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1. Introduction 
 

1.1. Description of the bilevel assignment problem 
 

In bilevel optimization problems, there are two collaborative or conflicting decision 

makers, named the leader who acts first, and the follower that reacts depending on 

the leader’s choice. On its general form, each decision maker has its own decision 

variables and objective functions, but there are common constraints. There has been 

an increasing interest in bilevel programming on the scientific community since the 

2000s, due to its capability to model complex problems in which more than one party 

are involved, e.g., the government (leader) controlling policy variables (such as tax 

rates) to maximize employment or minimize the use of a resource, and the industry 

(follower) being regulated and trying to maximize net incomes. 

The assignment problem (AP) is well known in the literature and the typical problem 

consists of assigning n origins i to n destinations j, such that, given a costs matrix of 

size n x n in which each value corresponds to each cost cij (of assigning origin i to 

destination j) the total cost obtained as a linear sum is minimized. Each origin and 

each destination must be assigned once. The very first algorithm that solves this 

problem efficiently was proposed by H.W. Kuhn in 1955 and is known as Hungarian 

Method [1], which by exploiting structural properties of the problem is able to solve 

it in 𝑂(𝑛3) time. 

In this thesis, we consider the bilevel assignment problem (BAP), in which the leader 

is given n origins and n destinations, and he must select k origins and k destinations 

(with k<n). The follower proceeds to solve the assignment problem of the 

corresponding selected nodes, that form a costs matrix of size k x k. The leader wants 

to carry out the selection in a way that the optimal solution of the follower is 

maximized. There exist some papers that work on the BAP. For instance, in [2] exact 

solutions approaches are developed, but the problem faced in this thesis has some 

particularities: the edges (costs) are common to both decision makers, and the 

objective functions of the leader and the follower are not aligned, since the former 

wants to maximize the solution of the latter, who in turn seeks to solve the 

minimization version of the assignment problem. 

 

1.2. Objective and structure of the thesis 
 

The aim of this thesis is to solve the considered BAP, by developing exact and relaxed 

models, metaheuristic and matheuristic approaches. It consists of eight chapters. 

In the second one, general theory is presented about optimization problems, linear 

programming, and computational complexity. In the third one, specific concepts of 

the assignment problem and of bilevel programming are explained. The next three 

present the resolution approaches and algorithms. 
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In chapter four, we first present the mathematical formulation of the BAP, together 

with the corresponding dual formulation that is required to implement the model in 

the MIP solver. Then, we test several variations and a relaxation of the model, and 

we evaluate them by considering the achieved results. 

Chapter five focuses on metaheuristic approaches to solve the BAP. We first develop 

greedy algorithms, followed by local search and iterated local search algorithms. 

Finally, we show that a final enhancement of the neighborhood search, based on an 

iterative construction of upper bounds to the optimal solution of the assignment 

problem, leads to better performances. 

In chapter six, we first present some theory about matheuristics. Then, we develop 

and implement a matheuristic algorithm, with the aim of improving the results 

obtained by the heuristic approaches.  

Results are presented and compared in chapter seven, together with the final 

conclusions of the thesis. Finally, the references are listed in chapter eight. 
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2. Optimization problems and 

computational complexity 
 

2.1. Introduction  
 

Throughout our lives as human beings, but in nature itself as well, countless 

decisions are taken every day. Many of them contain several alternatives which 

produce different results. Being aware of it or not, we continuously improve our 

decisions, until we are satisfied enough with the obtained output or because there is 

no way to enhance it anymore. After that, we just tend to repeat it, as it is considered 

the one that produces the “optimal” outcome. Determining which route to take from 

home to work so that it is the shortest or the fastest, scheduling (even implicitly) the 

work to be done to cook in the lesser time possible or the timetable to be able to 

perform the multiple desired activities every week without overlapping each other, 

or without overload any particular day, are a few of the endless list of examples. 

Moreover, as a society, the importance of appropriately solving complex optimization 

problems have huge impacts on diverse areas. Consider for example, the energy and 

cost wastes reached by a manufacturing plant if the related production line is not 

studied and optimized (i.e. the machines need to stay more time turned on to produce 

a single unit, times the x units that the plant produces over a certain period of time); 

the traffic problems on a big city where public transport and streets are not 

appropriately planned; or food shop’s delivery costs if the deliveryman does not follow 

the shortest path to reach its clients.  

 

2.2. Formal definition and classification 
 

Let us define an optimization problem as any problem in which the aim is to find the 

best solution, based on an expected or desired output, among all feasible solutions. 

If one wants to analyze these decisions in an organizational level, their complexity 

grows enormously, and we start to explicitly define the objective function, the 

constraints and the set of parameters that will produce the output. Formally, 

recalling [3], we need to find x to: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (𝑠. 𝑡. ) 𝑔𝑖(𝑥) ≥ 0     𝑖 = 1, … , 𝑚 

 
(2.1) 

ℎ𝑗(𝑥) = 0     𝑗 = 1, … , 𝑝 

 
 

Where the problem is classified as a nonlinear programming problem for the case in 

which 𝑓, 𝑔𝑖  and ℎ𝑗 are general functions of the parameter  𝑥 ∈  ℝ𝑛. When 𝑓 is convex, 

𝑔𝑖 concave, and  ℎ𝑗 linear, then the problem is called a convex programming problem. 
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If all those functions are linear, the problem is further categorized as a linear 

programming problem.  

Definition [3] 

An instance of an optimization problem is a pair (𝐹, 𝑐) where 𝐹 is any set, the domain 

of feasible solutions1; c is the cost function, a mapping: 

𝑐: 𝐹 →  ℝ1 

The problem is to find an 𝑓 ∈ 𝐹 for which:  

𝑐(𝑓) ≤ 𝑐(𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈ 𝐹  

Such a point 𝑓 is called a globally optimal solution to the given instance, or, when no 

confusion can arise, simply an optimal solution. ◻ 

Definition [3] 

An optimization problem is a set I of instances of an optimization problem. ◻ 

Informally speaking, an instance corresponds to a set of data such that we have 

enough information to obtain a solution, while a problem is a set of instances, usually 

generated in the same way. 

Moreover, optimization problems can be divided into those with continuous variables 

and those with discrete variables that are known as combinatorial problems. In the  

first ones, we are looking for a set of real numbers or a function; in the second ones 

for an object from a finite set. The optimization of a combinatorial problem is the 

field called Combinatorial Optimization. 

 

2.3. Linear programming 
 

In the context of this thesis, linear programming is relevant as it is one way to solve 

the assignment problem. Moreover, for the BAP formulation we will take advantage 

of duality theory, so a brief introduction to linear programming and duality theory 

is presented. 

 

2.3.1. Linear programming and the standard form of a 

linear program 
 

Linear programming is a field in mathematics, developed in the twentieth century, 

which presents many applications in engineering, economics, logistics, chemistry, 

etc. As defined in section 2.2, a linear program is a problem which objective function 

and constraints present only linear functions. A widely use way to solve this kind of 

problems is to apply the SIMPLEX method (see chapters 4 and 6 of [4]).  

 
1 A feasible solution is a solution that satisfies all the constraints. 
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The definition of the standard form of a linear program varies in literature (e.g., in 

[5] it is defined as a minimization problem with equality constraints), but let us 

present the standard maximization form as defined in [6]: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑐𝑇𝑥  

𝑠. 𝑡.  𝐴𝑥 ≤ 𝑏      
 

(2.2) 

          𝑥 ≥ 0      
 

 

Where: 

The vector 𝑐 =  (

𝑐1

⋯
𝑐𝑛

) ∈  ℝ𝑛 is the column vector of coefficients of the objective 

function, 𝑐𝑇 is the transpose matrix of 𝑐,  𝑥 =  (

𝑥1

⋯
𝑥𝑛

) is the column vector of variables 

(so the product 𝑐𝑇𝑥 gives a value as a result), 𝐴 is the 𝑛 𝑥 𝑚 matrix of coefficients of 

the left-hand side of the inequalities and b is the m-dimensional vector of the right-

hand side of the inequalities. 

 

2.3.2. Linear programming duality 
 

Given a linear program in the considered standard form, called the primal, then it 

can be converted into its dual, which is a minimization linear program able to give 

an upper bound to the primal and it is defined as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑏𝑇𝑦  

𝑠. 𝑡.  𝐴𝑇𝑦 ≥ 𝑐      
 

(2.3) 

          𝑦 ≥ 0      
 

 

We may apply the following rules to obtain the dual. If the primal has a 

maximization objective function, the dual will have a minimization objective 

function. For every constraint (excluding the restrictions in sign for vector 𝑥) of the 

dual, we define one variable 𝑦𝑖, that is, we have m variables 𝑦𝑖. Moreover, we define 

as many dual constraints (excluding the restriction in sign constraints for vector 𝑦) 

as the number of primal variables. We take the transpose of the matrix A of 

coefficients on the left-hand side of the inequality. Finally, we switch the coefficients 

vector in the objective function by the right-hand-side vector of the inequalities. 

We proceed to recall the following theorems of weak and strong duality. 

Weak duality theorem [6] 

If LP1 is a linear program in maximization standard form, LP2 is a linear program 

in minimization standard form, and LP1 and LP2 are duals of each other, then: 
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➢ If LP1 is unbounded then LP2 is unfeasible 

➢ If LP2 is unbounded then LP1 is unfeasible 

➢ If LP1 and LP2 are both feasible and bounded, then: 

𝑜𝑝𝑡(𝐿𝑃1) ≤ 𝑜𝑝𝑡(𝐿𝑃2) 

Proof: suppose we have a maximization linear program in standard form: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑐1𝑥1 + ⋯ + 𝑐𝑛𝑥𝑛  

𝑠. 𝑡.   𝑎1,1𝑥1 +  ⋯ + 𝑎1,𝑛𝑥𝑛 ≤ 𝑏1      

 
 

          ⋮   

          𝑎𝑚,1𝑥1 +  ⋯ + 𝑎𝑚,𝑛𝑥𝑛 ≤ 𝑏𝑚      

 
(2.4) 

         𝑥1 ≥ 0       

         ⋮  

         𝑥𝑛 ≥ 0      
 

 

For every choice of non-negative scaling factors 𝑦1, … , 𝑦𝑚 , we can derive the 

inequality: 

𝑦1  ∙  (𝑎1,1𝑥1 +  ⋯ + 𝑎1,𝑛𝑥𝑛) 

+ ⋯ 

+𝑦𝑚 ∙  (𝑎𝑚,1𝑥1 +  ⋯ + 𝑎𝑚,𝑛𝑥𝑛) 

 ≤ 𝑦1𝑏1 + ⋯ +  𝑦𝑚𝑏𝑚     

Which is true for every feasible solution (𝑥1, … , 𝑥𝑛) to the linear program (2.4). We 

can rewrite the inequality as: 

(𝑎1,1 𝑦1 +  ⋯ +  𝑎𝑚,1 𝑦𝑚)𝑥1 

+ ⋯ 

+(𝑎1,𝑛 𝑦1 + ⋯ + 𝑎𝑚,𝑛 𝑦𝑚)𝑥𝑛 

 ≤ 𝑦1𝑏1 + ⋯ +  𝑦𝑚𝑏𝑚     

A certain linear function of the 𝑥𝑖 is always at most a certain value, for every feasible 

(𝑥1, … , 𝑥𝑛). Then we choose the 𝑦𝑖 so that the linear function of the 𝑥𝑖 for which we 

get an upper bound is, in turn, an upper bound to the cost function of (𝑥1, … , 𝑥𝑛). We 

can reach this by choosing 𝑦𝑖 such that: 

𝑐1 ≤ 𝑎1,1 𝑦1 + ⋯ +  𝑎𝑚,1 𝑦𝑚     
      

 

⋮ 
     

(2.5) 
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𝑐𝑛 ≤ 𝑎1,𝑛 𝑦1 + ⋯ + 𝑎𝑚,𝑛 𝑦𝑚     

 

 

Now we see that for every non-negative (𝑦1, … , 𝑦𝑚) that satisfies (2.5), and for every 

(𝑥1, … , 𝑥𝑛) that is feasible for (2.4):  

𝑐1𝑥1 + ⋯ +  𝑐𝑛𝑥𝑛 
 

≤ (𝑎1,1 𝑦1 + ⋯ +  𝑎𝑚,1 𝑦𝑚)𝑥1 

 

 

+ ⋯ 
 

+ (𝑎1,𝑛 𝑦1 + ⋯ + 𝑎𝑚,1 𝑦𝑚)𝑥𝑛 
 

≤ 𝑦1𝑏1 + ⋯ + 𝑦𝑚𝑏𝑚 
 

Clearly, we want to find the non-negative values  𝑦1, … , 𝑦𝑚 such that the above upper 

bound is as strong as possible, then we want to: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑏1𝑦1 + ⋯ + 𝑏𝑚𝑦𝑚 

𝑠. 𝑡.   𝑎1,1𝑦1 + ⋯ + 𝑎𝑚,1𝑦𝑚 ≥ 𝑐1      

 

          ⋮  

          𝑎𝑛,1𝑦1 + ⋯ + 𝑎𝑚,𝑛𝑦𝑚 ≥ 𝑐𝑛       

 

         𝑦1 ≥ 0      
 

         ⋮ 

         𝑦𝑚 ≥ 0  

Therefore, if we want to find the scaling factors that give us the best possible upper 

bound to the optimum of a linear program in standard maximization form, we end 

up with a new linear program in standard minimization form, called the dual, 

proving the third statement. 

Finally, by observing the third statement we realize that it is also saying that if LP1 

and LP2 are both feasible, then they have to both be bounded, because every feasible 

solution to LP2 gives a finite upper bound to the optimum of LP1 (which cannot then 

be +∞) and every feasible to LP1 gives a finite lower bound to the optimum of LP2 

(which cannot then be +∞), proving the first and second statement. ◻ 

The strong duality theorem states that if either the primal or the dual are feasible, 

then the two local optima are equal to each other. The proof of this theorem can be 

found in [7]. 

We may define the duality gap as the difference between the primal and the dual 

solutions. Given an optimal solution of the primal p* and the optimal dual solution 

d*, the duality gap is equal to d*- p*. The gap is 0 only when the strong duality 
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theorem holds. Otherwise, if the primal is a maximization problem, then the gap is 

always strictly greater than 0. 

 

2.4. Computational complexity 
 

Computational complexity focuses on the computational tasks’ complexity. Its aim is 

to determine what computers cannot do, drawing the line between what is possible 

and what is not. As explained in [8] there exist two fundamental computational tasks 

in the context of complexity theory known as search problems and decision problems. 

The formers consist of a specification of a set of all valid solutions, possibly an empty 

one, for each possible instance. The aim is to find the corresponding solution. The 

assignment problem and the travel-salesman problem are included in this category. 

In the latters, one is required to determine whether the instance is in the specified 

set. These are problems whose answer is yes or no. 

A computation is a process that is able to iteratively modify an environment by 

applying certain rules. In each application, the rule modifies and depends on only a 

portion of the environment, known as the active zone. Our aim is to design 

computational rules or algorithms that are able to produce a desired output by 

altering the environment. This leads to the mapping from input x to output y reached 

by the computation. In this way, the algorithm determines a function, which is 

precisely the mapping of inputs to outputs. 

 

2.4.1. Time complexity and space complexity 
 

The complexity of an algorithm refers to the resources that it needs to find the 

solution of a problem. Commonly studied resources are time complexity and space 

complexity. The first is related to the execution time, which is the number of 

elementary operations that are needed to solve the problem. It is studied as a 

function of the input size of the problem, meaning that execution time = f(n). Time 

complexity is the worst-case execution time of an algorithm, and it is denoted by a 

capital “o”. In mathematical terms: 

𝑂(𝑓(𝑛)): ∃ 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑐: 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 ≤ 𝑓(𝑛) ∗ 𝑐 

This means that the time complexity of the algorithm is defined by the maximum 

number of steps needed to solve an instance of that specific size. Efficient algorithms 

are defined as polynomial-time-algorithms, meaning that the upper-bound time 

complexity is a polynomial function of the input size (𝑂(𝑛𝑘) for 𝑘 ∈ ℕ). Moreover, the 

time complexity of a given problem is the complexity of the fastest algorithm that 

solves that problem. 

Space complexity can be defined as the amount of temporary memory consumed by 

the computation for storing intermediate results of the computation, i.e., without 

considering the memory required to store the input and output information. It is also 

a function of the input size and the worst-case is considered. 
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2.4.2. Classes P and NP 
 

We can define the Class P as the set of problems that in the worst case are solvable 

by means of an efficient (polynomial time) algorithm. The assignment problem falls 

in this category. 

