoint failure was defined as the product between two factors:

Lcp directly connected to the political stability of coastal countries close to the

chokepoint and �̇� which reflects the intrinsic vulnerability of a chokepoint due to its

physical characteristic.

Where:

• ξ𝑐𝑝 is the probability of chokepoint failure.
• Lcp is the likelihood of failure.
• �̇� is the vulnerability index.

Weighting factor γ𝑘, so the contribution to the overall probability of failure of the single

branch is proportional to its length.

Once defined the probability of failure related to both the cross a chokepoint and

cross EEZ or international water, then, the overall formulation of the open-sea

probability of failure is obtained:

Like the maritime route, also the captive corridor probability of failure depends on the

geopolitical stability of the crossed country and the weighting factor.

𝛾𝑘 =
𝑙𝑖

𝐿𝑡𝑜𝑡

𝜉𝑐𝑝 = 𝐿𝑐𝑝 ∗ �̇�

𝜉𝑂𝑝𝑒𝑛𝑆𝑒𝑎 = 1 − [(1 − 𝜉𝑐𝑝) ∗ (1 − 𝜉𝑟𝑜𝑢𝑡𝑒)]

𝜉𝐶𝑎𝑝𝑡𝑖𝑣𝑒 = 100 ∗ [1 − ∏ (1 −
𝛾𝑘 ∗ 𝜑𝑘

100
)]

𝜉 𝑟𝑜𝑢𝑡𝑒 = 100 ∗ [1 − ∏ (1 −
𝛾𝑘 ∗ 𝜑′

𝑘

100
)]

5

A conceptual map of how the corridors are modeled by their sea and captive

branches are presented in figure 1.

Figure 1 Conceptual map of captive and sea corridor failure assessment. [1]

After modeling each corridor, it is possible to calculate the energy risk level

quantification for each corridor or by providing country. The overall probability of

failure of the entire corridor is calculated with the following function which combines

ξopensea and ξCaptive:

ξ𝑖 = 1 − [(1 − ξ𝑂𝑝𝑒𝑛𝑆𝑒𝑎) ∗ (1 − ξ
𝐶𝑎𝑝𝑡𝑖𝑣𝑒

)]

Finally, the corridor risk can be calculated by multiplying the probability of failure with

the corresponding energy transported through the corridor. The total provisioning risk

is obtained by the summation of all the single corridor risks.

1.2. Data Storytelling

Engineering always involves a large amount of experimentation and subjective decision-

making. Thus, it is important to document the story behind the computation of results,

reporting alternative solutions, and explaining their limitations.

𝑅𝑒𝑥𝑡𝑖
= 𝜉𝑖 ∗ 𝐸𝑖∗

𝑅𝑒𝑥𝑡 = ∑ 𝑅𝑒𝑥𝑡𝑖

𝑖⋲𝐼

6

Storytelling through data is often overlooked as a trivial task, but stories provoke thought

and bring inside that could not have been understood or explained before, in other words,

is the process of transforming data-driven analyses into a variety of media such as

textual explanations, graphs, forms, interactive visualizations, code segments to

influence a business decision, strategy, or action by utilizing analytical information that,

ultimately, turn into actionable insights.

As the result of the lacking context in the data sets problematic, is born the necessity of

having a story that guides the user through the data set, for example, where this data

come from, how and the time it was taken, the reason, importance, and value. This

creates better comprehension therefore is possible to give pure raw data a meaning

especially for a non-expert in the field of where the data is taken.

The three aspects of data storytelling are narrative, visuals, and data. These aspects

create a good data story and present the data in a form that can create audience

engagement and accurate problem-solving, so it represents the complex datasets and

separates the trends and patterns which are not seen in the spreadsheets.

Figure 2 Combination of data storytelling [3]

The importance of data storytelling lays in the creation of a compelling story that can

influence the audience and provide critical information to make the best decision

possible.

To get a better understanding of the importance of a good data representation one

example of how a good narrative is shown in the visualization of the plot and how a bad

example looks like according to [4]:

7

Figure 3 Example of a good Storytelling

This graph was taken from the “The Seattle Times” it represents data in a very concise

way, it is possible to infer that most people have nearly the same universal concerns,

also it is possible to see with easy correlations for example how people that care about

Walkability are far more interested in proximity of the public transport.

Figure 4 Example of bad Storytelling.

8

This graph was made by “Sparefoot” it is intended to show how American society is

changing over time concerning household living arrangements. The main questions are:

Is it easy to read? Does this pie chart a better representation? Can the reader understand

it clearly?

For representing a change over time, it is better to use a line or bar chart, but the major

problem is that the three main data points are not part as a whole but they have been

presented as if they are although it does not combine a 100% of something, leading to

miscommunicating the message.

1.2.1. Techniques used in visual Storytelling:

In this section is presented techniques for how the data should be visualized and

presented according to [5]:

a) Communicating Narrative and Explaining Data:

One of the simplest techniques uses long textual narratives to express the key

points to help to explain and communicate the author's message. The

communication of the narrative and explanation of the data not necessarily are

confined to text, multiple forms of media can be used such as video, audio

narration.

b) Linking Separated Story Elements:

Data-driven stories often contain multiple story elements in different text forms or

charts, making a connection between elements is crucial to explain the different

aspects of the story. There are different techniques for properly linking the

elements:

• Linking elements through interactions: Story collection where the
interaction of one visualization is mapped to change another.

• Linking elements through colors: usually accomplish this through a
consistent color mapping between attributes that appear in multiple
visualizations.

• Linking elements through animations

9

c) Enhancing Structure and Navigation:

This technique is closely tied to the author specifying ordering where the author

imposes the order in which the data will be displayed, often provide a navigation

aid.

• Next/Previous buttons: Uses buttons to order the storyline.
• Scrolling: Scrolling triggers changes in the visualization as the story unfolds

in front of the user.
• Breadcrumbs: a common breadcrumb style uses dots to represent each

slide or scene and each dot acts as a shortcut, taking the reader to the
associated slide.

• Section header buttons: Use titles in each of the scenes, and these titles
are placed at the top of the story to help control movement through the
narrative.

• Geographic map: Interactive map to help the user to jump in any state.

d) Providing Controlled Exploration:

Enables the reader to explore the story as it significantly changes the data and

visualization displayed. One of the risks is that the data could not be consistent

with the surrounding narrative.

Dynamic queries: Gives the possibility of interaction by changing different subsets

of the data.

Embedded exploratory visualization: Used when the authors have included a

more exploratory visualization, often defined by a large amount of user interaction.

Figure 5 Example of different techniques applies in a plot.

10

This plot was taken from “The New York Times”, it applies different techniques, such

as textual narrative, dot style breadcrumbs besides this it present annotation in each

point of the chart the user points to as well as a 3D rotation.

