
Master of Science Degree in MECHATRONIC ENGINEERING

Master Thesis

UAV/UGV control and navigation
with smartphone

Supervisor:
prof. Marcello Chiaberge

Candidate:
Matteo Masuelli

S267486

27 July 2021

i

Abstract

This thesis project mainly concerns the use of a smartphone for controlling the flight of a drone.
Modern smartphones are mobile devices that combines the typical cell phone operations with a mo-
bile operating system. They are equipped with many hardware components and implement a lot of
software, internet and multimedia functionalities. They also contain sensors and systems that can be
used for estimating some states of the mobile device, such as its orientation.
Considering that a smartphone is equipped with many sensors and components that are usually present
on a drone, it would be possible to create a drone using a smartphone and a reduced number of ad-
ditional items.
The smartphone should measure its position and orientation and implement a software controller in
order to stabilize the drone vehicle and move it to a specific position. Its internet connection capabil-
ities could also be used for realizing a communication link with a control station.
In order to send the proper signals to the circuits that actuate the motors and implement a reliable
radio control link for sending commands to the drone, it is necessary to use an additional electronic
component. In this case an Arduino board is used.

This project is based on the previous thesis “Implementation of an autopilot for UAV/UGV sys-
tem based on Android smartphone” realized by Eros Giorgi.
The main purpose of this thesis is to analyze and extend the job made in the previous project in order
to implement an autopilot software on an Android smartphone and achieve the flight stability of the
drone. It is needed to discover how the smartphone samples data from its sensors and if it is suitable
for performing a task that usually is accomplished with a different type of hardware and software. At
the same time it is also important to improve the software running on the Arduino board, reducing
as much as possible the delays in the overall system.
In the end it is necessary to extend the funtionalities that work over the communication link between
the drone and the ground control station and implement an altitude and a position control.

ii

Acknowledgements

Prima di procedere con la trattazione, mi sembra doveroso dedicare qualche riga a coloro che mi hanno
supportato nel corso degli anni accademici.
Il ringraziamento più importante è dedicato alla mia famiglia. I miei genitori sono stati fondamentali
non solo per il supporto emotivo e morale, ma soprattutto per il sostegno economico.
Ringrazio i miei amici con i quali ho trascorso preziosi momenti di svago.
Infine desidero ringraziare il mio relatore Marcello Chiaberge ed i ragazzi del PIC4Ser, in particolare
Gianluca che è sempre stato disponibile nei momenti in cui avevo bisogno di aiuto.

iii

iv

Contents

1 Introduction 1
1.1 State of Art . 1

1.1.1 Quadcopter . 1
Mechanical structure . 1
Sensors . 2
Autopilot . 2
Communication . 3

1.2 Objective . 3
1.3 Summary . 3

2 Android OS 6
2.1 Android architecture . 7

2.1.1 Application framework . 7
Activity . 8
Service . 9
Content provider . 9
Broadcast receiver . 9
Intents . 9

2.1.2 Binder . 10
2.1.3 System services . 10

NDK . 10
2.1.4 Hardware abtraction layer . 11

Treble project . 11
2.1.5 Kernel . 11

2.2 Garbage collector . 12
2.3 Scheduler . 12

3 Android sensor 13
3.1 Sensor stack . 13

3.1.1 Application sensor framework . 13
3.1.2 Sensor HAL . 14
3.1.3 Sensor drivers . 15

3.2 Rotation vector sensor . 15
3.2.1 Sensor sampling rate . 16
3.2.2 Sensor latency . 16

3.3 Pressure sensor . 17
3.4 GPS . 18
3.5 Sensor direct channel . 18

4 Smartphone Application 21
4.0.1 AdkCommunicator . 22
4.0.2 MySensors . 22
4.0.3 Autopilot . 22
4.0.4 PidAngleRegulator . 22
4.0.5 Connection . 23
4.0.6 ConnectionVideoToGCS . 23
4.0.7 Photo . 23

v

Contents

4.0.8 SendDataToGCS . 24

5 Arduino board 26
5.1 Radio communication . 26

5.1.1 SBUS protocol . 26
5.2 Motors actuation . 27

5.2.1 I2C . 27
5.3 Timing . 28
5.4 Power supply . 28
5.5 Code implementation . 28

5.5.1 setup . 29
5.5.2 loop . 29

6 Ground control station (GCS) 32
6.1 Mavlink . 32

6.1.1 Messages . 32
6.1.2 Microservices . 33

6.2 QGroundControl software . 33
6.3 Network . 34

7 Hardware used 38
7.1 Smartphone . 38
7.2 Arduino Mega 2560 . 39
7.3 ESCs . 40
7.4 Motors . 40
7.5 RC . 41

8 Experimental results 43
8.1 System overview . 43

8.1.1 Manual mode . 43
8.1.2 Altitude regulated . 44
8.1.3 Automatic . 44

8.2 Manual mode test . 44
8.2.1 Roll . 45
8.2.2 Pitch . 45
8.2.3 Yaw . 46

8.3 Mavlink connection and video streaming test . 47

9 Conclusions 50
9.0.1 Future improvements . 50

Bibliography 51

A JavaCode 54
A.1 androidAutopilot Package . 54

A.1.1 AdkCommunicator . 54
setSerialPort . 54
onReceiveData . 54
setPowers . 55

A.1.2 Autopilot . 55
Autopilot thread . 55

A.1.3 MySensors . 57
onSensorChanged . 57
locationListener . 58

A.1.4 PidAngleRegulator . 58
getInput . 58
getMainAngle . 59

A.2 androidGroundControl Package . 59
A.2.1 Connection . 59

vi

Contents

Connection thread . 59
A.2.2 SendDataToGCS . 66

sendSensorsData . 66
sendBatteryStatus . 66
sendGpsData . 66
sendHeartbeat . 67

A.2.3 Photo . 67
Photo constructor . 67
openCameraThread . 68
stateCallback . 68
captureSessionCallback . 68
imageAvailableListener . 68

A.2.4 ConnectionVideoToGCS . 69
ConnectionVideoToGCS thread . 69

B Arduino Code 70

vii

List of Figures

1.1 "+" and "X" quadcopter configurations . 2
1.2 Roll, pitch and yaw movements . 2

2.1 Current Android logo . 6
2.2 HTC Dream . 6
2.3 Android system architecture . 7
2.4 Activity lifecycle . 8
2.5 Binder communication . 10
2.6 Android update before version 8 . 11
2.7 Android update after version 8 . 11

3.1 Android sensor stack . 14
3.2 Rotation vector sensor reference system . 16
3.3 Sampling frequency of 200 samples . 17
3.4 Sensor delays of 50 samples . 17
3.5 Sensor delays of 2000 samples . 18

5.1 Noisy and filtered signal using PWM communication 27

6.1 QGroundControl main window . 34
6.2 WiFi network configuration . 34
6.3 Mobile network configuration . 35
6.4 GCS "hidden" behind a NAT . 35

7.1 Google Pixel 4 . 38
7.2 Arduino Mega 2560 . 39
7.3 ESCs front/back board and power distribution . 40
7.4 RC . 41

8.1 Manual mode control scheme . 43
8.2 Altitude regulated mode control scheme . 44
8.3 Automatic mode control scheme . 44
8.4 Roll response . 45
8.5 Roll error . 45
8.6 Pitch response . 46
8.7 Pitch error . 46
8.8 Yaw response . 47
8.9 Yaw error . 47

viii

ix

Chapter 1

Introduction

A “UAV” (unmanned aerial vehicle) [1] is a aircraft designed and realized to accomplish some tasks
in a totally or partially autonomous way. They are commonly known also as drone.
The main interesting characteristic of this type of vehicles is that they are able to fly and carry out
some operations without a pilot on board. Drones are often driven by onboard systems commonly
called autopilots but they can also be manually controlled by a human operator on the ground. It is
possible to adopt a mixed strategy where some operations are done automatically, while other tasks
are accomplished by a human operator on the ground.
Originally UAV vehicles were employed mainly in the military field where they were used in order
to perform some dangerous operations. In the last years they started to be used also for other
applications in civil and commercial fields, such as product delivery, agriculture, aerial photography
and surveillance.

1.1 State of Art

1.1.1 Quadcopter
Regarding the UAV vehicles used by civilians, today the quadcopter [2] or quadrotor type is the most
popular.
Their small size and low inertia allow them to be more easily controlled respect to other kind of UAV
systems.
During the last years, advances in the electronics brings cheaper, lighter and smaller flight controllers,
sensors, positioning systems and cameras. Quadcopter started to be equipped with these new compo-
nents, becoming less expensive and also more accessible to most of people. As a result, today drones
can be very lightweight and small, so they have a low kinetic energy. This features improve their
maneuverability and reduce their ability to cause damages to people. They could also be used not
only in a outdoor environment, but indoor too.

Mechanical structure

A quadrotor UAV is composed of a mechanical structure, which includes a frame, wings and motors.
In order to actuate the motor, it is usually necessary to use a ESC (electronic speed controller). The
combination of motor and wing can also be addressed as a rotor.
Typically a quadcopter can have two possible configuration: a “X” configuration and a “+” configura-
tion. The “X” configuration is considered to be more stable, while the “+” is more used for acrobatic
fly. In our project we will focus on the "X" configuration.
Quadcopters usually have two rotor spinning counterclockwise and two clockwise. Each rotor pro-
duces a lift force and the contribution of forces from all the four rotor allows the quadcopter to hover
or change its altitude counterbalancing the gravitational force. In theory during the hover movement
all the four rotors spin at the same angular velocity, but it does not happen because it is necessary
to stabilize the orientation of the drone. In order to change the orientation of the quadcopter it is
necessary to change the spinning velocity of only some rotors respect to the others. According to
figure 1.2, it is needed to increase the speed of motors 2 and 3 respect to the speed of motor 1 and 4 in
order to have a positive direction roll movement about the X reference axis and viceversa to obtain a

1

Chapter 1. Introduction

Figure 1.1: "+" and "X" quadcopter configurations

negative direction roll movement. The same principle can be applied for a pitch movement: increasing
the speed of motors 1 and 2 respect to the speed of motors 3 and 4 allows the drone to carry out a
positive pitch movement and viceversa to have a negative direction pitch movement. On the other
hand the yaw movement can be achieved by modifying the velocity of two motors that spins in the
same direction. It means rising the speed of motors 1 and 3 respect to the speed of motors 2 and 4 or
viceversa.

(a) (b)

Figure 1.2: Roll, pitch and yaw movements

Sensors

It is always necessary to measure some quantities about the state of the drone, which obviously must
be equipped with some sensors. The quantity and the quality of sensors present on the board can be
referred with the Degree Of Freedom (DOF). 6 DOF implies a 3-axis gyroscope and accelerometer,
which corresponds to a typical IMU (inertial measurement system). 9 DOF means an IMU plus a
compass or magnetometer, 10 DOF adds a barometer and 11 DOF implies the usage of a GPS receiver.
All the raw data obtained by a sensor must be fused in order to obtain a good estimation of a particular
state of the quadcopter, such as its attitude or position.

Autopilot

The autopilot or flight stack is the UAV software that uses the data collected by the sensors and
applies a proper control strategy in order to send the appropriate commands to the motors, ensuring
the flight stability of the drone and the execution of the necessary tasks and duties.
The most common control algorithm is the PID.
Most of the available flight stack provides open source software. This characteristic implies that the
the software is not only accessible to everyone, but it is also possible to change it or customize it for
executing specific tasks.
In order to have a stable UAV vehicle the autopilot software is required to be real-time because the
system has to have a rapid response to the changing sensor data. As a matter of fact a drone is a
system that is intrinsically unstable. Errors or delays in the system could easily lead the system to
become unstable, causing the fall and the crash of the drone.

2

Chapter 1. Introduction

Communication

Most of UAV vehicles are equipped with software and hardware used for the communication tasks,
usually controlled by a ground control station (GCS). There are different kind of communication link
that can implemented. In general the control link is used to send commands to the drone in order to
manage its movements. It is normally implemented with a radio link. The control link must be reliable
and with low delays. A secondary control link can be implemented using a satellite communication
that is less reliable respect to the radio link. It is important because it can be used if the primary
control link fails. In general the ground control station implements also a data link, which can be
used for the exchange of telemetry data containing important informations about the condition of the
UAV vehicle, video streaming and other functional data.

1.2 Objective
Continuing the job done and described in the thesis “Implementation of an autopilot for UAV/UGV
system based on Android smartphone”[3], the principal objectives of this thesis are:

• analyze the Android operating system with a particular focus on the sensor data acquisition.
Android is not a real time operating system, so in theory it would not be suitable for accomplish
a drone autopilot tasks. As a result, it is necessary to discover if the Android operating system
injects some delays, trying to reduce them or mitigate their effects in order to have a working
autopilot flight software running on an Android application. Moreover most of control algorithms
are based on the fact that the sampling rate is constant, so it would be appropriate to investigate
if it is possible to achieve a constant sampling rate on Android

• improve the autopilot Android application, reducing the delays and discovering possible bugs

• improve the Arduino software that operates as an interface between the Android application,
motors and the human operator. In particular it is necessary to find an optimal way to handle
all the necessary operations without slowing down the system

All these steps must be taken with the main intent of obtaining the flying stability of a UAV quadcopter
controlled by an autopilot software running on an Android application.
In addition it is necessary to improve the communication link with the ground control station and
the quality of video streaming and photos without causing problems to the autopilot tasks. The final
goal would be to completely replace the usual autopilot software and hardware normally placed on a
drone with only an Android smartphone and all the other components necessary for the actuation of
the motors and the communication with a human operator.

1.3 Summary
The main goal of this thesis project is to realize a drone whose autopilot software runs on an Android
smartphone.
The first chapter contains an overview of the Android operating system, with a description of all the
software layers that, put all together, form the Android operating system. Android runs on many
different devices and one of its main intents is to virtualize the underlying hardware components.
Using this approach the Android application developing becomes easier and application developers do
not have to worry about the hardware and internal system components and architecture. In addition
Android operating system implements internally a lot of functionalities and makes them available to
the developer as services. For example, Android implements internally the appropriate computations
needed for directly providing the attitude measurements of the device. In general Android makes
available a lot of classes and functions that can be used to structure an application at a high level,
but this approach has the drawback of making difficult to access some low level system components.
Anyway it is possible to access some low level software functionalities writing an application in native
code, but they are mainly related to multimedia, graphical and pure computational tasks.
In the second chapter the main focus are the sensors, how Android provides sensor data, the sensors
sampling rate and sensors latency. Considering that Android is not a real time operating system
and sensor data are made available by system services, the sensor sampling rate is not perfectly
constant and sensor latency is not zero. A new sensor sampling modality Android has just introduced

3

Chapter 1. Introduction

is described, even if it cannot be currently implemented. This new modality should provide faster
sampling rate and lower latencies.
The following chapter contains a description of the Android application implemented. The application
is divided in many different Java classes, each one focused on a specific functionality. On the other
side it is possible to see the application as a group of different threads that run in parallel, where
the most important one is responsible of implementing the control algorithm in order to obtain the
appropriate motor commands and stabilyze the flight.
In the fourth chapter the main focus is the Arduino board. A description of all its funtionalities and
how they are implemented is provided. Arduino board represents an interface between the Android
smartphone, ESCs circuits that control the motors and the radio controller that is used for sending the
control commands to the drone. The SBUS protocol is used for receiving commands from the radio
link and the I2C protocol is used for sending the appropriate motor commands to the ESCs. On the
other side the communication with the Android smartphone is realized through a USB connection.
In the fifth chapter the communication between the Android application and a GCS(Ground Control
Station) is described. In this project the GCS is a computer running QGroundControl, a software
that is usually adopted for implementing the communication between a GCS and different autopilot
softwares normally used on drones. The communication channel is implemented using the MavLink
communication protocol working over a TCP connection. It is mainly used for sending telemetry data
to the GCS and implementing a mission planner. In addition it is also possible to set or change some
parameters of the autopilot software from the GCS. A video-streaming and a photography functionality
are implemented too. The communication link can work over a WiFi network or a mobile network.
In the following chapter the hardware used in order to realize a working prototype of the drone is
shown. In the end the experimental results and the conclusions are presented.

4

5

Chapter 2

Android OS

Figure 2.1: Current Android logo

Android [4] is a mobile operating system, mainly designed for touchscreen devices, like smartphone
and tablet. Android is developed by a consortium of developers called Open Handset Alliance and it is
commercially sponsored by Google. It is free and open-source software, even if most of devices contain
additional proprietary software pre-installed, like the well-known Google Play Store. From the Google
Play Store users can download software packages, commonly called applications, and install them
on their own Android devices. Android was presented in November 2007 and the first commercial
Android devices was launched in September 2008. It was an HTC Dream device.

Figure 2.2: HTC Dream

Several variants of Android have been developed for different types of devices, including, for example,
Android TV for televisions and Wear OS for wearable devices such as wrist watches. Anyway Android

6

Chapter 2. Android OS

operating system is mainly installed on smartphone and today is the most used operating system on
phone.