The class NP is the set of decision problems solvable by a non-deterministic 

polynomial time algorithm. That is, if the answer for a given decision problem is 

“yes”, checking that this hypothesis is correct can be done in polynomial time. An 

example of a problem belonging to this class is the Sudoku: given a complete grid (a 

solution), verifying if it is correct or not is doable in polynomial time. However, 

current algorithms take exponential time to find a solution for difficult instances. 

Moreover, a problem X is in the NP-complete class if it satisfies two conditions: 

1. X is in the class NP. 

2. Each problem in the class is polynomially reducible to X. 2  

One of the biggest questions that has not been answered by the scientific community 

is whether P=NP.  It refers to whether or not all the problems belonging to NP class 

(in which verifying if a solution is correct or not takes polynomial-time) can be solved 

efficiently (a solution can be found in polynomial time). Explained in a different way, 

its aim is to determine whether or not finding solutions is harder than checking their 

correctness. Proving that a problem is in NP-Complete implies that the problem is 

not in P unless P=NP.  

Finally, a problem X is in NP-Hard if there exists an NP-Complete problem that 

reduces to it, but it has not been proven that X ∈ NP. 

 

2.4.3. Computational complexity of the BAP 
 

In [9], a bilevel assignment problem is presented, in which the edges controlled by 

the leader are different to the ones controlled by the follower and the objective 

functions of both decision makers seek to minimize a linear sum or bottleneck 

functions. The authors proved that when the pessimistic rule is applied (an 

explanation of the pessimistic and optimistic positions is presented in section 3.2.1), 

all variants arising if the leader’s and follower’s functions are sum or bottleneck 

functions are NP-hard. If the optimistic rule is applied, they proved that the problem 

is NP-hard if at least one decision maker has a sum objective function. 

However, the bilevel assignment problem considered in this thesis, in which the 

edges controlled by the leader and the follower are the same, and the leader’s 

objective function seeks to maximize the optimal solution of the minimization 

 
2 A problem is reducible to another if it is possible to efficiently solve the former provided an 

algorithm that efficiently solves the latter. For more information, the reader may refer to 

Section 2.2.1 of [8]. 
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function of the follower, remains open with respect to its computational complexity, 

since it has not been proved it is NP-hard. 
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3. Assignment problem and bilevel 

programming 
 

3.1. The assignment problem 
 

In chapter 5, a heuristic approach is proposed to solve the BAP, in which the 

resolution of the assignment problem can be considered as the “elementary 

operation” of the algorithm. Because of that, this section focuses on the main aspects 

of the AP: definition, variations, resolution approaches and applications. 

 

3.1.1. Definition of the assignment problem 
 

In order to define the assignment problem, let us first introduce some concepts of 

graph theory. A graph G is a pair G = (V, E) where V is a finite set of nodes or vertices, 

and E has as elements subsets of V of cardinality two, called edges. Given a graph 

B= (W, E), if the set of vertices W can be partitioned in two sets, U and V, and each 

edge in E has one vertex in U and one vertex in V, then B is called a bipartite graph 

and it is usually denoted by B = (U, V, E). A matching M of a graph G consists of a 

subset of edges with the property that no two edges of M share the same node, and 

it is a perfect matching if it covers every vertex of the graph. 

Then, consider a bipartite graph B = (U, V, E) with real-valued weights on its edges, 

and suppose that B is balanced, with |U| = |V|. The assignment problem asks for 

a perfect matching in B of minimum total weight.   

From now on, we will stick to the minimization version of the assignment problem. 

If we would want to maximize the total weight, we should just negate all the weights, 

and solve the minimization problem. Please consider that the terms row and origin 

(is) are equivalent, and so the terms column and destination (js). 

Variables 𝑐𝑖𝑗 represent the weights or costs of each edge, variables 𝑥𝑖𝑗 represent 

whether an edge is selected or not, and let us consider |U| = |V|= n. Then, the 

assignment problem can be formulated as follows: 

𝑚𝑖𝑛 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖=1

𝑛

𝑗=1

 (3.1) 

                   𝑠. 𝑡 ∑ 𝑥𝑖𝑗

𝑛

𝑗=1

= 1        ∀ 𝑗       
(3.2) 

                      ∑ 𝑥𝑖𝑗

𝑛

𝑗=1

= 1         ∀ 𝑗  
(3.3) 

                         𝑥𝑖𝑗  ∈ {0,1}         ∀ 𝑖, 𝑗 (3.4) 
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Where (3.1) is the objective function, constraints (3.2) and (3.3) enforce that exactly 

one edge must be selected for every origin i and destination j, and (3.4) enforces that 

variables 𝑥𝑖𝑗 are binary. If 𝑥𝑖𝑗 = 1, the edge linking origin i and destination j is 

selected, otherwise, it is not selected.  

We can notice that this is an integer linear program. However, the problem can be 

solved as a continuous program by replacing constraint (3.4) by (3.5): 

                           𝑥𝑖𝑗  ≥ 0               ∀ 𝑖, 𝑗   (3.5) 

This change allows in theory fractional variables, but in practice the optimal solution 

takes only integer variables as the constraint matrix is totally unimodular3 [10].  

 

3.1.2. Some variations of the assignment problem 
 

In the classic AP, |U| = |V|, so the problem is called balanced. In the case that this 

condition is not satisfied, let us say |U| = n and |V| = r, with n > r, the problem is 

unbalanced. To solve it, one possibility is to add n – r dummy vertices in U and their 

corresponding (n – r)*n edges with large positive costs, and then solve the problem 

as if it were balanced. We mention that the unbalanced problem can be reduced to a 

balanced one by applying a more efficient method called standard doubling technique 

and that the unbalanced problem can also be solved directly by taking an algorithm 

for the balanced case and trying to generalize it to handle the unbalanced case (for 

more details about these two methods, please refer to [11]).  

If the objective function seeks to minimize the maximum over all the selected costs: 

𝑚𝑖𝑛 𝑚𝑎𝑥 (𝑐𝑖𝑗𝑥𝑖𝑗) ∀ 𝑖, ∀ 𝑗  

Then the problem is called linear bottleneck assignment problem and can also be 

solved in polynomial time. One algorithm is presented in [12]. 

Finally, we may introduce the quadratic assignment problem, a variation of the AP 

that is not only NP-hard and hard to approximate but it is also a practically 

intractable problem [13]. Explained as a facility location problem, it consists of n 

facilities that are to be assigned to n locations. For each pair of facilities, a weight or 

flow is specified (matrix 𝐴 = 𝑎𝑖𝑗) and for each location a distance is specified (matrix 

𝐵 = 𝑏𝑖𝑗). The cost of allocating facility π(i) to location i and facility π(j) to location j 

is given by 𝑎𝜋(𝑖)𝜋(𝑗)𝑏𝑖𝑗. The problem is to find the assignment π of locations to 

facilities such that the total cost obtained as the sum of the product between 

distances and flows is minimized: 

 
3 A matrix is called totally unimodular if each of its sub determinants is 0, 1, or −1. An 

integral matrix A is totally unimodular if and only if for each integral vector b, the set {x ∶
Ax ≤  b, x ≥  0} is an integer polyhedron [31]. 
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𝑚𝑖𝑛 ∑ ∑ 𝑎𝜋(𝑖)𝜋(𝑗)𝑏𝑖𝑗

𝑛

𝑖=1

𝑛

𝑗=1

 

 

3.1.3. Approaches to solve the assignment problem 
 

There exist different ways to solve the assignment problem. The easy though 

extremely computational expensive enumeration method consists of simply going 

over all feasible solutions, calculate its corresponding value and choose the best one. 

Simplex method can also be applied to the continuous program presented in section 

3.1.1. Moreover, as the assignment problem is a special case of the transportation 

problem in which the flows are either 0 or 1, the transportation method (see [14]) is 

able to solve the AP as well. However, the most efficient method to solve the 

assignment problem, was developed in 1957 and is known as The Hungarian Method, 

that solves the problem in polynomial time. 

Given a balanced assignment problem, the corresponding steps to apply the 

Hungarian Method are the following ones. If the problem is unbalanced, we can 

apply one of the methods mentioned in the previous section to reduce it to balanced.  

1. From the cost’s matrix find the smallest value of each row and subtract it 

from each element of the corresponding row. 

2. On the matrix obtained above, find the minimum value for each column, and 

subtract it from each element of that column. In this way now there is at least 

one 0 in each row and column. 

3. Look over the rows until a row with only one 0 is found. Mark with a circle 

that 0 and mark the rest of the elements of that row with a cross. Once all 

rows have been inspected, apply this procedure to all the columns.  

If a row and/or column has two or more zeros, and one cannot be chosen by 

inspection then assign arbitrary any one of these zeros and cross off all other 

zeros of that row or column. Repeat this procedure until all elements are 

assigned either a circle or a cross. 

4. If the number of circles is equal to n, then the optimal solution was found and 

is to select the circled costs. Otherwise go to step 5 

5. Draw the minimum number of horizontal and/or vertical lines to cover all the 

zeros of the reduced matrix. 

6. Find the smallest element of the matrix that is not covered by any line. 

Rewrite a new cost matrix by subtracting that value from all uncovered 

elements and adding it to the elements covered by two lines. 

7. Go to step 4 and repeat until n circled elements are found. 

A small example is presented below. Let us define the following 4x4 cost’s matrix: 

 j = 1 j = 2 j = 3 j = 4 

i = 1 10 6 5 8 

i = 2 8 3 4 7 

i = 3 9 6 9 12 

i = 4 10 5 8 10 
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Step 1) Minimum elements of each row = [5,3,6,5]. After subtracting them to each 

element of the corresponding row, the new matrix is: 

 j = 1 j = 2 j = 3 j = 4 

i = 1 5 1 0 3 

i = 2 5 0 1 4 

i = 3 3 0 3 6 

i = 4 5 0 3 5 

 

Step 2) Minimum elements of each column = [3,0,0,3]. New matrix: 

 j = 1 j = 2 j = 3 j = 4 

i = 1 2 1 0 0 

i = 2 2 0 1 1 

i = 3 0 0 3 3 

i = 4 2 0 3 2 

 

Step 3) Mark zeros with a circle and the rest of the row/column with a cross (only 

one circle per column/row): 

 j = 1 j = 2 j = 3 j = 4 

i = 1 2 1 0 0 

i = 2  2 0 1 1 

i = 3 0 0 3 3 

i = 4 2 0 3 2 

 

Step 4) There are 3 circles but n = 4. Go to step 5. 

Step 5) Draw the minimum number of horizontal/vertical lines to cover all zeros. 

 j = 1 j = 2 j = 3 j = 4 

i = 1 2 1 0 0 

i = 2 2 0 1 1 

i = 3 0 0 3 3 

i = 4 2 0 3 2 

 

Step 6) Smallest value not covered by any line = 1. Subtract it from every uncovered 

element and add it to elements covered by two lines. Mark the zeros with a circle 

again. 

 j = 1 j = 2 j = 3 j = 4 

i = 1 2 2 0 0 

i = 2 1 0 0 0 

i = 3 0 1 3 3 

i = 4 1 0 2 1 

 

Step 7) We find 4 circled elements, so the solution that consists of assigning i = 1 to 

j = 4, i = 2 to j = 3, i = 3 to j = 1 and i = 4 to j = 2 is optimal, with value 26. 
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3.1.4. Applications of the assignment problem 
 

One typical example of a practical application of the AP is the assignment of taxi 

drivers to clients in such a way that the total distance to reach all the clients is 

minimized. Other examples in which AP is useful in real-word applications, recalling 

[15], are: 

➢ In assigning machines to factory orders.  

➢ In assigning people/employees to perform certain jobs. 

➢ In assigning contracts to bidders by systematic bid-evaluation.  

➢ In assigning teachers to classes.  

➢ In assigning accountants to clients’ accounts. 

➢ In assigning taxi drivers to passengers.  

 

3.2. Bilevel optimization 
 

3.2.1. Definition of bilevel optimization 
 

Bilevel optimization is defined as a mathematical program, where an optimization 

problem contains another optimization problem as a constraint [16]. This kind of 

optimization problems presents two hierarchical decision makers. Each one tries to 

optimize its own objective function and the outcome of every decision of the upper-

level authority (leader), will depend on the optimal solution found by the lower-level 

authority (follower). The leader has control over the upper-level variables, and 

knows beforehand the follower’s interest and constraints, while this last reacts in 

consequence of the leader’s decision and is only aware of his own objective function 

and constraints. General bilevel programming is known to be strongly NP-Hard [17], 

and we mention that some problems are even harder to solve in the polynomial-time 

hierarchy (a generalization of the complexity classes introduced in section 2.4), as 

proved in [18]. 

Definition [16]  

For the upper-level objective function 𝐹: ℝ𝑛  ×  ℝ𝑚 →  ℝ and the lower-level objective 

function 𝑓: ℝ𝑛  × ℝ𝑚 →  ℝ the bilevel problem is given by: 

"𝑚𝑖𝑛"
𝑥𝑢∈ 𝑋𝑈,𝑥𝑙∈ 𝑋𝐿

𝐹(𝑥𝑢 , 𝑥𝑙) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥𝑙 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥𝑙∈ 𝑋𝐿

{𝑓(𝑥𝑢, 𝑥𝑙): 𝑔𝑗(𝑥𝑢, 𝑥𝑙)  ≤ 0, 𝑗 = 1, … , 𝐽}  

𝐺𝑘(𝑥𝑢, 𝑥𝑙)  ≤ 0, 𝑘 = 1, … , 𝐾  

Where 𝐺𝑘: ℝ𝑛  ×  ℝ𝑚 →  ℝ, k = 1, …, K denote the upper-level constraints and 

𝑔𝑗: ℝ𝑛  × ℝ𝑚 →  ℝ  represent the lower-level constraints, respectively. Equality 

constraints may also exist and they have been avoided for brevity. The sets 𝑋𝑈 ∈

 ℝ𝑛 and 𝑋𝐿 ∈  ℝ𝑚 in the definition may denote additional restrictions like integrality. 

It is common to assume these to be sets of reals, unless mentioned otherwise. ◻ 
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The quotes in the upper-level minimization function denotes that there may exist 

uncertainty in which value is to be taken when the lower-level problem presents 

multiple optimal solutions. This ambiguity is usually resolved by taking two 

different positions: 

➢ Optimistic position: it occurs when the follower, in presence of multiple 

optimal solutions, chooses the one that favors the leader the most. 

➢ Pessimistic position: in this situation, contrarily to the optimistic one, 

given multiple optimal solutions the follower selects the one that will result 

in the worst solution value for the leader. 

 

3.2.2. Applications of bilevel programming and interest 

over time 
 

Bilevel programming has several real-word applications, and its interest has been 

increasing in the last two decades. For example, in a chemical industry bilevel 

problems can model a complex reaction, in which the upper-level problem wants to 

maximize the reaction’s output, and the lower-level problem appears as an 

equilibrium condition, which is an entropy functional minimization problem [19]. Let 

us enumerate some other relevant applications of bilevel programming: 

➢ Environmental Economics: where an authority wants to tax an 

organization or individual that is polluting the environment through its 

operations. The authority wants to find the optimal level of tax, considering 

both revenues and pollution. 

➢ Optimal design: in cases of structural optimization or optimal shape design. 

One example is the kind of problems in which the leader wants to minimize 

the cost or the weight of a structure, while the follower solves the potential 

energy minimization problem. 

➢ Facility location: this kind of problems can be formulated with bilevel 

programming if while deciding the location the organization considers its 

competitor’s reaction i.e., the competitors adapt their facilities in order to 

make them more attractive. 

➢ Machine learning: while applying this optimization technique, there are a 

number of parameters to be defined, that are normally tuned by using brute 

forces strategies such as random search or grid search. Bilevel optimization 

can achieve a more efficient search for those parameters. 

➢ Principal-agent problem: when the problem involves a principal (leader) 

that sub-contracts an agent (follower) to act in his behalf. Usually, the agent 

tries to act in favor of his own interest, so the bilevel problem involves the 

creation of the contract that is optimal for the principal. 

It is relevant to add that in [16], an extensive study was carried out and proved that 

the interest over time of bilevel programming has grown significantly since the 

middle of the previous decade. These results are presented in Figure 3.1. Moreover, 

the topics that presented the biggest growth are supply chain, telecommunication, 

facility location and railway applications. 
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Figure 3.1 Number of publications on bilevel programming every year, extracted from [16] 
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4. Exact and approximate solutions 

of the bilevel assignment problem 
 

In this Chapter, an exact approach is proposed to solve the BAP, starting from the 

mathematical formulation, and it is later improved by means of a relaxation and a 

simplification of the model. 

