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Abstract

In the past years the interest in computing pressure from image velocimetry has increased. However, only

few researchers tried to implement meshless methods (see Gesemann et al. (2016)). Such techniques appear

to be increasingly promising following the recent advances in both computational power and machine learning

algorithms.

Furthermore, no meshless methods exploiting Radial Basis Functions have been found in the literature, at

least applied in this context. The meshless method proposed here adds information from fluid dynamics theory

directly to the data, using the former to correct the latter. The core of this thesis is to develop the mathematical

basis of such method and to implement and test it. Two test cases are presented, with the objective of validating

both theory and the implementation of this work. The obtained results show some interesting features of the

method, which well treats noisy data, for instance.

This method is still at an early stage, and there is surely large margin for improvement
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Chapter 1

Introduction

1.1 Motivations and aims

Pressure is one of the most relevant quantities describing a flow in fluid dynamics. Together with the velocity

field, this quantity enables the computation of aerodynamic forces exerted on objects. Therefore pressure is an

important flow quantity when sizing airfoils, wings and any structure subject to aerodynamic loadings.

Pressure can be measured using a variety of probes (e.g. Pitot or Prandtl tubes) and pressure transducers

(piezoeletric or capacitance). However, these methods only provide discrete measurements only in the point

where the probe is placed, and interfere with the flow during the experiment.

On the other hand, the velocity field can be measured non-intrusively using Particle Image Velocimetry

(PIV) and Particle Tracking Velocimetry (PTV). Leveraging the high spatial resolution available from these

measurements, Gurka et al. (1999) proposed to compute pressure fields from PIV/PTV velocity fields, hence

enabling non-intrusive measurements of aerodynamic loading. Since then, many researchers have investigated

techniques to refine these methods in different directions. When treating velocity measurements from PTV or

PIV, velocity fields can be interpolated onto a new computational grid, and then used to solve the governing

equations with standard PDE solvers to retrieve pressure fields.

These methods suffer from high sensitivity to measurement noise, and are especially challenging because

they require a computational grid. The definition of such grid, together with the related interpolation step, can

become particularly cumbersome in the presence of complex geometries such as airfoils or wings, as the velocity

measurements might not be available sufficiently close to the solid boundaries.

This thesis aims at proposing a methodology that circumvents both of the aforementioned problems. The

goal is to develop a method that allows computing an analytic approximation of the velocity field. This allows for

mitigating noise, enables analytical derivatives of the velocity fields, and allows for solving PDEs in a meshless

approach. Moreover, it was of interest to complement the approach with a method that could add physical

penalties and constraints.

1.2 Methodology and structure of the Thesis

This work consists of seven chapters, including this introduction. This structure follows the logical path through

which this work has been developed.

Initially, the project aimed at developing a toolbox to compute PIV-based pressure fields using standard

methodologies proposed in the literature. Then, studying Radial Basis Functions (RBF) as possible function

approximators, it was discovered that these tools could also be used to solve PDEs while easily accommodating

boundary conditions in the form of regression constraints. Because the PDE solution can be cast in the form

of a function approximator, the solution strategy turned out to be mesh-free. Moreover, these tools could also

3



4 CHAPTER 1. INTRODUCTION

be used to super-sample the original data while imposing physical constraints, thus enhancing the robustness

of the approximation.

Next, this technique has to be exploited for the problem of pressure evaluation, analyzing the best constraints

and penalizations to add. After refining the theory behind this technique, a Python implementation was

proposed. Finally, some test cases were chosen to validate the code, and encouraging results were obtained.

This thesis closes with a discussion regarding the future development of this ongoing project.



Chapter 2

Image velocimetry and pressure

computation

In this chapter, image velocimetry techniques are briefly recalled and the focus on the state of the art for

pressure integration in this field is then sketched.

2.1 Particle Image Velocimetry

The standard setup for Particle Image Velocimetry (PIV) is presented in figure 2.1.

Figure 2.1: PIV standard setup (Raffel et al. (2018)).

Two main devices distinguish PIV (or in general image velocimetry) from other techniques, namely a laser

and a camera. The laser creates a light sheet that hits the flow. This light illuminates some particles, which

scatter the light. The light is then captured by a high-quality camera.

PIV has been made possible by the recent improvements of cameras that allow for capturing frames with

a frequency of kHz. Charge Coupled Device (CCD) cameras are capable of capturing more than 100 PIV

recording per minute. However, the highest frequencies possible to capture are reached with Complementary

Metal-Oxide Semiconductor (CMOS).

The acquired images are 2D projections of the volume imaged by a series of lens optics. The coordinate

in the imaged volume is referred to as x and on the planar sensor as X. Usually the following relationship is

assumed to hold: (
X

Y

)
≈M

(
x

y

)
, (2.1)
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6 CHAPTER 2. IMAGE VELOCIMETRY AND PRESSURE COMPUTATION

where M ∈ R+ is the magnification.

There are several operating modes for a camera, presented in figure 2.2.

Figure 2.2: Operating modes (Discetti and Ianiro (2017)).

.

The specific mode to adopt mainly depends on the type of the used camera. Indeed, for the first two modes

a CMOS is recommended, whereas the third could work also with a CCD.

Another key point is the type of flow that needs to be represented. The first option fits time-resolved flows,

while the second option is a trade-off that permits to represent high-velocity flows. The third mode represents

the cheapest option, as it requires fewer camera specifications with respect to the others, but could be used

when a high acquisition rate is not necessary.

When the acquisition is over, in the general case coupled images are created. For example, in Figure 2.3

Frame A and Frame B of a Stokes flow around a cylinder is presented.

This images are framed with a time gap ∆t, therefore if the displacements are known the velocity could be

easily obtained:

U =
∆s(x, y)

∆t
(2.2)

The displacement is computed using a statistical approach. The cross-correlation is defined in equation (2.3).

RII(x, y) =

K∑
i=−K

L∑
j=−L

I(i, j)I ′(i+ x, j + y) (2.3)

where I and I ′ are the intensities associated with images A and B, respectively. An important feature of the

PIV has to be pointed out. The cross-correlation is not computed for every particle.

Indeed, the domain of the first frame is reduced in multiple interrogation windows and it is assumed that

all the particles inside that interrogation windows move with the average velocity of all the particles inside that

window.
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(a) Image A (b) Image B

Figure 2.3: Example of a couple of PIV images.

Intuitively this mechanism is equivalent to take a general window in the first frame, move it all around the

second frame until the best fitting windows in the second frame is found. Then, the displacement is equal to

the displacement of the windows between the two frames. A visualization of this concept is proposed in figure

2.4.

Figure 2.4: Left to right: a small sample I of 32x32 pixel is compared to a larger sample I ′ of 64x64 pixel;

the last figure reports the cross-correlation plane where is evident that the displacement is of 12 pixels. (Raffel

et al. (2018)).

Instead of solving (2.3) directly, the correlation theorem is recalled in equation (2.4).

F (I ∗ I ′) = F (I)F (I ′) (2.4)

where F(·) is the Fourier transform. But it can be shown that:

F (RII) = F (I)F (I ′) (2.5)

This formulation is usually used because of its lower computational cost: taking a domain with same spatial

dimension N × N , the computational cost of the standard cross-correlation is O
(
N4
)

while with (2.5) is

O
(
N2log2N

)
.
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Figure 2.5: Flow chart implementation convolution theorem (Raffel et al. (2018)).

2.2 Particle Tracking Velocimetry

If in PIV the velocity was computed looking for the mean displacement of the particles in a windows, PTV

characterize itself for tracking directly one particle at the time.

The setup does not change significantly between the two techniques. Indeed PIV and PTV images could be

used interchangeably. The only feature in the parameters that may change, is the particle density which usually

is smaller in PTV to better recognize the single particle.

The PTV algorithm consist of different steps. Firstly, the particle is labelled in every image and time and

some feature, such as size and shape, is assigned to it.

Finally, the particles are compared to find the matching pairs. The most basic criteria is searching for the

nearest matching particle in the region of interest. It is ineluctable that the velocity would be evaluated over

scattered points.

One of the points of interest in this techniques is that when time-resolved data are available. It is possible

to directly compute Lagrangian quantities which are of great interest, especially for the pressure integration.