2.1 Android architecture
Android system is composed of many different parts [5]. Different components belong to different
layers of the system, going from the upper application framework layer to the lower Linux kernel
layer. A lower layer is more related to the device’s hardware components, while the upper layers are
more related to the Android applications used by the final user.

Figure 2.3: Android system architecture

2.1.1 Application framework
Application framework is formed by Java APIs, which are the building blocks needed to create an
Android application [6], that can be written using Java, C++ or Kotlin programming languages.
Android developers have full access to these APIs through the software development kit (SDK). The
Android SDK compiles the code along with all the needed data and files, generating an APK
(Android Package) file. The APK file is an archive file containing all the resources an Android
specific device needs in order to install the application.
Each Android application lives in an isolated enviroment. The Android operating system is a
multi-user Linux system and each application is a different user, which normally can access only its
private resources.

An Android application can be composed of 4 different components:

• Activity

• Service

7

Chapter 2. Android OS

• Broadcast receiver

• Content provider

Each component has a different function and behaves in a different way respect to the others.

Activity

An activity [7] represents a single screen with a user interface and it is the main responsible of the
interaction between the Android application and the user. In the mobile Android enviroment an
application does not have one single entry point. In other words there are many different ways for
launching an application. For example an application can be launched manually by the user clicking
on its icon or it can also be launched by another application. The activity component is built in order
to facilitate this kind of behaviour. Anyway an activity is not intended to continuosly provide data
because it can be easily replaced by another activity when the screen is changed. After this thing
happens, it can be easily sent to sleep by the operating system.
As the user navigates through, back to or out of an application, the activity components pass through
several states during their lifecycles [8]. Every time the activity’s state changes, a specific callback
function is called. The callbacks must be implemented by the developer.

Figure 2.4: Activity lifecycle

• Oncreate callback is called when the activity is launched and the system creates it. In this
callback it is necessary to perform some basic startup operations that will be executed only
once for the entire activity’s lifecycle. It is also possible to frozen the state of an activity before
putting the activity in the background. In this callback the frozen state can be restored.

• OnStart callback is called when the activity starts becoming visible to the user. Inside this
callback the code responsible for the user interface is initialized.

• OnResume callback is called when the activity comes to the foreground and starts interacting
with the user. The app stays in this condition until something takes the focus away, like, for
example, another activity coming in the foreground.

8

Chapter 2. Android OS

• OnPause callback is called when the activity starts leaving the foreground, being replaced by
another one. Inside this callback some operations that do not have to continue executing can
be paused.

• OnStop callback is called when the activity is no longer visible in the foreground. In this callback
some operations that do not have to run while the activity is in background could be stopped.

• OnDestroy is the final callback before the activity is destroyed. It happens when the activity
finishes its task or when the system choose to close it in order to free memory space, but also
when the device changes the configuration. This last thing happens, for example, when the
orientation of the Android device changes. This callback is usually implemented in order to
release all the resources used by the activity.

In general the operating system kills a process if it needs to free RAM memory. Concerning an activity,
its probability of being killed depends on it current state. A destroyed or a background activity can
be killed by the system more easily respect to an activity in the foreground.

Service

For performing long duration operations running in the background Android offers the Service com-
ponent. Another component can open a connection to a service and performs interprocess communi-
cation. There are 3 different kind of services:

• Foreground services continuosly perform some operations even if the user is not interacting with
the application, but their activity must be noticeable to the user displaying a notification

• Background services perform tasks that are not directly visible to the user

• Bound services are used in order to provide a client-server interface that allow different compo-
nents to interact with the service exchanging some data or requests. The components may be
in the same process, but they can also belong to different processes.

As for the activity component, the service lifecycle can be controlled by implementing some callback
functions that are called when the service changes its state.

Content provider

Service are used in order to perform long duration tasks, but they are not suitable for hold persistent
data, like storage files. Content provider components solves this problem, helping the developer in the
data management part. Content providers are the standard interface used to share persistent data
between processes, providing data security mechanism.

Broadcast receiver

Android application can send or receive broadcast messages sent by the Android operating system
or other applications when some events occur. An application can subscribe to a specific broadcast,
choosing to receive it. Then the application will be able to receive only the type of broadcast messages
it subscribed to. The Android system automatically sends broadcast message when certain type of
event occurs, such as when the device starts charging or the screen is turned on.

Intents

Different components of Android applications can exchange data and messages using a mechanism
called Intent [9]. Intents are a form of interprocess communication and can be used to request an
action from another application component. They are mainly used for 3 different thing: starting
an activity, starting a service or sending broadcast messages. An intent contains a dataframe which
provides informations about the components that the intent should receive , the action to be performed
and secondary informations about how to carry out the requested action.

9

Chapter 2. Android OS

2.1.2 Binder
Binder [10] Inter Process Communication mechanism allows the application framework to cross process
boundaries and call into Android system service code. In Android one process cannot normally access
the memory of another process. Every application runs in its own process and is not allowed to
directly access the memory of another application or system components. As a result, appropriate
inter process communication procedures has been implemented in order to access the system services
lower layer. This communication between the framework and the system services is hidden from
the developer. However developers can implement a Binder inter process mechanism if they have
to develop an application that must implement an exchange of data between a client and a service
belonging to different high level applications. Binder is based on a client-server model. A client

Figure 2.5: Binder communication

can start a communication with the server and wait for a response. The client uses a proxy for
communicating with the Binder driver, which belongs to the kernel. The server has to implement a
proper interface in order to accept call from the clients and implements different threads in order to
handle different communications at the same time. In this way the Binder mechanism allows to call
a remote method that belongs to a different process as if it would be a local method belonging to the
same process[11]. In general a process act as both a server and a client.
Android Interface Definition Language (AIDL) is used for implementing interfaces. It is used for
writing .aidl files that a build system translates into the Java or C++ source files that implements
the classes responsible for Binder communication.

2.1.3 System services
System Services are modular components. Each one is focused on specific functionalities. The ap-
plication framework gains access to system services thanks to Binder inter process communication
mechanism. In this way the system services make the functionalities brought by the underlying hard-
ware available to the application framework.
Many core Android system components and services are built with native code that required native
libraries written in C and C++. The Android framework provides Java API to expose the function-
alities of some of these native library. If it is necessary to develop an application using C or C++, it
is possible to use Android NDK (Native Development Kit) instead of the SDK.

NDK

The NDK[12] allows to access some of the native library directly with C or C++ code. Writing
applications using C or C++ through NDK platform could be useful if it is necessary to run compu-
tationally intensive operations or to achieve low latency. In general it could be used to improve the
performance of an Android application.
An Android application written in C or C++ code is called native. It means that it is compiled for
running on a particular hardware platform. On the other hand a program written in Java language
run on a virtual machine that accepts only Java bytecode. When it is necessary to access some low

10

Chapter 2. Android OS

level operating system mechanisms from the Java code the Java Native Interface (JNI) must be used.
Using JNI it is possible to call code written in native language from the Java code.

2.1.4 Hardware abtraction layer
Hardware Abstraction Layer (HAL) is a standard interface that hardware vendors must implement.
It provides an abstraction of the lower lever driver implementation and allows Android to be agnostic
respect to the them. HAL implementations are packaged into modules and loaded by the system at
the appropriate time.

Treble project

With the release of Android 8, the architecture of the Android operating system has been modified
carrying out a project called "Treble". In particular, the HAL Interface Definition Language (HIDL)
has been introduced. HIDL separates the Android framework and the system services from the lower
level software implemented by the hardware vendors. Before the release of Android 8, the interface
did not provide a clear separation between the framework and the low level vendor implementation.
When the Android operating system had to be updated, the vendor implementation required to be
modified too. After the release of Android 8 it is not necessary to change the vendor implementation
and only the Android operating system must be updated.

Figure 2.6: Android update before version 8

Figure 2.7: Android update after version 8

2.1.5 Kernel
Android uses a version of the Linux kernel with a few additions such as Low Memory Killer (a memory
management system that is more aggressive in preserving memory), Wake Lock (a power managing
software mechanism, used to wake up the device when it is needed), the Binder IPC mechanism and
other features important for mobile embedded platform. These additions are related to system func-
tionalities and does not affect drivers development. For this reason the driver development on Android
is very similar to driver development on Linux.
Concerning an Android smartphone, the drivers are almost always realized by the hardware manufac-
turer and proprietary. There are some Android distributions that are almost completely open-source,
but the drivers usually are proprietary. There is one distribution called Replicant that is completely
open-source, but it is supported by few old devices and it has a lot of bugs and problems.
The Android operaing system is based on a Linux kernel, that was created in the 1991. Along all
these years the Linux kernel has been used by a lot of users. It has been constantly improved and
fixed by thousands of developers and today it is considered a trusted kernel by many corporations and
security professional. As a result Android has inherited a lot of security key features from the Linux
kernel.

11

Chapter 2. Android OS

2.2 Garbage collector
In the Android operating system the garbage collector is responsible of the dynamic memory man-
agement[13]. It keeps track of every memory allocation and reclaims the memory resources that are
no longer needed because they cannot be accessed anymore.
The objects are allocated in the memory heap, which is divided into different regions. Every object
belongs to a region depending on its expected life and size. For example, recently allocated objects
belong to the young generation group. When an object stays active long enough, it is promoted to
an older generation. Every generation region has its own upper limit on the amount of memory that
can be occupied. When a generation region starts to fill up, the system runs the garbage collection
operation and free up the unusued memory.
The garbage collection operations can affect the application performance. Generally it is impossible
to know when a garbage collection occurs and how much time it takes to run. The system determines
when the garbage collector must perform its job relying on a internal set of criteria. When criteria
are satisfied, the system blocks the current process execution and starts the garbage collection. The
executing Android application is literally stopped, causing delays.

2.3 Scheduler
The scheduler used by the Android operating system is the Completely Fair Scheduler(CFS). CFS
has the objective of providing balance between tasks assigned to the processor and aims to maximize
the overall CPU utilization, maximizing the interactive performances.
The CFS scheduler tries to guarantee a fairness in the execution time dedicated to each process. In
order to accomplish this task, the scheduler needs to keeps track of the execution time dedicated to
each process.
In general the priority an application gains depends on where the application is in the app lifecycle
and if the application is in background or in foreground. An application in foreground gets about 95
percent of the total execution time of the device.

12

Chapter 3

Android sensor

Most of Android smartphone have many different built-in sensors[14]. Some of them are hardware-
based and some are software-based.
Hardware-based sensors are physical component placed inside the device. They are MEMs (Micro-
Electro-Mechanical system) chips and provides raw data measurements, but sometimes they can pro-
vide some logic in order to perform usual computation. In many cases different kind of sensors are
present on the same chip.
Software-based sensor are not physical component, but they provides data derived from raw mea-
surements coming from others hardware-based sensors. They can also be called virtual or synthetic
sensors.
Android supports different kind of sensors, but not every Android-powered devices has every type
of sensor. Each Android sensor has an official type defined in a file sensors.h in the Android source
code. The type of a sensor describes how the sensors behaves and what data it provides. Most of
sensors placed inside Android-powered devices are official, so they are tested and there is an official
documentation.
Regarding physical sensors they can be accelerometers, gyroscopes, magnetometers, barometer, hu-
midity, pressure, light, proximity and heart rate sensors. Also camera, fingerprint sensor, microphone
and touch screen could be considered as physical sensors, but they are accessed with different specific
mechanisms.

3.1 Sensor stack
Android applications can easily gain access to sensor data thanks to the Android sensor stack[15],
which provides an abstraction of the sensor hardware and of the low level software necessary to
use and control the hardware. The sensor stack is composed of different layers and each layer can
communicate with the layer immediately above or below it.

3.1.1 Application sensor framework
An application can access sensor using SDK (Software Development Kit) APIs. They contain func-
tions that allow a developer to discover the sensors available and acquire data from them. These
functions belong to the Android sensor framework that is composed of various classes and interfaces.

• The class SensorManager[16] can be used to create an instance of the sensor service. It contains
different methods used to list available sensors and register or unregister sensor event listeners.
In order to obtain data from a specific sensor, it is necessary to register to a sensor event listener.
The class SensorManager contains constants that can be used to set sensor parameters, such as
sensor accuracy or sensor acquisition rate.

• The SensorEventListener[17] is an interface which must contain the implementation of two func-
tions: onSensorChanged and onAccuracyChanged.
The first is very important because it is a callback that is called every time a new sensor event
containing sensor data is available. Inside the implementation of this functions, the developer
should implement the code responsible of reading the sensor data. If it is necessary, it is possible

13

Chapter 3. Android sensor

Figure 3.1: Android sensor stack

to carry out some operations or calculations on the sensor data just read, but it is not advisable
to perform long and computationally intensive operations inside the callback. OnsensorChanged
callback could be called quite often and should not be blocked in order to avoid losing of data
or long delays.
OnAccuracyChanged is called every time the accuracy of the sensor changes.

• The class Sensor[18] can be used to obtain an instance of a specific sensor. This class has various
methods that can be used for obtaining informations or set some parameters about a specific
sensor.

• The class SensorEvent[19] is used to create an instance of a sensor event object, which contains
the sensor data and information about the accuracy of the data, the type of sensor that has
generated the data and the timestamp of the event.

The framework layer allows different application to gain access to the same sensor. Without it, only
one single application could use a specific type of sensor.
It is important to notice that Android makes available a system sensor service the developer can
register a listener to. The sensor service resides in a isolated process, so it is impossible to directly
access the sensor data inside the sensor service. The sensor data can be accessed by the developer
only when a specific callback function is called.

3.1.2 Sensor HAL
The sensor HAL (Hardware Abstraction Layer) is the layer between the hardware drivers and the
framework. It define the functions that must be implemented to allow the framework to access
sensors. The implementation is realized by the hardware manufacturer. Different versions of sensor
HAL can be implemented.
With the release of Android 10, sensor HAL 2.0[20] has been introduced. It is based on the previous
sensor HAL 1.0, but there are some key differences that prevent sensor HAL 2.0 from being backward
compatible. One of the main differences between sensor HAL 1.0 and sensor HAL 2.0 is the different
type of IPC (Inter-Process Communication) mechanism that is used in order to exchange data between
the HAL layer and the framework layer. Sensor HAL 1.0 uses the mechanism called Binder that
requires kernel operations and can also involves the scheduler. On the other hand, sensor HAL 2.0

14

Chapter 3. Android sensor

uses an inter-process communication mechanism called Fast Message Queue (FMQ) that does not
involve kernel and causes less overhead. In order to send data from the HAL 2.0 to the framework,
a Event FMQ is created. Sensor data can be written to the Event FMQ, but they can be read only
at the framework level. This imply that it is not possible to read sensor data directly from the HAL
layer. The exchange of sensor data is synchronized with the use of proper functions and flags.
It is also possible to run two different kind of sensor HALs at the same time using a framework
called Sensor Multi-HAL. A sensor HAL can be stored inside a device as a shared library that can be
dynamically loaded during execution by the sensor Multi-HAL framework.
At the HAL level sensors can generate events in different ways called reporting modes[21]. Each sensor
type has only one reporting mode associate with it. Four reporting modes exist.

• In continuous mode events are generated at a constant rate defined by a sampling_period_ns
parameter passed to a function. For example accelerometers and gyroscopes use this reporting
mode.

• In on-change mode events are generated only if the measured value has changed. When a on-
changed sensor is activated, an event is immediately generated. Example of sensors using the
on-change reporting mode are the step counter, proximity, and heart rate sensor types. In this
case the sampling_period_ns parameter indicates the minimum amount of time between two
consecutive events.

• In one-shot mode the sensor detects an event, deactivate itself and then send a single event
through the HAL. No other events are sent until the sensor is reactivated. For example significant
motion sensor belongs to this kind of sensors.

• Special mode reporting mode exists too. Step detector and tilt detector sensor use this type of
mode. Respectively an event is generated each time a step is taken by the user and each time a
tilt movement is detected.

3.1.3 Sensor drivers
Below the HAL layer there are the drivers that interacts with the physical devices. Drivers are
proprietary and the source code is not available.
In some cases it is possible to have a sensor hub, used to perform some low-level computations at low
power in order to reduce the power consumption and to avoid draining device’s battery, allowing the
main SoC (system on a chip) to stay in a low power mode. The sensor hub can be a single separate
chip or can be placed inside the main Soc. Some sensor hubs contain a microcontroller used to perform
some computations.
A sensor hub can implement batching too. It consists of buffering sensor data in the sensor hub or in
a hardware FIFO buffer and allows to save power by sending sensor data to upper stack layers only
when there are many sensor data in the buffer.