Other good practices ANALYTICS VIDHYA [6] consider are important to deliver good

data-driven storytelling, that sometimes can be obvious, are:

• Always label your axes and give the heading of your plot.
• Use legends where necessary.
• Use colors that are lighter on the eye and in proportion.
• Avoid adding unnecessary detail to your visualization like backgrounds or

themes that do not allow good readability.
• Only a point can be used to simultaneously encode two quantitative values

based on a horizontal and vertical location.
• Never use points for visualization if you are doing time series encoding.

1.2.2. Tools for Data storytelling

A myriad of analytical techniques is employed in generating insights from a large

amount of data for storytelling. (Manyika, 2011) identified several of these techniques

including association rule mining, classification, cluster analysis, data fusion and

integration, machine learning, genetic algorithms, natural language processing,

network analysis, pattern recognition, predictive modeling, regression analysis,

sentiments analysis, spatial analysis, and time series analysis. Some of the tools

implementing these analytical techniques include R, Python, Microsoft Excel, IBM-

SPSS, Tableau, NodeXL, Google Fussion Tables, RapidMiner, and Knime Analytic.

Purpose Description Tools
Data Analysis Tools and techniques

used for exploring and
analyzing data.

Spreadsheet software
SPSS
SAS
Stata
Python (Panda)
R (Object Graph)

https://www.analyticsvidhya.com/blog/author/avcontentteam/

11

Data Visualization These are tools and
techniques used for
user-facing data and

information
visualization, in both
static and interactive

forms.

Tableau Public
R (when used to data
visualization)
Google fusion tables
Brackets
Highcharts
Linkurious
JavaScript libraries
(D3.js and Raphae¨l)

Map Visualization Visualization tools are
specifically concerned
with geospatial data,

and maps.

ArcGIS,
MapBox
Mapper
Open Street Maps API
Google maps

Databases Database
management tools,

used for storage and
retrieval of data of

different types.

MySQL
SQL
Server
SQL Base
PostgreSQL
MongoDB
Neo4j

Data Preparation and
Wrangling

Tools that are used for
data preparation, data

cleaning, and data
transformation or

wrangling, used for
pre-processing data
for suitable for data

analysis.

OpenRefine
Mr Dataconverter
Wigle
Nitro PDF
Tabula

Data Scraping Tools that are used for
scraping or collecting
data from webpages,

PDFs, or scanned
documents.

Imacros
HTTrack
Omnipage
Nokogiri

Table 1 Data Analysis Tools [7]

12

2. Requirements

“The software requirement specification is the basis for software development. It describes

the functional and non-functional requirements and includes a set of use cases that describe

user interactions that the software must provide” [8].

The main requirements for this platform can be divided into three parts, the automatic

calculation of the risk indexes after the input files are given to the system, storage and

distribution of the risk model data, and the creation of compiling narratives to deliver the

processed data to the end-users.

2.1. Functional Requirements

The functional requirements, summarize what operations should the user of the

application will be able to perform define what the system does or must not do. The

functional requirements contain all the technicalities that surround the project, basically

how it behaves in matters of manipulation, processing, integration, and migration of the

data, plus security requirements and performance.

Name Description
FR01 Allow the admin to parse the new data once it is provided.
FR02 Allow the admin to calculate the risk indexes once the data is provided.
FR03 Allow the admin to insert new data into the database.
FR04 Allow the user to log in to their account.
FR05 Allow the user to sign up on the platform.
FR06 Allow the user to recover its password.
FR07 Allow the user to select stories.
FR08 Allow the user to fill a contact form for new requests and enhancements.
FR09 Allow the user to interact with the stories.

Table 2 Functional requirements of the application.

2.2. Non-Functional Requirements

Non-functional requirements specify the quality attributes of the system. These

requisites do not affect the basic functionality of the system.

Even if the non-functional requirements are not met, the system will still perform as it is

supposed to.

13

Name Description
NFR01 The application will be developed in Django
NFR02 Data and user information will be stored in PostgreSQL.
NFR03 The application will be scalable, add new stories.
NFR04 The application must be available to all users.
NFR05 The database paradigm must be suitable.
NFR06 The stories must load in less than 100 seconds.

Table 3 Non-Functional requirements of the application.

2.3. Use Case Diagram

A use case diagram is a behavior diagram that models the functionality of the system in

the form of actors interacting with a system. The use cases are the actions and/or

services the system needs to perform. The system is something to develop and operate

on, as a website. The actors are users or entities operating defined by roles within the

system. [9]

The actors for this project are the Users, the system administrator, and the storyteller in

figure 6 it is possible to observe the interactions of the actors with the system.

Figure 6 Use case Diagram.

14

2.4. Use Case Modelling

“A use case is a written description of the list of actions or event steps of how the

user will perform tasks, typically the interactions between a role and a system, to

achieve a goal. It outlines a user’s point of view and a system’s behavior as it

responds to a request.” [10]

Scenario #1: User Sign Up – Create Account

Pre-Condition Account does not exist.
Nominal Scenario The user goes to the Sign-Up page.

The user inserts the requested data.
The system verifies the correctness.
The system sends a very email to the user.
The user clicks on the link inside the mail.

Post-Condition The account was added to the system.

Scenario #2: User Select a Story and Interact

Pre-Condition -
Nominal Scenario The user selects a story of interest.

The user interacts with the story.
Post-Condition -

Scenario #3: User Request a Story or Enhancement

Pre-Condition Users must be Log in
Nominal Scenario User populates all the fields required fields.
Post-Condition Email is sent to the web admins.

Scenario #4: System Admin Update data files

Pre-Condition Have administrator rights
Nominal Scenario Admin downloads new real-world data.

Configure the wrapper script depending on the flow.
Run the wrapper script.
Check for any issues.

Post-Condition Files updated on the system.

15

Scenario #5: Storyteller creates a story.

Pre-Condition Have access to request mail inbox
Nominal Scenario Read user suggestions.

Create new stories.
Add stories to the system.

Post-Condition A new story was added to the system.

16

3. Design

This section consists of the theoretical background of the components of the application as

well as the technologies that were used, the architecture of the platform itself, and the

database.

3.1. Theoretical Background

In today’s diverse world of software, there are countless ways to design and implement

a piece of software or application. There are many possibilities and options to choose

from, starting from the choice of the application type, followed up by choice of

environment, programming languages, technologies, and frameworks.

In this project, the focus is to deliver compiling and interactive narratives to the energy

stakeholders of the oil field, independently of the platform or system they are using, in

this way it is possible to expand the usability of the platform. For this matter the web

application route was chosen; it must be acknowledged that recent surveys show that

smartphone users are becoming less and less motivated to download extra applications,

as not to bloat their own devices [11]. The same can be said with desktop applications.

3.1.1. Web applications

“A Web application can be defined as a software system that is accessible over the

web. It uses technologies for the web and strives to use standard technologies where

feasible.” [12] Web applications are computer programs that allow website visitors to

submit and retrieve data to/from a database over the internet using a web browser.

Nowadays web applications are becoming more and more popular because of the

accessibility of an internet connection, helping to share applications easily with the

customers.

