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Abstract

Sonoluminescence is a phenomenon that occurs when a bubble is excited by a
driving sound wave with resonant frequency. The implosion is so strong that the
internal energy is spatially concentrated of about twelve orders of magnitude in a
small volume of a radius in the order of 10−6 meters. Concomitantly, emission of
light is observed.
A deep comprehension of this phenomenon is yet to be reached, because of the
complex interaction between the bubble wall dynamics and the interior chemistry
and hydrodynamics.
In this work a comparison between the physical phenomenology and a recently
found set of mathematical solutions to the spherically symmetric Navier-Stokes and
Euler equations is conducted. The physical aspects are described through a classic
Rayleigh-Plesset model for bubble dynamics, considering a polytropic behaviour
inside the interface.
The results show a good fit of the analytical solutions to the numerical data near
the collapse, and three pairs of coefficients’ values are estimated for the analytical
solutions.
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Chapter 1

Introduction

1.1 Sonoluminescence and bubbles

The phenomenon called sonoluminescence consists in the emission of short bursts
of light emitted by an imploding bubble under particular conditions. Although
many theories have been formulated, the mechanism of sonoluminescence is still
unknown today and therefore an introduction to the world of bubbles is necessary
to fully understand the phenomenology of the problem.
A bubble is a simple cavity of a substance within another one or of a substance
trapped inside an interface that separates the inside from the outside. In nature
there are many examples of bubbles which can be observed everyday, such as
bubbles of air in water or in ice (fig.1.2), bubbles created by the Snapping shrimp
to catch their prey, globules of resin produced by conifers and other kinds of trees
and plants or even the lava bubbles originated from the volcanic gas trapped inside
the magma.
The interest around the world of bubbles has grown during the centuries. In fact,
they have been studied with different approaches: art, since the 16th century, and
more recently in mathematics, physics, chemistry and other scientific subjects [44,
46].
Examples of the use of bubbles in art could be paintings, in which they have been
used as a metaphor of the fragility of human life. Most of them depict young boys
and girls blowing soap bubbles, as shown in the painting of Simeon Chardin titled
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Introduction

Figure 1.1: Sonoluminescing bubble in a flask of water

Les bulles de savon fig.1.3 (1733-34) or in the homonym painting of Édouard Manet
fig.1.4 (1867).
Another important example of bubbles in art is music, in which they have been
taken as the main topic of songs like I’m forever blowing bubbles by John Kellette
(1918), today well known, especially in England, as the anthem of West Ham
football club and as a part of the opening ceremony soundtrack of the 2012 London
Olympics.
A more scientific approach to the bubbles world started after the derivation of the
Navier-Stokes equations, in the 1840s, especially if reported in spherical coordinates.
During the last 150 years many reaserchers have tried to understand the secrets
hidden behind this curious phenomenon.

2



Introduction

Figure 1.2: Air bubbles in the ice on Baikal Lake (Russia, 2018), courtesy of
Raffaella Canfarini [53]

1.2 Thesis outline

In the reminder of this first section a brief historical overview and the objectives of
this work are presented.
After that, the second section reviews some fundamentals of fluid dynamics, bubble
dynamics and finally sonoluminescence, paying attention to the bubble’s interior
fluid dynamics and to the light emission models.
Section 3 contains the mathematical models and their analytical solutions which
will then be used in section 4 for a comparision with the numerical solutions of the
models presented in the second chapter.
Finally, section 5 contains a summary of the results obtained along with my opinions
and some proposals for future works.
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Figure 1.3: Les Bulles de savon, Jean-
Baptiste Siméon Chardin (1733-34)

Figure 1.4: Les Bulles de savon,
Édouard Manet (1867)

1.3 Historical background

In 1859, Besant published a first solution to the problem of the prediction of pressure
and collapse time of a spherical bubble within an infinite mass of homogeneous,
incompressible, inviscid fluid [1]. After that, in 1895 John Isaac Thornycroft, a
Chief Constructor of the Royal Navy, introduced the term cavitation to describe the
damage made by collapsing bubbles to ship propellers [2]. In order to understand
this phenomenon, a theoretical analysis of this problem was made by Lord Rayleigh
in 1917 who extended the problem of the collapse of both empty and gas-filled
bubbles [3].
Starting from the Navier-Stokes equation, in 1949, Plesset derived a second order
ODE that describes the dynamics of bubbles interface neglecting liquid viscosity,
thermal effects and surface tension [7]. This equation was then generalized and
refined by Poritsky in 1952, who added the liquid viscosity and proved that
in absence of surface tension, the bubble doesn’t collapse, and by Gilmore in
the same year, who started to evaluate the effect of the compressibility of fluid
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Introduction

inside and outside the bubble [10, 9]. The latter was then developed by Tomita,
Shima and Fujiwara in their works, in which they found a correlation between
compressibility and damping, proving that the dynamics is significantly damped
due to compressibility [15, 16, 17]. Subsequent important contributions were the
development of stability theories that have allowed us to become aware of under
what conditions the bubble would remain shape-stable [42, 31, 33].
Other refinements were made by Plesset, Prosperetti and others over a span of
about 50 years and have been supported by numerical investigations mostly done
by Werner Lauterborn [11, 12, 14, 8, 13].
As mentioned in Single-Bubble Sonoluminescence, light emission from collapsing
bubbles was discovered in the early 1930s by Marinesco and Trillat (1933) and
Frenzel and Schultes (1934) when they saw clouds of collapsing bubbles emit
light [42, 4, 5]. This phenomenon, now called Multi-Bubble Sonoluminescence
(MBSL), was considered just a consequence of the energy-focusing mechanism of
cavitation and therefore it wasn’t studied in depth until the discovery of Single-
Bubble Sonoluminescence by Gaitan in 1989 [21, 22, 25].
Felipe Gaitan working with Larry Crum carried out many experiments using a
flask of liquid and transducers to drive the bubble with an acoustic standing wave
and they found the range of pressures and frequencies necessary to obtain SBSL.
After these first experiments many other physicists, mathematicians and engineers
started searching for the causes of sonoluminescence. Always during 90s, Putterman
and Barber carried out a set of experiments in order to understand how much SBSL
focuses energy [23, 24]. Their works suggested that the pulse of light lasts much
less than the common time scale of the compression and therefore the mechanism
of SBSL is decoupled from the hydrodynamics of the bubble.
As reported in Single-Bubble Sonoluminescence, this result led to a bevy of ideas
about the core mechanism of SBSL: Greenspan and Nadim (1993) suggested
that the energy is focused by converging spherical shocks, Garcia and Levanyuk
(1996) suggested the possibility of dielectric breakdown of the gas, Prosperetti
(1997) suggested the so-called fracture-induced emission, Moss (1997) suggested
the bremsstrahlung mechanism, Frommold and Atchley (1994) suggested the
collision-induced emission and finally Eberlein (1996a,1996b) proposed the quantum-
electrodynamical Casimir effect [28, 32, 35, 37, 30, 56, 57].
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1.4 Objectives of this work

The main goal of this thesis is to supply a starting point for future analysis
related to sonoluminescence, comparing new analytical solutions found by F. Merle,
P. Raphael, I. Rodnianski and J. Szeftel to the Euler, Navier-Stokes and Non-
Linear Schroedinger equations to the numerical and experimental solutions of the
sonoluminescence models.
This can be done evaluating the asymptotical behaviour of the various solutions and
fitting the obtained data. After this analysis, one can try to physically contextualize
most of the properties derived from the mathematical approach and also try to
transfer that from fluids to waves.

6



Chapter 2

Mathematical models for
bubble dynamics

Bubbles dynamics requires to introduce the basic equations of fluid motion, the
celebrated Navier-Stokes equations [48, 40, 19].

2.1 Fundamentals

In the derivation of these equations some assumptions are necessary:

• The fluid must be continuous, which implies that the Knudsen number has to
be much smaller than one:

Kn = λ

L
� 1

This means that the mean free path of the molecules λ in a gas is much smaller
than the characteristic length scale.

• The fluid has to be Newtonian, which implies a linear relation between the
stress tensor and the symmetric part of the deformation tensor;

• The Stokes’ hypotesis holds:
λ = −2

3µ

7



Mathematical models for bubble dynamics

• The Fourier equation holds:
qi = −k ∂T

∂xi

• The fluid has to be considered chemically non-reacting and homogeneous;

• Body forces are neglected;

• Radiation is neglected.

According to these hypoteses, the governing equations in differential, conservative
form are:

∂ρ

∂t
+ ∂ρuj

∂xj
= 0

∂ρui
∂t

+ ∂ρuiuj
∂xj

= − ∂p

∂xi
+ ∂τij
∂xj

∂E

∂t
+ ∂(E + p)uj

∂xj
= −∂(τijui − qj)

∂xj

These equations express respectively, the mass conservation, the momentum con-
servation and the energy conservation inside the control volume. Where:

τij = λ
∂uk
∂xk

δij + µ

(
∂ui
∂xj

+ ∂uj
∂xi

)

¯̄τ =


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz


Neglecting all the viscosity terms it is possible to write the Euler equations:

∂ρ

∂t
+ ∂ρuj

∂xj
= 0

∂ρui
∂t

+ ∂ρuiuj
∂xj

+ ∂p

∂xi
= 0

∂E

∂t
+ ∂(E + p)uj

∂xj
= 0
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Taking the curl of the momentum equation of the Navier-Stokes one can easily
derive the vorticity equation:

∂ωi
∂t

+ uj
∂ωi
∂xj

= ωj
∂ui
∂xj

+ ν
∂2ωi
∂xj∂xj

These set of equations are presented in Cartesian coordinates, but for the analysis
of a bubble, it is needed to write them in spherical coordinates [43, 20].