3.2 Rotation vector sensor
In our application it is necessary to measure the attitude of the smartphone using the rotation vector
sensor. This measurement is the most important one because it is used for implementing the attitude
control algorithm that is the main responsible of the stabiliy of the drone.
It is a virtual sensor whose data are obtained using the raw data of the built-in accelerometer, mag-
netometer and gyroscope. The rotation vector sensor gives as output a vector composed of 4 elements
that are equal to the components of a unit quaternion, that can be converted into the roll, pitch and
yaw values using the functions getRotationMatrixFromVector and getOrientation made available
by the Android sensor framework. In this way it is possible to measure the orientation of the device
respect to a coordinate reference system. The coordinate reference system used by the rotation vector
sensor has the following characteristics:

• Z axis points toward the sky and is perpendicular to the ground plane

• Y axis points toward the geomagnetic North pole and it is tangential to the ground

15

Chapter 3. Android sensor

Figure 3.2: Rotation vector sensor reference system

• X axis is defined as the vector product Y x Z. It is tangential to the ground

Android sensor service implements internally a sensor fusion algorithm in order to compute the attitude
of the smartphone using the data coming from accelerometer, magnetometer and gyroscope. The
sensor fusion algorithm consists of a Kalman filter.

3.2.1 Sensor sampling rate
One of the main objective is to discover what is the maximum sensor sampling rate allowed in the
Android system and if the sampling rate is constant or not.
The easiest way to find the maximum sampling rate of a specific sensor is to use the getMinDelay
function of the Sensor class. In this case we will focus on the rotation vector sampling rate. This
function returns the minimum time interval in microseconds a sensor can use to acquire a data, whose
reciprocal is the maximum sampling rate. The sampling period can be set by the developer changing
the corresponding parameter in the function registerListener. Anyway the sampling period set is
only an hint and Android system or application can alter this period.
The real sampling time can be found using two timestamp values located inside two SensorEvent
objects containing two consecutive sensor data acquisition. Setting a desired sampling frequency of
200 Hz we can see that the real sampling frequency is about 203 Hz. There are some sensor acquisitions
whose sampling frequency drops to 199 Hz. Moreover the sampling frequency is not perfectly constant
and there are oscillations between 202.4 Hz and 203.6 Hz. This behavior coincides with what is written
in the Android documentation. Inside the documentation it is written that the system tries to held
a sampling frequency a little higher than the one set, but it is not guaranteed that the sampling
frequency will be always equal or higher respect to the one requested.

3.2.2 Sensor latency
Using the registerListener function it is possible to set also the desired latency, that is the delay
between the sensor data acquisition and the time when sensor data are available. By default the latency
is set to zero. The timestamp value of a sensor acquisition is synchronized with a clock signal with a
nanosecond time base. The same clock can be retrieved using the function elapsedRealTimeNanos[22].
In order to measure the real sensor data latency of the rotation vector sensor it is needed to call the
elapsedRealTimeNanos function inside the callback function where we can access the sensor data.
Computing the difference respect to the timestamp value of a sensor data acquisition, it is possible
to see from figure 3.4 that a delay of about 6 ms is present, even if the latency set is equal to zero.
In addition the delay is not constant. As we can see from figure 3.5, the delays can also have spikes,
reaching higher values. The onSensorChanged callback where it is possible to access sensor data is
called automatically by the system and it is not possible to decide when to call it.
It could be useful to write an application in C++ using the Native Development Kit(NDK) in order
to improve the responsiveness of the system and reduce the sensor latency. The NDK includes some
native libraries: one of these library called libandroid contains a module[23] that can be used to access

16

Chapter 3. Android sensor

Figure 3.3: Sampling frequency of 200 samples

sensor data using C++ code. Anyway no latency improvement has been achieved. This means that
the NDK API used to access the sensor with C++ code has the only function of mimic the same API
used to access sensor data using Java code.

Figure 3.4: Sensor delays of 50 samples

3.3 Pressure sensor
The pressure sensor is used for measuring the altitude of the drone in order to stabilize the drone
around a target altitude position using a PID controller. This sensor gives as output the atmospheric
pressure in millibar. In order to convert the pressure measurement to an altitude measurement it is
necessary to call the getAltitude function made available by Android sensor framework. The func-
tion takes as input parameters the pressure measurement and a parameter representing the pressure
at sea level. It is possible to manually set the pressure at sea level or use an average standard value
provided by the Android system. The standard value represents an approximation of the real pressure

17

Chapter 3. Android sensor

Figure 3.5: Sensor delays of 2000 samples

at sea level, so the absolute altitude measurement will be inaccurate. Considering that it is mainly
needed to compute the altitude differences between 2 points, the error caused by the approximation
of the pressure at the sea level is negligible.

3.4 GPS
Android provides GPS measurements that can be used for location purposes. In this project the GPS
is needed for implementing the position control, realized using 2 PID controller.
In order to access location services provided by Android operating system, it is necessary to use the
class LocationManager provided by the Android framework. The LocationManager[24] class provides
the requestLocationUpdates method that can be used for requesting location data.
It is not possible to set a specific sampling frequency for the GPS measurements. The requestLocationUpdates
function accepts as input parameters a time value representing the minimum time interval between 2
consecutive location samples and a distance value indicating the minimum travelled distance between
2 consecutive location samples.
When the location data are available, a specific callback is called and it is possible to access a Location
object containing the latitude and longitude coordinates of the current position.

3.5 Sensor direct channel
Android operating system makes available a sensor sampling modality which should reach very high
sampling rate (about 800 Hz), providing sensor data with low latency. It is called sensor direct
channel[25].
This modality involves the use of a memory buffer that can be accessed by different processes and
various hardware units such as sensors, GPU (Graphical Processor Unit) or other auxiliary processing
unit. In this case sensor data are saved inside the shared memory region and can be accessed and
read by the GPU.
Firstly it is necessary to set up the sensor direct channel modality. In particular the memory buffer
has to be allocated in the proper way in order to accept sensor data. Once the sensor sampling is
configured, it is necessary to read the sensor samples from the shared memory region.
Sensor events will be added into a queue formed by the shared memory region. Each element of the
queue has size of 104 bytes and represents a sensor event. The data structure of an element (all fields
in little-endian) is:

18

Chapter 3. Android sensor

Offset Type Name
0x0000 int32_t Size (always 104)
0x0004 int32_t Sensor report token
0x0008 int32_t Type
0x000C uint32_t Atomic counter
0x0010 int64_t Timestamp

0x0018 float[16]/int64_t[8] Data (data type depends
on sensor type)

0x0058 int32_t[4] Reserved (set to zero)

The sequence of new sensor events is determined by the atomic counter, which counts from 1 after
creation of direct channel and increments 1 for each new event. Atomic counter will wrap back to
1 after it reaches UINT32_MAX, skipping value 0 to avoid confusion with uninitialized memory. The
writer in sensor system will wrap around from the start of shared memory region when it reaches the
end. If size of memory region is not a multiple of size of element (104 bytes), the residual is not used
at the end. Function returns a positive sensor report token on success. This token can be used to
differentiate sensor events from multiple sensor of the same type.
In order to access sensor data using the GPU, the OpenGL API(Application Programming Interface)
has to be employ.
OpenGL is an API for rendering 2D and 3D graphics. It is typically used for interacting with the
GPU in order to achieve hardware-accelerated rendering of images. On smartphones and other em-
bedded devices a subset of Open GL API, called OpenGL ES (Open GL for Embedded System), is
normally adopted. In addition it is necessary to employ the EGL API, which is an interface between
the OpenGL ES rendering API and the underlying native platform window system. In general the
APIs just mentioned are used for performing graphical tasks employing the GPU’s computational
power. In this case they have to be used in order to read sensor data from the shared memory region
using the GPU.

OpenGL ES and EGL APIs contains several funtions that can be divided into 2 main groups: core
functions and extension functions. Given a specific OpenGL or EGL version, core functions are nor-
mally available to the developer. On the other hand extension functions are not guaranteed to be
usable, because the implementation of an extension function could not exist for a specific hardware
GPU present on a device.
In order to read sensor data from the shared memory region it is needed to use 2 extension func-
tions. At this stage an important issues arises: on the smartphone used for this project there are
problems in opening a required extension function. This could means that the extension function is
not implemented on the GPU present inside the smartphone device.

19

20

Chapter 4

Smartphone Application

The Android application represents the core of this thesis project. Its main function is to implement
the autopilot software, allowing the quadcopter to have a stable flight. Moreover the application has
to handle the communication with the Arduino board and with the GCS computer.
The application is composed of 3 principal thread:

• A Sensor thread is used for obtaining the sensor data. The most important data are the mea-
surement of roll, pitch and yaw values that are sampled at a frequency of about 200 Hz. In
addition the altitude measurements are sampled at about 25 Hz, while the GPS position points
are obtained at about 1 Hz frequency. On this thread the callback function where it is possible
to read the data coming from the USB connection is called too. The sensor thread coincides with
the Android application main thread, so it is also responsible of most of initialization procedures
during the application start-up.

• An Autopilot thread implements the control algorithm. Starting from the sensor measurements
and the target commands received, it computes the motors values and send them to the Arduino
board through the USB communication. The inner control loop is the most important because it
is used to stabilize the attitude. Moreover it is present a control loop for controlling the altitude
and one for controlling the position based on GPS measurements. The control algorithm used
is a PID, so it is necessary to perform a tuning of the control paramemters.

• A Connection thread is responsible of the communication with the ground control station. In
addition some of the computations needed for implementing the position control based on GPS
measurements are performed inside this thread.

Two additional threads are called, respectively, when video streaming starts and when a photography
is shot.

The Android application is organized in 2 package: androidAutoPilot and androidGroundControl.
The androidAutoPilot package contains the following Java classes that perform tasks related to the
control part:

• AdkCommunicator

• Autopilot

• MySensors

• PidAngleRegulator

The androidGroundControl package contains the following Java classes mainly used for the commu-
nication with the GCS:

• Connection

• ConnectionVideoToGCS

• Photo

• SendDataToGCS

21

Chapter 4. Smartphone Application

4.0.1 AdkCommunicator
This class is responsible of the communication with the Arduino board through the USB connection.
In this class the callback where it is possible to read data coming from the Arduino board is imple-
mented. The data are encoded into 4 bytes, surrounded by a start byte and an end byte that are used
for reading data in the proper order. Depending on the fly mode selected on the radio controller, the
start and the end byte change, allowing the autopilot to adopt the right control algorithm.
The callback is also used for indicating the autopilot thread to start. Using this approach, the au-
topilot thread starts running only if the radio controller is switched on and is sending commands to
the drone.
The method setPowers is used for sending the motor values computed by the the control algorithm to
the Arduino board. Every motor command is encoded in one byte. A start byte is inserted, allowing
Arduino board to read data in the correct order.

4.0.2 MySensors
This class implements the callback where sensor data are read, sent to the GCS and saved in the
variables that will be read in the autopilot thread for implemeting the proper control strategy. Inside
the callback some computation are done in order to get the right measurements.

4.0.3 Autopilot
This class implements the autopilot thread which runs the control algorithm.
At the start of autopilot thread a 4 seconds delay is injected in order to avoid malfunctions for the
Arduino board.
The Autopilot thread is composed of a infinite loop which continuosly read sensor data and target
commands for computing the motor values to be sent to the Arduino board. While sensor data always
come from the sensor thread, the target commands depends on the fly mode the drone is using. The
3 flying modes implemented are:

• Manual

• Altitude regulated

• Automatic

In manual mode and altitude regulated mode the roll, pitch and yaw angles are controlled by using 3
different PID regulators and it is possible to change their target values using the radio controller. In
order to control the drone vertical position it is necessary to vary the velocity of all the 4 rotors. In
manual mode this component is direcly regulated by the human operator using a stick of the radio
controller.
In altitude regulated mode the vertical position is controlled using an additional PID regulator, which
uses the altitude measurements obtained by the pressure sensor, allowing the human operator to select
the target altitude the drone should reach.
In automatic mode the target altitude, the target roll and the target pitch are chosen according to
the commands received by the GCS. The target yaw remains costant.

4.0.4 PidAngleRegulator
PidAngleRegulator class contains the method getInput that implements the PID control algorithm.
Several objects of this class are instantiated and each one is dedicated to the control of a particular
quantity.
Totally 6 PidAngleRegulator objects are present in the Android application. They are:

• rollRegulator for controlling the roll angle

• pitchRegulator for controlling the pitch angle

• yawRegulator for controlling the yaw angle

• altitudeRegulator for controlling the altitude

22

Chapter 4. Smartphone Application

• latitudeRegulator for controlling the pitch angle according to the GPS position

• longitudeRegulator for controlling the roll angle according to the GPS position

Every PidAngleRegulator object has 3 main parameters that it is necessary to set: the proportional,
the integral and the derivative gains. In addition it is possible to set a saturation limit for the integral
term and a coefficient for regulating the cut off frequency of a low pass filter used for smoothing the
derivative term.

4.0.5 Connection
This class contains the connection thread that is used to handle the communication with the GCS
and to perform some computations that are necessary for implementing the position control based on
GPS measurements.
The connection thread starts creating a TCP server socket and listening for a connection request on a
particular port. After a timeout of 150 ms, the GPS position coordinates are read and the target pitch
and roll values are computed by the PID regulators and stored into variables that will be read by the
autopilot thread. Using this approach it is possible to stabilize the drone around its current position if
the automatic flying mode is running. After these calculations the TCP server socket restarts waiting
for a connection request and the loop continues endlessly. If a request arrives from the GCS and
a connection is successfully established, the smartphone starts waiting for incoming messages and
commands and starts sending the telemetry data and an hearthbeat message at 1 Hz frequency. At
the same time the position control continues to run.
In order to receive commands or parameters from the GCS, the appropriate microservices are imple-
mented. Concerning the position control, it is possible to send to the smartphone a path composed
of different waypoints. The first received waypoint becomes the current target position that must be
reached, while eventual other waypoints are saved into a list. When the the current position measured
by the GPS is near the target position, the target position is updated with next waypoint of the list.
If the flying mode is changed from automatic to altitude regulated, the drone immediately stops mov-
ing because the target position becomes equal to the current position. In addition the list containing
waypoints received by the GCS is emptyed.

4.0.6 ConnectionVideoToGCS
This class is used for handling the video streaming. Inside this class a ffmpeg command is called.
Ffmpeg is a free open-source framework which contains a large set of libraries and tools for handling
video, audio and other multimedia files and stream. In this case a ffmpeg commands is executed for
opening the Android device back camera, encoding the video and sending it to a particular IP address
using the RTP protocol. The video format adopted is the H264 or AVC(Advanced Video Encoding),
which is the most commonly used video format for the recording, compression and the distribution of
video content.
Ffmpeg library provides some presets that can be used for tuning the ratio between encoding speed
and compression. The videos must be encoded in the fastest way for minimizing the latency, even if
this implies to have less compression and more data to be sent. It is also possible to use the zerolatency
tuning option, which changes the encoding setting in order to optimize the encoding process for a low
latency streaming.
Moreover it is possible to record the video streaming on the device.

4.0.7 Photo
This class implements the procedures that must be carried out in order to open the camera, shoot a
photo and save it.
In particular a CameraManager object is created for detecting, configuring and opening the back
camera of the Android smartphone, while a Imagereader object is created for accessing the image shot
by the camera. When the camera device is opened, a particular callback is called. Inside the callback
a new camera capture session is created, indicating a list of output Surface objects. A Surface is a
raw buffer the camera device will render images to. Once the capture session is configured, another
callback is called and a capture request is created. The capture request defines a set of parameters
the camera device will use for shooting the photography. In this case the capture request requires

23

Chapter 4. Smartphone Application

the camera to shoot a still image, trying to maximize the quality of the photography. In addition the
target Surface the camera will render the image to is indicated. When the image is available a final
callback is called and the image is saved.
During the photography shoot process the video streaming is blocked. For this reason, once the
photography is saved, the video streaming thread is restarted.

4.0.8 SendDataToGCS
This class contains methods that are used for bulding and sending some important Mavlink messages
that are continuosly sent by the smartphone to the GCS. This set of message includes the heartbeat
message and the other messages responsible of sending sensor data to the GCS.

24

25

Chapter 5

Arduino board

Arduino Mega 2560 board[26] is used in order to handle different operations. In particular it controls
the radio communication part and the actuation of motors.
The board is mainly powered by the smartphone thanks to the usb communication.

5.1 Radio communication
The drone is controlled by a human operator on the ground. The human operator sends commands to
the drone thanks to a radio transmitter, linked with a radio receiver positioned on the UAV vehicle.
The radio receiver sends data to the Arduino board and this communication is achieved using the
SBUS protocol.

5.1.1 SBUS protocol
The SBUS protocol is a bus protocol that can be used for receiving signal, but also for sending com-
mands to actuators. Due to the fact that SBUS implements a digital communication, it has been
adopted in this project because of its capacity of rejecting electro-magnetic noise caused by the mo-
tors actuators.

Initially a radio receiver based on a PWM communication has been used. The PWM radio receiver
gives as output a PWM signal with a period of 20 ms. The information brought by this kind of signal
is related to its duty cycle, that is the fraction of one period in which the signal stays at high level .
Along the 20 ms period, the PWM signal stays at high level for a time between 1 ms and 2 ms. Then
the signal goes low level until the end of the 20 ms period.
In the Arduino code an approach based on interrupt routines has been used in order to read the value
of the PWM signal coming from the radio receiver. Anyway the signal received was too noisy.
Initially a combination of a median filter and a low pass filter was implemented on the Android ap-
plication in order to clean the signal received, but the two filters introduce a significant delay on the
signal, so the SBUS protocol based on a digital communication was eventually adopted.

