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Abstract

Metamaterials are a recent development of material science and they are designed

to have specific properties not common for classical materials. Lattice materials

are a class of materials characterised by being made of a repetition of cells in one

or more directions to achieve a more optimised distribution of the load on the

structure. By bonding these two definitions, a new class of materials is created

that uses the repetition of cells to make a new material able to absorb vibrations

while being able to be deployed on a wide range of application, from insulation to

aerospace. The objective of this dissertation is to analyse various tipe of cells using

the Carrera Unified Formulation (CUF) package and the Wave Finite Element

Method (WFEM) to assess the performance of those structures and propose new

ones that can be used as vibration control medium.

The first part of this document is focused on the study of the proposed structure

with the tools for eigenvalue analysis built-in on the CUF package. The second

part is mostly dedicated to the use of the WFEM for the solution of the wave

propagation problem to study the performance of various structures.
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Introduction

0.1 Metamaterials and lattice structures

Metamaterials represent a recent class of composites introduced to identify artificially-

made materials that have properties not available in natural ones, such as negative

Young’s module or Poisson’s ratio. The first batch of research had taken into con-

sideration the electromagnetic properties of the materials to manipulate the wave-

length of an electromagnetic wave without varying its frequency. Later research

has exploited the analogy between electromagnetic and acoustic waves to obtain

stopbands able to absorb a specific range of frequencies. [8]

Lattice structures are constructed of interconnected unit cells tessellated in the

tridimensional space, creating a periodic arrangement. Advancement in Additive

Manufacturing techniques has led these structures to become more prominent in

order to reduce materials usage in manufacturing, while optimizing the strength to

weight ratio. Moreover, these structures can absorb energy more efficiently than

whole classics structures, leading to improved vibrational dampening and isolation

of sensitive areas of the construct from loaded ones. [7]

0.2 Structural Theories

Significant numbers of theories have been developed in the past centuries in order

to meet the demand for an approximate solution for the structural problems. The

most well known are the ones developed with the axiomatic method by eminent

scientists. The axiomatic method exploits the understanding of the problem to

isolate the most important mathematical terms for a given structural problem.
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The resulting theories cannot be mathematically proven, but they were exploited

to design most of the structures during the last few centuries. The introduction

of axiomatic hypotheses on the behaviour of the unknown functions preclude the

possibility to evaluate the theories accuracy, but further additional terms of the

expansions can overcome this limitation and allow the engineers to work with a

result which includes the precision of the theory.

As an example of axiomatic theories, the Euler-Bernoulli and Timoshenko

Beam Theories (EBT and TBT) will be addressed in the next paragraphs. Firstly,

the EBT embed two assumptions: the plane section remains plane and the beam

slopes are small. The first assumption means any section of the beam which was

a flat plane before the deformation will remain plane after the deformation. This

assumption is generally valid till the beam experiences significant shear and tor-

sional stresses relative to the bending axis. The small angle assumption allows to

approximate sine and cosine. The displacements for an EBT beam are presented

in Equation 1.

u = u0 + zw,x

v = v0 + zw,y

w = w0

(1)

The TBT breaks free from the assumption and takes into consideration the

shear and rotational stresses omitted for the EBT formulation. The displacements

for a TBT beam are presented in Equation 2.

u = u0 + zϕx

v = v0 + zϕy

w = w0

(2)

0.3 Carrera Unified Formulation

Models in this thesis will be developed via the Carrera Unified Formulation (CUF)

formalism. The CUF provides monodimensional, beam, and bidimensional, plate

and shell, theories more powerful than classical ones with the implementation of

a condensed notation and by expressing the displacement field along the cross-
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section (for beams) and the thickness (for shells and plates) using base functions

with arbitrary orders and forms. The condensed notation leads to the introduction

of the fundamental nucleus (FN) which consists of a few mathematical statements

unrelated to the theory of structure (TOS) used. Those nuclei originate from

the tridimensional elasticity equations via the principle of virtual displacement

(PVD) and they can be easily obtained for the tridimensional, bidimensional and

monodimensional cases. The last two cases have enhanced capabilities since they

can obtain a tridimensional result with a lower computational cost. The monodi-

mensional case emphasizes this advantage of being properly capable of deal with

more complex bidimensional and tridimensional problems.[3]

In this thesis the monodimensional model will be mostly used to solve the struc-

ture.

0.3.1 Derivation of a FE beam with CUF

Tridimensional displacement field u(x, y, z, t) = (ux, uy, uz) is approximated as:

u(x, y, z, t) = uiτ (t) ·Ni(y) · Fτ (x, z) τ = 1, ...,M i = 1, ..., N1D
n (3)

where: Ni is the monodimensional Lagrangian form function, Fτ is the function

used to approximate the cross sectional of the beam, uiτ is the unknown coefficients

vector, i is the FE index and goes from 1 to the number of nodes of the elements

N1D
i and τ is the index bind to the expansion used to express the cross section

cynematics and M is an input parameter for the analysis. For the analysis both

Lagrange and Taylor expansions will be used and for the latter various order

of expansion will be tested during the dissertation. In the cases which will be

discussed in this introductory chapter, the cinematic of the cross section will be

obtained with a combination of Lagrange polynomials defined inside subregions

(cells) by a number of points (nodes). The number of nodes determine the order

of the polynomials: four (L4) nodes for bilinear expansion, nine (L9) for trilinear

expansion and sixteen (L16) for bicubic expansion. For the nine nodes cell the

Interpolation functions are:

13



Fτ =
1

4
(r2 + rrτ )(s

2 + ssτ ) τ = 1, 3, 5, 7

Fτ =
1

2
s2τ (s

2 − ssτ )(1− r2) +
1

2
r2τ (r

2 − rrτ )(1− s2) τ = 2, 4, 6, 8

Fτ = (1− r2)(1− s2) τ = 9

(4)

where r and s range from -1 to 1 and rτ and sτ are the coordinates of the

nine points on the natural reference system. The displacement field of a single L9

element is:

ux = F1ux1 + F2ux2 + F3ux3 + ...+ F9ux9

uy = F1uy1 + F2uy2 + F3uy3 + ...+ F9uy9

uz = F1uz1 + F2uz2 + F3uz3 + ...+ F9uz9

(5)

here the unknown (ux1, ..., uz9) are the translational displacements of the nine

points which form the element.

Layer-Wise approach

Unlike Equivalent Single Layer (ESL) techniques, where the different layers of the

structure are condensed on a single virtual material with averaged properties, e.g.

a composite plate, the Layer-Wise (LW) ones have different properties derived

from the actual materials each layer is made of. The result of these techniques is

kinematically homogeneous, so the kinematics of the individual layer is unknown.

On the other hand LW theories allow the knowledge of the kinematics for each layer

of the structure at the cost of introducing constraints on each interface to ensure

the compatibility of the displacement components for each interface between layers.

A LW approach is preferred when the structure is made of different materials and

when the knowledge of the strain on the interface between layers is used e.g to

evaluate the delamination of a composite plate.

0.4 Structure of the thesis

The thesis is mostly divided on two parts: the first uses the CUF package to solve

the eigenproblem for each proposed structure and it is mostly focused on the study
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the optimal structure to be used as a cell for the creation of a lattice metamaterial.

On the other hand, the second part of the document is more focused on the study

of the optimised cells embedded on a multi-cell structure, using the WFE method

capacity of propagate the cell along one dimension. On the last chapter a sandwich

panel, made of those structures as core, is proposed and its modes are analysed.
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Chapter 1

Geometry characterization

1.1 Introduction

The following chapter will firstly address the free frequency variation of a gate-like

structure with different cross-section discretizations, each with various Lagrange

Expansion (LE) approximation of the subdomains, in order to identify the best

trade-off between computational cost and accuracy of the results. The discretiza-

tion resulting from the trade-off is then scaled to a tridimensional structure where

some morphological configurations will be analised and compared in order to iden-

tify the configuration better suited to the study of how the materials properties

and distribution can change the vibrational modes of the structure.

1.1.1 Discretizations

Using the Carrera Unified Formulation (CUF) the tridimensional object is rep-

resented by means of a one-dimensional beam with the cross-sectional surface

discretized with Lagrange Expansion (LE) elements to approximate.

Cross-section discretizations - 2D

The four cross-section discretizations chosen for this structure are presented on

Figure 1.2. Each configuration is composed of a number of cells, every discretiza-

tions has square cells on both the upper angles, but on the heads and legs various

16



Figure 1.1: Tridimensional structure with highlighted ribs (green) and spars (blue)

(a) 8L# (b) 14L# (c) 16L# (d) 18L# (e) 26L#

#L4

#L9

#L16

(f) LE element

Figure 1.2: Cross-section discretizations
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distributions have been tested with different meshes density and placing additional

cells around the most significant part of the structure.

