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Abstract 
Climate Adaptive Building Shells are envelope elements that have dynamic features 

instead of the traditional static ones. This target practice is relevant because of different 

environmental conditions affecting operative building loads that vary by locations, seasonal 

weather and future climate evolution, and because of the urgent need for decarbonisation. 

The large amount of time spent in indoor environment in modern days also requires 

attention for comfort, affecting people wellbeing. Smart windows can affect both thermal 

loads and lighting conditions, but active glazing technologies require a control strategy to 

be deployed. The control methods for building systems and smart windows in particular 

are Rule-Based or Model Predictive-based. The former mainly rely on a priori-knowledge 

and can only indirectly adapt on-field through rearranging boundaries of its condition 

statements. However, these adaptable ranges maintain fixed associated actions. The second 

can develop a sequence of optimized steps based on disturbances, even predicting them. 

This ability however comes with the need for a model, with possible drawbacks concerning 

computational time, calibration precision and development work. Some researchers have 

applied Reinforcement Learning in the building sector but mainly for service equipment. 

The present work investigates the adaptability and suitability of Tabular Q-learning 

Reinforcement Learning to develop an evolving control policy for a smart window in order 

to address contrasting objectives. In particular, an electrochromic window capable to switch 

between 4 different states has been chosen as smart glazing technology. Different RL 

agents have been tested, introducing various designs of state space based on different 

combination of most implemented variables found in literature. In all tested configurations, 

incident solar radiation on window was provided to the controller as input variable. The 

objective of the controller was to minimize the energy consumption for key building 

services (namely, heating, cooling and lighting) while ensuring the visual comfort. 

Improvements in both fields can have positive economic effects related to reduced energy 

utilization in the operational phase of buildings and enhanced user wellbeing respectively. 

In order to evaluate the goodness of developed controllers, a Rule-Based Controller has 

been selected as baseline. 

Results suggested that electrochromic windows have a much higher potential effect on 

lighting service than on heating. The most energy efficient design embedded input variables 
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representing the cumulative measures of external disturbances for the following 4 hours, 

that can be considered analogous to weather forecasts. This approach yielded to save an 

additional 3% of total energy compared to the reference RBC. When both energy 

consumption and visual comfort were embedded in the reward function, the most relying 

secondary input variables were occupancy and external temperature (when the 

measurement was categorized based on 3 discretization levels). The proposed controller 

was able to achieve between 64,7 and 67,5 % of Useful Daylight Index compared to 54,8% 

of the RBC strategy and still saving more energy, up to 1,76% less than RBC. Hence, 

Tabular Q-learning resulted as a good alternative to adaptive windows control strategies 

that want to address conflicting goals in the built environment.  
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1. Introduction 
1.1. Decarbonisation and the impacts of buildings 

Nowadays it is clear that energy savings are not simply a reduction of costs but also a tool 

to ease the anthropogenic emission of climate-altering gases into the atmosphere, an urgent 

and important goal because of the correlation with global warming. High-level 

temperatures and protracted heatwaves are becoming more frequent phenomena in many 

parts of the world. In the Northern Hemisphere, 29 countries shattered all-time historical 

measures of summer temperatures and Australia as well overcame its hottest record, as in 

2019 the summer temperature was around 3°C warmer compared to the 1961-90 average 

[1]. A simple illustration of global warming is shown in Figure 1.1. 

 

Figure 1.1 Warming stripes illustrating the annual global temperatures from 1850-2017, from 

[2] . The colour scale covers 1.35°C of change in global temperatures 

Climate change is a complex subject, often exemplified with CO2 emissions and its 

relation with energy production. The buildings and construction sector combined are 

responsible for over one-third of global final energy consumption and nearly 40% of total 

direct and indirect CO2 emissions [3]. Buildings spend massive amounts of energy 

worldwide to preserve indoor temperature. Especially the energy utilization of residential 

and commercial buildings in developed countries are growing more rapidly, observing the 

share varying from 20% to 40% yielding to energy use comparable to transportation and 

industrial sectors [4], and emissions seems not to decline. The latest  Global status report 

for buildings and construction [5] found in the building construction and operation sector 

the largest contributor to the emissions and energy demand. Both in residential and non-

residential buildings, power generation for commercial heat and electricity (labelled as 

indirect emissions in Figure 1.2) is the major emitting activity. 
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Figure 1.2 The weight of buildings and construction sector on global emissions and final energy 

in 2019, from [5] 

While electricity is consolidating in building services, since 2010 fossil fuel consumption 

grew as well at a marginal annual average growth rate of 0,7%. In the same time period, 

direct emissions from building registered a 5% rise. This wrong direction is also leaded in 

part by the construction of new facilities globally, in fact, between 2010 and 2019, the final 

energy use per m2 has been declining continually by 0.5% to 1% meanwhile average annual 

floor area increased with an higher rate of 2,5% in the same period [1]. Hence, there is a 

need for effective refurbishment solutions which has to be simple to integrate with existing 

buildings. 

Deep renovation of inefficient existing buildings is a key operation to try to constrain the 

temperature rise. Not only it leads to energy consumption decline, but to reduced capital 

costs as well, because holistic improvements in building envelopes and end-use equipment 

enable smaller heating and cooling systems need. According to the International Energy 

Agency [6], building retrofitting should rise from the 2014 value of 1% per year to a target 

rate of 2% per year. This is particularly true for building stock in continental northern 

hemisphere countries, where at least 75% of it is predicted to be still standing in 2050. For 

example, in the European Union the vast majority of residential buildings (which represent 

the majority of the floor area) has been built before 2000 [7]. This is significant because, 

in 50 years of EU policy to promote energy efficiency in buildings, the most important step 

came just in 2002 with the introduction of the Energy Performance of Buildings Directive 

[8]. 
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Figure 1.3 Residential buildings in EU classified by construction year (2014) from [7] 

In the Technology Roadmap of 2014 [6], the IEA identified 3 stages of energy efficiency 

in buildings, visible in Figure 1.4. The higher level is characterized by greater passive 

design, enhanced by highly insulation also for windows and free contributions to the indoor 

thermal comfort. An innovative approach should be provided by advanced facades 

developed to reduce cooling loads and meanwhile harvesting natural daylight. In the 

document, five technologies are listed as R&D investments which can yield to major 

returns and one of them is “lower-cost automated dynamic shading and glazings”. 

 

Figure 1.4 Progression of building envelopes refurbishment from old stock to future efficiency, 

from [6] 
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1.2. Adaptive Envelopes 

1.2.1. Concept of the envelope 

The building envelope have several purposes. In addition to protect people from safety 

threats and shelter building elements themselves from damages such as moisture-related 

ones, the main goals deal with the conservation of comfortable and stable indoor conditions 

despite the outdoor climate. Temperature, lighting, and Indoor Air Quality (IAQ), that takes 

into account pollutants’ concentration and relative humidity, are nowadays the principal 

requirements in developed countries for indoor environments. 

As stated by Perino et al. [9], for centuries designers and engineers dedicated on creating 

a shield to ensure a separation effect. The goal was essentially to provide a bubble of 

artificial climate, making the indoor environment insensitive to its surroundings in concern 

to unwanted phenomena, such as heat flows and air infiltration. In the end, comfort was 

entrusted to the installation of mechanical and electrical systems to bear the users’ needs 

for heating, ventilation, air-conditioning (HVAC) and artificial lighting. 

Furthermore, in heating-dominated climates, the attention to cooling, artificial lighting 

and plug-loads is lower compared to the concern for keeping sufficient warm temperature 

during the cold season. This focus yielded to an energy conservation approach that brought 

to building elements oriented to minimize the heat losses and maximize the free gains. In 

the last decades, European and National standards set decreasing limits for these flows and 

year by year improvements tend to become marginal [9].  

1.2.2. Static envelopes 

In order to conserve energy, characteristics of the building such as shape, orientation, sun 

and wind exposure can be established during the project stage. Building components are 

designed based on thicknesses and composition of materials, and tightness, thus, to reduce 

heat losses by transmission and ventilation.  

The commonly used building components are not intended to change. Meanwhile the 

indoor environment is oriented to stay constant, weather and seasonal climate provide a 

range of different conditions. Some of these changes are taken into account, such as the sun 

path and the thermal displacement. But many happens on an hourly or sub-hourly basis, 

like in the case of human behaviours that through preferences and schedules can make vary 
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internal gains and services’ needs as well. As an example, a technology that can do poorly 

in both summer and winter is a static glazed façade. The transmission losses rise the heating 

demand, while the great solar gains increase the cooling need and the oversized transparent 

portion can cause glare discomfort. 

1.2.3. Definition of adaptive envelopes 

Even if there are several terms used to describe this technological approach, ‘adaptability’ 

is appropriate as intended by Ferguson et al. [10] that refers to the ability to vary over time 

the physical characteristics of the system in order to address multiple requirements despite 

changing conditions. In the definition of Climate Adaptive Building Shells [11], authors 

find the ultimate goal in the overall building performance and specify that variations have 

to be also repeatable. 

In practical terms, a building shelter component can act at a macro or micro scale. Having 

moving parts, or taking advantage of fluids’ flows such as water or air, is a change at a 

macro scale and the term ‘kinetic’ well describe the process. Examples of that are smart 

shadings or the integration of natural ventilation both on external surfaces and inside the 

building. Many developers focused on the micro scale to switch the envelopes 

characteristics. Phase Change Materials (PCM) can store or release latent heat instead of 

simply reducing the transmission. A lot of research has been done about smart windows 

that mainly concern with changing light transmitting properties.  

Why and when these changes occur depend on the type of control, that can be classified 

as extrinsic or intrinsic. Extrinsic, or active, solutions depend on other components that 

play the roles of sensors and processors. When a device computed the acquired variables, 

the responsive building envelope is instructed as an actuator for the chosen policy. Rather 

to rely on other elements, if the adaptation is caused directly by the environment, we have 

an intrinsic, or passive, technology and the components is, conceptually, both a sensor and 

an actuator. Usually, this approach can lead to a lower energy use and lower complexity to 

run. 

1.2.4. Potentials of adaptive envelopes 

This ability of relevant features to fluctuate in a range, instead of delivering a fixed value, 

clear the way for more sophisticated management of heat fluxes, ventilation rates and 
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daylight harvesting, in addition to shifting energy in time as well. Furthermore, the building 

component envelopes doesn’t need to be a static compromise between performances under 

different conditions but can adjust to best fit several trade-off situations such as: solar gains 

and overheating, daylight and glare, clean air and draught risk, solar shading and artificial 

lighting. 

For example, as seen before, really low thermal transmittance can reduce the heating 

demand but increase the cooling demand. But bi-directional thermal diodes can both 

prevent and promote heat transfer through the wall construction [12]. The heat flux can be 

also lowered because of smart glazing like SMARTGlass [13]. A version of this full-scale 

prototype is composed by a PCM layer and a Thermo-Tropic (TT) one. While the PCM 

layer reduces the visible solar radiation entering the building to prevent both overheating 

and glare, TT layer passively contains the solar transmittance to better control the 

storage/release process of latent heat by the PCM layer. This configuration allowed Goia 

et al. to reduce the total heat flux in all conditions compared to a reference double glazed 

unit. 

As in the SMARTGlass experience, where different switchable materials are combined 

to enhance their efficacy, adaptive components themselves can be combined to work 

together. Corgnati et al [14] tested a multifunctional facade module in Turin (45.08 N, 

7.68E, 2894 HDD) and obtained a net positive specific daily energy flow entering the room 

even in the cold season. The ACTRESS prototype was designed as an Opaque module and 

a Transparent one. The performance was made possible using several technologies, and 

physical phenomena as well. PV panels creating a ventilated cavity, inlet/outlet grids, 

Vacuum Insulation Panel, PCM and electric heated carpets constituted the opaque portion, 

while the transparent one consisted in two high performant glazing systems. 

1.2.5. The transparent envelope 

The transparent portion of a building envelope plays a key role. Because the light is 

fundamental for carrying out human activities, during the use of indoor environments we 

exploit artificial light when natural light is not enough. The presence of glazed surfaces 

therefore saves lighting energy [15], [16], but their benefits are not only those ones. In fact, 

daylight is an important factor in our biological processes, as well as promoting our health 

and comfort [17]. 
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From an energy point of view, windows are a weak component. The U.S. Department of 

Energy stated that 25-30% of heating and cooling energy use in residential buildings, where 

the Window-to-Wall Ratio (WWR) is usually small, is caused by heat losses and heat gains 

through windows [18]. Fenestrations have in fact a much smaller insulation potential 

compared to opaque components, reason why, for example, Italian regulation sets much 

higher limits for windows’ U-values than for the rest of the envelope, as shown in the Figure 

1.5. 

 

 

Figure 1.5 Limits of thermal transmittance (U-value) undergoing energy refurbishments 

between 2019 and 2021, from Italian DM Minimum Requirements 26 June 2015. Image from the 

course "Energy Audit and Certification of Buildings", taught at Politecnico di Torino in 2018/19 

 

In hot seasons, transparent components can become an issue as well because heat gains 

for square meter of an un-shaded glazing can be 100 times the heat transferred through an 

insulated wall [19]. 

 The energy challenge is well known, but windows also affect the wellbeing and 

productivity of people. Existing standards concerning health and wellbeing of building 

occupants, like the international WELL Building Standard (WELL) and the European EN 

17037, set minimum level of exposure time to daylight because it can strengthen users 

physical and psychological health [20]. Those factors are important even from an economic 

point of view, at least in developed countries: although energy savings can reduce building 

operation spending, the costs of operation and maintenance are smaller than costs for 
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salaries of occupants [21]. There is still a debate on how productivity is possibly altered by 

temperature and lighting. Overheating can lead to a 12% drop in thinking performance and 

26% in typing, and this only with a Predicted Medium Vote value, which measures thermal 

comfort, of + 0.5 (slightly warm) [21]. An extensive recent review of lighting impacts on 

productivity [22] observed that most of the analysed studies found a positive correlation 

between illuminance and performance. In particular, a research carried on more than 21000 

American elementary school students showed a 21% improvement in learning rates for 

children using classrooms with more daylight than the environment of the control group 

[23]. 

Once the role of transparent component is clarified, the main characteristics of glazing 

for common use in construction are identified. The higher the heating load, the more 

important it is that the overall heat transfer coefficient is low. As showed, natural light is 

generally to be maximized and the visible light transmittance is obviously positively related 

to this resource. However, a high value can also bring disadvantages, such as glare 

discomfort and increased cooling load, thus its optimal level is related to boundary 

conditions, which are not usually static as described above. Ultimately, Solar Heat Gain 

Coefficient (SHGC) indicates the amount of solar energy transmitted through the window 

as heat. The design of this specific characteristic greatly depends on the climate and should 

be low to reduce cooling load and high to favour heat gains in the cold season [24]. In order 

to address both energy efficiency and visual comfort, designers choosing static windows 

(intended as “with not changeable features in time”) have to balance the mentioned qualities 

and find the best compromise fitting their specific scenario. This implies limitations in 

pursuing optimal performance. Moreover, as we have seen, the conditions are not always 

predictable, therefore the compromise will be greatly affected by uncertainty. 

For the sake of brevity, the different technologies for static windows will not be 

described. Though, it is appropriate to cite that there are several of them, from more 

common like low emitting coating and multiple panes glazing to more particular like 

reflective and aerogel equipped. These products, although they are better performing than 

simple glazing, still have the same limit of not being able to adapt to conflicting needs [25]. 

