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Abstract

The gradual increase in space missions brings with it not only countless benefits for
humanity but also several problems that cannot be ignored nowadays. The most
relevant issue is the constant increase in space debris. These, also commonly called
space junk, include: non-functional satellites, mission remnants such as abandoned
launch vehicle stages and fragments of various types, which orbit the earth and
represent a real risk to new space missions.
This issue has led space agencies to define different solutions to mitigate both the risk
of orbital accidents and the increase of space debris, thus decreasing the probability
of collisions. These solutions are: extending the operational life of satellites with a
consequent reduction in the number of launches, design the satellite for end-of-life
deorbiting, and the active removal of already orbiting debris.
In particular, this thesis focuses on the latter solution, analyzing and comparing
two mission strategies for space debris removal through deorbiting via chemical
propulsion.
The mission focuses on the removal of four debris generated by the Russian ’Kosmos
3M’ launchers, which during their operational phase produced two clusters of debris
at orbital inclinations of 74° (120 debris) and 82° (155 debris). The case studied
foresees that the spacecraft is already on the first debris, on which the spacecraft
waits for the time necessary to apply the deorbiting kit and then makes a transfer
to the next debris. This operation is repeated until the arrival on the fourth debris,
where the mission is considered to be concluded.
This thesis aims at optimizing the transfers between debris by minimizing propellant
consumption. In order to do that, the most efficient of the two following strategies
are applied: (i) the first consists in performing the transfer if the condition of orbit
coplanarity is verified in a predefined time span; (ii) the second strategy, instead,
is applied in the case in which the condition of coplanarity is not verified in the
predefined time. The first strategy is performed using a single impulse, while the
second one, since the orbits are non-coplanar, requires two impulses. The second
strategy exists since the coplanarity condition may not be reached in a short period.
Therefore, the objective is to optimize the mission, both in terms of mission time
and ∆V (change in velocity) cost. Furthermore, a simplified formulation is applied,
thus obtaining a computationally efficient algorithm.
The results obtained are compared with those obtained from applying other possible
strategies and those derived from the non-simplified formulation. The purpose is to
verify the validity of the proposed approach.





Sommario

L’aumento progressivo delle missioni spaziali porta con sè oltre che innumerevoli
vantaggi per l’umanità, anche alcune problematiche che al giorno d’oggi non pos-
sono essere ignorate. La problematica più rilevante è il costante aumento di detriti
spaziali, anche comunemente chiamati rifiuti spaziali, e includono: satelliti in disuso,
resti di missione come stadi dei veicoli di lancio abbandonati e frammenti di vario
tipo, che orbitando attorno alla terra rappresentano un rischio concreto per le nuove
missioni spaziali. Tale problematica ha portato le agenzie spaziali a definire diverse
soluzioni per mitigare sia il rischio di collisioni e incidenti orbitali, sia l’aumento
dei detriti spaziali stessi. Queste soluzioni possono mirare a: prolungamento della
vita operativa dei satelliti con la conseguente diminuzione del numero di lanci, la
predisposizione in fase progettuale di una fase di deorbiting alla conclusione della
vita operativa del satellite, e la rimozione fisica dei detriti già presenti in orbita.
In particolare, l’attenzione viene posta sull’ultima soluzione elencata analizzando e
confrontando due strategie di missione atte alla rimozione di detriti spaziali tramite
deorbiting mediante propulsione chimica.
La missione trattata prevede la rimozione di quattro detriti tra quelli generati dai
lanciatori russi ’Kosmos 3M’ che in fase operativa hanno prodotto due raggruppa-
menti di detriti alle inclinazioni orbitali di 74° (120 detriti) e 82° (155 detriti). Il
caso studiato prevede che il veicolo spaziale si trovi già sul primo detrito, sul qua-
le viene atteso il tempo necessario per l’applicazione del kit di deorbiting, per poi
compiere una trasferta al detrito successivo. Questa operazione viene ripetuta fino
all’arrivo sul quarto detrito, dove la missione si considera conclusa.
Questa tesi mira all’ottimizzazione dei trasferimenti tra un detrito e l’altro mini-
mizzando il consumo di propellente. Ciò avviene applicando la più efficiente tra le
seguenti strategie: (i) la prima strategia consiste nell’attuare il trasferimento se in un
arco di tempo prestabilito si verificherà la condizione di complanarità tra le orbite;
(ii) la seconda strategia, invece, viene applicata nel caso in cui nel tempo prestabili-
to la condizione di complanarità non viene verificata. Quest’ultima strategia viene
considerata in quanto il verificarsi della condizione di complanarità potrebbe richie-
dere tempi eccessivamente lunghi. Si precisa che l’ottimizzazione della missione di
rimozione è trattata sia dal punto di vista del tempo, sia dal punto di vista del costo
in termini di ∆V (impulso in velocità) utilizzando al tempo stesso un algoritmo che
sia efficiente anche dal punto di vista computazionale, mediante l’applicazione di
una formulazione semplificata.
I risultati ottenuti vengono confrontati con quelli ricavati dall’applicazione di altre
possibili strategie e con quelli derivati dalla formulazione non semplificata, l’intento
è quello di verificare la validità dell’approccio proposto.
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Chapter 1

Introduction

The steady increase of debris in space surrounding the Earth brings with it the
need to remove some of it, in order to avoid a future without further launches due
to the danger of collisions and accidents in space. Since a mission to remove one
debris at a time would be too costly, the thesis aims to develop a mission that
includes the sequential removal of four space debris. Since debris is grouped in
certain bands according to its origin, this sequence can be combined according to
mission requirements and constraints, and the purpose is to optimise this sequence
so that is cost-effective and the transfers from one debris to the next are optimal.
The mission is therefore as follows: departure from the first debris where one waits
a service time necessary for the application of the de-orbiting kit, transfer to the
second debris via chemical propulsion with the possibility of using two different
strategies, arrival at the second debris and so on until the fourth debris. Upon
arrival at the fourth debris, the mission is considered to be completed. A series of
possible mission scenarios that are efficient will then be obtained. The mathematical
model is a simplified model, so the results will not be precise but quite reliable and
less expensive from a computational point of view. The applied model is part of
the Simplified General Perturbation models (SGP) and introduces the following
simplifications: semi-major axis, eccentricity and orbital inclination are assumed
constant; gravitational forces of other celestial bodies and radiation are neglected
since we are in Low Earth Orbit (LEO); atmospheric resistance is not considered and
the only orbital perturbation taken into account is that resulting from the Earth’s
oblateness.
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Introduction

1.1 Thesis Outline
After this brief introduction, section 2 summarises the evolution of space debris
from its inception to the present day, describes the main collisions over the years,
discusses the Kessler syndrome and explains how debris is classified and catalogued.
It then describes the main space debris removal methods that are being considered
today.

Section 3 contains the derivation of the complete model, starting from the basis
of orbital mechanics, deriving orbital elements and Kepler’s laws of planetary mo-
tion and then introducing orbital perturbations and explaining how these perturb
the motion of orbiting bodies. Section 3.3 describes the transfer manoeuvres, in
particular, the Hohmann transfer orbit and how this manoeuvre can be adapted
for the mission at hand. At the end of this section, a brief description of the mass
budget of the mission.

Section 4 is focused on the description of the mission. After a general intro-
duction, in section 4.2.1 and 4.2.2 is explained more precisely what happens during
transfers in case one or the other strategy is used. Follows 4.3 where the de-orbiting
technique used for the mission is briefly described.

Section 5 is dedicated to the explanations of the results obtained from the cal-
culations. In the first part, section 5.1, are described all data given in input to the
code to obtain results. After a brief explanation of the original code, results follow.

Finally, section 6 contains some concluding remarks and some possible future
developments of this work.
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Chapter 2

Space Debris

The era of artificial satellites began on 4 October 1957 with the launch of Sputnik
I (a probe about the size of a football), put into orbit by the Soviet Union.

Figure 2.1: First artificial satellite Sputnik I.

On 1 January 1958, Sputnik I reentered the Earth’s atmosphere. After this first
launch, the Soviet Union and the United States of America started an informal com-
petition called Space race intending to conquer space. In fact, about four months
after the launch of Sputnik I, on 31 January 1958, the United States launched its first
satellite, Explorer I. Interest in space technology then spread to an ever-increasing
number of nations, gradually increasing the number of artificial satellites orbiting
around the Earth. Significant historical achievements include the following events:
12 April 1961, Yuri Gagarin, the first man to fly into space. In August 1964, the
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first geostationary satellite, 15 December 1965, the first orbital rendezvous, and less
than a year later there was a docking manoeuvre, 1969, Yuri Gagarin, the first man
on the moon, then in 1971 the first space station (Salyut 1), the first space probe
to orbit Mars. On 15 July 1975, the first international US-USSR mission (Apollo-
Sojuz) took place, where the Sojuz 19 docked with the Apollo capsule, allowing
the two crews to interact with each other. The satellites that were launched had
various purposes, e.g. telecommunications, meteorological, astronomy research and
spy satellites.

It can be therefore distinguished:

• Scientific satellite: for pure research in astronomy or geophysics, such as the
Hubble Space Telescope.

• Application satellite: used for military or civilian purposes. These can be
subdivided into:

– Telecommunications satellites.
– Meteorological satellites (METEOSAT ).
– Satellites built for remote sensing, mapping and observation of Earth’s

surface (Landsat).
– Navigation satellites (GPS).
– Militar satellites.
– Orbiting stations(ISS).

During all these years and the years that followed, thousands of satellites were
launched, and orbits began to be populated, first in the low orbits defined as Low
Earth Orbit (LEO), which lie between the Earth’s atmosphere and the Van Allen
belts (between 160 km and 2000 km), and later in the orbits defined as Medium Earth
Orbit (MEO), located between 2000 km and 36000 km, and in the Geostationary
Orbit (GEO), which are placed at about 36000 km, so that the revolution period of
the satellite coincides with the rotation period of the Earth.

4
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Figure 2.2: Debris population.

As can be imagined, not all launches were successful, and as the number of
launches increased, so did the probability of accidents. In fact, just four years after
the launch of Sputnik 1, the first in-orbit explosion occurred, when an American
launcher exploded shortly after releasing the payload, generating about 300 frag-
ments. There were also deliberate explosions (against spy satellites, for example).

Various types of collisions and accidents have occurred over the years, so the
number of fragments increased, making it necessary to classify, track and dispose
what is known as space debris.

As described in [1], the collisions that have occurred can be distinguished:

• Intentional collisions intended to destroy satellites through the use of anti-
satellite weapons:

– The Soviet Union, during the 1970-80s, with its ’Istrebitel Sputnikov’
programme, conducted several tests for their interceptor satellite and
destroyed target satellites created specifically for the purpose of the test
(IS-P/I2M).

– In 1985, the US destroyed the ’Solwind P78-1’, an orbiting solar obser-
vatory, during a counter-satellite missile test.

– In january 2007, the destruction of the meteorological satellite ’Fengyun
FY-1C’, during a Chinese anti-satellite test.[2]

– In 2008, during operation ’Burn Frost’, a non-functioning U.S. reconnais-
sance satellite (USA-193) was intercepted and destroyed.

• Unintentional low-speed collisions during rendezvous operations and docking
manoeuvres:

5
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– In 1994, the collision between ’Soyuz TM 17’ and Russian space station
’Mir’.

– In 1997, the collision between the ’Progress M 34’ spacecraft and the
Russian space station ’Mir’ during manual docking.

– In 2005, collision during an orbital rendezvous manoeuvre, between ’USA
DART’ spacecraft and communication satellite ’USA MUBLCOM’.

Figure 2.3: Collision between ’Iridium-33’ and ’Cosmos-2251’.

• High-speed collisions between active satellites and orbiting debris:

– In 1996, the collision between the French reconnaissance satellite ’Cerise’
and debris produced by an ’Ariane’ rocket.