Each mesh configuration can be populated with different discretizations, all based

on the Lagrange Expansion. In particular, discretizations with four nodes (L4),

nine nodes (L9) and twelve nodes (L12) will be analyzed.

Configuration 1.2d is the most notable, with mesh thickening near the corners.

Configuration 1.2e is the most time consuming, with its 3792 degrees of freedoms

(DoF).

Depth discretization - 2D

Single gate-like object depth discretization is made with a single B4 element. This

model has been chosen for the capability to seize the shear [TBA]. This discretiza-

tion is the same for all the bidimensional configurations and will be also used on

the tridimensional discretization for the gates.

Cross-section discretizations - 3D

The tridimensional cross-sectional discretization is achieved with the assembly of

more gate-like linked using horizontal connective elements as the head of the gate-

like cross-sectional discretization. In order to smooth and simplify this process,

the configuration in Figure 1.2c is added to the analysis for validation.

Depth discretization - 3D

The various ribs, composed of repetitions of the gate-like structure and the con-

necting amongst each gate, are linked between them with beams discretized with

two B4 elements. These beams are located on the angles and extremities of the

ribs, where the cell is squared. One more configuration are achieved removing

some spars from the angles of the gate-like structure in order to create series of

table-like structures with the extremities of the legs linked together.

18



1.1.2 Boundary conditions

On the bidimensional simple gate structure, boundary conditions are applied on

the two extremities. In particular they are a joint and a cart. On the tridimensional

structure, boundary conditions are applied to the four angles of the structure from

the top view perspective, two joints and two carts in such a way that only the

first and last ribs are constrained while the ones in between are free to move.

Boundary conditions are always applied on the extremities end surface, either

in the bidimensional and tridimensional structures, with particular focus on the

tridimensional one, due to the configurations admitting either up and down facing

extremities.

1.2 Free vibration analysis

The purpose of this analysis is unveiling the vibrational modes of the various

bidimensional structures in order to identify the optimal gate discretization to

be used in the upcoming tridimensional analysis. In addition shear locking with

Mixed Interpolation Tensorial Components (MITC) algorithm is added to some

bidimensional configurations in order to explore the influence of the phenomenon

on the modal analysis.

1.2.1 Gate frequencies deviation

The major topic of interest is the comparison between the various gate models

tested with the aid of some graphics. Figure 1.3 summarizes the first six modes and

compares them to the most complex model taken into consideration (24L16). On

the horizontal axis is highlighted the computational weight of the various solutions

with respect to the reference and on the vertical axis a logarithmic scale allows to

appreciate the variation from the reference modes. Also a yellow horizontal line

marks the two percent variation to provide a better view of the goodness of the

models plotted. Full results of the analysis is presented in Table 1.1 on page 25.
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Figure 1.3: Frequencies deviation from reference (24L16)

LE efficiency

From the Figure 1.3 it can be seen a notable difference from the different type

of LE discretization applied to every configurations, with the LE4 cells unable to

provide reasonable results with every given distributions. Also LE9 cells seem to

be quite unfitted to provide low error, as well the most refined distributions, also

a high variations between the modes in the configuration itself is seen. Instead,

LE16 cells appear quite precise even considering unrefined distributions. Taking

into account the distribution, the difference between the 14 and the 18 element

configurations are almost absent and all the frequencies variation for the 16 element

gate are below the one percent even considering the high spread, with a 38% saving

in the computational cost. This last configuration (16L16), designed to simplify

construction of the tridimensional ribs, is fully validated and able to compete with

the originally chosen configuration (14L16) with only a six percent increase in

computational cost.

1.2.2 Shear locking

Shear locking is a phenomenon that occurs in finite element analysis with low

thicknesses due to an overstating of the shear stiffness of the structure. This

20
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Figure 1.4: Frequencies variation with shear locking compensating algorithm

phenomenon can be mitigated with algorithms like the MITC used for the analysis

presented in this report. Figure 1.4 is used to compare the two relevant applications

of the shear locking correcting algorithm. The horizontal axis displays all the 20

modes computed and the vertical axis the variation between the frequency with

and without the MITC algorithm.

Table 1.1 contains also the results for the 8L4 configuration, but the variations are

too marginal to be significant in this study.

Shear locking impact

For each of the configurations taken into consideration in this graph the variation

between the analysis with or without the MITC algorithm is small, almost un-

noticeable, with few peaks for almost the same frequencies, except for the 16th

frequency where the contribute of the MITC algorithm is more noticeable in one

configuration (26L16) than the others. Also, this configuration experiences more

variations on average. These information may suggest a rise in the importance of

the mitigation effect of the algorithm with the increase of the number of elements

in the configuration. Further analysis may reveal a stronger importance in case of

stacked gate-like geometries.
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1.2.3 3D structure frequencies analysis

The purpose of the tridimensional modal analysis is to identify the most practical

configuration for the material characterization from the two options described on

the previous section. Figure 1.5 summarize the results form the first six mode for

various planar extension (NXN) and configuration (NXNb).

Modes analysis

Initially six modes are identified and described in the Table 1.2 on page 26. First

five modes are specific of the 1X1 structure that is the foundation for further ex-

tension, sixth mode is unique of extended structure and it is absent on the 1X1

structure.

Graph in Figure 1.5 is divided in multiple cluster depending on the geometry

of the structure. First cluster contains only the simplest structure result as ref-

erence for other structures. Second cluster contains irregular structures: indeed,

it should be noted that the ones with odd depth dimension have much higher

mode frequency that decay with increasing dimension. Third cluster contains reg-

ular structures: here it can be seen a general reduction of the frequencies in the
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same mode with increase of dimensions. Last cluster includes the two symmetri-

cal structures analysed: a decreasing trend can be observed here too, with higher

frequencies on average relative to the previous cluster.

10 mm

10
0 

m
m

100 mm 40 mm

10
0 

m
m

40 mm

(a) 1X1

(b) 3X3 (c) 3X3b

Figure 1.6: 3X3 configurations

1.2.4 Configurations analysis

Configuration in Figure 1.6c is made removing the spars that connect the angles

of the gates, this configuration allows a simmetry on the expansion plane (xy).

Instead, classical configuration, as seen in Figure 1.6b, is not symmetrical on the

plane. In particular cluster three and four from Figure 1.5 are relevant to this

analysis. From these clusters a similar performance can be seen for singular modes

(1 to 5) with a noticeable reduction in frequencies for the sixth mode to appear.

Also a lower decrease of frequency is linked to the expansion of the geometry (from

3X3 to 5X5) especially for the first five modes.

One more configuration involves the addition of more beams on the free ends of

the structure. The resulted ’c’ configuration may be the target for more analysis.
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Freq
Configurations MITC