Besides these considerations the two methods are similar and use one instead of the other is simply driven

by the situation. For example, PTV would be more suitable for a time-resolved boundary layer as PTV is less

influenced by the reflection of the wall defined as ’flairs’, see Discetti and Ianiro (2017).

2.3 Pressure computation

Pressure computation from image velocimetry has been of wide interest during the last twenty years. There are

different strategies to attack the problem.

The first concern is to outline the equations involved in the pressure computation. The roots of any further

development are the momentum equations of a incompressible flow:

∇p = −ρDu

Dt
+ µ∇2u (2.6)

where ρ and µ are density and viscosity, respectively, and the gravity force term is neglected. The term

Du

Dt
(2.7)

is the material derivative, that is the key difference between the Eulerian and Lagrangian approach. This point
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will be discussed further on in this section. First, examine a 2D case:

∂p

∂x
= −ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
(2.8)

∂p

∂y
= −ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
(2.9)

The Poisson equation could be derived by differentiating and summing these two terms:

∂2p

∂x2
+
∂2p

∂y2
= −ρ

((
∂u

∂x

)2

+ 2
∂v

∂x

∂u

∂y
+

(
∂v

∂y

)2
)

(2.10)

The momentum equation could be presented in a 3D formulation :

∂p

∂x
= −ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
+

(
−ρw∂u

∂z
+ µ

∂2u

∂z2

) (2.11)

∂p

∂y
= −ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
+

(
−ρw∂v

∂z
+ µ

∂2v

∂z2

) (2.12)

And so does the Poisson equation as proposed in De Kat et al. (2008):

∂2p

∂x2
+
∂2p

∂y2
= −ρ

{(
∂u

∂x

)2

+ 2
∂v

∂x

∂u

∂y
+

(
∂v

∂y

)2
}

− ρ
{
∂ divxy
∂t

+ u
∂ divxy
∂x

+ v
∂ divxy
∂y

}
+ µ

{
∂2 divxy
∂x2

+
∂2 divxy
∂y2

}
− ρ

{
∂w

∂x

∂u

∂z
+
∂w

∂y

∂v

∂z
+ w

∂ divxy
∂z

}
(2.13)

where divxy is the in-plane divergence.

The target of the following paragraph is to determine the environment in which it is possible or preferable

to use a planar approach, instead of a three-dimensional one.

Obviously the 3D case is more difficult as it requires the out-of-plane gradients which are addressed with

a 3D PIV such as tomographic PIV, see Elsinga et al. (2006); Scarano (2012), or a dual-plane approach, see

Kähler and Kompenhans (2000).

In general, if a strong three-dimensional motion is not present, it is perfectly justified to use 2D techniques.

This has been widely reported in experiments where the two approaches have been confronted: De Kat and

Van Oudheusden (2012); Violato et al. (2011) and Koschatzky et al. (2012), indipendently from the dimen-

sionality of the problem. Two strategies could be adopted, the first is to solve the Poisson equation Gurka

et al. (1999); Ghaemi et al. (2012) and Pan et al. (2016), the second is the direct momentum integration, see

Liu and Katz (2006). Reconnecting to the first strategy, one might believe that solving the Poisson equation

corresponds to computing pressure without the need for any knowledge on time-resolved velocity field. On

the contrary, in order to correctly compute pressure, the momentum equations have to be used as Neumann

boundary conditions (see Gresho and Sani (1987)) that comprehend the time-dependent part of the acceleration

term. Usually, a boundary edge with Dirichlet conditions is added to ensure the uniqueness of the solution. To

determine these conditions, simplifications such as the one proposed by De Kat and Van Oudheusden (2012)

are broadly accepted.

The second strategy is to directly integrate the momentum equation. The most important work in this

direction is Liu and Katz (2006). Figure 2.6 shows the methodology. Firstly, pressure is evaluated on the image
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boundary and then the pressure is computed through the core of the domain following some omnidirectional

path integration along the lines obtained from the grid.

Figure 2.6: Example of omnidirectional integration (Liu and Katz (2006)).

Nonetheless, these methods can still be merged with well-known CFD techniques such as RANS (see Gurka

et al. (1999) and van Oudheusden et al. (2007), which computes the averaged pressure for a turbulent and

mainly-steady flow). Typically, to compute instantaneous pressure for a generic turbulent flow, time-resolved

data and derivatives are required. However, De Kat and Ganapathisubramani (2012) proposed a simplifying

assumption that allows the computation of pressure without the need for time derivatives, at least if specific

conditions are met. This approach was successfully applied in Van der Kindere et al. (2019); Laskari et al.

(2016).

There are still different philosophies on how to compute the pressure besides the equation utilized. This

issue has to deal with how the material derivative is addressed, namely if a Lagrangian or an Eulerian approach

is adopted. The former requires to follow the single-particle and hence it is a prerogative of PTV like method,

here the material derivative of the velocity computed with a Lagrangian approach is shown:

Du

Dt
=

dup(t)

dt
=

du (xp(t), t)

dt
(2.14)

where xp(t) and up(t) are the position and the velocity of the particle in a specific instant.

In an Eulerian approach, the acceleration is built with the partial derivatives:

Du

Dt
=
∂u

∂t
+ (u · ∇)u. (2.15)

A very popular trade-off is the pseudo-LAgrangian (pLA) approach which uses the velocity field to iteratively

achieve the material derivative (see Liu and Katz (2006)):

xkp(t, τ) = x + u(x, t)τ +
1

2

Duk

Dt
(x, t)τ2 (2.16)

Duk+1

Dt
(x, t) =

u
(
xkp(t,∆t), t+ ∆t

)
− u

(
xkp(t,−∆t), t−∆t

)
2∆t

. (2.17)

For the Lagrangian and Eulerian method an approximation of the noise transmitted from the original noise on

the velocities to the pressure is provided in De Kat and Van Oudheusden (2012), here is possible to write the

two obtained error for the Lagrangian approach (εpLag
) and for the Eulerian approach (εpEul

):

εpEul
∝ εu

√
h2

2∆t2
+ |∇u|2h2 +

|u|2
2

Eulerian (2.18)
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(a) Final noise versus the initial noise on the velocity (b) Final noise versus the advective velocity Ua and

the sample time

Figure 2.7: Behaviour of Lagrangian and Eulerian methods (De Kat and Van Oudheusden (2012)).

where h is the grid space and εu is the noise on the velocity.

εpLag ∝ εu

√
h2

2∆t2
+
|∇u|2h2

2
Lagrangian (2.19)

As the authors of this article point out:...the Eulerian approach is expected to be more sensitive to noise

and advective motion, whereas the Lagrangian should have difficulties capturing rotational flow, because this

complicates the flow path reconstruction,(De Kat and Van Oudheusden (2012)). This statement was further

supported by a numerical experiment (Figure 2.7) on a Gaussian vortex computed with both approaches.
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Chapter 3

From function approximation to PDE

integration via RBF

This chapter will introduce the basics of Radial Basis Functions (RBF). The first section presents the most

conventional methods in which RBFs accomplish interpolation and solve PDEs. The second part focuses on the

issue of function approximation using RBF.

The following section describes constrained function approximation, which is the fundamental concept of

the whole method. Finally, in the last part, the approximation method will be applied and a PDE solver based

on RBFs is proposed.

3.1 Radial Basis Functions fundamentals

The most common RBF are shown in table 3.1, where c is the shape parameter, xj is the collocation point.

Name Radial Function r = ‖x− xj‖2
Linear ϕ(r) = cr

Cubic ϕ(r) = (r + c)3

Thin plate spline ϕ(r) = r2 log
(
cr2
)

Gaussian ϕ(r) = exp
(
−cr2

)
Multiquadratic ϕ(r) =

(
r2 + c2

)1/2
Inverse Multiquadratic ϕ(r) =

(
r2 + c2

)−1/2
Table 3.1: Most common RBF (Kim et al. (2009)).

We assume that s generic data array h ∈ RM is known, with hi for i = 1, · · · ,M representing a generic

value; an array x is used to denote the grid points, i.e the points where the data are evaluated.