 

4.1. Mathematical formulation of the BAP 
 

Let us recall that in this BAP, the leader has to select k over n (with k<n) origins 

and destinations, in such a way that the solution for the corresponding AP of size k, 

that represents the follower’s reaction, is maximized.  

Therefore, if we wish to take the AP formulation given by (3.1) to (3.3) and (3.5) as a 

starting point, we have on the one hand, to define new variables that represent the 

leader’s selection. Let us achieve this by adding binary variables 𝑜𝑖 (for origins) and 

𝑑𝑗 (for destinations), for 𝑖, 𝑗 =  1, 2, . . . , 𝑛. If the origin or destination is selected, 𝑜𝑖 or 

𝑑𝑗 takes value 1, and otherwise 0. 

On the other hand, we have to add the leader’s objective function, that wants to 

maximize the solution of the AP. In this way, we can formulate the BAP as follows: 

𝑔𝑙 =  𝑀𝑎𝑥(𝑔𝑓) (4.1) 

    𝑠. 𝑡.  ∑ 𝑜𝑖

𝑖∈𝐼

= 𝑘 (4.2) 

             ∑ 𝑑𝑗

𝑗∈𝐽

= 𝑘 (4.3) 

𝑔𝑓 = 𝑚𝑖𝑛 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖=1

𝑛

𝑗=1

 
(4.4) 

𝑠. 𝑡 ∑ 𝑥𝑖𝑗

𝑛

𝑗=1

=  𝑜𝑖           ∀ i 
(4.5) 

        ∑ 𝑥𝑖𝑗

𝑛

𝑗=1

= 𝑑𝑗           ∀ j 
(4.6) 

        𝑥𝑖𝑗  ≥ 0                  ∀ i, j (4.7) 

        𝑜𝑖 , 𝑑𝑗   ∈ {0,1}       ∀ i, j (4.8) 
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Where: 

➢ Constraints (4.1) and (4.4) are the objective functions of the leader and the 

follower. 

➢ Constraints (4.2) and (4.3) enforce that the leader must select k origins and k 

destinations. 

➢ Constraints (4.5) and (4.6) represent the typical AP constraints. Notice that 

the right-hand side is 1 in the case the origin or destination is selected and 0 

otherwise. 

➢ Constraints (4.7) and (4.8) are the variable’s constraints. 

Clearly a MILP solver cannot handle the presence of two nested problems. At the 

same time, we manage to derive a single linear model to solve the BAP. We 

reformulate constraints (4.4) to (4.7) on its dual form, leading to an aligned objective 

function in maximization form and allowing to formulate the problem in the solver 

with only one model.  

By duality theory (see section 2.3.2), the dual model will have a maximization 

objective function, variables 𝑢𝑖 and 𝑣𝑗 (constraints 4.5 and 4.6) which will be 

unrestricted in sign, constraints of the form 𝑢𝑖+ 𝑣𝑗 ≤  𝑐𝑖𝑗 and constraints 4.2 and 4.3 

remain unchanged. Moreover, we need to add some big-M constraints. The resulting 

model is the following: 

 
max ∑ 𝑜𝑖𝑢𝑖

𝑛

𝑖 = 1

+ ∑ 𝑑𝑗𝑣𝑗

𝑛

𝑗 = 1

 (4.9.a) 

 
𝑠. 𝑡    𝑢𝑖 ≤  𝑜𝑖𝑀        ∀ i (4.10) 

 𝑣𝑗 ≤  𝑑𝑗𝑀        ∀ j   (4.11) 

 
            𝑢𝑖+ 𝑣𝑗 ≤  𝑐𝑖𝑗 + 𝑀 (2 − 𝑜𝑖 − 𝑑𝑗)   ∀ i, j    (4.12) 

         ∑ 𝑜𝑖

𝑖∈𝐼

= 𝑘          
(4.13) 

         ∑ 𝑑𝑗

𝑗∈𝐽

= 𝑘          (4.14) 

                      𝑜𝑖 , 𝑑𝑗   ∈ {0,1}       ∀ i, j              (4.15) 

 
       𝑢𝑖,  𝑣𝑗    unrestricted in sign ∀ i, j         (4.16) 

The big-M method ensures that constraint (4.12) is only applied to the selected 

origins and destinations. We can notice that the value for M must be at least the 

maximum(𝑐𝑖𝑗). In section 4.2.1 an analysis of the optimum value of M is presented. 

This formulation presents a non-linear objective function of the form 

(binary*continuous) variables. Although there exist solvers, like CPLEX, that 



20 

 

manage to solve this kind of problems, it is not the best approach because a non-

linear program is harder to solve than a linear program. 

As an example, Figure 4.1 presents the Engine Log results from CPLEX Studio IDE 

20.1 (next times referred as CPLEX), while using this non-linear formulation to solve 

instance 1 (a detailed explanation of how the instances were generated is presented 

in section 4.3), for k=2, n=10, a time limit of 60 seconds and M = 100. 

 

 

Figure 4.1: CPLEX Engine Log results for the non-linear model, k = 2 and n = 10 

 

The optimal solution was found, but optimality was not proven, as the best bound 

value is 1.899. This seems an ineffective approach, considering that it could not solve 

to optimality even this small size instance, with a relatively high time limit. 

Therefore, in the following section the objective function is linearized. 

 

4.2. Linearization of the objective function 
 

In this section, the linearization of the objective function for the two following 

alternatives is performed, named Model a) and Model b): 

➢ Model a): 𝑢𝑖 and 𝑣𝑗 unrestricted in sign. 

➢ Model b): 𝑢𝑖 and 𝑣𝑗 ≥ 0 (this additional constraint will be further 

analyzed in section 4.4). 

To do so, let us consider variables  𝑎𝑖 ,  𝑏𝑗 ∀ i, j to be added, such that: 

𝑎𝑖 =  𝑜𝑖 ∗ 𝑢𝑖 and  𝑏𝑗 =   𝑑𝑗 ∗ 𝑣𝑗 

This can be reached, as suggested at the end of section 11.2 in [4], by adding the 

following linear constraints, where L and U are the lower and upper bounds for  𝑎𝑖 

and 𝑏𝑗. Let us define U = maximum (𝑐𝑖𝑗) satisfying constraint (4.12), and L = -U: 

Model a): 

𝐿 ≤ 𝑎𝑖 ≤ 𝑈     ∀ i (4.17.a) 

𝐿 ∗ 𝑜𝑖  ≤ 𝑎𝑖 ≤ 𝑈 ∗ 𝑜𝑖     ∀ i (4.17.b) 
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𝑢𝑖 − (1 − 𝑜𝑖) ∗ 𝑈 ≤ 𝑎𝑖 ≤ 𝑢𝑖 − (1 −  𝑜𝑖) ∗ 𝐿     ∀ i (4.17.c) 

𝑎𝑖 ≤ 𝑢𝑖 + (1 −  𝑜𝑖) ∗ 𝑈     ∀ i   (4.17.d) 

Model b)  

        𝑎𝑖 ≤ 𝑈 ∗ 𝑜𝑖                           ∀ i (4.17.a) 

        𝑎𝑖 ≤  𝑢𝑖                                 ∀ i (4.17.b) 

        𝑎𝑖 ≥ 𝑢𝑖 − (1 −  𝑜𝑖) ∗ 𝑈     ∀ i (4.17.c) 

        𝑎𝑖 ≥ 0                                    ∀ i (4.17.d) 

In a similar way we define constraints (4.18.a) to (4.18.d) replacing 𝑎𝑖, 𝑜𝑖 and 𝑢𝑖 by 

𝑏𝑗,  𝑑𝑗 and 𝑣𝑗.  

After adding the corresponding constraints (4.17) and (4.18), we can replace our 

objective function (4.9.a) by: 

𝑚𝑎𝑥 ∑ 𝑎𝑖

𝑛

𝑖 = 1

+  ∑ 𝑏𝑗

𝑛

𝑗 = 1

 (4.9.b) 

In this way, we reached a Mixed Integer Linear Programming formulation. 

Considering the example solved with the non-linear model (instance 1, k = 2 and n = 

10), we observe major improvements in terms of time: 

Model a) Takes 0.64s to find and check the optimal solution. 

Model b) Takes 0.36s to find and check the optimal solution. 

 

4.2.1. Determining the optimal value for M  
 

As explained before, the minimum value of M that ensures the satisfaction of 

constraint (4.12) is the maximum 𝑐𝑖𝑗 = 99 for the studied instances. M was set to 

100, 103, 106 and 109 to analyze its impact in the performance of the model. The 

algorithm was run for instances of size 10 (in the next section a detailed explanation 

of the instances), for different values of k and for Models a), and b). Obtained results 

and times did not change for different values of M, so we can conclude that it is not 

a relevant parameter on the results and set M = 100. 

 

4.3. Empirical comparison between Model a) and 

Model b) 
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In this section, the results of Model a) and Model b) are compared in terms of quality 

of the solution and the time the solver needs to find the optimal solution. The models 

were implemented on CPLEX using Python 3.7, and the open-source Python API 

called docplex. 

This analysis was carried out for three input problem sizes, 10 instances for each 

size. Values of the instances were randomly generated following a uniform 

distribution of integers between 10 and 99. The values of n and k are determined as 

follows: 

➢ n = 10: k from 2 to 9 (with step 1) 

➢ n = 30: k from 3 to 27 with step 3  

➢ n = 50: k from 5 to 45 with step 5  

Instances of size 10 are evaluated, and after a refinement of the model, the bigger 

sizes are studied. 

For n = 10, the time limit was set to 60 seconds. Both models always reached 

optimality within the time limit, so relative gaps were 0%. The solution values were 

the different in 5 out of 80 cases, in which Model a) outperformed Model b). With 

respect to the time required to reach optimality, Model b) substantially outperformed 

Model a), as we see in Figure 4.2 where for every k the values represent the average 

of the 10 instances. 

 

 

Figure 4.2: Time to reach optimality Models a) and b), n = 10 

 

Although Model b) presents a higher performance in terms of time, as stated above, 

the reported optimal solution was worse than the one of Model a) in five cases. This 

could suggest that the assumption 𝑢𝑖, 𝑣𝑗 ≥ 0 that was added as a constraint in Model 

b), is not correct. Let us analyze it in detail.  

 

4.4. Analysis of the assumption ui, vj >= 0 
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Results are not always the same for Model a) and Model b). In Table 4.1, in orange 

are marked the values for which this difference is present. 

 

Table 4.1: Optimal solutions for n = 10 

Analyzing these five cases, the leader’s selections were identical for three of them 

(instances 1 and 10 for k = 9 and instance 6 for k = 8), meaning that the solution of 

the AP was wrong for Model b). On the other two cases, even the selected origins and 

destinations were different. 

Let us first analyze why the AP solution of Model b) was wrong. Recalling the 

classical AP formulation: 

𝑚𝑖𝑛 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖=1

𝑛

𝑗=1

          (4.19) 

𝑠. 𝑡. ∑ 𝑥𝑖𝑗

𝑛

𝑗=1

= 1           𝑖 = 1, … , 𝑛                (4.20) 

       ∑ 𝑥𝑖𝑗

𝑛

𝑗=1

= 1           𝑗 = 1, … , 𝑛        (4.21) 

        𝑥𝑖𝑗  ≥ 0               𝑖, 𝑗 = 1, … , 𝑛 
(4.22) 

And its dual: 

𝑚𝑖𝑛 ∑ 𝑢𝑖 + ∑ 𝑣𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (4.23) 

𝑠. 𝑡.  𝑢𝑖 +  𝑣𝑗  ≤   𝑐𝑖𝑗         ∀ i, j (4.24) 

Notice that adding constraint: 

𝑢𝑖, 𝑣𝑗 ≥   0        ∀ i, j (4.25) 

In the dual formulation, is equivalent (from duality theory) to modifying the = sign 

in constraints (4.20) and (4.21) by a ≥ sign in the primal formulation. Model a) uses 

the assignment problem (dual) formulation (let us call it just AP), while Model b) 
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adds constraint (4.25) (let us call it AP AC, for additional constraint). Since the 

primal model has a minimization objective function, this change in constraints (4.20) 

and (4.21) represents a relaxation with respect to the original formulation, meaning 

that Model b) is not exact but approximate. Notice that more than one edge will be 

selected in some row or column only if it reduces the solution value, and the following 

inequality is always satisfied: 

𝐴𝑃 𝐴𝐶 𝑂𝑝𝑡. 𝑣𝑎𝑙𝑢𝑒 ≤   𝐴𝑃 𝑂𝑝𝑡. 𝑣𝑎𝑙𝑢𝑒  (4.26) 

Initially, one can think that this change will never modify the optimum value of the 

AP (by intuition selecting more edges implies increasing the solution value). This is 

the most usual behavior between the two models but it is not always true, as 

previously showed in Table 4.1. The following example represents the costs matrix 

that produces the optimal solution of the leader for n = 10, k = 9, and instance 

number 1: 

 

Table 4.2: a) The left-hand side matrix; b) The right-hand side matrix 

Both costs matrixes contain the same values, but in Table 4.2 a), in orange are 

marked the optimal edges for the AP AC, while in Table 4.2 b) we see in green the 

optimal selection for the AP. The optimum cost of AP is 247, while for the AP AC it 

is 243. We notice that in the second case, there are 10 selected nodes instead of 9, 

which actually leads to a decrease in the objective function by taking advantage of 

the relaxed constraint.  

Moreover, from the BAP formulation, given a leader’s selection we have: 

𝐴𝑃 𝑂𝑝𝑡. 𝑣𝑎𝑙𝑢𝑒 =   𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟′𝑠 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐿𝑒𝑎𝑑𝑒𝑟′𝑠 𝑂𝐹 𝑣𝑎𝑙𝑢𝑒 
 

Therefore, if we use the AP AC to calculate the solution for the BAP, we will have: 

𝐴𝑃 𝐴𝐶 𝑂𝑝𝑡. 𝑣𝑎𝑙𝑢𝑒 ≤   𝐿𝑒𝑎𝑑𝑒𝑟′𝑠 𝑂𝐹 𝑣𝑎𝑙𝑢𝑒 (4.27) 

Which means that this modification leads to a lower bound for the actual solution of 

the BAP. Of course, using the AP AC to calculate the leader’s solution may lead to 

non-feasible solutions for the original model, as shown in the previous example. 

However, we can use it to find the optimal selection of 𝑜𝑖 and 𝑑𝑗, and then calculate 

the optimal solution of the 𝐴𝑃 𝑂𝑝𝑡. 𝑣𝑎𝑙𝑢𝑒, being sure that it will always be greater 

than or equal to the one obtained by the AP AC, by (4.27). This is summarized in 
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Relaxed Model Algorithm, which will be used to refine the Model b) optimal solutions 

after they are found.  

Relaxed Model Algorithm 

Step 1. Solve the BAP by using Model b) as described in section 4.2 

Step 2. Using the selected origins and destinations, create the optimal matrix P. 

Step 3. Solve the AP of P and return the optimum value. 

For simplicity, and as no change is directly applied to Model b), but we only add extra 

steps to possibly correct its solutions, let us use the same name Model b) while 

referring to the Relaxed Model Algorithm. 

In this way, we can take advantage of the fact that the relaxed model runs faster. 

For n=10, it reduced the average required time to find the optimal solution for all 

instances and ks to less than one third (from 6.50 to 1.90 seconds). As a drawback, 

the optimal selection for the leader is not found in 2 out of 80 cases (the other 3 

“problematic” examples are corrected by Steps 2 and 3 of the Relaxed Model 

Algorithm). This happens because the AP AC solution for the optimal selection gives 

a value that is lower than the one conceived as optimal by the relaxed model. To 

illustrate this particular case let us analyze the BAP for k=9 for instance 5. Its 

optimal solution is 285, but if we solve the AP AC for the selected origins and 

destinations, this value is reduced to 272, and then, from the relaxed model point of 

view it is better to select different origins and destinations that lead to a value of 

277. 

Going on with the analysis, being faster in smaller instances implies finding better 

results for bigger ones. Let us check if this is the case by comparing the performances 

of both models for the 10 instances of size 30 using a time limit of 60 seconds. First 

of all, the solver always reached the time limit without reporting optimality (relative 

gaps always > 0%). On the other hand, globally speaking, the total average of the 90 

results of Model a) was 415.0, 2.5% lower than the one reached by Model b) that was 

425.6. Additionally, a more detailed analysis by comparing one by one the results 

reached by both models is presented in Figure 4.3, and complementarily relative 

gaps are presented in Figure 4.4. 

We can observe that the global win-lose-draw rate is clearly on favor of Model b), and 

this pattern is repeated for every k. Additionally, relative gaps of Model b) were 

tighter than Model a).  