The typical flow of a web application according to [13], starts when the user triggers

an HTTP request to the web server over the internet, the browser sends the request,

then it reaches the dedicated hardware and then the HTTP server sends a response

containing the information that was requested. When HTTP protocol is used a certain

set of rules is always followed:

• The server can only respond to the request that was sent by the client. It

cannot send requests to the browser.

17

• The server must send a response to every incoming request, at least a

response that contains an error message.

• Every HTTP request must contain a URL address that indicates the server

and path that this request should be sent to.

Figure 7 Client-server HTTP Communication [13]

The main programming language used for this project is Python, used for all the data

collection and analysis with strong usage of Pandas and NumPy libraries. The web

application was built using the Django framework in combination with HTML,

JavaScript, jQuery, CSS, and Bootstrap for structure, interactivity, and styling.

Most of the modern applications are coded used a framework, there is a huge variety

of frameworks built with different programming languages, a framework or software

framework, is a “platform for developing software applications. It provides a

foundation on which software developers can build programs for a specific platform

and a standard way to build and deploy applications”. [14]

3.1.1.1. Django Framework
Is a high-level Python web application framework that enables the rapid

development of web applications. It achieves so with a pragmatic, much cleaner

design and is also easy to use. Thus, is very popular among web developers.

It was originally developed to avoid writing new Web applications entirely from
scratch.

 Features:

• Stability
• Excellent Documentation
• Hight Scalable

https://techterms.com/definition/application
https://techterms.com/definition/platform

18

• Utilizes SEO (Search Engine Optimization)

Architecture:

Django uses a slightly modified version of the MVC (Model-View-

Controller). This kind of architecture helps to separate the input,

processing, and output of the application, called MVT (Model-View

Template) being the main difference that Django takes care of the

controller part leaving the developer the template.

Figure 8 Django Architecture Pattern. [15]

Model: Acts as the link between the website interface and the database, it is

the object which the logic for the application’s data domain.

View: Communicate with the database via the model, handle the user

interaction and select the view according to the model.

Template: Contains the User Interface logic, it contains everything the

browser renders.

URLs: is a URL mapper used to redirect HTTP requests to the appropriate

view based on the request URL.

3.1.1.2. Backend Technologies
All the backend is coded in python language.

Python: is a popular high-level dynamic programming language. It is powerful and

fast. This language has some interesting features such as:

19

• Intuitive object orientation.
• Strong introspection capabilities.
• Readable and very clean syntax.
• Full modularity, supporting hierarchical packages.
• Extensive standard libraries and third-party modules for every task.
• Very high-level dynamic data types.

Python is also used in a huge range of domains including Web Applications and

has good documentation and community.

The main libraries used for this application are:

Pandas: “is an open-source, BSD-licensed library providing high-performance,

easy-to-use data structures, and data analysis tools for the Python programming

language” [16].

NumPy: “is the fundamental package for scientific computing in Python. It is a

Python library that provides a multidimensional array object, various derived

objects, and an assortment of routines for fast operations on arrays” [17] .

3.1.1.3. Frontend Technologies
Frontend technologies are responsible for building the part of a web application

that is in direct contact with the end-user.

The application is built on core web technologies. The use of HTML for creating

what is contented of pages, Bootstrap CSS framework for styling, and JavaScript

supported by JavaScript library jQuery for enabling the interactivity of the web

pages.

HTML and CSS are not programming languages. HTML is a markup language;
its main function is to create and construct documents viewed inside a web
browser. Every single website displays its markup using HTML. CSS is a style
sheet language and used for the styling content and document layout.

Bootstrap: “is a free and open-source front-end development framework for the
creation of websites and web applications. The Bootstrap framework is built on
HTML, CSS, and JavaScript to facilitate the development of responsive, mobile-
first sites and apps” [18].

JavaScript (JS): is a scripting language that was originally developed by

Netscape Communication Corporation for Web use in 1995. JS should not be

confused with Oracles’ Java programming language. These languages are

unrelated and have different schematics. JS has a syntax that is influenced by

20

the C programming language, and it also copies many names and naming

conventions from Java. JavaScript is a lightweight object-oriented, prototype-

based, multi-paradigm scripting language that is type-safe and dynamic. JS

uses an interpreter and supports also object-oriented, imperative, and

functional programming styles. JavaScript has a standard called ECMAScript.

The modern Internet browsers are updated and fully support the ECMAScript

v5.1, as of 2012 [19].

jQuery: “fast, small, and feature-rich JavaScript library. It makes things like HTML

document traversal and manipulation, event handling, animation, and Ajax much

simpler with an easy-to-use API that works across a multitude of browsers. With

a combination of versatility and extensibility” [20].

AJAX (Asynchronous JavaScript and XML): “is a technique that helps creating

fast and dynamic web pages. Ajax allows web pages to be updated

asynchronously by exchanging data with the server. Ajax makes it possible to

update parts of a web page without reloading the full page” [21].

Ajax opened new ways of providing content on web applications. Earlier it was

difficult to provide much information at once because an application could not

react to user inputs effectively. With Ajax, a single web application page can

provide the same information that earlier needed page reloading and multiple

pages.

21

Figure 9 Differences between a classic web application model and an Ajax web application model. [22]

3.1.2. Database Management
Nowadays in every modern project, a database is indispensable, a database contains

the collection of data organized and structure for easy store and access of the data.

The database is designed to manage and substantial quantities of information.

Management of data involves both defining structures for storage and providing

mechanisms for the manipulation of information.

In addition, the database system must guarantee the safety of the information stored,

despite system failures, crashes, or persons trying to access it without permission.

Databases also have disadvantages, such as slow data searching retrieval, difficulty

in maintaining, which make it crucial to have a database management system.

“A database-management system (DBMS) is a collection of interrelated data and a

set of programs to access those data” [23]. This is a collection of related data with an

implicit meaning and hence is a database. A database in essence is nothing more

than a collection of information that exists over a period of time. The primary goal of

a DBMS is to provide a way to store and retrieve database information that is both

22

convenient and efficient. By data, we mean known facts that can be recorded and

that have implicit meaning.

PostgreSQL: Powerful, open-source object-relational database system that uses and

extends the SQL language combined with many features that safely store and scale

the most complicated data workloads. [24]

3.2. Application Architecture

As it was stated before the solution consists of a web application as an easy and efficient

way to share data stories to the energy stakeholders.

The first problem was to automatically calculate the risk indexes from the data taken from

the internet as it was needed to track all the parts of the route with their economic

exclusive zones, commodity, and intake for every corridor.

The second challenge was to develop a database architecture capable to easily retrieve

all the data needed for the calculation and display.

After having the database ready with all the information needed to create appealing data

stories, the web application was developed to connect bring all the data to the users, in

other words, the Django back-end will take the data from the database transform it, and

deliver it to the users in form of stories by the front-end.

Figure 10 Application Architecture.