8L4 14L4 8L9 14L9 8L16 18L9 26L9 14L16 16L16 18L16 26L16 8L4M 18L16M 26L16M

f1 705.1 437.8 167.8 162.7 162.4 162.6 161.1 161.1 160.5 161.1 160.5 705.1 161.1 160.5
f2 887.9 469.4 276.6 264.8 263.1 263.8 261.6 260.3 259.3 259.8 259.0 887.9 259.8 259.0
f3 1241.4 733.4 407.1 387.5 376.5 386.8 382.5 373.0 371.8 372.7 371.6 1241.4 372.7 371.6
f4 2340.6 1445.0 925.2 869.9 860.1 864.5 859.2 852.3 850.8 849.7 848.6 2340.6 849.7 848.6
f5 5214.1 3077.2 1339.0 1177.4 1149.8 1168.6 1146.1 1137.4 1133.9 1137.3 1134.1 5214.1 1137.3 1134.1
f6 6275.5 3696.0 2236.4 1732.8 1659.1 1713.1 1658.8 1635.2 1628.5 1634.6 1628.3 6275.5 1634.6 1628.3
f7 7359.7 4473.2 2257.4 1887.7 1830.8 1871.8 1836.5 1818.1 1814.0 1817.9 1814.0 7359.7 1817.9 1814.0
f8 8651.9 4994.4 2460.0 2259.3 2233.8 2246.6 2229.4 2215.7 2211.8 2212.6 2209.3 8651.9 2212.6 2209.3
f9 9095.9 5621.5 4390.9 3541.0 3457.3 3492.9 3434.6 3389.9 3375.6 3377.1 3365.3 9095.9 3377.1 3365.3
f10 9076.1 6918.9 4487.3 3935.8 3894.2 3897.9 3743.3 3706.7 3698.4 3704.0 3695.4 9076.1 3704.0 3695.4
f11 10466.8 7482.5 5423.9 4334.3 4235.2 4313.5 4012.0 3978.5 3960.7 3975.2 3957.4 10466.8 3975.2 3957.4
f12 11055.7 8421.8 6614.6 4438.4 4344.8 4371.7 4320.1 4270.9 4265.3 4256.6 4252.9 11055.7 4256.6 4252.9
f13 13132.8 8618.7 7672.6 5173.3 5134.0 5098.6 4772.2 4704.5 4687.9 4702.8 4683.9 13132.8 4702.8 4683.9
f14 11671.7 9086.2 8248.2 6252.2 6227.6 6220.6 6173.1 6144.2 6136.8 6137.9 6131.2 11671.7 6137.9 6131.2
f15 11642.9 9460.6 8371.2 6939.9 6638.0 6872.1 6720.9 6532.1 6520.5 6518.0 6506.3 11642.9 6518.0 6506.3
f16 17797.1 11816.3 8554.1 7528.8 7502.2 7478.5 7029.6 6847.2 6820.0 6831.5 6798.2 17797.1 6831.5 6798.2
f17 25250.0 13108.0 9110.6 7741.7 7575.6 7516.4 7446.5 7425.1 7406.8 7423.8 7406.7 25250.0 7423.8 7406.7
f18 26582.6 14572.2 9952.3 8190.7 7869.0 8020.7 7895.3 7559.9 7537.6 7545.0 7522.6 26582.6 7545.0 7522.6
f19 29365.0 14783.4 10357.0 8235.0 8192.6 8168.0 7947.8 7866.6 7840.8 7855.7 7832.5 29365.0 7855.7 7832.5
f20 31042.3 15564.4 12770.8 9400.7 9289.9 9306.5 8426.1 8286.7 8235.6 8262.6 8203.1 31042.3 8262.6 8203.1

DoF 216 360 612 1044 1200 1332 1908 2064 2352 2640 3792 216 2640 3792

Table 1.1: Gate analysis results table [Hz]
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Configuration 1X1 1X2 2X1 2X3 2X2 3X3 5X5 3X3b 5X5b

Mode 1 Lateral vibration with joint-mounted extremities deformation 201.3 147.5 103.4 67.1 108.4 52.9 27.3 52.7 28.8
Mode 2 Fixed bonds vibration along the depth 207.6 131.2 120.2 76.3 124.7 55.4 29.6 58.1 33.5
Mode 3 Head twist 265.6 252.2 206.1 137.1 145.7 114.9 54.2 105.7 50.3
Mode 4 Free extremities twist 509.5 295.4 228.2 111.4 217.3 90.8 51.1 82.7 44.6
Mode 5 Lateral vibration with carriage-mounted extremities deformation 737.7 315.1 750.6 319.4 - 138.9 65.4 134.7 73.9

Mode 6 Out of plane vibration - 226.9 200.7 117.8 172.7 69.9 31.9 45.7 18.2

Table 1.2: Tridimensional structure modes
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Chapter 2

Material characterization

2.1 Introduction

For the previous simulation the material used was always an aluminium alloy

(AlAll) with the properties shown in the Table 2.1. In this chapter, instead, the

materials combination and distribution will be addressed. This topic is relevant

in order to evaluate the effect of the strength and density distribution among the

structure on the vibrational analysis. Firstly the choice of materials and their

combination will be covered, then a brief analysis of the variation generated by

the material change will lead to the selection of the most relevant materials com-

bination to finally perform a distribution analysis.

Material E ν ρ Description
[GPa] [-] [kg/m3]

Al2O3 340 0.22 3900 Alluminum oxide
AlAll 75 0.33 2700 Generic Al alloy
CoCrMo 240 0.35 8250 Chrome alloy
SS316 193 0.33 8000 Stainless steel
Ti6Al4V 114 0.33 4430 Titanium alloy
TiC 450 0.19 4940 Titanium ceramic

Table 2.1: Materials used in the study
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2.2 Materials selection

The choice of materials to include in the study is made bearing in mind the current

production capabilities for multimaterial parts. The most relevant production

tecnology in this field lies in the Addictive Manufacturing (AM), especially the

techniques for metal AM with stream of material in forms of wires or powder.

Suitable AM techniques are summarised on Table 2.2. The most notable process

is the Laser Engineering Net Shaping (LENS) that uses a laser to create a weld

pool where the powdered metal is deposited through a specialized nozzle [1].

Meanwhile metal-ceramic multimaterial structures have yet to enter the mature

stage due to the large discrepancies in the thermal properties that may cause

the vaporisation of the metallic material during the fusion of the ceramic one.

However some metal-ceramics combinations have been tested with bright results

and a ceramic coated material is easy to obtain even with current technologies.

Besides AM, traditional manufacturing processes can be used to produce mixed

materials structure by introducing an assembly step down the line in order to join

the various structure created with each material.[2]

Technique

DMLF Direct Metal Laser Fusion
EBAM Electron Beam AM
DMD Direct Metal Deposition
LENS Laser Engineering Net Shaping
LMWD Laser-based Metal Wire Deposition
HAM Hybrid AM

Table 2.2: Addictive Manufacturing metal technique

2.2.1 Combination

Besides the material choice, the combinations between the selected ones is equally

or even more important than the early selection. The permutation selected for the

analysis are summarised in Table 2.3, where the first two rows identify the single

material structures, while the following rows contain the multimaterial ones. The
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materials combinations are selected keeping in mind the compatibility between

materials and the manufacturing capabilities needed. The most notable combina-

tion is the ones between Stainless Steel (SS316) e Alumina (Al2O3). Besides what

already written for the combination of metals and ceramics, this combination has

been proven successful through LENS technique [4].

Material 1 Material 2 E1

E2

ρ2

ρ1

ν1

ν2

AlAll + AlAll 1 1
SS316 + SS316 1 1
SS316 + Al2O3 0.276 1.5

Ti6Al4V + TiC 0.227 0.3
SS316 + Ti6Al4V 0.937 0.9

Ti6Al4V + CoCrMo 0.884 0.9

Table 2.3: Materials combination

2.3 Simulation

For the next simulations an improved model will be used. In particular, lower

beams originated from the legs have been added to enhance simmetry and to ease

the future application of periodic boundary conditions on the geometry. For the

first batch of simulations, various combinations are tested, beams are added only on

the x direction; for the second batch, where various distributions are tested, beams

are also added on the y direction. Moreover, only 2X2 and 4X4 configurations will

be analysed on this chapter: this choice is made in order to focus on how the

material properties could impact on the performance of the structure rather than

the geometry used for the structures.

2.3.1 Materials selection

The choice for the materials to be used in the next section is made by comparing

2X2 and 4X4 structures made by the materials combinations in Table 2.3. Each

combination is applied on both the geometries by placing the first material on

the ribs (blue) and the second on the spars (green) as rapresented on Figure 2.1.
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Figure 2.1: 1X1 configuration with highlighted ribs (blue) and spars (green)
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Then the geometry is supplied to the Mul2 software for the modal analysis, results

are collected and analysed with a Modal Assurance Criterion (MAC) matrix and

the first six modes are considered. For each mode, resulting frequencies are fitted

on a plane on the ratio between the specific Young’s module and the Poisson’s

numbers of the combinations. The choice of fitting the results to a plane is made

in order to offer an elementary prediction on the effect to be expected by chang-

ing the materials properties. These results are represented in Figure 2.2. Those

graphs highlight a consistent higher value on the top left with low specific Young’s

module ratio and high Poisson’s number ratio. Consequently the most suitable

combination taken into consideration during the analysis is SS316 + Al2O3.
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Figure 2.2: Fitted result of the analysis on materials combinations

2.3.2 Materials distribution

The second batch of simulations, done with combination SS316 + Al2O3, is fo-

cused on how the distribution of materials can affect the modal properties of the

structure. Four distributions are proposed with one more for comparison. This

last distribution is randomised to blend most of the discontinuity while maintain-

ing approximately the same density as the four proper distributions. Those are

identified by a sequential lettering, from a to d, and they are represented in Figure

2.3. For each of them, a description is provided below:

a. This configuration is the same as the one used in the materials combinations
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analysis, with the ribs (4) made of SS316 steel and the spar (5) made of

aluminium oxide.

b. This configuration is made by alternating materials on the y direction in a

way that each 1X1 geometry is split in the middle, so each adjacent half

spar-rib-half spar unit has a different material.

c. This configuration is similar to the previous one, but with the entire 1X1

geometry made of the same material. In this case the 2X2 geometry used

for the analysis is split in half on the y direction.

d. The last configuration is made in order to obtain an inteded result, at least

elementary. In contrast with the previous ones, this configuration develops

on the z direction. The bottom and top layers are made of the stiffer material,

in this case alumina, while the steel, that is more elastic, is applied on the

middle beams.