If an interpolation of h is saught, a linear combination of RBF might be used:

h =

N∑
j=1

wj · ϕ
(
‖x− xj‖2

)
=

N∑
j=1

wj · ϕj , (3.1)

where N is the number of RBF used. The mathematical formulation usually includes also polynomial terms,

but they are neglected for the sake of clarity.

The previous equation can be rewritten as

h = Φ ·w, (3.2)

13
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(a) Effect of the shape parameter on the RBF. (b) Effect of the collocation point on RBF.

Figure 3.1: Parameter influence on RBF (Gaussian).

where w ∈ RN is the array containing all the weights in (3.1) and Φ ∈ RM×N is defined as

Φ =


ϕ1 (x1) · · · ϕN (x1)

...
. . .

...

ϕ1 (xM ) · · · ϕN (xM )

 . (3.3)

If M = N and Φ is invertible by solving the linear system (3.2) the weights are obtained.

The firsts attempts to solve PDEs with RBF were made in the early 1990s. The first method was proposed

by Kansa (1990) and is based on a simple concept. Any linear differentiation operator applied to the RBF

interpolation function leads to a linear relationship between the weights and the known differentiated value.

The matrices defining this relationship are named differentiation matrix and are denoted here as

∂xh = DX ·w ∂yh = DY ·w ∆h = L ·w

where:

DX =


∂xϕ1 (x1) · · · ∂xϕN (x1)

...
. . .

...

∂xϕ1 (xM ) · · · ∂xϕN (xM )

 ∈ RM×N DY =


∂yϕ1 (x1) · · · ∂yϕN (x1)

...
. . .

...

∂yϕ1 (xM ) · · · ∂yϕN (xM )

 ∈ RM×N

L =


∆ϕ1 (x1) · · · ∆ϕN (x1)

...
. . .

...

∆ϕ1 (xM ) · · · ∆ϕN (xM )

 ∈ RM×N

(3.4)

In this thesis the main purpose is to solve the Poisson equation, hence only Poisson solver is presented. However,

it is important to point out that also different type of PDE could be solved as Burger equation (see for example

Hosseini and Hashemi (2011)) in which Burger equation is considered). Focusing on the Poisson equation

∆h (x) = f,

we assume a function h̃ which interpolates h; then, replacing in the Poisson equation we have:

∆

N∑
j=1

wj · ϕj (x) = f
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which in compact form can be written

L ·w = f (3.5)

Regarding how the boundary conditions should be imposed, it is sufficient to force the equation to satisfy them on

some points of the boundary. This example includes only Dirichlet conditions, but if Neumann conditions were

considered, these conditions can be introduced using the relative differentiation matrix. The RBF approximation

is forced to satisfy Dirichlet boundary conditions at C points:

ΦC ·w = g (3.6)

where ΦC ∈ RC×N and g ∈ RC and the subscript C differentiates this matrix from Φ which is evaluated in M

points. Collocation points do not change. The final matrix looks like:(
L

ΦC

)
·w =

(
f

g

)
(3.7)

The main problem of this method is that is not possible to demonstrate that this last matrix is invertible

as Φ. Furthermore, M + C = N needs to hold true otherwise the matrix is not squared.

In Fasshauer (1996) an evolution of this method is proposed, called the symmetric Hermite method. In this

variant, the Hermite interpolant is added to the previous method to ensure the non-singularity of the matrix.

So equation (3.1) becomes:

h =

N∑
j=1

wj · ϕj +

N+B∑
j=N+1

wj ·∆xjϕj (3.8)

where the superscript xj implies that the Laplacian is computed with respect to the collocation point. N is the

number of RBFs in the interior domain, while B is the number of collocation points on the boundary. Applying

this idea to the problem with Dirichlet boundary conditions (3.7), rewrites:(
L LLxj

Φ Lxj

)
·w =

(
f

g

)
(3.9)

where the new matrices are

Lxj =


∆xjϕN+1 (x1) · · · ∆xjϕN+B (x1)

...
. . .

...

∆xjϕN+1 (xM ) · · · ∆xjϕN+B (xM )

 ∈ RM×B LLxj =


∆∆xjϕN+1 (x1) · · · ∆∆xjϕN+B (x1)

...
. . .

...

∆∆xjϕN+1 (xM ) · · · ∆∆xjϕN+B (xM )

 ∈ RM×B (3.10)

the whole matrix would belong to RN+B×N+B .

The main problem with these methods is how to find an optimal shape parameter and collocations. Further-

more, Kansa is not symmetric, neither is it Hermite if a changing of shape parameter is chosen. Additionally

the matrix could be ill-conditioned and full, leading to several computational problems.

Several works have investigated these methods in several areas. One of these areas is to find a demonstra-

tion of the uniqueness of the solution, in this sense an important work was delivered by Hon and Schaback

(2001). Unfortunately, presently the demonstration of uniqueness is still lacking. Other areas of research are

to find stable algorithms to tackle this problem, which is well treated by Fasshauer (1999), or shape parameter

optimization described by Rippa (1999) and Wang and Liu (2002).

3.2 Function approximation using RBF

The concepts on interpolation illustrated in the previous section do not represent the only possible way to

represent data with the RBF. In the present section the function approximation via RBF is presented. We

introduce a functional J defined as the squared euclidean norm of the residual of (3.2), namely:

J(w) = ‖Φ ·w − h‖22 .
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In this case it is a consolidated practice to add a Tikhonov regularization:

J(w) = ‖Φ ·w − h‖22 + α ‖w‖22 (3.11)

where α is an arbitrary strictly positive parameter. The regularization is added because it improves the be-

haviour of the problem as will be shown, and it smooths the results. Problem (3.2) is replaced by

min
w∈RN

J(w),

since J is a convex smooth functional, its minimum is attained at the unique stationary point:

∇J(w) = 0 = 2
(
ΦT ·Φ ·w −ΦT · h + αw

)
. (3.12)

It follows that w which minimizes the error should satisfy

H ·w = 2 ·Φ · h (3.13)

with:

H = 2ΦT ·Φ + 2αI (3.14)

in this matrix, I ∈N×N is the identity matrix. The matrix H ∈ RN×N has the following features:

• H is always positive definite if α > 0;

• If α = 0 but dim(Ker (Φ)) = 0, then H is always positive definite.

If dim(Ker (Φ)) 6= 0 it means that the information to build a RBF is redundant. This is not expected to happen,

but in practice the matrix might be ill-conditioned; then, the regularization also improves the conditioning even

if 2ΦT ·Φ is positive definite.

Figure 3.2: Example of function approximation via RBF.

3.3 Constrained RBF function approximation

In the framework of the function approximation is possible to add constraints. This is reasonable in term

of additional computational effort because all the constraints for the RBFs are linear. The previous problem

rewrites

min
w∈RN

J(w) with h(xk) = gk k = 1, · · · , C
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where C is the number of constraint and gk is the constraint on the function in the point xk, this equation can

be rewritten again into

min
w∈RN

J(w) with ΦC ·w = g

where g is an array containing all the constraints gk and ΦC ∈ RN×C is the matrix Φ evaluated in the

constrained points. This constrained optimum can be calculated by recalling the associated Lagrangian

L(w,λ) = ‖Φ ·w − h‖22 + α ‖w‖22 + λT · (ΦC ·w − g) . (3.15)

where λ ∈ RC is an array containing all the Lagrange multiplier. In this context, the constraints are on the

function values but might be of general type (derivative,divergence,etc). The theory of constrained optimization

states that a necessary condition for w to be a constrained optimum is that w and λ satisfy ∇L = 0, therefore

L is derived with respect to w and λ separately

∇wL(w,λ) = H ·w − 2 ·ΦT · h + ΦT
C · λ

∇λL(w,λ) = ΦC ·w − g
, (3.16)

imposing ∇L = 0: (
H ΦT

C

ΦC 0

)
·

(
w

λ

)
=

(
2 ·ΦT · h

g

)
. (3.17)

Let B ∈ RN×C denote the constraint matrix that could include the generic constraints which could be mixed,

on the derivatives, etc. Hence the general linear system to solve is(
H BT

B 0

)
·

(
w

λ

)
=

(
2 ·ΦT · h

c

)
. (3.18)

For Nocedal and Wright (2006), if dim(Ker(BT)) = 0 then only one solution exist.