∂ρ

∂t
+ 1
r2
∂(ρr2ur)

∂r
+ 1
r sin θ

∂(ρuθ sin θ)
∂θ

+ 1
r sin θ

∂(ρuφ)
∂φ

= 0

ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+ uθ
r

∂ur
∂θ

+ uφ
r sin θ

∂ur
∂φ
−
u2
θ + u2

φ

r

)

= −∂P
∂r

+ µ

(
∂

∂r

(
1
r2

∂

∂r

(
r2ur

))
+ 1
r2 sin θ

∂

∂θ

(
sin θ∂ur

∂θ

)

+ 1
r2 sin2 θ

∂2ur
∂φ2 −

2
r2 sin θ

∂

∂θ
(uθ sin θ)− 2

r2 sin θ
∂uφ
∂φ

)

And:

∂ρ

∂t
+ 1
r2
∂(ρr2ur)

∂r
+ 1
r sin θ

∂(ρuθ sin θ)
∂θ

+ 1
r sin θ

∂(ρuφ)
∂φ

= 0

ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+ uθ
r

∂ur
∂θ

+ uφ
r sin θ

∂ur
∂φ
−
u2
θ + u2

φ

r

)
= −∂P

∂r

And for the vorticity:

∂ωr
∂t

+ (u · ∇)ωr − (ω · ∇)ur) = 0

∂ωθ
∂t

+ (u · ∇)ωθ − (ω · ∇)uθ) + ωruθ
r
− ωθur

r
= 0

∂ωΦ

∂t
+ (u · ∇)ωΦ − (ω · ∇)uΦ) + ωruΦ

r
− ωΦur

r
+ ωθuΦ cot θ

r
− ωΦuθ cot θ

r
= 0

Starting from the Euler equations in spherical coordinates, in the next paragraph,
the equation for the bubble dynamics is derived.
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2.2 Rayleigh-Plesset equation

The so called Rayleigh-Plesset (RP) equation is an ODE that controls the dynamics
of a spehrical bubble in an infinite incompressible fluid field whose temperature and
pressure at a great distance from the bubble are T∞ = cost and p∞(t) respectively
[3, 7, 13, 45, 14] .
This equation can be derived from the NS equations under the assumption of
spherical simmetry and his dynamic parameter is the time-dependent radius R(t)
of the bubble.
As reported in 1.3, Rayleigh supplied the solutions to the problem of collapsing

Figure 2.1: Spherical bubble in an infinite fluid field [45]

time and wall velocity [3]. Assuming that the whole kinetic energy of the motion
is equals to the work done by the liquid, a bubble with an initial radius R0 that
collapses to R with velocity:

V =

√√√√2
3
p∞
ρl

[(
R0

R

)3

− 1
]

10
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and the time of collapse is given by direct integration from R = R0 to R = 0:

τ = 0.91468R0

√
ρl
p∞

From this first results, Plesset in 1949, derived the equation for the bubble motion
[7].
For the conservation of mass, the radial velocity must follow the inverse-square law

u(r, t) = F (t)
r2

where F (t) is a function of time related to the kinematic boundary condition. If
we consider the ideal case of zero mass transport across the surface, the velocity
become

u(r, t) = dR

dt

therefore the function F (t) can be rewritten as

F (t) = R2dR

dt

Assuming that the fluid is Newtonian, the incompressible momentum balance
equation for radial motion,

∂u

∂t
+ u

∂u

∂r
= − 1

ρl

∂p

∂r
+ νl

[
1
r2

∂

∂r

(
r2∂u

∂r

)
− 2u
r2

]

substituting u(r, t):

− 1
ρl

∂p

∂r
= − 1

r2
dF

dt
− 2F 2

r5 = 1
r2

(
2R
(
dR

dt

)2

+R2d
2R

dt2

)
− 2R4

r5

(
dR

dt

)2

Note that during the substitution the viscous terms go to zero, in fact

νl

[
1
r2

∂

∂r

(
r2∂u

∂r

)
− 2u
r2

]
= νl

{
1
r2

∂

∂r

[
r2
(
−2F
r3

)]
− 2F

r4

}
= 0

11
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This equation can be integrated from r = R to r →∞ and the result is

p− p∞
ρl

= R
d2R

dt2
+ 3

2

(
dR

dt

)2

It is necessary to construct the dynamic boundary conditions for the bubble surface.
Considering a small portion of the bubble surface, the net force per unit area acting
on this lamina can be written as the sum of the normal stress term, the surface
tension term and the pressure :

σrr(R) + PB −
2S
R

where σrr = −p + 2µl∂u/∂r and S is the surface tension. And substituting the
latter

−p+ 2µl
∂u

∂r
+ PB −

2S
R

= −p− 4
µ l
R
dR

dt
+ PB −

2S
R

If the mass transport across the boundary is zero, this force per unit area must
also be zero:

p(r = R) = pB −
4µl
R

dR

dt
− 2S

R

The result momentum equation becomes:

R
d2R

dt2
+ 3

2

(
dR

dt

)2

= pB(t)− p∞(t)
ρl

− 4νl
R

dR

dt
− 2S
ρlR

This equation is the generalized RP equation for bubble dynamics by Plesset [7].
The closure of the model requires knowing the pressure inside the bubble. Assuming
that the bubble contains a non-condensable gas with partial pressure pG0 at some
reference temperature T∞ and size R0, without any sort of mass transfer across
the interface, it is possible to write:

pB(t) = pV (TB) + pG0

(
TB
T∞

)(
R0

R

)3

Substituting this equation in the previous one, neglecting the thermal effect and
assuming the temperature in the liquid uniform and the behaviour of the interior

12
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gas polytropic, the RP equation become:

R
d2R

dt2
+ 3

2

(
dR

dt

)2

= pV (T∞)− p∞(t)
ρl

+ pG0

ρl

(
R0

R

)3k

− 4νl
R

dR

dt
− 2S
ρlR

• The left hand side of the above equation is the inertial part. One can obtain
an analytical solution by direct integration, that brings at the power law:

R(t) = R0[ (ts − t)
ts

]2/5

Ṙ(t) ∝ (ts − t)−3/5 = 1
(ts − t)3/5

In the case of the bubble velocity is evident the diverging singularity for t→ ts;

• On the right hand side, the first term represents the unbalance between the
vapour pressure inside and the excitating pressure outside the bubble. The
first one depends on the temperature inside the bubble that is supposed to be
uniform and the same of the external liquid.
The external pressure can be written in the form:

p∞(t) = −pa sin(2πft)

Where f is the frequency and pa is the amplitude of oscillations.

• The second term represents the polytropic behaviour of the gas inside the
bubble, and it is a contribution of the assumption of non condensable gas;

• The third term represent the viscous effect, that is proportional to the bubble
wall velocity and inversely proportional to the bubble radius, so one can note
that this term become significant only for small radii;

• The last one represent the contribution of the surface tension, that is inversely
proportional to the bubble radius, so this term become important only for
small radii as viscosity.

One of the most important parameters involved in bubble dynamics is the exponent
of the polytropic. As mentioned in Single-bubble sonoluminescence, the exponent
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k of the polytropic depends on the phase of the bubble cycle: when the interface
moves slowly, one can assume that the temperature inside the bubble is manteined
constant and equal to the external liquid because the heat transfer is faster than
the compression, so the transformation can be considered isothermal, with γ = 1;
when the heat transfer process is slower than the bubble motion, the heat is not be
able to be exchanged and so the bubble will behave adiabatically, with γ = Γ, that
for a monoatomic gas is γ = 5/3 [42].
The parameters that can be used to distinguish these two situations is the Péclet
number:

Pe = |Ṙ|R
χg

where χg is the thermal diffusivity of the gas.
The equilibrium condition for a bubble can be easily derived by the Rayleigh-Plesset
equation evaluating the initial condition t = 0 for which the derivatives go to zero
and p∞ = p∞(0), so:

pG0 = p∞(0)− pV (T∞) + 2S
R

Another important parameter is the resonant frequency, that can be calculated as:

f0 = 1
2π

√√√√ 1
ρR2

0

(
3γP0 + (3γ − 1)2σ

R0

)

According to this formula, a typical value of the resonant frequency for R0 ≈ 5µm
is of the order of f0 ≈ 0.5MHz [45].

Others examples of models for the bubble dynamics are the Gilmore model and
the Keller-Miksis model, both reported by Lauterborn and Kurz in the review
Physics of bubble oscillations [9, 18, 47].
The Gilmore model takes into account the effects of sound radiation in the liquid
from the oscillating bubble and it can be further refined with the Van der Waals
hard core law. This model in his complete form is:

(
1− Ṙ

C

)
RR̈ + 3

2

(
1− Ṙ

3C

)
Ṙ2 =

(
1 + Ṙ

C

)
H + Ṙ

C

(
1− Ṙ

C

)
R
dH

dR
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H =
∫ p|r=R

p|r→∞

dp(ρ)
ρ

p(ρ) = A

(
ρ

ρ0

)nT
−B

p|r=R =
(
pstat + 2S

R0

)(
R3

0 − bR3
0

R3 − bR3
0

)k
− 2S

R
− 4µ
R
Ṙ

p|r→∞ = pstat + p∞(t)

C =
√
c0 + (nT − 1)H

Where c0 is the sound velocity in the liquid at normal conditions, C is the the
sound velocity at the bubble interface, H is the enthalpy, A, B and nT are the
parameters of the Tait equation of state and b is the constant of the Van der Waals
hard core law.
Instead, the Keller-Miksis model takes into account the sound radiation in the
liquid from the bubble with a retarded time t− R

c
and it reads as:

(
1− Ṙ

c

)
RR̈ + 3

2

(
1− Ṙ

3c

)
Ṙ2 =

(
1 + Ṙ

c

)
p1

ρ
+ R

ρc

dp1

dt

p1 =
(
pstat−

2S
R0

)(
R0

R

)3k

− pstat −
2S
R
− 4µ
R
Ṙ− p∞(t)

p∞(t) = pa sin(2πft)

According to Physics of bubble oscillations, the three models presented give similar
results, all of them very close to the experiments.
As reported by Brennen in Bubble growth and collapse, under the assumption
of constant excitating pressure p∞ and neglecting the viscosity, some analytical
solutions can be found [45].
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2.3 Sonoluminescence

It is clear that what has been described in the previous section is the starting
point for a complete understanding of sonoluminescence. In fact, such phenomenon
consists in the emission of short bursts of light emitted by an imploding bubble
under particular conditions and the core dynamical equation is the RP equation.
As mentioned in the paper Defining the unknowns of sonoluminescence, the interest
in SL is because the energy enters the fluid by soundwave characterized by low
energy and long wavelengths and comes out as bursts of light, which is at high
energy [36]. This energy is concentrated by 12 orders of magnitude, in fact, typical
acoustical energies are about 10−12 eV per molecule and classical light energies
are around 1 eV [49, 36]. This behaviour cannot be described with the classical
equations of fluid mechanics, therefore it is necessary to add equations for internal
dynamics and light emission to the model.