Before to dive into adaptable glazing, it is also worth mentioning windows with integrated 

photovoltaic cells. They, in addition to standard glazing features, can produce electricity 

depending on weather conditions. This can reduce the use of energy from the grid, in all 
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seasons, but reduce the daylight available indoor, thus potentially increasing artificial 

lighting demand and compromising benefits related to natural lighting. In conclusion, 

movable solution like smart shadings can prevent heat gains and glare discomfort, but their 

adaptability is not as accurate as advanced glazing technologies. 

1.2.6. Smart windows 

 In addition to static technologies and to glazing components integrated with 

photovoltaic cells, alternative options for transparent envelope lies in the so-called smart 

windows, which are a building envelope measure needing development to become cost-

effective [6]. In general, switchable windows can interact in both thermal physical domain 

and the optical one. The adaptable characteristics can vary the 

conduction/convection/radiation/storage of thermal energy and/or influence occupants’ 

visual perception by means of the transparency/colour of the building component. Thanks 

to their distinctive peculiarity, they can both facilitate the preservation of the users’ comfort 

(both thermal and visual) and contribute to the achievement of decarbonization targets. 

These adaptive building elements are categorized by Rezaei et al. [24] in passive (intrinsic 

control) and active (extrinsic control). Electrochromic (EC), Liquid Crystal (LCD), and 

Suspended Particle (SPD) devices respond to external control signals. They have a 

functional layer modulated by electricity (through injection/removal of electrons, or 

magnetic field variation) that vary their optical properties. Gasochromic (GC) technology 

have the same type of control, but the transition is driven by gas injection. On the contrary, 

passive technologies are directly sensitive to internal energy variations, depending on 

surface temperature or incident radiation. These variations of the functional layer trigger 

the switchable physical properties of the device. These technologies include Thermo-

Chromic (TC), Thermo-Tropic (TT), Phase Changing Materials (PCMs) and Photo-

Chromic (PC) glazing.  

The description of several smart windows is carried on exposing their distinctive 

characteristic, explaining their composition and consequently the functioning. Lastly, some 

remarkable performances are reported. After this detailed overviews, a cross-evaluation is 

proposed. 
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 Figure 1.6 Some examples of different glazing technologies. From [24]  

Thermochromic devices 

A Thermochromic material is able to change its optical properties depending on its 

temperature. This feature is proper of some transition metal compounds that go through not 

only micro-structural transformations caused by temperature variations, but also qualitative 

modifications of their electronic characteristics led by this transformation. The change 

occurs at well-defined temperatures, called “critical”. Therefore, the nature and influence 

on the transmitted solar radiation lay in the choice of the material. The most common 

thermochromic material is VO2, which is relatively infrared transparent when at 

temperature below the critic one, whereas it mainly reflects infrared light when above the 

limit. The Vanadium Oxide is located in the interlayer of a laminated glass. 

Giovannini et al. tested a TC glass in Turin with the intention of evaluating its 

effectiveness for different objectives. Although the office equipped with this technology 

achieved a 20.6% reduction in primary energy for heating, cooling need even increased 

(+23.2%). The impact on lighting consumption was almost nil (+0,6%), but compared to a 

selective glazing the TC window provided more daylight suitable to perform a visual task 

[26]. 
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Phase Change Materials devices 

Phase Change Materials (PCMs) are special composite that store/dissipate heat through 

transition between solid and liquid states. They are becoming of general interest in the 

construction sector [27] because of their ability to increase the thermal inertia of 

components (notoriously low characteristic in glazing), hence smoothing out temperature 

fluctuations and shifting peak loads. PCMs find application in fenestration as filling of the 

interlayer between window glass panes.   

A 2015 review reported that none completely transparent PCMs have been commercially 

used for windows [27]. Therefore, nevertheless they transmit a good amount of visible 

light, PCM devices are not suitable where visual contact through glazing is desired. 

Furthermore, because every PCM have a specific melting point, selecting the optimal one 

for the scenario of interest is crucial [28]. A full-scale PCM glazing prototype tested in a 

temperate sub-continental climate by Goia et al. [13] showed the significant improvement 

in cooling energy savings (more than 50% reduction of summer energy gains). 

Electrochromic devices 

 An Elecrochromic material is able to change its optical properties in respond to an 

electric signal. This category of glazing is reported as built with organic or inorganic 

materials [24]. In the first case, molecules of the material vary their colour through 

reduction/oxidation. In inorganic material, the functioning is based on metal oxides. Most 

details have been found on this last technology. For the operation of an electrochromic 

device, several layers are necessary. An example is given in Figure 1.7. In addition to the 

two transparent outer substrates, which can be in glass or polyester, the intermediate 

functional part is composed of several films. These usually are an electrochromic film 

(typically based on WO3) and a counter ion electrode (typically based on NiO) separated 

by a purely ion conductor and in contact with two transparent conductors at the ends.  
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Figure 1.7 Composition of an electrochromic device. Image from [29] 

The two external conductors are actually coated with the relative metals and connected 

to a circuit. When a positive voltage is applied, charge is transferred between the EC 

material and the ion storage material and it lead to the optical transparency variation. The 

original transparency can be re-established by reversing the voltage polarity. These 

transitions can require a time of several minutes or even in the range of seconds and they 

can afford a high modulation of the visible transmittance (up to 60%) [24].  

A study by Clear et al. [30] showed a significant potential energy saving for cooling (19-

26% annual reduction of the peak cooling load) when the control was oriented to minimize 

solar heat gain, whereas, if optimised for visual comfort, the fenestration could yield to a 

48-67% reduction of energy for lighting. The comparison is referred to best static windows 

(in 2006) and it was conducted on a forty-three employees office. Benefits in diminished 

glare and lower reflections in screens were also reported. 

Gasochromic devices 

The transition of optical properties in gasochromic devices is driven by gas injection. The 

gasochromic material (tungsten oxide is generally used) is coated with a catalyst layer and 

located between the glass panes. The catalyst divides H2 into H+ ions, therefore the volume 

of hydrogen in the interelayer define the transparency level. When the hydrogen 

concentration rise, caused by introduction of diluted hydrogen gas, transparency drops. On 
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the contrary, the injection of diluted oxygen gas restores the normal characteristics. A 

scheme of the composition and functioning can be seen in Figure 1.8. 

 
Figure 1.8 Examples of gasochromic window using Argon to dilute H2 and O2. From [24] 

 

Regarding the adaptation potential, a study conducted in laboratory [31] showed that GC 

windows transparency can vary between 0,77 and 0,06. Feng et al. [32] investigated the 

energy benefits through a simulation of a commercial office building in Shanghai. After 

the sampling of thermal and optical features of a GC device, they compared the 

performance with several commercial technologies. The HVAC (heating, ventilation, and 

air conditioning) load of the virtual GC window against a double glass unit was 11,5% 

lower. 

Liquid Crystal devices and Suspended Particles devices 

Suspended Particles devices and Liquid Crystal devices are both electroactive devices 

and were originally developed for displays. This means that they need a continuous power 

supply to maintain the maximum transparency, but also that they are relatively faster than 

other adaptive transparent devices. Therefore, they present an approach further than EC and 

GC technologies.  

LC-based windows have two conductive electrodes and between them liquid crystal 

molecules are collocated. These molecules, in absence of an electric field, scatter light and 

make the window appears white and translucent. 

SP devices are instead composed by 3-5 layers, with at the extremity two transparent 

conductors and a gel or an organic fluid between them where adsorbing dipole particles 

(usually polyhalide) are suspended. In the off state, particles remain random and absorb 
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light, thus decreasing the light transmission of the device. The transition time is about 100–

200 ms only. 

In both technologies, the application of an AC voltage aligns active elements so that the 

light is undisturbed. Figure 1.9 shows a scheme of the two states in a SP glazing. SP can 

have different transmittance ranges that typically are 0.79–0.49 and 0.50–0.04.  

 
Figure 1.9 Representation of suspended particles states used in a glazing. From [24] 

 

The principal drawback of these technologies is the continuous power supply needed, 

resulting in an energy consumption from 5 to up to 20 W/m2 for a LC device [33] and in 

SP devices requiring more energy than EC windows as well [24]. 

Photovoltachromic devices 

An interesting solution is represented by the application of Photoelectrochromic cells 

(PECCs) as glazing integration [34]. PECCs are generally photoelectrochemical cells 

composed by a redox electrolyte that divide two electrodes. This transparent functional 

layer not only can range its coloration, but also generate the energy needed for the 

transition. This process, depending on the available irradiance, can therefore prevent the 

use of external voltage.  

Favoino et al. [25] simulated different control approaches exploiting this technology and 

compared several performances to conventional static windows. The reduction of energy 

use has been marginal (maximum of 12%) and no significant improvements in visual 

comfort has been reached.  



15 

 

Comparison of Windows Technologies 

At the beginning of this section, the different goals of fenestrations and then the role of 

their properties have been covered. The goal was to investigate the state-of-the-art to 

identify an archetypal smart window suitable for pursuing distinct purposes, from energy 

savings in the different building services and visual comfort as well. Therefore, a good 

range of adaptability and the possibility to submit several control policies are desired. 

Most of the cited glazing systems have a solar modulation power and glare control, but 

devices based on PCM or PECCs materials have low visibility that is, in this case, a major 

drawback. TC glazing also provide low visibility, but their main limit is the type of 

activation that not only is typically passive, but also depend on a hard to regulate property 

as temperature. LC-based windows cannot modulate SHGC, thus, their application greatly 

excludes cooling energy savings. 

Figure 1.10 shows the climate-based optimal ranges for visible transmittance (Tv) and 

Solar Heat Gain Coefficient (SHGC), and the potential of some of the principal described 

technologies. DGU stands for Double Glass Unit, meanwhile TGU strands for Triple Glass 

Unit.  Electrochromic, Gasochromic and Suspended Particle devices are the smart windows 

most adaptable for different climatic conditions [33]. 
 

 
Figure 1.10 Performance of optimal windows and actual glazing technologies. From [24] 
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EC glazing have more limited modulation levels compared to GC and SP glazing. These 

last two are also faster, with transition in SP occurring almost instantly, but changes in 

weather conditions usually happen in the range of minutes. Even though energy spent by 

EC devices depend on the number of switches that are performed, the continuous energy 

supply needed by SP devices lead most probably to higher consumption, making 

theoretically harder to obtain energy savings. GC windows need special equipment to 

function that can discourage their implementation. 

In the end, EC technology seems the most effective opportunity. Its potential ability to 

pursue contrasting objectives has also been described and furthermore, in future, spectrally 

tunable EC could became commercially available as well. This version of EC devices is 

able to independently modulate visible and NIR light, thus control SHGC without 

compromising natural lighting [24]. 

1.3. Control strategies 

1.3.1. Building Automation Control Systems 

 BACS wide-spreading and challenges   

If the building envelope has until now had energy conservation as its main purpose, the 

technical systems has focused on increasing efficiency. This is made possible by both new 

generation and emission technologies, but also thanks to intelligent controls aimed at 

minimizing waste. Building Automation and Control Systems (BACS) have been 

developed to save energy while providing internal comfort. [35]. Dounis et al. [36] 

conducted a review because the HVAC systems energy is highly related to the control 

strategy applied to them, although the concepts governing the control of HVAC systems 

are similar to those of other types of processes. BACS are also called multiple-input and 

multiple-output (MIMO) systems [37], this complexity make possible many difficulties: 

nonlinear dynamics, time-varying disturbances (such as weather), time-varying system 

dynamics and set-points (ruled, for example, by occupancy and seasons), different services 

with possible countering policies [38]. In fact, even though the computerization of physical 

processes has already reached high standards in fields such as Industry 4.0, the automation 

of envelope components still requires research in a recent state-of-the-art case study [39]. 
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Common control logics 

Control is normally applied to temperatures and flow rates for the heating/cooling fluid 

or binary states such as on/off for lights. Rule-based control (RBC) is the most adopted 

control logic in practice [40]. These logics are sets of condition statements (sometimes only 

one), centred on environmental boundary set-point(s), usually statics and pre-determined 

by their developers relying on experience [36]. Another common method is Model 

predictive-based control (MPC) that looks for the optimal values of the controlled variables 

computing objective functions. The peculiarity of this approach is the prediction of 

disturbances (intended as uncontrolled inputs) based on mathematical models that 

synthetically represent the involved physical system. The simulation of sequences of 

actions can be carried out to apply only the first step of an optimal sequence and then 

calculating a new sequence for the next time-step. The replanning approach is defined as 

Receding Horizon Control (RHC). An example can be found in the Figure 1.11. 

 

 
Figure 1.11 General representation of a receding horizon logic, with the different variables 

computed at time-step k (above) and k+1 (below). Image from [41] 
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Common inputs 

In order to carry on a well-informed development of a control strategy, it is important to 

investigate not only the algorithms but also the involved variables. For this reason, an 

exploration of the inputs is carried out for general building systems and, in the next section, 

for CABS as well. Serale et al. [41] stated that the most significant disturbances taken into 

account to predict and calibrate the model are correlated to climate, occupancy and energy 

distribution through the grid. This last focus is mainly useful to shift peak loads (hence, 

make the electricity distribution more sustainable) or simply utilize energy in low-priced 

periods. Occupancy and climate values are more transversally applied [38]. Occupancy 

behaviour can be represented by direct binary states (occupied/unoccupied) or correlated 

information such as scheduled set-points for the controlled and adjacent zones. Many 

variables descript the environmental disorders: indoor and outdoor temperature (also 

processed as difference between the two), incident solar radiation (related to both visual 

and thermal comfort), other internal gains like the ones related to occupant activities and 

equipment and lighting use, Relative Humidity (RH), and wind velocity. Few studies 

embed occupants’ comfort in the control strategies and for most of the cited studies by Park 

et al. [42], occupants’ thermal comfort is simplified with a temperature range, rather than 

be represented by multiple parameters employed by thermal comfort researchers.  

Constrains’ role 

Many measured states and calculated variables can be framed as constraints, matching 

how they correlate to their equivalent of the real system. When the problem constraints are 

inflexible and it is compulsory that they are fulfilled, they are classified as hard constraints, 

although they are defined as soft constraints when they represent an adaptable limit and it 

is not rigorously needed their achievement. Normally, soft constraints are created using a 

slack variable that is able to shift the limit in a specified range, with a consequent penalty 

in the cost function. It is reported a comprehensive example represented by a RHC objective 

function based on a glare discomfort indicator (in this case DGP), in addition to energy 

consumption indicators (SE) [25]. This action selection was oriented to find the optimal 

smart window state (in terms of g-value and visible transmittance) taking into account 

visual comfort (Z component) only when discomfort threshold is exceeded: 
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(1.1) 

Model function 

Once identified the domain of the problem, understanding how possible boundaries can 

be combined is suitable. Control strategies can be divided in model-based and model-free. 

First, the conceptual roles of models in model-based methods is presented. Complete 

approaches present a model formulated as inter-dependent calculations aiming to represent 

the thermodynamical behaviour of the building, for example with R-C networks for the 

physical building. Furthermore, MPCs need at least an additional model to compute the 

forecast of disturbances. Finally, a possibly high-accuracy model of the building can be 

simulated to design the controller characteristics before to implement it on field. This last 

type of model can alternatively be the only one constructed to test, in the case of RBC, or 

train, in the case of Reinforcement Learning (RL). In this case the controller can be 

categorized as model-free because it doesn’t utilize a system reproduction during 

application. In short, Reinforcement Learning is a particular machine learning technic 

where the artificial intelligence (AI) picks an option, get a reward based on the effects of 

the choice and, trying to maximize the reward, reinforce positive selection, usually 

outlining a policy. 