The SBUS protocol uses an inverted serial logic with a baudrate of 100000. Every SBUS packet is 25
bytes long and 16 different channels can be used. The packet is composed of:

• byte [0] represents the SBUS header

• byte [1-22] contains the 16 channels with the data bits

• byte [23] contains 2 digital channels, frame lost bit and failsafe bit

• byte [24] is the SBUS footer or end bit

The frame lost bit is activated when a frame is lost during the transmission, while filesafe bit is ac-
tivated when different frames are lost in a row and indicates that the receiver is entered in a mode
called failsafe mode. Every packet is sent about every 10 ms. Every packet contains 16 channels, each
one composed of 11 bit, so the 16 channels are encoded into 22byte.

26

Chapter 5. Arduino board

Figure 5.1: Noisy and filtered signal using PWM communication

The single signal line coming out from the SBUS receiver is connected to a serial port of Arduino
board. Due to the fact that SBUS protocol uses an inverted signal logic that is not supported by
Arduino Mega 2560, it is necessary to use a simple inverter circuit based on a NPN transistor.
The data read by the SBUS receiver are sent to the smartphone through the USB port. In particular
there are four values representing altitude, roll, pitch and yaw signals. They are remapped into 4 byte
values before sending them to the smartphone. In addition a start byte and an end byte are inserted
in order to detect possible communication errors, obtaining totally 6 byte.

5.2 Motors actuation
Once the smartphone has run the control algorithm using the sensor signal and the target signal
coming from the SBUS radio receiver, the output control data must be sent to the motors. The
smartphone sends the output data to Arduino board through the USB port and they are immediately
sent to the 4 ESCs (electronic speed controllers). The communication between Arduino and the ESCs
is realized with the use of the I2C communication bus.

5.2.1 I2C
The I2C[27] (Inter Integrated Circuit) is a popular serial communication bus invented in 1982 by
Philips Semiconductor (now NXP semiconductors). It is normally used for a communication between
a master and one or many slave devices, but it can also be implemented using more than one master.
One of the main characteristic of the I2C communication bus is that it needs only 2 wire in order to
communicate with many different peripherals: the SDA (serial data line) and the SCL (serial clock
line). Both lines must be connected to a power supply voltage through a pull-up resistor.
The I2C implements a bidirectional communication, even if a slave cannot transmit data unless it
has been authorized by a master. Anyway in our project a mono-directional communication is imple-
mented because it only needed to send some values to 4 slaves, that are the 4 ESC. Every slaves has
its own address.

The general procedure for a master to send a data to a slave is:

• the master sends a START condition

• the master sends the slave address

• the master sends the R/W bit

• the slaves sends the ACK signal

27

Chapter 5. Arduino board

• the master sends the register address it wants to write to

• the slaves sends another ACK signal

• the master send the data bits

• the slaves sends another ACK signal and the master sends a STOP signal

A START condition is achieved during a high to low transition on the SDA line while the SCL line
is at high level. A STOP condition is achieved during a low to high transition on the SDA line while
the SCL line is at high level.
The R/W indicates a write operation if it is set to 0 and a read operation if it is set to 1.
The ACK (acknowledge) bit is sent by the receiver in order to communicate to the transmitter that
the transmission has been received and other bits can be sent. Before the receiver is able to send the
ACK bit, the transmitter must release the SDA line, leaving the line to a high level. To send an ACK
bit the receiver must pull down the SDA line during the low phase of the SCL line in a specific clock
period. If the SDA line is pull to the high level during that specific clock period, an NACK bit is
sent. A NACK singal indicates that the receiver cannot receive data or the data just received cannot
be understood because they contains errors.
It is important to say that a slave usually has different registers in order to memorize different data,
but a slave can also have one single register. In this case the data bits are sent immediately after the
slave address and the R/W bit.
During the data transmission one bit is transferred during each clock pulse on the SCL line. Data on
the SDA line must remain stable during the high phase of the clock signal on the SCL line because a
level change when the SCL line is low is interpreted as a control commands (START or STOP).

5.3 Timing
One of the main problem related to the software code running on the Arduino mega 2560 board
is that the signals coming from the SBUS radio receiver must be read without interfering with the
signals related to the motor actuation. In other words the commands reading must not be a blocking
operation and must not cause additional delays in the motor actuation.
This result has been achieved. The commands from the receiver are read at about 100 Hz frequency,
while the motors commands are read from the smartphone and written to the ESCs at about 100 Hz,
the same frequency at which the data are sent from the smartphone to Arduino. In addition the
micro-controller loop runs faster than the operations just mentioned because it has a frequency of
about 900 Hz.

5.4 Power supply
The Arduino board is mainly powered by the smartphone thanks to the USB communication. This
means that the board switches off if the USB cable accidentally disconnects, causing the motors to
stop spinning immediately. In order to avoid this condition another power supply source has been
added. A DC-DC converter has been used in order to obtain a stable 5V tension from the 15V LiPo
battery. Moreover the code running on the Arduino board has been modified.
If the usb cable disconnects, the smartphone cannot communicate anymore with the Arduino board,
so the feedback control loop stops running. When Arduino board stops receiving data from the
smartphone, it continues to actuate the motors using the target commands coming from the radio
control link, without using any feedback loop. Obviously this working condition cannot lead to a
stable flight, but it could be used in emergency situations in order to mitigate the damages when the
USB cable accidentally disconnects.

5.5 Code implementation
The code running on the Arduino board is mainly composed of 2 different function: setup() and
loop().
When Arduino board is switched on, the setup function is called. It contains the code related to the

28

Chapter 5. Arduino board

initialization preocedures that must carried out before starting the real working program.
Once the setup function has ended, the software enters in the loop function. This function is con-
tinuosly called, so the software always pass through the same portion of code contained in the loop
function.
This endless loop can only be stopped by an interrupt, which is an event that causes the execution
of a particular portion of code called interrupt service routine(ISR). When the ISR is terminated, the
software restarts from the point where it was interrupted.

5.5.1 setup
At the start of the setup function the SBUS communication, the I2C communication and the USB
serial communication are prepared and started. An external library is used for handling the SBUS
communication. The library is added to the project including the "SBUS.h" file and allows us to
define the receiver object, which is used for read data encoded using the SBUS protocol. Instead the
"Wire.h" file is included in order to manage the I2C communication with the ESCs. Then all the
necessary variables are initialized to a known initial value.
In the end some registers are set in order to start a timer, make it count in a particular modality and
enable an interrupt received when the timer reaches its maximum values and restarts from zero. In
particular the CS51 bit of the TCCRB register is set to 1 in order to have the prescaler at 8. This
means that the timer runs at the main microcontroller clock frequency (16 MHz) divided by 8, that
is 2 MHz frequency. In addition the timer value (TCNT5) is initialized to zero and the bit TOIE5 of
the register TIMSK5 is set, enabling the timer overflow interrupt.
Considering a 16 bit timer, the maximum value that can be reached is 65535. Due to the fact that
the timer is incremented at 2 MHz frequency, it takes about 32 ms for reaching its maximum value
and launching the appropriate ISR. In this case the ISR is called when the Arduino board does not
receive data from the smartphone through the USB communication for more than 32 ms, causing the
board to change its behaviour and actuate the motors without any feedback loop. This event should
happen only in a emergency situation when, for example, the USB cable is accidentally disconnected
during the flight.

5.5.2 loop
In the first part of the loop function the presence of data from the radio controller is checked. If data are
available, the 4 target commands are read from their specific communication channel, remapped and
stored inside some byte variables: target_roll, target_pitch, target_yaw and target_altitude.
If the target_altitude and target_pitch are zero at the same time, a flagStart bool variable,
which is used as a starting condition, is set to 1. If the radio controller sticks do not pass through the
right configuration, the flagStart variable remains at zero and the motors are not actuated. Then
the presence of smartphone is checked using a flagNoSmartphone bool variable, which is set to 1 if
the Arduino board does not receive data from smartphone for more than 32 ms. If the smartphone is
present and is sending data to the Arduino board, the target commands just received from the radio
controller are sent to the smartphone, adding a start and an end byte. The target commands are 4
and every one is encoded as a byte, so totally 6 bytes are sent. Depending on a value sent by the
radio controller on a particular channel, the start and the end byte change. In this way 3 different
flight mode can be implemented on the smartphone application.
The next portion of code is responsible of reading the motor commands coming from the smartphone.
When a data is available, the flagNoSmartphone bool variable is set to zero and the 16 bit timer is
reset, preventing it to reach its maximum value and launch the timer overflow ISR. Due to the fact
that an end byte is inserted at the end of the motor commands frame sent by the smartphone, the
data are stored in the appropriate variables only when the end byte is read and if the correct number
of byte is arrived. The end byte is inserted in order to read the motor commands in the appropriate
order.
If the flagNoSmartphone is equal to 1, the motor values are directly computed using the target com-
mands received by the radio controller because it is impossible to receive data from the smarthphone.
The motors values, before sending it to the ESCs, can be set to zero if the right stick of the radio
controller is below a certain level and if the flagStart bool variable is equal to zero.
In the end the motors values are sent to the 4 motors using the I2C communication protocol. It is

29

Chapter 5. Arduino board

necessary to use the beginTransmission function of the Wire library for indicating the address of a
specific motor, writing the correct value with the write function and close the transmission for that
specific motor with the endTransmission function. This portion of code must be repeated for all the
4 motors.

30

31

Chapter 6

Ground control station (GCS)

A Ground Control Station[28] is the control center that provides facilities for establishing a link with a
UAV vehicle. The GCS includes both the hardware and the software systems needed for implementing
the communication and control tasks.
In general it is possible to divide Ground Control Stations into 2 category: fixed and portable.
Fixed GCS are used especially for large military UAVs. The pilot or the operator usually sits in
front of many different screens showing the view from the UAV, a map and aircraft instrumentation.
Control is realized through a conventional aircraft-style joystick and throttle. In addition a long range
or satellite communication link is implemented.
On the other hand smaller UAVs can be controlled by a traditional "twin-stick" style transmitter.
This setup can be extended with a laptop or a tablet computer, creating what is effectvely named as
a Ground Control Station.

In our project a portable GCS has been used. Along with the control link realized with a radio
trasmission, an additional laptop computer has been introduced in order to establish another com-
munication link, directly connecting the Android smartphone to the laptop. A Wi-Fi based network
connection is used for creating a short range communication link, while for a long range communica-
tion link an approach based on the 4G mobile network has been adopted.
In order to establish the communication link, the laptop computer runs a software called QGround-
Control, which uses a specific communication protocol called Mavlink. On the other side the Android
application running on the smartphone has to implement the proper MavLink software interface.
It is appropriate to observe that QGroundControl software can also run on a smartphone, so it is
possible to use another smartphone as a Ground Control Station.

6.1 Mavlink
MAVLink[29] or Micro Air Vehicle Link is a very lightweight messaging protocol released in 2009. It
is designed for resource-constrained systems and bandwidth-constrained links. It is mainly used for
communication between a Ground Control Station and a drone or between different onboard drone
components.
MAVLink follows a modern hybrid publish-subscribe and point-to-point design pattern: data streams
are sent or published as topics while configuration sub-protocols that involve changes in system con-
figurations are point-to-point with retransmission.
MavLink protocol has been deployed in 2 version: MavLink v1.0 and Mavlink v2.0.
MAVLink 2 is a backward-compatible update to the MAVLink protocol that has been designed to bring
more flexibility and security to MAVLink communication. Today MavLink v2.0 is the recommended
version and it is used in this project.

6.1.1 Messages
A MavLink message is a stream of bytes encoded into a particular data structure.
In MavLink v2.0[30] the packet structure is the following:

32

Chapter 6. Ground control station (GCS)

Byte Index Field name Description

0 Start-of-frame Denotes the start of frame trans-
mission.

1 Payload length Indicates the length of the mes-
sage (payload).

2 incompatibility
flags

Indicate features that a
MAVLink library must sup-
port in order to be able to
handle the packet.

3 compatibility flags
Indicate features will not prevent
a MAVLink library from han-
dling the packet.

4 Packet sequence
Each component counts up their
send sequence. Allows for detec-
tion of packet loss.

5 System ID

Identification of the sending sys-
tem. Allows to differentiate dif-
ferent systems on the same net-
work.

6 Component ID

Identification of the sending
component. Allows to differen-
tiate different components of the
same system.

7 to 9 Message ID

Identification of the message -
the id defines what the payload
“means” and how it should be
correctly decoded

10 to (n+10) Payload The data into the message, de-
pends on the message id.

(n+11) to (n+12) CRC

Used to check message integrity
and to ensure the sender and re-
ceiver both agree in the message
that is being transferred.

(n+13) to (n+25) Signature
Signature to verify that messages
originate from a trusted source.
(optional)

The protocol defines a large set of messages. Functionalities that can be considered useful for most
of autopilot and ground control stations can be implemented using the common message set. If it
necessary to extend the common message set it is possible to include some MavLink dialects, obtaining
additional message types.

6.1.2 Microservices
The MAVLink microservices define higher-level protocols that MAVLink systems can adopt in order
to better inter-operate. The microservices are used to exchange many types of data, including: pa-
rameters, missions, images and other files. If the data can be far larger than can be fit into a single
message, services will define how the data is split and re-assembled, and how to ensure that any lost
data is re-transmitted. Other services provide command acknowledgment and error reporting.
Most services use the client-server pattern, such that the GCS initiates a request and the vehicle
responds with data.

6.2 QGroundControl software
QGroundControl[31] is a ground control station software that uses MavLink protocol. It provides a
full flight control and mission planning for drones that uses MavLink protocol. It has a GUI (Graphical
User Interface) for displaying in a intuitive and clear way some telemetry data such as the current

33

Chapter 6. Ground control station (GCS)

roll, pitch, yaw and altitude values. The software also shows a map where it is indicated the current
position of the drone. In order to display all these values on the GUI, QGroundControl must receive
the appropriate set of MavLink messages.
QGroundControl also provides useful GUI elements for sending specific commands or parameters to
the drone. In most of the cases a specific microservices must be implemented in order to check if the
right commands or parameters have been received by the drone.

Figure 6.1: QGroundControl main window

6.3 Network
The MavLink messaging protocol can works over almost every serial connection and does not depend
on the underlying technology.
In this project MavLink connection runs over a TCP socket that can be created over a WiFi network
or the 4G mobile network. The Android smartphone is the server, while the GCS computer is the
client. Using a TCP socket, this is the only possible configuration because QGroundControl software
can behave only as a TCP client and cannot be treated as a TCP server.
The TCP server has to have a reachable IP address in order to be able to receive a connection request
by the client. This is a problem if it is needed to work in a 4G mobile network, while it is not a
problem using only a WiFi network.

Figure 6.2: WiFi network configuration

WiFi is a family of wireless network protocols commonly used for providing internet access and estab-
lishing a WLAN (Wireless Local Area Network), allowing nearby devices to exchange data between
them. A WLAN is a particular kind of LAN (Local Area Network) that uses a wireless technology.

34

Chapter 6. Ground control station (GCS)

Inside the same LAN network a private IP address is assigned to each device. The private IP addresses
are required for enabling the communication between different devices inside the same network.
Inside the same private WLAN network it is possible to achieve a TCP connection between the ground
control station and the smarthphone. The ground control station needs only to know the IP address
of the smartphone in order to send the connection request.

In order to create a communication between a device inside a LAN network and the external internet
network it is usually present a router implementing a NAT(Network Address Translator).
The router is a networking device that forwards data packet between computer networks. During the
routing process, the NAT modifies the destination or the source IP address of data packets, allowing
the communication between devices belonging to different networks. In general a device with a private
IP address cannot be directly reached by an external connection because it is "hidden" behind the
NAT, but it is often possible to make it available using a process called Port Forwarding. It constist
of remapping the destination IP address of incoming data packet, allowing to send the connection
request to the private IP address placed inside a LAN network.
In a mobile network the IP address of a device is private and it is isolated from the public internet
network by a special kind of NAT, called CGNAT. The CGNAT is not available to the end users and
it is impossible to directly make use of the Port Forwarding method, but it is possible to obtain the
same result using a VPN (Virtual Private Network). The private IP addresses of devices connected
to a mobile network belongs to the Shared Address Space.