The configurations are then loaded on the Mul2 software to execute a modal

analysis and the data, in form of modal frequencies and displacement, are extracted

and analysed. Firstly every distribution mode is classified with a MAC matrix,

then the frequencies are plotted as a ratio between the configuration frequency and

the base (randomized) frequencies of the same mode. The result of the analysis is

presented in Figure 2.4.

Distributions results

On Figure 2.4 the first six modes frequencies are represented with respect to the

base distribution. From this graph vertical axis extension is clear that the differ-

ence between the configurations rarely exceeds 15% with the exception of config-

uration c that shows a bigger variation, especially on the fourth and sixth modes.

This behaviour may be linked more to the mass distribution than to the materi-

als properties, indeed most of the weight is located in the more dense half of the

geometry, where the material is alumina. Configuration a and b are similar with

the second one slightly more wide. Finally, configuration d may be the only one

where the materials distribution affects the results, with all the modal frequencies

10% to 15% higher than the randomized distribution ones.
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(a) Configuration a. (b) Configuration b.

(c) Configuration c. (d) Configuration d.

Figure 2.3: 2X2 configurations
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Part II

Wave analysis
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Chapter 3

Wave propagation problem

3.1 Introduction

The purpose for this chapter is the implementation of a wave propagation problem

to probe the energy transfer mechanism in a waveguide, to which many structural

components can be referred. This analysis can lead to a better understanding

of the acoustic emissions and vibration of the structure to conceive strategies to

manipulate them. Analytical or exact solutions are available for simple structures,

while complex structures require extensive analysis with semi-analytical or nu-

merical techniques. The Wave Finite Element (WFE), the algorithm used in this

chapter, is one of the most powerful techniques if used in conjunction with a solid

FE theory, that in this case is the CUF. This technique uses the matrices com-

puted for a section of the waveguide via an FE package to propagate the structure

in one or more directions and solve the wave propagation problem [6].

Theories

Various theories can be used to solve the wave propagation problem of the struc-

ture, that is the subject of this document.

The first method to be discussed is the Dynamic Stiffness Method (DSM).

In this method the structure is divided into simple elements with the Degree of

Freedom defined on different nodes, and a dynamic stiffness matrix D is estab-

lished in the frequency domain to relate nodal responses to forces. To obtain this
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matrix, the analytical solutions of the element governing diferential equations, for

harmonically varying displacements, are calculated and then assembled as in stan-

dard FEM. This method can be considered as exact and it has already been used

for study of helical spring and aircraft panels.

The Spectral Element Method (SEM) target is still to assemble the dy-

namic stiffness matrix , but this time the matrix is formulated in the frequency

domain from the general solution of the equation of motion represented by a spec-

tral form. The solution is assumed to be a sum of simple harmonic waves at

different frequencies and so the solution can be reconstructed in the time domain

with a Fast Fourier Transform. This method can be applied to one-dimensional

waveguides while the development of the spectral elements becomes difficult for

two-dimensional application.

The Transfer Matrix Method (TMM) rely on the division of the structure,

usually a plate, into layers and then on assembling the layer transfer matrix and

global transfer matrix with elements from each layers. This method is able to

calculate the exact solution of a multilayer plate with arbitrary stacking sequence.

It can be also applied to periodic structures by combining the states of the left

hand of the first period structure with the right hand of the next period structure

via a transfer matrix.

The Thin Layer Method (TLM) combines the finite element method in

the direction of the cross section with the analytical solution in the form of wave

propagation in the remaining directions. This method was proved effective on

laminated plates with viscoelastic layers where each lamina is divided into homo-

geneous sub-layers.

The Spectral Finite Element Method (SFEM) is mostly used with one-

dimensional wavelines. It uses the same concept of the TLM but with inverted

cross sections and length discretisations. In particular, this method uses FE dis-

cretisation for the cross section instead of the length discretisation in order to

evaluate short wavelength propagation on the waveguide. This method requires

complex formulation for new spectral elements and coupling operators.

The Receptance Method (RM) uses the reciprocal of the dynamic stiffness

matrix, i.e. receptance matrix, to relate the states of the left and right hand of

the periodic element.
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3.1.1 WFE Theory

The power of the WFE method lies in the capability to expand the problem on

the second dimension, enabling the capability to analyse tridimensional structures

with homogeneity along two different directions. Another relevant characteristic

is the reduction of the vibrational problem to a more suitable eigenproblem. Also,

the use of matrices obtainable from common FE packages made the method easy

to use in a great number of structures without the needs to reform the procedure

for every structure.

The WFEM process start with the modelling of the first period of the structure

and the creation of the mesh to be used for the FEA. Then the structure is analysed

with a FE package, in this case the CUF one, where the structural matrix C and

mass matrix M are produced. Once the structural matrices have been obtained

from the CUF package, the dynamic stiffness matrix D can be assembled and

successively decomposed in order to isolate the left (L) and right (R) cross sections

and the internals (I) nodes.

(K+ jωC− jω2M)q = f D(ω)q = f (3.1)

In the absence of internal forces, fI = 0, the internal displacements qI can

be extracted as a function of the left and right cross section displacements and a

reduced matrix can be assembled as in Equation 3.6.⎛⎜⎝D̃LL D̃LI D̃LR

D̃IL D̃II D̃IR

D̃RL D̃RI D̃RR

⎞⎟⎠
⎛⎜⎝qL

qI

qR

⎞⎟⎠ =

⎛⎜⎝fL

fI

fR

⎞⎟⎠ (3.2)

qI = −D̃
−1

II (D̃ILqL + D̃ILqR) (3.3)

DLL = D̃LL − D̃LID̃
−1

II D̃IL

DLR = D̃LR − D̃LID̃
−1

II D̃IR

DRL = D̃RL − D̃RID̃
−1

II D̃IL

DRR = D̃RR − D̃RID̃
−1

II D̃IR

(3.4)
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DT
LL = DLL DT

RR = DRR DT
RL = DRL (3.5)

(︄
DLL DLR

DRL DRR

)︄(︄
qL

qR

)︄
=

(︄
fL

fR

)︄
(3.6)

By indexing the succession of elementary sections by the letter s, so the fol-

lowing section is s+1, the continuity between them can be written as in Equation

3.7 with the right cross section displacements equal to the right side of the next

section and the sum of the forces on the cross sections equal to zero.(︄
qs+1
L

f s+1
L

)︄
=

(︄
qs
R

−f sR

)︄
(3.7)

From Equation 3.6 is possible to derive the transfer matrix between two con-

secutive left cross sections as in Equation 3.8.

(︄
qs+1
L

f s+1
L

)︄
= T

(︄
qs
L

f sL

)︄
with T =

(︄
−D−1

LRDLL D−1
LR

−DRL +DRRD
−1
LRDLL −DRRD

−1
LR

)︄
(3.8)

For a free wave propagating through a waveguide, the displacements and forces

at sucessive cross sections can be also rapresented as in Equation 3.9. With Equa-

tions 3.7, 3.8 and 3.9 the eigenproblem can finally be made explicit in Equation

3.11. (︄
qR

fR

)︄
= λy

(︄
qL

fL

)︄
with λy = e−jk∆ (3.9)

(︄
qs+1
L

f s+1
L

)︄
= λy

(︄
qs
L

f sL

)︄
(3.10)

T

(︄
qs
L

f sL

)︄
= λy

(︄
qs
L

f sL

)︄
(3.11)
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⎛⎜⎝qL

qI

qR

⎞⎟⎠ = ΛR

(︄
qL

qR

)︄ ⎛⎜⎝fL

fI

fR

⎞⎟⎠ = ΛL

(︄
fL

fR

)︄

ΛR =

⎛⎜⎝ I 0

0 I

λyI 0

⎞⎟⎠ ΛL =

(︄
I 0 0

0 I λ−1
y I

)︄ (3.12)

(ΛLKΛR + jωΛLCΛR − ω2ΛLMΛR)q̄ = 0 (3.13)

The i-th eigenvalue can be written as λi = e−iκj∆ = e−µi∆e−jκi
′∆ where the

complex wavenumber κi = κi
′−jµi is decomposed into its real (κi

′) and imaginary

(µi) parts which are equal, respectively, to the attenuation and phase change per

unit length of the i-th wave. The direction and type of wave can be inferred from

the nature of the eigenvalue and the two parts that compose it. Different types of

waves are summarised on Table 3.1.