2.3.1 Interior dynamics

Light emission strongly depends on the temperature inside the bubble, and the
latter also depends on the gas composition.
Clearly the best way to proceed in the evaluation of the interior fluid’s evolution is
to compute the full compressible Navier-Stokes equation [19, 42]:

∂ρ

∂t
+ ∂ρuj

∂xj
= 0

∂ρui
∂t

+ ∂ρuiuj
∂xj

= − ∂p

∂xi
+ ∂τij
∂xj

∂E

∂t
+ ∂(E + p)uj

∂xj
= −∂(τijui)

∂xj
− ∂

∂xj
(Kg

∂T

∂xj
)

With:
τij = λ

∂uk
∂xk

δij + µ

(
∂ui
∂xj

+ ∂uj
∂xi

)

Numerically speaking this approach results very heavy.
According to Single-bubble sonoluminescence, from the early 90s, many attempts
of solution have been carried on. In 1993 Wu and Roberts presented their work
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on the inviscid model [27]. Three years later, Vuong and Szeri, proposed a more
complex model including dissipation phenomena that was further extended in 2000
by Storey and Szeri including water vapour phase changing [34, 39].

For the subsequent analysis of this work of thesis, it is important to briefly
describe the inviscid models. In fact, the work of Wu and Roberts started from the
idea that the high temperature are caused by a mechanism of shock focusing. This
assumption have allowed a comparison with the analytical solution of collapse of
an imploding sphere found by Guderley in 1942 [27, 6].
His result shows that the dynamic behaviour of the radius of the converging shock
follow the law:

R(t) ∼ (ts − t)α

and the computed values of α are respectively α ≈ 0.6884 and α ≈ 0.7172 for
Γ = 5/3 and Γ = 7/5.
Considering an ideal gas equation of state is evident that, when t→ ts, the temper-
ature blow up. This behavior has to be attributed to having neglected the viscosity
and thermal diffusion that make the model non-physical and this is the reason for
the subsequent analyses of the dissipative models.

The main result of the analyses of the dissipative models, started with the work
of Vuong and Szeri, is the absence of shock in argon and nitrogen bubbles [34, 38].
After a few years of research, Lin and Szeri reported the difficulties of formation
of shock waves inside the sonoluminescing bubbles due to adverse entropy gra-
dients and the weakening effect of the increasing sound speed towards the center [41].

Thanks to the direct analysis of the full gas-dynamical equations, it has been
possible to state that all the thermodynamic parameters inside the bubble are
slightly dependent of the space and therefore it is reasonable consider them only
time-dependent [42]. This led to a different way to proceed in the computation of
the internal temperature and pressure.
Assuming an adiabatic equation of state, with a van der Waals gas, and neglecting
heat and mass transfer one can write the simplest possible model [29]:
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pG(t) =
(
P0 + 2S

R0

)
(R3

0 − h3)Γ

(R(t)−h3)Γ

TG(t) = T0
(R3

0 − h3)Γ−1

(R(t)−h3)Γ−1

These two equations are coupled with the classical RP equation.
The main problem in this case is the assumption of the adiabaticity, in fact, in the
expansion phase of the bubble, the motion is so slow that allows heat exchange with
the external liquid therefore the real behaviour is isothermal. One can correctly
assumes an adiabatic behaviour in a restricted neighbourhood near the collapse.
The parameters that describes the change of behaviour is the Péclet number.
Andrea Prosperetti in 1977 proposed a transition function γ(Pe(t)), in order to
insert a time-dependent polytropic coefficient in the model and this equation is
included in the analysis made by Hilgenfeldt in 1999 [55, 59, 60]. The proposed
equation for the temperature:

Ṫ = −[γ(Pe(t))− 1] 3R2Ṙ

R3 − h3T − (T − Tw0)χg/R2

This model predict a peak temperatures in the order of 20000K. Taking into
account the heat and mass exchange the complexity of the problem goes up. In
1997, Yasui proposed a model based on the RP equation with a van der Waals gas
inside that includes mass transfer through condensation and evaporation, and an
heat exchange due to the latter cited phenomena and the temperature gradients.
He also included in the model 25 possible chemical reactions for the water vapor
[58].
His main result is that almost all the water is expelled during the collapse. The
peak temperatures computed with this model reach only 10000K due to the heat
absorption by the endothermical chemical reactions of the water vapor.
The main problem of this model is that Yasui has assumed that the transportation
of mass through the interface is limited by the condensation. Some years later,
in fact, has been proved that the limiting condition is the diffusion [39]. This
statement was carried on in the paper Suppressing dissociation in sonoluminescing
bubbles: The effect of excluded volume by Toegel et al., who evaluate the number
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of molecules through the formula:

˙NH2O = 4πR2D∂|r=R ≈ 4πR2D
n0 − n
ldiff

with ldiff = min[(RD/Ṙ)1/2, R/π], where D is the gas diffusion constant.
The equation for the heat flux was:

Q̇ = 4πR2χmix
Tw0 − T
ldiff

They also showed that the most important endothermical reactio is:

H2O + 5.1eV ↔ OH +H

And this statement led to another equation for the temperature inside the bubble:

CvṪ = Q̇− pgV̇ + hwṄ
d
H2O −

∑
X

∂E

∂NX

ṄX

where X is the sum of the species.
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Chapter 3

Analytical solutions (Merle,
Raphaël, Rodnianski and
Szeftel)

An important mathematical result about spherically-symmetric Euler and Navier-
Stokes equations has been found in the latter years by F. Merle, P. Raphael, I.
Rodnianski and J. Szeftel in the three companion papers [51, 52, 50].

3.1 Euler equations

In the first one, called On smooth self-similar solutions to the compressible Euler
equations, the team of mathematicians showed the existence of such C∞, global,
self-similar solutions which, from smooth initial data, blow up in the origin at a
certain moment (T,0), with T <∞ [51].
They moved from the previous works of Guderley, for whom the study of the
solutions is reduced to the following system [6]:


dw
dx

= −∆1
∆

dσ
dx

= −∆2
∆
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Where ∆1, ∆2 and ∆ are polynomials and the similarity variable Z = ex related to
(t, y) through the relation:

Z = |y|
(T − t) 1

r

where r is dimentionally a speed.
Considering the compressible isentropic Euler equations:



∂tρ+∇ · (ρu) = 0

ρ∂tu+ ρu · ∇u+∇p = 0

p = γ−1
γ
ργ

ρ(t, y) > 0

Introducing:
l = 2

γ − 1 > 0 r > 1

And the self-similar renormalization:

ρ(t, y) = (λ
ν
)

2
γ−1 ρ̂(τ, Z)

u(t, y) = λ
ν
û(τ, Z)

Z = y
λ

dτ
dt

= 1
ν

−λτ
λ

= 1

−ντ
ν

= r

It is now possible to renormalize the set of equations on [0, T ) as:

∂τ ρ̂+ l(r − 1)ρ̂+ Λρ̂+∇ · (ρ̂û) = 0

∂τ û+ (r − 1)û+ Λû+ û · ∇û+∇(ρ̂γ−1) = 0

Λ = Z · ∇
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According to On smooth self-similar solutions to the compressible Euler equations,
a self-similar profile is a stationary solution to the previous system [51]:

l(r − 1)ρ̂+ Λρ̂+∇ · (ρ̂û) = 0

(r − 1)û+ Λû+ û · ∇û+∇(ρ̂γ−1) = 0

with rate of concentration of the blow-up solution that is:

λ(t) = λ0(T − t) 1
r

ν(t) = r(T − t)

The solutions away from the concentration point (T,0) are:


ρ(t, y) = 1
(T−t)( 2(r−1)

r(γ−1 )
ρ̂(Z)

u(t, y) = 1
(T−t)( (r−1)

r

û(Z)

Z = y

λ0(T−t)
1
r

With asymptotics:
ρ(t, y) = ρ∗(1 + o|Z|→+∞(1))

|y|
2(r−1)
r(γ−1)

u(t, y) ∼ u∗(1 + o|Z|→+∞(1))
|y| r−1

r

These solutions, lead to the existence of finite energy blow-up solutions of the Euler
equations.
The importance of the solutions of this system of equations is that in the compan-
ion papers, these profiles have been used ad the leading order blow up profil [52, 50].