Figure 6.3: Mobile network configuration

In this project the video-streaming functionality is not based on the MavLink protocol, but it is im-
plemented using RTP protocol (Real-time Transport Protocol) working over an UDP connection. If
the smartphone is connected to internet using the mobile network and the ground control station is
inside a WLAN network behind a NAT, it is necessary to use the port forwarding method in order to
reach the GCS from the smartphone.
RTP protocol[32] is mainly designed for application involving audio and video streaming over in-

Figure 6.4: GCS "hidden" behind a NAT

ternet network. The protocol provides facilities for jitter compensation, detection of packet loss and

35

Chapter 6. Ground control station (GCS)

out-of-order delivery, which are common especially during UDP transmissions. Real-time multimedia
streaming applications require timely delivery of information and often can tolerate some packet loss
to achieve this goal. The TCP protocol, although standardized for RTP use, is not normally used
in RTP applications because TCP favors reliability over timeliness. Instead the majority of the RTP
implementations are built on the UDP protocol. RTP also allows data transfer to multiple desti-
nations at the same time and it is designed to carry a multitude of multimedia formats. For each
class of application, RTP defines a profile and an associated payload formats. The profile defines the
codecs used to encode the payload data and how the payload data has to be mapped into RTP packets.

36

37

Chapter 7

Hardware used

A prototype of a quadcopter drone has been built in order to test the autopilot Android application
and the code running on the Arduino board. In particular the following hardware has been used.

• Smartphone Google Pixel 4

• Arduino Mega 2560

• 4-in-1 ESC and power board

• Motors MK3638

• FrSky S8R receiver

• Taranis X9D Plus transmitter

• USB-A to USB-B Cable with a USB-B/USB-C adapter

• 4S Battery

• Propellers

7.1 Smartphone

Figure 7.1: Google Pixel 4

The smartphone is the core of this project. It run the the Android application that works as an drone
autopilot. The smartphone used is a Google Pixel 4. Its main specifications are:

38

Chapter 7. Hardware used

• Chipset: Qualcomm SM8150 Snapdragon 855

• Processor: Octa-core (1x2.84 GHz Kryo 485 + 3x2.42 GHz Kryo 485 + 4x1.78 GHz Kryo 485)

• GPU: Adreno 640

• RAM: 6 GB

• Camera: 12,2 Mp + 16 Mp + 8 Mp

• Video: 4K at 30 fps, 1080p at 120 fps

• LTE

• Wi-Fi: 802.11 a/b/g/n/ac

• GPS: A-GPS/GLONASS/BeiDou/Galileo Dual-frequency GPS

• Sensors: Accelerometer, magnetometer, gyroscope, proximity

• Battery: Li-Po 3700 mAh

• USB: Type-C 3.1

The Google Pixel 4 is an high end smartphone and it has been chosen in order to not have problems
related to computational performances. In addition it provides a dual-frequency GPS which can bring
a significant improvement in the GPS locationing accuracy.

7.2 Arduino Mega 2560

Figure 7.2: Arduino Mega 2560

Arduino Mega 2560 is a board based on the ATmega2560 microcontroller. Among many different
features this board implements, some of the most interesting characteristics are that it has 6 pins that
can be configured to be triggered by external interrupts, 4 serial lines and supports I2C communica-
tion protocol.
The USB communication port is controlled by the ATmega16U2 microcontroller. One of the 4 serial
line is linked to the ATmega16U2 and it is channeled through the USB port in order to provide a
communication between the ATmega2560 microcontroller and an external PC. The USB communi-
cation is usually used for programming the board. In our case it is also used for the communication
with the Android smartphone.
The DTR line of the ATmega16U2 is connected to the reset pin of the ATmega 2560 via a 100 nF
capacitor. When the DTR line is taken down at low level, the reset line drops and resets the main
microcontroller. This feature is used in order to reset the microcontroller before an unpload of new

39

Chapter 7. Hardware used

firmware by the Arduino IDE running on a PC. After the reset the bootloader starts running and it
will intercept the data coming from the USB port. Even if the bootloader is programmed for ignoring
malformed data beside the uploaded firmware code, it is necessary to wait a second before sending data
to the board after opening the connection. This problem is handled in the Android application code
injecting a delay before starting sending data to the Arduino board through the USB line. Without
the additional delay the Arduino board immediately stops working.

7.3 ESCs

(a) Front. (b) Back

Figure 7.3: ESCs front/back board and power distribution

The electronic speed controllers (ESCs) accomplish the task related to the actuation of the motors.
They are responsible of sending the correct signals in order to control the speed of the motors.
The ESCs usually accept as input PWM signal at a frequency of 50 Hz. Along the 20 ms period, the
signal stay high for a time between 1 ms and 2 ms. The velocity of the motors depends on the time the
PWM signal stays at high level. The more it stays high, the more the velocity is high. Anyway the
ESCs used support also I2C communication protocol, that allows to have as input an higher frequency
signal. Using the I2C protocol every ESC is indicated by a specific address and accepts as input a
digital data that indicates the motor velocity. In our project the I2C protocol is used.

7.4 Motors
The main features of the engines are:

• Motor type: Brushless

• Diameter: 35 mm

• Shaft diameter: 4 mm

• Weight: 125 g

• RPM/V: 760 KV

• Battery: 3-6 S LiPo

• Power: 350 W

• Number magnetic poles: 14

A set of 11 inches propellers has been used.

40

Chapter 7. Hardware used

7.5 RC

(a) Transmitter (b) Receiver

Figure 7.4: RC

The radio control part is managed using Taranis X9D Plus radio transmitter and FrSky S8R receiver.
The main specifications of the transmitter are:

• Channels: 16 (up to 32)

• Band: 2.4 GHz

• Modulation: ACCST

• Operating voltage range:6/15 V

• Operating current: 270 mA maximum

• Operating temperature range: -10/60 C

The main specifications of the receiver are :

• Channels: 16 using SBUS protocol

• Band: 2.4 GHz

• Modulation: ACCST

• Operating voltage range 4/10 V

• Operating Current: 120 mA at 5 V

• Dimension: 46.47×26.78×14.12 mm

• Weight: 14 g

The receiver can generate a RSSI (received signal strengh indicator) PWM output signal. RSSI is
a measurement of the power of the received radio signal. It can be used when the receiver is losing
transmitter signal.

41

42

Chapter 8

Experimental results

8.1 System overview
In this project the main focus are the Android smartphone, the Arduino board and the GCS. The
overall system is also composed by the rotors, the drone frame, the ESCs and the battery. All these
component just mentioned form a drone which is able to establish a communication link with a GCS.
The core functionalities of the overall system resides inside the Android smartphone and the Arduino
board. The Arduino board receives target commands from the radio communication link or from
the GCS and sends them to the smartphone, which samples sensor data and implements the control
algorithm. The motor commands are computed and sent to the Arduino board. In the end the
Arduino board sends the motor commands to the ESCs in order to actuate the motor.
Three flight mode are implemented:

• Manual

• Altitude regulated

• Automatic

The flight mode can be selected moving a switch on the radio controller.

8.1.1 Manual mode
In manual flight mode the drone attitude is regulated by the PID control algorithm running on the
smartphone, while vertical position is controlled directly varying all rotor 4 velocities. The human
operator can make the drone move up increasing the rotors velocities or move down decreasing the
rotor velocities, but these operations are not controlled using a feedback loop.

Figure 8.1: Manual mode control scheme

43

Chapter 8. Experimental results

8.1.2 Altitude regulated
In this flight mode the altitude is regulated by a PID control algorithm running on the smartphone
too. Using the radio controller, the human operator sends to the drone a target altitude that should
be reached.

Figure 8.2: Altitude regulated mode control scheme

8.1.3 Automatic
In automatic flight mode a position control is implemented. The drone receives some GPS waypoints
from the GCS and has to reach them. If no waypoints are sent to the drone, it maintains its current
position and altitude. A latitude position error drives a roll movement, while a longitude position
error drives a pitch movement. The yaw value is needed in order to know the orientation of the drone.

Figure 8.3: Automatic mode control scheme

8.2 Manual mode test
The manual flight mode has been tested. In this flight mode the drone is able to fly and can be
controlled by human operator using the radio controller.
The Android autopilot application allows to save important data inside log files that can be analyze
after the flight.
In the following graphs a sample of 5000 data representing informations about the attitude of the
drone is shown. Considering that the sensor sampling rate is about 200 Hz, 5000 data represent about
25 seconds of flight.

44

Chapter 8. Experimental results

8.2.1 Roll
From the following figures it is possible to see that the real roll value does not follow perfectly the
target value, but the error between them remains almost always below 2-3 degrees. In particular
it is noticeable that in most of the cases the real roll value initially follows pretty well the target
commands, but it is always present a slight overshoot when the target commands returns to the zero
value. In some cases the error increases, but it does not exceed 6 degrees.

Figure 8.4: Roll response

Figure 8.5: Roll error

8.2.2 Pitch
The pitch has a behaviour very similar to the roll’s one. Also in this case it is always present a little
overshoot and the real pitch values does not perfectly follow the target commands. The error between
the target pitch and the real pitch values presents an average value greater respect to the roll error’s
one, but the error never exceed 5 degrees.

45

Chapter 8. Experimental results

Figure 8.6: Pitch response

Figure 8.7: Pitch error

8.2.3 Yaw
The yaw response presents poorer performances respect to the roll and pitch responses. The error
reaches higher values and the response is slower. In addition the error exceeds 10 degree even if the
target command remains almost constant.
It is necessary to say that in order to obtain the flight stability of a quadcopter the roll and pitch
movements are the most important, while the yaw movement does not need to have very high perfor-
mances. Anyway the yaw control could be improved setting the PID control parameters in a better
way.

46

Chapter 8. Experimental results

Figure 8.8: Yaw response

Figure 8.9: Yaw error

8.3 Mavlink connection and video streaming test
The activation of the Mavlink connection and the video streaming funtionality has an impact on the
performances of the Android autopilot task. Without connecting the Android smarthphone to the
Arduino board, some tests have been performed. During the test a collection of 1000 samples about
the rotation vector sensor sampling period and rotation vector sensor latency is collected. For each
quantity an average value is computed.
It is necessary to say that it is always possible that some sensor sample data are lost. In other words
it means that the sensor sampling period sometimes could pass from a normal value of about 5 ms to
10 ms or 15 ms. Activating additional funtionalities, the number of lost samples increases and causes
a bigger impact on the computed average sampling period.
Running only the control algorithm, the average sampling period is 4.93 ms. It can be considered as
the nominal sampling period that is not influenced by the loss of some samples. It is possible to see
that the video streaming functionality has an huge impact on the performances, while the Mavlink
connection causes fewer delays. In particular the delays increase dramatically setting an higher video
resolution.

47

Chapter 8. Experimental results

Active functionalities
Average rotation
sensor sampling
period [ms]

Average rotation
sensor latency [ms]

None(only autopilot) 4.93 5.73
Mavlink connection to GCS 4.94 5.79
Video streaming (320x240 resolution) 4.99 5.94
Mavlink connection to GCS + video
streaming (320x240 resolution) 5.01 5.95

Mavlink connection to GCS + HD
video streaming (1280x720 resolution) 5.15 6.10

48

49

Chapter 9

Conclusions

In this master thesis project a prototype of a quadcopter drone has been realized. The core of the
drone consists of an Android smartphone running the control algorithm, while the Arduino board can
be considered as an interface between the motors, the human operator and the smartphone.
The main objective of this thesis is accomplished: the drone flies and it is stable.
This result has been achieved even if Android is not a real time operating system and injects some
delays into the system.
The main sources of delays are the sensors latency and the garbage collection. The sensors latency
is always present if it is needed to read sensor data, while the garbage collection causes important
delays only if additional funtionalities that require a lot of memory are activated. It could be possible
to achieve real time performances on Android, but it would imply modifing some core parts of the
operating system[33]. In this case an Android application has been realized and it can be installed on
many different Android smartphones equipped with the Android OS.

9.0.1 Future improvements
The flight stability has been obtained implementing an attitude controller. In addition an altitude
and a position controller has been implemented, but they have not been tested. In particular it is
necessary to tune the altitude controller and the position controller. It is not only needed to choose
the right value for the proportional, integral and derivative gains but it could also be necessary to
change the integrator maximum value and tune the filter of the derivative term. Regarding the alti-
tude control, it could also be necessary to tune the filter of the pressure sensor. On the other side it
could be appropriate to filter the roll and pitch commands values computed by the position controller.
One major improvement could be achieved implementing the sensor direct channel sampling modal-
ity which should provides sensor data at a frequency of about 800 Hz, 4 times higher the sampling
frequency it is currently possible to use.
Eventually the Android application can be optimized, especially the parts related to the communica-
tion with the GCS that do not have a primary importance and do not need to run at high frequencies.
This system architecure based on an Android smartphone and an Arduino board could be extended
to different kind of UAV vehicles and to UGV vehicles too.

50

51

Bibliography

[1] Unmanned aerial vehicle. url: https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle.
[2] Quadcopter. url: https://en.wikipedia.org/wiki/Quadcopter.
[3] Eros Giorgi. “Implementation of an autopilot for UAV/UGV system based on Android smart-

phone. 2019. url: https://webthesis.biblio.polito.it/10946/1/tesi.pdf.
[4] Android. url: https://en.wikipedia.org/wiki/Android_(operating_system).
[5] Android Architecture. url: https://source.android.com/devices/architecture?hl=en.
[6] Application Fundamentals. url: https : / / developer . android . com / guide / components /

fundamentals.
[7] Introduction to Activities. url: https : / / developer . android . com / guide / components /

activities/intro-activities.
[8] Understand the Activity Lifecycle. url: https://developer.android.com/guide/components/

activities/activity-lifecycle.
[9] Intents and intent filters. url: https : / / developer . android . com / guide / components /

intents-filters.
[10] Binder. url: https://developer.android.com/reference/android/os/Binder.
[11] Thorsten Schreiber. Android Binder. 2011. url: https://www.nds.ruhr-uni-bochum.de/

media/attachments/files/2011/10/main.pdf.
[12] Ndk. url: https://developer.android.com/ndk/guides.
[13] Overview of memory managment. url: https://developer.android.com/topic/performance/

memory-overview.
[14] Sensor overview. url: https://developer.android.com/guide/topics/sensors/sensors_

overview.
[15] Sensor stack. url: https://source.android.com/devices/sensors/sensor-stack?hl=en.
[16] SensorManager. url: https://developer.android.com/reference/android/hardware/

SensorManager.
[17] SensorListener. url: https://developer.android.com/reference/android/hardware/

SensorListener.
[18] Sensor. url: https://developer.android.com/reference/android/hardware/Sensor.
[19] SensorEvent. url: https : / / developer . android . com / reference / android / hardware /

SensorEvent.
[20] Sensor HAL 2.0. url: https://source.android.com/devices/sensors/sensors-hal2?hl=

en.
[21] Reporting modes. url: https://source.android.com/devices/sensors/report-modes?hl=

en.
[22] System clock. url: https://developer.android.com/reference/android/os/SystemClock.
[23] Ndk sensor module. url: https://developer.android.com/ndk/reference/group/sensor.
[24] Location manager. url: https://developer.android.com/reference/android/location/

LocationManager.
[25] Sensor direct channel. url: https://developer.android.com/reference/android/hardware/

SensorDirectChannel.

52

https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle
https://en.wikipedia.org/wiki/Quadcopter
https://webthesis.biblio.polito.it/10946/1/tesi.pdf
https://en.wikipedia.org/wiki/Android_(operating_system)
https://source.android.com/devices/architecture?hl=en
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/reference/android/os/Binder
https://www.nds.ruhr-uni-bochum.de/media/attachments/files/2011/10/main.pdf
https://www.nds.ruhr-uni-bochum.de/media/attachments/files/2011/10/main.pdf
https://developer.android.com/ndk/guides
https://developer.android.com/topic/performance/memory-overview
https://developer.android.com/topic/performance/memory-overview
https://developer.android.com/guide/topics/sensors/sensors_overview
https://developer.android.com/guide/topics/sensors/sensors_overview
https://source.android.com/devices/sensors/sensor-stack?hl=en
https://developer.android.com/reference/android/hardware/SensorManager
https://developer.android.com/reference/android/hardware/SensorManager
https://developer.android.com/reference/android/hardware/SensorListener
https://developer.android.com/reference/android/hardware/SensorListener
https://developer.android.com/reference/android/hardware/Sensor
https://developer.android.com/reference/android/hardware/SensorEvent
https://developer.android.com/reference/android/hardware/SensorEvent
https://source.android.com/devices/sensors/sensors-hal2?hl=en
https://source.android.com/devices/sensors/sensors-hal2?hl=en
https://source.android.com/devices/sensors/report-modes?hl=en
https://source.android.com/devices/sensors/report-modes?hl=en
https://developer.android.com/reference/android/os/SystemClock
https://developer.android.com/ndk/reference/group/sensor
https://developer.android.com/reference/android/location/LocationManager
https://developer.android.com/reference/android/location/LocationManager
https://developer.android.com/reference/android/hardware/SensorDirectChannel
https://developer.android.com/reference/android/hardware/SensorDirectChannel

Bibliography

[26] Arduino Mega 2560 website. url: https://store.arduino.cc/arduino-mega-2560-rev3.
[27] Jared Becker Jonathan Valdez. Understanding I2C. url: https://www.ti.com/lit/an/

slva704/slva704.pdf?ts=1626092822053&ref_url=https%253A%252F%252Fwww.google.
com%252F.