While analyzing the instances of size 50, a similar behavior between both models 

exists: the win-lose-rate of Model b) against Model a) is 81%-14%-5%, and also this 

pattern repeats for every k. We can therefore conclude that Model b) outperforms 

Model a). 

It is worth to mention that while running Model b), the solution of the AP for the 

selected matrix (obtained on Steps 3) was always the same as the result obtained by 

the AP AC (Step 1), meaning that the relaxation produced by constraint (4.25), was 

actually not affecting the calculation of the optimal solution, while it did lead to 

improved performances. 
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Figure 4.3: Comparison of Models a) and b): results 

 

 

Figure 4.4: Comparison of Models a) and b): relative gaps 

 

4.5. An alternative formulation only with binary 

variables  
 

An alternative model can be considered having only binary variables of the form  𝑢ℎ𝑖 

and 𝑣𝑙𝑗 that replace the continuous variables 𝑢𝑖 and 𝑣𝑗, avoiding the non-linear 

objective function of the dual model presented in section 4.1. 

By making an appropriate use of the constraint 𝑢𝑖 , 𝑣𝑗 ≥ 0, such as showed on the 

previous section, we can define ℎ binary variables 𝑢ℎ𝑖 for every 𝑢𝑖, where ℎ is an 

integer that can vary between 0 (in the case that the node is not selected) and ℎ𝑖𝑚𝑎𝑥.  

Analogously we define 𝑙 binary variables 𝑣𝑙𝑗 for every 𝑣𝑗, where 𝑙 is an integer varying 

from 0 to 𝑙𝑗𝑚𝑎𝑥. Notice that ℎ𝑖𝑚𝑎𝑥 and 𝑙𝑗𝑚𝑎𝑥 represent the maximum possible value 

that 𝑢𝑖 and 𝑣𝑗 can take on the previous model, which depends on constraint (4.12) 
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that is applied only to the k selected origins and destinations. Variables 𝑢0𝑖 = 1 and 

 𝑣0𝑗 = 1 imply that the origin 𝑖 and the destination 𝑗 is not selected. Then we have:  

ℎ𝑖𝑚𝑎𝑥 = 𝑀𝑖𝑛(𝑐𝑖𝑗 ∀ j: 𝑣0𝑗 = 0)∀ i: 𝑢0𝑖 =  0 and  𝑙𝑗𝑚𝑎𝑥 = 𝑀𝑖𝑛(𝑐𝑖𝑗 ∀ i: 𝑢0𝑖 = 0)∀ j: 𝑣0𝑗 =  0 

However, we cannot use these formulas to define the values of ℎ𝑖𝑚𝑎𝑥 ∀ i and 𝑙𝑗𝑚𝑎𝑥 ∀ j 

(that are actually required to complete the model formulation), because we do not 

know beforehand the selected 𝑖𝑠 and 𝑗𝑠  and then we do not know which 𝑣0𝑗 and 𝑢0𝑖 

are 0. Hence, let us define them as the maximum of each specific row and column, 

meaning that, every ℎ𝑖𝑚𝑎𝑥  and 𝑙𝑗𝑚𝑎𝑥 will be different based on the edges of origin 𝑖 

and destination 𝑗. In this way, they can be used as input constants in the model, and 

at the same time we do not set them to be unnecessarily large (e.g. 𝑀𝑎𝑥(𝑐𝑖𝑗 )), which 

would increase the number of variables: 

ℎ𝑖𝑚𝑎𝑥 = 𝑀𝑎𝑥(𝑐𝑖𝑗 ∀ j) ∀ i  and  𝑙𝑗𝑚𝑎𝑥 = 𝑀𝑎𝑥(𝑐𝑖𝑗 ∀ i) ∀j 

Having defined the values for ℎ𝑖𝑚𝑎𝑥 and 𝑙𝑗𝑚𝑎𝑥, we can formulate the BAP as follows: 

 

𝑚𝑎𝑥 ∑ ∑ ℎ𝑢ℎ𝑖

ℎ𝑖𝑚𝑎𝑥

ℎ=1

𝑛

𝑖 = 1

+ ∑ ∑ 𝑙𝑣𝑙𝑗

𝑙𝑗𝑚𝑎𝑥

𝑙=1

𝑛

𝑗 = 1

 (4.28) 

 

      𝑠. 𝑡. ∑ 𝑢ℎ𝑖

ℎ𝑖𝑚𝑎𝑥

ℎ=0

=  1  ∀ i (4.29) 

 

∑ 𝑣𝑙𝑗

𝑙𝑗𝑚𝑎𝑥

𝑙=0

=  1    ∀ j (4.30) 

 

∑ ℎ𝑢ℎ𝑖

ℎ𝑖𝑚𝑎𝑥

ℎ=1

+ ∑ 𝑙𝑣𝑙𝑗

𝑙𝑗𝑚𝑎𝑥

𝑙=1

 ≤  𝑐𝑖𝑗 + 𝑀 (𝑢0𝑖 +  𝑣0𝑗) ∀ i, j (4.31) 

 

 ∑ ∑ 𝑢ℎ𝑖

ℎ𝑖𝑚𝑎𝑥

ℎ=1

𝑛

𝑖 = 1

=  𝑘      (4.32) 

 

 ∑ ∑ 𝑣𝑙𝑗

𝑙𝑗𝑚𝑎𝑥

𝑙=1

𝑛

𝑗 = 1

=  𝑘      (4.33) 

 

 𝑢ℎ𝑖, 𝑣𝑙𝑗  ∈ {0,1}     ∀ ℎ, 𝑖   ∀ 𝑙, 𝑗  (4.34) 

Observe that we avoid two big-M constraints. Moreover, constraints (4.29) and (4.30) 

state that 𝑢𝑖 and 𝑣𝑗 can take only one value between 0 and ℎ𝑖𝑚𝑎𝑥 and 𝑙𝑗𝑚𝑎𝑥, 

correspondingly. Finally, constraints (4.31), (4.32) and (4.33) are equivalent to (4.12), 

(4.13) and (4.14) but formulated with binary variables. 

As it was previously mentioned, this model does not present neither a non-linear 

objective function nor non-linear constraints, so it can be implemented without any 

intermediate procedure. With the aim of the comparison, let us name this 

formulation Model c), to be compared with Model b) of the previous section, since this 

last outperforms Model a).  

For n = 10, both models were tested for the same 10 instances and ks as before, and 

a time limit of 60 seconds. First of all, the results achieved were the same, with only 
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1 exception in which Model b) outperforms Model c). On the other side, with respect 

to the time required to reach optimality, we see that Model b) considerably 

outperforms Model c), as we can see in Figure 4.5.  

 

 

Figure 4.5: Time to reach optimality Models b) and c), n = 10 

 

For n = 30, the time limit of 60 seconds was always reached. Comparing one by one 

the results of both models, just as done in section 4.4, we observe that Model b) 

strongly outperforms Model c), as shown in Figure 4.6. The author considers that no 

more analyses on the matter need to be done before concluding that Model b) is better 

than c). 

 

 

Figure 4.6: Comparison of the results for n = 30 between Models b) and c) 

 

4.6. A final improvement of the model formulation 
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In this section, an improvement on the previous formulation is proposed. Recalling 

the dual formulation of the BAP, our objective function was: 

𝑚𝑎𝑥 ∑ 𝑜𝑖𝑢𝑖

𝑛

𝑖 = 1

+  ∑ 𝑑𝑗𝑣𝑗

𝑛

𝑗 = 1

 (4.9.a) 

The improvement is to exclude variables 𝑜𝑖 and 𝑑𝑗 from (4.9.a). Let us explain why 

this change is correct. Let us consider variable 𝑜1. If it is 0, then original the term 

𝑜1𝑢1 of the objective function will be 0 while the new term will take the value of 𝑢1. 

However, as 𝑢1 is affected by constraint (4.10): 

𝑢𝑖 ≤  𝑜𝑖𝑀    ∀ i       𝑢1 ≤  𝑜1𝑀       𝑢1 ≤  0          

Then 𝑢1cannot add value to the solution, but only be null or negative. Since the 

objective function wants to maximize the result, the solver will set 𝑢1to 0. Moreover, 

if 𝑜1 = 1, then 𝑜1𝑢1 = 𝑢1. In this way, we can conclude that the exclusion of 𝑜1 will 

have no effect while computing the objective function but will simplify the model.  

As the example was developed for a generic 𝑜𝑖, this logic can be extended to the rest 

of the 𝑜𝑖𝑠. Similarly, by considering constraint (4.11), the above explanation is valid 

for every 𝑑𝑗, and we can conclude that the modification is correct. Hence, we can 

replace our objective function (4.9.a) by: 

𝑚𝑎𝑥 ∑ 𝑢𝑖

𝑛

𝑖 = 1

+  ∑ 𝑣𝑗

𝑛

𝑗 = 1

 (4.9.c) 

This replacement of (9.a) by (9.c) allow us to exclude constraints (4.17) and (4.18) 

because (4.9.c) is already linear. Let us call this new formulation Model d). Finally, 

let us add constraint (4.25) and follow the Relaxed Model Algorithm for the 

implementation (of course, replacing Model b) by Model d) in Step 1), since this 

relaxation showed that it improves the performances of the exact models. 

Let us compare Model d) with Model b). Experimental results suggest that the 

performance of both models is similar for small size instances. As an example, Figure 

4.7 presents the output given by the solver (in the python environment) while 

running both models, for n = 10, instance 1 and k = 2. Notice that the selected 𝑜𝑖𝑠, 

𝑑𝑗𝑠, and the objective function value is the same:  
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Figure 4.7: Output of CPLEX run in python. Instance 1, n = 10, k = 2. Models b) and d) 

 

We do notice some differences in 𝑢𝑖 and 𝑣𝑗, but they do not affect the optimal selection 

and value. Moreover, the time required to find the optimal solution and the number 

of iterations were similar, with slightly less iterations and time achieved by the 

improved model. 

After testing the models with the instances of size 10 and the corresponding ks, both, 

of course, always reached the same results. With respect to the time required to 

reach optimality, five runs for each model were done. They demonstrated to be 

equally fast, as the total average to find an optimal solution was 1,830 seconds for 

Model b) and 1,825 for Model d). 

For n = 30, Figure 4.8 presents the win-lose-draw rate obtained by comparing the 

results one by one, for the corresponding instances and ks defined in section 4.3,  

within a time limit of 60 seconds. Since the performances are very similar, an 

identical analysis but for instances of size 50 is presented in Figure 4.9. Again, we 

do not notice huge differences between the performance of both models, but we can 

affirm that Model d) is slightly better than Model b). 
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Figure 4.8: Comparison of the results for n = 30 between Models b) and d)  

 

 

Figure 4.9: Comparison of the results for n = 50 between Models b) and d) 

 

As a conclusion of this chapter, four models were implemented, and we can establish 

the following preference relationships between them:  

➢ Model b) ≻ Model a). 

➢ Model b) ≻ Model c). 

➢ Model d) ≽ Model b). 

Meaning that the best model to solve the BAP by means of a MILP solver is Model 

d). 
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5. A heuristic approach 
 

5.1. Introduction 
 

A heuristic is a widely used technique for problem solving that consists of a set of 

rules whose aim is to find good solutions for the given problem at a reasonable time 

(i.e., computational cost). It is approximate since it does not guarantee optimality 

but provides good solutions for little effort [20]. Constructive algorithms, local 

search, and improved heuristics are some of the main heuristic techniques. 

A greedy algorithm is a constructive procedure that starts at a candidate set (that 

may be an empty set), from which the solution is iteratively built up by fixing the 

value of some variables one at a time. At each step, the decision is taken by 

considering only the information at hand, ignoring the effect that it may have in the 

future. The algorithm stops when a complete and feasible solution is finally 

constructed. These types of algorithms are easy to invent and implement, and in 

some specific problems they return the optimal solution. For instance, given an edge-

weighted, undirected, and connected graph G = (V, E) 4 the Kruskal’s algorithm and 

the Prim’s algorithm are greedy algorithms that construct the minimum spanning 

tree5 [21]. Moreover, given a collection of production items and two machines where: 

each item must pass first for machine one and then for machine two, each machine 

can handle only one item at a time and each item is associated with two arbitrary 

positive numbers that represent the set up plus the work time for that item to pass 

through each machine, the Johnson’s rule leads to the optimal machine’s scheduling 

that minimizes the total elapsed time [22]. However, there are many problems that 

cannot be solved to global optimality by the greedy approach [23]. 

Another well-known heuristic approach is local search (LS), which is explained in 

detail in section 5.3. Additionally, there exist several meta-heuristics based on local 

search, for instance Iterated Local Search (ILS), Variable Neighborhood Search 

(VLS) and Tabu Search. The first one consists of iteratively applying intensification 

(local search) and perturbation (modification of the current best solution) phases and 

will be explained in detail in section 5.5. The second one, was proposed in 1997 by 

Mladenović and Hansen [24], and its basic idea is to systematically change the 

neighborhood (generally by increasing its size) both within a descent phase to find a 

local optimum and in a perturbation phase to get out of the corresponding valley. It 

is based on the fact that a local optimum with respect to one neighborhood structure 

is not necessarily so for another. Finally, a Tabu Search heuristic allows some moves 

that do not improve the solution after a local optimum is reached, but then forbids 

to re-do these moves with the aim of avoiding the initial local optimum. We mention 

that there exist many other meta-heuristic techniques, such as Simulated 

Annealing, Genetic Algorithms, Ant Colony Optimization, Greedy Randomized 

 
4 A graph is undirected if the two endpoints if its edges are not distinguished form each other, 

and it is connected if there is a path (a sequence of consecutive edges) connecting every pair 

of vertices [30].  
5 A spanning tree consists of a subset T ⊆ E of edges, where T does not contain cycles and for 

every pair v, w ∈ V of vertices, T should include a path between v and w.  
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Adaptive Search Procedures, etc. Please refer to [25] for more information about 

these methods. 

Finally, a matheuristic is an improved heuristic that brings together meta-heuristics 

and mathematical programming (exact approaches). In section 6.1, the reader can 

find an extensive explanation of this technique.  

 

5.2. Greedy algorithms to solve the BAP 
 

As it is known in literature [26], a local search can be enhanced by the use of a greedy 

algorithm to produce the initial feasible solution. This generally leads to overall 

better local optima with less computational cost than starting by a randomly 

generated solution. For this reason, several greedy algorithms are developed and 

tested in this section with the aim of generating the best possible initial solution. 

Please remember that the terms row and origin are equivalent, and so the terms 

column and destination. 

By observing the essence of the BAP, we notice that the leader will try to select the 

origins and destinations in such a way that the corresponding costs matrix of size k 

x k are as high as possible. A matrix with mainly small values will lead to a low-

value solution for the AP, while one that contains mainly high values will tend to 

produce the opposite. However, this “rule of thumb” may be misleading. Let us 

consider the following two examples of leader’s selections: 

[
90 84 𝟐𝟏
𝟒𝟎 59 76
68 𝟏𝟓 99

]                                 [
𝟐𝟖 25 38
54 40 𝟑𝟕
20 𝟏𝟑 11

] 

  Matrix 1. Solution value: 76   Matrix 2. Solution value: 78 

We may think that Matrix 1 is better than Matrix 2 from the leader’s perspective, 

because it contains in general higher values, but actually it is the other way around 

(in bold the optimum selection of the follower). Said that, we can state that while 

constructing a greedy algorithm it is not enough to achieve as much high values as 

possible. Instead, it makes more sense to avoid the lowest costs. 

Considering these preliminaries, five different greedy algorithms are presented. 

Greedy Algorithm 1 (Greedy 1) is based on the fact that the follower will generally 

select the edge of minimum cost for each given origin and destination. In this way, 

the leader deletes those values, so that the follower cannot choose them: 

Greedy Algorithm 1 

Step 1. Find the minimum value for each origin and destination. 

Step 2. Delete the (n-k) rows and columns that have the lowest minimum values. 

The time complexity of Greedy 1 is given by 𝑂(𝑛 ∗ 2𝑛) =  𝑂(𝑛2), where 𝑂(𝑛) is the 

complexity of finding the minimum value over a list of n elements, and 𝑂(2𝑛) 

represents the number of times that we find the minimum.  
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We notice that in this first attempt, we start from the n x n matrix and in one step 

we reduce it to a size of k x k. To further improve the results, the next greedy 

algorithms are iterative and delete only one row or one column at each step, by 

considering the average value 𝛼 of the x lowest elements of each row and column and 

deleting the array that corresponds to the minimum 𝛼. Let us define: 

𝛼 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑥 𝑙𝑜𝑤𝑒𝑠𝑡 𝑐𝑜𝑠𝑡𝑠) 

What varies between Greedy Algorithms 2 to 5 is how x is calculated, so we first 

present the common steps of these algorithms. 