22



Analytical solutions (Merle, Raphaël, Rodnianski and Szeftel)

3.2 Navier-Stokes equations

As demonstrated in On the implosion of a three dimensional compressible fluid by
Merle et al, considering the compressible, barotropic, three dimensionale Navier-
Stokes equations [52]:



∂tρ+∇ · (ρu) = 0

ρ∂tu+ ρu · ∇u+∇p = µ∆u+ µ′∇div(u)

p = γ−1
γ
ργ

(ρt=0, ut=0) = (ρ0(x), u0(x)) ∈ R∗+ × R3

with ρ > 0, but which can decay at +∞

lim
|x|→+∞

ρ(t, x) = 0

Defining the additional parameters:

l = 2
γ − 1

r∗(d, l) = d+ l

l +
√
d

r+(d, l) = 1 + d− 1
(1 +

√
l)2

r (d, l) =

r
∗(d, l) for l > d

r+(d, l) for l < d

Adopting the physical restriction on µ and µ′:

µ ≥ 0 3µ′ − µ ≥ 0

The main result obtained is the demonstration of the existence of a countable
sequence (ln)n∈N, with an accumulation point that can only be at {0,3,∞} such
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that, according to the previous defined parameters, and assuming that [52]:

l /= 3

l >
√

3

for Navier-Stokes and
l > 3

for Euler. With:
l /∈ {ln, n ∈ N}

For each possible l, there exists a discrete sequence of blow-up speeds (rk)k≥1 with:

1 < rk < r (3, l)

lim
k→+∞

rk = r (3, l)

such that the existence of a fintite co-dimensional group of smooth spherically
symmetric initial data (ρ0, u0) such that the solutions to the NS and Euler equations
blow-up in finite time 0 < T < +∞ at the center of symmetry is demonstrated for
each k ≥ 1, with:

||u(t, ·)||L∞ = cu0(1 + ot→T (1))

(T − t)
rk−1
rk

||ρ(t, ·)||L∞ = cρ0(1 + ot→T (1))

(T − t)
l(rk−1)
rk

with cu0 > 0 and cρ0 > 0 costants [52].
This set of solutions describe the self-implosion of a fluid due to some distribution
of matter characterized by finite energy. These profiles reamin smooth until the
blow up. It is important to note that these solutions do not describe self-similar
profiles as in the Euler case.
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3.3 Properties of solutions

The presented solution is characterized by some important peculiarities and prop-
erties [52].

• None of the parameters that characterize the solutions are dependent to the
viscosity µ and µ′;

• The value of l >
√

3 is fundamental for the compatibility of the Navier-Stokes
solutions to the Euler-like blow up. In addition it is known that the this
phenomenon happens only for l = d where d is the general dimension;

• The above reported theorem that supply the solution holds for Euler in a
bidimensional case;

• The sequence of the parameter ln is strictly related to the existence of C∞

self-similar solutions for Euler;

• One of the hypotesis is that the behaviour at infinity of ρ and u is known
a priori because the should decay and this involves that the energy of the
solutions is finite;

• The solutions are valid for spherically symmetric initial data, but they are
also stable for non-symmetric perturbations;

• In contrast with the previous solutions to the shock formation problem, in this
solution both velocity and density diverge at the time of the first singularity;

• The stability problem has yet to be fully treated;

Blow up solutions found by Merle et al are strictly connected with the solution at the
singularity formation problem in defocusing super-critical Schrȯdinger equations.
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3.4 Nonlinear Schrödinger equations

Considering the defocusing super-critical Schrödinger equation [50]:

i∂tu+ ∆u− u|u|p−1 = 0

u|t=0 = u0

with:
(t, x) ∈ [0, T )× Rd, u(t, x) ∈ C

in dimension d ≥ 3 ancd with p ∈ 2N∗ + 1.

Merle et al. proposed a new set of solutions in the paper On blow up for the
energy super critical defocusing nonlinear Schrödinger equations [50].
They demonstrate that for dimensions 5 ≤ d ≤ 9 the equation admits a blow
up solution from C∞ initial data that is not related to the classical soliton or
self-similar solutions.

Introducing:
(d, p) ∈ {(5,9), (6,5), (8,3), (9,3)}

and
r∗(d, l) = l + d

l +
√
d

l = 4
p− 1

There exists a sequence of blow up speeds (rk)k≥1 with

2 < rk < r∗(d, l)

lim
k→+∞

rk = r∗(d, l)

such that the existence of a finite co-dimensional group of smooth spherically
symmetric initial data u0 such that the solution to the NLS blow up in finite time

26



Analytical solutions (Merle, Raphaël, Rodnianski and Szeftel)

0 < T < +∞ at the center of symmetry is demonstrated for each k ≥ 1, with:

||u(t, ·)||L∞ = cp,r,d(1 + ot→T (1))

(T − t)
1
p−1 (1+ rk−2

rk
)

with cp,r,d > 0.
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Chapter 4

Numerical simulations and
results

The goal of this work of thesis is to compare the analytical solutions reported in
the previous section to the numerical data of the Rayleigh-Plesset equation for
bubble dynamics.
The equation used is:

R̈ = −3
2
Ṙ2

R
+ pG
ρR
− p0

ρR
+ p∞(t)

ρR
+ 1
ρc

d

dt
[pG(R) + p∞(t)]− 4µṘ

ρR2 −
2S
ρR2

With:
p∞ = PA sin(ωt)

pG = p0 ∗R3k
0

(R3 − a3)k

TG = T0 ∗R3(k−1)
0

(R3 − a3)(k−1)

And it is reported in the MatLab function in Appendix A. The first phase of
this analysis was characterized by numerous attemps to find the best settings for
the following simulations. In fact, the first attemps, with explicit and implicit
Euler and Runge-Kutta 4, led to numerical errors and divergent solutions. In the
neighbourhood of the collapse the derivatives values change so rapidly that a time
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step of 10−18 is required. Due to the computational cost, a variable time-step
method has been used for the integration in simulink.
The model settings are reported in the following table:

Start time 0.0s
Stop time 1/26500s
Max step size 10−8

Min step size 10−18

Initial step size Auto
Relative tolerance 10−3

Absolute tolerance Auto

Table 4.1: Simulation general settings

The initial data choose for the simulation are reported in the paper Toward a
hydrodynamic theory of sonoluminescence by Löstedt, Barber and Putterman [29].
This choise has to be addressed to the version of RP equation used. In fact, they
modified the classical version in order to include the damping due to the acoustical
radiation for small mach numbers.

Initial radius R0 = 4.5µm
Liquid density 1000kg/m3

Sound velocity in the liquid 1481m/s
Initial pressure 101325Pa
Initial temperature T0 = 288K
Dynamical viscosity 3 · 10−3kg/(ms)
Surface tension 3 · 10−2kg/s2

Vand der Waals hard core a = R0/8.54µm
Polytropic exponent k = 5/3
Driving sound wave amplitude pA = 1.35atm
Excitation frequency f = 26500Hz
Pulsation ω = 2 ∗ π ∗ 26500rad−1

Table 4.2: Initial data

In figure 4.2 is reported a classical solution to the RP equation obtined by
Löstedt, Barber and Putterman [29]. The simulink model used for this analysis is
the following:
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Figure 4.1: Bubble dynamics. Rayleigh-Plesset representation model and related
algorithm to obtain solutions under spherical symmetry. Simulink associated flow
chart. See Appendix A

Figure 4.2: Radius dynamics by Löstedt, Barber and Putterman [29]
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Launching the file called Main_6.m one can easily obtain the following plots
for bubble:

Figure 4.3: Driving sound waves

This graphic show a period of the driving sound wave described by the equation:

p∞(t) = PA sin(ωt)

It is important to note that the behaviour of the bubble is strictly dependent on
the pressure amplitude PA. In fact, for amplitude under 1.1arm, and for the initial
conditions used, bubble collapse can not be seen [42].
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Figure 4.4: Radius evolution dependency on the pressure amplitude [42]

The next 3 plots show the dynamical behaviour of the interface.
The first one is just a typical solution of the RP equation for the radius. The
second one is the radius in logarithmic scale for the y axis.
From this graphic one can easily see that the the maximum radius, during the
expansion, differs from the minumum radius, obtained during the collapse, of 2
order of magnitude.
The third plot is a representation of the interface velocity Ṙ. What can be see from
this one is the high (negative) velocity that the bubble reaches during the collapse.
During the 90s this result was at the base of the research of a model that include
shock wave.
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Figure 4.5: Bubble radius evolution

Figure 4.6: Bubble radius evolution with logarithmic scale for y axis
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Figure 4.7: Bubble wall velocity

The most important parameters talking about sonoluminescence are without
any doubt the temperature and the pressure inside the bubble.
Using the van der Waals relation cited at the beginning of this section, the numerical
analysis have supplied a peak of pressure and a peak of temperature respectively
of:

PGmax = 5.792e+ 09Pa

TGmax = 2.398e+ 04K

These results agree perfectly with the data obtained by Hiller and Putterman with
the analysis of the spectrum [26].
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Figure 4.8: Pressure inside the bubble with logarithmic scale for y axis

Figure 4.9: Pressure inside the bubble with logarithmic scale for y axis
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4.1 Comparison between the physical and the an-
alytical approach

This section is the core of the thesis. In the previous section, I have reproduced
the numerical results obtained many times in the last 50 years, as a starting point
for the following comparisons.
One can think to analyze the sequence of compressions of the bubble during a
period by numerical interpolation through a spimplified version of the analytical
solution demonstrated by Merle et al. in On the implosion of a three dimensional
compressible fluid [52].