23

In figure 10 it is possible to observe the different parts of the applications, having the input

coming from real-world to the “Data Collection” module that will transform and store in the

database information needed for further use, the “Risk Model Calculation” oversees

retrieving the data needed to calculate each risk index and save it in the database.

The database is used as a link with the risk indexes calculated with changing real-world data

and the Django Framework. Django is divided into three modules by architecture design, so

the “Models” role is to map the database tables and make them visible to the “Views” which

contains the logic and behavior of the application, and the “Templates” that contains the

presentation layer that means it contains the user interface logic.

3.3. Web Application

Functional:

• Interactivity:
The platform must provide the users a certain level of freedom in which
they can change locations, time ranges, and units of measurements. Also,
it will be possible to interact with the plots provided in the stories, for
example, download the plot, zoom in, zoom out high and turn on and off
parts of the plot.

• Client Authentication:
The platform must provide a robust client authentication where the clients
can sign up and log in, with email verification as well as recover the
password in the case they forgot it.

• Request a Story:
The users can also request new stories as they consider necessary for
their interest and enhancements (different data visualization or new data)
for the pre-existing ones.

Non-Functional:

• Accessibility:
The platform must be accessible to all users.

• Scalability:
The application must be expandable to handle new kinds of content and
new stories can be written.

• Usage:
The UI must provide an enable the users to surf through the stories and
click the one of their interest.

24

3.4. Database

The database is needed for data management, and it must be fast and reliable and plays a

crucial role in the applications as it serves as a link between data collection and risk

calculations with the web application.

The table structure was planned to have synergy with the previous modules making easily

retrieve data without passing from more than three tables. In figure 11, it is possible to

observe that the corridor is the basis of the structure, and the other tables are the

characterization of each corridor as they hold the sea branch, captive branch information,

corridor intake has the information that came from Alphatanker with the intake and dates per

corridor, another important table is the corridor failure as it holds the calculation needed for

getting the risk this is characterized by the corridor, year, pipeline and depends on the

commodity has two types of failures.

Functional:

• Access:
Write new data to the database it is only possible by the system administration
or an authorized person with their credentials.

Non-Functional:

• Scalability:
Content stored in a database must be scalable. The structure of the database
schema and tables must be easily expandable.

• Data Integrity:
The database must avoid storing duplicate records. This keeps the size of the
database as small as possible.

• Performance:
Database queries must have a reasonable response time.

• Maintenance:
The database must be maintainable. Should be kept as simple as possible.

• Suitability:
The selected database paradigm must work with the selected web application
technique(s). Needed queries should be easily implemented into code.

25

Figure 11 Database table structure.

3.5. Indicator Calculation:

This is where the data from real life is taken and transform to feed the risk model. This part

is only managed by the system admin and no user has access to this.

Functional:

• Route Tracing:
The script must provide a way to calculate the maritime sea route from the load
port to the discharge port and the length of economic zones of each country it
crosses as well as if it passes through chokepoints.

• Parse:
It must provide a way to read and transform the data coming from Alphatanker,
World Bank, and One Earth Foundation.

• Flow Control:
The script must provide an easy way to manipulate the flow of the program when
new data is input and store it in the database.

26

3.6. Hardware

The platform will be hosted on a Linux server with Ubuntu OS, the CPU is a Skylake Server

with 32 cores and 16GB of RAM.

27

4. Implementation

In this section, specific parts of the application implementation will be shown and discussed.

It is divided into four major parts, data collection, calculation of the risk model, database,

and web application.

4.1. Data Collection

Data Collection is the first part of the project is in charge of getting all the information

needed for calculation the oil risk indexes with data from the real world. Most of these

data have to be transformed to be correctly stored in the database, for this purpose six

scripts were written. Most of the scripts shared the same characteristics as all of them

are written in Python and uses the Pandas library.

The main sources and input files are:

• Alphatanker:
A private source that provides information about dates, intake in tons,
commodity, and the port of origin and destination. This information is also used
to track which are the routes needed to be calculated.

• One Earth Foundation:

Open-source which provides the piracy index by year.

• World Bank:
Open-source which provides the “World Governance Indicators” that

consists of six indicators about the geopolitical situation of each country.

• Strait Information:
Custom file which provides information about the straits of interest with
their basin countries as well with the “alpha indicator” that varies depending

on the navigable length and width of the canal.

• Commodity:
Custom file which provides the information about the low-heat value of
each petroleum derivate. The commodities of interest were taken from the
Alphatanker database.

• Pipelines:
Custom file, because of the difficulty of tracking the land route of the
commodity at the point of the development, the EST lab already have some
pipelines and routes pre-calculated for the most important corridors, for the
information missing a rough estimation with the surface of the country in
square meters was done.

28

4.1.1. Scripts

• parser_alphatanker.py:

This script receives as input an excel file generated from the database of
“Alphatanker” with the required information (Load Port, Discharge Port,
Commodity, and Date). The file downloaded by alphatanker is shown in figure
12. It has a multi-header to differentiate between the different discharge ports,
commodities, and dates, for this matter the file was parse with the “read_excel”

method that allows using a multi-header format and transform it into a
DataFrame. The DataFrame needs to be cleaned from the Non-a-Number
fields that come from the empty spaces, and drop the “Total” column since
there is no use to it, then the frame is flatter to produced output with date
granularity as it can be seen in figure 13.

Figure 12 parser_alphatanker.py input file.

Figure 13 parser_alphatanker.py output.

29

• parser_piracy.py:

A simple script that parses the excel input file shown in figure 13 and gets the
“Piracy and Armed Robbery” to create a DataFrame with the Country, Year,

and Piracy Index as shown in figure 14.

Figure 14 parser_piracy.py input file.

Figure 15 parser_piracy.py output.

• parse_wgi.py:

The script receives as input an excel file that divides the indicators by tab,
hence, for each governance indicator. In each tab, it is possible to find a

30

column with the countries and a multi-header for the year and different metrics
in which “rank” is the only value to consider. The script has two modes of

operation which it parses all the governance indicators from the first year to
the last or it is possible to supply a year of interest. Figure 16 showed the input
file, and figure 17 the transformation and output.

Figure 16 parser_wgi.py input file.

Figure 17 parser_wgi.py output.

• parser_strait.py:

The sea route takes into consideration if it passes through one or more straits
or canals. The data needed from the straits are the basin countries as well as
the alpha, there is no data source the provides this type of information, so the
file must be created by hand. The output of the script is a DataFrame with the
name of the strait and the alpha index and a dictionary with key as the name
of the strait and the basin countries as values as shown in figure 19.

31

Figure 18 parser_strait.py custom input file.

Figure 19 parser_strait.py output.

• parser_lvh.py:

This script uses a custom input file, as the name of the commodities must
match with the name provided by Alphatanker, the low-heat values were
provided in MJ/Kg. The input file is created to be easily transformed to a
DataFrame with just two columns commodity name and low-heat value, the
output of the script is shown in figure 20.

