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Abstract

This aeroacoustics research focuses on sound-field generated by a supersonic Mach
3 jet.

The work is based on a high-speed schlieren dataset provided by the Applied
Research Lab at Austin focused on the hydrodynamics field and acoustic near-field
of a Mach 3 turbulent circular jet.

Mach waves are responsible for one of the most annoying noise components of a
jet: crackle noise. This particular kind of noise is generated by the steepening of
Mach waves which may come close to a saw-tooth-like structure characterized by
sharp compressions followed by gradual expansions.

Two Data-Driven Modal Analysis techniques have been applied to this dataset,
Proper Orthogonal Decomposition and multi-scale Proper Orthogonal Decomposi-
tion, to characterize the density near-field and explore in particular the occurrence
of non-linear acoustic propagation effects responsible for wave steepening and
eventually crackle noise.

The POD modes show wavy patterns, and the study of the main wave features
like propagation path, and traveling speed allows us to identify them as Mach
waves: they occur when turbulent structures inside the inner layer of the jet travel
with a supersonic convective speed, and travel along a 45° inclined propagation
path at speed of sound.

Non-linear propagation effects have been also investigated through the skewness
statistical indicator. The results do not provide evidence of steepened wavefronts
in the narrow area that has been analyzed. The study should be conducted over a
wider observation area and with varying analysis parameters in the future.
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Chapter 1

Physics of supersonic jet
noise

1.1 Aims of the current study
This thesis will apply Data-Driven Modal Analysis, a mathematical tool useful in
the analysis of databases, to a high-speed dataset of frames detected through the
schlieren imaging technique of a Mach 3 jet.

The following target will be of interest:

• Recognize a pattern of known features, like Mach waves; this would be a great
achievement able to validate the proper working of the mathematical tool.

• Detect steepening and, if present, identify which modes are more responsible
for it.

• Discover some of the main properties of the waveforms extracted along with
modes propagation path.

1.2 Supersonic jet structure overview
A supersonic jet is an airflow coming out of a nozzle with an axial speed that is
higher than the sound speed (M>1), see Figure 1.1.

In the jet structure the following elements are present:

• Potential core (A): it is the initial part of the jet and has a conical shape
starting from the exit section up to a certain number of diameters. It is
characterized by a stationary, irrotational, and inviscid flow. In this region,
the velocity field is uniform, steady, and equals to the nozzle exit speed.
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Physics of supersonic jet noise

Figure 1.1: Turbulent supersonic jet structure

• Mixing region (B): it surrounds the potential core and works as a connector
between that and the outside flow thanks to the viscosity. By increasing
the axial coordinate, the size of this region increases at the expense of the
potential core until it ends.

• Transition region (C): as the name suggests it is a transition area that is
responsible for connecting the mixing region and self-similar region.

• Self-similar region (D): it is the farthest region of the jet, here velocity profiles
follow a Gaussian distribution where σ represents the standard deviation.

u(x, r) = uaxial(x) · e− r2
2σ2

This region owes its name to the overlapping of properly non-dimensional
velocity profiles.

1.3 Supersonic jet noise overview
During the last decade, the sound field generated by a supersonic jet has been one
of the more interesting aeroacoustics topics. Within the noise generated under
these circumstances different mechanisms of sound generation can be identified [1],
see Figure 1.2:

2



Physics of supersonic jet noise

• Shock-related noise: Broad-Band Shock associated Noise (BBSN), jet screech,
and transonic resonance.

• Turbulence mixing noise: Large Scale Structures (LSS) and Fine Scale Struc-
tures (FSS).

Figure 1.2: Jet noise

This analysis will focus on the last kind of noise, as suggested by the name,
it occurs when turbulent structures inside the inner layer of the jet travel with a
supersonic convective speed: under these circumstances, Mach waves are emitted.

Mach waves are responsible for the most annoying noise, the so-called crackle,
whose pressure profile has a saw-tooth-like structure, recognizable by a sharp
compression followed by a gradual expansion: this phenomenon is known as waves
steepening.

The main issue during the study of crackle is perception, so it becomes necessary
to implement specific algorithms, like Shock Detection Algorithm (SDA) [2], to
obtain a reliable method to identify that particular noise. While Goldberg number,
a non-dimensional parameter defined as the ratio of absorption length to shock
formation distance, quantify how strong are cumulative non-linear distortions and
viscous absorption effects:

Λ = lα
x

• Λ >> 1 Mach waves steepen and the onset of crackle noise is favored.

3



Physics of supersonic jet noise

• Λ ≤ 1 Mach waves vanish and the onset of crackle noise is denied.

The mechanisms which originate crackle noise are still under study, but some
results have already been obtained:

• Supersonic air pockets escape from the inner layer of the jet. Along the
propagation path, these blows accumulate and, thanks to cumulative non-
linearities [3], end up creating the typical saw-tooth structures of crackle.

• Mach waves coalescence mechanisms. Waves propagation go through dynamics
[4] revealed to be quite similar to those which take place into the oceans that
may lead to non-linearities sometimes to amplification and sometimes to a
reduction.

• In heated jet flows [5], an additional dynamic can bring the Mach waves to a
saw-tooth-like structure: cold air micro-explosions.

• Distortion may also have a role in the process that carries the Mach waves
to steepen: the actual existence of this link and the way it would work are
nowadays under investigation.

1.4 Mathematical tool
Now that the problem is set, we can introduce the main character of the survey,
what we are searching for should be a mathematical tool able to understand different
contributes from the dataset and to choose which ones are important and which
ones are negligible: the Data-Driven Modal Analysis.

A brilliant example about how modes decomposition help in studying waveform
is given by [6], where an azimuthal modes decomposition reveals how the classical
structure of sharp compressions and gradual expansions is not characteristic of any
single mode but is a feature of their superposition.

A work based on very similar instruments to those that we will use, even more
than the previous one, is [7]. There the dataset was obtained with schlieren imaging
technique and the modes decomposition is a POD.

The main difference between the treatment that will be carried out and the
other cited works is the portion of the sound field analyzed: while most works
mainly focus on acoustic far-field and the evolution from acoustic near-field to
acoustic far-field, we will study the hydrodynamic field and acoustic near-field.
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Chapter 2

Presentation of high-speed
schlieren dataset

2.1 Tecnique presentation
The main elements on which the optics of the schlieren imaging technique is based
are resumed in the list below.

Figure 2.1: Schlieren imaging tecnique

• A light source: LUMINUS CBT-120 Green 510-540 nm LED operating con-
tinuously at 4,5 V and 8 A.

• A focusing lens: Nikon 28 mm, 1:2,8

• A pair of gold-coated parabolic mirrors: 12,5-inch diameter with 100-inch
focal lengths

5



Presentation of high-speed schlieren dataset

• A zoom lens: Nikon 36-72 mm, 1:3,5

• A digital camera: i-SPEED monochromatic camera manufactured by ix-
Cameras, a maximum resolution of 2048 x 1536 square pixels that are 13,5
µm length with 12-bit depth

Firstly, light rays are focused into a circular aperture using the focusing lens
which then illuminates the parabolic mirrors which are secured to adjustable mirror-
mounts (Edmund Optics model) to allow pitch and roll fine-tuning. Then, each
mirror-mount is fastened to a dedicated pair of linear translation stages that are
bolted to custom-built steel frames for added mass. To achieve schlieren images,
a razor blade cut-off is inserted to block portions of the light entering the digital
camera. Lastly, the zoom lens allows to obtain large fields of view and the digital
camera allows to acquire the schlieren images. Note that the razor blade and optics
are aligned to accommodate a 45° cut-off angle, a 50% cut-off as opposed to a 0° or
to a 90° cut-off which is commonly performed. The scheme in Figure 2.1 describes
the optics of the Z-type schlieren diagram.