Figure 4.10: Points for radius interpolation for the first collapse
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The first step of the analysis consists in the evaluation of the local minima and
maxima of the radius numerical solution by the RP equation and the corresponding
indexes with the matlab function:

[kmin, indexmin] = min(solution)

[kmax, indexmax] = max(solution)

This procedure must be done for every bounce reducing each time the vector of the
solution to solution(indexmin + 1 : end) where the value of indexmin is referred to
the last bounce evaluated.

Figure 4.11: Points for velocity interpolation for the first collapse
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One can observe that after the first three collapses it is possible to find local
maxima and minima but the number of points between these two values reduces
too much for a significant analysis.
The indexes obtained for the radius have been applied to vectors of data of velocity
dR/dt.
Some data have been discarded from both the beginning and the end of the vectors
because of the behaviour of the velocity that near the collapsing times it tends
to blow up so rapidly in a time step so short that Matlab can not evaluate the
derivatives.
In the figures from 4.10 to 4.15 are reported the plots of the data used in the next
paragraph for the interpolations.

Figure 4.12: Points for radius interpolation for the second collapse
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Figure 4.13: Points for velocity interpolation for the second collapse

39



Numerical simulations and results

Figure 4.14: Points for radius interpolation for the third collapse
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Figure 4.15: Points for velocity interpolation for the third collapse
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4.1.1 Interpolation results

According to On the implosion of a three dimensional compressible fluid blow up
profiles have the following structures [52]:

||u(t, ·)||L∞ = cu0(1 + ot→T (1))

(T − t)
rk−1
rk

||ρ(t, ·)||L∞ = cρ0(1 + ot→T (1))

(T − t)
l(rk−1)
rk

The function for the velocity profiles can be simplified in such way:

u(t) = cu0

(ts − t)
rk−1
rk

This function can be easily implemented in a software in order to fit different sets
of data.
The interpolation is done with the MatLab tool Curve Fitting Tool (Matlab code
reported in Appendix A) using the following custom function:

f(x) = a

xb

Where a = cu0 and b = rk−1
rk

are free parameters, and the x and y vectors are
respectively the corrected time ts − t and the velocity dR/dt.
The collapsing time ts is referred in each case at the subsequent point of blow up
of the first 3 oscillations that is defined as the point of local minimum found by:

ts = t(kmin)

where:
[kmin, indexmin] = min(solution)
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This analysis produced the following results:

a1 −0.002225 with 95% confidence bounds: (−0.002403,−0.002047)
a2 −0.0001339 with 95% confidence bounds: (−0.0001954,−7.243e− 05)
a3 −0.002035 with 95% confidence bounds: (−0.003586,−0.0004843)
b1 0.6182 with 95% confidence bounds: (0.6141, 0.6223)
b2 0.7407 with 95% confidence bounds: (0.7124, 0.769)
b3 0.5555 with 95% confidence bounds: (0.5089, 0.6021)

Table 4.3: Interpolation free parameters. Subscripts 1,2 and 3 represent the
sequence of collapses

Figure 4.16: First bounce interpolation
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From b = rk−1
rk

it is possible to estimate 3 values of the discrete sequence of blow
up speed (rk)k≥1:

rk = − 1
b− 1

rk(b1) 2.6192
rk(b2) 3.8565
rk(b3) 2.2497

Table 4.4: Estimated values of the blow up speed sequence

Figure 4.17: Second bounce interpolation
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Numerical simulations and results

From the equation of density, knowing that for NS the parameter l >
√

3 one
can assert that the lower bound of the exponent of the equation for ρ is:

b1,ρ 1.0708
b2,ρ 1.2829
b3,ρ 0.9622

Table 4.5: Estimated lower bound for exponent of ρ

The figures from 4.16 to 4.18 show the curves obtained through the procedure
discussed above.

Figure 4.18: Third bounce interpolation
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Chapter 5

Conclusions

In summary, in this work of master thesis I have carried out a preliminary analysis
of the analytical solutions to the Navier-Stokes equation found by Merle et al. in a
physical context in which they have not yet been taken into consideration.
Fitting the first three bounce of the numerical solution to the RP equation, I found
three possible values of the discrete sequence of blow up speed (rk) described in
the theorem 1.1 of On the implosion of a three dimensional compressible fluid [52].
The numerical values obtained seem to be feasonable even compared with the
exponent of the solution found by Guderley [6]. This reflects expectations, as the
Guderley method was used for the construction of Euler’s self-similar solutions by
Merle et al. in the paper On smooth self-similar solutions to the compressible Euler
equations [51].

Despite the number of points available for the interpolation of the second and
the third collapse is very restricted, the coefficient found are in the neighborhood
of the first one and so them can be considered acceptable.
Even if the solution considered is for the full compressible Navier-Stokes equations,
it has been used just to evaluate collapsing profiles without taking into account
neither that the fluid outside and the fluid inside the interface differ nor that the
bubble doesn’t explode.

The reason at the base of the possible link between these solutions and SBSL
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Conclusions

is that both present a rapid growth of all the thermodynamic variables. What is
called strong singularity in the works of Merle et al. could be at the base of the
still today unknown mechanism of sonoluminesce.
Despite that, a combination of different chemical, physical and mathematical
aspects is necessary for a full comprehension of this mechanism.

5.1 Future perspectives

Relatively to this work, a deeper study requires more computational power. It
would be necessary to use a smaller fixed-step time interval (order of 10−18s) in
order to refine the values obtained with the fitting and extend the analysis to the
following bounces. In fact, after the third collapse the effects of viscosity start to
come out and this make solutions smoother and this is what deteriorate a little bit
the self-similarity of the solutions.

The RP model used in this work is very simple and another refinement could be
to introduce a more complex version of the model inside the code and the latter
can be coupled to a finer model for the interior dynamics.

Another possible development could be related to a DNS approach of the interior
of the bubble coupling some model of chemical non-equilibrium and adding a re-
fined model for condensation-evaporation, for example through the Raoult equation.

The interest around the sonoluminescing bubbles is not only related to the
possible comprehension of the phenomenon but also on the possible capacity to use
the great amount on energy focused in the center of the bubble for sonochemistry,
ultrasound diagnostic, piezoacoustic inkjet printing, drag reduction and other
applications [49].
For such reasons it should be studied more.
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Appendix A

MatLab code

The main code is:

1 c l c
2 c l o s e a l l
3

4 P_a = 1 .35 ∗101325;
5 R0 = 4 .5e - 6 ;
6 T0 = 300 ;
7 rho = 1000 ;
8 c = 1481 ; % Ve l o c i t à de l suono in acqua
9 k = 5/3 ;

10 a = R0/8 .54 ;
11 p0 = 101325;
12 mu = 3e - 3 ;
13 S = 3e - 2 ;
14

15 out = sim ( ' fun_simulink_6 ' )
16

17 Temp_max = max( out . s imout2 ) ;
18 p_max = max( out . s imout3 ) ;
19

20 f i g u r e (1 )
21 hold on
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MatLab code

22 p lo t ( out . tout , out .s imout4 , ' l i n ew id th ' , 2 ) ;
23 g r id on
24 g r id minor
25 x l a b e l ( ' t [ s ] ' )
26 y l a b e l ( 'p_\ i n f t y ( t ) ' )
27 xlim ( [ 0 ou t . t ou t ( end ) ] )
28

29 font_sz = 15 ;
30 x0=0; %d e f i n i s c o l a dimensione de l g r a f i c o con coord inate
31 y0=0;
32 width =1000;
33 he ight =500;
34 s e t ( gcf , ' p o s i t i o n ' , [ x0 , y0 , width , he ight ] )
35 s e t ( gca , ' un i t s ' , ' normal ized ' ) ; %l e s eguen t i 4 r i ghe e l iminano...

i
36 %margini de l g r a f i c o
37 Tight = get ( gca , ' Tight Inse t ' ) ;
38 NewPos = [ Tight (1 )+0.05 Tight (2 )+0.08 1 - Tight (1 ) - Tight (3 ) -0 . 1 ...

1 - Tight (2 ) - Tight (4 ) -0 . 1 ] ;
39 s e t ( gca , ' Pos i t i on ' , NewPos) ;
40 s e t ( gca , ' f o n t s i z e ' , font_sz ) %dimensione font
41

42 f i g u r e (2 )
43 p lo t ( out . tout , out .s imout1 , ' l i n ew id th ' , 2 ) ;
44 hold on
45 g r id on
46 g r id minor
47 x l a b e l ( ' t [ s ] ' )
48 y l a b e l ( 'R [m] ' )
49 xlim ( [ 0 ou t . t ou t ( end ) ] )
50

51 x0=0; %d e f i n i s c o l a dimensione de l g r a f i c o con coord inate
52 y0=0;
53 width =1000;
54 he ight =500;
55 s e t ( gcf , ' p o s i t i o n ' , [ x0 , y0 , width , he ight ] )
56 s e t ( gca , ' un i t s ' , ' normal ized ' ) ; %l e s eguen t i 4 r i ghe e l iminano...

i
57 %margini de l g r a f i c o
58 Tight = get ( gca , ' Tight Inse t ' ) ;
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59 NewPos = [ Tight (1 )+0.05 Tight (2 )+0.08 1 - Tight (1 ) - Tight (3 ) -0 . 1 ...