[28] Ground control station. url: https : / / en . wikipedia . org / wiki / UAV _ ground _ control _
station.

[29] MAVLink developer guide. url: https://mavlink.io/en/.
[30] MAVLink. url: https://en.wikipedia.org/wiki/MAVLink.
[31] QGroundControl website. url: http://qgroundcontrol.com/.
[32] RTP. url: https://en.wikipedia.org/wiki/Real-time_Transport_Protocol.
[33] Cláudio Maia Luis Miguel Nogueira Luis Miguel Pinho. Evaluating Android OS for Embedded

Real-Time Systems. 2010. url: http : / / www . cister . isep . ipp . pt / docs / evaluating _
android_os_for_embedded_real_time_systems/569/view.pdf.

53

https://store.arduino.cc/arduino-mega-2560-rev3
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=1626092822053&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=1626092822053&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=1626092822053&ref_url=https%253A%252F%252Fwww.google.com%252F
https://en.wikipedia.org/wiki/UAV_ground_control_station
https://en.wikipedia.org/wiki/UAV_ground_control_station
https://mavlink.io/en/
https://en.wikipedia.org/wiki/MAVLink
http://qgroundcontrol.com/
https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
http://www.cister.isep.ipp.pt/docs/evaluating_android_os_for_embedded_real_time_systems/569/view.pdf
http://www.cister.isep.ipp.pt/docs/evaluating_android_os_for_embedded_real_time_systems/569/view.pdf

Appendix A

JavaCode

A.1 androidAutopilot Package

A.1.1 AdkCommunicator
setSerialPort

public void setSerialPort (UsbManager usbManager , UsbDevice device){
this. device = device ;
this. usbManager = usbManager ;
connection = this. usbManager . openDevice (this. device);
serialPort = UsbSerialDevice . createUsbSerialDevice (this.device , connection);
if (serialPort != null) {

if (serialPort .open ()) {
serialPort . setBaudRate (115200);
serialPort . setDataBits (UsbSerialInterface . DATA_BITS_8);
serialPort . setStopBits (UsbSerialInterface . STOP_BITS_1);
serialPort . setParity (UsbSerialInterface . PARITY_NONE);
serialPort . setFlowControl (UsbSerialInterface . FLOW_CONTROL_OFF);
serialPort .read(usbReadCallback);
Log.d(" Serial ", " Serial Connection Opened ");

} else {
Log.d(" SERIAL ", "PORT NOT OPEN");

}
} else {

Log.d(" SERIAL ", "PORT IS NULL");
}

}

onReceiveData

UsbSerialInterface . UsbReadCallback usbReadCallback =
new UsbSerialInterface . UsbReadCallback () {

@Override
public synchronized void onReceivedData (byte[] arg0) {

try {
if (arg0 [0]==0 && arg0 [5]==0)
{

receivedData .roll = arg0 [1] & 0xFF;
receivedData .pitch = arg0 [2] & 0xFF;
receivedData .yaw = arg0 [3] & 0xFF;
receivedData . altitude = arg0 [4] & 0xFF;
autoPilot .mode =0;

}
else if (arg0 [0]==1 && arg0 [5]==1)
{

receivedData .roll = arg0 [1] & 0xFF;
receivedData .pitch = arg0 [2] & 0xFF;
receivedData .yaw = arg0 [3] & 0xFF;
receivedData . altitude = arg0 [4] & 0xFF;
autoPilot .mode =1;

}
else if (arg0 [0]==2 && arg0 [5]==2)
{

receivedData .roll = arg0 [1] & 0xFF;
receivedData .pitch = arg0 [2] & 0xFF;

54

Appendix A. JavaCode

receivedData .yaw = arg0 [3] & 0xFF;
receivedData . altitude = arg0 [4] & 0xFF;
autoPilot .mode =2;

}
if(! autoPilot . getPidCommandThread (). isAlive () &&

serialPort != null) {
autoPilot . startPIDThread ();

}
} catch (Exception e) { }

}
};

setPowers

public void setPowers (MotorsPowers powers) {
txBuffer [0] = (byte) powers .sw;
txBuffer [1] = (byte) powers .se;
txBuffer [2] = (byte) powers .ne;
txBuffer [3] = (byte) powers .nw;
txBuffer [4] = (byte) 0;
if (serialPort !=null) {

serialPort .write(txBuffer);
}

}

A.1.2 Autopilot
Autopilot thread

private Runnable PIDCommand = new Runnable () {
@Override
public void run () {

try {
Thread .sleep (1000);

} catch (InterruptedException e) {
e. printStackTrace ();

}
try {

Thread .sleep (1000);
} catch (InterruptedException e) {

e. printStackTrace ();
}
try {

Thread .sleep (1000);
} catch (InterruptedException e) {

e. printStackTrace ();
}
try {

Thread .sleep (1000);
} catch (InterruptedException e) {

e. printStackTrace ();
}
double tempPowerNW = 0, tempPowerNE = 0, tempPowerSE = 0, tempPowerSW = 0;
float currentRoll =0, targetAngleRoll =0, currentPitch =0, targetAnglePitch =0;
float currentYaw =0, targetAngleYaw =0, targetAltitude =0, currentAltitude =0;
float zero_altitude =0;
float meanTargetAngleRoll =0;
float meanTargetAnglePitch =0;
float dt;
float dt_pressure ;
mode =0;
sensorsData = mySensors . getSensorsData ();
targetAngleYaw = sensorsData .yaw;
boolean flagModeTwo =false;
int contFlagModeTwo =0;
zero_altitude = sensorsData . zero_altitude ;
while (true) {

sensorsData = mySensors . getSensorsData ();
receivedData = adkCommunicator . getReceivedData ();
currentRoll = sensorsData .roll;

55

Appendix A. JavaCode

currentPitch = sensorsData .pitch;
currentYaw = sensorsData .yaw;
currentAltitude = sensorsData .altitude - zero_altitude ;
dt = ((float) (sensorsData .time - sensorsData . previousTime));
if (acquisition_time != sensorsData .time && dt >2500000) {

if(mode ==2)
{

sendHoldingToConnection (true);
targetAngleRoll = getTargetRollFromConnection ();
targetAnglePitch = (float) (getTargetPitchFromConnection () -1.4);
targetAltitude = getTargetAltitudeFromConnection ()- zero_altitude ;

}
else
{

sendHoldingToConnection (false);
targetAngleRoll =(receivedData .roll -128)/128*30;
targetAnglePitch =(receivedData .pitch -128)/128*30;
if (mode ==1)
{

if (receivedData .altitude <5)
{

altitudeRegulator . integrator =0;
}
else if (abs(receivedData .altitude -127) >5)
{

targetAltitude = targetAltitude
+(receivedData . altitude - 127)/20000;

if (targetAltitude >7)
{

targetAltitude =7;
}

}
}
else
{

targetAltitude =(receivedData . altitude - 20);
}
if (abs(receivedData .yaw -126.5) >5)
{

targetAngleYaw =(float)
(targetAngleYaw -((receivedData .yaw -126.5)/640));

while(targetAngleYaw < -180.0f)
{

targetAngleYaw += 360.0f;
}
while(targetAngleYaw > 180.0f)
{

targetAngleYaw -= 360.0f;
}

}
}

meanTargetAngleRoll = (float) (meanTargetAngleRoll *0.95+ targetAngleRoll *0.05);
meanTargetAnglePitch = (float) (meanTargetAnglePitch *0.95+ targetAnglePitch *0.05);
targetAngleRoll = meanTargetAngleRoll ;
targetAnglePitch = meanTargetAnglePitch ;
rollForce = rollRegulator . getInput (targetAngleRoll , currentRoll , dt ,true);
pitchForce = pitchRegulator . getInput (- targetAnglePitch , currentPitch , dt ,true);
yawForce = yawRegulator . getInput (targetAngleYaw ,currentYaw ,dt ,true);
dt_pressure = ((float)

(sensorsData . pressure_time - sensorsData . previous_pressure_time));
if (dt_pressure >20000000 && mode !=0)
{

altitudeRegulator .setKp(getAltitudeRegulatorKp ());
altitudeRegulator .setKd(getAltitudeRegulatorKd ());
altitudeRegulator .setKi(getAltitudeRegulatorKi ());
altitudeForce = altitudeRegulator . getInput

(targetAltitude , currentAltitude , dt_pressure ,false);
}
if (mode ==0)
{

altitudeForce = targetAltitude ;
}
tempPowerNW = altitudeForce ;
tempPowerNE = altitudeForce ;

56

Appendix A. JavaCode

tempPowerSE = altitudeForce ;
tempPowerSW = altitudeForce ;
tempPowerNW += rollForce ;
tempPowerNE -= rollForce ;
tempPowerSE -= rollForce ;
tempPowerSW += rollForce ;
tempPowerNW += pitchForce ;
tempPowerNE += pitchForce ;
tempPowerSE -= pitchForce ;
tempPowerSW -= pitchForce ;
tempPowerNW += yawForce ;
tempPowerNE -= yawForce ;
tempPowerSE += yawForce ;
tempPowerSW -= yawForce ;

motorsPowers .nw = motorSaturation (tempPowerNW);
motorsPowers .ne = motorSaturation (tempPowerNE);
motorsPowers .se = motorSaturation (tempPowerSE);
motorsPowers .sw = motorSaturation (tempPowerSW);
long usb_t = SystemClock . elapsedRealtimeNanos ();
adkCommunicator . setPowers (motorsPowers);
acquisition_time = sensorsData .time;
delay_sensor = sensorsData .delay;
if (outStream !=null) {
try {
outStream .write ((
acquisition_time + ";" + currentRoll + ";" + currentPitch + ";" +

motorsPowers .nw + ";" + motorsPowers .ne + ";" + motorsPowers .sw +
";" + motorsPowers .se + ";" + altitudeForce +";"+

receivedData . altitude + ";"+usb_t +
";"+ rollRegulator . integrator +";"+ rollRegulator . derivative +

";"+ rollRegulator .kp+";"+
rollRegulator .ki+";"+ rollRegulator .kd+";"+

targetAngleRoll +";"+ receivedData .roll+";"
+ pitchRegulator . integrator +";"+ pitchRegulator . derivative +

";"+ pitchRegulator .kp+";"+
pitchRegulator .ki+";"+ pitchRegulator .kd+";"+

targetAnglePitch +";"+ receivedData .pitch+";"+
yawRegulator . integrator +";"+ yawRegulator . derivative +

";"+ yawRegulator .kp+";"+ yawRegulator .ki+
";"+ yawRegulator .kd+";"+ targetAngleYaw +";"+ receivedData .yaw

+";"+ currentYaw +";"+
currentAltitude +";"+ delay_sensor +";"+
targetAltitude +";"+

";"+ rollForce +";"+ pitchForce +";"+ yawForce +";"+
(SystemClock . elapsedRealtimeNanos ()/1000000)
+";\n"). getBytes ());

} catch (IOException e) {
e. printStackTrace ();

}
}

}
}

}
}

;

A.1.3 MySensors
onSensorChanged

@Override
public void onSensorChanged (SensorEvent event) {
if(event. sensor . getType () == Sensor . TYPE_ROTATION_VECTOR){

System . arraycopy (event.values , 0, rotationVec , 0, 3);
SensorManager . getRotationMatrixFromVector (rotationMatrix , rotationVec);
SensorManager . getOrientation (rotationMatrix , yawPitchRollVec);
sensorsData .yaw = getMainAngle (-(yawPitchRollVec [0]) * RAD_TO_DEG);
sensorsData .pitch = getMainAngle (-(yawPitchRollVec [1]) * RAD_TO_DEG);
sensorsData .roll = getMainAngle ((yawPitchRollVec [2]) * RAD_TO_DEG);
sensorsData . previousTime = sensorsData .time;
sensorsData .time = event. timestamp ;
delay= SystemClock . elapsedRealtimeNanos ()- event. timestamp ;
sensorsData .delay=delay;
this. connectionMavlink . setCurrentYaw (sensorsData .yaw);

}

57

Appendix A. JavaCode

else if(event. sensor . getType () == Sensor . TYPE_PRESSURE){
float pressure = event. values [0];
float rawAltitudeUnsmoothed =
SensorManager . getAltitude (SensorManager . PRESSURE_STANDARD_ATMOSPHERE , pressure);
absoluteElevation = (absoluteElevation * ALTITUDE_SMOOTHING) +

(rawAltitudeUnsmoothed * (1.0f - ALTITUDE_SMOOTHING));
if (pressure_count >150 && pressure_count <=200)
{

sensorsData . altitudeTemp = sensorsData . altitudeTemp + rawAltitudeUnsmoothed ;
if (pressure_count ==200)
{
sensorsData . zero_altitude = sensorsData . altitudeTemp /(pressure_count -150);
this. connectionMavlink . setAltitudeZero (sensorsData . zero_altitude);
}

}
pressure_count = pressure_count +1;
sensorsData . altitude = absoluteElevation ;
sensorsData . previous_pressure_time = sensorsData . pressure_time ;
sensorsData . pressure_time =event. timestamp ;
sendAltitudeToConnectionMavlink ();
this. connectionMavlink . sendDataToGCS . sendSensorsData (sensorsData);
}

}

locationListener

private LocationListener locationListener = new LocationListener () {
@Override
public void onLocationChanged (Location location) {

Log.d(" Location Change ", "Send new location from GPS module ");

double latitude = location . getLatitude ();
double longitude = location . getLongitude ();
gpsdata = gpsdata +1;
String gpsdatastring =Long. toString (gpsdata);
String gpslatitudestring = Double . toString (latitude);
String gpslongitudestring = Double . toString (longitude);
String t= Long. toString (SystemClock . elapsedRealtimeNanos ()/1000000);
connectionMavLink . sendGpsData (location);
connectionMavLink . setActualLocation (location);
if (autoPilot . gpsStream !=null)
{

try {
autoPilot . gpsStream .write ((gpsdatastring +","+t+","+

gpslatitudestring +","+ gpslongitudestring +"\n"). getBytes ());
} catch (IOException e) {

e. printStackTrace ();
}

}
}
@Override
public void onStatusChanged (String provider , int status , Bundle extras) {
}
@Override
public void onProviderEnabled (String provider) {
}
@Override
public void onProviderDisabled (String provider) {
}

};

A.1.4 PidAngleRegulator
getInput

public float getInput (float targetAngle , float currentAngle , float dt , boolean angle)
{

float rawDifference = targetAngle - currentAngle ;
if (angle)
{

difference = getMainAngle (rawDifference);
}
else {

difference = rawDifference ;
}

58

Appendix A. JavaCode

boolean differenceJump = (difference != rawDifference);
float input = 0.0f;
input += difference * kp;
integrator += difference * dt * ki / 1000000000;
if(integrator > MAX_INTEGRATOR)

integrator = MAX_INTEGRATOR ;
else if(integrator < - MAX_INTEGRATOR)

integrator = -MAX_INTEGRATOR ;
input += integrator ;
if(! differenceJump)
{

differencesMean = differencesMean * smoothingStrength
+ difference * (1 - smoothingStrength);

derivative = (differencesMean - previousDifference) / dt * 1000000000;
previousDifference = differencesMean ;
input += derivative * kd;

}
else
{

differencesMean = 0.0f;
}
return input;

}

getMainAngle

public static float getMainAngle (float angle) {
while(angle < -180.0f)
{

angle += 360.0f;
}
while(angle > 180.0f)
{

angle -= 360.0f;
}
return angle;

}

A.2 androidGroundControl Package

A.2.1 Connection
Connection thread

@RequiresApi (api = Build. VERSION_CODES .N)
@Override
public void run () {

while(true) {
try (ServerSocket serverSocket = new ServerSocket (5760)) {

serverSocket . setSoTimeout (150);
int systemId = 2;
int componentId = 1;
sendDataToGCS = new SendDataToGCS (systemId , componentId , singleConnection);
singleSocket = serverSocket . accept ();
singleConnection = MavlinkConnection . create (

singleSocket . getInputStream (),
singleSocket . getOutputStream ());

sendDataToGCS . setConnection (singleConnection);
sendDataToGCS . sendBatteryStatus (batteryLevel);
sendDataToGCS . sendGpsData (actualLocation);

new Thread (new Runnable () {
@Override
public void run () {

Log.d(" HeartBeat ", "send");
sendDataToGCS . sendHeartbeat ();

}
}). start ();
int missionItemNumber =0;
int missionItemCounter =0;
while (! singleSocket . isClosed ()) {
Log.d(" Connection "," Waiting for messages ");
MavlinkMessage m;
int count = 0;

59

Appendix A. JavaCode

while ((m = singleConnection .next ()) != null) {
if (m. getPayload () instanceof ParamRequestList)
{