2.2 Dataset details

Figure 2.2: List of databases

Figure 2.3: Database J

The Overview of Mach 3 Nozzle Databases [8] contains the list of files in
Figure 2.2 for a gas whose theoretical properties are:
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Presentation of high-speed schlieren dataset

• Nozzle Pressure Ratio, NPR = 36,73

• Total temperature, T0 = 241 K

• Static temperature, Ts = 104 K

• Jet speed, U = 613 m/s

• Reynolds number, Re = 7,4 x 106

The focus of this analysis will be on a sequence of 10001 frames from the dataset
J, highlighted in Figure 2.3, which is characterized by:

• NPR = 20

• Image dimensions (format “length x height” in pixels) = 840 x 96

• Sampling frequency, f = 2 x 105 Hz.

We recreate an x1000 slow-motion from the dataset J by cropping the useful
part of every single frame. In Figure 2.4 a frame of this video is reported.

Figure 2.4: Video frame

The choice fell on slow-motion because using the original sampling frequency
the video would have last only 0,05 seconds, clearly not enough to understand the
propagation mechanisms involved.

A very important calibration that has to be known before proceeding is the
schlieren imaging millimeter-pixel ratio. To implement it, firstly we identify the
center of the jet from the background triangle and then we detect how many pixels
correspond to the jet half-diameter. At this point, the known jet diameter in
millimeters allows us to compute a good approximation of the wanted ratio as
follows:

γ = mm

px
= Dj,mm

Dj,px

≈ 0,55

7
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2.3 Computing software and programming lan-
guage

Image processing will be the most important computer tool that we will apply. A
very efficient programming language that fits perfectly for this purpose is Python:
a high-level and object-oriented programming language.

The computing software we will rely on is Spyder: an open-source and cross-
platform Integrated Development Environment (IDE) located within the distribu-
tion platform Anaconda.
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Chapter 3

Data-Driven Modal
Analysis of high-speed
schlieren dataset

3.1 Data-Driven Modal Analysis
Data-Driven Modal Analysis is a powerful mathematical tool that is useful during
the processing of big data. This methodology consists of a decomposition of the
given dataset along rank 1 structures named modes, so a linear combination of
these modes gives as result the original set of data. Focusing on the modes, every
single one is characterized by a spatial structure and a temporal structure which
are also the basis respectively for the spatial domain and the temporal domain.

The concept of Data-Driven Modal Analysis is very wide and can be applied for
different tasks, here we report some of the most common ones.

• Recognize known patterns into some modes to classify them.

• Filter some negligible modes to compress the dimension of the dataset.

• Select only some important modes with the aim of model order reduction.

The time-resolved schlieren images constitute the set of data, each single image
is shown into a uniform grid in the spatial domain and represents a temporal
snapshot of the field. Reshaping all these snapshots into column vectors we can
assemble the data matrix, where the column space is the space domain and the row
space is the time domain. Moreover, the number of snapshots defines the number
of columns nt and the product of the grid dimensions nx and ny gives as result the
number of rows ns.

9



Data-Driven Modal Analysis of high-speed schlieren dataset

D =



d1[1] · · · dk[1] · · · dnt [1]
... ... ... ... ...

d1[k] · · · dk[k] · · · dnt [k]
... ... ... ... ...

d1[nt] · · · dk[nt] · · · dnt [nt]


In the analytical formulation the dependence of the data matrix from space is

shown by the position xi, the dependence of the data matrix from time is shown
by the instant tk. Letting us R denote the rank of data matrix and M r the r-th
mode, we have:

D(xi, tk) =
RØ
r=1

Mr(xi, tk)

There are two different ways to read this matrix, when not indicated differently
we will refer to the first one.

• ’Space view’: time evolution of a space basis.

• ’Time view’: spatial structure of a time basis.

Both these views lead the data matrix to a decomposition highlighted in the
discrete form where we introduce: the amplitude coefficients σr; the basis in space,
spatial structures φr; the basis in time, temporal structures ψr.

D[i, k] =
RØ
r=1

Mr[i, k] =
RØ
r=1

σrφr[i]ψr[k]

The only precaution in this kind of formulation is that both the norm of the
spatial structures and the norm of the temporal structures are equal to 1, so the
amplitude coefficients represent the energy of the modes. Using a compact matrix
notation, where the apex ’T’ is used for transposition, the data matrix becomes:

D = ΦΣΨT

Where:

Φ =
φ1[i] · · · φR[i]

... ... ...



Σ =


σ1 0 0
0 . . . 0
0 0 σR


10



Data-Driven Modal Analysis of high-speed schlieren dataset

Ψ =
ψ1[k] · · · ψR[k]

... ... ...


Namely, Φ ∈ Rns×nt is a matrix that contains the space basis as its columns,

Σ ∈ Rnt is a diagonal matrix that contains the amplitudes as its diagonal and Ψ
∈ Rnt×nt is a matrix that contains the time basis as its columns.

This equation named also Generalized Factorization, is the key algorithm of
Modal Analysis which allows computing the spatial structures once the temporal
structures are given and, vice versa, to compute the temporal structures once the
spatial structures are given, because Σ is a diagonal matrix, and both the columns
of Φ and the columns of Ψ are normalized, so it is not possible to choose this last
two matrices simultaneously. The summary below shows how this process works.

• ’Space view’: time evolution of a space basis.

Ψ → D(ΨT )−1 = ΦΣ = C →ë Cr ë=ë φrσr ë→ Φ = D(ΨT )−1Σ−1

• ’Time view’: the spatial structure of a time basis.

Φ → Φ−1D = ΣΨ−1 = C →ë Cr ë=ë ψrσr ë→ Ψ = (Σ−1Φ−1D)T

In the above formulations, the apex ’-1’ denotes matrix inversion. Another
important observation is that if the number of modes is lower than the rank R
of the data matrix we are working with an approximation of the dataset called
Reduced Model Order or Filtered Data.

æD = åΦP
åΣP

åΨ†
P

In the equation above, the ’tilde’ is used for matrix approximation and the apex
’dagger’ denotes transposed and conjugated matrix. There are two kinds of Modal
Analysis and, in this work, we will focus mainly on the last one.

• Frequency-based, like Discrete Fourier Transform (DFT) or Dynamic Modes
Decomposition (DMD). The advantage of these methods is the possibility to
operate spectral separation and represent the spatial structure of each frequency
distinguishing it from the others; on the other hand, the disadvantages are the
absence of time localization and the poor convergence and poor conditioning
of the algorithms.

• Energy-based, like Proper Orthogonal Decomposition (POD). The advantages
of this method are the energy optimality, which gives the best approximation

11
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for the chosen rank, and the robustness of the algorithm; on the other hand,
the disadvantage is the risk of spectral mixing, because more frequencies are
involved in the representation of every single spatial structure.

3.2 Proper Orthogonal Decomposition (POD)
Moving deeper into Proper Orthogonal Decomposition the are two ways to imple-
ment energy optimality criteria:

• Minimize the error as Euclidean norm of the difference between the original
data matrix and its approximation:

min
1

ë D − æD ë
2

= min
1

ë D −D
1
ψrψ

†
r

2
ë2

2
• Maximize the variance as Euclidean norm of the amplitudes:

max
1
σr

2
= max

1
ë φrσr ë2

2
= max

1
ë Dφr ë2

2
At this point, it is necessary to introduce an auxiliary function A defined as:

A = f(x, y) + λg(x, y) =
î1
Dψ

2†1
Dψ

2ï
+ λ

î
1 − ψ†ψ

ï
Where f(x, y) and g(x, y) are function of space, and λ is a Lagrange multiplier.