32

Figure 20 parser_lvh.py output.

• parser_pipeline.py:

This script uses two custom files as input, the first one has the pipelines
already pre-calculated by the EST-Lab which contains the total length, the
shared value, the end port, and the countries the pipeline pass through, also
the length of the pipeline per country. In the other file as there is no information
about the other pipelines, endpoints, and lengths a rough approximation using
the square root of the country surface is used and assumed a shared value of
one. The output is shown in figure 21.

33

Figure 21 parser_pipeline.py output.

4.2. Risk Index Calculations

The calculation of the index is not an easy task as it needs a lot of the information

discussed in the previous section, but it is possible to have some pre-calculation that will

help to speed the process. The final goal of this section is to calculate the probability of

failure for a single corridor which considers the captive branch (pipelines) and sea branch

(maritime route). The maritime route tracing was done with an external script that takes

the minimum route between two ports, created by Eurostat. This script uses a geo-

package file that contains pre-existing routes all over the world, it had to be modified and

cancel certain passages where a petroleum ship cannot pass to get accurate results on

the routes. Also, this script needs to input the coordinates of the ports to start tracing

the routes, which had to be created. Therefore, three scripts were developed to create

the input file for the sea route script and find the probability of failure for each corridor.

34

4.2.1. Scripts

• java_input_OSM.py:

This script uses as input the output of the parser_alphatanker.py to know which
route must trace as it has the information of the load port and discharge port. Also,
an auxiliary file is used that maps the ports to their respective countries. It uses
the Open Street Map API called “Nominatim” to get the coordinates of each port.

Alphatanker does not always give the accurate name of the port so the
coordinates of the city in which the port contains are passed otherwise it is not
found as happened with some of the terminals there is a file with coordinates for
some ports and terminals with only two decimals precision to look up. The script
looks in the database if the route has already been calculated, since the route is
static there is no point to calculate it again, so it skips it. The output file is shown
in figure 22.

Figure 22 output of the java_input_OSM.py script.

• calculation_route_eez_intersection.py:

This script oversees finding the intersection with the route with the Exclusive
Economic Zone which the routes cross. To get the length of each country the
function overlay is used which allows to compare two GeoDataFrames containing
polygon or multi-polygon geometries and create a new GeoDataFrame with the
new geometries representing the spatial combination and merged properties.
[GeoPandas]. It takes three input files in the form of shapefiles, one shapefile of
the routes generated by the sea route script containing the routes of interest, a
strait shapefile, and the shapefile of the EE zones.

One consideration is that overlay is an expensive computational operation and
intersecting the route with the whole EEZ frame is not feasible, so first, the route
is converted to points and spatial joined with the EEZ to know which countries

35

crossed and decrease the size of the EEZ GeoDataFrame and in the same
operation get which strait are involved in the route. All these operations are done
with the Pseudo-Mercator projection.

The output of the script gives the name of the corridor, the country it crosses, and
the length as shown in figure 23.

Figure 23 output of the calculation_route_eez_intersection.py.

• calculation_risk_model.py:

This script is the final one from the calculation module chain, it contains all the
functions needed to calculate the indicators of section 1.1.1. At this point, all the
information should have been stored in the database, so this script just retrieves
the data and start the calculations. It saves in the database the geopolitical and
sea risk; alpha normalizes for the straits and the corridor failure.

4.3. Database

In section 3.5 the tables and the architecture of the database was defined, the way to

communicate with the PostgreSQL database is to use the python library pycopg2, which

is a database adapter for the Python programming language.

4.3.1. Scripts

• Database_conn.py:

This is a simple script the contains the function that gets the credentials of the
database as well as the function to insert into and get the values from the
database, the script is made to work with pandas DataFrames so all the input files
are DataFrames as well as the returned values. This script is not used in the
Django Framework as Django has its methods to retrieve information of the
database that is proven to be secure.

36

4.4. Wrapper

The wrapper script contains all the imports of all the scripts explained before, it is in

charge of putting everything together and manages the order of the flow and how the

functions should be executed.

The script is very simple and uses a flag system, if the flag is put to “1” the functions of

the specific task will be executed otherwise it will be skipped. Some functions need more

parameters an input file or a year, all the parameters must be provided to have a

successful execution. It is important to mention that there are some functions that there

is no need to run very often or just needed to run once for example to add the strait

information to the database as this geographical data rarely sees changes. Meanwhile,

some functions have to be run periodically to update the intake of the petroleum products

coming from the different routes, in this case, the administrator decides how often this

data should be updated.

1. ############################CONFIGURATION FLAGS############################
2. ###
3. flag_insert_lvh = 0
4. lvh_file = "../input_data_spreadsheet/commodity AT_GDP.xlsx"
5.
6. flag_insert_straits = 0
7. strait_file = '../input_data_spreadsheet/straits_country.xlsx'
8.
9. flag_insert_pipelines = 0
10. pipeline_file = '../input_data_spreadsheet/pipeline_info.xlsx'
11.
12. flag_insert_approx_pipelines = 0
13. approx_pipeline_file = '../input_data_spreadsheet/surface_area_country.xls'
14.
15. flag_insert_wgi = 0
16. wgi_file = "../input_data_spreadsheet/wgidataset.xlsx"
17. wgi_year = 2018
18.
19. flag_insert_piracy = 0
20. piracy_file = '../input_data_spreadsheet/2019 Stable Seas Index Data(OEF).xlsx'
21. piracy_year = 2019
22.
23. flag_geo_risk = 0
24. geo_risk_year = 2019
25.
26. flag_ck_risk = 0
27. ck_risk_year = 2019
28.
29. flag_intake = 0
30. alphatanker_file = '../input_data_spreadsheet/alphatanker_files/2021/01_04-30_04

alphatanker.xlsx'
31. flag_corridor_failure = 1
32. corridor_failure_year = 2019

Figure 24 Wrapper configuration flags.

37

4.5. Web Application

The web application was developed using the Django Framework, as mentioned before
this framework uses a Model-View-Template architecture, in this section is explained all
the work that was made by each part as well as the user interface where the user can
interact with.

The first step is to create an app inside Django in this case the name is stories, which is
going to contain all the parts and code.

Django needs some parameters to be configured to work as it is intentioned, the
important settings to consider are:

• INSTALLED_APPS:
It is important to add the app already created to enable it and make it visible
to the framework, in the case of this project the stories app had been added.

• DATABASES:

This variable contains all the parameters needed to connect to the database
in the form of a python dictionary. It is needed to specify the IP address of
the database, port, name, password, and engine.

• STATIC_URL:

Use when referring to static files located, in this case, it is specified the
folder where the CSS styling file and the images are stored.

• EMAIL_BAKEND:

There are some variables to configure the email services, in this application,
only a debug console backend is enabled to see the emails in the terminal,
but it is possible to configure a proper email service.

• DEBUG: For testing, the value should be true, for production must be changed
to false.