1 - Tight (2 ) - Tight (4 ) -0 . 1 ] ;
60 s e t ( gca , ' Pos i t i on ' , NewPos) ;
61 s e t ( gca , ' f o n t s i z e ' , font_sz ) %dimensione font
62

63 f i g u r e (3 )
64 semi logy ( out . tout , out .s imout1 , ' l i n ew id th ' , 2 ) ;
65 hold on
66 g r id on
67 g r id minor
68 x l a b e l ( ' t [ s ] ' )
69 y l a b e l ( ' log_ {10}R [m] ' )
70 xlim ( [ 0 ou t . t ou t ( end ) ] )
71

72 x0=0; %d e f i n i s c o l a dimensione de l g r a f i c o con coord inate
73 y0=0;
74 width =1000;
75 he ight =500;
76 s e t ( gcf , ' p o s i t i o n ' , [ x0 , y0 , width , he ight ] )
77 s e t ( gca , ' un i t s ' , ' normal ized ' ) ; %l e s eguen t i 4 r i ghe e l iminano...

i
78 %margini de l g r a f i c o
79 Tight = get ( gca , ' Tight Inse t ' ) ;
80 NewPos = [ Tight (1 )+0.05 Tight (2 )+0.08 1 - Tight (1 ) - Tight (3 ) -0 . 1 ...

1 - Tight (2 ) - Tight (4 ) -0 . 1 ] ;
81 s e t ( gca , ' Pos i t i on ' , NewPos) ;
82 s e t ( gca , ' f o n t s i z e ' , font_sz ) %dimensione font
83

84 f i g u r e (4 )
85 p lo t ( out . tout , out .s imout , ' l i n ew id th ' , 2 ) ;
86 hold on
87 g r id on
88 g r id minor
89 x l a b e l ( ' t [ s ] ' )
90 y l a b e l ( 'V [m/ s ] ' )
91 xlim ( [ 0 ou t . t ou t ( end ) ] )
92

93 x0=0; %d e f i n i s c o l a dimensione de l g r a f i c o con coord inate
94 y0=0;
95 width =1000;
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96 he ight =500;
97 s e t ( gcf , ' p o s i t i o n ' , [ x0 , y0 , width , he ight ] )
98 s e t ( gca , ' un i t s ' , ' normal ized ' ) ; %l e s eguen t i 4 r i ghe e l iminano...

i
99 %margini de l g r a f i c o

100 Tight = get ( gca , ' Tight Inse t ' ) ;
101 NewPos = [ Tight (1 )+0.05 Tight (2 )+0.08 1 - Tight (1 ) - Tight (3 ) -0 . 1 ...

1 - Tight (2 ) - Tight (4 ) -0 . 1 ] ;
102 s e t ( gca , ' Pos i t i on ' , NewPos) ;
103 s e t ( gca , ' f o n t s i z e ' , font_sz ) %dimensione font
104

105 f i g u r e (5 )
106 semi logy ( out . tout , out .s imout2 , ' l i n ew id th ' , 2 ) ;
107 hold on
108 g r id on
109 g r id minor
110 x l a b e l ( ' t [ s ] ' )
111 y l a b e l ( 'T_G [K] ' )
112 xlim ( [ 0 ou t . t ou t ( end ) ] )
113 l egend ( 'T_{G_{max}}=2 .398+04 K ' )
114 hold o f f
115

116 x0=0; %d e f i n i s c o l a dimensione de l g r a f i c o con coord inate
117 y0=0;
118 width =1000;
119 he ight =500;
120 s e t ( gcf , ' p o s i t i o n ' , [ x0 , y0 , width , he ight ] )
121 s e t ( gca , ' un i t s ' , ' normal ized ' ) ; %l e s eguen t i 4 r i ghe e l iminano...

i
122 %margini de l g r a f i c o
123 Tight = get ( gca , ' Tight Inse t ' ) ;
124 NewPos = [ Tight (1 )+0.05 Tight (2 )+0.08 1 - Tight (1 ) - Tight (3 ) -0 . 1 ...

1 - Tight (2 ) - Tight (4 ) -0 . 1 ] ;
125 s e t ( gca , ' Pos i t i on ' , NewPos) ;
126 s e t ( gca , ' f o n t s i z e ' , font_sz ) %dimensione font
127

128 f i g u r e (6 )
129 semi logy ( out . tout , out .s imout3 , ' l i n ew id th ' , 2 ) ;
130 hold on
131 g r id on
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132 g r id minor
133 x l a b e l ( ' t [ s ] ' )
134 y l a b e l ( ' log_ {10}p_G [ Pa ] ' )
135 xlim ( [ 0 ou t . t ou t ( end ) ] )
136 l egend ( 'p_{G_{max}}=5 .792e+09 Pa ' )
137 hold o f f
138

139 x0=0; %d e f i n i s c o l a dimensione de l g r a f i c o con coord inate
140 y0=0;
141 width =1000;
142 he ight =500;
143 s e t ( gcf , ' p o s i t i o n ' , [ x0 , y0 , width , he ight ] )
144 s e t ( gca , ' un i t s ' , ' normal ized ' ) ; %l e s eguen t i 4 r i ghe e l iminano...

i
145 %margini de l g r a f i c o
146 Tight = get ( gca , ' Tight Inse t ' ) ;
147 NewPos = [ Tight (1 )+0.05 Tight (2 )+0.08 1 - Tight (1 ) - Tight (3 ) -0 . 1 ...

1 - Tight (2 ) - Tight (4 ) -0 . 1 ] ;
148 s e t ( gca , ' Pos i t i on ' , NewPos) ;
149 s e t ( gca , ' f o n t s i z e ' , font_sz ) %dimensione font
150

151 [ k , index ] = min ( out . s imout ) ;
152 [ k2 , index2 ] = max( out . s imout1 ) ;
153 v e l o c i t a = out . s imout ( index2 +50: index - 4 ) ;
154 ragg i o = out . s imout1 ( index2 +50: index - 4 ) ;
155 tempo = out . t ou t ( index2 +50: index - 4 ) ;
156 T = out . t ou t ( index ) ;
157 tempo_aggiornato = (T- tempo ) ;
158

159 f i g u r e (7 )
160 hold on
161 p lo t ( tempo , v e l o c i t a , ' og ' , ' l i n ew id th ' , 2 )
162 p lo t ( out . tout , out .s imout , ' l i n ew id th ' , 2 ) ;
163 g r id on
164 g r id minor
165 x l a b e l ( ' t [ s ] ' )
166 y l a b e l ( 'V [m/ s ] ' )
167 xlim ( [ 0 ou t . t ou t ( end ) ] )
168

169 x0=0; %d e f i n i s c o l a dimensione de l g r a f i c o con coord inate
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170 y0=0;
171 width =1000;
172 he ight =500;
173 s e t ( gcf , ' p o s i t i o n ' , [ x0 , y0 , width , he ight ] )
174 s e t ( gca , ' un i t s ' , ' normal ized ' ) ; %l e s eguen t i 4 r i ghe e l iminano...

i
175 %margini de l g r a f i c o
176 Tight = get ( gca , ' Tight Inse t ' ) ;
177 NewPos = [ Tight (1 )+0.05 Tight (2 )+0.08 1 - Tight (1 ) - Tight (3 ) -0 . 1 ...

1 - Tight (2 ) - Tight (4 ) -0 . 1 ] ;
178 s e t ( gca , ' Pos i t i on ' , NewPos) ;
179 s e t ( gca , ' f o n t s i z e ' , font_sz ) %dimensione font
180

181 axes ( ' p o s i t i o n ' , [ . 20 . 25 . 25 . 25 ] )
182 box on
183 p lo t ( tempo , v e l o c i t a , ' og ' , ' l i n ew id th ' , 2 )
184 hold on
185 p lo t ( ou t . t ou t (1700 :2200) , out . s imout (1700 :2200) , ' l i n ew id th ' , 2 ) ;
186 g r id on
187 g r id minor
188 ylim ( [ - 3000 500 ] )
189 xlim ( [ ou t . t ou t (1700) ou t . t ou t (2200) ] )
190

191 f i g u r e (8 )
192 hold on
193 p lo t ( tempo , ragg io , ' og ' , ' l i n ew id th ' , 2 )
194 p lo t ( out . tout , out .s imout1 , ' l i n ew id th ' , 2 ) ;
195 g r id on
196 g r id minor
197 x l a b e l ( ' t [ s ] ' )
198 y l a b e l ( 'R [m] ' )
199 xlim ( [ 0 ou t . t ou t ( end ) ] )
200

201 x0=0; %d e f i n i s c o l a dimensione de l g r a f i c o con coord inate
202 y0=0;
203 width =1000;
204 he ight =500;
205 s e t ( gcf , ' p o s i t i o n ' , [ x0 , y0 , width , he ight ] )
206 s e t ( gca , ' un i t s ' , ' normal ized ' ) ; %l e s eguen t i 4 r i ghe e l iminano...

i
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207 %margini de l g r a f i c o
208 Tight = get ( gca , ' Tight Inse t ' ) ;
209 NewPos = [ Tight (1 )+0.05 Tight (2 )+0.08 1 - Tight (1 ) - Tight (3 ) -0 . 1 ...

1 - Tight (2 ) - Tight (4 ) -0 . 1 ] ;
210 s e t ( gca , ' Pos i t i on ' , NewPos) ;
211 s e t ( gca , ' f o n t s i z e ' , font_sz ) %dimensione font
212

213 axes ( ' p o s i t i o n ' , [ . 60 . 65 . 25 . 25 ] )
214 box on
215 p lo t ( tempo , ragg io , ' og ' , ' l i n ew id th ' , 2 )
216 hold on
217 p lo t ( ou t . t ou t (1700 :2200) , out . s imout1 (1700 :2200) , ' l i n ew id th ' , 2 )...