Figure 3.3: Example of constrained function approximation via RBF.
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3.4 Solving Poisson equation

Similarly to how the Kansa’s method uses the RBF interpolation to solve the PDEs, constrained function

approximation could be used for the same purpose.

Let h be a solution to the Poisson problem:

∆h = f (3.19)

subjected to some boundary condition. Supposing that there exists an approximation of h h̃, we have:

h̃ =

N∑
j=1

wj · ϕj ≈ h (3.20)

This can be substituted into the Poisson equation. However, because this is just an approximation there will

be some error:

∆h̃− f =

N∑
j=1

wj ·∆ϕj − f = ε. (3.21)

The previous formula can be rewritten in an L2-norm and evaluated at some grid point x. Then using the

matrix (3.2) the error can be written similarly as before:

J(w) = ‖L ·w − f‖22 . (3.22)

To add the boundary conditions, constraints can be used. This leads to a matrix similar to the previous one:(
L BT

B 0

)
·

(
w

λ

)
=

(
2 ·ΦT · f

b

)
(3.23)

where b is th vector containing the boundary data and L is defined as:

L = 2LT · L + 2αI (3.24)

The uniqueness of a solution to (3.23) can be demonstrated similarly to case of the function approximation.



Chapter 4

Implementation of the meshless

pressure evaluation

This chapter focuses on how to use the Radial Basis Functions to evaluate pressure from image velocimetry and

how this approach has been implemented.

The first section deals with the application of physical constraints or penalties to the velocity approximation.

Then, an automatic way to define collocation point and shape parameter is presented. The following section

investigates the strategies applied to solve the linear system. Finally, the specific Python module created for

this work is presented.

4.1 Including physical constraints and penalties

The target of the inclusion of constraints in the velocities is to add information that a normal image velocimetry

does not carry, such as the no slip-condition or the known inlet velocity. Applying the divergence-free constraint

on the boundary is less trivial. This last constraint could be seen as useless; however, it is very important, as

it restores information on the derivatives without imposing any mathematical non-physical conditions.

Equation (3.15) can be properly changed to approximate a 2D velocity field where u,v ∈ RM are the

velocities values in all the M points:

L(wu,wv,λu,λv,λDIV ) = ‖Φu ·wu − u‖22 + ‖Φv ·wv − v‖22 + α ‖wu‖22 + α ‖wv‖22 + λTu · (Bu ·wu − gu)

+λTv · (Bv ·wv − gv) + λTDIV · (DXC,u ·wu + DYC,v ·wv) .

(4.1)

DXC,u and DYC,v ∈ RCDIV×N are the differentiation matrices evaluated at CDIV constraint points for the

divergence-free. From here all subscripts in the matrices referring to u or v will be neglected, at the exception

of λu and λv, following the assumption that both velocities are calculated with the same RBFs and that

Bu = Bv ∈ RC×N for construction, since any constraint applied to velocity in one direction would have its

counterpart on the other direction. Finally, λu, λv ∈ RC , λDIV ∈ RCDIV and Φ ∈ RM×N as before.

Some decisions have been made to simplify the implementation of the algorithm: let xc ∈ RC be the points

where constraints other than the divergence-free are applied, then xc is a subvector of xcDIV ∈ RCDIV , where

xcDIV are the points where the divergence-free constraint is applied. To explain this choice, let us consider a

square domain with a wall in the lower edge. The only constraint different from divergence-free that can be

applied is on this edge. Let have 1000 RBFs and 40 points per edge, which are supposed to be constraint points.

Then B ∈ R40×1000 would be evaluated in the 40 points in correspondence of the lower edge to apply the no-slip

condition, while DXC,DYC ∈ R160×1000 are evaluated at all the boundaries of the domain, because it is always

possible to apply the divergence-free condition.

Going back to (4.1), also in this case we look for points satisfying the optimality conditions by setting to zero

19
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the gradient of L. Again the derivatives are calculated with respect to the weights and the Lagrange multipliers:

∇wuL(wu,wv,λu,λv,λDIV ) = H ·wu − 2 ·ΦT · u + BT · λu + DT
X,C · λDIV

∇wvL(wu,wv,λu,λv,λDIV ) = H ·wv − 2 ·ΦT · v + BT · λv + DT
Y,C · λDIV

∇λuL(wu,wv,λu,λv,λDIV ) = B ·wu − gu

∇λvL(wu,wv,λu,λv,λDIV ) = B ·wv − gv

∇λDIV
L(wu,wv,λu,λv,λDIV ) = DX,C ·wu + DY,C ·wv

(4.2)

Imposing the equality to zero we obtain:
H 0 BT 0 DT

X,C

0 H 0 BT DT
Y,C

B 0 0 0 0

0 B 0 0 0

DX,C DY,C 0 0 0

 ·


wu

wv

λu

λv

λDIV

 =


2ΦT · u
2ΦT · v

gu

gv

0

 . (4.3)

The final linear system to be solved has a coefficient matrix ∈ R(2N+2C+CDIV )×(2N+2C+CDIV ). The solution

of this system is unique if both Φ and the matrix(
BT 0 DT

X,C

0 BT DT
Y,C

)
have kernel dimension equal to zero. If the regularization is used with α large enough, then only the second

condition is needed. Let us introduce a divergence-free penalty to be evaluated at the same M point of Φ. We

introduce

JDIV (wu,wv) = (DX ·wu + DY ·wv)
T ·(DX ·wu + DY ·wv) =

(
wT

u ·DT
X + wT

v ·DT
Y

)
·(DX ·wu + DX ·wv) ,

(4.4)

where DX,DY ∈ RM×N . Then, the functional J has to be incremented by JDIV

JTOT (wu,wv) = J(wu,wv) + JDIV (wu,wv)

Expanding (4.4)

JDIV (wu,wv) = wT
u ·DT

X ·DX ·wu + wT
v ·DT

Y ·DY ·wv + 2wT
u ·DT

X ·DY ·wv (4.5)

∇wuJDIV (wu,wv) = 2DT
X ·DX ·wu + 2DT

X ·DY ·wv (4.6)

∇wvJDIV (wu,wv) = 2DT
Y ·DX ·wu + 2DT

Y ·DY ·wv (4.7)

In a more compact way, the equations rewrite:(
2DT

X ·DX 2DT
X ·DY

2DT
Y ·DX 2DT

Y ·DY

)
·

(
wu

wv

)
=

(
∇wuJDIV (wu,wv)

∇wvJDIV (wu,wv)

)
. (4.8)

According to Theorem 2 this matrix is always positive semi-definite. This gradient is added to the previously

obtained (4.2), and the matrix rewrites:
H + 2DT

X ·DX 2DT
X ·DY BT 0 DT

X,C

2DT
Y ·DX H + 2DT

Y ·DY 0 BT DT
Y,C

B 0 0 0 0

0 B 0 0 0

DX,C DY,C 0 0 0

 ·


wu

wv

λu

λv

λDIV

 =


2ΦT · u
2ΦT · v
cu

vv

0

 . (4.9)

The upper-left corner block, with dimension R2N×2N , is positive definite(summation of a positive definite matrix

and a positive semi-definite matrix); therefore if the constraint part has dim(Ker) equal to 0 then exist a solution

for Nocedal and Wright (2006).
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4.2 Defining collocation points and shape parameter

In this section an automatic way to define the collocation points and shape parameters is proposed. In this

work, only Gaussians in the form of ϕ(r) = exp
(
−c2r2

)
were used. Therefore when referring to this algorithm

or to the implementation, the terms Gaussians and RBFs could be used interchangeably. The proposed method

differs from Kansa’s method, since choosing a changing shape parameter does not affect the symmetrical feature

of the matrix.

However, there is still the issue of identifying these points and the shape parameters. First, a brief discussion

on the criteria to find a good positioning are mentioned:

1. Enough points have to be under the dome of each Gaussian

2. The Gaussians have to be close enough to be correlated between them

3. Higher value of c means more accurate results

The first point is intuitive; in the critical situation where points are very distant from the center of the Gaussian,

the Gaussian is not determined. It follows that, and when the matrix Φ is constructed, the row corresponding

to this Gaussian would be almost zero leading to an ill-conditioned matrix.