4.5.1. Model

The model is the part of the framework that serves as the link between the View and

the Database and allows the programmer to interact with the data using a database-

abstraction API called ORM(Object Relational Mapper). For this project in particular

the only model that the Django framework is going to manage is the users, the other

tables are managed externally using PostgreSQL database-manager with the same

structure explained in section 4.3.

The models were exported from the database using a Django method ‘inspectdb”

which allows the use of a legacy database. By default, “inspectdb” creates

unmanaged models. That is, managed = False in the model’s Meta class tells Django

https://docs.djangoproject.com/en/3.2/ref/django-admin/#django-admin-inspectdb

38

not to manage each table’s creation, modification, and deletion [25]. Django will not

manage any table of the risk model only the User tables for authentication.

33. class Corridor(models.Model):
34. corridor_id = models.IntegerField(primary_key=True)
35. corridor_name = models.CharField(unique=True, max_length=100, blank=True, null=True)
36. load_country = models.CharField(max_length=20, blank=True, null=True)
37. load_port = models.CharField(max_length=20, blank=True, null=True)
38. discharge_port = models.CharField(max_length=20, blank=True, null=True)
39. discharge_country = models.CharField(max_length=20, blank=True, null=True)
40.
41. class Meta:

Figure 25 Code Snippet of the Model

The class Meta gives extra instructions to Django in this case the management of this

table oversees the admin and Django cannot do any modification also the table name

must match with the table name of the database otherwise it will not work.

Django has a predefine User model, but for this project was not enough since in the

future the possibility of giving different privileges of the users is desired, for this matter

a new field of CharField is added to the user model that will help to identify the type

of users for example if is a paid user or a free user.

1. class Profile(models.Model):
2. user = models.OneToOneField(User, on_delete=models.CASCADE, related_name='profile')
3. type = models.CharField(max_length=1, blank=True, null=True)
4.
5. @receiver(post_save, sender=User)
6. def create_user_profile(sender, instance, created, **kwargs):
7. if created:
8. Profile.objects.create(user=instance)
9.
10. @receiver(post_save, sender=User)
11. def save_user_profile(sender, instance, **kwargs):
12. instance.profile.save()
13.

Figure 26 Extend Django User Class Code Snippet

4.5.2. Views

The views contain the logic of the application, it manages the information that comes

from the database and how it will be displayed by the templates to the users. The

views manage the home page, user authentication, the stories with the data needed,

and the AJAX requests. Each template needs its view to manage and render.

39

In the views is also manages the interactions of the user with the templates (User

Interface) as it manages all the AJAX, POST, and GET response methods. Three

utils scripts were written to help maintain order in the views.

4.5.2.1. Utils

Utils is a python module in charge of helping with diverse tasks for creating plots,
querying and process information coming from Models and for the energy risk
calculation.

The utils_plot.py script uses the “Plotly” library to create interactive graphs, this

script oversees the creation of all the plots that are going to be managed by the
views and display in the templates. The utils_query.py script is in charge of asking
the database the information needed as well as some functions needed to
transform the data that is going to be present in the template and the information
needed for the plots to be generated. Finally, utils_calculation.py contains the
functions that return the final risk calculation of each corridor.

4.5.3. Templates

The templates are the user interface in this section are presented the user interface

and all the templates created in the project.

• Home Page:

Is the first page the user sees when it opens the application. Contains all the
stories and the link to them. When the user Log in the Guest changes to the user’s

name and the Log in/SignUp section of the navigation bar changes to Log out.

40

Figure 27 Home page without user login.

Figure 28 Home page after user logs in.

• Log in page:

Contains the form that will allow the users to log into the application. Besides, it
has the link to forgot password and sign up. The logic of this page is contained in
the view. After the user inserts their information, it will check if the form is valid
(proper email address has been inserted) and perform a look-up on the database
if the user is valid it will log in and redirect to the home page otherwise it will raise
an error.

Figure 29 Login page.

41

• Sign up page:

Contains the form with the information required for the users to register in the
application. After the user submits a valid form, a mail is sent to the email account
provided by the user to verify its identity and activate the account. Django has its
built-in password checker and validation so it will validate if the password is too
short or is too common and rise and error if it is the case otherwise the user is
redirected to the login page.

Figure 30 Sign Up page.

• Password reset page:

Ask the user to insert the email they used in the registration phase. It will send a
verification link to their email address with the instructions to reset the password. The
URL for password reset looks like this:
http://<domain>/users/password_reset_confirm/MjA/ao4o9k728d610d80433fecf080
cb8c82bbf449.
Django will automatically create a token that Encodes a byte string to a base64 string
for use in URLs, stripping any trailing equal signs with, in the case the byte string is
obtained by converting the user primary key to bytes.

42

Figure 31 Password reset page.

Figure 32 Password reset after summit form.

Figure 33 After clicking URL receive in the mail.

Figure 34 Password change successfully.

43

• Contact page:

This is a form that the users can fill to send contact the admins via email, where
the user can request new stories based on their interest or if a story is already
published and it needs an enhancement or information update also can be
requested.

Figure 35 Contact page.

• Stories pages:

Is the core of the platform, each story is having a different narrative and different
graphs as well as the interactivity with the users, all the stories have in common
is a left panel with a general narrative and, on the right side a panel that when the
user select their preferences it gets updated in an asynchronous way using AJAX
so there is no need to refresh the page.

Each story has its own template (HMTL) following the structure of the left-side a
general narrative and on the right-side user inputs. Also, it variates in what the
users can make or interact with, for example in some stories they can choose a
time frame but in other stories, they can only choose the year, as for location is
concern sometimes the user can choose between countries, load ports or
discharge ports. The plots by themselves are interactive with these features:

• Download
• Zoom in.
• Zoom Out.
• Hover text.
• Reset pan.

44

• Turn on/off labels.

All the logic of these stories as was mentioned before are manage by the views.

Figure 36 Example of a Story #1.

Figure 37 Example of a Story #2.

45

5. Validation

For this application, manual informal ad hoc testing was performed to check the correctness

of the outputs. Each part of the application was tested to guarantee if the output was

consistent and the desired one. A manual test consists in execute manually the test cases

without the use of an automatic tool.

For the first part of the application the parsers, since the only scope of this part is to transform

the input data into DataFrames the outputs were meticulously inspected by taking random

pieces of data of the input file and see if the output DataFrame field matches them.

In the calculation part, the EST Lab had calculated the most important corridors like Russia,

Egypt, and Turkey. So, the output of the scripts was compared to the data provided by the

EST Lab to check for the correctness of the calculations. Also, some logs were dumped to

check if the sea routes make sense, as well as the coordinates of the ports, were given

correctly by the Nominatim API.

The web application was also informal tested and focus on feature and integration testing,

each feature was tested individually for correctness and integration with the system as well

as the integration of the database to the system. The User interface was tested to check for

missing links, invalid paths, or bad user inputs.