Greedy Algorithms 2 to 5 (generic steps) 

Step 1. Calculate 𝛼 for each row and column. 

Step 2. Delete the row or column with the lowest 𝛼. If there are k remaining 

rows/columns, delete the column/row with the lowest 𝛼. 

Step 3. If the number of remaining rows and columns is equal to k, stop. Otherwise, 

go to Step 1. 

On Greedy Algorithm 2 (Greedy 2), we set x = k, taking into consideration that the 

follower will be given only k values per row and column. On Greedy Algorithms 3 to 

5, the value of x is variable depending on the number of remaining rows and columns.  

For instance, on Greedy Algorithm 3 (Greedy 3), all the remaining elements of each 

row and column are considered at each step. We define two values of x, one for rows 

and other for columns and 𝛼 is calculated by considering the corresponding x: 

𝑥𝑟𝑜𝑤 = 𝑙𝑒𝑛(𝑟𝑜𝑤); 𝑥𝑐𝑜𝑙 = 𝑙𝑒𝑛(𝑐𝑜𝑙) 

Where the function len(a) returns the number of elements of the list a.  

Moreover, Greedy Algorithm 4 (Greedy 4) considers the minimum (n-k) costs to 

calculate 𝛼, leaving the rows and columns with the maximum mean for the k selected 

origins and destinations: 

𝑥𝑟𝑜𝑤 = 𝑚𝑖𝑛((𝑛 − 𝑘), 𝑙𝑒𝑛(𝑟𝑜𝑤)) ; 𝑥𝑐𝑜𝑙 = 𝑚𝑖𝑛 ((𝑛 − 𝑘), 𝑙𝑒𝑛(𝑐𝑜𝑙)) 

Finally, Greedy Algorithm 5 (Greedy 5) calculates x considering half of the values of 

each array. As the number of rows and columns decrease, we reduce x in such a way 

that 𝛼 is not biased by a cost that the follower will probably not consider: 

𝑥𝑟𝑜𝑤 = 𝑚𝑎𝑥 (2, 𝑓𝑙𝑜𝑜𝑟(
𝑙𝑒𝑛(𝑟𝑜𝑤)

2
)); 𝑥𝑐𝑜𝑙 = 𝑚𝑎𝑥 (2, 𝑓𝑙𝑜𝑜𝑟(

𝑙𝑒𝑛(𝑐𝑜𝑙𝑢𝑚𝑛)

2
)) 

Where the function max(a) returns the maximum value over all the elements of list 

a. The function floor(b) returns the immediate lower integer value of b (if b is integer, 

it just returns b).  

Note that the complexity of Greedy Algorithms 2, 3 ,4 and 5 is the same, as the main 

structure of the algorithm is similar, and the only difference is the formula to 

calculate x. Therefore, let us define their time complexity by using Greedy Algorithm 

5 as an example: 

𝑂(2 ∗ (𝑛 − 𝑘) ∗ 2𝑛 ∗ (𝑛𝑙𝑜𝑔𝑛 + 𝑛/2))  =  𝑂((𝑛 − 𝑘) ∗ 𝑛2𝑙𝑜𝑔𝑛) 



35 

 

Where: 

➢ 𝑂(2(𝑛 − 𝑘)): is the number of iterations, equal to the total deleted origins and 

destinations. 

➢ 𝑂(2𝑛): is the number of times that we sort and calculate the average at each 

iteration. 

➢ 𝑂(𝑛𝑙𝑜𝑔𝑛): is the time complexity to sort an array. 

➢ 𝑂(𝑛/2): is the time complexity to calculate the average for the n/2 lowest values. 

We notice a higher time complexity compared to the one of Greedy 1. However, this 

difference will be found irrelevant in the overall complexity of the Local Search 

algorithm. 

Now, let us compare the Greedy Algorithms’ performances, based on the quality of 

their solutions. The same 10 instances for each size of 10, 30 and 50 developed in 

section 4.3 will be used, as well as the same values of k.  

Results of the five Greedy Algorithms, a randomly generated solution, and a final 

alternative that consists of taking the maximum of Greedy 4 and Greedy 5 (named 

Greedy 4_5) are presented as the average value obtained for the 10 instances, for 

every k. Figures 5.1 and 5.2 present the results for the instances sizes of 10 and 30, 

while the graph for size 50 is not added because it is similar to these two figures. 

 

 

Figure 5.1: Results of the Greedy Algorithms for n = 10 
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Figure 5.2: Results of the Greedy Algorithms for n = 30 

 

We can conclude that the best results are individually obtained by Greedy 5, and 

they can be improved by using Greedy 4_5, without increasing the time complexity. 

If we compute the maximum of all the greedy algorithms the improvement is 

insignificant. 

 

5.3. Local search: some theory 
 

5.3.1. Neighborhood 
 

Given a feasible point 𝑓 ∈ 𝐹 of a particular problem, the neighborhood is defined as 

the set 𝑁(𝑓) of points that are “close” in some sense to the point 𝑓. 

Definition [3] 

Given an optimization problem with instances (𝐹, 𝑐), a neighborhood is a mapping: 

𝑁: 𝐹 →  2𝐹 

defined for each instance.6 ◻ 

If 𝐹 = ℝ𝑛, the set of points within a fixed Euclidean distance provides a natural 

neighborhood.  

Different types of moves can be selected to generate a neighborhood. Some basic 

examples consist of a swap and/or insertion move. Let us consider a basic scheduling 

problem, for which we want to minimize the sum of the completion times, there is 

only one machine and 4 jobs with durations [2,5,4,6] for jobs 1 to 4 correspondingly. 

Although the optimal solution is almost trivial, let us illustrate the swap and 

insertion moves. Suppose that 𝑓 = [2,5,4,6], with a total completion time of 37.  

 
6 For any set F, we denote by 2𝐹 the set of all subsets of F (i.e., 2𝐹  = {F’: F’ ⊆ F}). 
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If we create the neighborhood by performing just one swap, the neighbors will be 

generated by swapping 2 with 5, 5 with 4, and 4 with 6, that is: 

𝑁𝑠𝑖𝑚𝑝𝑙𝑒 𝑠𝑤𝑎𝑝  =  {[5,2,4,6], [2,4,5,6], [2,5,6,4]} 

With its corresponding costs of:  

𝑐𝑠𝑖𝑚𝑝𝑙𝑒 𝑠𝑤𝑎𝑝 =  {40, 36, 39} 

Let us consider then an insertion-move to generate a neighborhood, with a distance 

of insertion of two. This means that, for example, the 1st element is inserted into the 

3rd position, and jobs 2 and 3 go to the 1st and 2nd position correspondingly, and so 

on: 

𝑁𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 2  =  {[5,4,2,6], [2,4,6,5], [4,2,5,6], [2,6,5,4]} 

𝑐𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 2  =  {42,37,38,40} 

 

5.3.2. Local and global optima 
 

For some problems, it is extremely difficult to find the best global solution, but it is 

possible to find the so-called local optima, that may not be very distant from the 

global optimum.  

Definition [3] 

Given an instance (𝐹, 𝑐) of an optimization problem and a neighborhood 𝑁, a feasible 

solution 𝑓 ∈ 𝐹 is called locally optimal with respect to 𝑁, or simply locally optimal 

whenever 𝑁 is understood by context if: 

𝑐(𝑓) ≤ 𝑐(𝑔) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈ 𝑁(𝑓)    ◻ 

Meaning that the term “local” depends on the definition of the neighborhood and it 

means that for that neighborhood the solution cannot be further improved. 

 

5.3.3. Definition and general algorithm 
 

Local search is a heuristic method able to produce locally optimal solutions. It is 

based on a trial-and-error approach, and its algorithm can be described as follows. 

Given an instance (𝐹, 𝑐) of an optimization problem, where 𝐹 is the feasible set and 

c is the cost function, we start at an initial solution 𝑛0 ∈ 𝐹, and cost 𝑐0, which is in 

turn defined as the current best solution 𝑠∗. Then, we select a neighborhood rule 𝑁 

and generate the neighborhood 𝑁(𝑠∗) containing p neighbors 𝑛1 … , 𝑛𝑝. We start to 

evaluate 𝑛1 considering an acceptance criterion. The simplest and most widely used 

acceptance test is based on whether the neighbor improves or not upon the current 

best solution. In the case of a minimization problem, this means that  𝑛1 is accepted 

if  𝑐(𝑛1) <  𝑐(𝑠∗ ). Otherwise, we continue to evaluate one by one 𝑛2 … , 𝑛𝑝. If we apply 

the First Improvement Strategy to perform the search into the neighborhood, as soon 

as an improvement is found in 𝑛𝑖, we stop the evaluation phase and set 𝑠∗ =  𝑛𝑖. If 
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we choose to work with the Steepest Descent Strategy, the evaluation phase does not 

stop until the p neighbors are evaluated and the best of them is selected. The next 

iteration generates the neighborhood 𝑁(𝑛𝑖) and we repeat this procedure until a 

stopping test is satisfied. A time limit or the lack of neighbors that improve the 

current best solution after evaluating all the neighborhood (point in which we can 

say that a local optimum 𝑠∗ was reached) are commonly used stopping tests.  

We can summarize this procedure, considering the First Improvement Strategy, as 

follows: 

Step 1. Generate an initial solution 𝑛0, and set 𝑠∗ =  𝑛0. 

Step 2. Generate the neighborhood 𝑁(𝑠∗ ) = 𝑛1 … , 𝑛𝑝.  

Step 3. Evaluate 𝑛1 … , 𝑛𝑝 according to the acceptance criterion. Whenever 𝑛𝑖 is 

accepted, stop, and set 𝑠∗ = 𝑛𝑖.  

Step 4. Stopping test: if no neighbor is accepted, 𝑠∗ is a Local Optimum: stop. If there 

is a time limit and it has been reached, stop (output: current 𝑠∗). Otherwise go to 

Step 2.  

 

5.4. A local search algorithm to solve the BAP 
 

In this section, a Local Search algorithm is designed and implemented. First of all, 

we need to produce an initial solution 𝑛0. In order to improve the local search 

performance, we will not start from a random solution, but instead from the solution 

obtained by the best greedy algorithm: Greedy 4_5, explained in section 5.2. 

The next step is to determine the neighborhood. Let us define a neighborhood that 

consists of swapping every selected origin by every non-selected origin; and swapping 

every selected destination by every non-selected destination, always performing just 

one move at a time. This produces a number of neighbors generated at each iteration: 

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔𝑏𝑜𝑟𝑠 𝑜𝑓 𝑁(𝑛0) = 2 ∗ 𝑘 ∗ (𝑛 − 𝑘) =  2 ∗ (𝑛𝑘 −  𝑘2) 

Let us consider a toy example, with n = 4 and k = 2 to illustrate the neighborhood. 

On the current solution 𝑛0, let us suppose that the selected [[origins],[destinations]]= 

[[1,3], [2.3]]. Then the neighborhood of 𝑛0will be: 

𝑁(𝑛0) = { [[2,3], [2,3]], [[3,4], [2,3]], [[1,2], [2,3]], [[1,4], [2,3]] … 

𝑁(𝑛0) =  … [[1,3], [1,3]], [[1,3], [3,4]], [[1,3], [1,2]], [[1,3], [2,4]]} 

Now, let us to define the acceptance criterion to be applied to determine the adequacy 

of every neighbor 𝑛𝑖: if there is an improvement with respect to the current best 

solution, then the neighbor is accepted, otherwise it is rejected. This means that we 

need to calculate the solution of the AP for every neighbor. As a consequence, the 

time complexity of the acceptance criterion is O(𝑘3 ), where k is the follower’s 

problem size. In this way, let us compute the complexity of the local search as:  

𝑂(𝐼𝑡.∗ (2 ∗ (𝑛𝑘 − 𝑘2) ∗ 𝑘3)) =  𝑂(𝐼𝑡.∗ 𝑘4 ∗ (𝑛 − 𝑘 )) 
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Where It. is the total number of iterations required to find a local optimum, 2 ∗ (𝑛𝑘 −

 𝑘2) is the number of neighbors and 𝑘3 is the time needed to evaluate each neighbor. 

First, the best improvement strategy (see section 5.3.3) was considered. However, it 

was not efficient with respect to the total number of neighbors evaluated, which is 

equal to the number of Hungarian Methods applied. For this reason, other four 

alternatives were developed to reduce it. Let us explain the five neighbor’s selection 

rules. 

Neighborhood 1 (N1): apply the best improvement strategy. 

Neighborhood 2 (N2): apply the first improvement strategy, but considering one 

improvement swapping rows, and one swapping columns. Take the best neighbor of 

those two. 

Neighborhood 3 (N3): start analyzing the rows. If an improvement is found by 

swapping rows, replacing, let us say, row x by row y, complete the analysis of all the 

k neighbors generated by replacing the k selected rows by row y. Then, select the best 

neighbor and stop. Otherwise, apply the same procedure for the columns. If an 

improvement is found replacing a row, the next iteration starts scanning columns 

and vice versa. 

Neighborhood 4 (N4): consider the nodes selected by the follower for the current 

best solution and sort them in a non-descending order. Start by swapping all the 

rows following the order of the sorted list. If no improvement is found, repeat the 

same procedure for all the columns. When an improvement is found by deleting for 

example row x, complete the replacement of all the n-k non-selected rows. If other 

improvements are found, take the best one, otherwise take the only one that 

improves the solution and stop.  

Neighborhood 5 (N5): it is similar to N4, but the following difference is present. 

After the sorted list of the follower’s nodes is generated, instead of scanning all the 

rows and then (if no improvement is found) all the columns, start by swapping the 

row or column that corresponds to the node having the lowest value. If no 

improvement is found, go for the second node, and so on. Analyze node by node and 

at each node swap first the row and then the column (this order first rows then 

columns is not fixed but depends on where the previous improvement was found). 

When an improvement is found, continue just as described in N4. 

Let us summarize the Local Search Algorithm using N5. 

Local Search Algorithm using N5 

Step 1. Initial solution generation. 

Generate an initial solution 𝑛0 using Greedy 4_5. Set: 

𝑠∗ = 𝑛0 

leader_selection = origins and destinations selected by the leader 

follower_nodes = nodes selected by the follower sorted in a non-decreasing order by 

the value of each cij. It contains the i, j coordinates and the corresponding cij. 

Step 2. Generation and evaluation of the neighborhood following 𝑁5  
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For i in follower_nodes [i coordinates]: 

 For new_row in non_selected_rows:7 

  new_selection = leader_selection. Swap(row[i], new_row)  

  new_selection_value = Hungarian_Method(new_selection) 

  if new_selection_value improves 𝑠∗:  

accept the neighbor. 

 If one or more neighbors were accepted: 

  Select the best of them. 

Set the new  𝑠∗, leader_selection and follower_nodes variables. 

Go to Step 3. 

 Else: 

  Apply the previous 9 lines to the columns. 

Step 3. Stopping criterion 

If no improvement was found in Step 2 or time_limit reached: 

Stop 

Return 𝑠∗ 

Else: 

 Go to Step 2 

The same instances as in previous sections are used to test the five different 

neighborhood rules. Additionally, results of the best greedy algorithm are presented, 

to show the effectiveness of LS on improving the greedy solution. Figures 5.3 and 5.4 

present the results for n = 10 and n = 30, which values represent the average of the 

10 instances, for every k. 

As it was expected, LS is able to improve the solution given by the greedy algorithm, 

and the amount of improvement is bigger the closer k is to n/2. Comparing the 

performances of the different neighborhood rules, we notice insignificant differences 

in the solution values. For n = 30, the best total average result is obtained by N2: 

417.6, while the worsts by N4 and N5 with 416.6. Moreover, the performances do not 

seem to be affected by k, since the results were similar for all ks. 

 
7 Note that in this case we start with the rows, however, the algorithm starts with the rows 

only in the case that the previous improvement was found by swapping a column, and vice 

versa. 
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Figure 5.3: Results for the different Neighborhood rules, n = 10 

 

 

Figure 5.4: Results for the different Neighborhood rules, n = 30 

 

Additionally, it is necessary to compare their performances with respect to a time 

metric. This can be done by considering the number of Hungarian Methods that 

every candidate algorithm applies before reaching a local optimum. Figures 5.5 and 

5.6 present these results for n = 10 and n = 30. Again, the values represent the 

average for the 10 instances, for every k. 

While comparing the time performances, we observe considerable differences. 