This mathematical method allow to localize local maxima and local minima of
a function f(x, y) by adding the product between a function g(x, y)= 0 and a
Lagrange multiplier λ. More information about it can be found in [9].

The orthonormality of the time basis, i.e. the outer product of the time basis
is equal to 1, allows us to respect the constraint that the space function g(x, y) is
equal to 0.:

< ψ,ψ >= ψ†ψ = 1

Through an easy formulation, the auxiliary function can be written as:

A =
î1
Dψ

2†1
Dψ

2ï
+ λ

î
1 − ψ†ψ

ï
= ψ†

1
D†D

2
ψ + λ− λψ†ψ

Now, imposing that the derivative of the auxiliary function with respect to the
time basis is equal to 0, transform the equation in an eigenvalues and eigenvectors
problem.

∂A

∂ψ
=

1
D†D

2
ψ − λψ = 0 →

1
D†D

2
ψ = λψ

12



Data-Driven Modal Analysis of high-speed schlieren dataset

The matrix which contains the eigenvectors is defined as the product between
the dagger data matrix and the data matrix. The result of this operation is also
known as the temporal correlation matrix.

If we assume the data matrix to be a row vector of column vectors d containing
all the values assumed at the same time in different positions:

D =
è
d1 · · · di dj · · · dnt

é
Then we can introduce the temporal correlation matrix:

K = K
è
i, j

é
= dTi dj =< di, dj >=

ntØ
i=1

di
è
i
é
dj

è
i
é

Whose compact form is:

K = DTD = ΨPΣ2
PΨT

P

The just obtained matrix K has many properties, which define POD features,
that deserve to be observed in detail.

• It is a positive definite matrix: the rank of the data matrix is equal to the
number of the non-zero eigenvalues of the temporal correlation matrix.

• It has only real and positive eigenvalues: the dagger matrix becomes a trans-
posed matrix because the data matrix is real.

• It has a set of orthogonal eigenvectors: the inverse of the eigenvectors matrix
is equal to its transpose, and the eigenvectors will be real because the data
matrix is real.

• Since in the previous demonstration the variance of each rank approximation is
maximized, the orthogonal eigenvectors of the spatial-temporal matrix produce
the best possible basis in terms of energy optimality.

• The choice of the temporal structures reflects in the resulting spatial structures.

At this point, thanks to the Generalized Factorization algorithm, we can compute
the time basis and the spatial structures from the temporal structures.

Ψ → D(ΨT )−1 = ΦΣ = C →ë Cr ë=ë φrσr ë→ Φ = D(ΨT )−1Σ−1

Usually, the magnitude order of ns is greater or equal than the one of nt, so the
number of rows is way larger or almost the same as the number of columns in the
data matrix and the ’space view’ is convenient, later another point of view will be
proposed.

13
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However, regardless of the chosen point of view, the Proper Orthogonal Decom-
position, implemented in the way showed in this work, results in the Single Value
Decomposition of the data matrix:

D = USV T

We will use this kind of decomposition, where: U equals Φ; S equals Σ; V equals
Ψ.

This is not always true because the POD is a more general concept than the
SVD, but they become equal using a Cartesian space-time mesh and Eulerian
inner product. This coincidence allows to extend the Single Value Decomposition
properties to the Proper Orthogonal Decomposition: the most important of these is
surely the Eckart Young Minsky Theorem which ensures one more time the energy
optimality criteria.

3.2.1 Computational trick
There is a computational trick that becomes very useful in the rare case in which
the magnitude order of ns is smaller than the one of nt, so the number of rows is
way smaller than the number of columns in the data matrix and the ’time view’
is convenient. So, thanks to the introduction of the spatial correlation matrix
instead of the temporal correlation matrix, we can reduce the requirements of
computational power.

If we assume the data matrix to be a column vector of row vectors d containing
all the values assumed in the same position at different times:

D =



d1
...
di
dj
...
dns


This time we obtain spatial correlation matrix:

C = C
è
i, j

é
= dTi dj =< di, dj >=

nsØ
i=1

di
è
i
é
dj

è
i
é

Which in compact form becomes:

C = DDT = ΦPΣ2
PΦT

P
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The just obtained matrix C, under these particular conditions, allows us to
implement POD by saving computational power.

As seen for the temporal correlation matrix, thanks to the Generalized Factor-
ization algorithm, we can compute the space basis and the temporal structures
from the spatial structures.

Φ → Φ−1D = ΣΨ−1 = C →ë Cr ë=ë ψrσr ë→ Ψ = (Σ−1Φ−1D)T

More information about the Proper Orthogonal Decomposition can be found in
[10, 11, 12, 13, 14, 15, 16, 17, 18].

3.3 Multi-scale Proper Orthogonal Decomposi-
tion (mPOD)

Another kind of Modal Analysis used in this work is the multi-scale Proper Or-
thogonal Decomposition (mPOD). This decomposition is a hybrid method that
combines the advantages of both frequency-based decomposition (like DFT or
DMD) and energy-based decomposition (like POD).

The first step is to consider the data matrix in the space-frequency domain,
instead of the space-time domain. The ’hat’ is used to recognize this matrix which
is obtained by multiplying the data matrix by the complex conjugate of the Fourier
matrix, the ’overline’ denotes this operation. Here, the Fourier matrix is a complex
and symmetric Vandermonde matrix.

ãD = DΨF

ãD =



âd1[1] · · · âdk[1] · · · âdnt [1]
... ... ... ... ...âd1[k] · · · âdk[k] · · · âdnt [k]
... ... ... ... ...âd1[nt] · · · âdk[nt] · · · âdnt [nt]



ΨF = 1
√
nt



1 1 1 · · · 1
1 ω ω2 · · · ωnt−1

1 ω2 ω4 · · · ω
2(

1
nt−1

2
... ... ... . . . ...

1 ωnt−1 ω
2
1
nt−1

2
· · · ω

1
nt−1

22


15



Data-Driven Modal Analysis of high-speed schlieren dataset

Then we have to define a matrix that contains the information about the
frequency content in the data, as the temporal correlation matrix contains the
information about the time localization of the events. The solution is the frequency
spectrum of the temporal correlation matrix, denoted by the ’hat’, which is obtained
from the multiplication below.

ãK = ΨFKΨF

The formulation above involves the temporal correlation matrix discussed in the
previous chapter and the just-defined Fourier matrix.

The mPOD aims to isolate the contribution of different scales along the diagonal
of the frequency spectra temporal correlation matrix. This task is accomplished
through a decomposition that allows us to obtain energy optimality and spectral
purity while keeping the stationarity assumption. To achieve this result, we add a
spectral constraint to the POD energy optimality thanks to two key observations.

3.3.1 First constraint
The first observation suggests that the POD of a filtered data is constrained within
the pass-band region of the filter. To demonstrate this statement, we can apply
a low-pass filter to the data matrix before implementing POD. The filtered data
matrix is obtained by computing the Schur product between the space-frequency
domain data matrix and the low-pass filter, which is a 1-D transfer function. The
Schur product is denoted by ¤ and is also known as the Hadamard product; it
calculates the multiplication between the elements which have the same coordinates
returning a matrix with the same dimensions of the factors.