Direction Wave λ |λ| µ κ′

Positive
propagating imaginary 1 0 > 0
evanescent real < 1 > 0 0
attenuating complex < 1 > 0 > 0

Negative
propagating imaginary 1 0 < 0
evanescent real > 1 < 0 0
attenuating complex > 1 < 0 < 0

Table 3.1: Eigenvalue properties and associated wave

3.1.2 Case studies

The purpose of this preliminary section is to explore the performance of various

structures while introducing different types of alterations, both geometric and

materials related. This goal is reached by analysing already published papers or

thesis on WFEM analysis and changing the structures on those documents to reach

a better understanding of the effect of those variations on the performance of the

objects.
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Simple cube tessellated beam

(a) Elemental cube (b) Y direction assembly

Figure 3.1: Models used in this analysis

The goal of this section is to analyse a simple beam structure taken from the

thesis [5]. This beam is made by the recurrence of a simple cube with a 1 mm

edge on the y direction as in Figure 3.1a. During the first batch of simulations this

cube is made of steel, while in the second batch a multimaterials option is tested

by dividing the cube along the z direction with the halves respectively made of

steel and aluminium as in Figure 3.1b. Furthermore the two batches are exploited

to verify various discretisation with the output known from the original document.

This final batch also contains a full spectrum analysis of a proposed configuration

with alternating cubes of steel and aluminium.

For all the figures below the procedure is the same: firstly the input files are

compilated and processed by the CUF package, the stiffness and mass matrix are

extracted and used by the WFEM code to generate the results that are then plotted

for a better understanding and comparison. The first two figure hold the result

from the first batch of simulation, that is the one with the single material cube

and where the discretisation is tested on both the cross section expansion method

and the finite element discretisation. The third figure hold the results from the

multiple materials cube and here only the cross sectional expansion (Taylor or

Lagrange) is analysed. The last one shows the full spectrum analysis.

By confronting the results obtained during the analysis with the results in

the original document [5] the similarity between them is clear. Figure 3.2 shows

perfectly where the points marked as ’thesis res’ are taken from the original doc-
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ument. Focusing on our results, in this batch of simulations, permutations of two

cross sectional Lagrange expansions (LE4 and LE9) and three depth beam dis-

cretisations (B2 to B4), with a total of six combinations, are tested. The most

relevant ones are in the graph, in particular the most compute intensive LE9 - B4

and the two variations on the opposite end of the spectrum LE9 - B2 and LE4 -

B4. The graph shows the propagation of three modes in the considered range: two

with a constant velocity (b and c) and the third dampened (a). While in the last

two there is no difference between the various discretisations, in the first (a) the

transition from LE9 to LE4 causes a noticeable error in the results. The similarity

between the B4 and B2 leads to a shift to the second discretisation for the second

batch of simulations with multimaterials.
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Figure 3.2: Single material cube with Lagrange expansions comparison

Figure 3.3 shows the result of the analysis on the single material cube discretised
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with various orders of Taylor expansion on the cross section and the same as above

in the FE nodes discretisation (B2, B3 and B4). In this case a bigger number

of configurations are tested, with the expansion order range from the classical

theories to an five-order Taylor expansion. In the graph only the most relevant

configurations are proposed with the addition of the LE9 - B4 from the Lagrange

analysis for reference. The TE-1 configuration uses the classical EBT model, while

the TE0 represents the TBT model. TE1 is omitted since it is not different from

the TE2 configuration and TE3 to TE5 show some type of instability. Also there

is no difference from the B2 and B4 discretisations.

Reverting to the figure at hand, there is no error between the various expansion

orders analised, but the complete absence of the mode b from the classical theories

expansion (TE-1 and TE0) suggests the use of at least the TE1 for the second

batch of simulations.
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Figure 3.3: Single material cube with Taylor expansions comparison
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Figure 3.4 is the first of the second batch of simulations, in which a multi-

materials cube is taken into consideration with two different half splitting plane:

z-x plane and y-x plane also referred respectively as y direction and z direction.

On the coming figures the LE9 - B2, single material configuration is added for

reference. In Figure 3.4 the results for the z direction splitting are shown and the

first thing that become clear is the appearing of an extra mode, d. This fourth

mode is displayed also on the single material analysis, but it is coincident with the

a mode, so it is not identified in the first two figures. Besides the differentiation of

the fourth mode, there is only one other difference between the Lagrange expan-

sion case and the Taylor expansion one: the c mode is lightly shifted in the TE1

case than the reference and LE9 cases.
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Figure 3.4: Multi material cube expansions method comparison

In the last analysis of the batch, full spectrum analysis of a different y config-
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uration is analysed: this configuration is formed with a half cube of aluminium

(blue), a full cube of steel (green) and another half cube of aluminium, as shown

in Figure 3.1b. Figure 3.5 shows the presence of five stopbands with increasing

width, the two most noticeable are between 1.63 · 107Hz and 1.77 · 107Hz and

between 1.98 · 107Hz and 2.34 · 107Hz.

Figure 3.5: Spectrum analysis with stopband shown with a blue color

Periodic and quasi-periodic tessellated beams

In this section, the document [9] will be analysed with the intent of reaching

a better understanding of how periodic and quasi-periodic base cells affect the

performance of a tessellated beam and how the CUF code can maintain a high

fidelity with respect to a more demanding solid simulation. In the base document

two subcells, called A and B, are defined as shown in Figure 3.6. Each of them has

a square cross-section but with different coupled dimensions as defined in Table 3.2.

From those two subcells, two cells are assembled: one periodic with two subcells

(AB), called Double Unit (DU), and the other one with 13 subcells in a manner

(ABAABABAABAAB) defined by the 6th order Fibonacci sequence, called Super

Unit (SU) and represented in Figure 3.7.
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Figure 3.6: Duble Unit cell dimensions combination

Type Cell Width [mm] Height [mm] Ratio

I
A 42.00 42.00

2.7
B 15.36 15.36

II
A 40.00 40.00

2
B 20.00 20.00

III
A 38.00 38.00

1.6
B 23.58 23.58

IV
A 31.62 31.62

1
B 31.62 31.62

Table 3.2: Geometrical variation of the two subcells

S1={A}

S2={AB}

S3={ABA}

S4={ABAAB}

Sn=Sn-1+Sn-2

Figure 3.7: Super Unit cell Fibonacci sequence
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For the CUF package elaboration, each subunit is modelled with a B4 beam

with a second-order Taylor expansion on the cross-section and this discretisation

can be seen in Figure 3.8. The reason for this choice is the result of a try and error

process where firstly a Lagrange expansion with B2 was tested with poor results

and both the cross-section and length discretisation bear issues for two different

reasons: the Lagrange expansion for the cross-section causes the WFEM code to

misinterpret the numbers of nodes in the cell left and right boundaries, which

causes the D to be badly assembled and the unreliable results; the choice of B2

discretisation for the length causes the flexional modes to be misrepresented and

thus the results appear to be shifted to higher frequencies.

Both two subcells are made of Steel A-36.

TE'N' 

Taylor expansion 

function on the 

cross-section

B4 beam

Figure 3.8: Double Unit cell discretization

In Figure 3.9 the results of the analysis of the Double Unit cell for each type are

presented. The difference between the two models is almost invisible, indeed the

results from the base document for this section (blue circles) are almost coincident

with our result. Besides that, the shift in frequency of the bandgap is visible

with the decrease of the ratio between the two subunit dimensions, from Type I

bandgap around 750 Hz to Type III bandgap around 1500 Hz. Furthermore, the

width of the bandgap increases with the decrease of the ratio. On the other hand,

in the Type IV graph, the stopband disappears when there is no more difference

between the two subcells dimensions.

In Figure 3.10 the results of the analysis of the Super Unit cell for each type

are presented. In this case, even the difference between the two models is nearly

invisible. The deviation is appearing only on the high frequencies, over 600 Hz.

For Types I to III, three peaks with two stopbands are depicted in Figure 3.10
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Figure 3.9: Duble Unit cell results with comparison with [9] (blue circles)
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and, for all of them, a shift to higher frequencies is clear, moreover the stopbands

width increases with the decrease of the ratio between the two dimensions. Type

IV does not present any stopbands like the Double Unit in Figure 3.9.