– The collision between the ’Iridium 33’ communication satellite and the
Russian ’Cosmos 2251’ communication satellite in February 2009, result-
ing in the destruction of both satellites (Figure 2.3).[3]

– On 22 January 2013, the collision between debris coming from Chinese
’Fengyun 1C’ and the Russian nano-satellite ’Blits’ changing both its
orbit and rotation rate. [2][4]

– On 22 May 2013, the collision between two CubeSats, Ecuador’s ’NEE
01 Pegaso’ and Argentina’s ’CubeBug 1’, forming a cloud of debris.

Table 2.1 lists the main space debris producing events, including the explosion
of upper stages and satellite collisions:[5]
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2.1 – Definition of Space Debris

Common Name Year Altitude
[km]

Catalogued
debris

Debris
in orbit

Assessed cause
of breakup

Fengyun-1C 2007 850 3428 2880 Intentional collision
Cosmos 2251 2009 790 1668 1141 Accidental collision
STEP-2 Rocket Body 1996 625 754 84 Accidental explosion
Iridium 33 2009 790 628 364 Accidental collision
Cosmos 2421 2008 410 509 0 Unknown
SPOT-1 Rocket Body 1986 805 498 32 Accidental explosion
OV2-1 / LCS 2 Rocket Body 1965 740 473 33 Accidental explosion
CBERS 1 / SACI 1 Rocket Body 2000 740 431 210 Accidental explosion
Nimbus 4 Rocket Body 1970 1075 376 235 Accidental explosion

TES Rocket Body 2001 670 372 80 Accidental explosion

Table 2.1: Top 10 breakups, January 2016

2.1 Definition of Space Debris
Space debris (also known as space junk) is a term for defunct human-made objects in
space, principally in Earth orbit, which no longer serves a useful function. These in-
clude derelict spacecraft, nonfunctional spacecraft, abandoned launch vehicle stages,
mission-related debris and fragmentation debris from the breakup of derelict rocket
bodies and spacecraft.[6]

Man-made objects in Earth orbit can be divided into the following categories:

• Breakup debris (fragmentations).

• Payloads/spacecrafts, grouping operational satellites and vehicles.

• Mission-related debris, i.e. all objects released intentionally.

• Rocket bodies, grouping upper stages, empty tanks and launcher fairings.

• Anomalous debris, comprising all that does not fall into the other categories.

The percentage distribution of the listed objects is shown in figure 2.4 :[1]
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Figure 2.4: Relative segments of the cataloged in-orbit Earth satellite population.

The most important category is break up debris, as is evident from the graph, as
this includes many kinds of breakups, it can be further divided into subcategories:[1]

• Deliberate actions.

• Propulsion-related breakups include malfunctions during orbital injection or
manoeuvres, subsequent explosions based on residual propellants and failures
of active attitude control system.[7]

• Accidental collisions.

• Battery.

• Unknown, includes all cases for which it cannot be proved that it belongs to
a specific category.

In Figure 2.5 it can be seen divided into percentages:
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2.1 – Definition of Space Debris

Figure 2.5: Proportion of cataloged satellite breakup debris.

It is noted that the percentage concerning deliberate actions, often associated
with activities related to national security, was formerly the most frequently oc-
curring class. However, only one such event occurred during the decade from 1997
until the ’Fengyun 1C’ event in January 2007. On average, the resulting debris
from deliberate actions are short-lived, the exception being ’Fengyun 1C’. Rocket
body events are carried as Unknown until a failure mechanism can be confidently
identified for that rocket body design and is associated with a given rocket body
event.[1]

2.1.1 Kessler Syndrome
Large objects such as inactive satellites or upper stages are the main source of debris
generation due to their mass and higher probability of being involved in a collision:
a single collision event can result in a huge amount of debris.
Graph 2.9 shows the trend in debris generation over the years:[8]
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Figure 2.6: Number of Objects in Earth Orbit by Object Type (SSN Catalog).

As it might be seen from the graph 2.9, constant growth of debris is evident
since any artificial object launched into space was usually abandoned at the end of
its operational life.

Kessler, in 1978, predicted a possible scenario for the 2000s where space would
no longer be usable for a long time due to the density of space debris caused by
launches, which would lead to an increasing number of collisions, thus creating a
chain reaction with an exponential increase in space debris and the risk of further
collisions. This effect is now known as Kessler syndrome.[9]

Immediately after its publication, this problem was not considered, but it hap-
pened a few years later, in the 1980s when satellites were already being designed for
atmospheric re-entry at the end of their operational life. These new measures were
not always adopted because of cost and time issues - it was still the cold war period.
Debris in space continued to increase even though this problem was known.

In figure 2.7 can be seen a graph that represents Spatial density (objects per unit
volume). It is the effective number of spacecraft and other objects as a function of
altitude. Effective number, rather than the simple counting of objects, is used
because many objects traverse the altitude regions of interest yet contribute little
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2.1 – Definition of Space Debris

to the local collision hazard.

Figure 2.7: Altitude population up to 2000 km.

Two peaks can be seen at around 800 km, corresponding to the previously men-
tioned planned destruction of the Chinese satellite ’Fengyun-1C’ in 2007 and the
accidental collision between two satellites in 2009.

From this graph, it can be seen that in certain areas, there is a very high density,
thus necessitating the implementation of space debris removal techniques.

2.1.2 Debris population at present
At the moment, as mentioned in previous chapters, the space surrounding the Earth
is very crowded.

Below is a list containing the most essential data on the situation in orbit:[10]

• Number of rocket launches since the start of the space age in 1957 →
About 6020 (excluding failures).

• Number of satellites these rocket launches have placed into Earth orbit →
About 10680.

• Number of these still in space → About 6250.

• Number of these still functioning → About 3600.
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• Number of debris objects regularly tracked by Space Surveillance Networks
and maintained in their catalogue → About 28210.

• Estimated number of break-ups, explosions, collisions, or anomalous events
resulting in fragmentation → More than 550.

• Total mass of all space objects in Earth orbit → More than 9200 tonnes.

• Number of debris objects estimated by statistical models to be in orbit:

– 34000 objects greater than 10 cm.
– 900000 objects from ranging from 1 cm to 10 cm.
– 128 million objects ranging from 1 mm to 1 cm.

2.1.3 Debris Catalogation
So far, the quantity of debris in space has been discussed and it can be imagined
since the birth of debris there has been a need to detect, identify, catalogue and
classify it. Radar, optical telescopes and infrared technology are used to monitor
and characterise debris as required. Radar is generally used for debris in LEO orbits,
optical sensors for GEO orbits and infrared observation techniques are usually used
when the object’s temperature needs to be known. The US has developed various
systems to monitor space. The main objective was to keep an eye on other countries
and identify possible missile attacks. As debris and space activity increased, the
purpose became to monitor all launches and distinguish decaying satellites from
possible hostile attacks.

Space Surveillance Network (SSN)

On 30 November 1957, the Space Surveillance Network was born with the project
’Harvest Moon’. As described in [11], the United States Space Surveillance Network
involves detecting, tracking, cataloguing, and identifying artificial objects orbiting
the Earth; e.g., active and inactive spacecraft, spent rocket bodies, mission-related
debris, and fragments.

Space surveillance accomplishes the following:

• Predict when and where a decaying space object will reenter the Earth’s at-
mosphere.

• Determines which country is responsible for an orbiting or reentering space
object.

• Produce a running catalog of artificial space objects.

12
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• Chart the present position of space objects and plot their anticipated trajec-
tories.

• Detect new man-made objects in space.

• Inform NASA whether or not objects may interfere with the International
Space Station or satellite orbits.

Figure 2.8: Space Surveillance Network map.

US Space Catalog

After the launch of ’Sputnik-1’ in 1957, the United States Department of Defense
(DoD) started to catalogue every satellite state in a database called Space Catalog.
The SSN regularly updates the state of the satellites. To date, as mentioned in
section 2.1.2, the number of catalogued objects is almost 28000.[12] The General
Perturbations (GP) theory is used to maintain this catalogue, which provides a
general analytical solution for the satellite equations of motion. The assumptions
and approximations that are made in this model will be explained and deepened in
section 3.2.

Space Situational Awareness program (SSA)

Space Situational Awareness Program (SSA) is a surveillance system of the European
Space Agency. It aims to make Europe independent in detecting, tracking and

13
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monitoring artificial and non-artificial objects that could damage orbiting satellites
and ground infrastructures.

It is divided into three main areas as described in [13]:

• Space Weather Segment (SWE) → monitoring and predicting the state of
the Sun and the interplanetary and planetary environments, including Earth’s
magnetosphere, ionosphere and thermosphere, which can affect spaceborne and
ground-based infrastructure thereby endangering human health and safety.

• Near-Earth Objects (NEO) → detecting natural objects such as asteroids
that can potentially impact Earth and cause damage.

• Space Surveillance and Tracking (SST) → watching for active and inactive
satellites, discarded launch stages and fragmentation debris orbiting Earth.

The SST completely covers the Earth’s orbits (LEO, MEO, GEO) and compiles
a catalogue containing all data related to the monitored objects.

2.1.4 Debris Classification
As previously mentioned, in orbit, there are many objects that are too small to be
detected, in addition to the objects that our surveillance systems can detect. To
classify the objects that are catalogued, they are divided into three categories:

• Large Debris → This category includes all debris with a size greater than
about 10 cm in diameter. They represent the most catalogued category and
are mostly concentrated in LEO orbit (less than 2000 km altitude), at about
20000 km and in GEO orbit (36000 km). Few objects are catalogued in orbit
above 40000 km. It should be noted that below 2000 km, the majority of
large debris is due to fragmentation. Between 2000 km and 16000 km payload
debris is predominant, while above 16000 km, the majority is rocket debris.

• Medium Debris → This category includes all medium-sized objects rang-
ing from about 1 mm to 10 cm in diameter. Debris of this size is only cata-
logued if it is in low orbit by ground-based surveys due to instrument limita-
tions. Since medium-sized debris can be expected to come from large debris,
it is approximated that these are on the same orbits. However, medium-sized
debris is more affected by atmospheric drag and therefore undergoes a more
rapid orbital decay. Although the amount and precise location of this cate-
gory of debris is an estimate, it is known that it is derived from mission-related
debris, payload debris and fragmentation debris.
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• Small Debris → This category is represented by debris less than 1 mm
in diameter and accounts for the majority of debris in orbit. All data are ap-
proximate estimates. As medium-sized debris is derived from mission-related
debris, fragmentation debris (due to breakage) or deterioration of the satellite
surface. Analyses show that almost 100% of this debris reenter the atmosphere
after one year because it has a higher cross-sectional area ratio to mass and is
more affected by atmospheric drag and solar pressure.

It should be noted that all data concerning high altitudes are not necessarily
true as the sensors may not be able to detect all objects.

2.2 Overview of debris removal methods
It was calculated in the 2000s that by not performing any further launches for 100
years, the number of objects in orbit would still increase (as Kessler said) due to
increasingly frequent collisions. As mentioned in the previous sections, measures to
reduce the population of debris in Earth orbit are becoming increasingly crucial for
the future of upcoming space missions. To date, various methods to mitigate the
space debris problem are being investigated. Mitigation strategies aim to solve the
debris problem in the long term. These are measures that minimise the production
of debris that would add to the current population already in orbit or reduce the
current population by actively influencing the structure of the debris. In the first
case, known as passive mitigation, manufacturing techniques and proper planning
of mission strategies are involved; in the second case, known as active mitigation, an
external system is used to apply a force to the debris to manoeuvre it and possibly
destroy it completely.

As better described in [11], the following techniques are the most important.
The two passive techniques are:

• Passivation → Consists of rendering spacecraft, rockets and their com-
ponents devoid of any energy source onboard. Typical passivation measures
include venting or burning excess propellant, discharging batteries and reliev-
ing pressure vessels.

• Prevention → This category includes: Collision Avoidance manoeuvres
performed if the satellite is at a dangerous distance from another object, op-
timal mission planning and protection systems using protective shields.