Model-based and model-free control 

Despite the wide-spreading of model-based methods, limits of this approach were found 

in studies about BACS proposing model-free methods [43], [44] and model-based method 

[45] as well.  These indications, focused on an actual application of the model-based 

strategy, regard the effort to build the model and its performance. First, the dependence on 

a priori knowledge is exposed. In fact, the model used on-field by the controller is to be 

determined by historical operational data or regression of field test data. This process 

requires an effort in terms of human labour, and sufficiently precise and numerous sensors 

as well. Both aspects are time-consuming and stricter as finer is the representation of 

calibrated model and/or forecasted disturbances. The second limit lies in the risk of model 
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uncertainty. Zhu et al. [45] exposed that there are two types of model error leading to 

uncertainties: model parameter error and model structure error. Model parameter error 

concerns the same concept of the importance of good training dataset in order to get an un-

biased AI. Regarding building models, the major risk lies in fault historical data [45]. Model 

structure error refers to the simplification of a complex system like the built environment. 

The difficulties in representing it have been exposed at the beginning of this chapter.  

A circumscribed comparison between the two methods and a local feedback control as 

well has been conducted by Qiu et al. [44] who, aiming to find an optimal policy to control 

the cooling water system, assessed a method based on reinforcement learning and a model-

based one. The energy conservation performance of the model-based controller was better 

than the model-free one (14% energy savings against 11%), that, in turn, was better than 

the local feedback one (which reached 7 %) considered more basic. The former could 

precisely predict the outcome energy consumption affected by the two control actions 

thanks to more equipment models. Another identified reason for its better performance is 

the objective function focused on maximising the COP at each time-step. Though, the 

advantages of the implemented reinforcement learning are the evolving of its policy and 

the independency by a priori knowledge (with the possible drawback of building its own 

experience from scratch). In fact, this type of controller continues to learn and its energy 

saving rate could reach 12% during the second applied cooling season. 

1.3.2. Adaptive envelope components control 

Control dependency 

After the general overview of consolidated control strategies applied on management of 

building systems, an additional investigation is conducted about the adaptable envelope 

components. The chance to control building boundaries is particularly attractive because of 

the broadly exposed potential of CABS in tackling multiple goals, even if addressing 

conflicting targets make the research for control strategies more challenging. In fact, a 

control strategy improving energy savings in a service, can sometimes decrease the same 

performance for other loads or thermal and visual comfort. In the well-known review 

conducted in 2013 [11], CABS are considered a concept still to explore because of the 

relatively limited amount (44) of documented cases in the study.  For example, a simulated 

smart window addressing multiple performances resulted in a broad range of possible 
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energy savings (+10% to −20%), daylight availability (40% variation) and thermal comfort 

(70% variation) [46]. The variations are due to different simple control strategy simulations 

and, hence, underline the high dependency from the control approach. 

MPC methods for smart windows 

The state-of-the-art investigation by Loonen et al. [11] highlighted that MPC supplied 

with weather forecasts, and optimal control (intended as based on minimize a cost function 

over a specified time period) are the most promising approaches. Concerning a 

photovoltachromic switchable glazing, a comparison between RHC e RBC showed a 

significant increased energy saving performance with the former method [25]. The model-

based controller was built by Favoino et al. including the prediction of the disturbance on 

the energy balance caused by entering solar radiation. The simulations run with different 

temperate climates and the MPC potential resulted higher in heating dominated climates. 

Common functions and adaptability 

Despite the wide range of theoretical actions performable by CABS, Böke et al. [39] 

found that, in practice, more automation has been implemented regarding solar radiation 

phenomena. The conclusions of their recent study (2020) are to be referred carefully 

because of the restricted sample concerning only one country, namely Germany. However, 

putting aside the functions reachable with static elements, it is possible to see in Figure 1.12 

that many described implemented façades yielded automatic adaptability in solar shading, 

glare protection, daylight availability control and light deflection. Most of these goals are 

reachable with EC management as described in the next section. It is also worth noting that, 

regarding these four tasks, glare control required relatively more intervention by users. 
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Figure 1.12 Cross-case comparison of implemented façade functions. Adaptive: adapts 

independently due to its automated control: Flexible: adaptable only manually by the user; 

Fulfilled: function reached with static application. Image from [39] 

Users, an important aspect for adaptability 

Concerning user interactions, it is valuable to underline that user behaviour is an 

important factor that modifies energy demand [47], [48]. A wide investigation on users’ 

interventions in an electrochromic window control [49] suggested that the occupants’ 

ability to correct or bypass the controller's actions is useful for intelligent control of 

adaptive components. This is justified by the authors not only by the disturbance 

represented by users, but also by the complexity of visual comfort. In fact, the simulation 

of the user-based control strategy yielded to annual energy lighting savings about 48%, 

outperforming the occupancy-independent method (35%) based on daylight only. Also, 

Cano et al. [50] has shown that considering user behaviour could yield to great percentage 

of savings in a smart building. Moreover, a fascinating control strategy has been developed 

by Cheng et al. [51] for taking into account preferences and complains by users. Occupants 

interacted through their satisfaction votes with the Q-learning (a RL method) based lighting 

and blind controller that was able to decrease excessive energy consumption while 

preserving visual comfort. This user centred approach was then investigated also by Park 

et al. [52] implementing a RL algorithm too but applied only on lighting control. 
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1.3.3. EC control 

 From the previous sections, it is possible to conclude that MPC and optimal control 

have a major role in CABS control compared with their application in BACS, where RBC 

is still relevant. These control strategies rely on model(s), and this approach has advantages 

and drawbacks. Relevant variables have been presented in order to understand the possible 

inputs for an EC controller. Lastly, an investigation about practical possible applications of 

CABS demonstrated how smart windows can have a significant role in designing adaptive 

envelopes and what effects are achievable by switchable building component actions. Once 

identified this useful base of controls in buildings, a narrowed research has been conducted 

about EC control.  

Control dependency 

First, also for EC windows the range of possible savings depending on the control method 

is broad. This has been explored through several simulations applying different control 

strategies, from the simpler one (binary action according either to the outdoor solar 

radiation or to the indoor light level) to the finer one (fuzzy controller based on 2-year data 

collection of users control associated with different meteorological conditions) [53]. 

Energy use differences resulted in substantial deviations of 24% for heating, 39% for 

cooling, and 20% and 63% for winter and summer lighting, respectively.  

Common inputs for smart windows 

According to a diverse overview by Favoino et al. [25],  the most applied input variables 

in RBC of smart glazing are illuminance (on work-plane and external), vertical solar 

irradiance, presence of occupants, occurrence of heating/cooling loads, internal and 

external air temperature, seasonal services set-points. Illuminance monitoring is 

particularly important for smart windows control because of the role of transparent building 

envelope dealing with the complex provision of visual comfort. The work-plane 

illuminance (WPI) and glare risk are often used as control variables and are also been 

indirectly evaluated through a fine sensor unit embedded in an EC glazing, called EPD, 

with a vision of outdoor space [54]. In this study, the measurement was therefore more than 

a singular value but the luminance distribution depending on the sky background, sun, 

clouds, and landscape bodies. The generated map was then connected to an interior 
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geometric model. Weather components can vary in the order of minutes, influencing both 

energy demand and visual comfort performance. For this reason, CABS seeking daylight 

harvesting and solar shading to improve those aspects should be able to act in order of 

minutes to tackle those disturbances [11]. 

Orientation and climate dependency   

Hoon Lee et al. [55] simulated the heating and cooling annual energy performances of a 

benchmark building model to evaluate differences between six locations with different 

climates and between the four cardinal orientations. The thermo-visual properties of the 2 

virtual states of the windows were 0.50 and 0.10 for SHGC, meanwhile for Tvis were 0.72 

and 0.10. Hence, 0.50 – 0.72 was the clearest action. 

 Control strategies were simple RBCs with a singular control statement acting as 

threshold. The authors selected for this purpose outdoor air temperature (OAT), room air 

temperature (RAT), global horizontal irradiance (GHI), and solar radiation incident on 

windows (SRW). Between those, OAT resulted as the better performing for most window 

orientations and locations, but no particular value outperformed others. The optimal value 

for RAT is more often 24°C or 26°C, while 22°C is the inferior boundary for significant 

energy savings, except in Miami where the higher is the value (up to 30°C) lower are the 

heating and cooling consumption. The application of SRW as singular condition resulted 

in energy savings only in the three warmer climate. In Los Angeles and Baltimore optimal 

value was about 370-400 W/m2. Precise values identified by the authors are reported in 

Table 1.1, only for south orientation.  

 

Table 1.1 Optimal value of different control parameter for ECG window RBC by locations. 

From [55] 

 MIA LAX BAL CHI DEN DLH 

OAT (℃) 16.06 18.25 18.56 19.19 18.56 18 
RAT (℃) 22 23.94 23.94 23.94 25.94 25.63 
SRW (W/ m2) 2.0 397.2 400 419.6 401.4 415.3 
GHI (W/ m2) 16.8 454.3 515.4 605.4 771.9 741.8 

 

The west orientation yielded to the highest energy-saving potential (2.64–8.43%) 

depending on location, followed by similar performances by the south (1.59–6.01%) and 
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east (2.17–7.39%). As expected, north orientation led to stunted performances (1.70–

2.03%). When smart glazings were simulated with the three best performing orientations, 

annual energy savings compared with the base case ranged from 13.46% (Miami) to 5.23% 

(Duluth), meanwhile locations with intermediate savings were, from the highest to lowest: 

Los Angeles, Baltimore, Chicago and Denver. Readings these results associated with the 

climate locations, visible in Figure 1.13, suggests that simulated smart windows, with basic 

strategies controllers, can achieve greater thermal energy savings for generally lower 

latitudes.  

 
Figure 1.13 Climate zone disaggregation of the U.S. reporting simulated climate locations. 

From [55] 

Climate-based control comparison 

Favoino et al. [25] simulated different control strategies performed in 3 different climates 

(Rome, London and Sydney). The action selection was based on 4 states of the smart 

window embedded with photoelectrochromic cells (already described in the section about 

switchable glazing technologies). The properties of the glazing are reported in Table 1.2. 

Table 1.2 Thermo-optical properties of PVC-Glazing tested by [25] 

τvis: visible transmission coefficient; g-value: total solar heat gain coefficient (–); τn: 

transmissivity (–) 

τvis (–) g-value (–) τn (–) States 

0.595 0.508 0.6486 1 

0.446 0.396 0.4863 2 

0.341 0.325 0.3719 3 

0.238 0.238 0.2596 4 
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Only the control strategies useful for the present research are described and renamed for 

this purpose. All of them concerned incident solar radiation and some of them used a glare 

discomfort constrain. This constrain was oriented to guarantee a Discomfort Glare 

Probability (DGP) [56] lower than 0.35, whenever possible, representing the highest level 

of acceptability. Basic RBC acted passively in proportion of perpendicular solar radiation. 

Implementing the DGP constrain too, they obtained a Glare RBC. Optimal Glare RBC 

performed an optimisation problem each hour to minimize the sum of heating, cooling and 

lighting loads, taking into account the DGP constrain as well. Lastly, Glare RHC was based 

on minimizing the total energy load over a daily period while preserving visual comfort as 

described above.  

Taking static operation (always clear or always darkened) of the same window as 

baseline, active control policies yielded between 2% and 12% energy reduction, depending 

on the climate. This was possible even lowering glare risk, but distinctions between control 

strategies and climates are necessary. In fact, the above-described exploration of control 

policies for smart windows demonstrated that, in a cooling dominated climate, energy 

savings and visual comfort (measured by the authors also in terms of Useful Daylight 

Illuminance index (UDI) [57]) are likely to be positively correlated. On the contrary, Glare 

RHC and Optimal Glare RBC implementation highlighted that introduction of glare 

constraints in a heating dominated climate (i.e. London climate) enhance visual comfort 

(about 8% higher UDI and DGP) but typically limits the total energy saving potential. 

Simpler control strategies like Basic RBC and Glare RBC yielded to lower energy use 

where heating and cooling loads are similar (namely, in Rome) but had the opposite result 

in London and Sidney, where the same condition is not met. 

Controller based on seasonal users’ behaviour 

Another test of control strategies was carried out by Assimakopoulos et al. [53] through 

building energy simulations over 90-days periods each for winter and summer season. The 

2 virtual actions corresponded to the properties of the electrochromic glazing validated 

against experimental data. These properties, registered in a connected paper [58], are 

reported in Table 1.3.  
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Table 1.3 Properties of the simulated glazing. From [58] 

 
U-

value 

(W/m2K) 

Solar heat gain 

coefficient,  

g-value (-) 

Visible 

transmittance,  

Tvis (-) 

Solar 

transmittance,  

Tsol (-) 

Bleached state 1.42 0.36 0.5 0.3 

Coloured state 1.42 0.22 0.32 0.17 

 

The control methods relevant for the present investigation are the following. Strategy 3: 

On–off control based on threshold above which the glazing is set at the coloured state and 

vice versa. Respectively 3a, 3b and 3c controller, had as threshold 500 lux or 400 lux for 

indoor lighting, or 350 W/m2 for solar radiation. Strategy 6: Fuzzy controller was tuned 

applying a backpropagation algorithm founded on data gathered through two experiments 

during which an EC window was manually controlled by occupants. From the winter 

experiment, 6a strategy was developed, meanwhile the 6b originated from the summer one. 

Each fuzzy controller was then applied to both winter and summer simulations. 

The best overall performance (heating, cooling and lighting consumption) was 

accomplished by strategy 3a, and secondly by strategy 6a. If lighting load is excluded, 

Strategy 6b led to the highest savings, but with similar results (variances smaller than 2%) 

by the binary controllers (3a, 3b and 3c). Therefore, a control policy relying on seasonal 

variation could have an advantage on simple methods (on–off). Though, it is worth noting 

that performances in balanced seasons (namely, spring and autumn) were not investigated. 

Commercial product  

The following experiment is cited because a commercial EC glazing, hence available 

glazing properties, was tested [54]. The window had two sections (superior and inferior 

one) with four available actions each: 1% (full tint), 6% (medium tint), 18% (light tint), 

60% (clear) of luminous transmittance. The switch from the clear to full tint state took 

between 10-30 min according to weather. The EPD sensor already described was 

implemented to get a luminance map of the inside. In fact, luminous transmittance was the 

variable to be maximised, with lower section having priority over the upper one to favour 

the view of the outside, meanwhile WPI and DGP were input variables to be preserved. 

The WPI was constrained to be between 500 lux (daylight provision requirement according 
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to EN 12464-1) and 2000 lux (avoidance of excessive daylight and solar heat gain). DGP 

was measured from two points and constrained, as in the previous exposed study, to stay 

below 0.35. 

The action selection was applied every 15 min with additional buffer time and was 

performed in this way: 

1. WPI is calculated for 16 EC tint combinations,  

2. The ones not fulfilling the WPI constrain are discarded and, if no combination meets 

the condition, clear state is selected (assuming that daylight availability is poor). 

3. Next, the luminous map is generated and the corresponding DGP is estimated in two 

points.  

4. Finally, from the combinations satisfying DGP values, the one including the clearest 

state in the lower window section is selected. 

Performances of a low-e double glazing with 62% visible light transmittance were 

contemporary measured in an adjacent room. Testbed was in Berkeley, CA, all windows 

were south-oriented and experiment was conducted in October. Energy savings were not 

the goals of the experiment, in fact, only mean visual comfort improvements (aggregated 

by the writer) are presented in Table 1.4, divided by weather description from the analysed 

paper. 

Table 1.4 Average performance difference of controlled EC glazing against static alternative. 