;
218 g r id on
219 g r id minor
220 ylim ( [ 0 5e - 5 ] )
221 xlim ( [ ou t . t ou t (1700) ou t . t ou t (2200) ] )
222

223 [ k3 , index3 ] = min ( out . s imout (2180 : end ) ) ;
224 [ k4 , index4 ] = max( out . s imout1 (2180 : end ) ) ;
225 v e l o c i t a 3 = out . s imout (2180+ index4 +30:2180+ index3 - 4 ) ;
226 ragg io3 = out . s imout1 (2180+ index4 +30:2180+ index3 - 4 ) ;
227 tempo3 = out . t ou t (2180+ index4 +30:2180+ index3 - 4 ) ;
228 T3 = out . t ou t (2180+ index3 ) ;
229 tempo_aggiornato3 = (T3- tempo3 ) ;
230

231 f i g u r e (9 )
232 hold on
233 p lo t ( tempo3 , ragg io3 , ' og ' , ' l i n ew id th ' , 2 )
234 p lo t ( out . tout , out .s imout1 , ' l i n ew id th ' , 2 ) ;
235 g r id on
236 g r id minor
237 x l a b e l ( ' t [ s ] ' )
238 y l a b e l ( 'R [m] ' )
239 xlim ( [ 0 ou t . t ou t ( end ) ] )
240

241 x0=0; %d e f i n i s c o l a dimensione de l g r a f i c o con coord inate
242 y0=0;
243 width =1000;
244 he ight =500;
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245 s e t ( gcf , ' p o s i t i o n ' , [ x0 , y0 , width , he ight ] )
246 s e t ( gca , ' un i t s ' , ' normal ized ' ) ; %l e s eguen t i 4 r i ghe e l iminano...

i
247 %margini de l g r a f i c o
248 Tight = get ( gca , ' Tight Inse t ' ) ;
249 NewPos = [ Tight (1 )+0.05 Tight (2 )+0.08 1 - Tight (1 ) - Tight (3 ) -0 . 1 ...

1 - Tight (2 ) - Tight (4 ) -0 . 1 ] ;
250 s e t ( gca , ' Pos i t i on ' , NewPos) ;
251 s e t ( gca , ' f o n t s i z e ' , font_sz ) %dimensione font
252

253 axes ( ' p o s i t i o n ' , [ . 60 . 65 . 25 . 25 ] )
254 box on
255 p lo t ( tempo3 , ragg io3 , ' og ' , ' l i n ew id th ' , 2 )
256 hold on
257 p lo t ( ou t . t ou t (2200 :2300) , out . s imout1 (2200 :2300) , ' l i n ew id th ' , 2 )...

;
258 g r id on
259 g r id minor
260 ylim ( [ 0 1e - 5 ] )
261 xlim ( [ ou t . t ou t (2200) ou t . t ou t (2300) ] )
262

263 f i g u r e (10)
264 hold on
265 p lo t ( tempo3 , v e l o c i t a3 , ' og ' , ' l i n ew id th ' , 2 )
266 p lo t ( out . tout , out .s imout , ' l i n ew id th ' , 2 ) ;
267 g r id on
268 g r id minor
269 x l a b e l ( ' t [ s ] ' )
270 y l a b e l ( 'V [m/ s ] ' )
271 xlim ( [ 0 ou t . t ou t ( end ) ] )
272

273 x0=0; %d e f i n i s c o l a dimensione de l g r a f i c o con coord inate
274 y0=0;
275 width =1000;
276 he ight =500;
277 s e t ( gcf , ' p o s i t i o n ' , [ x0 , y0 , width , he ight ] )
278 s e t ( gca , ' un i t s ' , ' normal ized ' ) ; %l e s eguen t i 4 r i ghe e l iminano...

i
279 %margini de l g r a f i c o
280 Tight = get ( gca , ' Tight Inse t ' ) ;
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281 NewPos = [ Tight (1 )+0.05 Tight (2 )+0.08 1 - Tight (1 ) - Tight (3 ) -0 . 1 ...

1 - Tight (2 ) - Tight (4 ) -0 . 1 ] ;
282 s e t ( gca , ' Pos i t i on ' , NewPos) ;
283 s e t ( gca , ' f o n t s i z e ' , font_sz ) %dimensione font
284

285 axes ( ' p o s i t i o n ' , [ . 20 . 25 . 25 . 25 ] )
286 box on
287 p lo t ( tempo3 , v e l o c i t a3 , ' og ' , ' l i n ew id th ' , 2 )
288 hold on
289 p lo t ( ou t . t ou t (2200 :2300) , out . s imout (2200 :2300) , ' l i n ew id th ' , 2 ) ;
290 g r id on
291 g r id minor
292 ylim ( [ - 8 0 8 0 ] )
293 xlim ( [ ou t . t ou t (2200) ou t . t ou t (2300) ] )
294

295 [ k5 , index5 ] = min ( out . s imout (2310 : end ) ) ;
296 [ k6 , index6 ] = max( out . s imout1 (2310 : end ) ) ;
297 v e l o c i t a 5 = out . s imout (2310+ index6 +30:2310+ index5 - 4 ) ;
298 ragg io5 = out . s imout1 (2310+ index6 +30:2310+ index5 - 4 ) ;
299 tempo5 = out . t ou t (2310+ index6 +30:2310+ index5 - 4 ) ;
300 T5 = out . t ou t (2310+ index5 ) ;
301 tempo_aggiornato5 = (T5- tempo5 ) ;
302

303 f i g u r e (11)
304 hold on
305 p lo t ( tempo5 , ragg io5 , ' og ' , ' l i n ew id th ' , 2 )
306 p lo t ( out . tout , out .s imout1 , ' l i n ew id th ' , 2 ) ;
307 g r id on
308 g r id minor
309 x l a b e l ( ' t [ s ] ' )
310 y l a b e l ( 'R [m] ' )
311 xlim ( [ 0 ou t . t ou t ( end ) ] )
312

313 x0=0; %d e f i n i s c o l a dimensione de l g r a f i c o con coord inate
314 y0=0;
315 width =1000;
316 he ight =500;
317 s e t ( gcf , ' p o s i t i o n ' , [ x0 , y0 , width , he ight ] )
318 s e t ( gca , ' un i t s ' , ' normal ized ' ) ; %l e s eguen t i 4 r i ghe e l iminano...

i
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319 %margini de l g r a f i c o
320 Tight = get ( gca , ' Tight Inse t ' ) ;
321 NewPos = [ Tight (1 )+0.05 Tight (2 )+0.08 1 - Tight (1 ) - Tight (3 ) -0 . 1 ...

1 - Tight (2 ) - Tight (4 ) -0 . 1 ] ;
322 s e t ( gca , ' Pos i t i on ' , NewPos) ;
323 s e t ( gca , ' f o n t s i z e ' , font_sz ) %dimensione font
324

325 axes ( ' p o s i t i o n ' , [ . 60 . 65 . 25 . 25 ] )
326 box on
327 p lo t ( tempo5 , ragg io5 , ' og ' , ' l i n ew id th ' , 2 )
328 hold on
329 p lo t ( ou t . t ou t (2300 :2400) , out . s imout1 (2300 :2400) , ' l i n ew id th ' , 2 )...

;
330 g r id on
331 g r id minor
332 ylim ( [ 0 1e - 5 ] )
333 xlim ( [ ou t . t ou t (2300) ou t . t ou t (2400) ] )
334

335 f i g u r e (12)
336 hold on
337 p lo t ( tempo5 , v e l o c i t a5 , ' og ' , ' l i n ew id th ' , 2 )
338 p lo t ( out . tout , out .s imout , ' l i n ew id th ' , 2 ) ;
339 g r id on
340 g r id minor
341 x l a b e l ( ' t [ s ] ' )
342 y l a b e l ( 'V [m/ s ] ' )
343 xlim ( [ 0 ou t . t ou t ( end ) ] )
344

345 x0=0; %d e f i n i s c o l a dimensione de l g r a f i c o con coord inate
346 y0=0;
347 width =1000;
348 he ight =500;
349 s e t ( gcf , ' p o s i t i o n ' , [ x0 , y0 , width , he ight ] )
350 s e t ( gca , ' un i t s ' , ' normal ized ' ) ; %l e s eguen t i 4 r i ghe e l iminano...

i
351 %margini de l g r a f i c o
352 Tight = get ( gca , ' Tight Inse t ' ) ;
353 NewPos = [ Tight (1 )+0.05 Tight (2 )+0.08 1 - Tight (1 ) - Tight (3 ) -0 . 1 ...

1 - Tight (2 ) - Tight (4 ) -0 . 1 ] ;
354 s e t ( gca , ' Pos i t i on ' , NewPos) ;
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355 s e t ( gca , ' f o n t s i z e ' , font_sz ) %dimensione font
356

357 axes ( ' p o s i t i o n ' , [ . 20 . 25 . 25 . 25 ] )
358 box on
359 p lo t ( tempo5 , v e l o c i t a5 , ' og ' , ' l i n ew id th ' , 2 )
360 hold on
361 p lo t ( ou t . t ou t (2300 :2400) , out . s imout (2300 :2400) , ' l i n ew id th ' , 2 ) ;
362 g r id on
363 g r id minor
364 ylim ( [ - 5 0 5 0 ] )
365 xlim ( [ ou t . t ou t (2300) ou t . t ou t (2400) ] )
366

367

368 f i t 1 ( tempo_aggiornato , v e l o c i t a )
369

370 f i t 2 ( tempo_aggiornato3 , v e l o c i t a 3 )
371

372 f i t 3 ( tempo_aggiornato5 , v e l o c i t a 5 )
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The MatLab functions associated with the Simulink model fun_simulink_6.slx...
are respectively:

• Rayleigh-Plesset function:

1 f unc t i on R_dotdot = fcn (R_dot ,R, p_a , p_a_dot ,P_G,P_G_dot...
)

2

3 R0 = 4 .5e - 6 ;
4 rho = 1000 ;
5 c = 1481 ;
6 p0 = 101325;
7 mu = 3e - 3 ;
8 S = 3e - 2 ;
9

10 R_dotdot = -3/2∗(R_dot^2/R)+P_G/( rho∗R) -p0 /( rho∗R)+p_a...
/( rho∗R) +1/( rho∗c ) ∗P_G_dot-4∗mu∗R_dot/( rho∗R^2) -2∗S/( rho...
∗R^2) ;