The two active techniques are:

• Re-orbiting → This method consists of moving spacecraft into storage or-
bits with the same techniques used for de-orbiting (described below).
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• De-orbiting → It is the most effective category and includes several strate-
gies that can be used:

– Natural decay: it is a passive method and depends on the aerodynamic
resistance acting on the satellite. This method is used on satellites in low
orbits (below 500 km).

– End-of-life systems: this consists of projecting the satellite for an at-
mospheric re-entry manoeuvre at the end of its operational life. It can
occur via chemical propulsion (less time but less efficient), and via electric
propulsion (slow but more efficient).

– Drag Augmentation systems: this category includes drag balloons and
drag sails, which exploit viscous friction for satellite de-orbiting.

– Robotic capture or through de-orbiting kit: is the most widely accepted
solution currently being analysed in this thesis. A vehicle chaser reaches
the target debris by performing a rendezvous manoeuvre and applies a
de-orbiting kit which can be chosen from drag augmentation devices or
end-of-life systems. If the robotic capture strategy is used, the debris can
also be delivered to other vehicles already in orbit. To make this method
of active debris removal (ADR) more efficient, the kit can be delivered to
more debris as studied in this elaborate.

– Other strategies: removal methods using foam, harpoons, nets, which
are thrown from a certain distance, without the need to perform the
rendezvous manoeuvre.

Figure 2.9: ADR through capture net.
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Chapter 3

Mathematic model

3.1 Orbital Mechanics
Space debris in object can be described as satellites orbiting around the earth and
they follow the same laws. We can approximate their motion with Newton two-
bodies problem where a body with mass M exercises a gravitational force on a
second body with a smaller mass m. The biggest body could be the Sun (or Earth),
and the smaller one could be the Earth (or a satellite). So the hypothesis are:

• Smaller mass m « bigger mass M .

• Point-like bodies.

• Only gravitational forces.

Celestial Mechanics, astrodynamics and the design of any space mission are based
on Kepler’s laws of planetary motion:

• The orbit of a planet is an ellipse with the Sun at one of the two foci.

• A line segment joining a planet and the Sun sweeps out equal areas during
equal intervals of time.

• The square of a planet’s orbital period is proportional to the cube of the length
of the semi-major axis of its orbit.

FM = Fm = G
Mm

r2 (3.1)

Where G = 6.67 × 10−11 Nm2

kg2 is the Universal gravitational constant and FM , Fm

are attraction forces. Knowing from Newton’s second law: F⃗ = m¨⃗r.
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m ¨⃗ρ = −GMm
r2 × r⃗

r

M
¨⃗
R = GMm

r2 × r⃗
r

(3.2)

r⃗ is the vector connecting M and m.
By semplifing and subtracting equations it can be obtained the relative acceleration
¨⃗r:

Figure 3.1: Two-body problem.

¨⃗r = ¨⃗ρ− ¨⃗
R = −G(M +m)

r2 × r⃗

r
(3.3)

where m is negligible.
It can be defined µ = GM and finally obtain the motion equation of the smaller

body respect to the bigger:

¨⃗r + µ

r2 × r⃗

r
= 0 (3.4)

3.1.1 Angular Momentum
An important variable is angular momentum h⃗ because it relates the position and
velocity of the secondary body respect to the principal body.

at = 2ṙν̇ + rν̈ = 0 = 1
r

d

dt
(r2ν̇) (3.5)
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ν is the angle between periapsis and the vector r⃗.
If derived equals to 0 so (r2ν̇) = cost

(r2ν̇) = r × rν̇ = cost (3.6)
Knowing that rν̇ = vt:

rvt = cost (3.7)
And looking at figure 3.2:

Figure 3.2: Speed components.

vt = v cosφ (3.8)
Where φ is flight path angle.

rv cosφ = cost (3.9)
Multiplying equation 3.4 by r, a product between two parallel vectors is found:

r⃗ ∧ ¨⃗r = − µ

r3 (r⃗ ∧ r⃗) (3.10)

The first term equals to:

r⃗ ∧ ¨⃗r = d

dt
(r⃗ ∧ ˙⃗)r = ˙⃗r ∧ ˙⃗r + r⃗ ∧ ¨⃗r = 0 (3.11)

So:

r⃗ ∧ ˙⃗r = cost (3.12)

Can be defined the angular momentum h⃗ = r⃗ ∧ ˙⃗r = r⃗ ∧ v⃗ = cost:
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|⃗h| = rv sin (90 − φ) = rv cosφ (3.13)

3.1.2 Mechanical Energy
The Mechanical energy can be obtained from equation 3.4:

at ⇒
ar ⇒

r̈ − rν̇2 = − µ
r2

2ṙν̇ + rν̈ = 0
(3.14)

ar is radial acceleration and at is tangential acceleration. Multiplyng respectively
by radial velocity ṙ and by tangential velocity rν̇ and summing them, the following
result is obtained:

arṙ + atrν̇ = − µ

r2 r (3.15)

ṙr̈ − rṙν̇2 + 2rṙν̇2 + r2ν̇ν̈ = µ
r2 ṙ

ṙr̈ − rṙν̇2 + r2ν̇ν̈ = µ
r2 ṙ

(3.16)

Now deriving equation 3.16:

1
2
d

dt
(ṙ2) + 1

2
d

dt
(r2ν̇2) = d

dt

µ

r
(3.17)

1
2
d

dt
(v2

r + v2
t ) = 1

2
d

dt

µ

r
(3.18)

Mechanical Energy Eg equation is obtained:

Eg = v2

2 − µ

r
= cost (3.19)

Note that for ellipse and circle the Mechanical Energy is always Eg < 0.

3.1.3 Ellipse
An ellipse is obtained as the interseption of a cone with an inclined plane. It is a
plane curve surrounding two focal points, such that for all points of the curve, and
the sum of the two distances to the focal points is a constant.

The equation of the ellipse centered in the origin is represented in Cartesian
form:

x2

a2 + y2

b2 = 1 (3.20)

From this equation some important parameters can be described:
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Figure 3.3: Elliptical orbit

• a → semi-major axis

• b → semi-minor axis

• c =
√
a2 − b2 → focal half distance. The distance between one focus and

center.

• e → eccentricity. The elongation of an ellipse is measured by its eccentricity
e, a number ranging from e = 0 (the limiting case of a circle) to e = 1 (the
limiting case of infinite elongation, no longer an ellipse but a parabola).

From these parameters, other important parameters of an elliptical orbit can be
obtained: perigee and apogee, respectively, the nearest point of the orbit from the
Earth (Earth is one of the focal points) and the farthest point.

Radius of Perigee:

rpe = a− c = a− ae = a(1 − e) (3.21)
Radius of Apogee:

rap = a+ c = a+ ae = a(1 + e) (3.22)
As described in [14], an orbit is defined by its orbital parameters:

• ν → true anomaly: defines the position of a body moving along a Keplerian
orbit. It is the angle between the direction of periapsis and the body’s current
position, as seen from the main focus of the ellipse (the point around which
the object orbits).
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• ψ → eccentric anomaly: is given by the angle between the line of apses and
the line between the geometric center of the ellipse and the projection of the
planet on the auxiliary circle of radius equal to the semi-major axis of the
ellipse.

cosψ = e+ cos ν
1 + e cos ν (3.23)

• M → mean anomaly: is the angular distance from the pericenter which a
fictitious body would have if it moved in a circular orbit, with constant speed,
in the same orbital period as the actual body in its elliptical orbit. Mean
anomaly does not measure an angle between any physical objects. It is simply
a convenient uniform measure of how far around its orbit a body has progressed
since pericenter. [15][16] To define mean anomaly we need to introduce mean
motion n because a body orbits along an orbit with a non-constant velocity.

n =
ò
µ

a3 (3.24)

From mean motion it can be obtained the orbital period T :

T = 2π
n

= 2π
ó
a3

µ
(3.25)

Which is proved in Kepler’s third law of planetary motion, as in section 3.1.6.

A is defined as:

A = abM

2 (3.26)

Whenever A is equal to 2π the area swept by the vector ray coincides with the
area of the ellipse πab. The time derivative of mean anomaly is constant for the
Kepler’s second law of planetary motion, and it is equal to mean motion:

Ȧ = n =
ò
µ

a3 (3.27)

We can also define mean anomaly as:

M = n∆tpe = ψ − e sinψ (3.28)
Where ∆tpe →time elapsed from the passage to the perigee and it is equal to:

∆tpe =
ó
a3

µ

C
2 arctan

Aó
1 − e

1 + e
tan

3
ν

2

4B
− e

√
1 − e2 sin ν

1 + e cos ν

D
(3.29)

Other parameters of the orbit are:
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• p →semilatus rectum: the half length of the chord through one focus, perpen-
dicular to the major axis.

p = a(1 − e2) = h2

µ
(3.30)

• r →vector ray: on a generic point is the vector joining center of principal and
center of secondary body, or connecting one focus of the orbit with one point
along the orbit.

r = p

1 + e cos ν = a(1 − e2)
1 + e cos ν = a(1 − e cosψ) (3.31)

• V →orbital speed: on a generic point, is the speed of the body respectively to
the center of mass.

V =

öõõôµ(1 + e2 + 2e cos ν)
a(1 − e2) =

ó
µ

a

1 + e cosψ
1 − e cosψ (3.32)

For a specific point on the orbit we can describe orbital speed at perigee and
apogee:

Vpe =
ó
µ

a

1 + e

1 − e
(3.33)

Vap =
ó
µ

a

1 − e

1 + e
(3.34)

We define now three angles that are very important for the definition of an orbit
(see figure 3.4):

• Ω →longitude of the ascending node: it is the angle from a specified reference
direction, called the origin of longitude, to the direction of the ascending node,
as measured in a specified reference plane. The ascending node is the point
where the orbit of the object passes through the plane of reference. see image
and cit.

• i →orbital inclination: it is expressed as the angle between a reference plane
and the orbital plane or axis of direction of the orbiting object. see image and
cit.

• ω →argument of periapsis: it defines the orientation of the ellipse in the orbital
plane as an angle measured from the ascending node to the periapsis. see image
and cit.
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Figure 3.4: Orbital angles.

3.1.4 Orbital elements
Orbital elements are the six parameters that we need to identify a specific unique
orbit:

• e →eccentricity

• a →semi-major axis

• Ω →longitude of the ascending node

• ω →argument of periapsis

• ν →true anomaly

• i →inclination
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3.1.5 Kepler’s second law of planetary motion
Looking for a relation between true anomaly ν and time it can be obtaied Kepler’s
second law of planetary motion:

Figure 3.5: Motion of a body - Speed components.

Knowing that:

Vt = rν̇ (3.35)

h = rvt = r2ν̇ (3.36)

ν̇ = dν

dt
= h2

2 (3.37)

For a circular sector:
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Aν = πr2 ν

2π = r2ν

2 (3.38)

dA = r2

2 dν (3.39)

Dividing by dt:

1
dt
A = r2

2 dν
1
dt

⇒ dA

dt
= r2

2 ν̇ (3.40)

Is obtained Kepler’s second law of planetary motion:

dt = 2
h
dA (3.41)

This formula demonstrates Kepler’s second law of planetary motion.

3.1.6 Kepler’s third law of planetary motion
Starting from the second law to demonstrate Kepler’s third law of planetary motion
:

dA

dt
= h

2 = cost = AE

τE

(3.42)

τE = AE
2
h

(3.43)

Figure 3.6: Ellipse.
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Knowing from an ellipse as in figure 3.6:

AE = πab (3.44)

b =
√
a2 − c2 (3.45)

c = ae (3.46)

⇒ b =
ñ
a2(1 − e2) = a

√
1 − e2 (3.47)

The angular momentum can be derived from equation 3.30:

h =
ñ
µa(1 − e2) (3.48)

Putting together in equation 3.43 it is obtained Kepler’s third law of planetary
motion:

τE = 2 πaa
√

1 − e2ñ
µa(1 − e2)

= 2π
ó
a3

µ
(3.49)
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3.2 Orbital perturbations
Keplerian orbits are ideal. In reality, the motion of bodies (artificial or natural)
orbiting around a planet is perturbed by some phenomena that modify their tra-
jectories. So this orbital perturbations can modify orbital parameters more or less
significantly depending on trajectory and body characteristics. Therefore in a de-
terminate moment, a body should be on a Keplerian orbit, but it is on a real orbit
as we can see in figure 3.7.