In general, the application limits the user inputs most of the choices the user can make are

dropdown menus, only the form for log-in and registration, the user can input data from the

keyboard to minimize SQL injection also the methods inside Django help to mitigate and

validate all the forms and inputs.

5.1. Data Collection Validation

As was mentioned before the validation done to these scripts was to select random data

from the file and compare if the output matches it.

For example in the parser_wgi.py, five of the most important countries for oil supply were

selected, Egypt, Russia, Turkey, United States, and Libya besides other five random to

analyze if the script was working correctly so it considers the country, indicator, and year

and extract the data and assert it. A similar approach was used for the other scripts such

as parse_piracy.py to see if the value of piracy was correct for country and

paser_alphatanker.py as well.

46

The custom files were created considering an easy translation into a DataFrames, the

custom files are Microsoft Excel or CSV files and were visually checked if both tables

match like for the parser_straits.py and parser_lvh.py.

5.2. Risk Index Calculation

For this part, the test cases were provided by the EST-Lab in which they had some

corridors already calculated. So, it was possible to assert these values with the output of

the script.

This part is very complex and uses an external program to calculate the sea routes

created by Eurostat the output of this program is considered valid. Also, this program

uses an input file with a for this there is a script java_input_csv_OSM.py that generates

this input.

The java_input_csv_OSM.py script uses the Open Street Map API called “Nominatim”

and there the way of test that the coordinates given were correct was done in two steps

one was manually taken random coordinates from the output of the script,

“java_input.csv”, and put them on Google Maps, also for this matter the most concurrent

ports were selected like CPC Terminal, Sidi-Kerir, Corpus Christi and Ceyhan. A log was

generated also to check if the API was unable to find a port as it has layers when it can

find the coordinates for a specific port as well of determine where the coordinates come

from, the second step is made when the calculation of the length of the intersection with

the EEZ Zone is done as it is compared with the EST-Lab test case file to determine if

start and end of the routes make sense if not there was a possible mistake with the

coordinates.

47

Figure 38 Java Input Log File

The validation of the intersection script “calculation_route_eez_intersection.py” a debug

CSV file was generated as it contains the same information of the DataFrame, which is

the countries the route traverse between the load and discharge port. Then was checked

if each route has a logical and congruent route. For the length of the routes, the EST-

Lab calculates some of them manually and the assert was made with these values. The

routes can be different since the algorithm optimize them, but the model can handle

these error margins since is based on a weight system.

Country Corridor name Type Country crossed Branch

Egypt Sidi Kerir-AU Open sea Egypt 461

Greece 789

Libya 166

Captive Egypt 450

Total

1866

Sidi Kerir-LI Open Sea Egypt 467

Greece 942

Libya 4

Tunisia 42

France 72

Captive Egypt 450

Total

1977

Sidi Kerir-TS Open sea Croatia 638

Egypt 453

48

Greece 1259

Slovenia 21

Captive Egypt 450

Total

2822

Table 4 Egypt Corridor provided by EST- Lab.

In table 4, it is possible to see the characterization of the corridor of Egypt provided by the

EST-Lab. The countries crossed and the branch lengths were the values compared with the

output of the script in figure 39 as it is possible to observe that the countries that corridors

traverse are the same and the values are in the margin of what is expected, is not possible

to do an exact match as the values calculated by the EST- Lab were done by hand using

the ruler of GIS software.

Figure 39 Output for the corridor Sidi Kerir-Trieste.

The process was done with all the corridor provided which are the most critical ones, is

important to mention that the longer routes like Corpus Christi in the United States to Italy

present a lot of discrepancies in the distances around 4000 kilometers, this because the

route the script calculates takes the shortest route possible, however after averaging the

weights in the next steps this error is minimized and do not affect the final calculation of the

corridor failure as it can be compared with table 5 and figure 40.

Corridor name Type Country crossed Branch
Corpus Christi/Huston -

TS
Open sea Algeria 1159

Bahamas 1232
Croatia 638
Cuba 653
United States 473
Portugal 1300

49

Malta 198
Mexico 550
Morocco 440
Spain 470
Tunisia 399
Open sea 5878

Captive Internal United States 3136
Total

16526

Table 5 Corpus Christi-Trieste provided by EST- Lab.

Figure 40 Output for the corridor Corpus Christi-Trieste.

50

Figure 41 Sample of the debug file of the intersection script.

Figure 41 contains a sample of the files created to debug the intersection of all the

corridors as it is not feasible to test all of them, at least it is possible to track the traversing

countries and make sense of them since the main corridors were already verified the

assumption is that all the corridors’ data is trustable.

The last script of this subsection is the calculation of the indexes and as like the last point

the results were asserted with the ones provided. The values asserted were the

geopolitical risk, with and without the piracy index involved, alpha normalizes coming

from the straits, and the most important the corridor failure. Corridor failure considers all

the data mentioned before as it is the last data of the chain.

51

Country Corridor name Failure

Egypt Sidi Kerir-AU 0.454

Sidi Kerir-LI 0.421

Sidi Kerir-TS 0.373

Table 6 Probability of Failure of main Egypt Corridors provided by EST-Lab.

Figure 42 Probability of Failure of Egypt corridors calculated by the script.

Egypt and Turkey are important corridors, so the data was provided to assert them, it is

possible to observe the values are not the same as the route’s length differs but are on

a safe range as well as the values for Turkey taking into consideration that Turkey has

more the one pipeline, so the probability of failure also depends on it as it can be seen

in table 7 and figure 43.

52

Country Corridor Name Probability of failure
Turkey Ceyhan-AU via BTC 0.418

Ceyhan-AU via ITP 0.427

Table 7 Probability of Failure of main Egypt Corridors provided by EST-Lab.

Figure 43 Probability of Failure of Ceyhan corridor calculated by the script.

5.3. Web Application

The Web application was tested in three different browsers to check compatibilities

issues such as Brave, Google Chrome, and Mozilla Firefox and not issues find the

application renders and run correctly.

The next section contains the test divided by areas done to the application.

5.3.1. User Interface

The user interface was tested as if a normal user is using it, all the navigation links

were tested to find missing links or loops, and if the navigation is intuitive itself.

All the navigation is working and there is no redundancy of the links nor any broken

link now in the pricing section the purchase buttons do not have any link associated

because the feature is not yet implemented, and the page is used as a placeholder

for future development.

53

When the user successfully logs the home page immediately change the login text

for log out and perform such action.

All the stories have interactive features where the user can select some features, the

selection is limited to dropdown menus and there is no keyboard input from the users.

Each option of the dropdown menu comes from a query so the input will exist and

there is no way the user can insert its input.

When a selection is done the side panel will be automatically updated and if the data

is not present on the database it will show the name of the selection an a 0, if it is a

plot, it shows an empty placeholder with the message there is no data for the

selection.

The user can interact with the plots, the interactive comes from the library plotly with

by itself if robust and will guarantee the functionality of its features.