11

• Pressure inside the bubble:

1 f unc t i on P_G = fcn (R)
2

3 k = 5/3 ;
4 R0 = 4 .5e - 6 ;
5 P0 = 101325;
6 a = R0/8 .54 ;
7

8 P_G = (P0∗R0^(3∗k ) ) /(R^3 -a^3)^k ;
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• Temperature inside the bubble:

1 f unc t i on T_G = fcn (R)
2

3 R0 = 4 .5e - 6 ;
4 T0 = 300 ;
5 k = 5/3 ;
6 a = R0/8 .54 ;
7

8 T_G = (T0∗R0^(3∗(k - 1 ) ) ) /(R^3 -a^3) ^(k - 1 ) ;

• Driving sound wave:

1 f unc t i on p_a = fcn ( t )
2

3 p = 1 .35 ;
4 P_a = 101325∗p ;
5 f = 26500 ;
6 w = 2∗ pi ∗ f ;
7

8 p_a = P_a∗ s i n (w∗ t ) ;

• Fit 1:

1 %% Fit : ' f i t_1 ' .
2 [ xData , yData ] = prepareCurveData ( tempo_aggiornato , ...

v e l o c i t a ) ;
3

4 % Set up f i t t y p e and o p t i o n s .
5 f t = f i t t y p e ( ' a /(x )^b ' , ' independent ' , ' x ' , ' dependent ' , '...

y ' ) ;
6 opts = f i t o p t i o n s ( ' Method ' , ' Nonl inearLeastSquares ' ) ;
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7 op t s .D i sp l ay = ' Off ' ;
8 o p t s . S t a r t P o i n t = [0 .0971317812358475 0 .823457828327293 ] ;
9

10 % Fit model to data .
11 [ f i t r e s u l t , go f ] = f i t ( xData , yData , f t , opts ) ;
12

13 % Plot f i t with data .
14 f i g u r e ( 13 ) ;
15 h = p lo t ( f i t r e s u l t , xData , yData ) ;
16 l egend ( h , ' Numerical ly obta ined po in t s ' , ' F i t t i n g curve ' , ...

' Locat ion ' , ' Southeast ' , ' I n t e r p r e t e r ' , ' none ' ) ;
17 % Label axes
18 x l a b e l ( 'Time ' , ' I n t e r p r e t e r ' , ' none ' ) ;
19 y l a b e l ( ' Ve loc i ty ' , ' I n t e r p r e t e r ' , ' none ' ) ;
20 g r id on
21 g r id minor
22

23 font_sz =20;
24 x0=0; %d e f i n i s c o l a dimensione de l g r a f i c o con coord inate
25 y0=0;
26 width =1000;
27 he ight =800;
28 s e t ( gcf , ' p o s i t i o n ' , [ x0 , y0 , width , he ight ] )
29 s e t ( gca , ' un i t s ' , ' normal ized ' ) ; %l e s eguen t i 4 r i ghe ...

e l iminano i
30 %margini de l g r a f i c o
31 Tight = get ( gca , ' Tight Inse t ' ) ;
32 NewPos = [ Tight (1 )+0.05 Tight (2 )+0.08 1 - Tight (1 ) - Tight (3 ) -0...

. 1 1 - Tight (2 ) - Tight (4 ) -0 . 1 ] ;
33 s e t ( gca , ' Pos i t i on ' , NewPos) ;
34 s e t ( gca , ' f o n t s i z e ' , font_sz ) %dimensione font

• Fit 2:

1 %% Fit : ' f i t_2 ' .
2 [ xData , yData ] = prepareCurveData ( tempo_aggiornato3 , ...

v e l o c i t a 3 ) ;
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3

4 % Set up f i t t y p e and o p t i o n s .
5 f t = f i t t y p e ( ' a /(x )^b ' , ' independent ' , ' x ' , ' dependent ' , '...

y ' ) ;
6 opts = f i t o p t i o n s ( ' Method ' , ' Nonl inearLeastSquares ' ) ;
7 op t s .D i sp l ay = ' Off ' ;
8 o p t s . S t a r t P o i n t = [0 .890903252535798 0 .959291425205444 ] ;
9

10 % Fit model to data .
11 [ f i t r e s u l t , go f ] = f i t ( xData , yData , f t , opts ) ;
12

13 % Plot f i t with data .
14 f i g u r e ( 14 ) ;
15 h = p lo t ( f i t r e s u l t , xData , yData ) ;
16 l egend ( h , ' Numerical ly obta ined po in t s ' , ' F i t t i n g curve ' , ...

' Locat ion ' , ' Southeast ' , ' I n t e r p r e t e r ' , ' none ' ) ;
17 % Label axes
18 x l a b e l ( 'Time ' , ' I n t e r p r e t e r ' , ' none ' ) ;
19 y l a b e l ( ' Ve loc i ty ' , ' I n t e r p r e t e r ' , ' none ' ) ;
20 g r id on
21 g r id minor
22

23 font_sz =20;
24 x0=0; %d e f i n i s c o l a dimensione de l g r a f i c o con coord inate
25 y0=0;
26 width =1000;
27 he ight =800;
28 s e t ( gcf , ' p o s i t i o n ' , [ x0 , y0 , width , he ight ] )
29 s e t ( gca , ' un i t s ' , ' normal ized ' ) ; %l e s eguen t i 4 r i ghe ...

e l iminano i
30 %margini de l g r a f i c o
31 Tight = get ( gca , ' Tight Inse t ' ) ;
32 NewPos = [ Tight (1 )+0.05 Tight (2 )+0.08 1 - Tight (1 ) - Tight (3 ) -0...

. 1 1 - Tight (2 ) - Tight (4 ) -0 . 1 ] ;
33 s e t ( gca , ' Pos i t i on ' , NewPos) ;
34 s e t ( gca , ' f o n t s i z e ' , font_sz ) %dimensione font

• Fit 3:
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1 %% Fit : ' f i t_2 ' .
2 [ xData , yData ] = prepareCurveData ( tempo_aggiornato5 , ...

v e l o c i t a 5 ) ;
3

4 % Set up f i t t y p e and o p t i o n s .
5 f t = f i t t y p e ( ' a /(x )^b ' , ' independent ' , ' x ' , ' dependent ' , '...

y ' ) ;
6 opts = f i t o p t i o n s ( ' Method ' , ' Nonl inearLeastSquares ' ) ;
7 op t s .D i sp l ay = ' Off ' ;
8 opts .MaxIter = 4000 ;
9 o p t s . S t a r t P o i n t = [0 .337719409821377 0 .900053846417662 ] ;

10

11 % Fit model to data .
12 [ f i t r e s u l t , go f ] = f i t ( xData , yData , f t , opts ) ;
13

14 % Plot f i t with data .
15 f i g u r e ( 15 ) ;
16 h = p lo t ( f i t r e s u l t , xData , yData ) ;
17 l egend ( h , ' Numerical ly obta ined po in t s ' , ' F i t t i n g curve ' , ...

' Locat ion ' , ' southeas t ' , ' I n t e r p r e t e r ' , ' none ' ) ;
18 % Label axes
19 x l a b e l ( 'Time ' , ' I n t e r p r e t e r ' , ' none ' ) ;
20 y l a b e l ( ' Ve loc i ty ' , ' I n t e r p r e t e r ' , ' none ' ) ;
21 g r id on
22 g r id minor
23

24 font_sz =20;
25 x0=0; %d e f i n i s c o l a dimensione de l g r a f i c o con coord inate
26 y0=0;
27 width =1000;
28 he ight =800;
29 s e t ( gcf , ' p o s i t i o n ' , [ x0 , y0 , width , he ight ] )
30 s e t ( gca , ' un i t s ' , ' normal ized ' ) ; %l e s eguen t i 4 r i ghe ...

e l iminano i
31 %margini de l g r a f i c o
32 Tight = get ( gca , ' Tight Inse t ' ) ;
33 NewPos = [ Tight (1 )+0.05 Tight (2 )+0.08 1 - Tight (1 ) - Tight (3 ) -0...

. 1 1 - Tight (2 ) - Tight (4 ) -0 . 1 ] ;
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34 s e t ( gca , ' Pos i t i on ' , NewPos) ;
35 s e t ( gca , ' f o n t s i z e ' , font_sz ) %dimensione font
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Appendix B

Bubbles in nature and art

Figure B.1: Air bubbles in the ice on Baikal Lake (Russia, 2018), courtesy of
Raffaella Canfarini [53]
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Figure B.2: Air bubbles in the ice on Baikal Lake (Russia, 2018), courtesy of
Raffaella Canfarini [53]
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Figure B.3: Air bubbles in the ice on Baikal Lake (Russia, 2018), courtesy of
Raffaella Canfarini [53]

Figure B.4: Air bubbles in the ice on Baikal Lake (Russia, 2018), courtesy of
Raffaella Canfarini [53]
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Figure B.5: Air bubbles in the ice on Baikal Lake (Russia, 2018), courtesy of
Raffaella Canfarini [53]

Figure B.6: Air bubbles in the ice on Baikal Lake (Russia, 2018), courtesy of
Raffaella Canfarini [53]
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Figure B.7: Glass bubbles in a fountain (Verona, 2019), courtesy of Raffaella
Canfarini [53]

Figure B.8: Glass bubbles in a fountain (Verona, 2019), courtesy of Raffaella
Canfarini [53]
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Figure B.9: Resin bubble on Pinus radiata tree stump (16 December 2007), Tony
Wills [54]
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