Roughly speaking, we observe that N4 and N5 need one third of the time required 

by N1 and N2, while N3 is in the middle. This shows that, considering the optimal 

selection (assignments) of the follower in such a way that the origins and 

destinations corresponding to the lowest costs are swapped first, allows to significant 

reductions of the computational time.  
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Figure 5.5: Number of Hungarian Method needed to reach local optimality, n = 10 

 

 

Figure 5.6: Number of Hungarian Method needed to reach local optimality, n = 30 

 

Due to the fact that N5 is the fastest rule and that its quality of the solution is similar 

to the one of the other neighborhood rules, we can state that N5 is preferred over the 

other alternatives. Consequently, it will be used later in the Iterated Local Search 

section. 

Let us add that, for n = 10, 14 out of 80 cases (17%) the global optimum was found 

by the Greedy 4_5 and after local search is applied, this number increases to 49 

(61%). 

 

5.4.1. Effectiveness of the greedy algorithm in local search  
 

As mentioned before, local search starts by a solution generated by a greedy 

algorithm. Here, the improvements reached by this non-random start are analyzed, 

for n = 30. First of all, the total average of the results of the 10 instances for all the 
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previously defined values of k, improves by 3% if we start local search by a greedy 

solution instead of by a random solution, as showed in Figure 5.7. Moreover, with 

respect to the average time (again, measured by comparing the number of Hungarian 

methods applied until local optimality is reached) was reduced by 23% by starting 

from the non-random solution.  

 

 

Figure 5.7: Random against non-random start Local Search, n = 30 

 

Similar results were obtained for n = 10 with a solution improvement of 3.2% and a 

time reduction of 29%. In this way, we showed that the use of a greedy algorithm 

improves local search results and time. 

 

5.5. Iterated local search: some theory 
 

5.5.1. Introduction 
 

One well known algorithm to improve the local search results is iterated local search 

(ILS). It is a conceptually simple metaheuristic but nevertheless has led to the state-

of-the-art algorithms for many computationally hard problems, and the idea is to go 

beyond the first local optimum by applying perturbation and intensification (local 

search) cycles. It does not focus on all the solution space, but in the candidates 

returned by the local search algorithm. It builds a sequence of solutions that are 

better than the ones that would be created by a repeated random trial heuristic. 

 

5.5.2. The general algorithm 
 

The generic algorithm of ILS can be described as follows. We start by applying local 

search method. After the first local optimum 𝑠∗ is found, we perform a perturbation 
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that leads to an intermediate solution 𝑠′, with a worse solution value than 𝑠∗. A 

perturbation consists of a number of changes done in a solution, generally performed 

randomly, with the aim of achieving a good starting point to repeat the local search. 

Then, we apply the local search algorithm to this perturbed solution, reaching a new 

local optimum 𝑠∗′. If this new solution satisfies a certain acceptance criterion, then 

𝑠∗ =  𝑠∗′. Otherwise, we go back to the original 𝑠∗ and apply the perturbation-local 

search process again. This is repeated until the stopping test is reached, generally a 

time limit. Figure 5.8, recalling [26] illustrates this sequence. 

 

 

Figure 5.8: Graphic description of ILS applied to a minimization problem [26] 

 

5.5.3. Enhancing iterated local search 
 

While applying ILS, there are four modules that have to be considered: initial 

solution, local search, perturbation, and acceptance criterion. The overall 

performance of ILS will strongly depend on the success of each module, so one should 

try to optimize them to develop the best possible ILS. These modules are: 

➢ Initial solution generation: it can be a random start or a constructive 

solution. It has been shown in section 5.4.1 that a constructive solution 

approach, after local search is applied, gives better results and in less time 

than a random start solution. 

➢ Local Search: in section 5.4, a great effort was done to highly improve this 

module by taking advantage of the specific structure of the problem. 

➢ Perturbation: this module is going to be explained and improved in the next 

section. 

➢ Acceptance criterion: an improvement in the solution is generally applied, 

and in this case this criterion will be used as well. 

 

5.6. Iterated local search to solve the BAP 
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In this section, ILS is implemented and optimized, and an analysis of how it 

improves LS is presented. The first step consists of applying the Local Search 

Algorithm using N5, obtaining the first local optimum 𝑠∗. Secondly, a perturbation 

is done to 𝑠∗: a number 𝜇 of selected origins and destinations is randomly swapped 

with the non-selected ones (chosen randomly as well). Consider that 𝜇 should be 

sufficiently high not to be trapped in the same local optimum, but also low enough 

not to fall into a random start approach. Therefore, we cannot define μ as a constant 

nor for instances of different size, neither for distinct values of k given a fixed n. 

Let us define three different formulas to calculate 𝜇 depending on n and k, namely 

𝜇1, 𝜇2 and 𝜇3, each one representing a different level of perturbation. The smallest 

perturbation is produced by 𝜇1, and it gradually increases for 𝜇2 and 𝜇3. In Figure 

5.9 are presented, as an example, the values for 𝜇, for n = 30, while their 

corresponding formulas, that allow to compute 𝜇 for every n and k are the following. 

𝜇1 = 𝑀𝑎𝑥 (1; 𝑓𝑙𝑜𝑜𝑟 (
𝑚𝑖𝑛(𝑘; 𝑛 − 𝑘)

6
))  

𝜇2 = 𝑐𝑒𝑖𝑙 (
𝑚𝑖𝑛(𝑘; 𝑛 − 𝑘)

4
) 

 

𝜇3 = 𝑐𝑒𝑖𝑙 (
𝑚𝑖𝑛(𝑘; 𝑛 − 𝑘)

2
) 

 

The function ceil(b) does the exact opposite of floor(b) and returns the immediate 

higher integer value of b (if b is integer, it just returns b). We can observe that 𝜇1 

perturbs only a small portion of 𝑠∗, while 𝜇2 and 𝜇3 around 25% and 50% respectively. 

 

 

Figure 5.9: Graphical illustration of 𝜇1, 𝜇2 and 𝜇3 as a function of k, for n = 30 

To evaluate the different 𝜇𝑠, the instances of size 10 are not suitable, because as 

showed at the end of section 5.4, after applying LS, the results achieved are all 
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limit of 60 seconds. Average results for the 10 instances and the corresponding 
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values of k (the same as used before) are presented at the left-hand side of Figure 

5.10. 

 

 

Figure 5.10: Results, Number of Local searches done, and different solutions found for every 𝜇 

 

We can observe that ILS performed slightly better using 𝜇2 and 𝜇3 compared to 𝜇1, 

but differences are not considerable. Moreover, in the same Figure the global average 

of the total local searches done and of the number of different solutions found are 

shown. These last metrics allow us to evaluate the effectiveness of each alternative 

to escape from the current local optimum. In this way, we can realize that the 

algorithm falls many times in an already found solution, especially for alternatives 

with less perturbation 𝜇1 and 𝜇2.  

For this reason, a new adaptive function for 𝜇 is developed with the aim of avoiding 

both a search in a fraction of the solution space that do not present any improvement 

with respect to the current best solution and to be trapped in the same local 

optimum. Let us call these new perturbations 𝜇1′, 𝜇2′ and 𝜇3′.  

In these adaptive perturbations, the initial 𝜇 is the same as before, and it grows to 

𝜇 + 1 for the origins if no improvement is found after five consecutive local searches. 

The same is applied for the destinations after presenting other five iterations 

without any progress in the solution. Moreover, if the local search falls on an already 

found local optimum three times, then 𝜇 =  𝜇 + 1, first for the destinations and 

secondly (after other three times of finding a repeated local optimum) for the origins. 

In this way, we alternately increase the number of origins and destinations randomly 

swapped, thus increasing the perturbation, and hopefully getting away of the current 

local optimum by an appropriate use of the memory. When an improvement to the 

current best solution is found, 𝜇 is reset to its original value, and the counter for 

repeated solutions and no improvements is reset to 0. This idea is summarized in 

ILS Adaptive perturbation Algorithm, using 𝜇2′. 

Adaptive perturbation Algorithm 

Step 1: Local Search and parameters definition 

427,6

84

13

429,5

94

18

429,5

78
37

Results Local searches done Different Solutions found

μ1, μ2 and μ3, n = 30

μ1 μ2 μ3
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Implement the Local Search Algorithm using N5, obtaining 𝑠∗. 

Set 𝜇2(𝑛, 𝑘); no_improvements_counter = 0; repeated_sol_counter = 0; 

solutions_list= [𝑠∗] 

Step 2. Perturbation. 

If no_improvements_counter is multiple of 5:                                                       
 𝜇2𝑜𝑟𝑖𝑔𝑖𝑛𝑠 = 𝜇2𝑜𝑟𝑖𝑔𝑖𝑛𝑠 +  1 

Elif no_improvements_counter is multiple of 10:                                  
 𝜇2𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 = 𝜇2𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 +  1 

If repeated_sol_counter is multiple of 3:                                                                                                        
 𝜇2𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 = 𝜇2𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 +  1 

Elif repeated_sol_counter is multiple of 6:                                                                     
 𝜇2𝑜𝑟𝑖𝑔𝑖𝑛𝑠 = 𝜇2𝑜𝑟𝑖𝑔𝑖𝑛𝑠 +  1 

𝑠′ = 𝑠∗.random.swap(𝜇2𝑜𝑟𝑖𝑔𝑖𝑛𝑠 and 𝜇2𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠) 

Step 3. New Local Search and acceptance test 

While stopping criterion is not met do: 

𝑠∗′= LocalSearch(𝑠′)  

If 𝑠∗′ improves 𝑠∗: 

 𝑠∗ =  𝑠∗′ 

 Reset 𝜇2, no_improvements_counter, repeated_sol_counter 

Else: 

no_improvments counter += 1 

If 𝑠∗′ in solutions_list: 

 repeated_sol_counter += 1 

Else: 

Add 𝑠∗′ to solutions_list 

 𝑠′ = Perturbation (𝑠∗′) 

Results for the adaptive perturbation, number of local searches performed, and 

different solutions found for n = 30 are presented in Figure 5.11, as average of all 

instances and ks. 

We can observe that although the average results are only slightly better for every 

𝜇′ with respect to the corresponding 𝜇, the investigated solution space is much larger, 

especially for 𝜇1 and 𝜇2. 
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Figure 5.11: Results, Number of Local searches done, and different solutions found for every 𝜇′ 

 

In addition to that, let us compare for the same instances of size 30 the performance 

of the different 𝜇𝑠 considering the percentage of improved solutions with respect to 

LS, and by a pairwise comparison. The first indicator is just pointing out that the 

adaptive perturbation allows a slightly better performance, as showed in Table 5.1.   

 

Table 5.1: Percentage of solutions of LS that are improved by ILS, for every 𝜇, n = 30 

Moreover, as the percentage of solutions improved is similar, let us consider a 

pairwise comparison between the six alternative perturbations (by comparing the 

solution values for every k and instance). It is not straightforward the selection of 

one of them, however, we notice that 𝜇2′ is the only one that always wins, even if it 

is sometimes by just a small difference, as showed in Table 5.2. 

 

Table 5.2: Results of 𝜇2′ against the other five types of perturbations 

As a conclusion, the adaptive perturbation rule is useful, and the optimum function 

to calculate the number of perturbed rows and columns, considering all these 

analyses, is 𝜇2′.  

 

5.6.1. Improvements achieved by ILS compared to LS 
 

In Table 5.1, we notice that around 74% of the solutions given by LS are improved 

by ILS. However, let us analyze in detail these improvements to evaluate the 

effectiveness of ILS.  
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For n = 10, the available window for improvement was small, because, as previously 

explained, in 61% of the studied instances and ks the optimal was found by LS. 

However, for a time limit of 2 seconds, ILS does improve the solutions, leading to a 

98% of global optimal solutions found. 

With respect to n = 30, ILS was able to increase the solution value of LS, on average, 

in 66,5/90 = 74% of the cases, after running ILS 5 times for the 10 instances, for the 

corresponding ks and a time limit of 60 seconds. Below an example of the LS and ILS 

results is presented, for a run of the algorithm in which the improvement rate was 

73%. Table 5.3 contains the results obtained by LS, while Table 5.4, by ILS, and a 

green value indicates an improvement. 

 

          Table 5.3: Results of Local Search             Table 5.4: Results of Iterated Local Search 

We can observe that ILS is usually able to improve the results. However, we also 

notice different behaviors depending on the value of k. For 𝑘 ≤ 18 , ILS reached, on 

average of 5 runs, an 86% rate of improvement, while for 𝑘 > 18, this value decreases 

to 51%. This induces to think that there could be an opportunity of enhancing the 

perturbation phase for those values of k.  

Analyzing Table 5.5, we notice that for 𝑘 > 18 the number of LS the algorithm can 

perform within the time limit of one minute is small. Additionally, the adaptive part 

of the perturbation phase has a negligible impact for these cases, since it needs at 

least 5 iterations without improvements, or 3 repeated local optima found before 

starting to make stronger perturbations, and we can observe that the number of local 

searches completed is between 3.5 and 6.5. Finally, we notice that the percentage of 

repeated local optima found is relatively large.  

  

Table 5.5: Original Perturbation   Table 5.6: New Perturbation 

With that being said, let us consider a new perturbation rule that is stronger (even 

stronger than 𝜇3′) by increasing the number of swapped rows and columns: 

𝑁𝑒𝑤 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 + (10 ∗
𝑛 − 𝑘

𝑛
  𝑖𝑓 

𝑘

𝑛
≥ 0.7)  

The new perturbation was tested for k = 21, 24 and 27, for the 10 instances. It was 

able to reduce the percentage of repeated local optima found, as shown in Table 5.6, 

but, when compared to LS, results were a bit worse than for the original 
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perturbation, reaching a 40% of rate of improvement. In conclusion, we refute the 

hypothesis that a stronger initial perturbation can lead to better results.  

The smaller improvement rate reached for bigger ks may be caused by the fact that 

having greater ks implies fewer local searches done within the time limit, since the 

complexity of the algorithm considerably grows with k (see section 5.4). This idea is 

summarized in Figure 5.12. 

 

 

Figure 5.12: Rate of improvements (%) compared to the number of iterations (LS) 

 

Finally, for n = 50, we set a time limit of 300 seconds, and we use the values of k 

defined in section 4.3. We realize an overall improvement rate of 57%, that can be 

subdivided in two, depending on k. That is, 80% for 𝑘 ≤ 25, and 25% for 𝑘 > 25. 

Again, trying to modify the perturbation does not make sense, since the reason of 

the smaller improvement rate for bigger ks is simply that the number of local 

searches done within the established time limit (shown in Table 5.7) is not enough 

to allow ILS to always improve the LS results, even though we are not trapped in 

the same local optima. 

 

Table 5.7: Number of LS, percentage of repeated local optima, n = 50 

To sum up, ILS improves the LS results, especially for intermediate and low values 

of k. For bigger ks, fewer iterations of local search can be performed within the time 

limit, and this leads to fewer solutions ameliorated. 

 

5.7. A final improvement of the neighborhood 
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The neighborhood search rule N5 (see section 5.4) performed a fast search, by 

swapping first the origins and destinations that are more likely to induce an 

improvement in the leader’s objective function. However, the previously defined 

acceptance criterion to verify the adequacy of each neighbor consisted of solving the 

AP and checking if there was an improvement with respect to the current best 

solution. So, the time complexity to evaluate each neighbor was 𝑂(𝑘3) (remember 

that k is the follower’s problem size). 

In this section, we add an intermediate step in the acceptance criterion, where we 

iteratively construct upper bounds to the optimal solution of the AP for each 

neighbor, and which time complexity is 𝑂(𝑘2). This is advantageous because 

whenever an upper bound is lower than or equal to the leader’s current best solution, 

we can skip the resolution of the AP, thus reducing the computational time of the 

acceptance test of that neighbor.  

Let 𝐶𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 be the original cost’s matrix of size n x n and 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 be the cost’s matrix 

of size k x k that corresponds to the selection associated to the current solution of the 

leader: 

𝐶𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 = [

𝑐11 𝑐12

𝑐21 𝑐22

⋯ 𝑐1𝑛

⋯ 𝑐2𝑛

⋮ ⋮
𝑐𝑛1 𝑐𝑛2

⋱ ⋮
⋯ 𝑐𝑛𝑛

] ; 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = [

𝑎I I 𝑎I II

𝑎II I 𝑎II II

⋯ 𝑎I 𝑘

⋯ 𝑎II𝑘

⋮ ⋮
𝑎𝑘 I 𝑎𝑘 II

⋱ ⋮
⋯ 𝑎𝑘𝑘

] 

Latin number’s indexes are used for 𝐶𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 while roman number’s indexes denote 

that the origin or destination is selected in the current solution of the leader and are 

used for 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡. Let l and m be the indexes for generic rows and columns of 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 

where each 𝑎𝑙𝑚 ∈  𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is equal to the corresponding cost 𝑐𝑖𝑗 ∈ 𝐶𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, but 

considering that the indexes are not equivalent, i.e. 𝑎11 is not necessarily equal to 

𝑐11, but only if origin 1 and destination 1 are selected in the current solution. 