Figure 3.7: Keplerian and Perturbed orbit - Encke’s method.

There are two ways to solve the problem of orbital perturbations:

• General perturbation method: solved analytically, using variation of orbital
element or variation of constant of integration.

• Special perturbation method: numerical solution, can be applied to any problem
in celestial mechanics.

dr⃗ = r⃗ − r⃗K (3.50)

d ˙⃗r = ˙⃗r − ˙⃗rK (3.51)

d¨⃗r = ¨⃗r − ¨⃗rK (3.52)
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⇒ d¨⃗r = −µ
3
r⃗

r3 − r⃗K

r3
K

4
+ a⃗p (3.53)

This perturbation phenomena are classified in different categories in relation to
how much they depend on time. All parameters have a drifting in time so:

• Secolar perturbations: in first approximation are proportional to time and they
cause a continuous increase or decrease of the parameter on which they act. If
considering a finite time interval, they can be considered linear in time. They
are for example solar pressure and aerodinamic drag, with non-conservative
fields.

• Resonant perturbations: they cause harmonic variations of orbital parameters.

• Long period periodical perturbations: they cause harmonic variations.

– Geopotential perturbations: similar in quantity to rotation period of per-
ihelion.

– Presence of Sun and Moon: order of months or years.

• Short period periodical perturbations: they cause harmonic variations of orbital
parameters similar in quantity to orbital period of the body.

Figure 3.8: Secolar and periodic perturbations.

Perturbations that depends on gravitational potential have a periodic and con-
servative nature like third-body perturbation or oblateness of the Earth. Classical
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theory shows that orbital elements a, e and i are subject exclusively to periodic per-
turbations. Instead, Ω, ω and M are subject to both periodic perturbations and
secular perturbations.

Pherturbing phenomena are:

Gravitational ⇒

Third-body perturbation
Earth’s gravitational asymmetries

Non-gravitational ⇒

Atmosferic drag
Solar pressure

3.2.1 Earth’s gravitational asymmetries
Two-body Keplerian model provides that the attractor body (Earth) is perfectly
spherical, with a homogeneous distribution of density. But planet Earth in reality
is not spherical and does not have a homogeneous distribution of mass:

• Oblateness= 1
298.2 → is defined as difference between equatorial and polar

radius divided by equatorial radius.

• Eccentricity at equator= 1.14 × 10−5 → is defined as ratio between half-focal
distance and semi-major axis.

Figure 3.9: Geoid: perpendicular surface at gravity in every point.
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• Difference between equatorial and polar radius is about 21384 km.

• Difference between semi-major axis and semi-minor axis at equator is about
145 m.

This clear diversity, as seen in figure 3.9, between the Keplerian model and the
real characteristics of planet Earth is the main reason of perturbative action caused
by Earth’s gravitational asymmetries. To define a more realistic Earth’s gravity
field, we define a semi-analytic model of gravitational energy, taking account of
Earth’s oblateness, ellipticity at equator and other differences between Earth’s real
gravity field and spherical gravitational field. The expression for gravitational energy
(potential) that does not have any spherical symmetry is:

U(r, λ, δ) = µE

r

C
1−

∞Ø
n=2

nØ
m=0

3
RE

r

4n

[Cnm cos (mλ)+Snm sin (mλ)]Pnm(sin δ)
D

(3.54)

With:

• µE: standard gravitational parameter.

• r: radial distance detween center of mass of the two bodies.

• RE: Earth’s equatorial radius.

• n: harmonic degree.

• m: harmonic order.

• λ: longitude.

• δ: declination.

• Cnm, Snm: coefficients.

• Pnm: associated Legendre polynomials.

Pmn(x) = 1
2nn!

d(1 − x2)m
2

dx

dn+m(x2 − 1)n

dx(n+m) (3.55)

Expressions of associated Legendre polynomials Pnm and coefficients Cnm, Snm

are normalized as follows:

C̄nm =

öõõô (n+m)!
(2n+ 1)k(n− 1)!Cnm (3.56)
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S̄nm =

öõõô (n+m)!
(2n+ 1)k(n− 1)!Snm (3.57)

P̄nm =

öõõô(2n+ 1)k(n− 1)!
(n+m)! Pnm (3.58)

With:

k =
1

2
if m = 0
if m ̸= 0

Normalized coefficients C̄nm, S̄nm can be found in appropriate lists function of de-
gree n and order m. Comparing equation 3.2.1 with gravitational energy associated
to ideal model (Earth perfectly spherical):

U = µE

r
(3.59)

It can be found perturbative potential that defines differences netween the two
models:

V (r, λ, δ) = µE

r

∞Ø
n=2

nØ
m=0

3
RE

r

4n

[Cnm cos (mλ) + Snm sin (mλ)]Pnm(sin δ) (3.60)

The gravitational field described by equation 3.60 is divided into positive and
negative potential zones, depending on the values assumed by n and m. Pnm is equal
to zero on the boundary lines between these zones. According to the values assumed
by n and m, the following nomenclature is used for experimental coefficients Cnm

and Snm:

• Zonal spherical harmonics : m = 0 → potential is no longer dependent on
longitude. As we can see in figure 3.10, in this case exists n latitude circles
where Pnm is equal to zero. Consequently the field is divided in n + 1 zones,
with alternating signs (+ and −).

• Sectoral spherical harmonics : m = n → Pnm values are equal to zero for
2n values of the longitude, the field is therefore divided by 2n lines with con-
stant longitude, which define 2n “segments” with alternating values of the Pnm

function.

• Tesseral spherical harmonics : m ̸= n → alternating zones for the Pnm

function are arranged in a "tile" configuration square.
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3.2 – Orbital perturbations

Figure 3.10: Pnm as m,n vary - Harmonics.

For zonal spherical harmonics is defined:

Cn,0 = Cn = −Jn (3.61)

The table below shows the values of the zonal harmonics Jn up to n = 7; notice
how the harmonic J2 is about 400 times larger than the next harmonic, J3.

Harmonic Value
j2 +1.0826 × 10−3

j3 −2.5327 × 10−6

j4 −1.6196 × 10−6

j5 −2.2730 × 10−7

j6 +5.4868 × 10−7

j7 −3.5236 × 10−7

Table 3.1: Values of zonal harmonics up to J7.

Calculating the gradient of equation 3.60, the expression of the components of
the perturbative acceleration due to the Earth’s gravitational field asymmetries is
obtained:

ap = ∇V (3.62)

Obtaining components:
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ar = µ

r2V − µ

r

∞Ø
n=2

nØ
m=0

3
−n(RE)nr−(n+1)

43
Cnm cos (mλ) + Snm sin (mλ)

4
Cnm sin (δ)

(3.63)

aλ = µ

r2
m

cos δ

C ∞Ø
n=2

nØ
m=0

3
RE

r

4n3
Snm cos (mλ) − Cnm sin (mλ)

4
Pnm sin (δ)

D
(3.64)

aδ =
CA

1
2nn!

d(1 − x2)m
2

dx

d(n+m)(1 − x2)n

dxn+m
+ (1 − x2)m

2

2nn!
dn+m+1(x2 − 1)n

dx(n+m+1)

B
cos δ

D
·

µ

r2
µ

r

C ∞Ø
n=2

nØ
m=0

3
RE

r

4n3
Cnm cos (mλ) + Snm sin (mλ)

4D
(3.65)

From the values shown in table 3.2.1, as said before, J2 is predominant compared
to the other zonal harmonic. Harmonic J2 is associated to Earth’s oblateness, as
shown in the figure 3.11.

Figure 3.11: Effect of perturbative potential J2.

After a few theorical steps it can be obtained the variations of longitude of the
ascending node, argument of perigee and mean anomaly.

Effect of Earth’s oblateness - nodal precession

dΩ
dt

= −3
2

A
rE

p

B2

nJ2 cos i (3.66)

This phenomenon is called nodal precession and consists of a variation of the
angle between the orbital plane and orbit inclination i. The expression 3.66 shows
that:

• If 0 < i < π
2 ⇒ Regression: angle between orbital plane and orbital inclina-

tion decreases.

• If π
2 < i < π ⇒Precession: angle between orbital plane and orbital inclina-

tion increases.
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Effect of Earth’s oblateness - aspides precession

dω

dt
= 3

4

A
rE

p

B2

nJ2

3
5 cos2 i− 1

4
(3.67)

This phenomenon is called apsidal precession and consists of a gradual rotation
of the line connecting the apsides (apogee and perigee). Looking at expression 3.67
it can be noticed that:

if 5 cos2 i− 1 = 0 ⇒ cos i =
ó

1
5 (3.68)

Then by solving the equation these solutions are obtained:

• i = 63.4◦

• i = 116.6◦

In these two cases, equation 3.67 is equal to zero, so it means that a satellite or-
biting around Earth with i = 63.4◦ or i = 116.6◦ is not affected by this perturbation.
We can even specify that:

• If i < 63.4◦ or i < 116.6◦ ⇒ Precession: orbit’s axis rotates in the same
direction as the orbital motion.

• If 63.4◦ < i < 116.6◦ ⇒ Regression: orbit’s axis rotates in the opposite
direction as the orbital motion.

Figure 3.12: Apsidial precession.

Effect of Earth’s oblateness on mean anomaly

dM

dt
= n+ 3

4

A
rE

p

B2

nJ2
√

1 − e2
3

3 cos2 i− 1
4

(3.69)
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3.2.2 Third-body perturbation
One of the hypotheses at the base of the formulation of the Keplerian two-body
problem consists in considering the secondary body subjected to the gravitational
action of the only primary body, neglecting the gravitational attraction of any other
body of the space environment. This approximation becomes very heavy for satel-
lites that operate in high orbits, but it cannot be neglected even for satellites that
propagate for long periods in low orbits. For a realistic study of the motion of bodies
around the Earth, it is necessary to consider the effect of the attraction of the Moon
and the Sun.

Figure 3.13: Earth, Moon and orbiting-body scheme.

It can be written:

R⃗ = ρ⃗ cosα + r⃗ cos β (3.70)

r⃗ = ρ⃗0 − R⃗0 (3.71)
Systemizing the equations of the two bodies:

m ¨⃗ρ0 = −GMm
r2

r⃗
r

−Gmmp

ρ2
ρ⃗
ρ

M
¨⃗
R0 = +GMm

r2
r⃗
r

−GMmp

R2
R⃗
R

(3.72)

Where M is the mass of the Earth and mp is the mass of the third-body (in this
case the moon). Subtracting the second equation from the first:
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¨⃗ρ0 − ¨⃗
R0 = −G(M +m)

r2
r⃗

r
−G

mp

ρ2
ρ⃗

ρ
+G

mp

R2
R⃗

R
(3.73)

Knowing that mass m is negligible, µE = GM,µp = Gm, it can be obtained the
acceleration of the orbiting body relative to the Earth:

¨⃗r = −µE

r2
r⃗

r
− µp

ρ2
ρ⃗

ρ
+ µp

R2
R⃗

R
(3.74)

Where:

ap = µp

R2
R⃗

R
− µp

ρ2
ρ⃗

ρ
= µp

5
R⃗

R3 − ρ⃗

ρ3

6
(3.75)

ap is the perturbing acceleration.