5.3.2. User Authentication
For user authentication, the built-in system of Django was used which guarantee

validation of the user inputs as well as security for attacks as SQL injections. The

user authentication system also oversees validation of the user password like if it is

very short or common.

The sign-up page form, the user cannot submit a profile if all the fields are not filled,

otherwise, an alert will be rise, the email is check and email verification mail is sent

to the user to activate the account if the password does not match another error will

be raised. Also, Django is in charge of hashing the password with a salt and storing

it on the database, in case there is a data-leak, or some tries to still credentials, the

hashing algorithm used is the Password-Based Key Derivation Function 2.

The mail verification was tested several times as a user that is requesting a new

password or when the account is created, the token generated by the framework

works all the time and there are no issues with the creation of the mail itself and the

token. For this validation as there is no SMTP service active all the emails are sent

to the backend console as pure text.

As it is possible to see in table 6 for this test user created to test the platform the

password is hash and with the salt, it is almost impossible to brute force the plain text

password.

54

 Table 8 Database table for Users

Figure 44 Password mismatch error

55

Figure 45 Email or Password Log In fail

5.3.3. Models and Queries

The queries were done with the ORM provided by Django. An inspection of the model

file was done to determine if the import of the model was done correctly with all the

tables and attributes (primary key, foreign, key, unique constraint, etc.)

In the module, utils_query.py are functions with the most common queries used in the

project, the object “QueryObject” return by the application was transformed to a

DataFrame which is easy to work with, the resulting DataFrames were confronted

with the normal SQL commands typed on the PostgreSQL console to determine the

correctness of the data provided by Django.

The queries are simple and generic because are used in more the one template and

the transformation is done using Pandas methods. All the transformations were

inspected manually to guarantee the integrity of the calculations.

56

6. Conclusions

Data storytelling surrounds data with a narrative for a better understanding of it, as it

combines visualization, interactions, and storytelling to influence or enhance audience

engagement, and these elements can directly affect future decisions. It can be a great

technique and an integral part of the future decision-making process, through its clean,

interactive, and impactful body of work.

This thesis focuses on the problem of oil supply in Italy by providing energy stakeholders

with an Oil IST (Interactive Storytelling) scientific tool that is easy to use and accessible,

capable of transforming raw data from different sources, processing it, calculate the EST Oil

Risk indicators and, in the end, offer an attractive narrative that helps to better understand

what is happening in the context of oil supply to make faster and better decisions.

The careful design of the architecture and then the actual implementation of the application

resulted in the working prototype of a platform for data storytelling supporting the oil risk

supply data. The application can be further enhanced and transformed into a production-

ready system.

To conclude, the application was successful. It was designed and implemented, and every

part of the process was described in the thesis.

57

REFERENCES

[1] E. Desogus, Modelling the role of oil in the Italian energy security, Politecnico di
Torino, 2020.

[2] D. Kaufmann and A. Kraay, "Worldwide Governance Indicators," 2020. [Online].
Available:
https://info.worldbank.org/governance/wgi/Home/downLoadFile?fileName=wgidataset
.xlsx. [Accessed 10 October 2020].

[3] S. Kahur, "What is Data Storytelling?," 28 August 2021. [Online]. Available:
https://hackr.io/blog/what-is-data-storytelling.

[4] S. Tracy, "5 Examples of Awful Data Visualization," Analytical Blog, [Online].
Available: https://analythical.com/blog/examples-of-awful-data-visualization.
[Accessed 15 May 2020].

[5] C. D. Stolper, B. Lee, N. H. Riche and J. Stasko, "Emerging and recurring data-driven
storytelling techniques: Analysis of a curated collection of recent stories.," 2016.

[6] V. Analytics, "The Art of Storytelling in Analytics and Data Science," Vidhya Analytics,
8 May 2020. [Online]. Available: https://www.analyticsvidhya.com/blog/2020/05/art-
storytelling-analytics-data-science/. [Accessed 6 June 2020].

[7] A. Ojo and B. Heravi, "Patterns in award winning data storytelling: Story types,
enabling tools and competences.," Digital journalism, pp. 693-718, 2018.

[8] U. Erikson, "Functional vs Non Functional Requirements," 5 April 2012. [Online].
Available: http://reqtest.com/requirements-blog/functional-vs-non-functional-
requirements/.

[9] "Use Case Diagram," [Online]. Available: https://www.smartdraw.com/use-case-
diagram/. [Accessed 18 June 2021].

[10] "Use cases," Usability Gov, [Online]. Available: https://www.usability.gov/how-to-and-
tools/methods/use-cases.html. [Accessed 18 June 2021].

[11] S. Li, "Most People Can't Be Bothered to Download Apps," The Atlantic, [Online].
Available: https://www.theatlantic.com/technology/archive/2014/08/most-people-cant-
be-bothered-to-download-apps/378989/. [Accessed 5 June 2021].

[12] S. Jablonski, I. Petrov, C. Meiler and U. Mayer, Guide to Web Application and
Platform Architectures, Heidelberg: Springer, 2004.

[13] "MDN Web Docs," [Online]. Available: https://developer.mozilla.org/en-
US/docs/Learn/Common_questions/What_is_a_web_server. [Accessed 4 May 2021].

[14] "Framework," Techterms, 7 March 2013. [Online]. Available:
https://techterms.com/definition/framework. [Accessed 10 June 2021].

58

[15] "Django Architecture," Data Flair, [Online]. Available: https://data-
flair.training/blogs/django-architecture/. [Accessed 6 November 2020].

[16] "Pandas," Pandas, 25 January 2019. [Online]. Available:
https://pandas.pydata.org/pandas-docs/version/0.24.0/. [Accessed 10 June 2020].

[17] "What is Numpy," Numpy Org, [Online]. Available:
https://numpy.org/doc/stable/user/whatisnumpy.html. [Accessed 10 June 2020].

[18] "Bootstrap," What Is, [Online]. Available:
https://whatis.techtarget.com/definition/bootstrap. [Accessed 8 June 2021].

[19] "JavaScript," [Online]. Available: https://developer.mozilla.org/en
US/docs/Web/javascript. [Accessed 8 June 2021].

[20] "jQuery," [Online]. Available: https://jquery.com/. [Accessed 8 June 2021].

[21] "What is Ajax," w3schools, [Online]. Available:
https://www.w3schools.com/whatis/whatis_ajax.asp. [Accessed 8 June 2021].

[22] "Introduction of Ajax," [Online]. Available:
http://www.httpdebugger.com/articles/introduction_of_ajax.html. [Accessed 8 June
2021].

[23] L. P. Posadas, SICTE-11 Database Management System, School of Information and
Knowledge Management, 2016.

[24] "PostgreSQL," [Online]. Available: https://www.postgresql.org/about/. [Accessed 8
June 2021].

[25] "Legacy Databases," Django Docs, [Online]. Available:
https://docs.djangoproject.com/en/3.2/howto/legacy-databases/. [Accessed 15 June
2021].