Figure 3.10: Super Unit cell results with comparison with [9] (blue circles)

Material variations analysis

After the analysis of the performance related to the variation of the geometry pre-

viously addressed, the material-related properties of structures will be approached

by using the same Fibonacci structure used in the previous section, and the related

research [9]. In this case, all the subunits have the same dimensions as case IV in

Figure 3.2 with the A subcells always made of steel, while the B subcells material

varies for each of the three cases covered. All the materials are displayed in Table

3.2.
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Case Cell Material
E ν ρ

[GPa] [-] [kg ·m−3]

- A Steel-A36 200 0.26 7800
1 B Al 2045-T4 73 0.33 2700
2 B Magnesium 45 0.35 1700
3 B Copper 110 0.355 8960

Table 3.3: Material variation of the two subcells

The Fibonacci sequence is used to decide the order of A and B cells in the unit

to propagate. The sixth order Fibonacci sequence is used to order the thirteen

subcells into a complete cell. The resulting cell is 1.3 meters long with the subcell

arranged in ABAABABAABAAB order. Same as the structure in the previous

section, each subcell is modelled as a B4 element along the length and the section

is modelled via a Taylor expansion of the second order. Then the input files are

elaborate by the CUF package and the resulting matrix are then used by the

WFEM script to extrapolate the spectrum and identify the stopbands.

In the following three figures, the results of the analysis are presented: the most

prominent part of the figures are the blue zones, that highlight the stopbands in

the structure. Figure 3.11 will be used as baseline for the comparison. Here six

stopbands are present: the most prominent is the third that extends from 6.5 to

6.8 kHz, while three other visible stopbands appear near the 5 kHz, 8.5 kHz and

10 kHz.

In Figure 3.12 one more stopband is presented around 4 kHz and generally all

the stopbands in the first case are wider, with the widest going from 6 kHz to 7

kHz. Comparing this case to the first, it is clear that the proportional decrease

in Young’s module and Poisson’s module causes the stopband to widen without

translate to other frequencies.

In the third case, represented in Figure 3.13, most of the stopbands disappear

with the only one remaining that is very narrow. This case presents a uneven

increase in the material properties, especially the Young’s module. In particular,

the result of this increase is the translation to higher frequencies of the deadbands.
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Figure 3.11: Case 1 - Spectrum with highlighted stopband

Figure 3.12: Case 2 - Spectrum with highlighted stopband
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Figure 3.13: Case 3 - Spectrum with highlighted stopband

Mixed section beams

Figure 3.14: Section view of the Configuration B beam

In this section two beams will be analysed. The first is composed of two cubic

subunits, one hollow and one solid, both made of steel. For the second beam, the

hollow subunit is maintained, while the solid one is exchanged with a dampened
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subunit. In particular, this variation is made using the hollow subunit as the outer

sleeve with a thin layer of low Young’s module and density material (epoxy) to

connect it to the central core, also made of steel. The hollow/solid configuration

will be identified as ’Configuration A’, while the other as ’Configuration B’. In

Figure 3.14 the section view of this dampened beam is presented with all three

components visible: the outer sleeve and core are highlighted with green and the

adhesive layer between them with blue. For both the beams, the hollow subunit

is two times longer than the solid/glued ones to balance the weight of the two

subunits.

As for the previous models, the input files are prepared with the three sections

(hollow, solid and glued) modelled with a second-order Taylor expansion and the

beams made of three B4 beams in the configuration hollow-filled/glued-hollow.

Then the inputs are elaborated by the CUF package and the matrices are passed

to a MATLAB script to propagate the structure to obtain the results in Figure

3.15 and Figure 3.16.

On Figures 3.15 and 3.16 the two variations of vibrational performances differ:

the addition of a viscous layer in the structure lead to a more complex behaviour

with less clearly defined stopbands and more modes across the lower frequencies.

One interesting aspect that can be explored with this simple structure is the

dependency of the results on the discretization choice. In particular, the same

structure is discretised with a higher order (third) Taylor expansion and a Lagrange

expansion (LE9) for the section, while maintaining the B4 discretisation for the

length. Most of the difference between the various discretisations is in the number

of DoF needed to describe the structure: 180 for the TE2, 300 for the TE3 and

1356 for the LE. With the increase in complexity, a rise in simulations resource

comes as well. In this case, the last batch, i.e. the Lagrangian expansion requires

a decrease in the number of probing points to execute in a reasonable time, from

the 200 used for both the TE to just 15 divisions for the LE model. This decreases

in points used bears results difficult to compare to the ones from the more refined

analysis but still readable enough to compare.

From the polished results in Figure 3.17, 3.18 and 3.19, a big difference can

be seen between the various discretisations. The results suggest the deep relation

between the performance of the WFEM algorithm and the discretisation used for
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Figure 3.15: Configuration A
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Figure 3.16: Configuration B
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Figure 3.17: Spectrum for the TE2 discretization
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Figure 3.18: Spectrum for the TE3 discretization
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Figure 3.19: Spectrum for the LE9 discretization

the structure.
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Chapter 4

Wave propagation analysis

4.1 Proposed configurations

After a modest amount of analysis to understand the WFEM algorithm strenghts

and weaknesses done in the previous sections, this chapter will focus on the struc-

ture already treated in the previous part of this document. The gate structure will

be analysed with the WFEM algorithm in order to answer the vibrational prob-

lem and finally propose some case to be uses to take advantage of the structure

properties.

Most clear course of action is to feed the structural matrices of the same model

analysis on Chapter 2. The results from the analysis done on the previous chapter

a more efficient structure can be assembled in order to optimize future analysis,

three options were proposed to optimize the model and easing future analysis:

1. Forcibly reducing the number of DoF changing the discretisation used for the

model. This option can lead to erroneous results due to the deep dependence

of the WFEM algorithm on the discretisation proved on the previous section.

However, this option can be proven possible to obtain the correct result with

some proper analysis.

2. Using an outdated bidimensional model of the structure allow to greatly

reduce the DoF of the model at the cost of the loss of one of the dimension

of the original structure.
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Figure 4.1: Drawing of the 1X1 configuration with dimensions

3. By exploiting the powerful propagation of the WFEM to reduce the struc-

ture to the most basic element, the number of DoF feeded to the algorithm

can be greatly reduced, allowing the code to run on a typical machine. Un-

fortunately the structure analysed in the previous chapter can not be further

reduced, so a new similar structure was proposed to check the viability of

this option.

Besides the proposed options capability to greatly reduce the DoF to a more

manageable number, the algorithm is still unable to produce results in a manage-

able amount of time, so it is necessary to reduce the definition of the analysis to

tens of probe points in order to obtain the results. This additional action causes

the result to be less smooth, while some details, like the intersection between

different modes, can become less clear.

As in the previous analysis, all the options start with the modelling of the

structure at a nodes level, then the obtained files are used by the Mul2 program

to output the structural matrices to be feed to the WFE MATLAB script. The
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last phase is to elaborate the output result from this last one script to create the

needed rappresentations.

4.1.1 Option 1 - TE discretisation

Using the Taylor Expansion discretisation for the tridimensional gate structure

allow to greatly reduce the DoF of the model, up to a degree were is possible to

analise the structure with a high definition without a high computational time.

The results from this work are well defined and easy to read, but in order to verify

the correctness of the result obtained from this option, it is important to compare

them with the ones derived from the second option, as they are produced with a

more precise Lagrange Expansion discretisation.
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Figure 4.2: Result of the 1X1 configuration with Taylor Expansion analysis

4.1.2 Option 2 - 2D gate structure

In this option the width of the structure is reduced to a single spar. The structure is

still a tridimensional one but the complexity is greatly reduced due to the shrinking
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of one dimension. This expedient allow to use the Lagrange Expansion for the

analysis without concerning about the time necessary to complete it. However,

even with the reduction due to the loss of one dimension, the already mentioned

decrease of definition is needed to output a result with a manageable execution

time. For this reason the results are not as smooth as the ones presented during

the Option 1 and some guessing is needed to identify the intersections between

modes.
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m
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Figure 4.3: Drawing of the 2D configuration with dimensions

Each cell on the structure represented on Figure 4.3 is discretised with a L16

element. The same cells are used to discretise the model for the third option, shown

on Figure 4.5. The second option model is made with a total of 12 elements, of

which four are cubic. The third ones is made of the same 12 elements but in this

case only two of them are cubic.
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Figure 4.4: Result of the 2D gate analysis

4.1.3 Option 3 - 3D cube structure

WFE method pivots on the propagation of a structure to solve the vibrational

problem, so big structures can be easily analysed by reducing the structure to its

basic element. Unfortunately the original concept is too complex to be further

decreased, so a similar but simpler structure is created to test the reduction. This

test structure is made by a series of interconnected cubes that can be easily reduced

to a single edge with eight protruding half edges from the two extremities of the rod.