Values aggregated from [54] 
 WPI (%) DGP (%) 

3-DAYS “CLEAR SKY” 74 89 

2-DAYS “THIN CLOUDS” 60 78 

2-DAYS “PARTLY CLOUDY” 57 67 

RBC for visual comfort  

After a 15-month collection of data about users’ interaction with an automatic 2 EC 

glazing window (up and bottom section), Lee et al. [49] tested an RBC during the last 6 

months. During recording and experimenting period, interior manual venetian blinds and 

automatic dimming of lighting were present. The test room was a conference room; hence, 

overall lighting consumption were highly dependent on occupancy. Whole window 

properties for the two combinable actions were: SHGC = 0.39 or 0.08, Tv = 0.50 or 0.03. 
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The input variable were presence/absence of occupants (Occ), cooling or heating season 

(Ssn), occurrence of sun above the horizon (D-time), time correspondence with EC 

operational period constrained by authors between 9:00 and 19:00 (O-time) and, lastly, 

exterior vertical light level (Sv). 

 The control strategy was rule-based and is summarize as follow: when unoccupied 

during daytime, the smaller upper section was set to clear or tinted to reduce heating and 

cooling consumptions, respectively, and the lower one was tinted to prevent discomfort 

glare in the instant when someone would enter the room. Whole window was clear when 

D-time or O-time condition was not met. Ssn was not taken into account if the room was 

occupied, but Sv instead. A schematic representation is available in Figure 1.14. 

 
Figure 1.14 Scheme of RBC developed from users' interactions analysis by [49] 

 

 Concerning users’ interaction on at least one of the two sections, 65% of them 

occurred within the first 5 min of occupancy, half of which were just anticipation of the 

automated policy. The total 43 overrides took place in 4% of the 328 meetings. This can 

infer that the implemented control policy well preserved visual comfort. West-facing 

window tested in Washington DC had a high WWR (40%). This architectonical factor 

favoured, according to the authors, the consistent influence of the EC control. Thanks to 

EC control, annual energy savings simulated without occupancy-based lighting through 

EnergyPlus were 48%. For the specific services, namely heating, cooling, fan and lighting, 

energy savings were, respectively, 63%, 34%, 52% and 49%. 

Restricting blinds needs 

In a simulation study focused on lighting energy savings [59], 2 EC panes transmittance 

was linearly interpolated between 0.05 and 0.60 and this give the opportunity to investigate 

Season
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Clear
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N/A
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a dense action domain, as visible in Figure 1.15. The optimisation calculation was based 

on rendered images. Luminance ratios between visual task and surrounding background, 

and vertical illuminance at the occupant's eye constrain EC control. A control variable for 

blinds operation was the direct visibility of sun's orb by the occupant. 

After the deployment of venetian blinds to avoid direct sun visibility, additional lowering 

of the shading device was actuated only if the action performed by optimization of window 

transmittance was leading to visual discomfort. Transmittance values, possibly different for 

the two panes, were selected through least-squares optimization with WPI as target 

parameter and in compliance with vertical illuminance and luminance ratios constrains. 

 Before to present observations useful for the present study, some disclaimers are to 

be taken into account: the electric lighting system was dimmable, and the south-facing 

window was almost high and large like the room. In addition, transmittance of the reference 

window was 0.60, and simulations were located in Berkeley/Oakland, California. 

 
Figure 1.15 (Left) Blind operation during year: (from top) EC windows, reference window. 

Blue/green scale refers to shading over upper pane only. Red/yellow scale relates to times for 

which shading over both panes. (Right) EC pane transmittance during year: (from top) upper 

pane; lower pane. Image from [59] 

 

As it is possible to see from Figure 1.15, double-pane EC glazing controlled hourly 

required marginal application of blinds, on the contrary of reference glass where integral 

shading obstructed external view for most of the time, limiting the already cited benefits of 

this visibility aspect. The baseline to evaluate annual lighting energy use was compared to 

 

 

Figure 1 Blind operation during year: (from top) EC 

windows, reference window. Blue/green scale refers to 

shading over upper pane only. Red/yellow scale relates 

to times for which shading over both panes. Image from 

[30] 

 

 

 

Figure 2 EC pane transmittance during year: (from top) 

upper pane; lower pane. Image from [30] 
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reference window with blinds operated once per day. The simulated smart window yielded 

to 48% lighting energy savings. 

Cross comparison of reported control strategies for smart windows 

In Table 1.5 and Table 1.6, a synthesis of case studies main features is provided. Most of 

the reviewed researches about smart glazing control focused on energy consumption for 

lighting. Studies regarding energy savings commonly neglected visual comfort (Favoino 

and Chang are exceptions in the available group), meanwhile some papers concern visual 

comfort only, usually employing DGP as paramenter. DGP however focus on glare risk 

only, not representing when the natural light is enough to avoid the artificial one. The 

shared use of lighting energy and/or visual comfort indexes suggests that the research field 

oriented smart windows adaptability to visual effects instead of a comprehensive multi-

objective functionality. Accordingly, light measurements are always present as inputs. WPI 

is a very direct measurement of lighting conditions which can indicates both exceeding and 

insufficient illuminance, but this approach can require several sensors for few smart 

windows, depending on the amount of desks that the glazing can affect. External parameters 

instead can be measured by few devices for several transparent components, depending on 

the façade dimensions. Solar radiation incident on window is the most used input of this 

type.  

Regarding the possible actions selected by controllers, visible transmittance of adaptable 

glazing range between 0,6 and 0,03 for simulated transparent elements, however, the only 

commercial electrochromic window (Wu) is able to reduce it even to 0,01. These values 

set the acceptable action range for the present work on EC glazing control. The majority of 

studies implemented the adaptable glazing to the sun-oriented façade. However, the 

extensive investigation of Hoon Lee et al. [55] suggested that east and west orientations 

have greater energy savings potential.  

Lastly, a climate classification appeared to miss in different studies. Based on Köppen 

climate classification, cities have been labelled accordingly and from this reading is clear 

that the majority of tests in the present restricted sample have been conducted in Temperate 

climates (labelled “C”) and/or with warm or hot summer (labelled “b” or “a”, respectively). 

Again, most promising energy performances potential is not the most investigated, reading 

this climate trend with the observed correlation between warmer climates and energy 
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savings based on Hoon Lee et al. research. To conclude, a sun-oriented smart window in a 

temperate climate is judged as a representative case study because of its more average effect 

and for being a common framework that then allow comparison and connection between 

different researches. 
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Table 1.5 Main characteristics of reported case studies dealing with smart windows control (pt 1) 
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Table 1.6 Main characteristics of reported case studies dealing with smart windows control (pt 2) 
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1.3.4. Reinforcement Learning 

Peculiarity and use of Reinforcement Learning 

Reinforcement Learning is a particular machine learning method where the reward is the 

only feedback, there is no supervisor. The agent receives a delayed reward for its action 

and previous actions have an influence on the reward as well, because they affect the 

environment. The agent’s purpose is to achieve a control policy that increases the 

cumulative reward. At each time-step, the agent receives a reward, that enhance an 

instantaneous or delayed policy update. From the environment an observation comes as 

well, based on which the controller selects an action. The action will affect the environment 

and then new observation and reward will come. A visualisation of this workflow is Figure 

1.16. 

 
Figure 1.16 Agent and Environment interaction 

 

This control policy evolves in time to improve performances. On the contrary, 

deterministic methods based on models mainly independent of time sequence can have 

saving performances anchored to the input data, without previous experience advantage. 

This was visible in the learning effectiveness evaluation by Qiu et al. [44] taking into 

account Figure 1.17, where only the Deep RL run did not resulte in an inverted saving trend 

when simulated backwards. Another controllers’ comparison for HVAC application was 

about both Tabular Q-learning and Batch Q-learning with Memory Replay (a RL based on 

ANN) for PV/T, and, after a three-years simulation, all methods achieved a 10% 

improvement over the RBC baseline [37]. The learning process made also possible self-

adaptation to local environment and input variations. Lastly, a statistical comparison 

between a RL controller and a basic RBC applied to a radiant heating system showed that 

the former had more than 95% possibility to saves 16.6% more heating energy when 
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deployed [60]. For the building environment, RBC and MPC are validated control methods, 

but the reported case studies suggests that RL can be applied to building environments (at 

least, HVAC systems). 

 

 
Figure 1.17 Savings performance by three different controllers simulated chronologically 

(above) and backwards (below). Figure by [44] 

 

Main components of an RL control can be policy, value function and model. Depending 

on which and how many components are used, the agent is categorized in different ways, 

namely value based, policy based, or actor critic, model free or model based. 

Value function and Reward 

Value function (1) evaluates future rewards, and its role is to present the likely goodness 

of the next possible states. Based on these values, the controller applies an action selection. 

𝑣𝜋(𝑠) = 𝐸𝜋[ 𝑅𝑡+1 + 𝛾 𝑅𝑡+2 + 𝛾 2 𝑅𝑡+3+. . . |𝑆𝑡 = 𝑠] (1.2) 
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The reward is a scalar value to be maximized by the controller and its formulation is a 

central aspect of control design, especially in multi-objective problems. In fact, in a D-RL 

control investigation for radiant heating system [43], authors identified local sub-optimal 

solutions and broad performance variance between solutions with similar state values. This 

has been justified by the reward design that consisted in two contrasting contribution: 

Predicted Percentage of Dissatisfied (PPD) and the gap between temperature set-point and 

Internal Air Temperature (IAT) (to reduce heating demand). Contrasting performance can 

be both energy-related only and comfort-based. An example is the objective function for 

an MPC, which have a role similar to the reward in RL. In any case, each contribution to 

the reward can be associated with a weight in order to shift the focus of the controller. 

Q-table and states 

The most extensively employed model-free reinforcement learning method is Q-learning, 

due to its simplicity [61]. In this approach the state/action value is called Q-value and each 

state-action pair have its own. This state-action space can be represented by a table that 

store a Q-value in each cell, hence called Tabular Q-learning (TQ-RL), or by Artificial 

Neural Network(s) (ANN) where weights of the net are upgraded instead of Q-values, 

hence called Deep Q-learning or Double Q-learning depending on the employment of one 

or two ANNs. A representation of the former can be seen in Table 1.7, meanwhile Figure 

1.18 depicts an ANN for RL. 
Table 1.7 Examples of Q-table in a particular time-step from the present study.  

States are here expressed as a tuple with the value of a 4-level input and another binary input. 

 

Actions 

0 1 2 3 

St
at

es
 

(0,0) -0.049 -0.01 -0.045 -0.044 

(0,1) -0.001 -0.006 -0.007 -0.006 

(1,0) -0.025 -0.005 -0.024 -0.025 

(1,1) -0.003 -0.007 -0.005 -0.0 

(2,0) -0.02 -0.02 -0.007 -0.019 

(2,1) -0.003 -0.005 -0.001 -0.006 

(3,0) -0.024 -0.015 -0.021 -0.02 

(3,1) -0.002 -0.028 -0.032 -0.033 
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Figure 1.18 Structural scheme of the neural network used for Deep Q-learning from [62] 

 

Because of the nature of ANN, using this approach make more difficult to interpret the 

resulting policy, meanwhile the Q-table combined with the action selection is equivalent to 

a set of condition statements in RBC. One major difference between the two representations 

is the state space: the input variables of an ANN can be any value from a continuous state 

space. On the contrary, because of the finite number of rows, Tabular Q-learning need 

discrete inputs, hence continuous domains are to be divided in ranges in order to be 

represented by the level to which they belong. The amount and values of limits between 

levels are a control formulation task. Consequently, states of the Q-table are to be carefully 

selected because of the so-called curse of dimensionality. In fact, more states are present, 

more storage and time are required for the computation but, above all, less chances are 

given to every state-action pair to be explored. Hence, most relevant states are to prioritize. 

Action selection 

It may be safer to sacrifice instant reward to look for long-term benefits. This can be done 

with different action selection strategies and hyperparameters tuning. A policy it is a map 

from state to action and it can be deterministic if directly link the observation to the choice, 

or stochastic if the received state determines the actions’ probabilities of being selected 

instead.  

Deterministic policy: 𝑎 = 𝜋(𝑠) (1.3) 

Stochastic policy: 𝜋(𝑎|𝑠) = 𝑃[𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠] (1.4) 
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Reinforcement learning is like trial-and-error learning where action-state values are 

updated when they occurred. This conceptually yields to the exploration-exploitation 

dilemma, because the more the agent exploit actions with higher estimated reward, major 

is the risk to get stuck in local minima and miss a better option for the same state. Therefore, 

exploration is useful to collect more information about the environment and upgrade the 

estimation, but usually lead to minor rewards in the short-term. 

The greedy policy is the more basic method: based on the received state, the agent looks 

at the rewards’ estimates for each possible action and simply select the action with the 

highest value. In tabular Q-learning, for example, it receives the state, it reads the 

correspondent row, find the maximum value and then the associated action. This greatly 

restrict exploration. The ε-greedy policy and the Boltzmann action-selection are the most 

common approaches. The ε-greedy method is similar to the greedy one but with a previous 

step: the agent selects a random number between 0 and 1 and then compare it to a threshold: 

the ε parameter. If the random number is higher than ε, then greedy policy is applied, 

meanwhile a random action is selected if the contrary is true. Thus, at each timestep, there 

is a probability (ε) for an explorative action to be selected. The risk is to make a choice 

despite its poor expected state/action value because no distinction is taken into account 

between actions. A representation of these policies is illustrated in Figure 1.19. 

 
Figure 1.19 ε-greedy (whole figure) and greedy (framed portion) action selections 
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A method where an action is more likely picked according to its estimated Q-value is 

Boltzmann softmax action selection, where the current best action has most chance to be 

selected (allowing exploitation) and the other options are ranked based on their estimates 

(reducing the risk of inefficient explorative performance). These probabilities are led by τ, 

called temperature, that can be lowered in time to shift towards a greedier selection. 

𝑃𝑡(𝑎) =  
𝑒𝑥𝑝 (

𝑞𝑡(𝑎)
𝜏

)

∑ 𝑒𝑥𝑝 (
𝑞𝑡(𝑖)

𝜏 )𝑛
𝑖=0

 
 

(1.5) 

Because of the evolution of estimates, Boltzmann action-selection is able to enhance 

greedy policy as gap between best and second-best action increase. In order to have a 

diminishing exploration also with ε-greedy, Qiu et al. [44] gave to the greedy action a 

probability to be chosen increasing at each step, thanks to an addition addend. Excluded 

this addend, all actions had a probability proportional to their Q-value. The ε-greedy 

selection combined with probability calculation is reported in (1.6). 

 

 

 

(1.6) 

Q-value updating 

In model based RL, the state/action value can be predicted from the received states. In 

model free RL, algorithms revise these values through Bellman equation (2). Beginning 

from an arbitrary initial state-action values, Bellman equation is iteratively computed. 

Hence, the initial Q-values should be far from possible final converged values. It is good 

practice to set them high so that they maintain an high value (hence, are more explored) 

until are sufficiently lowered during learning phase. In order to give more weight to rewards 

close in time, γ ∈ [0,1) is introduced as a discount factor, where low γ means more short-

term strategy. The learning rate α ∈ (0,1] represent the overriding rate of the current 

estimate (Qs,current) substituted by new one (Qs,new), where higher α usually yields to faster 

convergence but imply the risk of oscillating estimates. With α = 1, state/action value would 

be only the sum between received reward for the action selected based on the previous state 



41 

 

s (Rs) and the maximum estimate for the current state s’ (Qs’,max) based on which the agent 

is going to pick an option. 