ãDL = ãD ¤H Í
L

At this point, it becomes possible to come back to the space-time domain of the
low-pass filtered data matrix multiplying by the Fourier matrix as in the expression
below.

DL =
è1
DΨF

2
¤H Í

L

é
ΨF

Now, through one last step, we can compute the low-pass filtered temporal
correlation matrix using its definition as in the following formulation:

KL = D†
LDL

KL = ΨF

è1ãD ¤H Í
L

2†1ãD ¤H Í
L

2é
ΨF = ΨF

è1ãD†ãD2
¤

11
H Í
L

2†
¤H Í

L

2é
ΨF
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Thanks to the introduction of the cross-spectral density matrix we can conclude
the treatment as follows:

KF = ãD†ãD = ΨF

è
D†D

é
ΨF

KL = ΨF

è
KF ¤HL

é
ΨF

Focusing more closely on the Schur product between the dagger low-pass filter
and the low-pass filter, it appears how combining two 1-D transfer functions we
obtain a 2-D filter. This filter allows us to extract a square from each orthant in
symmetrical positions of the data matrix, so if a frequency is not contained in the
filtered data matrix it will not be present in any mPOD mode.

3.3.2 Second constraint
The second observation is related to how orthogonal complements in the frequency
domain lead to orthogonal complements in the correlation domain. This result is
achieved by filtering the space-frequency domain data matrix with three different
1-D transfer functions: in addition to the low-pass filter introduced in the previous
section, we consider also a band-pass filter and a high-pass filter.

ãDL = ãD ¤H Í
L

ãDM = ãD ¤H Í
M

ãDH = ãD ¤H Í
H

By deeply analyzing the structure of these filters it appears clear how they are
complementary and orthogonal: confirmation of this statement is given by the
equation below.

H Í
L +H Í

M +H Í
H = 1

Repeating the steps followed previously, we come back to the space-time domain
of the filtered data matrix, and then we compute the filtered temporal correlation
matrix from its definition.

D =
èãD ¤

1
H Í
L +H Í

M +H Í
H

2é
ΨF

K = D†D = Ψ
è
KF ¤

1
Hp +Hm

2é
ΨF

Thanks to the properties of complementarity and orthogonality it becomes
possible to divide the filters into two categories:
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• Pure terms: products between a dagger transfer function and the same transfer
function.

Hp =
1
H Í
L

2†
H Í
L +

1
H Í
M

2†
H Í
M +

1
H Í
H

2†
H Í
H

• Mixed terms: products between a dagger transfer function and a different
transfer function.

Hm =
1
H Í
L

2†
H Í
M+

1
H Í
L

2†
H Í
H+

1
H Í
M

2†
H Í
L+

1
H Í
M

2†
H Í
H+

1
H Í
H

2†
H Í
L+

1
H Í
H

2†
H Í
M

The pure terms completely contain the main diagonal and the main anti-diagonal,
while the mixed terms fill the rest of the filtered temporal correlation matrix: the
latter can be neglected to obtain an approximation considering only the pure terms.

K ≈ KL +KM +KH

Lastly, we can conclude that the absence of any kind of overlapping assures us
that the orthogonality survives across these transformations.

More information about the multi-scale Proper Orthogonal Decomposition can
be found in [19, 20, 21].
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Chapter 4

Processing results

4.1 Study area selection
In this chapter, we describe the actual processing of the high-speed schlieren
dataset.

Firstly we have to crop the frames to find an area where Data-Driven Modal
Analysis decomposition can give valid results. We complete this task following
these indications:

• Crop outside the jet boundary layer. The chaotic structures which characterize
the inner part of the jet have very high energy contents and so, also a little
involvement within the crop, may compromise the entire work. Studies on
the subject proved how boundary layer limits respect the equation y = 0,1x.
This law can help especially when the edge of the boundary layer is not easy
to identify, but the schlieren imaging technique makes it very intuitive to
recognize.

• Crop outside measurement imperfections. The dataset may present some
anomalies, like the two light lines into the lower part of the images, and it is
better to exclude them from the crop.

According to these indications we selected the study area surrounded by the
red rectangle in Figure 4.1, and we place the origin of the axes where the red cross
represents the center of the jet origin section.

Table 4.1 sums up crop dimension. Non-dimensional axial coordinates con-
firm how this analysis involves hydrodynamic field and acoustic near-field. The
millimeter-pixel ratio gives us a physical measurement of the selected study area.

This case study is a stationary flow, so we have to remove the mean flow
computed along the column of the data matrix as temporal average. The mean

19



Processing results

Figure 4.1: Crop

Axis x r
Non-dimensional coordinate [/D] 1 - 5 0,9 - 1,6

Length [px] 184 32
Length [mm] 101,2 17,6

Table 4.1: Crop

Figure 4.2: Mean

flow reconstruction is shown in Figure 4.2, then we subtracted it to the original
data matrix which becomes ready to be analyzed.

4.2 Proper Orthogonal Decomposition (POD)
The Proper Orthogonal Decomposition technique, as presented in the previous
chapter, brings us to 10001 modes sorted according to decreasing energy.

A first way to visualize the results of this decomposition is to plot the σ decay,
see Figure 4.3. This plot shows the amplitudes of every single mode along the
y-axis and the number of the modes along the x-axis. Figure 4.4 shows the σ
decay of DFT, a frequency-based decomposition. The x-axis is represented in a
logarithmic scale to focus the attention on the more energetic modes.

The comparison between these decays allows us to comment on the main reasons
that led us to use POD:
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Figure 4.3: σ decay with POD

Figure 4.4: σ decay with DFT

• POD σ decay is faster, so a single pair of modes shows the information
contained in much more DFT modes, and the modes coupling is real within
the dataset.

• DFT σ decay is more gentle, so more modes are required to show the infor-
mation contained in a single pair of POD modes; furthermore, the modes
coupling depends on the decomposition itself.

It is worth noting that POD modes are coupled: first with second, third with
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fourth, fifth with sixth, and so on. Deeply observing:

• σ of the modes which compose a pair is similar;

• σ of the modes within a couple is well distinct from that of nearby couples;

• increasing mode number σ get closer.

Pair Modes Color
1 1,2 Red
2 3,4 Blue
3 5,6 Green
4 7,8 Yellow
5 9,10 Magenta

Sum 1,2,...,n Cyan

Table 4.2: Convention POD

During this analysis, we will use a convention to focus on the first 10 modes,
highlighted in Table 4.2, which recap the composition of every couple of modes and
associate them a color. The last line of Table 4.2 refers to the reconstruction of
structures obtained summing modes from 1 to an arbitrary value n.

4.2.1 Spatial structures and frequency spectra
The firsts POD results that we are going to analyze are the spatial structures and
the frequency spectra.

Figure 4.5: POD modes 1,2: spatial structures and frequency spectra

Spatial structures correspond to the matrix Φ (see chapter 3), reshaped from
column arrays into nx×ny matrices. Frequency spectra represent σ amplitudes
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Figure 4.6: POD modes 3,4: spatial structures and frequency spectra

Figure 4.7: POD modes 5,6: spatial structures and frequency spectra

Figure 4.8: POD modes 7,8: spatial structures and frequency spectra

associated with frequencies. Bearing in mind that we want to highlight the rela-
tionship between the two modes which form a pair, we can make some observations
in detail case by case:

• POD modes 1,2 (Figure 4.5):
Spatial structures reveal waves insurgency from a certain coordinate, they
appear as almost regular and they show a certain inclination.
Frequency spectra are characterized by a single peak at a value equals to 28
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Figure 4.9: POD modes 9,10: spatial structures and frequency spectra

kHz.