The second point is again demonstrated through an example. If the Gaussian shape parameter tends to

infinity, the RBF turns into a Dirac delta function. When this happens, the function approximation becomes an

interpolation, because the only points that could be represented are the ones that coincide with the collocation

point. Furthermore, all the points that lay between one collocation point and another become untrustworthy

to extrapolate. In a realistic situation the Gaussians would not be a Dirac function, but they can be very spiky.

This kind of Gaussian need to be very near to represent the points which lay between two collocation points.

Regarding the last point, results will show that this function approximator works as a low-pass filter and the

frequency which will be cut off is proportional to c. Hence, the number of RBFs used would become irrelevant

after reaching a saturation number of RBFs. This behaviour has been widely reported in the literature of

Kansa/Hermite method: Cheng et al. (2003); Fasshauer (1996).

All considered , these three criteria are discordant but could be summarized by one sentence: The best value

for c is the highest value allowed by the data. As an example, imagine having a very dense dataset and enforcing

the criterion that n points have to be under the Gaussian; in this case c will be rather big. On the other hand,

if the dataset is coarse, to satisfy the same criterion c will be small. On this basis, the consequential idea is

to use the dataset position to decide the placement of the Gaussians. In particular, a clustering method has

been used. This method allows the creation of groups of points, each related to a specific centroid; centroids

are calculated by maximizing the distance between them and minimizing the distance between the points of one

group and their relative centroid. To calculate these centroids the scikit-learn cluster module has been

used in particular MiniBatchKmeans1. As input it requires the number of groups to be created. The specific

function developed in this works requires the average number of points per cluster instead, as it will be explained

in the implementation section.

The idea at this point is to collocate the Gaussian in the centroid itself. To decide the relative c a rule of

thumb has been found:

c = 0.5/(
√

2Dmin) (4.10)

where Dmin is the distance between a centroid and the nearest centroid.

Larger Gaussians are required to approximate the part of the field characterized by smaller frequencies with

less RBF. These are obtained by repeating clustering on the centroids and this could be done more than one

time.

1https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html
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4.3 Solving the linear system

In this section some methods to solve the linear system involved in this problem are proposed, in particular to

make a comparison all this method were used to resolve the velocity matrix of this test case 5.2. Based on the

time required by the calculations and the obtained accuracy, these methods are ranked.

We start remarking that the matrices involved in this problem are ill-conditioned. As a result, the use of

methods such as Penrose-Moore pseudo-inverse or QR factorization might be required. However, this does not

appears to be always the case if proper regularization is used.

The method used here could be divided into two branches:

• standard;

• Schur Complement Approaches (SCA), see Nocedal and Wright (2006).

The first is referred to the standard case in which the whole system is solved, whereas SCAs manipulate the

original matrix to solve two smaller problems. All the linear systems introduced so far have the structure(
A BT

B 0

)
·

(
w

λ

)
=

(
b1

b2

)
. (4.11)

It is supposed that no regularization is applied unless differently specified. If A is invertible, the vector w can

be exploited:

w = A−1
(
b1 −BT · λ

)
substituting it in the second block of equations:

B ·A−1
(
b1 −BT · λ

)
= b2

B ·A−1 ·BT · λ = B ·A−1 · b1 − b2

and defining:

M = B ·A−1 ·BT

N = B ·A−1.

The final solution could be achieved by solving these linear systems in the following order:

M · λ = N · b1 − b2 (4.12)

A ·w = b1 −BT · λ (4.13)

It is worth to underline that M is always at least semidefinite positive.

4.3.1 Efficient method to identify a suitable regularization

In the previous section, it was mentioned that Tikhonov regularization has no importance in terms of smoothing

because of the physical penalty on the divergence-free; nevertheless it is kept to treat the bad conditioning of

the matrix. The regularization acts on the eigenvalues, adding α to them. Let AR be the matrix A regularized

with some α and σ(AR) its eigenvalues, then we have:

σ(AR) = σ(A) + α.

However if min (σ(A))� α then:

min (σ(AR)) ≈ α
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Since A is symmetric postive definite, the conditioning number in spectral norm is given by:

k(A) =
max (σ(A))

min (σ(A))

However, for compatibility reasons with other solvers, in this thesis it is preferred to work with the inverse of

this number:

rcond =
1

k(A)
=
min (σ(A))

max (σ(A))

Therefore, if min (σ(A)) � α, the regularization improves the conditioning of the matrix. However if α is

chosen too big it completely change the original system. In this case there is no interest in the smoothing

properties of the Tikhonov regularization, as this is ensured by the divergence-free penalty.

Hence α must be chosen to be the smallest possible to ensure a good conditioning. However, to get the

correct α for this purpose the eigenvalue should be calculated, which would be pointless as in this case it would

be easier to directly solve the system with a SVD.

Fortunately some approximations could be made,as it is always true that:

k(AR) =
max (σ(AR))

min (σ(AR))
≈ max (σ(AR))

α

Moreover it is also true that if α� max (σ(A)) then:

max (σ(AR)) ≈ max (σ(A))

k(AR) ≈ max (σ(A))

α
≤ ‖A‖∞

α
.

Hence taking into account the worst situation possible, when the k(AR) is the biggest allowed:

k(AR) =
‖A‖∞
α

.

The alpha could be estimated as:

α = rcond‖A‖∞

Where rcond must be decided by the user and should be around 10−10.

4.3.2 Solving the linear system with standard Numpy routine

This is the easiest way to go through the problem, this method is the only one proposed for the standard

approach. Simply, the numpy.linalg.solve() 2 is called.

Unfortunately, as A is not solved on its own it is not possible to identify α easily as suggested in the previous

part. A brief table reporting the pros and cons is shown in table (4.1).

Pros Cons

The most accurate α must be identified by trial and error

Expensive respect to the competitors

Table 4.1: Pros and cons of the solve method.

4.3.3 Penrose-Moore Pseudo Inverse

The following linear solvers belong to SCAs. In this solver, numpy.linalg.pinv3 is recalled for both M and

A, calculating the pseudo inverse. This method has the advantage of not requiring regularization to work.

Unfortunately it is also the worst in both accuracy and computational cost.

2https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html
3https://numpy.org/doc/stable/reference/generated/numpy.linalg.pinv.html

https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.pinv.html
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4.3.4 Pseudo Inverse mixed with Cholesky

This is the hybrid solution referred to as ’mixed’; A is regularized with the method mentioned before and

factorized with Cholesky decomposition, whereas M is treated computing the pseudo inverse.

This is probably the universal solution because it is always mathematically sustained , as it can be used in

every situation and is always valid, also for this case a pro and cons table is presented (4.2).

Pros Cons

Accurate With increasing complexity the pseudo-inverse could become very costful

Quite fast

Universal

Table 4.2: Pros and cons of the mixed method.

4.3.5 Full Cholesky

In this case also M is regularized with a new parameter called β and Cholesky decomposition is used, and for

this reason is referred to as ’fullcho’. The results derived with this method represent the best trade-off between

accuracy and computational speed. However, it could be demonstrated (starting from the equation and returning

to the original error) that this regularization is the same as adding −β‖λ‖22 to the original error. Adding a

negative term to the error means that it is no longer possible to demonstrate that the solution correspond to

a maximization problem. Furthermore, there is no literature on Lagrange multiplier regularization, because it

somehow changes the constraint. Nonetheless if ‖λ‖2 << 1 this two situations should not occur. In table 4.3

the pros and cons.

Pros Cons

The fastest Weak mathematical basis

Very accurate

Table 4.3: Pros and cons of this full Cholesky method.

4.3.6 Comparison

To enforce the previous affirmation, a comparison between the capabilities of these solvers is reported. For this

comparison, the velocity matrix in 5.2 is used as a test case. The errors are calculated computing the norm of

the residuals. For instance b1 error is:
‖A ·w + B·λ− b1‖2

‖b1‖2
All computations were done in the same laptop and the time is evaluated as a mean of ten distinct runs. In

table 4.4 the results are presented.