Let Fs be a vector of size k that contains the costs of all the assignments that 

correspond to the optimal follower’s solution: 

𝐹𝑠 = [𝑏I, 𝑏II, . . . , 𝑏𝑘] 

Where we can define b as:  

𝑏𝑟𝑜𝑤_𝑙 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝑎𝑙𝑚)  ∀ 𝑙 or 𝑏𝑐𝑜𝑙_𝑚 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝑎𝑙𝑚)  ∀ 𝑚 

Notice that the values of Fs will be the same either if they are constructed following 

𝑏𝑟𝑜𝑤𝑠 or 𝑏𝑐𝑜𝑙𝑢𝑚𝑛𝑠 definitions, however, with the only difference that they will be 

sorted by rows or by columns order, correspondingly. 

Now let us consider that a neighbor of 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is generated by swapping row x that 

is in the solution with row y that is not in the solution and let us call it 𝐶𝑠𝑤𝑎𝑝_𝑟𝑜𝑤𝑠(𝑥,𝑦). 

This means that on 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡, the values [𝑎𝑥 I, 𝑎𝑥 II, . . . , 𝑎𝑥𝑘] are replaced by 

[𝑐𝑦 I, 𝑐𝑦 II, . . . , 𝑐𝑦𝑘].  

In addition to that, let us suppose that on the AP solution of 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 the follower has 

made the following assignments: 

1. Origin x to destination m. Meaning that 𝑎𝑥𝑚 = 𝑏𝑟𝑜𝑤_𝑥 =  𝑏𝑐𝑜𝑙_𝑚  

2. Origin p to destination q. Meaning that 𝑎𝑝𝑞 = 𝑏𝑟𝑜𝑤_𝑝 =  𝑏𝑐𝑜𝑙_𝑞 
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3. Origin r to destination s. Meaning that 𝑎𝑟𝑠 = 𝑏𝑟𝑜𝑤_𝑟 =  𝑏𝑐𝑜𝑙_𝑠 

In this way, if we consider II < x < p < r < k we can define the 𝐹𝑠 vector of 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

sorted by rows order as: 

𝐹𝑠_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = [𝑏I, 𝑏II, … , 𝑎𝑥𝑚, … , 𝑎𝑝𝑞 , … , 𝑎𝑟𝑠 , … , 𝑏𝑘] 

Hypothesis. If 

𝑐𝑦𝑞 +  𝑎𝑝𝑠 +  𝑎𝑟𝑚 ≤ 𝑎𝑥𝑚 + 𝑎𝑝𝑞 + 𝑎𝑟𝑠     
(5.1) 

Then the neighbor 𝐶𝑠𝑤𝑎𝑝_𝑟𝑜𝑤𝑠(𝑥,𝑦) will never improve the leader’s current best 

solution. 

Proof. Let us consider the solution value of 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡, as the sum of the vector 

𝐹𝑠_𝑐𝑢𝑟𝑟𝑒𝑛𝑡: 

𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 =  ∑ 𝑏𝑙

𝑘

I

= 𝑏I + 𝑏II +  … + 𝑎𝑥𝑚 + ⋯ + 𝑎𝑝𝑞 + ⋯ + 𝑎𝑟𝑠 + ⋯ 𝑏𝑘   

Let us construct a feasible solution for the AP of 𝐶𝑠𝑤𝑎𝑝_𝑟𝑜𝑤𝑠(𝑥,𝑦) that contains 𝑐𝑦𝑞 , 𝑎𝑝𝑠 

and 𝑎𝑟𝑚, by making some changes to a copy of 𝐹𝑠_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (since the original vector 

cannot be modified), let us say 𝐹𝑠_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑝𝑦. First of all, notice that as row x is not 

present in this neighbor, the cost 𝑎𝑥𝑚 cannot be present in 𝐹𝑠_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑝𝑦, leaving the 

incumbent row y and column m unassigned. Now let us follow these steps: 

1. Assign origin y to destination q, so 𝑐𝑦𝑞 = 𝑏𝑟𝑜𝑤_𝑦 =  𝑏′𝑐𝑜𝑙_𝑞. This completes the 

assignment of origin y but implies that the previously assigned cost 𝑎𝑝𝑞 must 

be deleted from the 𝐹𝑠_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑝𝑦 vector, otherwise we would select two edges 

for destination q and we would not satisfy constraint (3.3) of the AP. 

Therefore, an assignment is to be done for row p.  

2. Assign origin p to destination s, so 𝑎𝑝𝑠 = 𝑏′𝑟𝑜𝑤_𝑝 =  𝑏′𝑐𝑜𝑙_𝑠. As a consequence, 

we complete the assignment of row p, but we must delete the cost 𝑎𝑟𝑠 from 

vector 𝐹𝑠_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑝𝑦, leaving row r unassigned. 

3. Assign row r to column m, so 𝑎𝑟𝑚 = 𝑏′𝑟𝑜𝑤_𝑟 =  𝑏′𝑐𝑜𝑙_𝑚.  

In this way, we completed the assignments satisfying all the AP constraints (see 

section 3.1.1), so we constructed a feasible solution that, in turn, represents an upper 

bound to the optimal solution of the AP of 𝐶𝑠𝑤𝑎𝑝_𝑟𝑜𝑤𝑠(𝑥,𝑦). As we made only three 

changes to the vector 𝐹𝑠_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑝𝑦, we can compute the value of the upper bound as:  

𝐶𝑠𝑤𝑎𝑝(𝑥,𝑦) 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑣𝑎𝑙𝑢𝑒 =  𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 +  δ 

Where: 

δ = −𝑏𝑟𝑜𝑤𝑥
− 𝑏𝑟𝑜𝑤𝑝

− 𝑏𝑟𝑜𝑤𝑟
+ 𝑏𝑟𝑜𝑤𝑦

+ 𝑏′
𝑟𝑜𝑤𝑝

+ 𝑏′
𝑟𝑜𝑤𝑟

=   

δ = −𝑎𝑥𝑚 − 𝑎𝑝𝑞 − 𝑎𝑟𝑠 + 𝑐𝑦𝑞 +  𝑎𝑝𝑠 + 𝑎𝑟𝑚 

Therefore, if:  

𝑐𝑦𝑞 +  𝑎𝑝𝑠 +  𝑎𝑟𝑚 ≤ 𝑎𝑥𝑚 + 𝑎𝑝𝑞 + 𝑎𝑟𝑠 (hypothesis) 
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Then δ ≤ 0, meaning that: 

𝐶𝑠𝑤𝑎𝑝(𝑥,𝑦) 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑣𝑎𝑙𝑢𝑒 ≤  𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 

Of course, the solution of the AP of 𝐶𝑠𝑤𝑎𝑝(𝑥,𝑦) will satisfy: 

𝐶𝑠𝑤𝑎𝑝(𝑥,𝑦) 𝑣𝑎𝑙𝑢𝑒 ≤ 𝐶𝑠𝑤𝑎𝑝(𝑥,𝑦) 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑣𝑎𝑙𝑢𝑒 

And finally: 

𝐶𝑠𝑤𝑎𝑝(𝑥,𝑦) 𝑣𝑎𝑙𝑢𝑒 ≤ 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 

We have found that the follower’s solution for 𝐶𝑠𝑤𝑎𝑝(𝑥,𝑦) will always be lower than or 

equal to the value of 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡, meaning that it is impossible that the leader realizes 

an improvement by swapping row x and row y (since he wants to increase the value 

of his current solution), and the hypothesis is proved. ◻ 

Notice that the construction of the upper bound was done by changing only three 

values in the vector 𝐹𝑠_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑝𝑦, meaning that constant time was required. 

Therefore, we can reformulate the neighbor’s acceptance criterion by adding an 

intermediate step in which we generate at most 𝑘2 upper bounds. If at any point the 

inequality (5.1) is satisfied, we skip the resolution of the AP and reject the neighbor, 

thus reducing the acceptance criterion’s computational time for the corresponding 

neighbor from 𝑂(𝑘3) to 𝑂(𝑘2). Otherwise, we must solve the AP, reaching a similar 

time complexity compared to the one of the previous acceptance criterion, since 

𝑂(𝑘3 +  𝑘2) = 𝑂(𝑘3).  

The Improved Acceptance Criterion Algorithm describes the upper bounds 

generation for a neighbor created by swapping rows x (in the current best solution) 

and y (not in the current best solution), but it can be analogously applied for the 

other rows swaps and columns swaps. The input of this algorithm is  𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 

𝐹𝑠_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and row y. 

Improved Acceptance Criterion Algorithm 

Step 1. Create the upper bounds and check if condition (5.1) is satisfied. 

Solve_AP = True 

𝑎𝑥𝑚 = 𝑏𝑟𝑜𝑤_𝑥 = 𝑏𝑐𝑜𝑙_𝑚, store m 

For q in [1, 2, ..., k]: (excluding m) 

 𝑎𝑝𝑞 = 𝑏𝑐𝑜𝑙_𝑞 = 𝑏𝑟𝑜𝑤_𝑝, store p 

 For s in [1, 2, ..., k]: (excluding m and q) 

  𝑎𝑟𝑠 = 𝑏𝑐𝑜𝑙_𝑠 =  𝑏𝑟𝑜𝑤_𝑟, store s  

If 𝑐𝑦𝑞 + 𝑎𝑝𝑠 +  𝑎𝑟𝑚 ≤ 𝑎𝑥𝑚 + 𝑎𝑝𝑞 + 𝑎𝑟𝑠: 

 Solve_AP = False 

 Stop both for loops.  

Return Solve_AP 

Step 2. Evaluate the adequacy of the 𝐶𝑠𝑤𝑎𝑝_𝑟𝑜𝑤𝑠(𝑥,𝑦) neighbor. 
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If Solve_AP = True: 

 Set 𝐶𝑠𝑤𝑎𝑝_𝑟𝑜𝑤𝑠(𝑥,𝑦) = 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡.swap(row x, row y) 

 Solve the AP to check the adequacy of neighbor 𝐶𝑠𝑤𝑎𝑝_𝑟𝑜𝑤𝑠(𝑥,𝑦) 

Else:  

 Go to the next neighbor. 

Notice that by applying the Improved Acceptance Criterion Algorithm, the 

computational complexity of the Local Search Algorithm is not reduced (since we 

may never satisfy condition (5.1)), but we achieve a considerably faster search by 

reducing the computational time of the acceptance test of a fraction of the 

neighborhood, as it is showed in the next section. 

 

5.7.1. Implementation of the improved acceptance criterion 
 

We will now analyze the improvements reached by this new acceptance criterion 

with respect to the previous one. Recalling section 5.4, the optimal neighborhood rule 

was N5, so let us add to it this last improvement and call it Improved N5.  

First of all, considering only local search, let us evaluate the number of neighbors 

that Improved N5 is able to refute without solving the AP, let us say skip, over all 

the neighbors checked by N5, until the local optimum is reached. We can define: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑠𝑘𝑖𝑝𝑝𝑒𝑑 𝑛𝑒𝑖𝑔𝑏𝑜𝑟𝑠 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑠𝑘𝑖𝑝𝑝𝑒𝑑 𝑏𝑦 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 𝑁5

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑐ℎ𝑒𝑐𝑘𝑒𝑑 𝑤𝑖𝑡ℎ 𝑁5
 

Figure 5.13 summarizes this metric for n = 10, 30 and 50, where each value 

represents the average of the 10 corresponding instances, and k is presented as a 

function of n (data labels are left for n = 50). 

 

 

Figure 5.13: Percentage of neighbors skipped by the use of the improved acceptance criterion in LS 
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Results show that a considerable fraction of the total evaluated neighbors (i.e., more 

than a 50% even for the worst case) are skipped. Moreover, we notice that this 

improvement is more significant the lower the value of k with respect to n, and the 

smaller the instance size.  

We additionally present a numerical example of the remarkable reduction reached. 

Figure 5.14 shows the number of neighbors in which the AP is solved while using N5 

and Improved N5, as the average value for the ten instances, for n = 50. 

 

 

Figure 5.14: Number of Hungarian Method needed to reach local optimality, n = 50 

 

Let us then compare these two approaches with respect to the results of ILS. Table 

5.8 presents the overall win rate of ILS performed with N5 against ILS performed 

with Improved N5, for time limits of 60 and 300 seconds for n = 30 and n = 50. We 

can observe that Improved N5 outperforms N5. The reason for these better 

performances is that the number of LS done within the time limit increased due to 

the fact that Improved N5 runs faster.  

   

Table 5.8: Comparison between ILS implementing N5 and Improved N5 

We realize a small percentage in which N5 wins, and the reason is that the random 

nature of the perturbation phase can lead to better results in less local searches done. 
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6. A matheuristic approach 
 

6.1. Matheuristics: definitions and classification 
 

Both exact and heuristic approaches have their own advantages and disadvantages. 

Mathematical programming can guarantee optimality, but for big instances of the 

problem the required CPU time can be so large that it is practically unsolvable. On 

the other side, heuristic techniques provide fast and good solutions, but cannot 

guarantee its optimality. In the recent years, a lot of attention was devoted to the 

combination of these two while solving hard combinatorial optimization problems, 

leading to hybrid approaches, also known as matheuristics.  

There exist various ways in which exact and heuristic methods have been brought 

together to improve the overall performance of an algorithm. On the one hand, there 

exist Collaborative Combinations, in which the methods are not part of each other 

but they only exchange information. In this approach, one option is that exact and 

heuristic methods are executed sequentially, meaning that either the heuristic is 

executed as a pre-processing step of the exact method or vice-versa. One can also 

solve to optimality the LP relaxation of the problem and after a rounding procedure 

the solution is given as input to the heuristic approach. Moreover, instead of 

sequentially both methods may be executed intertwined or in parallel, please refer 

to [27] for more information on the matter.  

On the other hand, there are the Integrative Combinations, in which one algorithm 

is embedded into the other. One is the “master” and the other acts as a “slave”. Either 

the heuristic is the high-level algorithm and controls the calls to the exact approach 

or vice-versa. When incorporating exact methods into heuristics, we can use the LP 

relaxation as mentioned above, but in addition to use it as an initial solution 

generator, it can be used to heuristically guide the neighborhood search.  

Moreover, exact methods can be used to perform a Large Neighborhood Search, as 

mentioned in [28]. The main point is to model the large neighborhood search 

problem, solve it exactly, and the optimal solution is then selected as the next 

neighbor. To model this neighborhood problem, there exist the full or partial 

neighborhood exploration. In the first one, each feasible solution to the search 

problem induces a move on the local search. In the second one, at each iteration a 

part of the solution is left fixed and the rest free, and the exact method is called to 

optimize the free variables.  

Finally, the incorporation of metaheuristics to enhance the performance of 

mathematical programming is also possible, as explained in [29]. While solving 

combinatorial optimization problems exactly, usually tree search is applied. The 

benefits from metaheuristics are reached by giving an initial feasible solution which 

induces a good lower bound and reduces the search space. Additionally, throughout 

the tree search, metaheuristic might be called to provide hopefully improved 

solutions that allow to further prune the search tree. Finally, we mention that 

metaheuristic can be also used by exact methods on column and cut generation. 
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6.2. A matheuristic algorithm to improve ILS 
 

In this section, a matheuristic algorithm is defined with the aim of further improving 

the ILS results. As summarized in Matheuristic Algorithm, the first step is done by 

the metaheuristic. We use Improved N5 in this step, since it showed to be the best 

option to implement ILS. Once it reaches the time limit, the best solution 𝑠∗ = 𝑠0 is 

given as input to the Step 2, in which the partial neighborhood exploration approach 

is applied. Following the above explanation, a partial neighborhood search problem 

(PNSP)  is generated, in which a fraction 𝛼  of the selected origins and destinations 

of 𝑠∗, are set to be in the solution by adding constraints 𝑜𝑖, 𝑑𝑗 = 1 and a fraction 0 <

𝛼 < 1  of the non-selected ones are set to be out of the solution by adding constraints 

𝑜𝑙 , 𝑑𝑚 = 0. Each PNSP with its corresponding fixed variables represents a neighbor 

𝑛𝑖 of the neighborhood 𝑁(𝑠∗). The selection of the fixed variables is randomly done, 

with the exception of one variation that will be explained later. In this step, the exact 

method solves to optimality relatively fast (depending on the number of variables 

that are fixed) this constrained model, producing a solution 𝑠𝑖. Then, the first 

improvement strategy is applied: if an improvement is found on a neighbor 𝑛𝑖, then 

we move to this new solution by setting 𝑠∗ =  𝑠𝑖, and finally we perform a new search 

of the neighborhood 𝑁(𝑛𝑖) = 𝑁(𝑠∗). The algorithm stops when stopping criteria is 

met. 