A formulation of Bellman equation is presented here: 

𝑄s,new = (1 − α) × Qs,current + α × (𝑅𝑠 + γ × Qs’,max) (1.7) 

Advantages and challenges 

A peculiarity of RL that can be both an advantage than a drawback is its learning from 

scratch that enhance the development of a policy more unbiassed by developer. In fact, 

initial state/action values are commonly more optimistic than possible rewards to let the 

agent select often an option until the values’ updating make the option less desirable. Even 

though, as in all machine learning techniques, the input variables selection can influence 

the training. The agent improves its policy step-by-step, this means that it needs an initial 

period to converge to a good policy and, at the same time, that tends continuously towards 

an optimal strategy, in the domain of the formulated problem. This continuous learning 

capability can enhance adaptation to users’ behaviours and preferences if the agent is 

provided with occupant feedback [52]. 

Timing then is an important factor, especially in non-stationary environments. Because 

of the auto-determination of a policy, RL can be useful to be directly implemented on field 

and having a fitted control for the specific environment, but in this case, convergence is not 

only necessary, but it has to occur in reasonable time, in fact some HVAC researches 

choose to run an offline simulation to the train the agent [43].  To speed convergence, a 

short time-step can be preferred, so that the agent gains more experience at the same time. 

But the response of the environment has to be taken into account as well, because if actions 

can greatly affect it, as in a cooling water systems control [44], rapid sequence of action 

selection can lead to oscillating behaviour. Lastly, for an environment like a building, that 

have disturbances according to month and seasons, it can be useful to build different action-

space representation for different period, hence giving the opportunity even for different 

specific control policies. Yang et al. [37] tried to implement twelve autonomous learning 

processes for each month of the year and then combine the “experiences” before the 

operational phase. 
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2. Methodology 
2.1. Virtual environment 

Building Energy Model (BEM) has been widely applied in support to the building 

design phase, as well as for HVAC optimal control. In order to perform the energy 

simulation, the implemented thermal model is replicated with EnergyPlus version 8.3.3. 

EnergyPlus model can be considered certified as the software undergoes two key types of 

validation tests [63]. The integration of a software like EnergyPlus is utilized for several 

tasks: controlling the building systems to preserve the set indoor comfort requirements; 

changing the thermo-optical properties of the adaptive window during simulation runtime 

according to a defined control strategy; enabling the update of the thermal history of the Q-

table in RL according to prior selected actions done by the EC window in the states and 

rewards framework for the agent. In particular, the ‘‘Construction State” permits to switch 

the glazing thermo-optical properties during the simulation. Making use of this 

functionality to simulate an EMS actuator for a smart window was validated against 

experimental records and validated models [64]. Concerning optimal simulation only, Tian 

et al. [65] suggested that EnergyPlus daylight module has a lower accuracy than Radiance 

in predicting the visual environment when venetian blinds are controlled under different 

sky conditions. The study also validated Daysim 4.0, a Radiance based simulation software, 

that received validation by Reinhart and Walkenhorst et al. [66] as well. The simulations 

are carried out through PyCharm, an Integrated Development Environment (IDE) 

employed for the Python language. 

The model characteristics associated with the present case study are the same used 

by Favoino et al. [25] for an investigation on RHC. A schematic representation is available 

in Figure 2.1. The simulated test case building is an enclosed room with a South-oriented 

external wall 3.5 m high and 4 m wide, while the depth is 8 m.  

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Python_(programming_language)
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Figure 2.1 Office test room model (measurements in cm) from [25] 

The opaque portion of the envelope is a conventional curtain wall, while the 

horizontal partitions are formed by concrete slabs (Table 2.1). 

Table 2.1 Overall characteristics of the simulated construction in compliance with local 

regulation. 

Construction  Unit  Curtain wall  Concrete slab  

Internal thermal capacity  [kJ/m2K]  21.7  67.8  

External thermal capacity  [kJ/m2K]  23.2  29.3  

Superficial mass  [kg/m2]  54  675  

Time lag  [hrs]  1.63  10.61  

 

The location is London, hence, in a heating dominated climate, which have HDD 

(18°C of baseline) of 2953 and CDD (10°C of baseline) of 926, labeled Cfb according to 

Köppen-Geiger classification. An heat map of both Incident solar radiation and External 

temperature through the simulation period is depicted in Figure 2.2. These have not been 

used in the design process. 
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Figure 2.2 Heat maps of incident solar radiation and external temperature 

Opposite to the external side, there is a partition separating the environment from a 

corridor with the same properties of the test room. All other internal boundaries, namely 

the floor, the ceiling and lateral partitions, overlook an identical office each. Benchmark 

test office implements a building façade characterized by thermal and optical properties 

fulfilling the minimum requirements of local regulations [67]–[69]. Therefore, thermal 

transmittance is 0.27 W/m2K for opaque wall. Other regulated characteristics are reported 

in Table 2.1. Materials’ reflectivity implemented for the different building elements are: 

0.5 for walls and partitions, 0.2 for floor and for the external ground, and 0.8 for ceiling. 

Because of the focus on EC devices as adaptive building element to control, 

window’s properties are separately reported. Its geometry set a Window-to-Wall-Ratio 

(WWR) of 60%. The glazing, like the opaque portion of the envelope, is complaint to the 

minimum requirements according to the national standards, hence 2 W/m2K of thermal 

transmittance. Table 2.2 reports instead the optical properties’ configuration for the 4 

possible actions of all the implemented controllers. 

Table 2.2 Smart glazing properties of the four selectable states. 

State  τVIS [-]  g-value [-]  

3  0.595  0.508  

2 0.446  0.396  

1  0.341  0.325  

0  0.238  0.238  
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Both EC glazing control and the building systems affect typical building services 

related to indoor comfort, namely air temperature and lighting. Regarding indoor 

temperature, 20°C and 26°C are set-points for heating and cooling respectively, meanwhile 

nocturnal set-back are 12 °C and 40 °C in turn. For illuminance instead, threshold is 320 

lux and is preserved by dimmable artificial lighting when daylight is not sufficient. This 

value has been suggested by Mardaljevic et al. [70] as minimum illumination level and, in 

the present study, is measured at desk high level (0,8 m) in two points: R1 and R2, at 1,5 

and 3,5 m far from the curtain wall respectively (Figure 2.1).  

The variance of occupation, and lighting and equipment use is taken into account 

through peak loads and schedules defined following ASHRAE standard 90.1 [71]. While 

the office is occupied by 2 people, power density of lighting and equipment are, 

respectively, 12,75 W/m2 and 13,45 W/m2. Comfortable indoor air temperature is supplied 

of heating and cooling thanks to a reversible heat pump with average seasonal COPs, 3,5 

in winter and 2,5 in summer. Thus, all these services are provided with electrical 

appliances, therefore the energy consumed by the building is considered a performance 

indicator without a conversion to primary energy. 

2.2. Indicators and benchmarking 

The aim of this study is to explore the dual adaptability of smart glazing, in particular 

electrochromic windows, and reinforcement learning control to achieve energy savings, 

while maintaining or even enhancing visual comfort. These performance goals have been 

found associated with several research about smart windows, but further investigation on 

reinforcement learning control could yield to optimize the balance between contrasting 

objectives. Therefore, three key indicators are used to evaluate the control designs: an 

energy indicator, an indicator for daylight availability and, lastly, a glare indicator.  

Because all services are exclusively provided with electricity, conversion to primary 

energy is avoided to be independent from national contexts. Hence, energy is measured as 

the specific amount delivered to the building, neglecting consumptions from site to source. 

Individual values are available for heating, cooling and lighting. Their sum give the total 

specific yearly Site Energy (SE) used for comparing the results: 
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𝑆𝐸 = 𝐸ℎ𝑒𝑎𝑡𝑖𝑛𝑔 + 𝐸𝑐𝑜𝑜𝑙𝑖𝑛𝑔 + 𝐸𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔  [
𝑘𝑊 ℎ

𝑚2 𝑦
] 

(2.1) 

Useful Daylight Illuminance index (UDI) [57], is an indicator of the annual percentage 

of time when, in a certain portion of space, the illuminance lies between specific 

illuminance limits, resulting from human comfort research. These limits divide four levels 

of illuminance (Figure 2.3), in which the two central ones enhance to reduce both artificial 

lighting consumption and occupant discomfort. In particular, UDIa represents autonomy, 

while UDIs indicates a supplementary contribution that still needs artificial lighting. On the 

contrary, the bottom and the top levels lack of an overall positive effect on visual comfort. 

The former (UDIf) indicates a negligible contribution from daylight, hence making artificial 

lighting the only reliable source, meanwhile the latter (UDIe) indicates an excessive 

illuminance that raises the probability for glare occurrence [72].  

  
Figure 2.3 Qualitative representation of UDI bands  

 

Therefore, the sum of the central positively comfort-correlated hourly levels only is 

computed to represent the percentage of time in which good natural lighting is occurred: 

𝑈𝐷𝐼 = 𝑈𝐷𝐼𝑠 + 𝑈𝐷𝐼𝑎 =
∑ 𝑡(100 ≤ 𝐸𝐻 ≤ 3000)8760

𝑖=1

∑ 𝑖8760
𝑖=1

 [%] 
(2.2) 

 

Even though UDI take into account also discomfort for glare, to specifically address 

this phenomenon Discomfort Glare Probability (DGP) is adopted in addition. It is an 

indicator for the probability that direct solar radiation and/or high contrast in the field of 

view produce visual discomfort [56]. The DGP shows the predicted share of people with 

visual dissatisfaction resulting in a value between 0 and 1. It is measured at each time-step 

with the following equation: 

0-100 100-320 320-3000 3000+

1 10 100 1000 10000

UDI(f) UDI(s) UDI(a) UDI(e)
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𝐷𝐺𝑃 = 5.87 ×  10−5 𝐸𝑣 + 9.18 × 10−2 𝑙𝑜𝑔 (1 + ∑
𝐿𝑠,𝑖

2 𝜔𝑠,𝑖

𝐸𝑣
1.87𝑃𝑖

2

𝑖

) [−] 
 

(2.3) 

where Ev is vertical illumination and Pi is the position index. 

As well as UDI, DGP consent to categorize visual performances in levels [72]. Each of 

the four classes indicates the occurrence of DGP being between different thresholds for at 

least 95% of the referred period, namely an hour. The different levels and limits are reported 

in Table 2.3.  

Table 2.3 Daylight glare comfort classes and relative DGP thresholds [56]. 

Daylight Glare Comfort Class DGP Threshold 

Imperceptible glare 0.00 ≤ DGP < 0.35 

Perceptible glare 0.35 ≤ DGP < 0.40 

Disturbing glare 0.40 ≤ DGP < 0.45 

Intolerable glare  0.45 ≤ DGP 

For this study only the best class (Class A) incidence contributes to represent an 

indicator of low risk for glare discomfort. In fact, a DGP of less than 0,35 is associated with 

imperceptible glare. 

Glare =
∑ t(DGP ≥ 0.35)8760

i=1

∑ i8760
i=1

| 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑  [%] 
 

(2.4) 

2.2.1. Reference RBC and dummy controllers 

The described indicators are employed to compare the different tested RL 

controllers against a basic rule-based controller as a benchmark. Its control strategy is 

analogue to a controller implemented by Favoino et al. [73] investigating control strategies 

for smart windows on the same test bed. Once received the incident solar radiation, the 

agent evaluates in which pre-set range the state lies and select the associated actions. 

Incident solar radiation ranges are the following: 
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Table 2.4 Conditions for passive RBC action selection relying on incident solar 
radiation on the façade 

Range [W/m2] [0,100] (100,250] (250,700] >700 

State 3 2 1 0 

 

In order to evaluate the potential benefits and drawbacks of each glazing state in the 

present scenario, four independent runs are carried out keeping in each of them a different 

constant action through the whole year. In analogy with machine learning field, they are 

called in this study dummy controllers. In particular, the letter “D” and the correlated state 

number identify uniquely each simulation, as clarified in the following table: 

Table 2.5 Identification of dummy controllers, hence agent keeping the same state 
window through the whole year 

Controller code D-0 D-1 D-2 D-3 

Constant state 0 1 2 3 

 

2.3. Control problem formulation 

2.3.1. Shared characteristics of investigated control method 

The present study explores a variety of Tabular Q-learning reinforcement learning 

control strategies, each of which is different from the others in at least one of the following 

design elements: hyper-parameters, states’ variables, states’ discretization, reward. In this 

section, explored differences of each element and their encodings are presented in order to 

make results and discussion more readable and synthetic.  

Before to dive into explored design possibilities, the simulation time-step is specified. 

A short time-step is desired because of the control method, Tabular Q-learning, that demand 

to sufficiently explore all distinct state-action points to refine the policy. In fact, shorter 

time-step means more Q-value updates in the same period. But improvements in EC glazing 

switching time are still under development, many on-field experiments showed that a 15-

minute adaptation is feasible. Furthermore, as described in previous chapters, the building 

environment can be affected by numerous disturbances, several of which can occur in few 
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minutes, especially weather. In particular, the present problem is based on a dynamic 

phenomenon like sunlight. However, effects on heating and cooling loads are typically slow 

and a reward based on a brief time-step could misrepresent the goodness of the agent’s 

choise. For these reasons. every simulation run with a hourly time-step. 

2.3.2. Reward and Q-learning 

Firstly, the implemented rewards are presented. Since the goals of the control strategy 

investigation are both energy savings and visual comfort, the same measured parameters 

used to compute performance evaluation have been tested as factors contributing to the 

reward function, namely Site Energy, Useful Daylight Index and Discomfort Glare 

Probability. Once identified the best controller configuration concerning SE only, UDI and 

DGP are tested as stand-alone rewards with different learning rates to ensure the usability 

of the index in the present control framework. The tests with DGP had hardly readable 

effects, therefore the concerning reward is not presented. This still allows to take into 

account glare thanks to UDI classes, because excluding the highest one the agent is not 

incentivized to trespass the theoretical visual discomfort limits. In fact, UDI score excludes 

UDIe, other than UDIf. Two reward functions are hence reported: eR focus on energy 

savings only, while euR is a linear combination of both SE and UDI scores. e-R is simply 

the subtraction of delivered energy for all services (heating, cooling and lighting) to try to 

minimize overall consumption despite agent’s actions can have contrasting effects on 

distinct service demands.  

Re = − SEt = −Eheating,t − Ecooling,t − Elighting,t [−] (2.5) 

Since this reward is never positive, initial Q-values are reset to 0 at the beginning of 

each simulation. The reason for this is the Bellman equation that allow Q-values’ updates. 

Because each new state-action value can be influenced by all the previous ones and the next 

one as well, a low initial Q-value can detain the updates at lower scores than their theoretic 

optimum. This empirically low score of the state-action point can, because of both action 

selection policies favouring high scores, bring the related action to be explored less often 

despite its potential benefits.  

To build a reward function relaying on both measured energy consumption and visual 

comfort index (euR), the difference between scores’ variance is to be addressed. Both SE 
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and UDI are then scaled between 0 and 1. For UDI, the process is straightforward because 

at each time step only one of the classes get a 0.25 score. Hence, UDI score was the sum 

of the two comfort classes (0 or 0.25) multiplied by a scalar factor of 4. Regarding SE, min-

max scaling is applied. Minimum is obviously 0, but maximum has not a theoretical limit. 

A rough research for the maximum possible SE for this specific case study has been carried 

out applying the already presented dummy controllers. Comparing all the SE scores at each 

time-step for each of these four simulations, D-3 had the higher SE equals to 0.0289. 

Therefore, in the euR framework, SE of each time-step is divided by 0.03. An illustration 

of UDI and SE scaled scores over a whole simulation is presented in Figure 2.4. 

 
Figure 2.4 Scaled UDI (left) and SE (right) scores for each time-step (x-axis) of the same RL 

control test. 