Method Time[s] b1 error b2 error

Solve 4.23 4.21 · 10−11 2.33 · 10−8

Fullpinv 33.39 3.83 · 10−5 6.15 · 10−4

Mixed 3.44 5.43 · 10−9 7.36 · 10−7

Fullcho 3.33 5.38 · 10−9 1.13 · 10−7

Table 4.4: Results.
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4.4 Pressure evaluation algorithm

At this point, all the devices needed to evaluate pressure are known. The first part of the algorithm would be to

use the clustering method to obtain fine collocation points. The linear system in (4.9) is solved with one of the

strategies depicted in section 4.3, hence the weights are easily obtained. The forcing term could be calculated

by using the matrix (3.4) and becomes:

f = −ρ ((DX ·wu) ◦ (DX ·wu) + 2 (DY ·wu) ◦ (DX ·wv) + (DY ·wv) ◦ (DY ·wv)) . (4.14)

The forcing term is known and the boundary condition can be divided in two types:

• known Dirichlet condition, which should be at least one to ensure the uniqueness of the solution;

• Neumann condition from the momentum equation.

Finally, by solving the linear system in (3.23), the weights for pressure are obtained.

Usually, the same grid point and RBF are used for both velocity and pressure, because as the information

about the velocity is filtered from its approximation then the forcing term would not require different c to be

described. Furthermore also changing the grid points would not have any meaning for the same reason.

4.5 Python implementation

This algorithms has been implemented in Python and is based on two main module:

• Matrix.py

• MESH LAB.py

4.5.1 Matrix.py

Matrix.py is the module that manages the creation of all kind of matrices needed for the computation as (3.2)

or (3.4). These matrices are then used to create the matrix to be solved to minimize the error, so (3.23) for the

Poisson equation, or (4.3) for the velocities approximation.

4.5.2 MESH LAB.py

This module is more complex than the previous and deals with the solution of the involved linear systems and

the clustering. Therefore, it includes a function to solve the linear system associated with the Poisson solver

and the function approximation. The Poisson solver cannot work by itself so a different function is needed to

create the boundary conditions for the Poisson solver.

The clustering method function has a very complex flow chart shown in figure 4.2. The inputs are the data

position and the average number of particles or collocation points per Gaussian. This last variable is particular:

it is actually an array because it may change for every level of clustering, and therefore its length is equal to the

number of level chosen by the user. Furthermore, two other variables can be set namely an upper limit on the

c’s to avoid unusual high shape parameters, and a boolean array named mincluster, which prevents the creation

of fake high c’s due to small clusters. If ’mincluster’ is set to true for one level, every associated Gaussian with

a cluster smaller than the average number of required particles, which should led to high c’s, is associated with

the minimum c of that level.

The 4.2 diagram provide a description of the algorithm. The data positions are elaborated by MinBatchKMeans

and the collocation points are obtained. The closest collocation point is evaluated and exploiting the rule of

thumb in (4.10) c’s are calculated. Then, the c’s that exceed the imposed limit are turned into the values of the

cap itself. If mincluster hold true those clusters with less points than the average inside them are associated
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with the lowest c of the same level. Finally, if all the levels are completed, the collocation are given as outputs;

otherwise the presented process is repeated.

The second proposed function deals with the linear system of the approximation of the velocities; in figure

4.2 the flow chart of the function is shown. The inputs generally consist of collocation points, shape parameters,

constraints and all the information about the data, such as grid points and values of the velocities in such

points. Some other inputs are optional, but important nonetheless. The regularization is set to zero by default

but it can be changed manually; similarly for the divergence-free penalty is not present by default but it can

be added. If the regularization is set to zero, a way to solve the linear equation must be indicated. Recalling

the tags given in 4.3, this variable, named method, can be set to ’fullcho’, ’fullpinv’ or ’mixed’, with the default

option being ’fullcho’.

Following what is prescribed in section 4.2, the inputs are used to create the matrices calling Matrix.py,

obtaining the final matrix (4.3). If any penalties or regularization are present the matrix is build differently.

In both cases if the regularization is not prescribed by the user one of the SCAs method is used, which can

be decided through the method variable. On the other hand, if a regularization is imposed the code use

numpy.linalg.solve to solve the whole matrix. In both cases the weights are calculated and given as outputs.

It was mentioned before that a function is needed to create the boundary conditions for the Poisson equation.

This function, and the Poisson solver as well need both collocation points for velocity and pressure. Hence,

it is important to point out that such collocation points do not always coincide. The weights previously

calculated for the velocities are needed to compute the momentum equations and therefore the Neumann

conditions. Moreover, an array containing the constrained points and an array containing the type of condition

for every edge is required. Every specific condition type needs specific information: Neumann conditions need

the direction normal to the edge where it is applied, and Dirichlet conditions need the relative assigned value.

Finally physical properties are needed: viscosity and density.

In figure 4.3 the flow chart for the boundary conditions function is proposed. Firstly, the function looks

whether a particular edge is subjected to Dirichlet or Neumann conditions. In the first case matrix (3.2) is built

over the constrained point and an array containing the relative condition is created. In the Neumann case the

differentiation matrices DX and DY are created again over the constrained points. The velocity approximation

is used to calculate ∂xp and ∂yp from the momentum equation. Then the differentation matrices and the

pressure derivatives are projected to obtain Dn and ∂np. Finally, if all edges are assigned with a condition, the

function stacks all of the matrices and boundary conditions into one matrix and one array; otherwise the cycle

is repeated.

The final proposed function is the Poisson solver. This has several inputs: the collocation point and shape

parameters for both velocity and pressure, the boundary matrix and conditions as obtained from the previous

function, the weights for the velocities and the parameters defining which linear solver to use. As before, physical

properties are needed.

In figure 4.4 a flow chart for this function is reported. This last implementation does not differ too much

from the function for the function approximation; the main differences are that, int this case no penalties can

be added, the linear system to be solved is (3.23), and the forcing term must be calculated as equation (4.14)

prescribes.
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Figure 4.1: Flow chart of the clustering method.
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Figure 4.2: Flow chart of the function approximator solver.
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Figure 4.3: Flow chart of the boundary condition function.
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Figure 4.4: Flow chart of the Poisson solver function.



Chapter 5

Test Cases

This chapter introduce the test cases used to validate the whole algorithm and the Python implementation.

Two test cases of increasing complexity were carried out. This difference in complexity opened the opportunity

to exploit the simpleness of the first test case and achieve a wider study on the effect of the different parameters.

On the other hand, the complexity of the second demonstrates that the proposed method holds its validity even

if complex problems are analyzed. Unfortunately, these test case are still relatively simple. Indeed they are:

• stationary;

• inviscid /laminar;

• bi-dimensional.

5.1 Gaussian Vortex

The first test case is the Gaussian vortex, mimicking to some extent the work of De Kat and Van Oudheusden

(2012). In this first test, the velocity field and the pressure are analytically known.

The tangent velocity distribution is defined as follows:

Vθ =
Γ

2πr

(
1− e−

r2

cθ

)
(5.1)

where Γ is the circulation and is set to 10, cθ = r2C/γ with γ = 1.256431, the core radius rC is set to 0.1 [m].

Finally the density is set to 1[kg/m3]. The tangent velocity could be evaluated in some arbitrary point. Indeed,

this formula has been used to create synthetic velocities over scattered grids. The pressure field is known as

well:

p = −1

2
ρV 2

θ −
ρΓ2

4π2cθ

(
E1

(
r2

cθ

)
− E1

(
2r2

cθ

))
. (5.2)

where E1 is the exponential integral, defined as:

E1(x) =

∫ ∞
x

e−t

t
dt.

Hence, the evaluation of the pressure error can be easily achieved by calculating the difference between the

numerical and analytical solution. The domain of the Poisson equation is a [−0.5, 0.5]× [−0.5, 0.5] square. All

the edges are subject to the Neumann conditions derived from momentuum equation, with the exception of the

bottom edge that has a Dirichlet condition as proposed by De Kat and Van Oudheusden (2012):

p(x,−0.5) = −1

2
ρVθ(x,−0.5)2,

where p∞ = 0 is supposed.

31
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5.2 Cylinder at Re=5

The second test case is a laminar two-dimensional flow around a cylinder. The reference data are from Rao

et al. (2020), which are freely downloadable1. These data were obtained with ANSYS Fluent 18.1.