This option allows to greatly reduce the DoF of the structure without missing its

tridimensionality. The price to pay for this simplification is the difference between

the original and the new structure, but it may be possible to adapt the WFEM

math to allow mirrored propagation, in order to fully analyse the correct structure

using a more reduced model.

4.2 Cube core sandwich panel

The third option also allows to assemble a sandwich panel by adding two plates over

and under the cube structure acting as a core. This configuration is represented
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Figure 4.5: Drawing of the Cube configuration with propagation
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Figure 4.6: Result of the 3D cube analysis
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on Figure 4.7. This structure is made up by a central core taken from the previous

third option and two aluminium plates. During the analysis on this section the

material which the core is made will be varied to acknowledge the performance of

each combinations.

Three materials will be used to analyse the performance of the strucutre, all the

materials are commonly used in the aerospace industry: while aluminium and steel

are the backbone of every flying structure from the introduction of metal frames,

the third chosen material, aramidic fibers, its a relatively recent introduction to

the field. Most used as core for traditional sandwitch plates in a honeycomb

configuration, they are also used as fiber were additional shear strength is needed.

Recent development of additive manufacturing have made available this fibers

properties for more complex tridimensional structure, impossible to manufacture

with the traditional lamination methods. The materials properties are summarized

on Table 4.1.

Material
E ν ρ

[GPa] [-] [kg ·m−3]

Steel 210 0.30 7700
Aluminium 75 0.33 2700

Aramidic Fiber 1.7 0.30 1100

Table 4.1: Sandwich core materials

The discretization for this batch of analysis is similar to the ones used for

the third option. The two additional plates in the structure are discretized along

the cross section with three LE16 cells while three B4 are used to discretize the

depth of the plates. In the next sections will also analyse the same structure with

Taylor Expansion instead of Lagrange Expansion and the result of the two will

be compared one to another. The usual workflow are used for the simulations

where firstly the model is created and successively fed to the CUF package for

computation of the mass and stiffness matrices. Afterward these two matrices

are used by the WFEM code to extract the results which are finally produced as

graphs.

On Figure 4.8 is represented the result from the steel core sandwich. This
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Figure 4.7: Sandwich configuration

configuration is obtained simply by adding the two aluminium plates to the steel

core from Option 3. On this Figure the range below 8000 Hz is depicted to allow

an easy comparison with the result obtained from the core alone on Figure 4.6.

The sandwich configuration features the same four modes starting from the origin,

however the sandwich configuration are wider and one of them have an unexpected

behaviour where the mode rise to a wavenumber of four rad/s and then slowly raise

to max when reaching 20000 Hz. Similar behaviour can be seen for the following

modes where the distribution and evolution is similar within the two configurations

while the intersections with the horizontal axis is shifted to higher frequencies.

Figure 4.9, Figure 4.10 and figure 4.11 contain the results from the analisys

with different core materials. These graphs allow to compare performance of the

structure between difference combinations of materials. All the analisys have a

common features: three (aluminium) or more modes (steel and fiber) starting

with a frequency of zero Hz; also, there is a strip around 25000 Hz where the

modes are more spaced than other frequencies. This last common feature from all

66



Figure 4.8: Result of the sandwich analysis for comparison with simple cube con-
figuration (steel core)

Figure 4.9: Result of the sandwich analysis with steel core
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Figure 4.10: Result of the sandwich analysis with aluminium core

Figure 4.11: Result of the sandwich analysis with aramidic fiber core

the core materials can be related to the geometry of the structure rather than to

the material composition itself.

68



On the other hand, the steel and aramidic cores have a complex feature in the

low frequencies where a mode stand out compared to the others. For the steel is

the already described parabolic feature which cuts along the graph from the origin

to around 20000 Hz. Meanwhile, the aramid fiber result shows a mode starting

around 5000 Hz come back to the y axis. Those features will be better analysis

within the next section where another discretization will be used to gather more

results.

4.2.1 Results with Taylor Expansion

The analysis within this section uses the same structure and materials, but a

different discretisation is used. Indeed, the next graphs are based on a Taylor

expansion instead of a Lagrange expansion. In addition, various order of Taylor

Expansions are tested to provide a better coverage of the behaviour of the structure

with different materials. The workflow for generating this graphs is equal to the

one used for the Lagrange expansion, but with a slightly different input files and

an additional step. On this additional step the results from the WFEM are further

processed by the CUF package to generate a visualisation of the modes available

thru the ParaView software.

Firstly the features shown by the LE graphs with steel and aramidic fibers are

explored with the aid of this new discretisation.

On Figure 4.12 and Figure 4.13 results from the first-order and fifth-order

Taylor expansions are represented. The first-order graph contains less modes due

to the reduced number of DoF for the low order of expansion. However, the four

modes starting from the origin are visible in this graph. The fifth-order graph is

more densely packed with modes and also the parabolic feature is clearly visible

among the lines. Rather than starting from a wavenumber of four and then steadily

increase, reaching the maximun value at 20000 Hz like on the LE analysis, in the

TE case the slope is steadily increasing from the origin to around 10000 Hz with

a more wide parabolic development. In addition to this features, another steady

path is visible: a constant rise from origin to around 25000 Hz runs through the

graph.

On Figure 4.14 and Figure 4.15 results from the first-order and fourth-order
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Figure 4.12: Result of the sandwich analysis with steel core and first-order Taylor
Expansion

Taylor expansions are represented. With this core material, the choice to stop at

the fourth-order expansions is the result of an increasing instability of the data

with the order increase. This instability is visible on Figure 4.15 around 6000 Hz

and 34000 Hz, where the two modes repetitively exchange paths. To circumvent

this instability the modes analysis is done on a third-order Taylor expansion: with

this order the instabilities are outisde of the graph range.

Same as the steel core Taylor analysed above, the aramidics core presents the

same number of modes starting from the origin of the graph. This feature is

present on both the first-order and third-order results. The second unique feature

of the LE results is also shown on the TE data, although it is visible only on the

fourth-order graph. On the Lagrange results on Figure 4.11 there is a mode that

starts around 5000 Hz and then turns back to the wavenumber axis near 14 rad/s.

Instead, on Figure 4.15 a similar turn around feature can be seen starting around

6000 Hz and then going back to less than 3000 Hz.

The common feature between all the core materials on the LE analysis was
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Figure 4.13: Result of the sandwich analysis with steel core and fifth-order Taylor
Expansion

a scarcity of modes on the frequencies range around 25000 Hz. This same lower

density can be seen on the TE results, still in this second case the range is slightly

off: at higher frequencies for the steel core, while at lower ones for the aramidic

core structure.

Modes analysis

On this section modes analysis is used to investigate the three core materials

properties. For this study the first ten modes of each configuration is extracted and

represented with a tridimensional model superimposed to a black lined wireframe

of the original structure. Each mode is identified by a letter from A to J and also

a reference graph for each material is featured to identify the position of each one.

Moreover, for each material the represented modes are extracted from mid of the

wavenumber scale, a little over eight rad/s. This uniformity allows comparison

even between different materials cores.

The first option analysed is the steel core one. On Figure 4.16 the reference
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Figure 4.14: Result of the sandwich analysis with aramidic fiber core and first-
order Taylor Expansion

graph is shown, with a limited frequencies range than the one used on the previous

graphs. This choice is made to encapsulate all the first ten modes and the same

frequency range will be used for the next reference graphs.

On Figure 4.17 the first ten modes of the steel core structure are represented,

for each mode a deformed model and a black wireframe of the original geometry

are provided. The deformation gain is selected for each image to highlight the

movement of the structure without missing the support from the wireframe to

better understand the deformation. The axes used for the description of each

mode are: X axis from right to left of the page; Y axis pointing into the page; Z

axis pointing up. The models are described on Table 4.2

Most of the modes identified for the steel core structure are bending ones. For

this particular combination two main trends can be seen: from the bottom the

first to appear is a rectilinear line starting from the origin and the second, just

above the first, is a parabolic curve originated from the same point as the previous

one. The extraction point for the modes happens to intersect the second one, the
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Figure 4.15: Result of the sandwich analysis with aramidic fiber core and fourth-
order Taylor Expansion

Mode ref Description

A 4.17a Global bending mode along Z axis
B 4.17b Local bending mode along Y axis
C 4.17c Global bending mode along X axis
D 4.17d Global torsional mode along Y axis
E 4.17e Local torsional mode along Z axis
F 4.17f Local bending mode along Z axis
G 4.17g Local bending mode along Y axis
H 4.17h Local bending mode along X axis
I 4.17i Local bending mode along Y axis
J 4.17j Local torsional mode along Y axis

Table 4.2: Steel core modes

most prominent on the graph on Figure 4.9 with the results obtained from the

LE model. In particular all the modes besides the first intersect the second curve.