⇒ ap

µp

= R⃗

R3 − ρ⃗

ρ3 (3.76)

Applying Law of cosines:

ap = µp

ρ2

ó
1 + ρ4

R4 − 2ρ2

R2 cosα (3.77)

Looking at this expression it can be observed about distances ρ, R:

• If ρ << R ⇒ ap = µp

ρ2 → It means that since the body is very close to
the third body, the perturbative acceleration is given approximately only by
the third body (the Moon in this case).
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• If REarth−Moon = 384400km
rGeo−sat = 42000km

ρ ≈ R so we can approximate R >> r. We obtain:

r

R
<< 1 ⇒ r

R
= ε (3.78)

From equation 3.70 we can write:

cosα = R − r cos β
ρ

(3.79)

ρ

R
cosα = − r

R
cos β + 1 = 1 − ε cos β (3.80)

Substituting in equation 3.77 the result found in equation 3.80, ap can be
evaluated with the following expression:

ap = µp

ρ2

ó
1 + ρ4

R4 − 2ρ
R

3
1 − ε cos β

4
(3.81)

Applying some mathematical simplifications and binomial theorem we obtain
the formula of the perturbative acceleration when the perturbed body is close
to the Earth:

ap = µpr

R3

ñ
1 + 3 cos β (3.82)

Two particular cases can be identified:

– If β = 0, π ⇒ ap
∼= 2 µp

R3 r → Conjunction: occurs when two
astronomical objects or spacecraft have either the same right ascension
or the same ecliptic longitude, usually as observed from Earth. In this
case the pertubing action is maximum.[16][17]

– If β = π
2 ,

3
2π ⇒ ap

∼= µp

R3 r → Quadrature: is the configura-
tion of a celestial object in which its elongation is perpendicular to the
direction of the Sun. In this case the pertubing action is minimum.

Regarding the impact on orbital parameters, the gravitational attraction force
exerted by the third body is however a conservative force (the third body is con-
sidered perfectly spherical), and consequently, we will not have dissipation of the
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mechanical energy, nor variations in the orbit form (it means that we will not have
a variation of orbital parameters such as semi-major axis and eccentricity). The
largest secular variations involve the longitude of ascending node and the argument
of perigee, estimated as follows:

dΩMoon

dt
= −0.00338cos i

n
(3.83)

dΩSun

dt
= −0.00154cos i

n
(3.84)

dωMoon

dt
= −0.001694 − 5 sin2 i

n
(3.85)

dωSun

dt
= −0.000774 − 5 sin2 i

n
(3.86)

3.2.3 Atmosferic drag
Atmospheric drag is a particularly significant perturbation for low orbits. The pre-
cise calculation of the forces that are generated by the interaction of the orbiting
body on contact with the surrounding atmosphere is affected by several uncertainties
related to

• Shape and relative orientation of the satellite with respect to the surrounding
atmosphere.

• Difficult to estimate the characteristics of the atmosphere at altitudes of in-
terest for spaceflight, since they are variable due to solar and geomagnetic
activity.

• Condition of rarefied air in the high atmosphere.

• Possible ionization of the atmosphere; can lead to a complex interaction be-
tween exposed surfaces and the surrounding atmosphere.

From the formulation of aerodinamic drag:

m
dv

dt
= −1

2ρω
2SCD (3.87)

Where: m is the mass of the body, ω2 ∼= v2 = µ
a
, v is speed, ρ is density, S is the

section of the body perpendicular to the direction of motion, CD is the aerodynamic
drag coefficient.
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In general, for satellites in orbit above 200 km altitude, the drag coefficient is
about 2.2 for spherical bodies and about 3 for cylindrical bodies, assumes an inter-
mediate value for the other possible shapes. As it is evident from the expression
3.87, the acceleration due to the atmospheric resistance depends explicitly on the
density. Consequently, the choice of the atmospheric model to be used is crucial in
order to obtain a good estimate of the effects of the atmosphere on the motion of
the body. Regarding this, there are many models of the atmosphere, periodically
updated, provided by agencies specialized in studying the space environment. Re-
garding the impact of the aerodynamic action on the orbital parameters, we must
keep in mind that aerodynamic friction force is a dissipating force. Consequently,
its action on the satellite causes a decrease of the body’s mechanical energy. The
mechanical energy is directly associated with the semi-major axis values through
the relation:

Eg = − µ

2a (3.88)

Ultimately, the decrease in mechanical energy due to aerodynamic resistance re-
sults in a reduction of the semi-major axis and eccentricity of the orbit; as already
discussed above, the semi-major axis and the eccentricity represent the orbital pa-
rameters that characterize the shape of the orbit. Consequently, we can say that the
action of the atmospheric resistance modifies the orbit of the body. Specifically, both
the semi-major axis and the eccentricity tend to decrease, determining a circular-
ization of the orbit and a loss of altitude of the body. When the eccentricity is close
to zero, the progressive decrease of the semi-major axis determines a spiral motion
towards lower altitudes, which continues until the increasing atmospheric density
leads to the fragmentation of the body, under the effect of thermal and mechanical
loads.

A simple formulation of the perturbative acceleration due to aerodinamic drag,
obtained from equation 3.87 and equation 3.88, is as follows:

aDRAG = −√
µa

S

m
ρCD (3.89)

In this equation it can be identified an important parameter:

BC = m

SCD

(3.90)

BC →Ballistic coefficient: the measure of the ability of a body to overcome
air resistance in flight.[18] The higher the ballistic coefficient, the less the body is
affected by aerodynamic resistance.
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3.2.4 Solar pressure
Solar pressure is a disturbance related to the force exerted on the outer surface
of a satellite by electromagnetic radiation impinging on it. Physically, a wave (or
electromagnetic radiation) is made up of magnetic and electric fields that oscillate
perpendicular to each other and to the direction of propagation of the wave.

A simple formulation of the perturbative acceleration due to solar pressure is as
follows:

apres = pS

m
(3.91)

S is the body’s surface, m is the mass, and p is the solar pressure.

p1AU = 4.5632 · 10−6 N

m2 (3.92)

This value of p is the solar pressure at 1 AU (Astronomic unit or Earth-Sun
distance, about 150 Million km).

As already mentioned in the section 1, in this thesis, only perturbations derived
from Earth’s oblateness are taken into account.

3.3 Transfer maneuvers
A transfer manoeuvre consists of using a propulsion system to modify the speed
vector, so to modify the orbit (or some of its parameters) of a spacecraft. There are
various types of manoeuvres, and those useful for the calculations in this thesis will
be discussed in more detail.

3.3.1 Hohmann transfer orbit
Hohmann transfer orbit is the most economical manoeuvre and requires a minimum
change in speed ∆V . It allows a satellite to move from a circular orbit of radius
r1 to a coplanar orbit or radius r2. The first impulsive speed variation ∆V1 puts
the satellite on an elliptical transfer orbit with pericenter r1 and apocenter r2. The
second impulse ∆V2 is performed after half a revolution and serves to circularize the
final orbit.

A scheme of a Hohmann transfer is as follows:
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Figure 3.14: Hohmann transfer.

As mentioned above radius of perigee rp and radius of apogee ra are respectively
radius of starting orbit r1 and radius of arrival orbit r2:

rp = r1 (3.93)

ra = r2 (3.94)
It can be obtained semi-major axis aH and eccentricity eH of the elliptical transfer

orbit:

aH = r1 + r2

2 (3.95)

eH = r2 − r1

r1 + r2
(3.96)

As we can see in figure 3.14, the satellite orbiting on the circular orbit 1 has a
circular speed VC1 to which ∆V1 is added, obtaining maximum velocity VH1. Satellite
arrives on the apoapsis having minimum velocity VH2, now second impulse ∆V2
accelerates the satellite to circular speed VC2.

VC1 =
ó
µ

r1
(3.97)
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VC2 =
ó
µ

r2
(3.98)

Expressions of VH1 and VH2 of the transfer orbit can be obtained using equation
of mechanical energy 3.19:

Eg = V 2

2 − µ

r
= µ

2a (3.99)

Obtaining Hohmann’s Mechanical energy:

EH = − µ

2aH

= − µ

r1 + r2
(3.100)

So Hohmann’s velocities are:

VH1 =
ó

2
3

− µ

r1 + r2
+ µ

r1

4
(3.101)

VH2 =
ó

2
3

− µ

r1 + r2
+ µ

r2

4
(3.102)

Therefore, ∆V cost of the first maneuver is:

∆V1 = VH1 − VC1 = VC1

Aó
2r2

r1 + r2
− 1

B
> 0 (3.103)

And ∆V cost of the second maneuver is:

∆V2 = VC2 − VH2 = VC2

A
1 −

ó
2r1

r1 + r2

B
> 0 (3.104)

Obtaining the total cost of the maneuver:

∆V = |∆V1|+|∆V2| (3.105)
In this example, the transfer is made from a circular orbit with a smaller radius to

one with a larger radius through two increments (accelerations) of speed. However,
if the transfer takes place from a larger circular orbit to a smaller one, two decreases
(decelerations) are necessary. In this case, the pulses will be negative and not
positive, as in the previous example. It must be pointed out that there are losses
due to gravity, which have a more significant influence in the case of a small radius.
Therefore, to spend a short time under the action of gravitational force, more giant
pulses are recommended for small radius, while smaller pulses can be used for large
radius. The transfer from one orbit to another becomes much more complicated if
another orbiting object is to be intercepted. In fact, the interceptor, in this case
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the chaser, and the target (debris) must arrive at the rendezvous point at the same
moment. This common manoeuvre is called space rendezvous, and it consists of a
set of orbital manoeuvres that leads to an encounter of two bodies orbiting.

As mentioned, Hohmann’s transfer is the most economical manoeuvre, but it is
also the one that costs more in terms of time. Because of the long time required for
this manoeuvre, it is not convenient if there is a crew on board.

Here is the calculation about the time taken to complete the maneuver:

∆TH = TE

2 = π

öõõôa3
H

µ
(3.106)

It is corresponding to half the orbital period of the transfer orbit.
In order to reduce t, are used more expensive trajectories like parabolic or hy-

perbolic. Starting tangent to perigee → φ = 0 (fight path angle), and arriving at
the final orbit by travelling a shorter distance with higher speed:

∆V1 > ∆V1H (3.107)

To deorbit a debris, it is necessary to give it a certain impulsive ∆V , reducing
the perigee of the orbit. The manoeuvre is carried out at the apogee of the elliptical
orbit of the debris. Therefore the Hohmann transfer formulas (circular orbits) needs
some variations. Since the apogee of the elliptical orbit of the debris coincides with
the apogee of the Hohmann orbit, it will be enough to give only one impulse to vary
the velocity. The energy is conserved. Therefore it can be written:

Ed = V 2
a

2 − µ

ra

= − µ

2a ⇒ Va =
ó

2µ
3 1
ra

− 1
2a

4
(3.108)

EH = V 2
H

2 − µ

ra

= − µ

ra + r∗
p

⇒ VH =
öõõô2µ

3 1
ra

− 1
ra + r∗

p

4
(3.109)

Where: Ed is the debris’s Mechanical energy on his orbit and r∗
p is the perigee

of the final orbit (r∗
p = rE). Change in velocity to deorbit the debris is:

∆Vdeo =
-----
ó

2µ
3 1
ra

− 1
2a

4
−
öõõô2µ

3 1
ra

− 1
ra + r∗

p

4----- (3.110)
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3.4 Mass estimation
The mass of the deorbiting kit mk is given by the sum of two contributions, the
propellant mp and the structure ms:

mk = mp +ms (3.111)

Where the mass of the structures can be approximated as proportional to the
mass of propellant:

ms = ϵmp (3.112)

In order to proceed with the calculation, Tsiolkovsky rocket equation, which de-
scribes the motion of veichles that follow the basic principle of a rocket, is introduced:

mf = m0e
−∆Vdeo/Ck (3.113)

And introduce the final mass after the manoeuvre mf , initial mass m0, effective
exhaust velocity ck = g0Isp of deorbiting kit.

mp = m0 −mf = m0

3
1 − e−∆Vdeo/Ck

4
(3.114)

Knowing that the mass of the debris is mD:

mD +ms = (mD +ms +mp)e−∆Vdeo/Ck (3.115)