• POD modes 3,4 (Figure 4.6):
Spatial structures reveal waves insurgency from a certain coordinate, they
appear a bit less regular and present more oscillations than the first pair and
they show a certain inclination.
Frequency spectra are characterized by two peaks at values equal to 21 kHz
and 37 kHz.

• POD modes 5,6 (Figure 4.7):
Spatial structures reveal waves insurgency from a certain coordinate, they
appear a bit less regular and present more oscillations than the previous pairs
and they show a certain inclination.
Frequency spectra are characterized by three peaks at values equal to 19 kHz,
30 kHz, and 41 kHz.

• POD modes 7,8 (Figure 4.8):
Spatial structures reveal waves insurgency from a certain coordinate, they
appear a bit less regular and present more oscillations than the previous pairs
and they show a certain inclination.
Frequency spectra are characterized by four peaks at values equal to 16 kHz,
26 kHz, 35 kHz, and 46 kHz.

• POD modes 9,10 (Figure 4.9):
Spatial structures reveal waves insurgency from a certain coordinate, they
appear a bit less regular and present more oscillations than the previous pairs
and they show a certain inclination.
Frequency spectra are characterized by five peaks at values equal to 14 kHz,
23 kHz, 31 kHz, 39 kHz, and 51 kHz.
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Summarizing, the spatial structures which compose every single pair of modes are
complementary. By considering two modes at a time, we can make reconstructions
that simulate waves motion through Generalized Factorization (see chapter 3).
This process can be seen as model order reduction which is one of the aims for
which Data-Driven Modal Analysis has been developed.

Figure 4.10: Frequency cascade

Regarding frequency spectra, we noticed that the first pair of modes has a single
peak, the second pair has two peaks, the third pair has three peaks, and so on.
By analyzing their location within Figure 4.10 we discover a "frequency cascade"
where, moving from the most energetic pair to the least energetic pair, every group
of n peaks is divided into a wider, lower group of n+1 peaks.

4.2.2 Wave inclination angle

We can see how modes contain waves that travel with a certain inclination and one
of the first tasks will be to identify these angles and to check if their values equal
some known values: this could be a very important first step for identifying the
waves.

The mathematical tool that we choose to compute wave inclination angle is 2-D
Fast Fourier Transform (FFT) presented in Appendix A.

In summary, we compute these angles as the arctangent of the ratio between the
wavenumber who match the peak of the function along the axial coordinate kxmax
and wavenumber who match the peak of the function along the radial coordinate
kymax :
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θ = arctan
1kxmax
kymax

2

Modes θ [◦]
1 45
2 45
3 45
4 45
5 45
6 45
7 45
8 45
9 45
10 45

Table 4.3: Wave inclination angle computer

Figure 4.11: Wave inclination angle computed

From Table 4.3, it remarkably appears how reliable is this algorithm: it gives us
an accurate and exact value of 45◦ for all the modes analyzed. The same results are
reported in Figure 4.11, where n is the mode number, and will be very important
later in the discussion.
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4.2.3 Waveform
At this point, the wave inclination angle suggests to extract a line along the
identified 45° inclined propagation path to find the waveform of the modes.

In the following figures we report: on top, the extraction line highlighted with
the associated color within the crop; on the bottom, the waveform.

Figure 4.12: Waveform modes 1,2 POD

Figure 4.13: Waveform modes 3,4 POD
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Figure 4.14: Waveform modes 5,6 POD

Figure 4.15: Waveform modes 7,8 POD

We arbitrarily selected as starting position for the extraction line the pixel
number 105 along the crop bound at a radial coordinate r/D = 0,9.

We discuss now the results presented in Figure 4.12 - Figure 4.16:

• Waveform POD modes 1,2 (Figure 4.12):
It appears quite harmonic and quite regular. As we will discuss later on, this
is the only waveform that we can extract through POD thanks to its frequency
spectra which present a single peak.
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Figure 4.16: Waveform modes 9,10 POD

• Waveform POD modes 3,4 (Figure 4.13):
Some noise appears and there is not an easily recognizable shape. It can be
seen as the overlap of two harmonics associated with the two different peaks
which characterized its frequency spectra.

• Waveform POD modes 5,6 (Figure 4.14):
Some noise appears and there is not an easily recognizable shape. It can
be seen as the overlap of three harmonics associated with the three different
peaks which characterized its frequency spectra.

• Waveform POD modes 7,8 (Figure 4.15):
Some noise appears and there is not an easily recognizable shape. It can be
seen as the overlap of four harmonics associated with the four different peaks
which characterized its frequency spectra.

• Waveform POD modes 9,10 (Figure 4.16):
Some noise appears and there is not an easily recognizable shape. It can be
seen as the overlap of five harmonics associated with the five different peaks
which characterized its frequency spectra.

Summarizing, spectral mixing prevents us to obtain a recognizable shape from
POD modes, with the only exception of the first couple that presents a single
frequency peak.
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This issue suggests to adopt a different kind of Data-Driven Modal Analysis which
allows us to maintain the energy optimality typical of energy-based decomposition
and to add the spectral separation typical of frequency-based decomposition. This
hybrid method is multi-scale Proper Orthogonal Decomposition and we will discuss
later on.

4.2.4 Wave traveling speed
A very interesting property of a wave is its traveling speed. Contrarily to the
inclination angle, the speed cannot be directly obtained even from a scrupulous
observation of the spatial structures, so we have to adopt a different strategy.

The mathematical tool that we choose to compute the wave traveling speed is
Auto-correlation, presented in Appendix B.

Summarizing, once the spatial delay between all the frames has been computed,
we can find the traveling speed of each pair of modes by simply dividing it by the
duration, defined as the inverse of the sampling frequency.

v = ∆
dt

Modes Speed [m/s]
1,2 332
3,4 338
5,6 340
7,8 338
9,10 340

Table 4.4: Wave traveling speed computed

From Table 4.4, which contains the values computed for the first 10 modes, we
can see that we obtain a good approximation of a known value: the speed of sound.
The same results are reported in Figure 4.17, where n is the mode number, and
will be very important later in the discussion.

The relative errors Ô between speeds computed and a ≈ 343m/s, are computed
as:

Ô[%] = ëa− vë
a

· 100

These values are summarized in Table 4.5: for all the pairs of modes analyzed
the relative error is approximately 1% or less, except for the first pair of modes
where the relative error has a however an acceptable value around 3%.
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Figure 4.17: Wave traveling speed computed

Modes Relative error Ô [%]
1,2 3
3,4 1
5,6 0,5
7,8 1
9,10 0,5

Table 4.5: Wave traveling speed error percentage

4.2.5 Wavelength

After computing the traveling speed of the waves, it becomes immediate to derive
the wavelength λ as the ratio between the speed and every single peak within the
frequency spectra:

λ = v

f

In Table 4.6 we recap all the wavelengths: their order of magnitude is the
centimeter.

The brief analysis carried out in this section proves, once more, how the first
coupled modes can be seen as the evolution pattern of a single wave, while the
second coupled modes can be seen as the overlap of two waves; the third coupled
modes can be seen as the overlap of three waves and so on.
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Modes (Peak number) Frequency peak [kHz] Wavelength [mm]
1,2 (1) 28 11,8
3,4 (1) 21 16,1
3,4 (2) 37 9,14
5,6 (1) 19 17,9
5,6 (2) 30 11,3
5,6 (3) 41 8,29
7,8 (1) 16 21,1
7,8 (2) 26 13,0
7,8 (3) 35 9,64
7,8 (4) 46 7,34
9,10 (1) 14 24,3
9,10 (2) 23 14,8
9,10 (3) 31 11,0
9,10 (4) 39 8,73
9,10 (5) 51 6,67

Table 4.6: Wavelength

4.2.6 Mach waves
Let us do a brief recap of the main features reached up to now from the coupled
modes waves:

• Wave inclination angle: θ = 45◦

• Wave travelling speed: v ≈ 343 m/s

It is well known that waves traveling at the speed of sound along a 45◦ inclined
line are Mach waves [2].