 

Finally, the two scaled reward components are weighted using wUDI ∈ {0.1, 0.2, 0.3, 

0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, a factor focused on UDI, meanwhile SE was multiplied by the 

resulting difference between 1 and wUDI. 

Re,u = − SEt,scaled × (1 − wUDI) + UDIt,scaled × wUDI (2.6) 

SEt,scaled =
SEt,scaled

0.03
 (2.7a) 

UDIt,scaled = (UDIa,t + UDIs,t) × 4 (2.8b) 
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The same reasons for the initial Q-value in eR tests are applied to euR. In particular, 

because of the positive domain of UDI score, a positive value is to be selected. Furthermore, 

an appropriate initial score should be far from possible rewards but not too far. This is a 

trade-off between a slow correction of the initial value (more distance means more selection 

of the state-action point to converge) and a biased selection in the learning phase. Thus, 

because the positive UDI score is influenced by its weight, Q-values at the beginning of a 

euR simulation are set equal to 2 times UDI weight. 

An ultimate specification is needed about the implemented Bellman equation. The 

roles of learning rate (α) and discount factor (γ) have already been discussed in 1.3.4. 

Because of the variety of scenarios in which the EC window acts, curse of dimensionality 

is a risk in this research. Furthermore, the simulations cover a yearly period, hence 

presenting a changing environment at which the agent have to adapt sufficiently fast. For 

these two reasons, α is set to 1. Regarding the discount factor, initial tests with eR and state 

space suggested a low γ value for higher energy savings. This could be related to the already 

cited high-disturbed situation, for which a switch in optical properties of the EC window 

slightly affect the complex building environment. Thus, γ is set to 0,5 for all simulation. 

Further investigation of these hyper-parameters has not been conducted to maintain a low 

degree of variables’ difference between the numerous tested control methods. 

2.3.3. Q-table: input variables and states 

The reward functions return a singular value, based on which the correlated state-

action value get updated. The present study explores the Tabular Q-learning method for 

reinforcement learning, thus the state-action space is represented by a table, called Q-table, 

where each row corresponds to a state and columns refer to actions. Actions are always the 

four possible state presented in Table 2.2. States, instead, are a central design element to be 

explore in this research. One reason for many following simplifications in the states design 

is the already described curse of dimensionality that affects the present RL approach. Five 

input variables returned by the environment and two indirect variables have been tested. 

The direct environmental variables are overall incident solar radiation (IR), internal (IT) 

and external (ET) temperature, occupancy (OCC), season (SSN). The two additional 

variables represent the forecast for overall incident solar radiation (IRF) and external (ETF) 

temperature.  
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Only OCC and SSN are tackled as binary state in this study. In particular, OCC is 

1 if any number of people is in the room for any amount of time since the previous time-

step, 0 otherwise. OCC could have had more levels (for example, test bed office has two 

workstations), but potentially highly dynamic occupants’ behaviour could bring to more 

heterogeneous exploration and, furthermore, we believe the agent acting as the room is 

occupied (without differentiate diverse occupancy degree) even if the office is quickly 

visited is a good approach because its action is always delayed compared with the received 

inputs. The other binary state is SSN which can be 0 for the cold season or 1 for the hot 

season. The boundaries between the two main seasons are the first time-steps of 20th March 

and 23rd September, chosen because they are equinoxes. It is worth noting that this 

qualitative information could be symbolized by other factors. For example, we can expect 

that the indoor air temperature, influenced by seasonal set-points, represent a correlation 

with the period of the year. Another observation is that, even if these binary variables can 

have only two levels, when they are combined with other measures in states, each additional 

2-level input double the Q-table size, conceptually providing two distinct Q-tables for the 

two scenarios. 

Unlike OCC and SSN, all other input variables are approached as part of continuous 

domains to be discretized in levels. The disadvantages of a large number of levels have 

already been portrayed. Because of those disadvantages, a task of the present control design 

is to find a compromise between a fast and accurate convergence and a precise control 

policy identification that enhance visual comfort and energy savings. Keeping low the 

number of levels make finding significant limits essential. 

Overall incident solar radiation (IR) is the total amount of diffuse and direct incident 

solar radiation on the external façade. Because of its common use in smart windows control, 

this is the first input variables that have been explored. Different Q-tables have been tested 

taking into account IR only, dividing the measures in 4 up to 6 levels, with different limits. 

From the literature review, it is possible to note that in Baltimore, where the climate is 

similar to the London one (Cwa and Cfb Köppen class respectively), an optimal value to 

be implement as singular threshold for an RBC was about 370-400 W/m2. Other warmer 

climates yielded to a maximum threshold of 415.3 W/m2. Favoino et al. [25] reported 

threshold from several studies: 95 to 315 W/m2; 100 to 850 W/m2; 150 W/ m2; 189, 315 or 

630 W/ m2 depending on the WWR; 200 W/ m2; 250 W/ m2; 350 W/ m2. For this reasons, 
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the bottom level has never been narrower than 0 up to 100 W/m2. With intermediate limits 

at 150, 200, and 250 W/ m2, the minimum threshold for the top level is tested at 300 and 

500 W/ m2. The wider gap between the latter values is chosen because the top state can 

represent when the daylight availability is excessive for visual comfort, hence desired only 

to save heating thermal energy. Once identified the best discretisation for IR, all the other 

input variables presented below are tested in different combinations always including IR. 

Internal temperature (IT) is explored framing its role as describing the season or the 

lack/occurrence of comfort temperature bands. Limits of 18°C and 26°C are then 

implemented, testing both or one at time, in combination with IR. External temperature 

(ET) is explored framing its role as disturbance of the internal thermal comfort. Therefore, 

limits corresponding to setpoints are used, namely 20°C and 26°C, and an additional limit 

of 10°C is introduced to differentiate between “cool” and “cold” temperature, even if in a 

simple way. 

In the literature review of this study, many control strategies for both HVAC system 

and adaptive envelope rely on MPC. This control method can predict disturbances and use 

this information to compute an optimal policy. The present RL agent is not able to do so, 

but a connection with online database of forecast weather could provide similar additional 

input variables. In the simulation framework, relying on a climate database to reproduce 

external environment conditions, it is possible to access these parameters with virtual 

precision. Hence, the following input parameters are based on data to be considered as 

better than actual forecast available on field. The two prediction of incident solar radiation 

(IR-F) and outdoor temperature (ET-F) want to be a measure for the imminent future 

disturbances and potentially represent the beginning and ending of the day. They are 

implemented through the sum of their relative next 4 hours values. Possible limits to 

identify their levels are four times the limits tested for the corresponding environmental 

input. 

2.3.4. Action selection  

Finally, after the introduction of the Q-table design, the action selection method is 

presented. Between the three most diffuse methods presented in 1.3.4, greedy is excluded 

because the high disturbance level of the present problem demands exploration. ε-greedy 

instead has been highly tested applying the framework described in Figure 1.19. In order 
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to reduce in time the degree of exploration carried out by the agent, the initial value of ε = 

0.1 is constantly decrease by a factor of 0.1. This reduction is interrupted at the beginning 

of the hot season, when ε is re-initialized at 0.1. Once the hot season end, ε restart from the 

last value used in the cold season and continue to decrease of 10 % until the end of the 

simulated year. 

 

Figure 2.5 Evolution of ε through the simulation, by time-step 

 This approach wants to increase flexibility of the learning process for the upcoming 

potentially opposite environment. Softmax has also been investigated but never found an 

optimal policy. Its exploration behaviour has been limited down to a temperature τ = 0.005 

with a decaying factor of 0.1 at each time-step but all tested agent still switched the window 

state almost continuously.  

Lastly, the simulation process is described in the following pseudocode in order to 

provide a comprehensive overview of the relation between the Reinforcement Learning 

elements, as identified in this section: 

INITIALIZE hyper-parameters and settings 

SET Q-table design (variables to be read and limits between levels) 

INITIALIZE Q-table entries 

INITIALIZE ε 
hot-season

 and ε 
cold-season

 equals to 0,1  

START EnergyPlus (First hour of 1
st 

January) 

1; 0,1 1872; 0,1

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

1 10 100 1000 10000
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SET first state as previous state 

REPEAT : 
GET observation from environment (input variables and indicators) 
COMPUTE Reward 
READ last state 
READ last action 
UPDATE Q-value corresponding to last state-last action entry 
IF timestep is between hot season limits THEN: 

SET ε equal to ε 
hot-season

  

SET ε 
hot-season

 equal to ε – 10% 

ELSE  
SET ε equal to ε 

cold-season
  

SET ε 
cold-season

 equal to ε – 10% 

SET p as random number between 0 and 1 
IF p < ε THEN 

SELECT random action 
ELSE 

SELECT the action with the maximum Q-value, between those 
corresponding to last state 

SET window properties in EnergyPlus according to selected action 
SET previous state equal to last state 

UNTIL First hour of next 1st January 
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INITIALIZE hyper-parameters and settings 

SET Q-table design (variables to be read and limits between levels) 

INITIALIZE Q-table entries 

INITIALIZE ε 
hot-season

 and ε 
cold-season

 equals to 0,1  

START EnergyPlus (First hour of 1
st 

January) 

SET first state as previous state 

REPEAT : 
GET observation from environment (input variables and indicators) 
COMPUTE Reward 
READ last state 
READ last action 
UPDATE Q-value corresponding to last state-last action entry 
IF timestep is between hot seasonTHEN: 

SET ε equal to ε 
hot-season

  

SET ε 
hot-season

 equal to ε – 10% 

ELSE  
SET ε equal to ε 

cold-season
  

SET ε 
cold-season

 equal to ε – 10% 

SET p as random number between 0 and 1 
IF p < ε THEN 

SELECT random action 
ELSE 

SELECT the action with the maximum Q-value, between those 
corresponding to last state 

SET window properties in EnergyPlus according to selected action 
SET previous state equal to last state 

UNTIL First hour of next 1st January 
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3. Results and Discussion 
The aim of this study is to compare applicability of a Reinforcement learning agent 

in managing electrochromic glazing states against a consolidated control method, Rule 

based control. For all conducted RL tests, the results of the already described RBC are 

employed as baseline to compute the percentage of difference. All these ratios indicate a 

better performance when positive, hence a lower score on SE or Glare results in a correlated 

positive percentage, on the contrary, a lower UDI results in a negative percentage of 

difference. 

Various illustrations are used to present the behaviour and performances of RL 

trials. Q-table is a fundamental element of a Tabular RL. The entries are presented in a 

colour scale based on their state-action values. This qualitative representation allows to 

track usefulness of state levels, in fact it is possible to evaluate for each state if there is a 

clear better action or if the 4 Q-values are analogous, and to weigh soft or hard distinctions 

between similar states, thus if they result in the same policy or which of them is more 

explored. Another description of the agent’s behaviour is the carpet plot of its actions 

through the whole yearly simulated period. This gives an impression of the number of 

switches performed by the controller and the convergence speed. Both representations can 

show also seasonal control strategies, in fact some images report Q-tables depicted in 

different moments of the year.  

Because the goal is to research a good control method, comparing performances of 

different simulations is essential. Therefore, two slightly different charts are used, 

depending on the relevant focus. When the energy focus is more important, a simple bar 

chart depicting absolute SE for each service is presented with an additional series to 

indicate the total SE. In order to consider visual comfort as well, series for UDI and Glares 

indicators are added. Both visualisations allow to spot strengths and weaknesses for 

different objectives in each compared controller. Performances for both energy 

consumption and visual comfort are always reported in any case, with the exception of 

prototype tests on the discount factor. 

The results of reference controller and dummy controllers are presented here. Figure 

3.1 is the carpet plot depicting RBC policy, which is directly correlated to 4 IR ranges, 

hence it also provides a classification of the IR through the simulation period. A 4-level 
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colour scale provide the representation for each of the 4 actions available to the controller. 

From top to bottom (days) and from left to right (time) is the chronologic order of the 

simulation. It is possible to see how in the central period of the year, during working hours, 

RBC heavily rely on the two darker actions. Carpet plots of dummy controllers are not 

reported because they are of a single colour each.  

 

Figure 3.1 Carpet plot of RBC reference actions 

Performances in absolute values of these basic control strategies are reported in 

Table 3.1. 

Table 3.1 Performances of RBC and dummy controllers. 

Baselines 

  

SE(h) 

[kWh/ m2y] 

SE(c) 

[kWh/ m2y] 

SE(l) 

[kWh/ m2y] 

SE 

[kWh/ m2y] 

UDI 

[%] 

Glares 

[%] 

RBC 20,55 1,16 7,35 29,06 54,83 26,9 

D-0 23,21 1,04 6,56 30,8 72,61 18,94 

D-1 21,34 1,12 8,04 30,5 47,29 26,61 

D-2 19,8 2 7,5 29,31 43,54 34,26 

D-3 17,98 3,55 7,03 28,56 38,57 41,73 
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The joint evaluation of results is framed in Figure 3.2, which shows the cumulative energy 

consumption divided by service, as well as the UDI and Glares scores.  

 

Figure 3.2 Energy performances and improvements by service of dummy controllers with 

different constant action. 

 

Mono-action results provide empirical limits for each performance addressable with a 

unique action, and strengths and weaknesses derived from their application. As expected, 

darker states result in more cooling energy savings and for heating the contrary is true. The 

ranking for total SE is the same that the one for SE(h), even with the poor performance of 

D-3 in cooling. This was predictable because of the heating-dominated climate of London, 

which brings to annual heating energy consumption being 10 times the cooling one. But 

clearest states greatly lack in visual comfort, resulting worse than RBC in all the indicators 

implemented in the present study. The D-3 simulation even provide almost twice the glare 

occurrence compared to RBC. Hence, it is clear how much energy savings and visual 

comfort can be contrasting goals in the case under analysis. Lastly, RBC performances are 

similar to keeping the EC window always in the medium-dark states, with the exception 

that the former provide more useful daylight as it is shown by gaps in UDI and SE(l)  
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3.1. Defining the control strategy core 

 Before to investigate the design of states, the first tests are oriented to identify a 

structural parameter: the discount factor γ. Between the available input variables received 

from the simulated environment, IR and ET are two of the information most applied by 

reported studies on adaptive transparent envelopes. Hence a simple state space is built 

employing these measures and setting their levels with a constant step (with the exception 

of 26°C for ET because of its correlation with indoor temperature setpoint). In particular, 

for these RL agents, SR limits are 0, 200, 400, 600, 800 W/m2, while ET levels have 0, 5, 

10, 15, 20, 26, 30 °C as thresholds. Seven different γ are tested: 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 

and 0.99. The former is named γ5, the second γ6, and the others with the same approach, 

according to their significant digits. Results of these seven simulations are reported in Table 

3.2.  

Table 3.2 Energy performances of reinforcement learning controllers with different discount 

factors. 

TESTS  

SE(h) 

[kWh/ m2y] 

SE(c) 

[kWh/ m2y] 

SE(l) 

[kWh/ m2y] 

SE 

[kWh/ m2y] 

γ = 0.5 20,23 1,44 7,27 28,94 

γ = 0.6 21,00 1,64 6,80 29,44 

γ = 0.7 20,46 1,59 7,35 29,40 

γ = 0.8 20,83 1,88 7,10 29,80 

γ = 0.9 20,84 1,68 7,63 30,15 

γ = 0.95 20,69 1,77 7,55 30,01 

γ = 0.99 20,49 1,88 7,09 29,47 

 

Similarly to dummy controllers, the lowest heating SE corresponds to the more energy 

efficient simulation, in this case the one with γ = 0.5. Despite the good performance on 

heating, γ5 have a medium SE(h) that places it in fourth place, while it even gets the second-

best result in cooling energy savings. Thanks to these achievements, RL agents with γ 

equals to 0.5 is the only one outperforming the RBC (as it is shown in Figure 3.3, reporting 

energy-related scores only).  
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Figure 3.3 Energy performances of seven reinforcement learning controllers with different 

discount factors. 