Assuming e−∆Vdeo/Ck = ϕ:

mD +ms = (mD +ms +mp)ϕ (3.116)

mD +ms = (mD +mk)ϕ (3.117)

mkϕ = mD +ms −mDϕ (3.118)

mkϕ = mD + ϵmp −mDϕ (3.119)

And considering:

mp = m0(1 − ϕ) = (mD +mk)(1 − ϕ) (3.120)

It can be obtained:

mk = mD

ϕ
+ ϵ

ϕ
(mD +mk)(1 − ϕ) −mD (3.121)
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mk

A
1 − ϵ

ϕ
(1 − ϕ)

B
= mD + ϵmD(1 − ϕ) −mDϕ

ϕ
(3.122)

Obtaining the final expression of deorbiting kit mass:

mk = mD(1 + ϵ)(1 − ϕ)
1 − (1 + ϵ)(1 − ϕ) (3.123)

In addition, in order to calculate the propellant consumption of the chaser, it
is necessary to start from the final mass of the mission, which is known because
it is equal to the dry mass of the chaser (deorbiting kits already delivered and all
transfers completed). Then we proceed backwards. We consider i = 1, 2, nleg where
nleg is the number of transfers to be made. Once the ”i” leg (transfer) with mass
(mf )i is completed, the de-orbiting kit is issued to the ”i + 1” debris, from which
the ”i+ 1” leg with mass (m0)i+1 will start. Therefore:

(mf )i = (m0)i+1 + (mk)i+1 (3.124)

And for the last debris: (m0)nleg+1 = md.
Initial mass of "i" leg can be found through equation 3.113:

(m0)i = (mf )i

e−∆Vi/Cc
(3.125)

Obtaining the fuel consumption of the chaser on the "i" leg:

(mp)i = (m0)i − (mf )i = (mf )i

A
1 − e−∆Vi/Cc

e−∆Vi/Cc

B
(3.126)

So mstart = (m0)1 + (mk)1 can be obtained going backwards.

46



Chapter 4

Mission and code

4.1 General explanation
The mission consists of removing a sequence of four debris orbiting around the Earth.
The debris in question comes from Russian Kosmos 3M launchers, a two-stage rocket
that has been in use since 15 May 1967. A total of 446 launches have been carried
out, of which 22 have failed. Space debris from these rockets can be identified in two
different clusters at an orbital inclination of 74◦ (120 debris) and 82◦ (155 debris).
You can see from image 4.1 the distribution of debris as a function of the semi-major
axis a and longitude of the ascending node Ω (RAAN).

Figure 4.1: Debris groupings at 74◦ and 82◦.

For this thesis, the grouping located at an inclination of about 74◦ was chosen.
In this mission is considered that the spacecraft is already on the first debris at
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t = 0. After the time necessary to apply the de-orbiting kit tDT has passed, the
spacecraft makes the transfer to the second debris, where it applies the kit during
tDT and so on until the fourth debris.

As can be imagined, having 120 debris, the possible combinations are very high.
For this reason and not to have a redundant amount of results, constraints are also
imposed on the total ∆V and single ∆V of each leg. The developed computational
code calculates all possible sequences, calculates their cost in terms of ∆V and
selects the most convenient ones that fall within the time and ∆V requirements.
The possible combinations would be:

1204 = 207360000 (4.1)

Of course, some sequences repeat, and eliminating them results in the following:

120!
(120 − 4)! = 197149680 (4.2)

The constraints imposed are:

• ∆Vtot = ∆Vleg1 + ∆Vleg2 + ∆Vleg3 < 0.75 km
s

• ∆Vleg < 0.3 km
s

Thanks to these two constraints and the constrain on time, a much smaller
number of possible solutions (about 3800) is found.

4.2 Transfers
The most favourable conditions occur when the two debris are coplanar, that is,
when ∆i equals zero (all debris are at i = 74◦), and ∆Ω equals zero. As the dif-
ference in longitude of the ascending node of the chaser and the target increases,
the cost in terms of ∆V and time will also increase. So, as mentioned in chapter 3,
Hohmann’s transfer theory is used for the transfer manoeuvre between two debris.
From the paragraph 3.2 it can be seen that due to the orbital perturbations caused
by the Earth’s oblateness, the longitude of the ascending node varies in time. This
effect is exploited to decrease the costs under certain conditions.

In this thesis, a new strategy (Fixed time-Strategy) is implemented, which looks
for an optimal transfer time in order to speed up the mission. In our case, if the next
debris is not reached with Hohmann’s transfer in a given time, the j2 perturbation
that modifies the omega will be used: debris with different orbital parameters will
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have a different RAAN variation. We, therefore, impose a maximum time (tmax = 30
days) for the duration of the transfer of 30 days, and the transfer is carried out.

4.2.1 Optimal time-Strategy
Optimal time-strategy looks for the optimal encounter time topt between chaser and
target for which ∆Ω = 0 and can be written as:

Ωk(t0) + toptΩ̇k = Ωk+1(t0) + toptΩ̇k+1 + 2Kπ (4.3)

topt = Ωk+1(t0) − Ωk(t0) + 2Kπ
Ω̇k − Ω̇k+1

(4.4)

Where K is an arbitrary constant chosen in order to obtain the minimum pos-
itive encounter time, topt is the time required for complanarity between debris ”k”
and ”k + 1” to occur, Ωk and Ωk+1 are longitude of ascending nodes, Ω̇k and Ω̇k+1
are the variations in time of Ω.

After calculating the optimal encounter time under coplanar conditions, the cost
in terms of ∆V is calculated:

∆V = 1
2

ó
1

amin

ó3∆a
a

42
+ (∆e)2 (4.5)

Which takes into account the difference in eccentricity and semi-major axis be-
tween the two debris.
∆e can be obtained by varying the argument of perigee:

ωk(opt) = ωk + ω̇ktopt (4.6)

ωk+1(opt) = ωk+1 + ω̇k+1topt (4.7)
For reasons of space and more clarity, the debris ”k” and ”k + 1” may be called

”i” and ”j” respectively, while the terms marked with an asterisk means that they
are those associated with optimal time topt = t∗ (ωk(opt) = ω∗

i , ωk+1(opt) = ω∗
j ).

(∆e)2 = [ei cos (ω∗
i ) − ej cos (ω∗

j )]2 + [ei sin (ω∗
i ) − ej sin (ω∗

j )]2 (4.8)
As mentioned above, when the spacecraft arrives on a debris, it must spend the

service time tDT to install the de-orbiting kit. If the optimal time t∗ for the transfer
is less than the service time, it is necessary to wait for the coplanarity condition to
be restored. So:

49



Mission and code

∆tw =
----- 2π
Ω̇i − Ω̇j

----- (4.9)

So if tDT < t∗ the transfer is carried out normally, while if tDT > t∗ the situation
in which ∆Ω = 0 is expected to occur again. We are now at tDT , calculate the wait
period:

nper = int

C
|(tDT − t∗)|

∆tw

D
(4.10)

Where int extracts the integer part.
And the encounter time at which the first successive coplanarity will occur is ob-
tained:

t
′∗ = t∗ + (nper + 1)∆tw (4.11)

Now make the first impulsive transfer and reach the second debris, on which you
will wait for the service time for the application of the de-orbiting kit and proceed
with this procedure until the fourth debris.
The moment the fourth debris is reached, the mission is considered to be completed.
The cost of the mission can then be calculated in terms of ∆V :

∆Vtot = ∆V1 + ∆V2 + ∆V3 (4.12)

As mentioned above, if the time requirements are not met in any of the individual
trips, i.e. the coplanarity situation is not reached in the stipulated time (30 days),
Fixed time-Strategy is used.

4.2.2 Fixed time-Strategy
As better described in [19], this strategy assumes a situation where the two debris
do not reach coplanarity in the expected time:

• Longitude of the ascending node → ∆Ωk+1 − ∆Ωk ̸= 0

• Semi-major axis → ak+1 − ak ̸= 0

• Orbital inclination → ik+1 − ik ̸= 0

As can be seen from the assumptions, this strategy can also work for debris with
different orbital inclinations i. The Ω difference, since it varies in time, is understood
to be at the time (tmax) the manoeuvre is performed.
In order to take into account the changes of Ω, a and i, we introduce the quantities
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x, y, z. The strategy under consideration is a two-impulse transfer: both partially
change quantities x, y, z.

x =
3

Ωk+1(tmax) − Ωk(tmax)
4

sin i0ν0 (4.13)

y = ak+1 − ak

2a0
ν0 (4.14)

z = (ik+1 − ik)ν0 (4.15)

Where:

Ωk+1(tmax) = Ωk+1 + Ω̇k+1tmax (4.16)

Ωk(tmax) = Ωk + Ω̇ktmax (4.17)

a0 = (ak+1 + ak)
2 (4.18)

i0 = (ik+1 + ik)
2 (4.19)

ν0 =
ó
µ

a0
(4.20)

The first impulse ∆Va is:

∆Va =
ó3

sxx
42

+
3
syy

42
+
3
szz

42
(4.21)

sx, sy and sz are coefficients respectively of x, y, z have no constraints and can
be positive, negative, smaller or larger than unity.
By differentiating equation 3.66 it can be seen that small variations in the semi-
major axis and orbital inclination cause a change in the RAAN ratio, so in addition,
there is a change in Ω due to the first impulse during the transfer time:

∆x = −msyy − nszz (4.22)

This effect is added to the effect of the impulses and coefficients m and n are
written as:

m = (7Ω̇0) sin i0t (4.23)

51



Mission and code

n = (Ω̇0 tan i0) sin i0t (4.24)

Where Ω̇0 is the average RAAN rate of the chaser and the target:

Ω̇0 = (Ω̇k+1 + Ω̇k)
2 (4.25)

Proceeding, the second impulse is written as:

∆Vb =
ó3

x− sxx− ∆x
42

+
3
y − syy

42
+
3
z − szz

42
(4.26)

Obtaining finally the total ∆Vtot = ∆Va + ∆Vb:

∆Vtot =
ó3

sxx
42

+
3
syy

42
+
3
szz

42
+
ó3

x− sxx− ∆x
42

+
3
y − syy

42
+
3
z − szz

42

(4.27)
The variables sx, sy. and sz are still unknown; in order to find the minimum

value of ∆Vtot, "classical Minimum inclination maneuvers" are exploited.[20] After
some mathematical work, the coefficients can be derived:

sxx = 2x+my + nz3
4 +m2 + n2

4 (4.28)

syy = −
2mx−

3
4 + n2

4
y +mnz3

8 + 2m2 + 2n2
4 (4.29)

szz = −
2nx−

3
4 +m2

4
z +mny3

8 + 2m2 + 2n2
4 (4.30)

By substituting equations 4.28, 4.29, 4.30 into equation 4.27, the minimum ∆Vtot

can be approximated. Note that if x, y or z are equal to zero, the coefficients sx,
sy, sz might not be defined.
To evaluate the cost of changing raan, an important observation can be made in the
solution estimated using sx, sy, sz:

sxx = x− sxx− ∆x (4.31)

It can be seen that the two impulses provide the exact change in ∆Ω. Equation
4.31 can be substituted into equation 4.26 to simplify the expression. You can see,
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by substituting equation 4.28 into equation 4.29 and 4.30 that, in the case where
sx is zero, both sy and sz are 1/2. Therefore equation 4.31 implies that if sx = 0,
x = ∆x, which means that RAAN is not controlled by thrust but rather matched
by using only the perturbation effect provided by the changes on inclination and
semi-major axis.[19]

Another expression is provided that also accounts for the additional cost of ec-
centricity change:

∆V ′
tot =

ó
∆V 2

a +
31

2∆Ve

42
+
ó

∆V 2
b +

31
2∆Ve

42
(4.32)

Where the velocity change ∆Ve is given by:

∆Ve = 1
2ν0

ñ
∆e2

y + ∆e2
x (4.33)

Note that is intended for small variations of eccentricity and ey = e sinω ,
ex = e cosω (non-singular equinoctial elements). As can be seen from the expres-
sion, the ∆V change for the eccentricity variation is divided equally between the two
impulses and is perpendicular to ∆Va and ∆Vb. Then through the equation 4.32,
the variation of eccentricity is implemented in the formula of ∆Vtot (equation 4.27).