This is the first result that we achieved by applying Data-Driven Modal Analysis
to the sound field of a Mach 3 jet: the identification of known structures, in full
agreement with achievements obtained from literature [2].

4.2.7 Axial origin coordinate
At this point, it could be interesting to extract the horizontal profiles from the
central line of each pair of modes. In the following figures we report: on top, the
extraction line highlighted with the associated color within the crop; on the bottom,
the horizontal profile.

We discuss now the results presented in Figure 4.18 - Figure 4.22:
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Figure 4.18: Horizontal profile extraction modes 1,2 POD

Figure 4.19: Horizontal profile extraction modes 3,4 POD

• Horizontal profile POD modes 1,2 (Figure 4.18):
It looks very regular and symmetric with respect to the larger amplitude
oscillation in terms of absolute value. The oscillations start from a certain
coordinate after an initial region of a flat signal.

• Horizontal profile POD modes 3,4 - 9,10 (Figure 4.19 - Figure 4.22):
They look not regular at all and we are not able to identify any kind of
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Figure 4.20: Horizontal profile extraction modes 5,6 POD

Figure 4.21: Horizontal profile extraction modes 7,8 POD

symmetry. The signals stay flat for shorter portions because a wider range of
frequencies is involved.

As we will see in the next section, this lack of regularity and symmetry, within
the couples of modes successive to the first one, is due to the plurality of frequency
peaks in their frequency spectra.

In Figure 4.23, through modes superposition, we checked the reliability of POD.

• First 10 modes superposition: it shows features much more similar to the
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Figure 4.22: Horizontal profile extraction modes 9,10 POD

Figure 4.23: POD modes superposition: first 10 modes (top-left), first 100 modes
(top-right) and first 1000 modes (bottom-left), original signal (bottom-right)

single coupled modes profile than to the original crop and it emerges at a
certain coordinate along the x-axis.

• First 100 modes superposition: it starts to broadly remind the trend of the
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original crop with peaks positions that are qualitatively well matched.

• First 1000 modes superposition: it becomes more and more like the original
crop and the differences between them become hard to find.

So, thanks to mode superposition, we confirmed the accuracy of POD and we
had another demonstration that the modes are sorted according to decreasing
energy: the difference between the first 10 modes superposition and the first 100
modes superposition is significantly greater than the difference between the first
100 modes superposition and the first 1000 modes superposition, which in turn is
considerably larger than the difference between the first 1000 modes superposition
and original crop. By the way, this can be understood from how negligible are the
contributes of the modes after mode 1000.

By accurately observing these horizontal profiles it appears how, at some point
after a portion of the crop where the signal is almost flat, waves gradually begin
to emerge and undergo a considerable amplitude increase. Also from the spatial
structures analyzed previously was possible to note this growth, but only through
the horizontal profile, we can quantify it.

Figure 4.24: x/D origin referred to boundary layer scheme

Starting from this observation we derived the so-called axial origin coordinate,
defined as the coordinate along the x-axis from which waves are emitted, by using
the known propagation angle of Mach waves. We must remember the physical
origin of that waves: they are born from turbulent structures inside the jet shear
layer which have a supersonic convective speed.

So the formula which leads to compute axial origin coordinate is:

1 x
D

2
origin

=
1 x
D

2
amplitude=10%

−

1
r
D

2
crop,max

+
1
r
D

2
crop,min

− 1
2 + 0,1

1 x
D

2
origin

We can compute axial origin coordinate thanks to the formulation above which
can be split into three different components with reference to Figure 4.24:

36



Processing results

• Threshold coordinate:
1
x
D

2
amplitude=10%

We compute the axial coordinate where the amplitude of the signal exceeds
a threshold fixed at 10% of its maximum amplitude: below this value, the
detected signal is considered as background noise; above this value, the detected
signal is considered as the real wave.

• Crop position correction: −

1
r
D

2
crop,max

+
1
r
D

2
crop,min

−1

2

At this point we have to get this coordinate back to the jet exit radial
coordinate. The propagation angle λ = 45◦ allows us to solve that task by
translating, through a subtraction, of a quantity (yellow line in Figure 4.24)
equals to the radial coordinate of the crop central horizontal line (green line
in Figure 4.24) along the axial coordinate, and by adding 1

2 because waves
born inside shear layer and not along the jet axis.

• Boundary layer correction: 0,1
1
x
D

2
origin

The last step consists in the sum of the boundary layer thickness (blue
line in Figure 4.24) which is known to be y = 0,1x. In this case it becomes1
r
D

2
origin

= 0,1
1
x
D

2
origin

where the subscript denotes the origin axial coordinate
computed after the firsts two steps.

Modes x/D origin [-]
1,2 2,00
3,4 1,73
5,6 1,41
7,8 1,33
9,10 1,25

Table 4.7: x/D origin

In summary, the analyzed waves originate inside the jet shear layer from an
axial coordinate between 1,25 and 2 jet diameters; it decreases when the frequency
spectra involve higher frequencies. The same results are reported in Table 4.11 and
in Figure 4.25, where n is the mode number.

4.2.8 Skewness statistical indicator
A method that allows us to obtain an insight about steepening is skewness analysis,
a statistical indicator presented in Appendix C, which gives a measure of the
asymmetry of a signal.
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Figure 4.25: x/D origin coordinate

Modes Skewness statistical indicator
1,2 -0,026
3,4 0,045
5,6 -0,011
7,8 -0,013
9,10 -0,004

First 100 sum 0,23
First 1000 sum 0,38

Complete 0,36

Table 4.8: Skewness value

Table 4.8 recaps some relevant skewness values:

• The first five pairs of modes deeply analyzed so far have very small skewness
values. This suggests that steepening is not detected within them.

• Mode 100 is a halfway mode. The reconstruction of the first 100 modes has a
skewness value slightly larger than half of the complete reconstruction one.

• Mode 1000 is a boundary mode. The reconstruction of the first 1000 modes
has a skewness value almost equal to the complete reconstruction one.

• Complete reconstruction shows a skewness value which is little in absolute
terms, but quite different from the values of the first modes, so we have to
identify which modes are responsible for this difference.
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Figure 4.26: Skewness trend

Figure 4.26 graphically shows how the steepening is almost completely included
between mode 10 and mode 1000. Note that the x-axis follows a logarithmic
scale and so, also if the slope is similar, more than half of the total steepening
is contained within only 90 modes (between mode 11 and mode 100), while the
remaining steepening is distributed among 900 modes (between mode 101 and
mode 1000).

In summary, the signal slightly goes towards a saw-tooth-like structure, charac-
terized by sharp compressions followed by gradual expansions, but this process is
detected in a quantity which is not large enough to induce crackle noise.

4.3 Multi-scale Proper Orthogonal Decomposi-
tion (mPOD)

The multi-scale Proper Orthogonal Decomposition technique, presented in the
previous chapter, brings us to 3700 modes, a significantly lower number compared
to POD one, due to spectral separation. Also, mPOD sort modes so that the first
mode is the most energetic one and the last mode is the least energetic one.