This information with the prevalence of bending modes on those points lead to
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Figure 4.16: Steel modes reference graph

(a) Mode A (b) Mode B

assume that this second curve represents a bending modes too.

On Figure 4.18 the second configurations are presented. Contrary to the others

options, on this one the same material of the plates is used for the core obtaining

an homogeneous structure. This plain aluminium structure wasn’t deeply analysed
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(c) Mode C (d) Mode D

(e) Mode E (f) Mode F

as the other two configurations previously on this chapter. Indeed it was mostly

used as comparison for the other analysis, however this paragraph will cover its

analysis. Regarding the modes of the structures, their trend is similar to the one

already seen on the steel results on Figure 4.16: two curves, one rectilinear and one

parabolic. But with this configuration both the curves are less defined and they

are prone to dissipate with frequencies above 5000 Hz. The difference between

the two configurations makes the last five modes of particular interest, especially

modes F, G and H regarding the upper curve and modes I and J in relation to
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(g) Mode G (h) Mode H

(i) Mode I (j) Mode J

Figure 4.17: Steel modes illustration

the lower one.

Figure 4.19 contains the first ten modes from the analysis of the aluminium core

model. As well as the previous illustration, also on this analysis the tridimensionals

models are superimposed with a wireframe to better track the deformation of the

models. The axes used for the description of each mode are the same as the ones

used on the steel core analysis: X axis from right to left of the page; Y axis pointing
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Figure 4.18: Aluminium modes reference graph

(a) Mode A (b) Mode B

into the page; Z axis pointing up. The modes are described on Table 4.3

Likewise to the steel core results, most of the modes on this graph are bending

ones with a handful of torsional modes. There are a lot of similarity between the

mdoes, in particular: modes G, H and J share the deformation of the upper plates;
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(c) Mode C (d) Mode D

(e) Mode E (f) Mode F

also modes E and F share the deformation of the same plates, but mirrored on

the X-Y plane. These last two modes also share a similar distortion of the lower

plates.

The last structure analysed is the aramidic fibers core configuration, whose

results are shown on Figure 4.20. Like the steel core ones, this configuration was

deeply analysed on the previous sections due to the eye catching feature of this

structure. The come back curve visible on the LE analysis results on Figure 4.11

and it is still visible on the later TE analysis on the fourth-order graph on Figure

78



(g) Mode G (h) Mode H

(i) Mode I (j) Mode J

Figure 4.19: Aluminium modes illustration

4.15 is also noticeable on this last graph. In particular the curves where the modes

D and E are extracted from are most likely the ones composing that feature. Also,

the first two curves are of interest due to their straight intersection around 2000

Hz.

The ten modes from the dotted line on Figure 4.20 are represented on Figure

4.21. On this figure the modes are still represented as their tridimensional deformed
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Mode ref Description

A 4.19a Local torsional mode along X axis
B 4.19b Local bending mode along Y axis
C 4.19c Global bending mode along Y axis
D 4.19d Global bending mode along X axis
E 4.19e Local bending mode along Y axis
F 4.19f Global bending mode along X axis
G 4.19g Global torsional mode along Y axis
H 4.19h Global bending mode along Y axis
I 4.19i Global bending mode along X axis
J 4.19j Global bending mode along X axis

Table 4.3: Aluminium core modes
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Figure 4.20: Aramidic modes reference graph

model with a superimposed wireframe of the original one as reference. Likewise

the previous two analyses, the axes used for the description of each mode are: X

axis from right to left of the page; Y axis pointing into the page; Z axis pointing

up. The modes are described on Table 4.4
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(a) Mode A (b) Mode B

(c) Mode C (d) Mode D

Also like the previous analysis, this case modes are most bending ones with

just three torsional ones. In contrast with the previous configurations, the variety

of modes is higher on this analysis and only an handfull of modes are similar to

the ones on the other configurations. Regarding the similarity of the modes within

the aramidic fibers configuration: modes F, H and J have similar upper plates

deformation, but only H and J share a similar lower plates strain while mode F

have a similar lower plate to the mode D one, but mirrored on the X-Y plane;

mode A and especially mode B have an almost rigid deformation.
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(e) Mode E (f) Mode F

(g) Mode G (h) Mode H
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(i) Mode I (j) Mode J

Figure 4.21: Aramidic modes illustration

Mode ref Description

A 4.21a Global torsional mode along Z axis
B 4.21b Global bending mode along X axis
C 4.21c Global torsional mode along Y axis
D 4.21d Global bending mode along Y axis
E 4.21e Local bending mode along Y axis
F 4.21f Local bending mode along Z axis
G 4.21g Local bending mode along X axis
H 4.21h Local bending mode along Y axis
I 4.21i Local torsional mode along Y axis
J 4.21j Global bending mode along Y axis

Table 4.4: Aramidic fibers core modes
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Part III

Conclusions
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Conclusions

4.3 Characterisation

On the first chapters of this dissertation, it is analysed the characterisation of a cell.

Firstly the geometric properties of the cell are analysed, in particular various types

of Lagrange Expansion are tested to identify the best ones to balance accuracy

and complexity of future simulations. By modifying both density of the mesh and

type of cells, a comparative graph is crafted with the aid of this graph a 14L16

configuration is chosen as optimal. To accommodate the flexibility needed to link

the single structure one to another, two more mesh cells are added to the mesh on

the extremities of the gate. Besides the mesh optimisation, shear locking is taken

into account during this chapter. In particular, algorithms for the mitigation of

this phenomenon were tested. In conclusion, the effect of MITC algorithm on the

performance of the simulation was marginal. Also, during this optimisation three

alternative configurations were proposed.

Afterward, the effect on the performance of the materials used for the structure

is explored. The selection of materials to be used on the simulations is done

taking into account both obtaining a large range of properties and the opportunity

to use this material with an Addictive Manufacturing process. This last trait

is also in question when choosing the combinations between materials that will

later be tested. Among the resulting combinations: two are single materials and

they are used as baseline for the others; two are metal on metal with the same

titanium alloy, but with reversed placement of the materials; last two are a metal on

ceramic combinations where the high differences between the materials properties

can highlight the importance of the materials choice on the performance of the
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structures. The simulations done with these combinations lead to the identification

of the optimal ones. In this case ”optimal” means that with these combinations

of materials the result varied more with respect to the baseline.

This combination is used for the next batch of simulations where the positioning

of the materials on the structure is tested. During the second batch of simulations

four configurations are identified by placing the two materials on different areas of

the structure and within these configurations various simmetry are considered. A

fifth configuration with randomised positioning of the materials is used as baseline

for the comparison. To accommodate the need for bigger structures a 2X2 array

of basic cells is used for the simulations instead of a simpler 1X1.

4.4 Wave propagation problem

During the first part of the document the results are obtained by solving an eigen-

problem on the stiffness matrix obtained from the CUF package. This solution

allows to study the behaviour of a structure when excited with various frequencies,

this technique only allows the study of the modeled structure, which lead to more

and more complex structures built from the combination of simpler cells. During

the first part of this thesis this need to study bigger structures lead to the creation

of different size models, like the 2X2 configuration used for the material position-

ing analysis. However, through the second part of this thesis a newer method is

used.

The solution of the wave propagation problem lead to the understanding of the

energy transfer mechanism inside a structure. One particular method for solving

this kind of problems also allows to propagate the structure through one or two

directions. This method, called Wave Finite Element Method (WFEM), is exten-

sively used within the second part of this document to broaden the information

obtainable from every structure. However, before starting to analysing our struc-

ture, a wide range of cases taken from other publications are studied with this

method to compare the results acquired from the implemented code with the ones

from the reference papers.

Afterwards, a new basic structure is proposed to make better use of the WFEM

propagating capability, then this new geometry is used as core for a sandwich plate.
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The analisys for this last iteration includes both discretisations with Lagrange

and Taylor expansions, in particular for the TE various order of expansion are

used from first-order to fifth-order. The sandwich structure is fitted with three

different materials (steel, aluminium and aramidic fibers) on the core to study the

performance of each configuration and compare them. The comparison is made

firstly with the Lagrange expansion and afterward with the Taylor one. This last

discretisation is the one used for the mode analysis. The first ten modes of each

configuration are extracted from the Taylor analysis and compared between each

other, both inside the same configuration and between the three configurations.
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