Log.d(" Connection "," Params request received ");
ParamValue paramValue = ParamValue . builder ()
. paramId (" Altitude Kp")
. paramValue (altitudeKp)
. paramType (MavParamType . MAV_PARAM_TYPE_REAL32)
. paramIndex (0)
. paramCount (9)
.build ();
singleConnection .send2(systemId , componentId , paramValue);
ParamValue paramValue1 = ParamValue . builder ()
. paramId (" Altitude Ki")
. paramValue (altitudeKi)
. paramType (MavParamType . MAV_PARAM_TYPE_REAL32)
. paramIndex (1)
. paramCount (9)
.build ();
singleConnection .send2(systemId , componentId , paramValue1);
ParamValue paramValue2 = ParamValue . builder ()
. paramId (" Altitude Kd")
. paramValue (altitudeKd)
. paramType (MavParamType . MAV_PARAM_TYPE_REAL32)
. paramIndex (2)
. paramCount (9)
.build ();
singleConnection .send2(systemId , componentId , paramValue2);
ParamValue paramValue3 = ParamValue . builder ()
. paramId (" Latitude Kp")
. paramValue (latitudeRegulator .getKp ()*1000)
. paramType (MavParamType . MAV_PARAM_TYPE_REAL32)
. paramIndex (3)
. paramCount (9)
.build ();
singleConnection .send2(systemId , componentId , paramValue3);
ParamValue paramValue4 = ParamValue . builder ()
. paramId (" Latitude Ki")
. paramValue (latitudeRegulator .getKi ()*1000)
. paramType (MavParamType . MAV_PARAM_TYPE_REAL32)
. paramIndex (4)
. paramCount (9)
.build ();
singleConnection .send2(systemId , componentId , paramValue4);
ParamValue paramValue5 = ParamValue . builder ()
. paramId (" Latitude Kd")
. paramValue (latitudeRegulator .getKd ()*1000)
. paramType (MavParamType . MAV_PARAM_TYPE_REAL32)
. paramIndex (5)
. paramCount (9)
.build ();
singleConnection .send2(systemId , componentId , paramValue5);
ParamValue paramValue6 = ParamValue . builder ()
. paramId (" Longitude Kp")
. paramValue (longitudeRegulator .getKp ()*1000)
. paramType (MavParamType . MAV_PARAM_TYPE_REAL32)
. paramIndex (6)
. paramCount (9)
.build ();
singleConnection .send2(systemId , componentId , paramValue6);
ParamValue paramValue7 = ParamValue . builder ()
. paramId (" Longitude Ki")
. paramValue (longitudeRegulator .getKi ()*1000)
. paramType (MavParamType . MAV_PARAM_TYPE_REAL32)
. paramIndex (7)
. paramCount (9)
.build ();
singleConnection .send2(systemId , componentId , paramValue7);
ParamValue paramValue8 = ParamValue . builder ()
. paramId (" Longitude Kd")
. paramValue (longitudeRegulator .getKd ()*1000)
. paramType (MavParamType . MAV_PARAM_TYPE_REAL32)
. paramIndex (8)
. paramCount (9)
.build ();
singleConnection .send2(systemId , componentId , paramValue8);

60

Appendix A. JavaCode

}
else if (m. getPayload () instanceof ParamSet)
{

ParamSet ps =(ParamSet) m. getPayload ();
if (ps. paramId (). equals (" Altitude Kp"))
{

altitudeKp =ps. paramValue ();
Log.d(" Connection ",Float. toString (altitudeKp));
ParamValue paramValue = ParamValue . builder ()
. paramId (" Altitude Kp")
. paramValue (altitudeKp)
. paramType (MavParamType . MAV_PARAM_TYPE_REAL32)
. paramIndex (0)
. paramCount (9)
.build ();
singleConnection .send2(systemId , componentId , paramValue);

}
else if (ps. paramId (). equals (" Altitude Ki"))
{

altitudeKi =ps. paramValue ();
Log.d(" Connection ",Float. toString (altitudeKi));
ParamValue paramValue = ParamValue . builder ()
. paramId (" Altitude Ki")
. paramValue (altitudeKi)
. paramType (MavParamType . MAV_PARAM_TYPE_REAL32)
. paramIndex (1)
. paramCount (9)
.build ();
singleConnection .send2(systemId , componentId , paramValue);

}
else if (ps. paramId (). equals (" Altitude Kd"))
{

altitudeKd =ps. paramValue ();
Log.d(" Connection ",Float. toString (altitudeKd));
ParamValue paramValue = ParamValue . builder ()
. paramId (" Altitude Kd")
. paramValue (altitudeKd)
. paramType (MavParamType . MAV_PARAM_TYPE_REAL32)
. paramIndex (2)
. paramCount (9)
.build ();
singleConnection .send2(systemId , componentId , paramValue);

}
else if (ps. paramId (). equals (" Latitude Kp"))
{

latitudeRegulator .setKp(ps. paramValue ()/1000);
ParamValue paramValue = ParamValue . builder ()
. paramId (" Latitude Kp")
. paramValue (latitudeRegulator .getKp ()*1000)
. paramType (MavParamType . MAV_PARAM_TYPE_REAL32)
. paramIndex (3)
. paramCount (9)
.build ();
singleConnection .send2(systemId , componentId , paramValue);

}
else if (ps. paramId (). equals (" Latitude Ki"))
{
l atitudeRegulator .setKi(ps. paramValue ()/1000);

ParamValue paramValue = ParamValue . builder ()
. paramId (" Latitude Ki")
. paramValue (latitudeRegulator .getKi ()*1000)
. paramType (MavParamType . MAV_PARAM_TYPE_REAL32)
. paramIndex (4)
. paramCount (9)
.build ();
singleConnection .send2(systemId , componentId , paramValue);

}
else if (ps. paramId (). equals (" Latitude Kd"))
{

latitudeRegulator .setKd(ps. paramValue ()/1000);
ParamValue paramValue = ParamValue . builder ()
. paramId (" Latitude Kd")
. paramValue (latitudeRegulator .getKd ()*1000)
. paramType (MavParamType . MAV_PARAM_TYPE_REAL32)

61

Appendix A. JavaCode

. paramIndex (5)

. paramCount (9)

.build ();
singleConnection .send2(systemId , componentId , paramValue);

}
else if (ps. paramId (). equals (" Longitude Kp"))
{

longitudeRegulator .setKp(ps. paramValue ()/1000);
ParamValue paramValue = ParamValue . builder ()
. paramId (" Longitude Kp")
. paramValue (longitudeRegulator .getKp ()*1000)
. paramType (MavParamType . MAV_PARAM_TYPE_REAL32)
. paramIndex (6)
. paramCount (9)
.build ();
singleConnection .send2(systemId , componentId , paramValue);

}
else if (ps. paramId (). equals (" Longitude Ki"))
{

longitudeRegulator .setKi(ps. paramValue ()/1000);
ParamValue paramValue = ParamValue . builder ()
. paramId (" Longitude Ki")
. paramValue (longitudeRegulator .getKi ()*1000)
. paramType (MavParamType . MAV_PARAM_TYPE_REAL32)
. paramIndex (7)
. paramCount (9)
.build ();
singleConnection .send2(systemId , componentId , paramValue);

}
else if (ps. paramId (). equals (" Longitude Kd"))
{

longitudeRegulator .setKd(ps. paramValue ()/1000);
ParamValue paramValue = ParamValue . builder ()
. paramId (" Longitude Kd")
. paramValue (longitudeRegulator .getKd ()*1000)
. paramType (MavParamType . MAV_PARAM_TYPE_REAL32)
. paramIndex (8)
. paramCount (9)
.build ();
singleConnection .send2(systemId , componentId , paramValue);

}
}
else if (m. getPayload () instanceof CommandLong) {
CommandLong c = (CommandLong) m. getPayload ();
if (c. command (). entry () == MavCmd . MAV_CMD_DO_DIGICAM_CONTROL) {
Log.d(" Message received ", " MAV_CMD_DO_DIGICAM_CONTROL " + c. toString ());
if (c. param5 () == 1.0 || c. param7 () == 1.0) {

Log.d("Param", " Shooting Command ");
count ++;
CommandLong commandLong = CommandLong . builder ()
. command (MavCmd . MAV_CMD_IMAGE_START_CAPTURE)
. targetComponent (100)
. targetSystem (1)
. param3 (1)
.build ();
CommandAck commandAck = CommandAck . builder ()
. command (MavCmd . MAV_CMD_DO_DIGICAM_CONTROL)
. targetSystem (255)
. targetComponent (244)
.build ();
CameraTrigger cameraTrigger = CameraTrigger . builder ()
.seq(count)
. timeUsec (new BigInteger (64, new Random (55)))
.build ();
Photo photo=new Photo(mainContext);
try {

photo. openCameraThread ();
}
catch (CameraAccessException e)
{

e. printStackTrace ();
}

singleConnection .send2(systemId , componentId , commandLong);
singleConnection .send2(systemId , componentId , commandAck);

62

Appendix A. JavaCode

singleConnection .send2(systemId , componentId , cameraTrigger);
}
} else if (c. command (). entry (). equals (MavCmd . MAV_CMD_REQUEST_MESSAGE)) {

Log.d(" Message received ", c. toString ());
AutopilotVersion autopilotVersion = AutopilotVersion . builder ()
. capabilities
(MavProtocolCapability .
MAV_PROTOCOL_CAPABILITY_FLIGHT_INFORMATION)
. capabilities
(MavProtocolCapability .
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT)
. capabilities
(MavProtocolCapability . MAV_PROTOCOL_CAPABILITY_TERRAIN)
. capabilities
(MavProtocolCapability . MAV_PROTOCOL_CAPABILITY_MAVLINK2)
. capabilities
(MavProtocolCapability . MAV_PROTOCOL_CAPABILITY_COMMAND_INT)
. osSwVersion (222)
. flightSwVersion (111)
. boardVersion (333)
. productId (1)
.build ();

singleConnection .send2(systemId , componentId , autopilotVersion);
}
}
else if (m. getPayload () instanceof MissionCount)
{

MissionCount ms= (MissionCount) m. getPayload ();
if (ms. targetComponent ()==1 &&
ms. targetSystem ()==2 &&
ms. missionType (). entry ().
equals (MavMissionType . MAV_MISSION_TYPE_MISSION))

{
missionItemNumber =ms.count ();
missionItemCounter =0;
MissionRequestInt missionRequestInt = MissionRequestInt . builder ()
. targetSystem (255)
. targetComponent (244)
.seq (0)
. missionType (MavMissionType . MAV_MISSION_TYPE_MISSION)
.build ();
singleConnection .send2(systemId , componentId , missionRequestInt);
}
}
else if (m. getPayload () instanceof MissionItemInt)
{

MissionItemInt msItemInt =(MissionItemInt)m. getPayload ();
if (msItemInt . targetSystem ()==2 && msItemInt . targetComponent ()==1)
{
if (msItemInt .frame (). entry (). equals

(MavFrame . MAV_FRAME_GLOBAL_RELATIVE_ALT))
{
if (msItemInt . command (). entry (). equals (MavCmd . MAV_CMD_NAV_TAKEOFF))
{

MissionStep missionStep = new MissionStep ();
missionStep . altitude = msItemInt .z();
missionStep .what=What. TAKE_OFF ;
missionStepList .add(missionStep);

}
else if (msItemInt . command (). entry (). equals (MavCmd . MAV_CMD_NAV_WAYPOINT))
{

MissionStep missionStep =new MissionStep ();
missionStep . latitude = msItemInt .x();
missionStep . longitude = msItemInt .y();
missionStep .what=What. WAYPOINT ;
missionStepList .add(missionStep);

}
else if (msItemInt . command (). entry (). equals (MavCmd . MAV_CMD_NAV_LAND))
{

MissionStep missionStep =new MissionStep ();
missionStep .what=What.LAND;
missionStepList .add(missionStep);

}
}
if (msItemInt .seq ()== missionItemNumber -1)
{

MissionAck missionAck = MissionAck . builder ()

63

Appendix A. JavaCode

. targetSystem (255)

. targetComponent (244)

.type(MavMissionResult . MAV_MISSION_ACCEPTED)

. missionType (MavMissionType . MAV_MISSION_TYPE_MISSION)

.build ();
singleConnection .send2(systemId , componentId , missionAck);
MissionStep ms= missionStepList . removeFirst ();
What w=ms.what;
if (w== What. TAKE_OFF)
{

Log.d(" Connection ","First take off discarded !!!");
ms= missionStepList . removeFirst ();

w=ms.what;
if (w== What. WAYPOINT)
{

targetAltitude = altitude ;
targetLatitude = ms. latitude ;
targetLongitude = ms. longitude ;

}
}
else if (w== What. WAYPOINT)
{

targetAltitude = altitude ;
targetLatitude = ms. latitude ;
targetLongitude = ms. longitude ;

}
else
{

Log.d(" Connection "," initial step wrong!");
}

}
else if (missionItemCounter == msItemInt .seq ())
{

missionItemCounter ++;
MissionRequestInt missionRequestInt = MissionRequestInt . builder ()
. targetSystem (255)
. targetComponent (244)
.seq(missionItemCounter)
. missionType (MavMissionType . MAV_MISSION_TYPE_MISSION)
.build ();
singleConnection .send2(systemId , componentId , missionRequestInt);

}
}

}
if (! holdingFromAutopilot)
{

targetAltitude = altitude ;
targetLongitude = longitude ;
targetLatitude = latitude ;
missionStepList .clear ();

}
if (targetAltitude < altitude + 0.1 &&

targetAltitude > altitude - 0.1 &&
targetLatitude < latitude + 5 &&
targetLatitude > latitude - 5 &&
targetLongitude < longitude + 5 &&
targetLongitude > longitude - 5) {

if (! missionStepList . isEmpty ()) {
MissionStep ms = missionStepList . removeFirst ();
What w = ms.what;
if (w == What. WAYPOINT) {

targetAltitude = altitude ;
targetLatitude = ms. latitude ;
targetLongitude = ms. longitude ;
Log.d(" Connection ", " WayPoint set");

} else if (w == What.LAND) {
targetLatitude = latitude ;
targetLongitude = longitude ;
targetAltitude = altitudeZero ;

}
}

}
long dtGps=gpsTime - gpsAcquisitionTime ;
if (dtGps !=0 && targetLatitude !=0 && targetLongitude !=0)
{

float tempTargetPitch = latitudeRegulator . getInput
(targetLatitude ,latitude ,dtGps ,false);

64

Appendix A. JavaCode

float tempTargetRoll = longitudeRegulator . getInput
(targetLongitude ,longitude ,dtGps ,false);

medianTargetRoll = (float)
(tempTargetRoll *Math.cos(Math. toRadians (- currentYaw))
-tempTargetPitch *Math.sin(Math. toRadians (- currentYaw)));

medianTargetPitch =(float)
(tempTargetRoll *Math.sin(Math. toRadians (- currentYaw))
+ tempTargetPitch *Math.cos(Math. toRadians (- currentYaw)));

if (medianTargetPitch > ROLLPITCHMAX)
{

gpsTargetPith = ROLLPITCHMAX ;
}
else if (medianTargetPitch <- ROLLPITCHMAX)
{

gpsTargetPith =- ROLLPITCHMAX ;
}
else
{

gpsTargetPith = medianTargetPitch ;
}
if(medianTargetRoll > ROLLPITCHMAX)
{

gpstargetRoll = ROLLPITCHMAX ;
}
else if (medianTargetRoll <- ROLLPITCHMAX)
{

gpstargetRoll =- ROLLPITCHMAX ;
}
else
{

gpstargetRoll = medianTargetRoll ;
}
gpsAcquisitionTime = gpsTime ;

}
}

}
} catch (EOFException eof) {

Log.d(" Connection "," error1 ");
} catch (UnknownHostException e) {

Log.d(" Connection "," error2 ");
e. printStackTrace ();

} catch (IOException e) {
// Log.d("Connection","error timeout");
if (! holdingFromAutopilot)
{

targetAltitude = altitude ;
targetLongitude = longitude ;
targetLatitude = latitude ;
missionStepList .clear ();

}
long dtGps=gpsTime - gpsAcquisitionTime ;
if (dtGps !=0 && targetLatitude !=0 && targetLongitude !=0)
{

float tempTargetPitch = latitudeRegulator . getInput
(targetLatitude ,latitude ,dtGps ,false);

float tempTargetRoll = longitudeRegulator . getInput
(targetLongitude ,longitude ,dtGps ,false);

medianTargetRoll = (float) (tempTargetRoll *Math.cos(Math. toRadians (- currentYaw))
-tempTargetPitch *Math.sin(Math. toRadians (- currentYaw)));

medianTargetPitch =(float) (tempTargetRoll *Math.sin(Math. toRadians (- currentYaw))
+ tempTargetPitch *Math.cos(Math. toRadians (- currentYaw)));

if (medianTargetPitch > ROLLPITCHMAX)
{

gpsTargetPith = ROLLPITCHMAX ;
}
else if (medianTargetPitch <- ROLLPITCHMAX)
{

gpsTargetPith =- ROLLPITCHMAX ;
}
else

{
gpsTargetPith = medianTargetPitch ;