To properly implement mPOD, we have to compute the frequency spectrum
of the temporal correlation matrix ãK, see Figure 4.27. The computed matrix is
symmetric and its anti-diagonal contains the information we are searching for.
Unfortunately, along this diagonal is not clear what are the dominant frequencies,
so we have to develop a trick that allows us to find them.

Going back to POD results we consider the frequency spectra of the coupled
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Figure 4.27: Frequency spectrum temporal correlation matrix

Figure 4.28: Frequency splitting vector from POD modes 9,10

modes: we found how the first pair of modes has a single frequency peak, the
second pair of modes has two frequency peaks, the third pair of modes has three
frequency peaks and so on. So we assumed that peaks to be the ones hidden into
the matrix anti-diagonal: among all the tested combinations we noticed that the
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one which allows us to better grasp spectral separation is the fifth pair of POD
modes, composed by mode 9 and mode 10. These frequency peaks suggest to
use the frequency splitting vector obtained from Figure 4.28 and summarized in
Table 4.9.

Filter Frequency range [Hz]
Low-pass f < 2000

Band-pass 1 2000 < f ≤ 20000
Band-pass 2 20000 < f ≤ 27000
Band-pass 3 27000 < f ≤ 35000
Band-pass 4 35000 < f ≤ 43000
Band-pass 5 43000 < f ≤ 69000
High-pass f ≥ 69000

Table 4.9: mPOD transfer function filters from POD modes 9,10

Figure 4.29: ãK frequency splitting vector from POD modes 9,10

This matrix partition also allows us to neglect all the contributes outside the
red squares in Figure 4.29 thanks to mPOD properties: this explains why the
number of modes resulting from this decomposition is lower than the one previously
obtained from POD, which instead considered the complete matrices. Note that
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here it is shown only an orthant that contains the anti-diagonal and the red squares
were built by matching the chosen frequency splitting vector.

Figure 4.30: ãK diagonal frequency splitting vector from POD modes 9,10

The last step is to extract the aforementioned diagonal, which contains the
required information. The results of this overlap are shown in Figure 4.30.

Now, we are ready to go into the heart of the mPOD discussion: it will allow us
to find modes cleaned from any kind of spectral mixing.

Figure 4.31: σ decay mPOD

A first way to visualize the results of this decomposition is to plot the σ decay
as in Figure 4.31. This plot shows the amplitudes of every single mode along the

42



Processing results

y-axis and the number of the modes along the x-axis. The x-axis is represented in
a logarithmic scale to focus the attention on the more energetic modes.

It is worth noting that POD modes are coupled: first with second, third with
fourth, fifth with sixth, and so on. Deeply observing:

• σ of the modes which compose a pair is similar;

• σ of the modes within a couple is well distinct from that of nearby couples;

• increasing mode number σ get closer.

During this analysis, we will use a convention to focus on the first 10 modes,
highlighted in Table 4.10, which recap the composition of every couple of modes
and associate them a color.

Pair Modes Color
1 1,2 Red
2 3,4 Blue
3 5,6 Green
4 7,8 Yellow
5 9,10 Magenta

Table 4.10: Convention mPOD

4.3.1 Spatial structures and frequency spectra
Following the steps of what we have done for POD, we start mPOD discussion
from the spatial structures and the frequency spectra.

Figure 4.32: mPOD modes 1,2: spatial structures and frequency spectra

Spatial structures correspond to the matrix Φ (see chapter 3), reshaped from
column arrays into nx×ny matrices. Frequency spectra represent σ amplitudes
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Figure 4.33: mPOD modes 3,4: spatial structures and frequency spectra

Figure 4.34: mPOD modes 5,6: spatial structures and frequency spectra

Figure 4.35: mPOD modes 7,8: spatial structures and frequency spectra

associated with frequencies. Bearing in mind that we want to highlight the rela-
tionship between the two modes which form a pair, we can make some observations
in detail case by case:

• mPOD modes 1,2 (Figure 4.32):
Spatial structures reveal wave insurgency from a certain coordinate, they
appear as very regular and they show a certain inclination.
Frequency spectra are characterized by a single peak at a value ranging from
27 kHz to 35 kHz.
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Figure 4.36: mPOD modes 9,10: spatial structures and frequency spectra

• mPOD modes 3,4 (Figure 4.33):
Spatial structures reveal wave insurgency from a certain coordinate, they
appear as very regular and presents fewer oscillations than the first pair, due
to a lower frequency range as we will see, and they show a certain inclination.
Frequency spectra are characterized by a single peak at a value ranging from
20 kHz to 27 kHz.

• mPOD modes 5,6 (Figure 4.34):
Spatial structures reveal wave insurgency from a certain coordinate, they
appear as very regular and presents more oscillations than the previous pairs,
due to a higher frequency range as we will see, and they show a certain
inclination.
Frequency spectra are characterized by a single peak at a value ranging from
35 kHz to 43 kHz.

• mPOD modes 7,8 (Figure 4.35):
Spatial structures reveal wave insurgency from a certain coordinate, they
appear as very regular and presents fewer oscillations than the previous pairs,
due to a lower frequency range as we will see, and they show a certain
inclination.
Frequency spectra are characterized by a single peak at a value ranging from
2 kHz to 20 kHz.

• mPOD modes 9,10 (Figure 4.36):
Spatial structures reveal wave insurgency from a certain coordinate, they
appear as very regular and presents more oscillations than the previous pairs,
due to a higher frequency range as we will see, and they show a certain
inclination.
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Frequency spectra are characterized by a single peak at a value ranging from
43 kHz to 69 kHz.

We can see how spatial structures are coupled and complementary like in POD,
but applying mPOD spectral separation produces a very regular pattern.

So mPOD frequency spectra differ significantly from the POD case by isolating
every single frequency band, and this allows us to understand the following mecha-
nism: phenomena characterized by higher frequency require less space to evolve
than lower frequency involving ones. We can conclude that what we considered the
axial origin coordinates of the higher frequencies cases are nearest to the jet exit
than the axial origin coordinates of the lower frequencies cases.

4.3.2 Waveform
Thanks to its spectral separation mPOD allows us to separate every single frequency
peak associated waveform, while in POD waveform spectral mixing generates an
overlap which affects all the pairs of modes except the first ones, where frequency
spectra had only a single peak.

We summarize the extraction line starting position as pixel numbers along the
crop bound, selected for the different pairs of modes, at a radial coordinate equals
to r/D = 0,9 in Table 4.11.

In the following figures we report: on top, the extraction line highlighted with
the associated color within the crop; on the bottom, the waveform.

Figure 4.37: Waveform modes 1,2 mPOD

We discuss now the results presented in Figure 4.12 - Figure 4.16:
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Figure 4.38: Waveform modes 3,4 mPOD

Figure 4.39: Waveform modes 5,6 mPOD

• Waveform mPOD modes 1,2 (Figure 4.37):

It is harmonic, regular, and it does not differ too much from the corresponding
waveform extracted from POD. As already mentioned, the reason for this
similarity is probably due to the single peak shape of POD modes 1,2, but
this is an exception as we are going to see next.

• Waveform mPOD modes 3,4 (Figure 4.38):
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Figure 4.40: Waveform modes 7,8 mPOD

Figure 4.41: Waveform modes 9,10 mPOD

It is harmonic, regular, completely different from the corresponding waveform
extracted from POD, which could be seen as the overlap of two harmonic. This
waveform has fewer oscillations than the first pair due to a lower frequency
range.