As mentioned above, this strategy is used if the coplanarity situation is not
reached in the set time. So for each leg, the code chooses whether to use Optimal
time-Strategy or Fixed time-Strategy.

4.3 Deorbiting
There are several methods to remove a debris, as described in the chapter 2.2 In
this thesis the re-entry method using a de-orbiting kit is used, which means that
the de-orbiting kit that is installed on the debris is used to impose an impulse that
serves to decrease the perigee of the orbit. As the perigee of the orbit decreases,
it moves closer and closer to the atmosphere until the debris is burnt by thermal
forces and mechanical loads due to the increasing density of the atmosphere. In this
case, the braking action of the atmospheric resistance tends to reduce further the
required ∆Vdeo, but this contribution is not counted in this thesis. The calculations
about de-orbiting are explained in section 3.3.1.
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Chapter 5

Results

The last part of this thesis will focus on explaining the results obtained from the
FORTRAN code.

The two possible strategies are recalled:

Optimal time-Strategy : Once the encounter time has been found using the
formulas given in section 4.2.1, the maximum time for reaching coplanarity is
set. If it is respected, the transfer between coplanar orbits is carried out.

Fixed time-Strategy : This strategy is used for legs where the coplanarity is not
reached in the predefined time, in this case, the transfer is completed in the
maximum time even if the orbits are not coplanar, so as already mentioned,
we have: ∆Ωi ̸= ∆Ωj, ∆ii ̸= ∆ij, ∆ai ̸= ∆aj. Two pulses are then imposed,
one initial and one final (to compensate the first) to move to the next debris.

As already mentioned in section 4, the code selects all sequences that fall within
the predefined parameters.

5.1 Input file and input data
The code receives as input a text file containing all debris data. Part of the file is
shown below:
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Figure 5.1: Extract of input text file.

In order in the file it shows:

• NORAD identify number of debris, in this thesis called with numbers from 1
to 120.

• Epoch, i.e. the reference time of the mission: 1 January 2017 00:00 UT.

• Semi-major axis a.

• Eccentricity e.

• Orbital inclination i [◦].
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5.1 – Input file and input data

• Longitude of the ascending node Ω [◦].

• Argument of periapsis ω [◦].

• Mean anomaly M [◦].

The following is a list of all the parameters used and inserted into the code to
obtain the results:

• Earth’s radius → rE=6378.1363 km.

• Standard gravitational parameter → µE =3968600.4415 km3/s2.

• Reference speed → Vref = µE

rE
=7.9353 km/s.

• Reference time → tref = rE

Vref
=806.8177 s.

• Specific impulse of chaser and deorbiting kit → Isp =310 s.

• Dry mass of the chaser → md=2000 kg.

• Mass of the debris → md =1450 kg.

• ϵ = ms

mp
=0.1 .

• Service time, the time taken by the spacecraft to install the deorbiting kit
→ DT =10 days.

• Maximum duration of transfer → tmax =30 days.

• Maximum cost in speed impulse → ∆Vtot <0.75 km/s.

• Maximum cost in speed impulse → ∆Vleg <0.3 km/s.

For ease of use in the charts and tables, the Optimal time-Strategy will be called
0-Strategy, and the Fixed time-Strategy will be called 1-Strategy.

After this summary of the data entered in the code, an extrapolation of the most
important results obtained follows.

All results were grouped in an excell file like in the image that follows:
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Figure 5.2: Example of excell table - selected sequences.

As mentioned above, the sequences selected by the code that respect the imposed
constraints are 3841, in the image:

• Index → Given simply to distinguish sequences from each other.

• i1, i2, i3, i4 → The number of the debris, the code receives an identifi-
cation number of the debris, for simplicity in this thesis work the debris is
distinguished with a number ranging from 1 to 120.

• leg1, leg2, leg3 → The strategy used in each leg, maybe 0 or 1.

• deltaV → The speed impulse provided: total impulse followed by the im-
pulse of the individual transfers.

• Times → The total time taken to complete the mission followed by the
time taken to depart from the debris (the service time required to apply the
kit is also counted).

Of all the sequences, the most critical sequences were selected, i.e. those with a
low ∆V , as can be seen in figure 5.2 (highlighted line).
Three different strategies were used in the original code. The data obtained from
this thesis work was compared with the results obtained from the original code and
the results obtained using a non-approximated code, which however requires a much
higher computational cost.

The strategies used in the original calculation code are:
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5.2 – Results

Strategy 1 : It corresponds to Optimal time-strategy used in this thesis.

Strategy 2 : If the encounter time does not fall within the permitted time window,
it is possible to conclude the transfer by waiting a time equal to the maximum
duration (tmax =30 days), to reduce as much as possible the ∆Ω separating
the debris, and finally perform the ∆Ω change, orbital inclination change and
semi-major axis change in a single manoeuvre.

Strategy 3 : If the meeting time is not within the allowed time window (tmax =30
days), it is possible to change the semi-major axis so as to vary the influence
of J2 on Ω̇ which therefore allows reaching ∆Ω=0 condition between the two
debris. Then returning to the starting semi-axis through a new impulsive
manoeuvre and finally perform the classic transfer between coplanar orbits
since the encounter has been achieved.

Using the same constraints but with the strategies of the original code, 983
possible sequences were selected. It can therefore be said that this strategy provides
more mission scenarios.

5.2 Results
Table 5.1 contains all possible solutions using only the Optimal time-strategy, i.e.
in the case where coplanarity between orbits is reached in the predefined time and
the easiest manoeuvre can be performed.

Fifty-seven sequences were obtained using only the Optimal time-strategy, which
is only 1.5% of the total number of sequences obtained. In graph 5.3 it can be seen
that in some cases, the third transfer is completed in less than 60 days in total, which
means that the debris selected by the code for these sequences are in positions very
close to each other. By very close, we mean a slight difference in the semi-major axis,
orbiting at an orbital inclination of 74◦ and reaching coplanar condition ∆Ω = 0 in
a concise amount of time.
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sequence strategy ∆V [km/s] times [days]
index i1 i2 i3 i4 leg1 leg2 leg3 tot leg1 leg2 leg3 start arr. at i2 arr. at i3 arr. at i4
159 2 115 44 46 0 0 0 0,59674 0,18659 0,11346 0,2967 10 30,24888 52,24024 81,84215
160 2 115 44 63 0 0 0 0,46053 0,18659 0,11346 0,16048 10 30,24888 52,24024 53,65829
204 4 71 32 34 0 0 0 0,4395 0,10728 0,11131 0,22091 10 34,45748 54,47393 82,75217
229 11 63 44 46 0 0 0 0,72278 0,26561 0,16048 0,2967 10 34,77001 63,65829 81,84215
261 11 115 44 46 0 0 0 0,62646 0,21631 0,11346 0,2967 10 21,10573 52,24024 81,84215
262 11 115 44 63 0 0 0 0,49025 0,21631 0,11346 0,16048 10 21,10573 52,24024 53,65829
381 16 112 2 57 0 0 0 0,4123 0,04118 0,1855 0,18562 10 21,36667 55,04105 71,82285
382 16 112 2 73 0 0 0 0,3747 0,04118 0,1855 0,14802 10 21,36667 55,04105 68,32462
383 16 112 2 83 0 0 0 0,40863 0,04118 0,1855 0,18195 10 21,36667 55,04105 63,72641
555 29 11 95 110 0 0 0 0,50779 0,20021 0,26585 0,04173 10 44,46306 74,75348 103,9588
567 29 51 11 66 0 0 0 0,41325 0,05162 0,16678 0,19484 10 28,5211 46,52599 68,98823
569 29 51 11 94 0 0 0 0,43414 0,05162 0,16678 0,21574 10 28,5211 46,52599 71,87259
570 29 51 11 95 0 0 0 0,48426 0,05162 0,16678 0,26585 10 28,5211 46,52599 64,75348
572 29 51 11 110 0 0 0 0,44002 0,05162 0,16678 0,22162 10 28,5211 46,52599 56,17571
612 41 71 32 34 0 0 0 0,53679 0,20457 0,11131 0,22091 10 29,54496 54,47393 82,75217
707 44 51 11 66 0 0 0 0,63433 0,27271 0,16678 0,19484 10 21,34172 46,52599 68,98823
709 44 51 11 94 0 0 0 0,65523 0,27271 0,16678 0,21574 10 21,34172 46,52599 71,87259
710 44 51 11 95 0 0 0 0,70534 0,27271 0,16678 0,26585 10 21,34172 46,52599 64,75348
712 44 51 11 110 0 0 0 0,66111 0,27271 0,16678 0,22162 10 21,34172 46,52599 56,17571
723 44 66 11 98 0 0 0 0,69902 0,29865 0,19484 0,20552 10 43,61654 78,98823 84,69706
724 44 66 11 100 0 0 0 0,70915 0,29865 0,19484 0,21566 10 43,61654 78,98823 88,12916
725 44 66 11 114 0 0 0 0,70958 0,29865 0,19484 0,21609 10 43,61654 78,98823 82,16892
904 51 11 95 110 0 0 0 0,47436 0,16678 0,26585 0,04173 10 46,52599 74,75348 103,9588
918 51 29 11 66 0 0 0 0,44668 0,05162 0,20021 0,19484 10 28,5211 44,46306 68,98823
920 51 29 11 94 0 0 0 0,46757 0,05162 0,20021 0,21574 10 28,5211 44,46306 71,87259
921 51 29 11 95 0 0 0 0,51768 0,05162 0,20021 0,26585 10 28,5211 44,46306 64,75348
923 51 29 11 110 0 0 0 0,47345 0,05162 0,20021 0,22162 10 28,5211 44,46306 56,17571
931 51 44 115 63 0 0 0 0,43179 0,27271 0,11346 0,04563 10 21,34172 52,24024 78,51494
1134 58 60 48 102 0 0 0 0,66119 0,28441 0,28684 0,08994 10 28,25352 53,52121 79,43521
1135 58 60 48 104 0 0 0 0,7437 0,28441 0,28684 0,17245 10 28,25352 53,52121 56,27167
1143 58 104 60 48 0 0 0 0,56395 0,16775 0,10935 0,28684 10 22,18809 36,30368 43,52121
1151 60 104 48 102 0 0 0 0,37175 0,10935 0,17245 0,08994 10 36,30368 66,27167 79,43521
1153 60 104 102 48 0 0 0 0,40503 0,10935 0,20573 0,08994 10 36,30368 69,10153 79,43521
1180 61 94 95 1 0 0 0 0,55458 0,22056 0,04665 0,28737 10 26,47582 46,51473 54,78957
1181 61 94 95 11 0 0 0 0,53306 0,22056 0,04665 0,26585 10 26,47582 46,51473 64,75348
1205 61 95 94 1 0 0 0 0,59062 0,27107 0,04665 0,27291 10 30,39911 46,51473 76,29329
1206 61 95 94 11 0 0 0 0,53345 0,27107 0,04665 0,21574 10 30,39911 46,51473 71,87259
1330 63 11 95 110 0 0 0 0,57319 0,26561 0,26585 0,04173 10 34,77001 74,75348 103,9588
1443 66 44 63 115 0 0 0 0,50477 0,29865 0,16048 0,04563 10 43,61654 63,65829 78,51494
1797 79 41 69 88 0 0 0 0,39859 0,10176 0,2007 0,09613 10 43,4662 80,97205 106,2532
2170 88 41 69 79 0 0 0 0,40077 0,10347 0,2007 0,0966 10 44,89441 80,97205 107,0303
2433 94 95 11 98 0 0 0 0,51802 0,04665 0,26585 0,20552 10 46,51473 74,75348 84,69706
2434 94 95 11 100 0 0 0 0,52815 0,04665 0,26585 0,21566 10 46,51473 74,75348 88,12916
2435 94 95 11 114 0 0 0 0,52858 0,04665 0,26585 0,21609 10 46,51473 74,75348 82,16892
2519 95 94 11 98 0 0 0 0,46791 0,04665 0,21574 0,20552 10 46,51473 81,87259 84,69706
2520 95 94 11 100 0 0 0 0,47804 0,04665 0,21574 0,21566 10 46,51473 81,87259 88,12916
2521 95 94 11 114 0 0 0 0,47847 0,04665 0,21574 0,21609 10 46,51473 81,87259 82,16892
2879 104 60 48 102 0 0 0 0,48614 0,10935 0,28684 0,08994 10 36,30368 53,52121 79,43521
3395 115 2 16 83 0 0 0 0,37482 0,18659 0,15068 0,03755 10 30,24888 65,50958 93,78737
3430 115 11 63 44 0 0 0 0,6424 0,21631 0,26561 0,16048 10 21,10573 34,77001 53,65829
3491 116 60 48 102 0 0 0 0,49444 0,11766 0,28684 0,08994 10 28,94146 53,52121 79,43521
3492 116 60 48 104 0 0 0 0,57695 0,11766 0,28684 0,17245 10 28,94146 53,52121 56,27167
3497 116 104 48 102 0 0 0 0,49253 0,23014 0,17245 0,08994 10 32,38589 66,27167 79,43521
3623 119 2 16 83 0 0 0 0,36482 0,17659 0,15068 0,03755 10 41,14616 65,50958 93,78737
3685 119 44 63 115 0 0 0 0,33141 0,1253 0,16048 0,04563 10 33,16852 63,65829 78,51494
3686 119 44 66 11 0 0 0 0,6188 0,1253 0,29865 0,19484 10 33,16852 43,61654 68,98823
3690 119 44 115 63 0 0 0 0,28438 0,1253 0,11346 0,04563 10 33,16852 52,24024 78,51494