}
if(medianTargetRoll > ROLLPITCHMAX)
{

65

Appendix A. JavaCode

gpstargetRoll = ROLLPITCHMAX ;
}
else if (medianTargetRoll <- ROLLPITCHMAX)
{

gpstargetRoll =- ROLLPITCHMAX ;
}
else
{

gpstargetRoll = medianTargetRoll ;
}
gpsAcquisitionTime = gpsTime ;

}
e. printStackTrace ();
}

}
}

A.2.2 SendDataToGCS
sendSensorsData

public void sendSensorsData (MySensors . SensorsData sensorsData){
Attitude attitude = Attitude . builder ()

.yaw(- sensorsData .yaw /180* PI)

.pitch(- sensorsData .pitch /180* PI)

.roll(- sensorsData .roll /180* PI)

. timeBootMs (SystemClock . elapsedRealtime ())

.build ();
Altitude altitude = Altitude . builder (). altitudeRelative (sensorsData .altitude - sensorsData . zero_altitude). build ();
new Thread (new Runnable () {

@Override
public void run () {

try {
if(connection !=null) {

connection .send2(systemId , componentId , attitude);
connection .send2(systemId , componentId , altitude);

}
} catch (IOException e) {

e. printStackTrace ();
}

}
}). start ();

}

sendBatteryStatus

public void sendBatteryStatus (int level){
BatteryStatus batteryStatus = BatteryStatus . builder (). batteryRemaining (level). build ();
new Thread (new Runnable () {

@Override
public void run () {

try {
if(connection !=null) {

connection .send2(systemId , componentId , batteryStatus);
}

} catch (IOException e) {
e. printStackTrace ();

}
}

}). start ();
}

sendGpsData

public void sendGpsData (Location location){
if(location != null){

GpsRawInt gps = GpsRawInt . builder ()
.lat ((int)Math.round(location . getLatitude () * 10000000))
.lon ((int)Math.round(location . getLongitude () * 10000000))
.alt ((int)Math.round(location . getAltitude () * 1000))
. timeUsec (BigInteger . valueOf (location . getTime ()))
. fixType (GpsFixType . values ())
.build ();

new Thread (new Runnable () {
@Override
public void run () {

66

Appendix A. JavaCode

try {
if(connection !=null)

connection .send2(systemId , componentId , gps);
} catch (IOException e) {

e. printStackTrace ();
}

}
}). start ();

}
}

sendHeartbeat

public void sendHeartbeat (){
Heartbeat heartbeat ;
boolean connectionActive = true;
while (connectionActive) {

try {
sleep (1000);
heartbeat = Heartbeat . builder ()

.type(MavType . MAV_TYPE_QUADROTOR)

. autopilot (MavAutopilot . MAV_AUTOPILOT_GENERIC)

. baseMode (MavModeFlag . MAV_MODE_FLAG_GUIDED_ENABLED)

. systemStatus (MavState . MAV_STATE_ACTIVE)

. mavlinkVersion (2)

.build ();
int systemId = 2;
int componentId = 1;
connection .send2(systemId , componentId , heartbeat);

} catch (IOException e) {
e. printStackTrace ();
connectionActive = false;

} catch (InterruptedException e) {
e. printStackTrace ();
connectionActive = false;

}
}

}

A.2.3 Photo
Photo constructor

@RequiresApi (api = Build. VERSION_CODES . LOLLIPOP)
public Photo(Context context) {
this. context = context ;
this. connectionVideoToGCS =new ConnectionVideoToGCS (context);
cameraManager = (CameraManager) context . getSystemService (Context . CAMERA_SERVICE);
try {

if (cameraManager !=null) {
cameraList = cameraManager . getCameraIdList ();
for (String cameraID : cameraList) {
CameraCharacteristics cameraCharacteristics =

cameraManager . getCameraCharacteristics (cameraID);
Integer facing = cameraCharacteristics .get(CameraCharacteristics . LENS_FACING);
if (facing == CameraCharacteristics . LENS_FACING_BACK) {

StreamConfigurationMap streamConfigurationMap =
cameraCharacteristics .get

(CameraCharacteristics . SCALER_STREAM_CONFIGURATION_MAP);
if (streamConfigurationMap . isOutputSupportedFor (ImageFormat .JPEG)) {

Size [] sizes =
streamConfigurationMap . getOutputSizes (ImageFormat .JPEG);

for (Size size : sizes) {
if (size. getHeight () > maxHeightPixels) {

maxHeightPixels = size. getHeight ();
camID = cameraID ;

}
if (size. getWidth () > maxWidthPixels) {

maxWidthPixels = size. getHeight ();
camID = cameraID ;

}
}

}
}

}
}

67

Appendix A. JavaCode

imageReader = ImageReader . newInstance
(maxWidthPixels , maxHeightPixels , ImageFormat .JPEG , 3);

} catch (CameraAccessException e) {
e. printStackTrace ();

}
}

openCameraThread

public void openCameraThread () throws CameraAccessException {
handlerThread =new HandlerThread (" CameraThread ");
handlerThread .start ();
handler =new Handler (handlerThread . getLooper ());
imageReader . setOnImageAvailableListener (imageAvailableListener , handler);
if (ContextCompat . checkSelfPermission

(context , Manifest . permission . CAMERA) ==
PackageManager . PERMISSION_GRANTED) {

cameraManager . openCamera (camID , stateCallback , handler);
}
else
{

Log.d(" Camera ","no permission ");
}
}

stateCallback

private final CameraDevice . StateCallback stateCallback =new CameraDevice . StateCallback () {
@Override
public void onOpened (@NonNull CameraDevice camera) {

List <Surface > surfaceList =new ArrayList < >();
surfaceList .add(imageReader . getSurface ());
cameraDevice = camera ;
try {

camera . createCaptureSession (surfaceList , captureSessionCallback ,null);
} catch (CameraAccessException e) {

e. printStackTrace ();
}

}
@Override
public void onDisconnected (@NonNull CameraDevice camera) {

handlerThread .quit ();
}
@Override
public void onError (@NonNull CameraDevice camera , int error) {

Log.d(" Camera ","error opening camera ");
}

};

captureSessionCallback

private final CameraCaptureSession . StateCallback captureSessionCallback =
new CameraCaptureSession . StateCallback () {
@Override
public void onConfigured (@NonNull CameraCaptureSession session) {
cameraCaptureSession = session ;
try {

captureRequestBuilder = cameraDevice . createCaptureRequest (
CameraDevice . TEMPLATE_STILL_CAPTURE);

captureRequestBuilder . addTarget (imageReader . getSurface ());
session . capture (captureRequestBuilder .build (),null,null);
} catch (CameraAccessException e) {

e. printStackTrace ();
}

}
@Override
public void onConfigureFailed (@NonNull CameraCaptureSession session) {
}

};

imageAvailableListener

private final ImageReader . OnImageAvailableListener imageAvailableListener =
new ImageReader . OnImageAvailableListener (){

@Override

68

Appendix A. JavaCode

public void onImageAvailable (ImageReader reader) {
Image image= reader . acquireNextImage ();
ByteBuffer byteBuffer =image. getPlanes ()[0]. getBuffer ();
byte[] bytes=new byte[byteBuffer . remaining ()];
byteBuffer .get(bytes);
File sd =

new File(context . getExternalFilesDir
(Environment . DIRECTORY_PICTURES)," PictureOnAir ");

if(!sd. exists ()) {
sd. mkdirs ();

}
Calendar cal = Calendar . getInstance ();
SimpleDateFormat sdf = new SimpleDateFormat (" yyyyMMdd_HHmmss ");
String tar = (sdf. format (cal. getTime ()));
try {

FileOutputStream outStream = new FileOutputStream (sd+"/"+tar+".jpg");
outStream .write(bytes);

} catch (FileNotFoundException e) {
e. printStackTrace ();

} catch (IOException e) {
e. printStackTrace ();

}
image.close ();
imageReader .close ();
cameraDevice .close ();
connectionVideoToGCS .start ();

}
};

A.2.4 ConnectionVideoToGCS
ConnectionVideoToGCS thread

public void run () {
super.run ();
File sd = new File(context . getExternalFilesDir

(Environment . DIRECTORY_PICTURES), " PictureOnAir ");
if(!sd. exists ()) {

sd. mkdirs ();
Log.i("FO", " folder " + context . getExternalFilesDir (Environment . DIRECTORY_PICTURES));
}
Calendar cal = Calendar . getInstance ();
SimpleDateFormat sdf = new SimpleDateFormat (" yyyyMMdd_HHmmss ");
String tar = (sdf. format (cal. getTime ()));
String path= sd. getAbsolutePath ();
int rc= FFmpeg . execute ("-loglevel trace -f android_camera -camera_index 0

-i 0:0 -pix_fmt yuv420p -s 320 x240 -c:v libx264 " +
"-preset ultrafast -tune zerolatency " +
"-f rtp rtp ://192.168.43.151:5600 " //+

// " -pix_fmt yuv420p -s 1280x720 -crf 19
// -preset ultrafast -c:v libx264 "+path+"/"+tar+".mkv"
);
if (rc!= RETURN_CODE_SUCCESS)
{

Log.d("video",Integer . toString (rc));
Config . printLastCommandOutput (Log.INFO);

}
}

69

Appendix B

Arduino Code

include "SBUS.h"
include <Wire.h>
define SBUS_MIN 172
define SBUS_MAX 1815
uint8_t target_roll ;
uint8_t target_pitch ;
uint8_t target_yaw ;
uint8_t target_altitude ;
byte sw;
byte se;
byte ne;
byte nw;
int swNoSmartphone ;
int nwNoSmartphone ;
int seNoSmartphone ;
int neNoSmartphone ;
volatile bool flagNoSmartphone ;
bool flagStart ;
byte tx [6];
int lengthOfRx ;
// a SBUS object, which is on hardware
// serial port 3
SBUS receiver (Serial3);
// channel, fail safe, and lost frames data
uint16_t channels [16];
bool failSafe ;
bool lostFrame ;
int nrx;
byte received ;
void setup () {

cli ();
receiver .begin ();
Wire.begin ();
Serial .begin (115200);
target_roll = 0;
target_pitch = 0;
target_yaw = 0;
target_altitude = 0;
flagNoSmartphone =0;
flagStart =0;
sw = 0;
se = 0;
ne = 0;
nw = 0;

swNoSmartphone =0;
nwNoSmartphone =0;
seNoSmartphone =0;
neNoSmartphone =0;
nrx =0;
received =0;

lengthOfRx =0;
pinMode (9, OUTPUT);
pinMode (10, OUTPUT);
pinMode (13, OUTPUT);
TCCR5A = 0;
TCCR5B = 0;

70

Appendix B. Arduino Code

TCCR5B |= (0 << CS52) | (1 << CS51) | (0 << CS50);
TCNT5 = 0x0000;
bitSet (TIMSK5 , TOIE5);
sei ();

}
void loop () {
// look for a good SBUS packet from the receiver

if (receiver .read (& channels [0], &failSafe , & lostFrame)) {

if (channels [8] >= SBUS_MIN && channels [8] <= SBUS_MAX)
{

target_roll = map(channels [8] , SBUS_MIN , SBUS_MAX , 0, 255);
}
if (channels [2] >= SBUS_MIN && channels [2] <= SBUS_MAX)
{

target_pitch = map(channels [2] , SBUS_MIN , SBUS_MAX , 0, 255);
}
if (channels [6] >= SBUS_MIN && channels [6] <= SBUS_MAX)
{

target_altitude = map(channels [6] , SBUS_MIN , SBUS_MAX , 0, 255);
}
if (channels [7] >= SBUS_MIN && channels [7] <= SBUS_MAX)
{

target_yaw = map(channels [7] , SBUS_MIN , SBUS_MAX , 0, 255);
}
if (target_pitch ==0 && target_altitude ==0)

{
flagStart =1;

}
if (flagNoSmartphone ==0)
{

tx [1] = (byte) target_roll ;
tx [2] = (byte) target_pitch ;
tx [3] = (byte) target_yaw ;
tx [4] = (byte) target_altitude ;

if (channels [0]==1401)
{

tx [0] = (byte) 2;
tx [5] = (byte) 2;
Serial .write(tx , sizeof (tx));

}
else if (channels [0]==992)
{

tx [0] = (byte) 1;
tx [5] = (byte) 1;
Serial .write(tx , sizeof (tx));

}
else if (channels [0]==582)
{

tx [0] = (byte) 0;
tx [5] = (byte) 0;
Serial .write(tx , sizeof (tx));

}
}

}
byte rx [5];
while(Serial . available () > 0){

TCNT5 = 0;
flagNoSmartphone =0;
received = Serial .read ();
if (received ==(byte)0)
{

if (nrx ==4)
{

sw = (byte) rx [0];
se = (byte) rx [1];
ne = (byte) rx [2];
nw = (byte) rx [3];

}
nrx =0;

}
else
{

rx[nrx]= received ;
nrx ++;

71

Appendix B. Arduino Code

}
}
if (flagNoSmartphone ==1)
{

nwNoSmartphone =(target_altitude -(target_pitch -128)/2+
(target_roll -128)/2 -(target_yaw -128)/2) -20 -6;

swNoSmartphone =(target_altitude +(target_pitch -128)/2+
(target_roll -128)/2+(target_yaw -128)/2) -20;

neNoSmartphone =(target_altitude -(target_pitch -128)/2 -
(target_roll -128)/2+(target_yaw -128)/2) -20 -6;

seNoSmartphone =(target_altitude +(target_pitch -128)/2 -
(target_roll -128)/2 -(target_yaw -128)/2) -20;

if (nwNoSmartphone >255)
{

nwNoSmartphone =255;
}
else if(nwNoSmartphone <0)
{

nwNoSmartphone =0;
}
if (swNoSmartphone >255)
{

swNoSmartphone =255;
}
else if(swNoSmartphone <0)
{

swNoSmartphone =0;
}
if (neNoSmartphone >255)
{

neNoSmartphone =255;
}
else if(neNoSmartphone <0)
{

neNoSmartphone =0;
}
if (seNoSmartphone >255)
{

seNoSmartphone =255;
}
else if(seNoSmartphone <0)
{

seNoSmartphone =0;
}
nw=(byte) nwNoSmartphone ;
sw=(byte) swNoSmartphone ;
ne=(byte) neNoSmartphone ;
se=(byte) seNoSmartphone ;

}
if (target_altitude < 20 || flagStart ==0)
{

sw = 0;
se = 0;
ne = 0;
nw = 0;

}

Wire. beginTransmission (0 x29);
Wire.write(ne);
Wire. endTransmission ();
Wire. beginTransmission (0 x2a);
Wire.write(sw);
Wire. endTransmission ();
Wire. beginTransmission (0 x2b);
Wire.write(nw);
Wire. endTransmission ();
Wire. beginTransmission (0 x2c);
Wire.write(se);
Wire. endTransmission ();

}
ISR(TIMER5_OVF_vect)
{

cli ();
flagNoSmartphone =1;
sei ();

}

72

	Introduction
	State of Art
	Quadcopter
	Mechanical structure
	Sensors
	Autopilot
	Communication

	Objective
	Summary

	Android OS
	Android architecture
	Application framework
	Activity
	Service
	Content provider
	Broadcast receiver
	Intents

	Binder
	System services
	NDK

	Hardware abtraction layer
	Treble project

	Kernel

	Garbage collector
	Scheduler

	Android sensor
	Sensor stack
	Application sensor framework
	Sensor HAL
	Sensor drivers

	Rotation vector sensor
	Sensor sampling rate
	Sensor latency

	Pressure sensor
	GPS
	Sensor direct channel

	Smartphone Application
	AdkCommunicator
	MySensors
	Autopilot
	PidAngleRegulator
	Connection
	ConnectionVideoToGCS
	Photo
	SendDataToGCS

	Arduino board
	Radio communication
	SBUS protocol

	Motors actuation
	I2C

	Timing
	Power supply
	Code implementation
	setup
	loop

	Ground control station (GCS)
	Mavlink
	Messages
	Microservices

	QGroundControl software
	Network

	Hardware used
	Smartphone
	Arduino Mega 2560
	ESCs
	Motors
	RC

	Experimental results
	System overview
	Manual mode
	Altitude regulated
	Automatic

	Manual mode test
	Roll
	Pitch
	Yaw

	Mavlink connection and video streaming test

	Conclusions
	Future improvements

	Bibliography
	JavaCode
	androidAutopilot Package
	AdkCommunicator
	setSerialPort
	onReceiveData
	setPowers

	Autopilot
	Autopilot thread

	MySensors
	onSensorChanged
	locationListener

	PidAngleRegulator
	getInput
	getMainAngle

	androidGroundControl Package
	Connection
	Connection thread

	SendDataToGCS
	sendSensorsData
	sendBatteryStatus
	sendGpsData
	sendHeartbeat

	Photo
	Photo constructor
	openCameraThread
	stateCallback
	captureSessionCallback
	imageAvailableListener

	ConnectionVideoToGCS
	ConnectionVideoToGCS thread

	Arduino Code