• Waveform mPOD modes 5,6 (Figure 4.39):
It is harmonic, regular, completely different from the corresponding waveform
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extracted from POD, which could be seen as the overlap of three harmonic.
This waveform has more oscillations than the previous pairs due to a higher
frequency range.

• Waveform mPOD modes 7,8 (Figure 4.40):
It is harmonic, regular, completely different from the corresponding waveform
extracted from POD, which could be seen as the overlap of four harmonic.
This waveform has fewer oscillations than the previous pair due to a lower
frequency range.

• Waveform mPOD modes 9,10 (Figure 4.41):
It is harmonic, regular, completely different from the corresponding waveform
extracted from POD, which could be seen as the overlap of five harmonic.
This waveform has more oscillations than the previous pairs due to a higher
frequency range.

In conclusion, mPOD allows us to properly extract waveforms and shows how
their shapes are undoubtedly harmonic. Another way of looking at this finding is
that the dataset pairs harmonics in space with harmonics in time.

Modes Extraction line starting position [px]
1,2 95
1,2 115
1,2 80
1,2 140
1,2 80

Table 4.11: Extraction line starting position

Two lasts remarks confirm some results we already found during the discussion:

• Structures which involve higher frequencies require less space to fully develop,
by arising and by reaching their maximum at lower coordinates, compared to
ones characterized by lower frequencies.

• Structures which involve higher frequencies origin closer to the jet exit: what
we defined as axial origin coordinate is lower and so they appear earlier within
the crop, compared to ones characterized by lower frequencies. Therefore we
selected lower values of extraction line starting position for higher frequen-
cies modes, and higher values of extraction line starting position for lower
frequencies modes in Table 4.11.
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Chapter 5

Conclusions

5.1 Recap of main results
Let us now briefly summarize the main results of the presented analysis.

Both POD modes and mPOD modes derived by Modal Analysis reveal to be
coupled. In these decompositions, the modes are sorted from the more energetic
to the less energetic ones, and they are organized in couples. By rebuilding every
single pair at a time we found propagating wave patterns.

Observing in detail the POD case, we cataloged the discovered modes as Mach
waves mainly thanks to the following features:

• The propagation angle equals 45°. According to literature [2], Mach waves
have a very high directivity which allows them to propagate only along a 45°
inclined path: thanks to 2-D FFT (Appendix A) we checked that the waves
respect this criterion.

• The traveling speed is approximately the speed of sound. From the definition
of Mach waves, we know how they have to propagate at the speed of sound.
By using auto-correlation (Appendix B) the errors between the theoretical
values and the computed values are negligible: around 1%, with the only
exception of the first pair of modes whose error is still acceptable, around 3%.

Thanks to skewness statistical indicator we were able to detect wave steepening.
The first 10 modes which we analyzed in detail are not involved in any kind of
non-linearities, but the use of that particular statistic indicator reveals a slight
steepening hidden between mode 11 and mode 1000.

Focusing on mPOD we isolated the waveforms of every single couple of modes
by extracting oblique lines along the propagation path. Their spatial structures
showed purely harmonic characteristics revealing that, within the hydrodynamic
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field and the near-acoustic field of the supersonic jet, any kind of steepening was
not detected. So we can conclude that the data accurately pairs harmonics in space
with harmonics in time.

5.2 Open questions
The results summarized in the above section leave some open questions that deserve
to be analyzed more in detail. This study revealed that the waveform of the more
energetic modes within the hydrodynamic field and acoustic near-field are harmonic
and any kind of steepening has not been detected. Indeed, though skewness
statistical indicator, non-linearities have been slightly discovered between mode 20
and mode 200.

Despite this, it would be interesting to repeat this analysis in a wider region by
applying Data-Driven Modal Analysis also going towards the acoustic far-field. In
this way, we can understand if more energetic modes waveforms stay linear along
their complete propagation path or if the narrowness of the observation area, which
depends on the original schlieren dataset, prevents us from detecting nonlinearities.
Also within the modes involved by a light steepening, it would be interesting to
understand if they may steepen more across a wider observation area.

From the previous study, we know that non-linearities may lead Mach waves
to saw-tooth-like structures which rise crackle noise. Since the latter is the most
annoying component of the whole acoustic sound field, an interesting target may
be to discover if somehow is possible to preserve linearity, or at least to limit the
potential non-linear effects: to keep the waveforms as regular as possible should
bring supersonic jet noise emissions to a more gentle increase.
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2-D Fast Fourier Transform

Fast Fourier Transform (FFT) is an algorithm which implement the Discrete Fourier
Transform (DFT) of a signal. Its bi-dimensional version is computed by simply
multiplying the FFT along a direction x and the FFT along another direction y as
in the formula below:

FFT [kx, ky] = 1
NxNy

Nx−1Ø
m=0

Ny−1Ø
l=0

Φ[m, l]e−j2π
1
kxm
Nx

+ kyl

Ny

2

This expression has a length of Nx values along the x-axis and Ny values along
the y-axis and gives as result a periodic and sampled transform starting from a
periodized signal. The 2-D FFT is a function of the wavenumbers kx and ky and the
values that they assume where the function reaches its peak allow us to compute
pattern directivity.

Figure A.1: 2-D FFT spatial structure and frequency spectrum
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Figure A.1 shows: on the left the narrow area where we shrink the crop to
obtain more solid results from this analysis; on the right the frequency spectrum
given by 2-D FFT.

Once we computed wavenumbers along the involved axes corresponding to the
peak of the 2-D FFT, wave propagation angle is the arctangent of the ratio between
them. As we can expect in this particular case the computed wavenumbers are
equal to each other, so wave propagation angle will have a value of θ = 45◦.
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Auto-correlation

Cross-correlation in Signal Processing detect the similarity between two signals
where a displacement, which can be spatial or temporal, has been applied to one of
them. The auto-correlation, whose definition is indicated below, can be seen as a
cross-correlation of the same function in following instant:

ρΦi,Φi+1(τ) =
Ú +∞

−∞
Φi(t)Φi+1(t+ τ)dτ

This relation is a function of τ and allows us to define the delay, either spatial
or temporal, between a signal Φi and another signal Φi+1. However, the lag
corresponds to the peak of the auto-correlation function and it should be almost
constant among all frames.

Figure B.1: Auto-correlation

In Figure B.1 we can see the auto-correlation between two following frames.
The peak of the function is reached at a value that is almost constant scrolling
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through all the frames contained in the dataset and this proves the robustness of
the algorithm.

For this analysis the auto-correlation focus is on the spatial displacement case,
then we will easily compute wave propagation speed by dividing for the time lag
between two following frames, a quantity which is defined as the inverse of the
sampling frequency that is known from the dataset. As expected, the computed
wave traveling speed is around the speed of sound a ≈ 343m/s.
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Skewness

Figure C.1: Skewness working

Skewness is a statistical indicator which gives a measure of the asymmetry of a
signal φi defined as below, where σ is standard deviation:

S =
ntØ
i=1

1
φi − φ

23

ntσ3

In Figure C.1 we have a recap of qualitative indication given by of this statistical
indicator and applying it to the signal is clear how:

• if S > 0: the signal is characterized by sharp compressions followed by gradual
expansions.

• if S = 0: compressions and expansions have the same mean slope along the
signal.
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• if S < 0: the signal is characterized by gradual compressions followed by sharp
expansions.

As far as quantitative information in concerned, we can say that:

• if -0,5 < S < 0,5: data are nearly symmetrical

• if -1 < S < -0,5 or 0,5 < S < 1: data are moderately skewed

• if S < -1 or S > 1: data are highly skewed
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