In figure 5.1 the dimensions of the flow are presented. The density of the fluid is 1 [kg/m3] and the viscosity

is 2 · 10−2 [Pa · s]. The inlet velocity profile is parabolic: 4(H − y)y/H2.

Figure 5.1: Geometries of the flow, Rao et al. (2020).

Exactly 19340 scattered points define the pressure and the velocity field. To simulate a realistic situation,

the velocity data at the borders were deleted, so the total points drop to 18755.

The imposed boundary conditions are of Neumann type and are calculated as usual with the momentum

equations. The only exception is the outlet, where pressure is forced to reach 0 (Dirichlet condition).

1https://github.com/Raocp/PINN-laminar-flow

https://github.com/Raocp/PINN-laminar-flow


Chapter 6

Results

This chapter presents the results of the test cases described in chapter 5. As previously mentioned, the Vortex

test case is more suitable for an extensive test where parameters such as:

• regularization

• penalties

• noise

• number of particle

are studied in depth. Instead, the cylinder works as code validation on a complex problem. It must be pointed

out that these results were obtained with the method explained in this section 4.3.2, as this is the best solver

in terms of accuracy. The only exception to this rule is the cylinder with the clustering. For this case, the

behaviour within the noise was too poor. Therefore a Mixed approach (4.3.4) is instead preferred.

6.1 Vortex

Concerning configuration for the vortex, 50 constraints points are prescribed. At this point, all constraints are

applied: divergence-free, velocity inlet, Dirichlet conditions, etc. The constraint points would be the same for

pressure and velocities.

The field for the vortex is computed in two manners:

• the first, uses 3025 RBF on a uniform grid with a shape parameter of 15;

• the second, uses clustering technique.

6.1.1 Vortex with standard collocation

The best solution is chosen to be compared to the correct values. The setup for this solution is proposed as

follows:

• zero noise

• number of point N=20000

• divergence-free penalty

• α = 10−5, that is the regularization parameter for both velocity and pressure

33
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(a) Exact solution (5.1).

(b) Function approximation. (c) Error between a and b.

Figure 6.1: Velocity approximation.

In figure 6.1 and 6.2, the solution obtained for this scenario are shown.

This test case also represents a great opportunity to demonstrate that this function approximator acts like

a low-pass filter. In figure 6.4 a glimpse of this effect is shown. In particular, two approximations are proposed

with the same number of RBFs but with different c’s that determine the cut-off frequency. This means that

even an infinite number of RBFs cannot perfectly represent the function if c’s are finite.

The following paragraphs focus on study of the effects of the setup parameters on the solution. In particular,

some setups are considered:

• α = 10−2 without divergence-free penalty;

• α = 10−5 without divergence-free penalty;

• α = 10−5 with divergence-free penalty.

Figure 6.3 illustrates the behaviour of the different setups with a variable number of particles, and it clearly

shows that a high value of α deteriorates the solution. Meanwhile small alpha are giving a better result. The

error is generally decreasing as the number of particles increases. The trend seemingly shows a plateau. The

third image exhibits an exception.

Having the velocity given as a finite number of points means that somehow the original velocity has been

already subjected to a low pass filter. Therefore, there must exist a maximum frequency that can be represented

for any particles distribution fN . Furthermore, if N increase also does fN .

These data are approximated with fixed RBF. Therefore, the results are filtered with a cut-off frequency

fRBF . The collocation grid is fixed, so fRBF = const. Hence, until fRBF > fN the error improves by increasing
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(a) Exact solution (5.2).

(b) Resulting pressure solution. (c) Error between a and b.

Figure 6.2: Pressure comparison.

N as more frequencies can be represented. The plateau occurs because fRBF ≈ f7000, then for N > 7000 new

particles add information that would be deleted from the RBF, and no improvement to the error is achieved.

For the third case in Figure 6.3 a distinct discussion has to be done. In this case the plateau does not form.

This is probably due to the high regularization that, as Figure 6.5 demonstrates, increases the low-pass filter

effect. Additionally it is possible that since points are given randomly, certain regions might have a higher

density of points, even when N is relatively small. As a consequence, such regions suffer more from this low-pass

filter effect. Similarly, the effect of noise is investigated in figure 6.6. The best response to noise is obtained in

example (a) followed by (c) and then (b). By analysing these figures it is clear that the divergence-free penalty

acts as a physical regularization. If noisy data are present, the divergence-free is not automatically verified.

Hence the system admits some difference on the velocities to reduce the error given by the divergence-free

penalty; this difference is noise because it does not satisfy the divergence-free. This effect of the divergence-free

penalty reduces the presence of α to just one purpose, that is enhancing the conditioning of the matrix. Hence

it has to be taken as small as possible to make the system work.

An example of standard algorithm is compared with the new method proposed in this thesis. In particular,

the forcing term of the Poisson equation is calculated with both methods with these parameters: N=20000 and

5% noise. Before digging any deeper it is important to explain how the standard method was implemented.

Firstly the data are interpolated with scipy.interpolate.griddata1 onto a new 100 × 100 uniform grid;

secondly, gradients are evaluated with numpy.gradient2, and eventually since all the derivatives are known,

the forcing term is calculated. The correct forcing term has been calculated by using numpy.gradient directly

on the true velocity.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html
2https://numpy.org/doc/stable/reference/generated/numpy.gradient.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html
https://numpy.org/doc/stable/reference/generated/numpy.gradient.html
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(a) α = 10−5 with divergence-free penalty

(b) α = 10−5 no divergence-free penalty (c) α = 10−2 no divergence-free penalty

Figure 6.3: Error with varying particle N=[1000, 2500, 5000, 7500, 10000, 15000, 20000], noise=0%.

(a) c=5 (b) c=3

Figure 6.4: Fourier transform of the approximation and the original data with different c’s.

In figure 6.7 the results show evidence that the RBF results is better. RBF solution cannot actually be

distinguished from the correct one. Indeed, the relative L2 error is 0.025. The standard results, instead, have

points dropping below zero and do not appear as smooth as they should be. In this case, the relative L2 error

is 0.31.
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(a) c=5 and α = 10−2 (b) c=5, α = 10−5 and divergence-free penalty

Figure 6.5: Effect of regularization on the spectra.

(a) α = 10−5 with divergence-free penalty

(b) α = 10−5 no divergence-free penalty (c) α = 10−2 no divergence-free penalty

Figure 6.6: Error with varying Noise=[0%,1%,2%,5%,10%,20%], N=20000.

6.1.2 Clustering on Vortex

Next, the clustering is applied (Fig.6.8) by considering clustering layers, with the first layer of Gaussian con-

taining 7 particles and the second containing 4 collocation point of the first layer. The results are similar to the

ones previously obtained. However, the plateau does not form because the Gaussians are evaluated with respect

to the data, then fRBF 6= const. These results suggest that fRBF < fN for any N studied. Velocity shows an

error different from before. This could be probably linked with the changing number of RBF. In addition, all
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(a) Correct f

(b) Standard f (c) RBF method forcing term

Figure 6.7: Forcing Terms.
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(a) α = 10−5 with divergence-free penalty

(b) α = 10−5 no divergence-free penalty (c) α = 10−2 no divergence-free penalty

Figure 6.8: Error(Clustering) with varying particle N=[1000, 2500, 5000, 7500, 10000, 15000, 20000], noise=0%.
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computations have nearly a monotonic decrease, especially for the case with α = 10−2, which is significantly

different from the one of figure 6.3. This effect happens because c is locally chosen. Then the high-density

regions are represented with higher c’s and therefore avoid the flattening of those local frequencies as before.

Finally, also the effect of the noise (Fig.6.9) is evaluated.

As a final consideration for this case, the error with the clustering is higher for lower N, this is due to the

fact that the number of used RBFs are somehow dependent on N; therefore smaller N means less RBFs, and

so a higher error. Nevertheless, the objective of the clustering method is not to improve the solution, but to

automatically identify the Gaussians instead.

(a) α = 10−5 with divergence-free penalty

(b) α = 10−5 no divergence-free penalty (c) α = 10−2 no divergence-free penalty

Figure 6.9: Error(Clustering) with varying Noise=[0%,1%,2%,5%,10%,20%], N=20000.