Carpet plots of the four most energy efficient algorithms only are reported. From the 

heterogeneity and boundaries of action selection depicted in Figure 3.4, it is possible to 

conclude that, despite good overall energy performance, with higher discount factors, in 

this case 0.7 and 0.99, the RL controller struggle to converge for the first two months 

approximately. γ5 and γ6 have a similar issue for about one month, but, despite the clearly 

different control policy, they could be valid alternatives. As anticipated in the methodology 

section, at the end 0.5 is maintained for all successive tests. 
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Figure 3.4 Carpet plots of actions selected by reinforcement learning controllers with different 

discount factors. 

The second principal design element is the total incident solar radiation space on 

which the RL agent will rely. This disturbance has been selected for its frequent application 

in case studies similar to the present one. The goal, as for each input variable, is to identify 

the number of levels in which the measure’s domain can be divided, as well as their 

boundaries. In order to do so, four different discretization are embedded in as many separate 

simulations. In Table 3.3 is possible to read the coding of these tests and the limits set for 

each of them. The names are attributed based on the number of levels and the inferior limit 

of the higher tier. This choice is justified by the already discussed curse of dimensionality 

linked to the size of the Q-table and the relevance of the brightest state for the various 

objectives influenced by the EC control. 

Table 3.3 Identification of the four tests about total incident solar radiation discretization. 

Code Total incident solar radiation limits [W/m2] 

 100 150 200 250 300 500 

4-500  X  X  X 

4-300  X  X X  

5-500 X  X  X X 

5-300 X X  X X  
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Results illustrated in 

Figure 3.5 shows that agents with 300 W/m2 as IR highest limit save more SE than 

correspondent agents with the same number of levels. 4-500 is the only controller without 

300 W/m2 as limit and have clearly worst performances in SE(l) and UDI (see also Table 

3.4). 

Table 3.4 Performances of RBC and reinforcement learning controllers with different total 

incident solar radiation discretization. 

TESTS SE(h) 
[kWh/ m2y] 

SE(c) 
[kWh/ m2y] 

SE(l) 
[kWh/ m2y] 

SE 
[kWh/ m2y] 

UDI 
[%] 

Glares 
[%] 

RBC 20,55 1,16 7,35 29,06 54,83 26,9 

4-500 20,17 1,33 7,36 28,86 50,58 34,55 

4-300 21,14 1,28 6,28 28,69 57,65 32,97 

5-500 20,95 1,57 6,56 29,08 55,46 35,08 

5-300 21,06 1,3 6,66 29,02 59,1 33,42 
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Figure 3.5 Energy performances and improvements by service of reinforcement learning 

controllers with different total incident solar radiation discretization, compared to RBC. 

Furthermore, its carpet plot (Figure 3.6) shows a restrict application of the darkest 

window’s state. These observations suggest that 300 is a more significant value for IR 

compared to 500, enhancing to better regulate excessive incoming daylight. 4-300 and 5-

300 make larger use of darker states and this provide higher cooling energy savings than 

other agents, even if still less energy efficient than RBC. This suggests that those controllers 

could be more adaptable than the others with 500 as threshold for the upper state. 

 

Figure 3.6 Carpet plots of actions selected by reinforcement learning controllers with different 

total incident solar radiation discretizations. 
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 In particular, 4-300 achieve the best trade-off between lighting and cooling energy 

savings that allows to have the lowest SE indicator even with the poorest heating energy 

performance (overall SE is 1,26% less than RBC). For all these reasons, and also in order 

to maintain a low number of states predicting the addition of other input variables, the 

following limits for SR are set for all the following tests: 150, 250 and 300. 

3.2. Exploring additional input variables 

Once identified the fundamental elements of the RL agent’s design, other tests are 

carried out in order to improve the achieved control method. The second disturbance to be 

presented is external air temperature. Three simulations with as many different numbers of 

levels provide the results registered in Table 3.5. 

Table 3.5 Performances of RBC and three reinforcement learning controllers with different 

external temperature discretizations. 

TESTS SE(h) 
[kWh/ m2y] 

SE(c) 
[kWh/ m2y] 

SE(l) 
[kWh/ m2y] 

SE 
[kWh/ m2y] 

UDI 
[%] 

Glares 
[%] 

RBC 20,55 1,16 7,35 29,06 54,83 26,9 

T1 20,96 1,57 7,08 29,61 48,97 31,44 

T2 21,24 1,31 6,23 28,78 52,82 30,17 

T3 21,09 1,43 6,88 29,39 49,22 30,59 

T1 make use of only one threshold, that is 20°C. In T2 26°C is implemented as well 

as second limit and, finally, an additional tier is introduced to build T3, dividing the inferior 

range in below and above 10°C. Site Energy consumption of the three agents and the RBC 

baseline are presented Figure 3.7. 
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Figure 3.7 Energy performances and improvements by service of seven reinforcement learning 

controllers with different discount factors compared to RBC total Site Energy (dotted line) 

The introduction of ET generally improves lighting consumption, as suggested by 

the positive percentage of difference achieved by all the controllers, but it has a negative 

effect on heating load. Despite this effect, T2 is able to save more overall energy than RBC 

reference, even if just 0,96%, that is less than the 4-300 agent based in IR only. This better 

performance of T2 could be yielded by a faster adaptability, in fact, compared to the others 

two agents, it has the higher savings both in cooling and lighting (where it saves more than 

15% more energy than RBC).  

Lastly, the action selection through the year of the three controllers tested with External 

Temperature is depicted as heat map in Figure 3.8. As in many other cases present in this 

document, a general observation is proposed: towards the end of autumn, agents tend to 

drastically rearrange their control policy. 
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Figure 3.8 Carpet plots of actions selected through RL for different external temperature 

discretization. 

3.3. Exploration of cumulative future disturbances as state 
variables 

 In order to investigate further potential savings by a RL agent, forecast information 

are embedded in the states space. At each time step, the agent received the sum of the next 

4 hours of IR or ET. Similarly to previous tests, discretization of incident solar radiation 

forecast (IR-F) and external temperature forecast (ET-F) is studied by varying the numbers 

of levels, but tested values are not designed to mimic a-priori knowledge but to create a 

correlation between the in-time variable and its forecast. In practice, limits value for IR-F 

are always 4 times some of the consolidated thresholds for IR, or 4 times the limits tested 

for ET. The coding of the different IR-F agents is synthetized in Table 3.6, with the 

exception of the last approach where the limit value of 600 is substituted by 400. 
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Table 3.6 Identification of the four tests about total incident solar radiation forecast 
discretization. 

Code Cumulative Total incident solar 
radiation limits of next 4 hours [W/m2] 

 0 600 1000 1200 

IR-F-1 X X  X 

IR-F-2  X  X 

IR-F-3 X   X 

IR-F-4 X X   

IR-F-5 X X X  

IR-F-6 X X X X 

IR-F-7  X X X 

IR-F-8  400 X X 

 

In general, the introduction of this input variable led to good lighting performances, 

in fact Figure 3.9 shows lower consumption in this service for all the simulation except for 

IR-F-2, probably due to a poor states-space design.  

 

Figure 3.9 Energy performances and improvements by service of reinforcement learning 

controllers with different cumulative total incident solar radiation discretization, compared to RBC 
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Looking at the carpet plots of all agents in fact (Figure 3.10), it is evident how the 

limit at 0 W/m2 yield to a clear change in the policy at the beginning and at the end of the 

day. This is not valid only for test IR-F-6 which, despite having a differentiation between 

positive and negative future cumulative IR, does not present a boundary in the action 

selection. This could be due to an excessive number of levels (IR-F-6 is the only 20-states 

agent tested with IR-F) that makes the next maximum action value to vary more often (see 

(1.7)).  

 

Figure 3.10 Carpet plots of actions selected by reinforcement learning controllers with different 

cumulative incident solar radiation discretization. 
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This weak policy learning is correlated with poor energy savings, where the only 

indicator lower than reference is SE(l) which is however an average result in for particular 

Q-table approach, as reported in Table 3.7. Hence, these observations reinforce the idea 

that more information does not mean better choices by a Tabular Q-learning agent.  

Table 3.7 Performances of RBC and reinforcement learning controllers with different 

cumulative incident solar radiation discretization. 

TESTS SE(h) 
[kWh/ m2y] 

SE(c) 
[kWh/ m2y] 

SE(l) 
[kWh/ m2y] 

SE 
[kWh/ m2y] 

UDI 
[%] 

Glares 
[%] 

RBC 20,55 1,16 7,35 29,06 54,83 26,9 

IR-F-1 21,05 1,68 5,95 28,68 49,80 31,33 

IR-F-2 20,36 2,00 7,43 29,79 48,59 33,56 

IR-F-3 21,00 1,58 6,73 29,31 50,87 33,65 

IR-F-4 21,73 1,44 6,86 30,03 59,12 27,33 

IR-F-5 21,05 1,14 6,61 28,80 60,76 27,53 

IR-F-6 20,85 2,06 6,63 29,54 53,13 33,34 

IR-F-7 21,23 1,77 5,92 28,91 59,06 28,40 

IR-F-8 21,22 1,33 5,53 28,09 56,95 30,23 

 

Another import level to maintain is the one above 1000 or 1200, in fact the IR-F-4 

carpet plot suggests that the agent ends up selecting the darker states in most cases when 

IR-F is above 600 W/m2 as last limit. But 600 appears to be a significant value as well, 

because in the IR-F-3 test the controller have difficulty to converge in a policy for the 

period between mid-August and mid-September: its carpet plot shows a large application 

of the clearest state to return to the darkest one after and this could bring to a poor cooling 

management and a higher glare risk as well. Lastly, a 4-states discretization for IR-F is 

investigated getting rid of the threshold of 0. Because implementing 600, 1000 and 1200 

as limits yielded to good performances, the minor threshold is shifted towards zero 

selecting 400 instead (that is 4 times 100, one of the tested limits for IR). This last test with 

the cumulative IR achieved a 3,35% reduction in overall energy consumption compared to 

the reference RBC and the best lighting performance between the IR-F simulations. The 

other agent to keep into account is IR-F-5 because, despite having just a 0,89% 

improvement (intended as described at the beginning of this chapter) in SE, it is the only 

one able to perform better than the baseline in consumption for cooling. 
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Concerning the use of the cumulative sum of External Temperatures, the coding of 

different ET-F agents is synthetized in Table 3.8.  

Table 3.8 Identification of the four tests about total incident solar radiation forecast 
discretization. 

Code Cumulative Total incident solar 
radiation limits of next 4 hours [W/m2] 

 0 40 80 104 

ET -F-1  X X  

ET -F-2  X X X 

ET -F-3   X X 

ET-F-4 X X X  

 

Looking at Figure 3.11, they seems to rely on lighting savings to reduce SE, as well 

as controllers provided with IR forecasts. However, they perform better in heating 

consumption, even if reference RBC still reduce heat gains more than all of them. 

 

Figure 3.11 Energy performances and improvements by service of reinforcement learning 

controllers with different cumulative external temperature discretization, compared to RBC 

 ET-F-1 achieved the minor SE and SE(l) as well, in fact its carpet plot (Figure 3.12) 

appears clearer than others, especially in the central part of the day at the end of spring, 

when there is a good sunlight availability but neither heating nor cooling loads have a major 

impact on temperature control.  
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Figure 3.12 Carpet plots of actions selected by reinforcement learning controllers with different 

cumulative external temperature discretization.  

This suggests that knowing if the next hours external temperature will be on 

average below/above 10 it’s a significant information. In fact the worst performing agent 

lacks of 40 as threshold. Table 3.9 reports 29,41 kWh/ m2y as SE score for ET-F-3.  

Table 3.9 Performances of RBC and reinforcement learning controllers with different 

cumulative external temperature discretization. 

TESTS SE(h) 
[kWh/ m2y] 

SE(c) 
[kWh/ m2y] 

SE(l) 
[kWh/ m2y] 

SE 
[kWh/ m2y] 

UDI 
[%] 

Glares 
[%] 

RBC 20,55 1,16 7,35 29,06 54,83 26,9 

ET-F-1 20,91 1,50 5,72 28,13 51,14 32,11 

ET-F-2 21,21 1,32 6,42 28,95 60,24 24,42 

ET-F-3 20,67 1,41 7,33 29,41 47,9 30,9 

ET-F-4 20,9 1,3 6,11 28,31 55,19 28,51 

 

The 4-times-26 limits led to second-rate savings and is not even able to yield to 

cooling loads lower than similar agents, hence, it is judged as negligible. Finally, the 

representation of really cold temperatures provided by 0 as limit, enhance the controller to 

select the clearest action in time-steps when the agent without this additional threshold (ET-

F-1) selects instead the medium-clear EC window state. This finer selection seems to 

appear also during “hot-season” days, when ET-F-1 relies mainly on two actions out of 

four. 
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3.4. Combination of more additional parameters  

Some combinations of illustrated Q-table designs have been explored non-

systematically. Hence, here are reported simply the two most interesting agents: IR-F+ET 

and IR-F+Occ. Both of them still maintain the levels established for IR. The former has 

600, 1000 and 1200 as limit values for IR-F, while the second presents 400, 1000 and 1200. 

The ET thresholds are 20 and 26 °C, IR-F+Occ is designed with an occupied/unoccupied 

variable instead of external temperature levels. In Table 3.10 are reported improvements in 

the lighting management over 12% and this reinforce the theory that the IR forecast 

enhance lighting energy savings. 

Table 3.10 Performances and improvements compared to RBC of reinforcement learning 

controllers with different states space based on three input variable each. 

TEST Measure SE(h) 
[kWh/ 
m2y] 

SE(c) 
[kWh/ 
m2y] 

SE(l) 
[kWh/ 
m2y] 

SE 
[kWh/ 
m2y] 

UDI 
[%] 

Glares 
[%] 

RBC Absolute 20,55 1,16 7,35 29,06 54,83 26,90 

IR-
F+ ET 

Absolute 21,09 1,22 6,45 28,76 61,14 26,23 

Improvement -2,63% -4,98% 12,21% 1,03% 11,51% 2,49% 

IR-
F+ Occ 

Absolute 20,34 1,53 6,45 28,33 53,44 31,04 

Improvement 1,02% 
-

32,25% 12,19% 2,52% -2,54% 
-

15,38% 

 

 IR-F+ET make wide use of the darkest state, mostly in the central period of the 

day, as showed by the relative carpet plot in Figure 3.13. This could be the cause of an 

improvement in visual comfort compared to reference controller, even thought it was not a 

goal of the RL agent. 
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Figure 3.13 Carpet plots of actions selected by reinforcement learning controllers IR-F+ET (on 

the left) and IR-F+Occ (on the right). 

IR-F+Occ instead achieves better overall energy performance, thanks to an 

improvement in heating consumption other than in lighting. Also, its Q-tables illustration 

(Figure 3.14) for three different simulation steps is reported to make two observations. In 

order to make this figure more readable, a legend for the state index is provided in Table 

3.11. 