Matheuristic Algorithm: 

Step 1: Initial solution. 

Perform ILS until the time limit is reached to obtain 𝑠0 and set 𝑠∗ = 𝑠0. 

Step 2: Matheuristic 

While stopping criteria is not met do: 

From 𝑠∗, define a PNSP by randomly fixing a number 𝛼 ∗ 𝑘 of 

selected 𝑜𝑖, 𝑑𝑗 to be in the solution and randomly fixing a number 

𝛼 ∗ (𝑛 − 𝑘) of the non-selected 𝑜𝑙 , 𝑑𝑚 to be out of the solution. 

Solve to optimality the PNSP, obtaining 𝑠𝑖 

If 𝑠𝑖 improves 𝑠∗, then  𝑠∗ = 𝑠𝑖 

end do 

Step 3: Return 𝑠∗. 

The matheuristic procedure described in Step 2 belongs to the group of integrative 

combinations. Additionally, we could also say that Matheuristic Algorithm as a 

whole, acts as a collaborative combination matheuristic, since we first apply a 

metaheuristic and then further optimize it with an algorithm that takes advantage 

of exact methods. 

 

6.3.  Determining the value of α 
 



58 

 

 

The success of the matheuristic algorithm depends on a precise definition of 𝛼. Note 

that if 𝛼 = 1, the solution of the PNSP will be instantly given and exactly equal to 

the initial 𝑠0. The closer 𝛼 is to 1, the less chances to escape from the current local 

optimum. Moreover, if 𝛼 = 0, we were simply applying an exact model algorithm and 

the closer it is to 0, the more time is required to solve the problem to optimality, 

reducing the efficiency of the algorithm. By these reasons, we may start testing the 

Matheuristic Algorithm setting 𝛼 = 0.5 for Step 2.  

Let us first test the algorithm for n=30 for practical reasons: the time limit of 60 

seconds defined for Step 1 and Step 2 for this size is much less than the one for bigger 

instances (300 seconds for n=50), so more analysis can be made in less time. After 

defining the optimum 𝛼, we are going to test it for n=50. For smaller instances, 

optimality was reached by previous methods, so there is no opportunity to improve 

the solution. 

Let Matheuristic A (Math. A) be the Matheuristic Algorithm in which 𝛼 = 0.5. By 

running the algorithm, the main disadvantage that it presented, was that for 

different values of k, the average number of iterations (calculated considering the 10 

instances) that can be done within the time limit were pretty dissimilar. As showed 

in the blue line in Figure 6.1, for k = 15 this average is 13 (for some instances only 6 

and 7 iterations were done) while for other ks it was greater than 50. 

 

 

Figure 6.1: Average number of iterations done for each value of k, for Math. A and Math. B 

 

However, this does not imply that defining a bigger 𝛼, for example, 𝛼 = 0.7 is better: 

although the number of iterations will increase, the chances to escape from the local 

optimum will decrease. For this reason, an adaptive 𝛼 is proposed and is used in 

Matheuristic B (Math. B), represented by the light-blue line in Figure 6.1. This 

consists of starting with 𝛼 = 0.7 (for which the solver takes less than a second to 

solve the corresponding PNSP), and if the algorithm is not able to improve the 

solution within 5 iterations, then 𝛼 = 𝛼 − 0.05. This logic is repeated every 5 
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solution, we restart 𝛼 = 0.7. In this way, we reached a more equilibrated number of 

iterations for different values of k, and at the same time we ensure that if for any 

instance it is difficult to improve the solution for high values of 𝛼, the algorithm will 

gradually reduce it, reaching at some cases an improvement only for 𝛼 = 0.2. A more 

detailed analysis on the matter is presented in section 6.4.2. 

In addition to that, a third 𝛼 is proposed. While evaluating the output of the 

algorithm as it run, many times a portion of the randomly fixed variables repeated 

themself one iteration after another. This is a waste of time because if the PNSPi is 

similar to the PNSPi–1 the exact method is not likely to reach a different local 

optimum. In this way, let us define the Matheuristic C (Math. C) as the Matheuristic 

Algorithm such that it uses the adaptive 𝛼 of Math. B and apart from that, the 

selection of the fixed variables is not always random. It is random at iteration i, but 

at iteration i+1 we add the constraint that we must select as many variables that 

were not selected in the previous iteration as possible. We can summarize this idea 

as follows. 

Matheuristic C: selection of fixed variables 

Iteration i: Random selection 

       Select randomly all the fixed variables. 

Iteration i+1: Fix as many variables that were not fixed in Iteration i as possible. 

  If 𝛼 > 0.5 then select all the non-selected variables at It. i, and the rest 

of them randomly. 

  If 𝛼 = 0.5 then select all the non-selected variables at It. i. 

  If 𝛼 < 0.5 then randomly select the variables, but only from the list of all 

the non-selected variables at It. i. 

 

6.4. Implementation 
 

In this section, a comparison between the three alternatives of 𝛼 is carried out, and 

also an analysis of the improvements found in function of 𝛼 and k is presented. 

 

6.4.1. Results for the three matheuristics 
 

First of all, the three variations of 𝛼 were tested, following the Matheuristic 

Algorithm. For n=30, Step 1 (ILS) run for 60 seconds, and the same time limit was 

established for Step 2 (matheuristic part), leading to a total duration of 120 seconds. 

This was repeated for the same 10 instances and ks as in chapters 4 and 5.  

A pairwise comparison between Math. C and the other two approaches is shown in 

Table 6.1. 
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Table 6.1: Comparison between the three variations of α 

We can observe that there is a very high draw rate, due to the fact that the 

differences on the algorithms were not so huge. However, we can also affirm that 

Math. C is slightly better than the other two methods, and therefore is considered as 

the best one. 

Let us then analyze Figure 6.2, that presents how many times the matheuristic part 

of the Math. C algorithm (Step 2) is able to improve the ILS solution (Step 1) for 

every value of k (please remember that there are 10 instances). The global 

improvement rate is 12% (11 solutions). Moreover, there is a pronounced difference 

between 𝑘 ≤ 15, values for which the local optimum reached by the metaheuristic 

was very difficult to improve by the matheuristic with only a 2% of ameliorated 

solutions; and 𝑘 > 15, where 25% of the times the solution values were increased.  

 

 

Figure 6.2:  Number of solutions of ILS (Step 1) that were improved by Matheuristic C (Step 2) 
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Figure 6.3:  Number of solutions of ILS (Step 1) that were improved by Matheuristic C (Step 2) 

 

6.4.2. A complementary analysis of the adaptive α 
 

Let us present an analysis that shows how many improvements of the ILS solution 

were found for each value of 𝛼 for every k, while implementing Matheuristic C 

Algorithm. Here, improvement does not only represent an increase on the value of a 

solution given by ILS, as analyzed above, but it also includes all the following 

improvements of the new 𝑠∗, reached before the algorithm stops.  

This is useful to prove the effectiveness of utilizing an adaptive 𝛼. In Figure 6.4 we 

notice that the improvements were mainly found for big and intermediate values of 

𝛼. However, we also realized three improvements for 𝛼 ≤ 0.40 (specifically two for 

𝛼 = 0.30 and one for 𝛼 = 0.20) and they were present for the biggest ks. 

For the cases in which no improvement was found, we at least are sure that we have 

explored a big solution space. On the one hand, by applying many iterations, and on 

the other hand by decreasing the value of 𝛼, up to 0.20 sometimes, without being 

able to increase the solution value, which means that the local optimum is robust 

and difficult to improve. 

 

 

Figure 6.4: Improvements reached by Math. C, depending on k and 𝛼 
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As a conclusion of this chapter, the adaptive 𝛼 is useful to optimize the 

implementation of the matheuristic and Matheuristic C is the preferred approach. 

Moreover, we can affirm that for small values of k the solution of ILS is really hard 

to be improved, while it can be sometimes improved for big values of k.  
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7. Results and conclusions 
 

7.1. Considerations 
 

In this chapter, the best of all the proposed alternatives of each of the three 

approaches developed in chapters 4, 5 and 6 are compared. Consider that Model d) 

presented the best performances among the MIP models computing an exact or 

approximate solution, ILS using the Improved N5 rule to perform the neighborhood 

search and 𝜇2′ in the perturbation phase showed to be the best metaheuristic 

approach and finally Math. C was the best of the developed matheuristic approaches. 

These three specific models and algorithms will be used while referring to MIP, ILS 

and Math. respectively, on the current chapter. 

The three models and algorithms were coded in Python 3 while the CPLEX 

Optimization Studio IDE 20.1 was called from Python by using the docplex library. 

Some important python libraries that were used and greatly simplified the 

implementation phase are the following. 

➢ Docplex: is the API that connects Python with CPLEX. 

➢ Munkres: this library is able to apply the Hungarian Method to the given 

matrix in 𝑂(𝑛3) time, and at the same time it registers the selected cij and 

their corresponding values. It was applied to solve the AP on LS. 

➢ NumPy: is a fundamental package for scientific computing on Python. It is 

extremely useful to work with arrays and was mainly used to generate the 

neighbors on the LS. 

➢ Pandas: is a data analysis module for Python. It was used to export the data 

into Excel. Combined with a for loop, the code exports the results for the 10 

instances and the 9 different values of k in only one run, avoiding the required 

time to copy and paste the outputs of the code in Excel manually. 

➢ Other libraries as random, operator, math, etc. 

A final consideration is that instances and ks for each problem size are the same as 

studied in the previous chapters, please refer to section 4.3 for a detailed explanation 

of the generation of the instances and the corresponding ks for different ns. 

 

7.2. Results for n = 30 
 

Differently from the previous section, in this section the time limit is set to 120 

seconds for the three approaches, so we are able to compare them under equal 

conditions. 

Table 7.1 presents the corresponding results for n = 30. In bold it is marked the 

solution that is the maximum value found over the three approaches. First of all, the 

MIP approach is clearly outperformed by the other approaches, as it only finds the 

best solution 33 times, against 78 and 76 of ILS and Math (out of 90 problems solved). 
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Table 7.1: Results for n = 30  

Size k Instance MIP ILS Math. k Instance MIP ILS Math.

1 265 269 269 1 494 508 508

2 267 268 268 2 468 468 468

3 265 265 265 3 464 470 470

4 269 269 269 4 420 424 417

5 268 271 271 5 467 470 468

6 261 267 267 6 484 481 482

7 273 273 273 7 454 457 457

8 259 265 265 8 450 475 475

9 268 272 272 9 468 488 488

10 266 270 270 10 468 498 498

1 379 413 413 1 482 497 490

2 366 405 402 2 443 437 443

3 364 392 384 3 467 470 470

4 387 387 387 4 410 413 411

5 399 398 401 5 473 473 473

6 385 400 400 6 478 482 482

7 389 410 410 7 455 456 456

8 390 397 397 8 454 454 458

9 401 401 401 9 470 470 471

10 388 409 411 10 490 492 492

1 458 463 460 1 488 488 488

2 414 456 448 2 428 428 428

3 419 427 427 3 454 449 454

4 432 441 441 4 407 408 408

5 424 438 438 5 464 465 465

6 461 461 461 6 469 468 469

7 431 443 443 7 455 455 455

8 459 464 464 8 448 448 448

9 445 444 445 9 461 462 462

10 453 457 456 10 477 477 477

1 492 492 493 1 471 471 471

2 462 471 471 2 406 407 407

3 447 456 456 3 432 429 432

4 435 441 441 4 403 403 403

5 451 451 451 5 455 455 455

6 460 494 494 6 456 456 456

7 455 456 456 7 444 444 444

8 496 496 496 8 438 438 438

9 473 471 473 9 456 456 456

10 487 487 477 10 467 467 467

1 502 509 509 33 78 76

2 471 471 471

3 460 461 456

4 424 431 431

5 456 465 465

6 487 488 487

7 457 457 457

8 448 482 480

9 451 490 490

10 486 488 488

30x30

3 18

15

12 27

6 21

9 24

# Best
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Therefore, let us focus our attention on Math. and ILS, by performing a one-by-one 

comparison of every result of both approaches for all instances and ks. The overall 

win-lose-draw rate for Math. is 13%-14%-72%. A very high draw rate is achieved, 

pointing that optimality is probably reached by both methods.  

Moreover, before arriving to other conclusion we should remember that, as showed 

in section 6.4.1, the pure matheuristic part of the Math. algorithm is not able to 

improve the ILS result for 𝑘 ≤ 12. Contradictorily, we can find on Figure 7.1 some 

cases where 𝑘 ≤ 12 and Math. reaches better solutions than ILS. This is due to the 

fact that those results were actually achieved by the ILS part of the Math. algorithm. 

Sometimes, the random perturbation allows to find better results in less time while 

running ILS. Considering this fact, and by appropriately clustering k depending on 

which algorithm performs better (showed in Figure 7.2), we can conclude that: 

✓ For k ≤ 18: ILS performs better than the matheuristic. 

✓ For k ≥ 21: matheuristic performs slightly better than ILS.  

   

           Figure 7.1: Math. against pure ILS, n = 30            Figure 7.2: Comparison with clustered ks 
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Again, we set the same time limit for the three approaches, in this case of 600 
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Table 7.2: Results for n = 50 

Size k Instance MIP ILS Math. k Instance MIP ILS Math.

1 379 399 397 1 606 611 612

2 374 402 403 2 635 633 636

3 382 399 399 3 598 614 615

4 378 396 396 4 577 590 591

5 352 405 402 5 645 647 643

6 384 387 387 6 607 621 621

7 373 402 402 7 578 583 556

8 395 399 399 8 622 639 644

9 374 403 403 9 631 640 643

10 376 386 386 10 587 595 583

1 512 529 528 1 617 620 623

2 532 544 544 2 637 650 649

3 514 552 560 3 612 626 627

4 530 518 524 4 598 597 601

5 507 543 544 5 641 655 644

6 520 522 522 6 613 620 620

7 543 543 543 7 583 569 585

8 558 575 575 8 627 635 621

9 500 539 537 9 643 649 651

10 502 528 528 10 596 604 599

1 528 570 569 1 621 622 622

2 577 605 605 2 655 649 655

3 556 595 590 3 627 623 628

4 548 565 567 4 602 612 612

5 553 612 612 5 659 655 655

6 557 579 579 6 621 621 622

7 550 560 559 7 578 590 576

8 595 614 614 8 628 635 628

9 559 589 586 9 652 661 661

10 559 571 570 10 607 613 613

1 580 589 591 1 629 630 629

2 620 632 632 2 652 651 652

3 613 614 613 3 631 629 630

4 563 581 581 4 610 610 610

5 622 646 646 5 661 661 661

6 604 603 599 6 623 623 624

7 552 566 549 7 593 593 589

8 618 627 626 8 633 633 633

9 609 604 611 9 657 660 660

10 587 591 590 10 625 623 625

1 583 594 589 13 61 55

2 622 621 626

3 601 607 592

4 560 577 571

5 608 635 637

6 588 608 608

7 572 578 576

8 586 636 633

9 620 637 631

10 595 595 590

15 40

25

# Best

10 35

50x50

5 30

20 45
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Therefore, let us carry out a comparison between Math. and ILS, in the same way as 

in the previous section. In this case, the overall win-lose-draw rate for the hybrid 

approach was 30%-36%-34%, a quasi-uniformly distributed result. We notice that 

the draw rate considerably decreased compared to the one of n = 30, probably because 

optimality is more difficult to achieve for these larger instances.  

Moreover, in Figure 7.3 we observe that for k ≤ 25 Math. outperforms ILS nine (out 

of fifty) times. However, in only one of those cases the credit can be given to the 

matheuristic part of Math. algorithm, since the other eight times the final solution 

of Math. is the one given by the ILS part of that algorithm. Then, we can cluster the 

values of k just as showed in Figure 7.4, and we can conclude that: 

✓ For k ≤ 25: pure ILS performs better than the Math. 

✓ For k ≥ 30: the matheuristic approach performs better than ILS. 

  

               Figure 7.3: Math. against pure ILS              Figure 7.4: Comparison with clustered ks 

 

7.4. Conclusion 
 

To sum up, this thesis presented different approaches to solve the BAP. Each of them 

was improved as much as possible in the corresponding chapter, by the use of relaxed 

models, by performing a neighborhood search following a determined order, by 

constricting upper bounds to the AP solution, by developing adaptive algorithms, etc.  

After an extensive comparison that was done in this chapter, we can conclude that 

the MIP approach demonstrated to have the worst performance. Moreover, we can 

state that a pure ILS is better for small values of k, while a hybrid approach is 

preferred for bigger ks. 
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