6.2 Cylinder at Re=5

The cylinder would have the same scheme as the vortex: first a standard collocation point, and then with the

clustering method. In Figure 6.10, 6.11 and 6.12 the two velocities and pressure are presented as they are shown

in Rao et al. (2020).

6.2.1 Cylinder with standard collocation

In this case, the correct collocation point and shape parameter has been found by trial and error. To obtain

the solutions, two different but equally-spaced grids of collocation points were used; one is the overall domain
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whereas the second is the annulus around the cylinder with a radius of 0.07[m].

Figure 6.10: Velocity in x direction, Rao et al. (2020).

Figure 6.11: Velocity in y direction, Rao et al. (2020).

Figure 6.12: Pressure, Rao et al. (2020).

In table 6.1 the parameters for both the velocity interpolation and the PDE solver are reported. Every edge

has an assigned label ,B1 to B4 refer to edges starting from the inlet and the rotating counterclockwise. B5 is
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the cylinder edge. In table 6.1 all the edges are associated with some constraints for the function approximation

or boundary conditions for the PDE solver.

MESH1 MESH2(Annulus) Constraints/Boundary conditions

Number of RBF c Number of RBF c α B1 B2 B3 B4 B5 NC

Function approximation 1320 30 1978 52.5 0.8 df+inlet velocity df+ns df df+ns df+ns 80

PDE solver 5520 30 2970 52.5 0.5 N N D N N 50

Table 6.1: Parameters of interpolation and PDE solver where NC is the number of constraints per boundary.

(df= divergence-free ,ns=no-slip, N=Neumann, D=Dirichlet)

The parameter fixed before are used to obtain the velocity field in Figure 6.14, 6.13, 6.16. The L2 norm

relative error for both velocities u and v are 5.5 · 10−3 and 1.43 · 10−2 respectively. A complete overview of the

comparison between data and results is given in figure 6.15.

Figure 6.13: Velocity in x direction.

Figure 6.14: Velocity in y direction.

Pressure is computed in figure 6.17 with an L2-norm relative error of 5.6 · 10−2; the computed values versus

the data are then plotted in 6.18.

Finally, pressure is estimated around the cylinder, as is shown in Figure 6.19. The result matches the

expected values, especially on the peak. On the other hand, precision decreases in correspondence of the

opposite stagnation point. In this test case is possible to demonstrate the importance of the constraints, to

achieve this the Neumann boundary conditions on the cylinder are computed in three different ways:
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Figure 6.15: Comparisons between computed and real velocities. The black line has a 45o slope and represent

the approximation with zero error. The further the blue points are from the black line worse is the computed

value.

Figure 6.16: u at different y behind the cylinder.

• normally with no-slip condition and divergence-free;

• only divergence-free;

• no constraint.

Obviously, if the no-slip constraint is not applied in the function approximation, then the point subjected to

that condition are added to the error. For all calculations the parameters were the same as in Table 6.1. In

figure 6.20 the difference in the quality of this boundary condition is shown. The case with both constraints is

smooth,symmetric and surely correct as these conditions were used to calculate pressure. On the other hand,

the remaining two cases show deteriorating quality and are not suitable to compute pressure.

A careful reader would not miss that in this case the divergence penalties has not be applied. Indeed, this

case with standard collocation point is not tested with noise, that would make this penalty necessary.
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Figure 6.17: Pressure field of the cylinder.

Figure 6.18: Pressure comparison.

6.2.2 Cylinder with clustering method

The collocation points are built on three level of clustering. Having in the first level 10 particle per Gaussian

and then 2 level with 5 Gaussian per collocation point. The resulting number of RBFs is 2797, which is the

same for both velocity and pressure. The boundary conditions are the same reported in 6.1, but in this case

the divergence-free penalty is added; therefore the regularization changes as imposed the mixed solver.

The errors are reported in Table 6.2. Some improvements with respect to the previous case can be spotted.

u v p

L2 norm relative error 3.86 · 10−3 1.67 · 10−2 2.72 · 10−2

Table 6.2: Errors with clustering method.
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Figure 6.19: Pressure around the cylinder.

Nearly all plots are indiscernible between the two cases, so it is pointless to plot it again. However, pressure

around the cylinder improves consistently (Figure 6.21 ). Finally, different cases with varying noise is presented

in Table 6.3.

Noise u v p

1 % 3.9 · 10−3 1.69 · 10−2 2.73 · 10−2

2 % 4.01 · 10−3 1.71 · 10−2 2.74 · 10−2

5 % 4.74 · 10−3 1.86 · 10−2 2.81 · 10−2

10 % 6.74 · 10−3 2.3 · 10−2 2.92 · 10−2

20 % 1.16 · 10−2 3.51 · 10−2 3.16 · 10−2

Table 6.3: Relative L2-norm errors.
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(a) No-slip and divergence-free (b) Only divergence-free constraint

(c) No constraint

Figure 6.20: Boundary condition around the circle, 0o is the stagnation point which faces the inlet.

Figure 6.21: Pressure around the cylinder.
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Conclusion and perspectives

The aim of this work was to achieve a meshless method to compute pressure. However, this was not the only

target the method could reach. Indeed, the function approximation of the velocity already works perfectly to

enhance data, trigger super-resolution, replace outliers and filter noise. Therefore, even if the computational

cost of the proposed method would be higher than each separate step, it could be competitive when compared

to the whole procedure, which usually comprehends image pre-processing, filtering, etc.

Another advantage of this method is that, at the end of the calculation, an analytical formulation of the

field is derived. As a result no further investigation is necessary to evaluate pressure at points different from

the original grid, or to compute the derivatives if required.

Many disadvantages are still evident; to solve complex problems the matrices are huge and full, requiring

plenty of processing memory to handle them. Furthermore, the matrices are ill-conditioned, thus requiring

expensive tools to treat them. Such issues are not dramatic at the moment, but they will probably be in

turbulent 3D cases where the number of particles and therefore required RBFs increase.

Some improvements are probably needed in terms of efficiency of the implementation itself, for example:

• improve the memory allocation of the matrix by neglecting small values inside them to obtain a small

level of sparsity;

• avoid some matrices multiplication by directly defining the resulting matrix;

• avoid loops to build the matrices.

Moreover, the numerical part needs to be developed further:

• if some level of sparsity is achieved, iterative methods as conjugate gradient could be used;

• implement a stochastic gradient descent to treat the problem.

Eventually, the last problem to deal with involves the deciding criterion for the number of constraints that are

to be imposed to make the method works finely.
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Appendix A

Theorems

Theorem 1 Let be B ∈ RM×N with N < M with dim(Ker(B)) = 0, hence the matrix BT ·B ∈ RN×N is

positive definite.

Proof BT ·B is semidefinite positive, therefore:

xT ·BT ·B · x ≥ 0 ∀x ∈ RN .

However for the assumptions dim(Ker(B)) = 0, hence 6 ∃ x ∈ RN |

B · x = 0,

except for the trivial solution. Hence 6 ∃ x ∈ RN |

(B · x)
T ·B · x = 0,

therefore BT ·B is definite positive �

Theorem 2 Let be A,B ∈ RM×N , then the matrix:

C =

(
AT ·A AT ·B
BT ·A BT ·B

)
is semi defined positive.

Proof Apply the semi definite positive definition to the matrix C:

wT ·C ·w ≥0

Let be w1,w2 ∈ RN |

x =

(
w1

w2

)
,

Substitute it in the first equation and with the definition given above this is obtained:

wT
1 ·AT ·A ·w1 + wT

2 ·BT ·B ·w2 + wT
1 ·AT ·B ·w2 + wT

2 ·BT ·A ·w1 ≥0.

The last term could be manipulated as follow:

wT
2 ·BT ·A ·w1 =

(
wT

2 ·BT ·A ·w1

)T
= wT

1 ·AT ·B ·w2,

therefore the condition change again to:

wT
1 ·AT ·A ·w1 + wT

2 ·BT ·B ·w2 + 2wT
1 ·AT ·B ·w2 ≥0.
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Let be a,b ∈ RM |
a = A ·w1

b = B ·w2

These two are substituted in the condition:

aT · a + bT · b + 2aT · b ≥0⇒
(
aT + bT

)
· (a + b) ≥ 0,

that is verified ∀a,b ∈ RM�
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