 

Figure 3.14 Q-table of IR-F+Occ heat map. 
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Table 3.11 Legend of states space design for Q-table of IR-F+Occ 

State IR min IR max ET min 
ET 

max IR-F min 
IR-F 

max 

0 -10 150 -10 20 -0.1 600 

1 -10 150 -10 20 600.0 1000 

2 -10 150 -10 20 1000.0 1200 

3 -10 150 -10 20 1200.0 4000 

4 -10 150 20 26 -0.1 600 

.. - - - - - - 

8 -10 150 26 40 -0.1 600 

.. - - - - - - 

12 150 250 -10 20 -0.1 600 

.. - - - - - - 

24 250 300 -10 20 -0.1 600 

.. - - - - - - 

36 300 1000 -10 20 -0.1 600 

.. - - - - - - 

47 300 1000 26 40 1200.0 4000 

 

Firstly, this agent has a broad state space (46 states, resulted from the combination 

of three different input variable discretization). Secondly, the sporadic or null experience 

of some states (see the blank regions corresponding, for example, to cold outdoor air 

temperature occurring with high radiations) could have influenced action selection and 

prevented a clear policy. This is suggested by the behaviour at the beginning and at the end 

of days reported in its actions’ map depicted above. 

3.5. Exploration of Q-table design for reward based on UDI 
only 

In addition to energy savings, this study wants to investigate the adaptability of 

Reinforcement Learning to deal with conflicting goals, such us solar gains and glare 

protection in winter or daylight harvesting and cooling loads reduction in summer. UDI is 

used as synthetic index for visual comfort, with the difficulty that both excessive and 

deficient indoor illuminance bring a negative reward to the agent. The research for better 
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energy performance employed various combinations for each of the different input 

variable. The same process is not repeated with the energy-comfort reward, but identified 

best discretization are exploited instead. Five different simulations are carried out with a 

reward concerning visual comfort only, thus they are called udi-R. 

RUDI = UDIt (3.1) 

All the udi-R agents’ Q-tables include the 4 IR tiers separated by 150, 250 and 300 

W/m2. Differences are in the secondary input variable. These state designs, together with 

the associated code, are identified as follow: 

- udi-ET: External temperature limits at 20 and 26 °C 

- udi-Occ: Presence/absence variable 

- udi-IR-F: Incident solar radiation forecast limits at 400, 1000 and 1200 W/m2 

- udi-ET-F: External temperature forecast limits at 0, 40 and 80 °C 

Figure 3.15 shows that all the tests achieved an UDI improvement compared to 

reference controller and as expected, this increases in natural lighting yields to lighting 

energy savings, even if not proportional. 

 

Figure 3.15 Energy performances and improvements by service of reinforcement learning 

controllers with different secondary input variable and reward function based on UDI only, 

compared to RBC 
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This lack of correlation between UDI and lighting consumption is probably due to the 

employment of dimmable lights and the computation of UDI indicator, which include the 

supplementary but not sufficient light class (UDIs), as already described in Figure 2.3.  

Table 3.12 registers how udi-ET and udi-Occ almost hits 70% of UDI, that is a value 

near to D-0 performance (72,61%) which has the best visual comfort between the dummy 

controllers.  

Table 3.12 Performances of RBC and reinforcement learning controllers with different 

secondary input variable and reward function based on UDI only. 

TESTS SE(h) 
[kWh/ m2y] 

SE(c) 
[kWh/ m2y] 

SE(l) 
[kWh/ m2y] 

SE 
[kWh/ m2y] 

UDI 
[%] 

Glares 
[%] 

RBC 20,55 1,16 7,35 29,06 54,83 26,90 

udi-ET 22,55 1,18 5,79 29,52 69,54 22,47 

udi-Occ 22,22 1,06 6,95 30,23 68,40 20,53 

udi-IR-F 21,98 1,13 5,71 28,81 66,23 24,78 

udi-ET-F 21,41 1,22 6,74 29,37 62,08 25,74 

 

The good performance in visual comfort in fact, as visible from carpet plots (Figure 

3.16), is justified by agents extensively application of darkest EC states except for udi-ET-

F, which has the worst visual performance and also seems to not converge. In general, the 

two simulations based on forecasts tend to apply more times the clearest state. 

 

Figure 3.16 Carpet plots of actions selected through RL for different discount factors. 
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Glares indicator appears in Figure 3.15 to be specular to UDI, indicating that the latter is a 

good overall parameter to target visual comfort. Between these udi-R agents (not having 

any energy parameter in the reward), only udi-IR-F is also able to reduce consumptions 

more than the present RBC baseline, meanwhile ranking third in visual comfort. It also 

shows, unlike other tests, to select the more transparent state at the beginning and at the 

end of the day, suggesting a policy related to daylight intensity over time. 

3.6. Exploration of weight for UDI and input variables 

In order to have a two-component reward is suitable to balance their influences. As 

reported in 2.3.2, this study employs a weight for energy and visual comfort parameters. 

Since UDI is a parameter linked to occupancy, an initial analysis on the weight to be 

associated to the UDI component of the reward is carried out by combining IR and 

occupancy. A second analysis focus on external temperature as additional input variable, 

because it is the better performing in visual comfort when this is the only component of the 

reward function. These simulations are coded as follow: having an energy-comfort reward, 

their code begin with eu (“u” is for UDI); the second component indicates the exclusive 

input variable, that can be Occ or ET; finally, the design weight is represented, adding for 

example 5 if  wUDI is set to 0,5. In the graphs reporting the absolute differences between 

the baseline and the simulations (Figure 3.17 and Figure 3.18), it is possible to see the 

performance of agents with 8 different weights (wUDI), evenly distributed between 0.1 and 

0.9, for each of the two states space design.  
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Figure 3.17 Energy performances difference between RBC (baseline) and reinforcement 

learning controllers with different wUDI and occupancy as additional input variable. 

 

 

Figure 3.18 Energy performances difference between RBC (baseline) and reinforcement 

learning controllers with different wUDI and external temperature as additional input variable. 

Only 3 out of 18 agents do not achieve more useful daylight than RBC, all of which 

employ ET and a low wUDI. The real challenge is to perform better at the same time also in 

energy savings. The pattern that correlate UDI and lighting savings is repeated and heating 

consumptions are always higher than reference. External temperature appears to be more 

reliable than occupancy in order to reduce artificial light, but this higher incoming radiation 

yields poor cooling performance, as expected, while heating consumption does not suggest 
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the same energy conservation. Effects on glare risk incidence (not measured in the reward 

function) are diverse, with euR-Occ agents showing a more solid reduction behaviour. The 

better performing RL agents are highlighted for further analysis: these provide more energy 

savings than RBC except for eu-ET-8 which, despite its 0,19 kWh/m2y SE gap, have an 

excellent UDI performance (additional 12,7% compared to baseline). 

The comparison of selected agents, visible in Figure 3.19, illustrates narrow 

differences between the six of them and this suggests that achieved performances are 

towards the optimum for the present study’s framework.  

 

Figure 3.19 Energy performances and improvements by service of reinforcement learning 

controllers with different wUDI and occupancy or external temperature as additional input variable. 

Regarding the energy-visual comfort compromise, these tests (selected on a SE 

savings base) always reach 64% of UDI, providing at least an additional 9,9% compared to 

RBC performance. However, between those, only eu-Occ-3, eu-Occ-4 and eu-ET-7 are also 

able to reduce the Glares indicator. Comparing the results provided in Table 3.13to 

baseline, the higher energy improvements are found in ue-ET-7 (-0,51 kWh/m2y) and ue-

Occ-4 (-0,50 kWh/m2y). But the latter provides better lighting conditions, with 0,78 % more 

UDI than ue-ET-7  and almost the same glare occurrence than RBC instead of a 1% increase 

found in ue-ET-7, that is still comparable to a non-affecting solution.  
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Table 3.13 Performances of RBC and reinforcement learning controllers with different wUDI 

and occupancy or external temperature as additional input variable. 

TESTS SE(h) 
[kWh/ m2y] 

SE(c) 
[kWh/ m2y] 

SE(l) 
[kWh/ m2y] 

SE 
[kWh/ m2y] 

UDI 
[%] 

Glares 
[%] 

RBC 20,55 1,16 7,35 29,06 54,83 26,90 

ue-Occ-3 21,40 1,18 6,12 28,69 64,74 27,62 

ue-Occ-4 21,58 1,17 5,81 28,56 65,74 26,92 

ue-Occ-5 21,88 1,15 5,83 28,86 65,61 25,45 

ue-Occ-6 21,68 1,17 5,89 28,74 67,02 25,74 

ue-ET-7 22,06 1,28 5,20 28,55 64,96 27,84 

ue-ET-8 22,34 1,22 5,68 29,25 67,51 25,72 

 

This results can be related to an apparent better balance between the two middle EC 

window states found in ue-Occ-4, compared to a rare selection of the medium-clear state 

visible in the ue-ET-7’s carpet plot (Figure 3.20 and Figure 3.21). 

 

Figure 3.20 Carpet plots of actions selected by reinforcement learning controllers with different 

wUDI and occupancy as additional input variable. 
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Figure 3.21 Carpet plots of actions selected by reinforcement learning controllers with different 

wUDI and external temperature as additional input variable. 
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4.  Conclusion 
The present work investigated the adaptability and suitability of Reinforcement Learning 

to develop an evolving control policy for a smart window in order to address conflicting 

goals. In particular, an electrochromic window have been chosen as smart glazing 

technology and 4 states of whom represented the 4 available actions for the controllers. 

These target practice is part of an adaptive approach for the building elements, which is 

relevant because of different environmental conditions affecting operative building loads 

that vary by locations, seasonal weather and future climate evolution, and because of the 

urgent need for decarbonisation. The large amount of time spent indoor in modern days 

also requires attention for comfort, affecting people wellbeing. 

Simulations run always with the same location, namely London, but the analysed period 

was not only a season but a whole year. The trained controllers were developed in a 

simulation environment connecting EnergyPlus to Python. Diverse RL agents have been 

tested, proposing designs of state space based on different combination of commonly 

applied measurements found in literature. This state spaces was embedded in an action-

state table updating its entries at each time-step, hence framing the control strategy as 

Tabular Q-learning. The exploration of different Q-table proposals concerned different 

amount of levels in which input variables were discretized and the variation of the 

boundaries of these ranges. The action-selection method has been ε-greedy, with decreasing 

ε over time. 

This study took into account the energy consumption for key building services (namely, 

heating, cooling and lighting) and visual comfort as well. Improvements in both fields can 

have positive economic effects related to, respectively, reduced energy utilization in the 

operational phase of buildings and enhanced users wellbeing. In order to evaluate the 

goodness of developed controllers, a Rule-Based Controller has been utilized as baseline. 

Carpet plots representing the actions selected through the year have been widely employed 

to evaluate control behaviour and as a convergence indicator in addition. 

Main general results are: 

- The simple design exploiting incident solar radiation only already showed potential 

energy savings higher than reference RBC. As concluded by Loonen et al. [11], weather 

forecasts can enhance control strategies. Between the several tests conducted for the present 
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work, the most energy efficient agents have been IR-F-8 and ET-F-1, which saved 3,35% 

(the former) and 3,20% (the latter) more Site Energy compared to reference RBC . Both of 

them were provided with cumulative amount of weather disturbances in the following 4 

hours, respectively, incident solar radiation on window and external temperature. 

- Energy savings improvements were reached focusing on lighting despite heating 

service was the most demanding system. In addition, the pattern that correlate UDI and 

lighting savings is repeated. In these cases, heating consumptions are usually higher than 

reference. This suggests that electrochromic windows have a much higher potential effect 

on lighting service than on heating. It is difficult to express the same limit for cooling loads 

management because the simulations in this study are carried out in a heating dominated 

climate, labelled “Cfb” according to Köppen-Geiger scheme. However, heating and 

cooling loads not yield discomfort, because they result only in higher spending to maintain 

set-points. On the contrary, artificial lighting and glare are conditions which aggravates 

users’ wellbeing and, for the former, energy demand increase is also true. 

- The introduction of a weighted UDI component in the reward function brought to a 

major application of the clearest EC window state, indicating that this approach allows the 

controller to understand the positive effect of this policy when employed in low daylight 

availability hours. The same behaviour was missing in agents having total Site Energy only 

as feedback from the environment, except for some controllers supplied with “forecast” 

input variables which exploited clear states few hours at the beginning and end of the day, 

but not in the night. Agents provided with IR and Occupancy appeared to be more suitable 

when the reward function concern total energy and UDI, achieving an excellent 

improvement in the latter parameter and still reducing energy consumption more than a 

basic control method. Hence, Tabular Q-learning is judged as a good alternative to control 

strategies that want to address conflicting goals in a dynamic and disturbed building 

environment.  

- The same state space design also yielded excellent visual performance, reaching 

almost 70% of UDI when this parameter was the only one embedded in the reward function. 

The same thing is true for RL controller based on IR and external temperature.  

- Lastly, curse of dimensionality is a factor to take into account in the development of 

a Tabular Q-learning algorithm. From the development of this work, this issue appears to 
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depend on number of levels and input variable at the same time. IR-F-6 is the only 20-states 

agent tested with IR-F and appeared to be affected by a large state space yielding to weak 

convergence. On the contrary, IR-F+Occ has a broad state space (46 states, resulted from 

the combination of three different input variable discretization) resulting in weak 

convergence at beginning and end of day but however in good energy performance. 

Limits and useful future developments are: 

- Most of the produced carpet plots of this work show a re-calibration of the control 

policy when the hot season ends. This risk of losing track of acquired knowledge useful for 

each season may limit agent’s performances. Some reported studies made use of seasonal 

control strategies. In the tabular reinforcement learning framework, it could be possible to 

address different periods with different Q-tables. However, the design of interaction 

between them and effects on convergence speed should be analysed. These sensitive issue 

depend also by the RL method applied, therefore more complex methods of reinforcement 

learning could be investigated, from using Soft-Max action selection to Q-values estimation 

throught Neural Network. 

- Other environmental conditions such as climates should be cross-evaluated. 

Furthermore, because of the focus on lighting service developed by the machine learning 

algorithm in order to reduce energy consumption and dimmable lighting system embedded 

in the present framework, a controller dealing with binary artificial lights should be 

investigated to mimic the most common system in the building residential sector.  

- A deeper analysis on agents addressing visual comfort and energy savings at the same 

time could additionally improve RL controller’ behaviour in this CABS field. Moreover, it 

is worth repeating that users' disturbances and preferences, and visual comfort complexity 

demand for on-field experimentation, even taking into account users interaction with 

controller. This is suggested because a comparison across best performing agents from 

different Q-table design (Figure 4.1) shows how ue-Occ-4 (having the two-components 

reward function) achieved much higher UDI providing lower energy savings than agents 

not provided with visual comfort indicator, even if still higher than reference control 

strategy. For this reason, an evaluation on the necessary compromise between high energy 

efficient controller and users’ productivity correlate to visual comfort is recommended.  
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Figure 4.1 Energy performances and improvements by service of best reinforcement learning 

controllers developed in the present study 
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Appendices 
 
Classification of major climatic types according to the modified Köppen-
Geiger scheme 
1st 2nd 3rd 

A (Tropical) 
  

f (Rainforest)  
m (Monsoon)  
w (Savanna, Dry winter)  
s (Savanna, Dry summer)  

B (Arid) 
 
  

W (Desert)  
S (Steppe)  
 h (Hot) 
 k (Cold) 

C (Temperate) 
 
 
 
  

w (Dry winter)  

f (No dry season)  

s (Dry summer)  

 a (Hot summer) 
 b (Warm summer) 
 c (Cold summer) 

D (Continental) 
 
 
  

w (Dry winter)  
f (No dry season)  

s (Dry summer)  
 a (Hot summer) 
 b (Warm summer) 
 c (Cold summer) 
 d (Very cold winter) 

E (Polar)  
T (Tundra)  
F (Eternal frost (ice cap))  
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