Table 5.1: Solutions using only Optimal time-strategy.
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5.2 – Results

Figure 5.3: Sequences performed using only Optimal time-Strategy - ∆V function
of time.

Graph 5.4 summarises only sequences that matched the selected sequences from
the original code. They are extrapolated to compare them and check if they are
convenient.

Figure 5.4: All sequences performed - ∆V function of time.
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The following figure (5.5) shows all sequences obtained with the three comparing
strategies (red crosses) and the results obtained in this thesis work (black circles).
It was noted that the ∆V value of the sequence in the exam was always lower using
the new strategy.

Figure 5.5: All sequences performed from old and new strategies - ∆V function of
time.

Graph 5.6 represent the number of times the Fixed time or Optimal time-Strategy
was used in the single transfer (leg).

It can be seen that the Optimal time-strategy is used about one-fourth of the
times for each transfer. This is because, as already mentioned, it is challenging to
achieve coplanarity in such a short period. It must be pointed out that the code is
not programmed to optimise the distribution of strategies within a sequence accord-
ing to the total time. It only chooses the strategy to be used if the time is within
the constraint imposed or not for the single transfer.

That said, once the best sequences have been selected, it is possible to optimise
the distribution of strategies by calculating, using other methods, a set of transfer
constraints that allow a better distribution to be proposed. In other words, the re-
sults could be further improved by knowing the encounter times and the coplanarity
situation between the debris a priori and by choosing the time constraints for each
trip appropriately. This would also optimise the distribution of strategies within a
sequence according to the total time.
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As regards the results obtained by the original code, it was noticed that when
strategy 2 or 3 was selected (coplanarity not reached within the imposed time con-
straints), many sequences were discarded at the second leg due to the imposed ∆V
constraints (strategies 2 and 3 cost more in terms of ∆V and time). Those that
were within the constraints mainly used Strategy 1 as it costs less and takes less
time. This explains the rarity of sequences 1,1,1.

In this thesis, it has been noted that using the Fixed time-Strategy, the costs in
terms of ∆V are often lower.

Figure 5.6: Number of times Optimal or Fixed-Strategy utilization.

For the sake of clarity, a table is given showing the percentages of use of the
strategies in the three transfers.

Strategy leg1 leg2 leg3 total
0 18.67% 21.66% 16.25% 18.86%
1 81.33% 78.34% 83.75% 81.14%

Table 5.2: Percentages of Optimal or Fixed-Strategy utilization - all sequences.

It can be seen from the results that the percentage of use of the Optimal or
Fixed strategy in the first trip does not influence the second and third transfer. The
reason is that, as already mentioned above, using Fixed time-strategy does not cost
more in terms of ∆V , so the results obtained can be considered with more certainty
regarding the choice of strategy for the individual transfer.
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Below, graph 5.7 shows the same results but only for the sequences that match
those of the original code.

Figure 5.7: Number of times Optimal or Fixed-Strategy utilization.

The table 5.3 shows the same data as graph 5.7 in percentages.

Strategy leg1 leg2 leg3 total
0 23.77% 32.83% 27.29% 27.96%
1 76.23% 67.17% 72.71% 72.04%

Table 5.3: Percentages of Optimal or Fixed-Strategy utilization - matched sequences.

Again, as can be imagined, the results are similar, only involving fewer sequences
and therefore more inaccurate.

Furthermore, after tabulating all the results in excel, as mentioned before, the
most critical transfers were selected and compared in terms of ∆V cost with the
results of the original code and results obtained from the non-simplified formulation.
In table 5.4 are shown all the single transfers that present major errors (critical).

All the critical transfers reported are legs that have never used strategy 0, so the
time taken is the maximum 120 days. These 120 days include 30 days of service to
apply the de-orbiting kit (10 on each debris apart from the last one) and 30 days
for each transfer.
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i1 i2 ∆Vthesis ∆Vorig.code ∆Vtrue

73 83 0,04822 0,2752 0,082175805
73 57 0,04192 0,23903 0,050853711
80 101 0,05728 0,23154 0,084831331
114 100 0,06387 0,23939 0,092122495
23 101 0,05607 0,21409 0,051783306
23 64 0,06218 0,25475 0,045647532

Table 5.4: Major ∆V errors - single transfers.

The largest and most significant errors, as can be seen, are derived from the
original code. At the same time, with regard to the results obtained using the new
strategy it can be said that in percentage terms they may be high. Still, numeri-
cally speaking, in terms of the difference in ∆V spent, the error is not very large
considering the very small values.

In addition, the sequences composed of the four debris with a major error in
terms of ∆V were also determined:

i1 i2 i3 i4 ∆Vthesis ∆Vorig.code ∆Vtrue

16 83 73 57 0,23853 0,68739 0,2501441
64 23 101 80 0,14165 0,57321 0,1822622
23 101 80 74 0,19661 0,51327 0,2484318
23 101 80 97 0,11833 0,42382 0,1685173
64 80 101 23 0,15600 0,47937 0,1938680
74 23 101 80 0,34420 0,71603 0,3471131
74 64 23 101 0,30698 0,65305 0,2676678
74 80 101 23 0,25089 0,58776 0,3037299
74 101 23 64 0,29584 0,67739 0,2470956
80 64 23 101 0,15801 0,49187 0,1425001
97 23 101 80 0,24984 0,61139 0,1685173
97 64 23 101 0,21233 0,54478 0,1922324
97 80 101 23 0,15623 0,48056 0,1685173
97 101 23 64 0,20133 0,56940 0,1776828
101 23 64 34 0,34455 0,67711 0,3574506
101 23 64 74 0,25184 0,57813 0,2676678
101 23 64 80 0,15233 0,47262 0,1546842
101 23 64 97 0,17336 0,48742 0,1922324
101 80 64 23 0,14527 0,45753 0,1755481

Table 5.5: Major ∆V errors - full sequence.
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Also, in this case, the results obtained with the Fixed time-strategy are much
closer to the real value. As already said for the single transfers, the error, if seen
in percentage, would seem high, but in terms of numerical difference, the amount is
very small and can be considered an acceptable error being a simplified theory.

With regard to critical sequences, as already mentioned, sequences with low ∆V
values were selected. The parameter for selection:

• Constraint on ∆V → ∆V < 0.2 km/s

A table summarising the first ten sequences with ∆Vtot < 0.2 km/s is then given:

sequence strategy ∆Vtot [km/s]
i1 i2 i3 i4 leg1 leg2 leg3 thesis other true
64 101 80 97 1 1 1 0,09046 0,251620 0,143865
23 64 101 80 1 1 1 0,09769 0,374970 0,157610
101 64 80 97 1 1 1 0,10109 0,149860 0,116287
80 101 64 23 1 1 1 0,10351 0,396360 0,157610
23 64 80 97 1 1 1 0,10361 0,244800 0,134804
97 80 101 64 1 1 0 0,10651 0,266100 0,143865
80 101 64 97 1 1 1 0,1158 0,232930 0,206764
97 80 64 101 1 1 0 0,11714 0,164450 0,143865
23 64 101 97 1 1 1 0,11833 0,238110 0,153030
23 101 80 97 1 1 1 0,11833 0,423820 0,168517

It can be seen that, as already mentioned, the results obtained can be considered
more precise than those of the original code, but since they are approximations, they
are not equal to the real ones. It can be seen from the table that the debris making
up the most efficient sequences in terms of ∆V cost are all made up of the same
five debris in different positions. Analysing the five debris in question, it was noted
that all five have a very similar Ω, clearly also the inclination but this was already
known (all debris orbit at an inclination of about 74°).
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Chapter 6

Conclusions

The thesis work concerned the implementation in a fortran code of a new strategy
that can be exploited to optimize debris removal missions. The mission involves the
removal of a sequence of four space debris as efficiently as possible. The Optimal
time-strategy, assumes that in a given time, the two debris in question reach ∆Ω=0,
in case of not reaching coplanarity in the predetermined time, the implemented
strategy is used, through an initial and a final impulse (which completes the first)
leads to the next debris. This strategy allows a simultaneous change of semi-major
axis, orbital inclination and longitude of the ascending node.

Since without imposing constraints, too many solutions would have been ob-
tained, as well as the maximum time requirements to reach coplanarity, constraints
were also imposed on the ∆V cost ( ∆Vtot < 0.75 km/s, ∆Vleg < 0.3 km/s). A
total of 3841 sequences were obtained that met the requirements. Of these possible
solutions, only 57, i.e. 1.5%, reached coplanarity using the Optimal time-strategy
in all three transfers. As one can imagine, time constraints influenced this result.
The costs in terms of ∆V are around 0.5 km/s. It can be noticed that almost all
the sequences that are completed with the lowest cost in terms of ∆V instead use
Fixed time-strategy, so as can be imagined, they take the maximum expected time
(120 days). The costs, in this case, are around 0.1 km/s.

The sequences with results that deviated the most from the original code results
were also compared with a non-simplified formulation. It emerged that the results of
this work, as far as compared sequences are concerned, are closer to reality. In con-
clusion, it can be said that the results obtained in this thesis are accurate and close
to the non-simplified formulation. They still present some errors that in percentage
can seem very big, but they can be considered quite reliable in terms of numerical
difference. The results show that exploiting the strategy under consideration in this
thesis it is possible to reach the debris that does not reach the coplanarity in a short
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time even with very low ∆V . This could represent a likely mission scenario in the fu-
ture, given the need to remove space debris. As mentioned above, one could further
improve the results by choosing the best sequences in terms of ∆Vtot and ttot and also
optimize the distribution of strategies by knowing the debris encounter time a priori.

The first active debris removal mission is planned for 2023 and is part of the
ESA’s Clean Space project. The mission called ’e.Deorbit’ consists of capturing and
de-orbiting into the atmosphere of the derelict of the Envisat Earth-observing satel-
lite. This mission will provide an opportunity for European industries to showcase
their technological capabilities to a global audience. It will also bring with it the
possibility to highlight the problems of future missions.
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